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Protein-protein docking is a major task in structural biology. In general, the geometries of protein 
pairs are sampled by generating docked conformations, analyzing them with scoring functions and 
selecting appropriate geometries for further refinement. Here, we present an algorithm in real space 
to sample geometries of protein pairs. Therefore, we initially determine uniformly distributed points 
on the surfaces of the two protein structures to be docked and additionally define a set of uniformly 
distributed rotations. Then, the sampling method generates structures of protein pairs as follows: (i) 
We rotate one protein of the protein pair according to a selected rotation and (ii) translate it along a 
line connecting two surface points belonging to different proteins such that these surface points 
coincide. The resulting protein pair geometries are then analyzed and selected using a scoring 
function that considers residues and atom pairs. We applied this approach to a set of 22 enzyme-
inhibitor complexes and demonstrate that a discretisation of the rigid-body search in real space 
provides an efficient and robust sampling scheme. Our method generates decoy sets with a 
considerable fraction of near-native geometries for all considered enzyme-inhibitor complexes. 
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1. Introduction  

Proteins are important regulators of biochemical processes in biological cells. They are 
for instance used to catalyze chemical reactions, to transport substrates through 
membranes and to stabilize cellular structures. Interactions with other molecules can 
affect a protein’s macromolecular structure and functionality. For proteins, whose 
function is to form specific complexes with other proteins, the shape of the contact 
surface and the residue pair interactions at the contact surface are especially relevant [1]. 
This protein-protein interaction obeys the key-lock principle and is driven by free energy 
contributions, resulting in high binding affinities. Binding can influence the function of 
proteins in diverse ways from total inhibition to enhancement or induction.  

Although genome-wide proteomics studies indicate that many proteins interact with 
each other, the number of complexes in the Protein Data Bank (PDB) increases very 
slowly. Possibly, this is related to the instability of transient protein-protein interactions, 
which make a crystallographic analysis difficult. Therefore, theoretical approaches for 
the identification and prediction of protein-protein interactions can be of great 
importance. Many efforts have been made to find a computational solution to this 
problem. Unlike the prediction of the binding modes for small molecules (i.e. FlexX [2], 
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ICM [3] and Fado [4]), most protein-protein docking approaches consider the structures 
of the individual proteins in the complex to be rigid. Initially, a wide variety of docked 
conformations are generated and simultaneously evaluated by scoring functions. In 
general, these methods perform well when applied on individual protein conformations 
that are directly taken from the corresponding co-crystallized structures. However, 
predicting protein complex geometries using protein structures obtained from separate 
crystallizations essays remains difficult, often leading to many false positives. The 
binding process often involves conformational changes. Although these are generally 
subtle, they make it more difficult to find the proper complex geometry. Therefore, a 
further refinement of the proposed complex geometries by other methods, e.g. Monte 
Carlo approaches, is often necessary.  

Currently, most established methods for rigid-body analysis of protein-protein 
interactions are based on the convolution technique in Fourier space as initially utilized 
by Katchalski-Katzir et al. in 1992 [5]. These approaches include ZDOCK [6], MolFit 
[7], 3D-Dock [8], DOT [9], GRAMM [10] and others. These methods use a scoring 
function defined on a discrete grid for each of the two proteins. Instead of evaluating the 
scoring function in real space, which is computationally expensive, the values of the 
scoring function are obtained by multiplication the corresponding Fourier transformed 
grids. This is done by assigning the atomic interaction parameters for each protein on 
separate grids, which are subsequently transformed by the fast Fourier transform (FFT) 
algorithm. In the Fourier space the Fourier coefficients are multiplied and the results are 
transformed back to real space. This is done for a large set of protein orientations [5]. 
Besides the FFT-based approaches, a variety of other procedures have also been applied 
on the protein-protein docking problem. Nussinov et al. proposed an algorithm based on 
geometric matching of knobs on the interacting surfaces [11]. Others, such as Baker [12] 
and Abagyan [13] have developed highly accurate methods using Monte Carlo 
simulations. The protein complex geometries are clustered [14] and their stability is 
analyzed by perturbation studies using different scoring functions [15].  

