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Summary 

Rewards are considered as crucial factor for adaptive behavior of the human being. Further, 

behavioral and neuronal processing of rewards may be influenced by developmental changes. 

Interestingly, dopaminergic and glutamatergic factors in the striatum may also change during the 

lifespan, and are involved in learning processes. Therefore, we investigated adolescents, younger 

adults, and older adults by mean of a reward task during functional magnetic resonance imaging 

(fMRI). Core reward areas like the ventral striatum (VS) were characterized by a hyperactivation in 

adolescents compared with both adult groups. We interpreted these findings as the result of an 

asymmetric (protracted) development of the “frontal inhibition system” in comparison to the (faster) 

development of the VS in adolescents. Further, frontal areas showed hyperactivation in older adults 

compared with younger groups. These findings were interpreted as compensatory age-specific effects 

in fronto-parietal regions.  

In a second study, we additionally focused on the impact of frontal glutamate concentrations 

on reward processing in healthy adolescents and observed an inverse coupling of glutamate 

concentrations in the anterior cingulate cortex (ACC) and neuronal activation of the VS. This finding 

demonstrates the important role of glutamate in reward processing and as a potential vulnerability 

factor for mental disorders starting in adolescence.  

The striatum may also be involved in reward associated response inhibition modulated by 

dopamine. Therefore, in a trimodal imaging approach [using F18-DOPA positron emission 

tomography, magnetic resonance spectroscopy (MRS) and fMRI] we investigated a response 

inhibition task in healthy participants between 20 and 80 years of age. We observed a positive 

association between dopamine synthesis capacity and inhibition-related neural activity in the caudate 

nucleus. This relationship was further mediated by striatal glutamate. However, age did not affect 

response inhibition-related neurofunctional or neurochemical parameters.  

Taken together, in the present dissertation I demonstrate the importance of dopamine-

glutamate interactions with regard to reward processing in striatal areas in aging. Further, 

glutamatergic factor in fronto-limbic networks may also be related to increased risk and onset of 

psychiatric diseases (e.g. schizophrenia) during adolescence. Additionally, neuronal factors of 

response inhibition seem to be associated to striatal dopamine and glutamate, but those findings may 

not be associated to aging. Globally, the present results add to the understanding of reward processing 

and associated inhibition processing as well as associated neurochemical and neurofunctional 

properties in the eyes of lifelong changes. The present findings may further stimulate age related 

research on neurochemical and neurofunctional characteristics of mental disease like schizophrenia or 

addiction.  
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Zusammenfassung 

Belohnungen sind ein wichtiger und basaler Faktor für Anpassungsverhalten bei Menschen. 

Weiterhin scheinen Verhalten und neuronale Verarbeitung von Belohnungen durch 

entwicklungsspezifische Aspekte beeinflusst zu sein. Die Neurotransmitter Dopamin und Glutamat 

sind eng mit Belohnungsverarbeitung assoziiert und durchlaufen altersabhängige Veränderungen. Aus 

diesem Grund wurden in den hier durchgeführten Studien gesunde Adoleszente, junge Erwachsene 

und ältere Erwachsene während der Durchführung einer Belohnungsaufgabe mittels funktioneller 

Kernspintomographie (fMRT) untersucht. Die Ergebnisse zeigten eine erhöhte Aktivierung der Kern-

Belohnungszentren [z.B. das ventrale Striatum (VS)] bei Adoleszenten im Vergleich zu jungen und 

älteren Erwachsenen. Diese Ergebnisse wurden interpretiert als Resultat einer verzögerten 

Entwicklung des „frontalen Inhibitionssystems“ im Verhältnis zum (sich schneller entwickelnden) VS. 

Weiterhin beobachteten wir eine erhöhte Aktivierung in frontalen Gebieten bei älteren Erwachsenen 

im Vergleich zu den beiden jüngeren Gruppen. Diese Ergebnisse sprechen für einen 

kompensatorischen, altersspezifischen Effekt in frontal-parietalen Regionen.  

In einer zweiten Studie konzentrierten wir uns zusätzlich auf die Bedeutung von frontalem 

Glutamat-Konzentrationen für Belohnungsverarbeitung bei gesunden Adoleszenten und beobachteten 

einen negativen Zusammenhang zwischen Glutamat-Konzentrationen im anterioren Zingulum (ACC) 

und neuronaler Verarbeitung im VS bei Adoleszenten. Diese Ergebnisse zeigen welche wichtige Rolle 

Glutamat während neuronaler Belohnungsverarbeitung spielt. Außerdem könnten die Ergebnisse eine 

entwicklungsspezifische Vulnerabilität für geistige Krankheiten wiederspiegeln.  

Das Striatum scheint weiterhin mit der Inhibition von belohnungsabhängigem Verhalten 

(„response inhibition“) verknüpft zu sein, welche von dem Neurotransmitter Dopamin moduliert wird. 

Aus diesem Grund wurde in einem trimodalen Bildgebungsprojekt [F18-DOPA Positronen-Emissions-

Tomographie, Magnetresonanzspektroskopie (MRS) und fMRT] eine „response inhibition“ Aufgabe 

von Personen zwischen 20 und 80 Jahren durchgeführt. Wir beobachteten einen positiven 

Zusammenhang zwischen Dopamin-Synthese-Kapazität und neuronaler Aktivität im Nucleus caudatus 

während Inhibitionsprozesse aktiv waren. Dieser Zusammenhang war auch assoziiert mit striataler 

Glutamat-Konzentration. Altersfaktoren schienen diese Prozesse jedoch nicht zu beeinflussen. 