The development of proper scoring functions is a non-trivial problem in protein-
protein docking. A large variety of scoring functions attempt to capture the biophysically 
relevant properties for protein complex formation, such as e.g. interactions based on 
physical principles, on residue pair distributions or on geometric fit [16-20]. 

In this work, we describe a real space rigid-body protein-protein docking approach. 
Instead of assigning atom specific interaction parameters to each grid point, as necessary 
for FFT methods, we can take into consideration all interactions of atom pairs within a 
certain cutoff distance from the protein surfaces. In order to reduce the computational 
costs in real space, an efficient sampling strategy of the search space is used, which in 
turn allows to consider additional parameters in the scoring function. Two proteins are 
translated and rotated by a discrete set of transformations. To obtain the corresponding 
parameters for the transformations, the protein surfaces are uniformly covered by surface 
points. In addition, a set Q of uniformly distributed quaternions is generated from which 
the rotations are obtained. The translational vector is defined by the line connecting the 



262  A. Guerler et al. 

pair of surface points selected from each of the two proteins. The residues interacting in 
the resulting geometry are evaluated by a statistical scoring function, which comprises 
geometrical and physicochemical components by considering residue pairs and atom 
pairs. The parameters of the scoring function were determined by Heuser et al. for 
enzyme-inhibitor complexes [20, 21].  

2. Methods  

2.1. Preparing surface and grid representation 

From now on, we call the smaller of both proteins ligand (L) and the larger receptor (R). 
We embed both proteins by a grid with grid constant of 1.0 Å. Points of the receptor grid 
GR, which are in the van der Waals (vdW) sphere of a receptor atom (radius of 1.8 Å for 
all atoms) are inside the receptor and marked as receptor points. If the receptor grid 
points are outside of the vdW volume of the corresponding protein they contain a 
neighbor list of protein atoms, which are within a distance cutoff of rcut(neighbor) = 7 Å. 
This neighbor list provides an efficient way to find atomic interaction partners between 
the two proteins in the complex structure. 
 

a) b) c) 
 

Fig. 1. Generation of neighbor list and surface points. Small spheres denote the protein atoms. a) Atom 
neighbor list of a reference grid point (center of large sphere) contains the numbers of atoms within the cut-off 
distance (largest sphere). b) Initial surface points (thicker red points of the grid) are all grid points, which are 
within a specified minimal and maximal distance (medium size blue spheres denoted by dashed lines) to the 
nearest protein atoms. c) The initial surface points are translated towards the center of the nearest protein atom 
until the vdW surface of the atom is reached (blue points on the surface of the gray spheres). 
 

For both proteins (ligand and receptor) the grids are also used to determine surface 
points and surface normal vectors (see Fig. 1 for more details). In a first approximation 
the protein surface points are those grid points whose distances to the nearest protein 
atoms are between 4.0 and 6.0 Å. These points are then projected on the vdW surface of 
the nearest atom sphere. For each such surface point, we calculate a surface normal 
vector connecting the assigned atom center with the surface point. Then, we compute for 
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all atoms of a residue the average of the surface normal vectors. Now we reduce the 
number of surface points. To obtain an even distribution of surface points we randomly 
select a single surface point and delete all other surface points within a distance of 
rcut(surface) = 7 Å. Next, we select the nearest remaining surface point and repeat the 
procedure until all surface points have been selected or deleted. We denote the resulting 
sets of surface points SR and SL and of corresponding normal vectors VR and VL for the 
receptor and ligand, respectively. For the rotations a set Q of 8000 uniformly distributed 
quaternions is calculated with the approach described by Kuffner [22].  

2.2. Sampling strategy  

During the generation of the protein-protein geometries (called decoys), the receptor 
stays fixed, while the ligand is moved, i.e. translated and rotated. A decoy is defined by 
the triplet [q(k), sR(i), sL(j)], of quaternion q(k) ∈ Q and surface points sR(i) and sL(j) of 
receptor and ligand, respectively. For each pair [sR(i), sL(j)] of surface points we compute 
the angle αi,j between the corresponding normal vectors vR(i) and vL(j). If this angle is 
smaller than a threshold value of αthreshold that is typically only slightly below 180o, we 
discard this decoy. If not, the ligand is translated by the difference vector ΔvRL(i, j) = 
sR(i) − sL(j). For the resulting protein complex structure we count the number of receptor 
points noverlap, which are inside the vdW volume of the ligand. If noverlap exceeds 10% of 
the total number of ligand atoms the corresponding decoy is discarded as well, else the 
decoy is accepted and its score is computed. For each translated atom, we obtain the 
interacting atoms using the neighbor list and summing up the weighted contacts. The 
scoring function g used in the present study is defined by  
 