In der gegenwärtigen Dissertation untersuche und beschreibe ich die Relevanz von Dopamin-

Glutamat Interaktionen in Verbindung mit Belohnungsverarbeitung in striatalen Gebieten in 

Abhängigkeit des Alters der Probanden. Die Ergebnisse liefern Hinweise dass Dopamin-Glutamat 

Interaktionen mit der erhöhten Vulnerabilität für geistige Krankheiten (z.B. Schizophrenie) während 

der Adoleszenz in Verbindung stehen könnten. Zusätzlich scheint die neuronale Verarbeitung von 

Inhibition mit Dopamin und Glutamat in Verbindung zu stehen, diese Zusammenhänge scheinen 

jedoch unabhängig von Altersprozessen zu sein. Die hier gezeigten Ergebnisse erweitern das 

Verständnis von Belohnungsverarbeitung und Inhibitionsprozessen, sowie die damit assoziierten 

neurofunktionale und neurochemischen Veränderungen, insbesondere im Rahmen von Veränderungen 

über die Lebensspanne. Weiterhin könnten die hier gezeigten Ergebnisse die Erforschung von 

neurochemischen und neurofunktionalen Aspekten von geistigen Krankheiten (z.B. Schizophrenie 

oder Sucht) im Rahmen von Altersprozessen weiter stimulieren. 
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1. Introduction 

1.1 Short History of Reward Related Research 

The psychologists Edward Lee Thorndike can be seen as a pioneer in reinforcement 

learning related research. He got most famous for his so called “Law of Effect”, describing 

stimulus-reward contingencies in animals: 

 

“Of several responses made to the same situation, those which are accompanied or 

closely followed by satisfaction to the animal will, other things being equal, be more firmly 

connected with the situation, so that, when it [the situation] recurs, they [the responses] will 

be more likely to recur; those which are accompanied or closely followed by discomfort to the 

animal will, other things being equal, have their connections with that situation weakened, so 

that, when it recurs, they will be less likely to occur. The greater the satisfaction or 

discomfort, the greater the strengthening or weakening of the bond.”. 

 

Importantly, Thorndike’s theories and experiments showed that stimulus-reward 

contingencies are not restricted to body reflexes like saliva production (as earlier described by 

Pavlov in 1901), but rather that reinforcing stimuli (like food or electric shocks), can be used 

as psychological tool to be presented after or during adaptive or maladaptive actions, 

respectively, to increase or decrease the probability of the subject to engage in the behavior in 

the future. These ideas were groundbreaking in terms of the understanding of several types of 

learning, and gave rise to many modern scientific theories, nowadays also applied to human 

beings. For instance, therapeutic interventions (e.g. cognitive behavioral psychotherapy), 

work related motivation techniques, animal training or education all rely on the so called 

“operant conditioning” based on the “Law of Effect” by Thorndike. 

Still, the neuroanatomical and neurofunctional properties of reinforcement learning 

were relatively unknown until the two scientists Olds and Milner discovered in 1954, that low 

voltage stimulation of a deep brain areas (approximately in septal and striatal regions) in rats 

facilitated learning responses during performance in simple tasks like maze running and 

problem solving (Olds and Milner, 1954). Many years later, in 1997, Schultz found that the 

firing of dopaminergic neurons in monkeys was directly associated with teaching signals and 

rewards, which resemble earlier described concepts of behavioral and computational learning 

theories (Schultz, 1997, 1998). Due to ethical reasons, in humans, direct electric recording of 
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single cells is difficult (especially in deep brain areas) and only possible in a few rare cases. 

However, modern imaging techniques like functional magnetic resonance tomography 

(fMRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) 

allows relatively safe investigation of neurochemical and functional activity in the brain. In 

accordance with earlier research on animals, research with fMRI and PET in humans recently 

demonstrated the important role of dopaminergic factors for reward learning in areas like the 

VTA (Dreher et al., 2008) and the striatum [in particular the ventral striatum (VS)] for reward 

learning in humans. Today the striatum is one of the main focusses in research related to 

reward-processing, movement, motivation and novelty-related decision making in humans 

(Rolls, 1994).  

1.2 The Neurochemistry and Neuroanatomy of the Human Reward System—

Present Knowledge 

In the brain, dopamine is mainly generated in the substantia nigra, which provides 

direct input to the striatum via a connection referred to as the nigrostriatal pathway (Lindvall 

et al., 1983; Voorn et al., 1986). Further, the density of dopaminergic D2 receptors is in 

general much higher in regions of the mesolimbic pathway compared to other brain regions 

(Meltzer and Stahl, 1976). Further, the amygdala, thalamus and hippocampus provide 

excitatory input to dopaminergic cells in the striatum via glutamatergic projections (Everitt et 

al., 1991; Haber et al., 1995; Grace, 2000; Ding et al., 2010). Via these projections, activity of 

neurons in the VS can be up-regulated. For instance, up-regulation may be regulated via 

complex feedback loops (involving both, inhibitory and excitatory connections) between the 

VS, the pallidum and the VTA (Grace et al., 2007). Via this loop, glutamatergic input from 

the hippocampus, and possibly from other areas, can drive dopaminergic activity in the 

mesolimbic pathway. Further, at the level of the striatum, glutamate can directly depolarize 

postsynaptic neurons through ionotropic receptors (NMDA receptor, AMPA receptor, kainate 

receptor)(Stahl, 2013).  

Based on the strong striatal interactions between dopamine and glutamate, a central 

theory regarding a potential regulation of presynaptic dopamine function in the striatum has 

been formulated. Specifically, presynaptic dopamine may be driven by a balanced engagement 

of excitatory (“accelerator”) and inhibitory (“brake”) glutamatergic inputs (Carlsson et al., 

1999). The PFC in particular has been proposed to inhibit striatal dopaminergic activity 

indirectly via GABAergic interneurons, ultimately influencing striatal dopamine activity 

(Carlsson et al., 1999; Usun et al., 2013). Further, glutamatergic input from hippocampus and 
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amygdala may rather represent direct excitatory glutamatergic input (Grace et al., 2007). 

Support for the model was observed in animal research, where it was shown that blockage of 

glutamate NMDA receptors in the PFC resulted in increased dopamine release specifically in 

the VS (Del Arco et al., 2008). Moreover, in our recent study, we observed a direct in vivo 

relationship demonstrating support for the model by Carlsson et al. the first time in human 

beings (Gleich et al., 2015). Interestingly, these two opposing effects of glutamate (brake vs 

accelerator) may also affect psychological and cognitive processes. For instance, it is 

conceivable that top down and bottom up processing in the brain may be associated with 

glutamate-dopamine interactions, as these processes represent similar functions (e.g. 

motivation vs inhibition) on a psychological level.  

Thus, although dopamine has been the focus of neuroscientific research regarding 

reward in the last decades, it is now clear that many other neuronal and neurochemical 

mechanisms and interactions, as well as other brain areas are involved in reward learning. In 

particular, in addition to the role of the VS and VTA, more recently, the PFC and the anterior 

cingulate cortex (ACC) were indicated to be involved in regulation of neuronal activity in 

striatal regions by forming the main top-down executive on limbic, reward associated bottom-

up processes (e.g., value coding, monitoring, gating, processing of emotion, inhibitory 

functions) (Ernst et al., 2006; Casey et al., 2008). Specifically inhibitory neurochemical and 

neurofunctional properties of the frontal cortex may be regulated by glutamate associated 

neurotransmission (Carlsson et al., 1999; Laruelle et al., 2003; Jocham et al., 2012; Duncan et 

al., 2013). Most recently, dopaminergic contributions to response inhibition were also 

identified in the human striatum (Ghahremani et al., 2012). Further, there is evidence from 

animal research that striatal dopamine-glutamate interactions change over the lifespan (Mora 

et al., 2008). 

1.3 The Significance of Dopamine-Glutamate Interactions for Healthy Aging and 

Associated Mental Diseases 

Adolescence is characterized by increased drug and alcohol use, careless behavior in 

traffic and hazardous sexual behavior (Casey et al., 2008; Steinberg, 2008). A popular 

neurodevelopmental theory aims to explain these elements of adolescent behavior (Galvan et 

al., 2007; Galvan, 2010; Somerville and Casey, 2010). The theory proposes that the frontal 

cortex develops slower in comparison to the limbic system (the VS in particular). As a result, 

the inhibitory part of the reward system (frontal regions) may be less active in comparison to 
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the limbic part, which may lead to more impulsive and risky behavior in adolescence due to 

less inhibitory control. These theories were further summarized together with other findings in 

the triadic model of motivated behavior (TMMB) by Ernst et al. (Ernst et al., 2006; Richards 

et al., 2013a). In support of this model, fronto-limbic connectivity shows strong changes 

during adolescence, mediated via glutamate guided pruning processes in the frontal cortex 

(Selemon, 2013). Additionally, animal research suggests that glutamate NMDA receptors 

show strong changes during adolescent development (Insel et al., 1990). Further, increased 

dopaminergic activity may be present in adolescence (Galvan, 2010; Wahlstrom et al., 2010). 

Thus, in addition to the structural imbalance in development of the PFC and limbic regions in 

adolescence, glutamate associated imbalance between frontal and limbic regions may also 

affect reward processing in adolescence (Sesack et al., 2003; Schwartz et al., 2012).  

While developing into adulthood, risky and hedonic-oriented behavior in adolescents 

may normalize, whereas security-oriented actions become more common (Mohr et al., 2010a; 

Eppinger et al., 2011). Thus, also structural and neurochemical systems may develop towards 

more balanced fronto-limbic interactions. Later in life, (considering the age above 60 years 

old), there is evidence that fronto-limbic interactions may undergo similar (but reversed) 

changes compared to the transition from adolescence to adulthood. For instance, functional 

imaging studies reported decreased reward related striatal activity in older compared with 

younger participants during reward anticipation (Schott et al., 2007; Dreher et al., 2008). On a 

neurochemical level, there is evidence that glutamate in frontal and striatal areas (Schubert et 

al., 2004; Zahr et al., 2008; Hädel et al., 2013) as well as dopamine in limbic areas decrease 

during aging (Braskie et al., 2008; Kumakura et al., 2010). There are also indications that 

these changes in glutamatergic and dopaminergic neurotransmission may be associated with 

reduced performance in cognitive tasks associated with reward processing in older age (Zahr 

et al., 2008; Karlsson et al., 2011; Kalbitzer et al., 2012; Klostermann et al., 2012a).  

Moreover, changes in dopamine and glutamate related factors throughout the lifespan 

may also contribute to the onset, preservation and reoccurrence of mental disease (Paus et al., 

2008; de la Fuente-Sandoval et al., 2011; Howes et al., 2011; Bloemen et al., 2012). For 

instance, the “glutamate hypothesis of schizophrenia” is based on the assumption that 

glutamatergic changes are induced during adolescence, which later during the progress of the 

disease lead to dysregulation of striatal dopamine (Howes et al., 2011; Stahl, 2013). Thus, 

through investigation of dopamine, glutamate, behavior and the associated changes over the 
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lifespan, different neurochemical and functional states of the reward system can be explored 

via a quasi-experimental design.  