fe a tu re fe a tu re fe a tu re
m ,n fe a tu re s

( m , n ) ( m , n )Wg c
∈

= ∑                           (1) 

 
where cfeature is the number of interactions occurring for an atom pair type with the 
features m and n and Wfeature(m,n) is corresponding element of the weighting matrix. The 
total score gtotal of a generated decoy is defined by  
 

to ta l
a to m * re s id u eg g g=                                                                       (2) 

 
where atom-based and residue-based weighting matrices Watom and Wresidue are employed. 

3. Results  

3.1. Docking performance  

We applied the described sampling approach on a set of 22 enzyme-inhibitor complexes 
(see Fig. 2 for a list of the corresponding PDB codes) from the ZDOCK 1.0 benchmark 
set [23]. We generated a set of uniformly distributed surface points for each individual 
protein structure using rcut(surface) = 7 Å. Thus, we obtained on average 60 surface 
points for the receptors and 25 for the ligands (Fig. 2) yielding about 1500 pairs of 
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surface points per protein complex on average. Hence, we consider 1500 translations and 
8000 rotations and check that the normal vectors of the selected surface point pair 
possess an angle larger than αthreshold. This yields decoys in the range of 107 per protein 
pair. For each of these decoys we verified that at most 10% of the ligand atoms overlap 
with receptor points. For the remaining decoys the scoring function gtotal, eq. (2), was 
evaluated, keeping for each rotation the decoy with the highest score only. This results in 
about 8000 decoys per protein-protein complex. Figure 3 shows the number of generated 
near-native receptor-ligand geometries with an interface root mean square displacement 
(iRMSD) relative to the native complex structure below 5.0 Å. On average, about 50 
near-native decoys out of the 8000 were generated per protein structure pair. For 1UDI, 
only 15 near-native decoys were generated, while the maximum number of 650 near-
native decoys was obtained for 1BRC (Fig. 3). With a higher density of surface points 

using rcut(surface) = 3 Å the results remained qualitatively similar.  
 

 
Fig. 2. Number of surface points of the considered 22 protein complexes consisting of receptor and ligand 
protein pairs (receptors: diamonds; ligands: squares).  
 

 
Fig. 3. Results of the protein docking approach. For each protein complex the highest ranked decoy per 
rotation was kept (about 8000 decoys per complex in total). The diamonds illustrate the number of decoys with 
an interface RMSD (iRMSD) below 5.0 Å.  
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3.2. Sampling of a serine-protease-inhibitor complex 

In the following, we briefly illustrate the sampling results obtained for the first enzyme-
inhibitor complex of the ZDOCK 1.0 benchmark set, which is a serine-protease-inhibitor 
complex (1ACB) [24]. We applied the algorithm on the separately crystallized protein 
structures 5CHA and 1CSE. The surface of the serine-protease was covered with 55 the 
inhibitor with 23 surface points. With the uniform set of 8000 rotations, more than 107 
decoys were generated. Less than 5% (387047 in total) of these decoys fulfilled the 
geometrical criteria probing the ratio of receptor points with ligand atoms and the angle 
between the normal vectors of assigned surface points. We calculated the iRMSD of 
these decoys relative to the native reference complex, which was generated by aligning 
the separately crystallized protein structures on the co-crystallized true native complex 
structure. The iRMSD of this reference structure with the true native complex structure is 
0.7 Å. About 10% of them have an iRMSD below 10 Å to the reference complex. The 
decoys were scored and the highest ranked decoy per rotation was kept (see details in 
2.2) resulting in 8000 decoys. Figure 4 shows the scores with respect to the iRMSD for 
the 2000 highest ranked decoys. The complete set of 8000 decoys comprises 186 cases 
with an iRMSD below 5.0 Å, whereby the decoy with the lowest iRMSD of 4.8 Å is 
ranked at position 33. Considering all 8000 decoys, in eleven cases an iRMSD below 2.5 
Å was detected. Hereby, the highest rank is 1743 with an iRMSD of 2.1 Å. 
 