1.4 The Multimodal Imaging Approach 

In recent years, the use of modern imaging methods like fMRI, PET or MRS imaging 

for neuroscientific research tremendously increased. However, most studies concentrated on 

one imaging method only. Although the interpretation of results is sometimes easier focusing 

on one imaging method only, due to the complexity of the human brain, it is also difficult to 

draw clear conclusions from isolated parameters. fMRI can only acquire an index of 

macroscopic activity of thousands of neurons indirectly (Logothetis, 2008), whereas single 

voxel MRS measures global neurotransmitter concentrations in isolated brain regions (Zhang 

and Shen, 2015). In contrast, PET can only acquire specific neurochemical mechanisms which 

are based on single receptors or enzymes (Herholz et al., 2013). Therefore, in the present 

projects, we decided to make use of a multimodal approach, to be able to investigate complex 

neuronal mechanisms more closely in interaction within the same participants. Still, we 

specifically chose to investigate reward and inhibition related processing, as neural 

associations of those functions were relatively restricted to striatal and frontal regions in 

recent research. Using this approach, we can reduce the complexity of multimodal imaging to 

few core areas so that all parameters can be acquired in the same region. Further, we can 

specifically investigate opposing neurochemical, neuronal and behavioral effects in 

combination (brake vs accelerator; frontal vs striatal activation; inhibition vs impulsivity, 

respectively) using parameters acquired from the different imaging modalities. Similar 

approaches, even though they are challenging, will be necessary in future neuroscientific 

research to be able to get a more complete view of the mechanisms of the human brain.  

2. Aim of the Present Dissertation 

The aim of the present dissertation was, to investigate theory and animal driven 

research regarding dopamine and glutamate associated parameters in the human brain over the 

lifespan. The results may lead to a better understanding of neurochemical and neurofunctional 

contributions to learning mechanisms during aging and may form a novel and basic scientific 

platform to investigate those factors in mental disease. The findings may further stimulate the 

development of dopaminergic and glutamatergic psychopharmacological agents (e.g. for 



10 
 

schizophrenia or addiction). Specific aims of the studies conducted are outlined in the 

following. 

The general aim of Study 1 was to use fMRI to investigate basic developmental and 

age-related alterations in the reward network during reward anticipation. In adolescents, we 

expected increased neural activity in the VS during reward anticipation in comparison to 

young adults. In older adults, based on earlier research, we expected broader activation 

patterns in general, as well as increased neural activity (potentially compensatory) in the 

frontal cortex and decreased activity in the VS during reward anticipation.  

 

In Study 2 we investigated the role of glutamate in VS activation during reward 

processing in young adults and adolescents from study 1. We expected an imbalance between 

glutamate in the frontal cortex and neural activation in the VS in adolescents compared to 

young adults.  

 

Within the scope of Study 3 we investigated glutamate concentrations and dopamine 

synthesis capacity in the striatum and inhibition related activity in a single, continuous age 

group, covering a broad range of the lifespan (20-80 years). We expected inhibition-related 

behavior and neural activity to be related to dopamine synthesis capacity in the striatum. 

Further, based on former studies, we expected dopaminergic and glutamatergic parameters to 

be positively related. Additionally, we hypothesized that all parameters may be associated 

with age.  

3. Methods 

3.1 Study Design 

Study 1: “Reward Anticipation in the Adolescent and Aging Brain” 

102 mentally and physically healthy, right-handed human subjects in three age groups 

were included: 34 adolescents (13-16 years), 34 young adults (19-35 years), and 34 older 

adults (61-80 years). All participants underwent fMRI scanning and conducted a reward task 

to investigate reward associated brain function. 

Study 2: “Frontal Glutamate and Reward Processing in Adolescence and Adulthood” 
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Due to the findings observed in study 1, we investigated the influence of frontal 

glutamate (ACC; acquired by MRS) on reward related processing (fMRI) in mentally and 

physically healthy 28 young adults and 33 adolescents from study 1.  

Study 3: “Glutamatergic Action on the Dopamine Driven Neural Signature of Response 

Inhibition” 

In study 3, we recruited 44 mentally and physically healthy human subjects between 

20 and 80 years and applied 3 different imaging modalities (fMRI, MRS and FDOPA-PET) to 

quantify dopamine and glutamate associated indices, as well as functional brain activity 

during inhibition related neuronal processing.  

3.2 Imaging Methods 

3.2.1 Functional Magnetic Resonance Imaging 

 To investigate structural and functional properties of the brain, magnetic resonance 

imaging (MRI) can be used. MRI utilizes magnetic properties of hydrogen nuclei present in 

water molecules (and therefore in the whole body). In a resting state, hydrogen nuclei spin in 

a so called “resonance frequency”. When the participant is placed in the MRI scanner, a 

strong magnetic field is applied to force hydrogen nuclei to spin synchronously (comparable 

to the alignment of a compass needle to the magnetic field of the earth). When the magnetic 

field is turned off, the nuclei fall back to their original equilibrium, and at the same time emit 

a radio signal which can be recorded by coils. Using information from the different amount of 

time different tissues take to fall back to their original equilibrium spin (called “relaxation 

time”), a 3 dimensional volume of the brain can be reconstructed (Huettel et al., 2009). 

Functional MRI generally utilizes similar physical properties of hydrogen molecules, but 

additionally makes use of principles of blood oxygenation. In particular, different magnetic 

properties of oxygenated and non-oxygenated blood result in different relaxation times, an 

effect termed “blood oxygen level dependent” (BOLD) signal. Thus, this signal allows an 

indirect measure of neuronal activity via oxygen consumption by neurons. fMRI is generally 

accepted as safe and non-harmful technique as long as magnetization related safety rules are 

strictly followed (e.g. no metal implants or metal containing tattoos)(Huettel et al., 2009). 

3.2.1.1 Acquisition of fMRI/MRI data 

Acquisition of (f)MRI data in study 1, 2 and 3 was conducted at the Berlin Center for 

Advanced Neuroimaging (BCAN) on the Campus Charité Mitte using a 3 T Siemens TIM Trio 
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Scanner (Erlangen, Germany), equipped with a 12 channel head coil. Functional imaging was 

conducted using axially aligned gradient echo planar imaging (EPI). Additionally, for 

anatomical reference, 3D anatomical images of the whole brain were obtained for each study. 

Visual stimulation was presented via a video projector on a mirror system on top of the head 

coil. All paradigms were programmed using Presentation software (Version 14.9, 

Neurobehavioral Systems, Albany, CA, USA). 

3.2.1.2 Slot Machine Paradigm 

In study 1 and 2, we used a “slot machine task”. Such a task may elicit strong activation 

in striatal and frontal reward circuits as shown in earlier research (Dreher et al., 2008; Van 

Leijenhorst et al., 2010). Further, the slot machine task is ecologically valid and therefore 

accessible to all investigated age groups. During the task, three wheels showing two different 

types of fruits were displayed (see Figure 1). Two horizontal bars were used to indicate when 

participants were able to start and stop the slot machine by pressing a button on an fMRI 

compatible button box (blue = start, green = stop). Participants start the rotating of the slot 

machine with a button press; after the second button press, the three wheels successively 

stopped rotating (from left to right). The stop of the third wheel terminated the trial and a 

feedback about the current win and the total amount of reward was displayed above the slot 

machine. Subsequently, the next trial started (see Figure 1). Participants gained 10 cents per 

trial when all fruits in a row were of the same identity. The experiment consisted of 60 trials in 

total, with 20 predetermined wins (see study “included studies” 1 and 2 for details). 
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Figure 1: Structure of the Slot Machine Paradigm.  

 

3.2.1.3 Stop-Signal Paradigm 

In study 3, participants completed an adaptive stop signal paradigm (Logan and Cowan, 

1984) during the fMRI scanning session. Participants were instructed to respond as fast as 

possible to a white arrow pointing either to right or left direction by pressing right or left button 

on a MRI compatible button box (see Figure 2). For stop trials (25% of trials), participants were 

instructed to inhibit their response when the white arrow changed color to red after a particular 

delay (stop signal delay, SSD). Logan and Cowan (Logan and Cowan, 1984) supposed that the 

go and the stop processes are two competing independent processes from which the so called 

“stop signal reaction time“ (SSRT) can be estimated as index of inhibitory performance.  
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Figure 2: Structure of the Stop-Signal Paradigm 

 

3.2.1.4 Statistical fMRI analyses 

 

Functional imaging data was analyzed using Statistical Parametric Mapping software 

package (SPM8, Wellcome Department of Imaging Neuroscience). Functional data were 

corrected for slice timing and head motion and transformed into the stereotactic normalized 

standard space of the Montreal Neuroimaging Institute using the unified segmentation 

algorithm. Finally, functional data were resampled and spatially smoothed with a 3D Gaussian 

kernel. For statistical analysis, we conducted a classical event-related approach using a two-

stage mixed-effects general linear model (GLM). On the single subject level, event-related 

separate regressors were included in all paradigms. Additionally, regressors of no interest were 

included. Finally, the six rigid body movement parameters were also included in the single 

subject GLM. Differential t-contrasts were calculated and taken to group level analysis. For 

extraction of parameters we used different approaches (see publication 1, 2 and 3 for details).  

3.2.2 Magnetic Resonance Spectroscopy  

Hydrogen-MRS (1H -MRS) uses similar physical properties like (f)MRI and is a non-

invasive technique to approximate relative concentrations of many brain metabolites. The basis 

of MRS metabolite quantification is, that the resonance frequency of a hydrogen atom depends 

not only on the magnetic field strength, but also on the chemical environment of the hydrogen 

atom, i.e. its position within the molecule. Interactions with neighboring atoms lead to a change 

in spin frequency (Stagg and Rothman, 2014). After recording, the 1H-MRS signal is 
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transformed to a frequency spectrum where the positions of the signal peaks on the x-axis are 

expressed as “chemical shifts”. Because these chemical shifts are unique to the molecule of 

interest, several compounds can be identified, and are commonly measured in units of parts per 

million (ppm). At 3 Tesla, the glutamate molecule has four major complexes of signals on the 

proton spectrum centred at 2.04, 2.11, 2.35, and 3.74ppm (Stagg and Rothman, 2014).   

3.2.2.1 Acquisition of MRS data 

Absolute glutamate concentrations in the ACC and the striatum were acquired with 3-

Tesla 1H-MRS using water suppressed and unsuppressed spectra, applying a specifically 

developed sequence to measure glutamate concentrations (Schubert et al., 2004).  

3.2.2.2. MRS Voxel Localization  

In study 2, a 20x30x25 mm voxel was placed in the ACC. The voxel was first aligned 

in parallel to the corpus callosum with the most ventral part of the voxel being immediately 

above the most dorsal part of the anterior corpus callosum. The anterior part of the voxel was 

then vertically lined up with the most anterior part of the genu. Finally, on a coronal plane, the 

voxel was placed to be as medial as possible (voxel position is shown in Figure 4). 