 
Fig. 4. Diagram correlating for the protein complex 1ACB [24] the iRMSD of the 2000 highest ranked decoys 
with the corresponding scores given by eq. (2).  
 

Figure 5a shows the surface of the serine-protease and the center of masses of the 
inhibitor coordinates (dots) in the 8000 generated decoys. In Fig. 5b the serine-protease 
is shown together with the inhibitor in the native reference structure. The conserved 
residues of the serine-protease detected with BLAST [25] and CLUSTALW [26] were 
highlighted in dark red (Fig. 5b). It is evident that the residues in the interface between 
serine-protease and the inhibitor are highly conserved. Furthermore, we find that the 
binding cavity allows a better geometric match between the two protein structures than 
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any other region detected on the serine-protease surface. Probably, the physicochemical 
specificity and the geometrical fit contribute to the large number of hits in the generated 
decoy set.  
 

 
To refine and rerank the decoys obtained with the initial sampling procedure, we 

performed a Monte Carlo stability analysis [27] using the program ROTAFIT [28]. 
Briefly, this procedure uses the 2000 top ranked decoys to perform 500 steps of a replica 
exchange Monte Carlo simulation using 10 replica. After the simulation, the pair-wise 
iRMSDs of the last 250 time steps of the five lowest temperature replica of each decoy 
are calculated. We then plot the number of structure pairs below a given iRMSD 
threshold versus the iRMSD threshold. The structural stability score of the decoys is 
calculated as the integral under this curve. Near-native decoys show a considerably 
higher structural stability score then false hits (Fig. 6).  

a)  b)  
Fig. 5. Illustration of the docking results for the protein complex 1ACB. a) Surface of the receptor with the 
center of masses of the 8000 highest ranked decoys (green dots). b) Surface of the receptor and cartoon of the 
ligand structure (dark blue). The conserved residues of the receptor are highlighted in dark red.  

 
Fig. 6. Structural stability scores of the first 2000 decoys versus iRMSD. 
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4. Discussion  

Initial-stage approaches in protein-protein docking are commonly based on the Fourier 
transform technique (FFT approach). This method is well established and capable to 
search an extensive variety of receptor-ligand geometries. However, the FFT approach 
carries inherent limitations. It can account only for interactions referring to pairs of 
coinciding grid points from the two proteins where the contribution to the scoring 
function is given as product of the parameters of the corresponding two grid points. The 
real space sampling technique of decoys allows using more general expressions for the 
scoring function.  

The present application for a set of 22 enzyme-inhibitor complexes demonstrated 
that efficient sampling and scoring of receptor-ligand geometries in real space is 
computationally feasible. The method provides decoy sets with near-native geometries 
for all of the considered 22 enzyme-inhibitor complexes. The analysis of 1ACB, a serine-
protease-inhibitor complex, emphasizes that the method is capable to generate a large 
fraction of near-native binding modes (see Fig. 3). In 186 out of 8000 cases, the protein-
protein decoys exhibit an iRMSD of less than 5.0 Å. The highest number of 650 near-
native binding modes has been generated for the protein complex 1BRC. The subsequent 
rescoring by structural stability analysis greatly improves the rank of near-native decoys. 
Interestingly, the stability integral proved to be a better way of identifying near-native 
decoys than various energy functions (data not shown).  

In future studies, we plan to utilize our method for the evaluation of a variety of 
other all-atom, respectively heavy-atom, or residue-based scoring functions, which can 
be described as summation of weighted amino acid or atom pair interactions (see 2.2). 
We will also try to implement new scoring schemes. Thereby, the preliminary analysis of 
potential interface residues can be of particular interest. This can significantly improve 
the performances, since the described real space approach is capable to acquire 
preliminary residue selections to reduce the search space or to increase the surface 
resolution at particular protein surface sites. In addition, clustering the generated decoys 
can be used to improve detection of near-native complex structures. Finally, we aim to 
incorporate further rigid-body optimization procedures and perturbation studies to 
evaluate the stability of docked conformers and approaches to model the intramolecular 
flexibility of the two interacting protein structures.  
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