For study 3, a 20x20x20 mm voxel was placed in the left striatum (see Figure 4). On a 

coronal plane, the voxel was first placed to contain the striatum in the center of the voxel. 

Further, the voxel was shifted dorsally and/or tilted counterclockwise on the coronal plane to 

include as much striatal and least insula gray matter (GM) structures and minimal cerebrospinal 

fluid (CSF) as possible. On the transversal and sagittal planes, the voxel was individually shifted 

and tilted to contain as much GM as possible.  

3.2.2.3. Statistical MRS Analyses 

MRS data in study 2 and 3 was analyzed using the “Linear Combination of Model 

spectra commercial spectral-fitting package” (LCmodel; Provencher, 1993; Göttingen, 

Germany), using water suppressed and unsuppressed spectra. Glutamate measured by MRS is 

considered to reflect the total content of glutamate in the region of interest (Rothman et al., 

2011) independently of brain tissue compartments. Therefore, GM, white matter (WM) and 

CSF fractions within the MRS voxels were acquired using the unified segmentation approach 

(Ashburner and Friston, 2005) based on a high resolution T1 structural image. Subsequently, 
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absolute glutamate concentrations were adjusted for GM and WM (Glutamate adjusted = 

glutamate absolute*1/(GM+WM)).  

 

3.2.3 Positron Emission Tomography  

PET imaging has many clinical and research related applications. Still, it is considered 

as invasive technique, as it requires radioactive substances, so called “radiotracers”, to be 

injected in the blood stream of the participants prior to investigation. A radiotracer consists of 

biologically active molecules of interest which are paired with a chemically incorporated 

radioactive “tracer atom”. This radiotracer often mimics the function of a certain aspect of 

neurotransmitters or receptors in body tissue. After injection (usually in an arm vein), the 

radiotracer is distributed in the body or brain and emits a (positively charged) positron. This 

positron travels away from its molecule of origin (the radiotracer) and annihilates with a 

(negatively charged) free electron from the environment. During annihilation, gamma 

radiation is emitted in 180° of the origin of annihilation. These beams can then be recorded by 

so called “coincidence detectors” of the PET scanner. Eventually, the collected data can be 

reconstructed in a 3 dimensional volume and represents an estimate of the distribution of the 

radiotracer (Herholz et al., 2013).  

In the present study, we decided to use F-18 labeled fluorodihydroxyphenylalanine 

([18F]DOPA) as radiotracer. [18F]DOPA has similar properties in comparison to endogenous 

L-3,4-dihydroxy-phenylalanine (L-DOPA), which is decarboxylated by aromatic L-

aminoacid-decarboxylase in synaptic vesicles to form dopamine. Thus, analogous to L-

DOPA, after injection, [18F]DOPA gets transported into dopaminergic neurons via the blood-

brain barrier, where it is eventually metabolized into fluorodopamine and stored in 

presynaptic vesicles (Gjedde et al., 1991; Hiroaki Hoshi, 1993). After [18F]DOPA it is taken 

up by neurons, dopamine synthesis capacity can be estimated by PET imaging. We 

specifically selected [18F]DOPA PET due to its important role in aging and mental disease 

(Kumakura et al., 2010; Howes et al., 2011).  

3.2.3.1 Acquisition of PET Data 

PET data was acquired at the department of nuclear medicine at the Rudolf Virchow 

Hospital in Berlin, using a PET/CT scanner (Philips Gemini TF16) in 3-D mode. After a low 

dose transmission CT-scan, a dynamic ‘list-mode’ emission recording lasting 60 minutes 

started simultaneously with intravenous bolus administration of 120-200 MBq [18F]DOPA.  
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3.2.3.2 Statistical Analysis of PET Data 

For statistical analysis, dopamine synthesis capacity was quantified as [18F]DOPA Ki 

(min-1) voxel-by-voxel using Gjedde-Patlak linear graphical analysis (Patlak and Blasberg, 

1985). Radioactivity time curves in a standard cerebellum mask as defined in the WFU Pick 

Atlas excluding vermis (Tzourio-Mazoyer et al., 2002) were used as input function. The linear 

fit was restricted to the time interval 20-60 min post injection. We extracted parameter estimates 

in a cluster in the left caudate nucleus that was revealed by fMRI analysis.  

.  

4. Results 

4.1 Study 1: Reward Anticipation in the Adolescent and Aging Brain 

The fMRI analysis demonstrated a strong activation of the a priori hypothesized 

reward network in all groups in general. Globally, the three groups showed activation 

differences in subcortical (bilateral VS and thalamus), prefrontal (bilateral DLPFC, bilateral, 

precentral gyrus, ACC, and SMA), anterior insular and parietal areas (bilateral IPL and 

superior parietal lobule (SPL)). More specific, adolescents activated core reward regions (VS 

and ventromedial PFC (VMPFC) more strongly than younger adults. Furthermore, older 

adults showed a stronger recruitment of fronto-parietal regions compared to both younger 

groups (DLPFC, IPL, and SPL). Detailed results are presented in Figure 3. 
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Figure 3: Regions of Interest and Differences in Reward Processing between Young Adolescents, Young Adults 

and Older Adults during Performance with the Slot Machine Task 

 

Upper row: Anatomical presentation of ROIs. Bottom row: Bar graphs for each ROI and group (x-axis). Y -axis 

represents the mean BOLD parameter estimates of each ROI during reward processing in arbitrary units. Error 

bars represent standard error of means. ROI region of interest, VS ventral striatum, VMPFC ventromedial 

prefrontal cortex, ACC anterior cingulate cortex, DLPFC dorsolateral prefrontal cortex, IPL inferior parietal 

lobule, AL adolescents, YA younger adults, OA older adults, a.u. arbitrary units.  

4.2 Study 2: Frontal Glutamate and Reward Processing in Adolescence and Adulthood 

After extraction of fMRI data from the ventral striatum ROI, a binary logistic regression 

indicated that the interaction between glutamate and BOLD signal in the VS during reward 

processing significantly predicted whether subjects were in the adolescent or the young adult 

group (see Table 1). In post-hoc tests, a significant negative correlation between the glutamate 

concentration in the ACC and striatal BOLD signal was present in adolescents, but not in the 

adult group (see Figure 4). The two correlations differed significantly from each other (Fisher’s 

Z =-2.32, p<0.05).  
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Table 1: Binary Logistic Regression Predicting Group Membership (Adolescents vs Adults) 

 b Coefficient SE Wald d.f. p Odds Ratio 

VS-BOLD -.03 .37 .01 1 .94 .97 

Amygd BOLD .01 .35 .00 1 .99 1.01 

Glu .44 .35 1.64 1 .2 1.56 

Glu*VS BOLD 1.17 .51 5.32 1 .02* 3.22 

Glu*Amygd BOLD -.24 .42 .32 1 .57 .79 

VS-BOLD*Amygd BOLD .16 .29 .29 1 .59 1.17 

Constant -.09 .31 .08 1 .78 .92 

SE: Standard Error; d.f.: Degrees of Freedom; VS: Bilateral Ventral Striatum; Amygd: Bilateral 

Amygdala; Glu: Glutamate concentration in anterior cingulate cortex; BOLD: Blood Oxygen Level  

Dependent Signal; BOLD contrast reflects win against loss conditions *: Significant results 

 

 

Figure 4: Relationship of Glutamate Concentrations in the ACC and BOLD Response during Reward Processing 

in Adolescents and Young Adults 

 

VS BOLD signal and ACC glutamate concentration relationship within the groups (adolescents vs. adults). FWE 

family wise error, k minimal cluster size, win against loss contrast is displayed for the fMRI results. The green 

circle marks the glutamate peak in the spectrum 
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4.3 Study 3: Glutamatergic Action on the Dopamine Driven Neural Signature of Response 

Inhibition 

A positive association between striatal inhibition-related BOLD activity and 

presynaptic-related dopamine properties was observed. Further, the results showed that 

striatal glutamate concentration mediates the relationship of presynaptic striatal dopamine and 

the striatal inhibition-related BOLD activity (see Figure 5). When controlling for glutamate 

concentration, this relationship did not remain significant, indicating that glutamate plays a 

regulatory key role within the striatum (see Figure 5). Furthermore, behavioral inhibition 

performance was inversely related to striatal inhibition-related BOLD activity (r(38)=–0.352; 

p=0.03). No effects of aging on any of the investigated variables were observed. 

 

 

Figure 5: Mediation Model of Striatal Dopamine, Striatal Glutamate and Striatal fMRI Activation during 

Performance with the Stop Signal Task  

 

Pathmodel of multimodal imaging measurements revealed that the influence of dopamine synthesis capacity on 

BOLD parameter estimates (c path, solid arrow) was mediated by glutamate concentration within the striatum. 

When excluding mediator influence, relationship did not remain significant (c‘ path, dashed arrow). 

Furthermore, mediator glutamate concentration was positively associated with dopamine sysnthesis capacity (a 

path) and BOLD parameter estimates (b path). MRS = Magnetic resonance spectroscopy; PET = Positron 

emission tomography; BOLD = Blood-oxygen-level dependent; fMRI = functional magnetic resonance imaging.  
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5. Discussion 

5.1 Processing of Reward over the Lifespan 

In the present dissertation, it was shown that neural processing of reward changed over 

the lifespan from adolescence to older adulthood areas in core reward areas (VS/VMPFC) and 

frontal/parietal areas (DLPFC, IPL). Additionally, lifespan-related changes may be associated 

with changes in dopaminergic and glutamatergic systems in reward-related areas. I will discuss 

those findings in the following sections. 

5.1.2 Neurofunctional Reward Related Changes from Adolescence into Young 

Adulthood 

During adolescence, rewarding stimuli are highly salient and may lead to impulsive and 

risk-taking behavior (Casey et al., 2008; Galvan, 2010). In study 1, this increase in salience 

may be reflected in stronger recruitment of reward core areas (like the VS and VMPFC) in 

adolescents compared to young adults and older adults. Further, in accordance with 

neurodevelopmental theories, a maturation imbalance between the early matured striatum and 

a protracted development of the prefrontal cortex were hypothesized to be on the basis of this 

finding (Galvan et al., 2007; Galvan, 2010; Somerville and Casey, 2010). In contrast, some 

studies showed a hyporesponsive striatal response to reward cues in adolescents (Bjork et al., 

2004, 2010). However, these studies included a wider age range (12-17) compared to other 

studies [(Galvan et al., 2006, 2007) 13-17 years; (Van Leijenhorst et al., 2010): 14-15 years)]. 

Interestingly, striatal-prefrontal maturation imbalance may be strongest during mid-

adolescence between 13 and 16 years (Steinberg, 2008), which resembles the age range in the 

present study. However, different task designs might also have had an influence on the results. 

For instance, the studies by Bjork et al. used monetary incentive delay tasks with abstract cues, 

developed for adults (Knutson et al., 2001), whereas other studies used cartoons (Galvan et al., 

2006, 2007) or a slot machine task (Van Leijenhorst et al., 2010). The latter stimuli may 

probably be more appealing for adolescents than abstract cues (Richards et al., 2013b). The 

hyperactivation of the core areas of reward processing (VS and VMPFC) in adolescents may 

also be associated with higher levels of dopamine in reward related areas during adolescence 

(Galvan, 2010; Wahlstrom et al., 2010). However, direct acquisition of dopaminergic indices 

(e.g. via PET imaging) are impossible in adolescents due to ethical reasons. 
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Taken together, our results support the hypothesis of a hyperresponsive striatum to 

reward cues during adolescence in the age range between 13 and 16 years, specifically during 

performance of tasks which are appealing to adolescents (e.g. the slot machine task).  

5.1.3 Neurofunctional Findings in Older Adults 

We observed increased DLPFC and IPL activity in older adults compared to adolescents 

and younger adults during reward processing. Interestingly, DLPFC and IPL are involved in 

executive functions (Nee et al., 2013) and attentional control processes (e.g. inhibitory control) 

(Corbetta and Shulman, 2002). Further, DLPFC and IPL activity was associated with 

integration of reward-related information and learning of conditioned relationships between cue 

and consequence (Fletcher et al., 2001; Mohr et al., 2010b; Liu et al., 2011). In a recent review 

(Grady, 2012), the DLPFC and IPL were also discussed with regard to aging. This review 

showed that working memory (WMM) tasks demand strong executive functions and attentional 

processes and neurally lead to a recruitment the IPL and DLPFC (amongst others) (Owen et al., 

2005; Nee et al., 2013). Further, WMM studies predominantly reported hyperactivation in the 

DLPFC and IPL in older adults compared to younger adults during low WMM loads, which 

was interpreted to reflect compensatory mechanisms. Transferred to the current study, we 

assume that gain anticipation leads to an increased attentional focus to the third still rotating 

wheel of the slot machine, which may require relatively low cognitive demand. Additionally, 

earlier studies indicated a role of dopamine and glutamate related change in striatal and frontal 

areas for cognitive aging which might be associated with this finding (Chang et al., 2009; 

Klostermann et al., 2012b; Zahr et al., 2013). However, in the present study, we did not 

specifically investigate the interaction between WMM related activity and reward processing, 

therefore more research is needed.  

We did not observe a difference between younger and older adults during reward 

anticipation in the striatum, which coincides with findings by Samanez-Larkin et al. (Samanez-

Larkin et al., 2007) and Rademacher et al. (Rademacher et al., 2013) but not with findings from 

Schott (Schott et al., 2007) and Dreher (Dreher et al., 2008). Further, in more complex reward-

based tasks requiring strategic decision making for optimizing reward, older adults showed 

behavioral impairments and alterations in neural activity (Marschner et al., 2005; Mell et al., 

2009; Mohr et al., 2010b; Eppinger et al., 2011). An impairment in gating function of the striatal 

signal to the prefrontal cortex may lead to the findings observed in more complex tasks. These 

changes might also be related to age-related neurochemical changes (dopaminergic or 

glutamatergic decline). We further investigated this hypothesis in study 3.  
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Taken together, present results suggest that reward associated processing may change 

from young adulthood to older adulthood, which is reflected in increased and broader activation 

in frontal areas but relatively preserved activation in striatal areas in the investigated age group. 

5.1.4 Glutamate and Reward Related Processing during Adolescence 

In study 2, we investigated the relationship between striatal-limbic BOLD activity and 

glutamate concentrations in the ACC during the processing of reward in adolescents and 

young adults. The results showed that glutamate is differently (namely negatively) related to 

neuronal activity during reward processing in adolescence compared to young adulthood.  

Our interpretations of these findings are based on the earlier induced TMMB, which 

describes motivated behavior as the result from the balanced engagement of three different 

behavioral/neural systems: A reward driven approach system, reflected in striatal 

neuronal/dopaminergic signaling (Meyer-Lindenberg et al., 2002; Baas et al., 2004); second, 

the avoidance system, reflected in neuronal activity in the amygdala and other limbic areas, 

associated with serotonergic signaling; and the regulatory system formed by various frontal 

structures (Ernst et al., 2006). With regard to regulatory control in the frontal structures (in 

adolescence), recent research and theories suggest a central role of glutamate (Carlsson et al., 

1999; Surmeier et al., 2007; Duncan et al., 2013; Selemon, 2013). It has further been shown 

that reward-related information is processed via a neuronal circuitry involving large 

glutamatergic projections from the ACC (among other areas) interacting with dopaminergic 

projections from the midbrain onto the VS (Richards et al., 2013b). The VS may integrate 

information projected via these pathways and returns this information to the frontal cortex via 

the ventral pallidum and midbrain areas (Richards et al., 2013b). Further, synaptic plasticity 

(regulated by glutamatergic factors) seems to be involved in the developmental refinement of 

the proper excitatory/inhibitory balance within the prefrontal cortex during adolescence 

(Selemon, 2013).  

Taken together, we believe that the observed results in adolescents and young adults 

may represent developmentally different stages. We believe that in adults the homeostasis 

between glutamate in the ACC and BOLD-related dopamine activity in the striatum is more 

established. Subsequently, in young adults, changes in either glutamate concentration or 

dopaminergic activity in the VS may not influence dopamine and glutamate related striatal 

functional properties as strong as in adolescents.  
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5.2 Inhibitory Function Related Findings- Trimodal Results 

In study 1, no differences in reward processing were observed in core reward areas like 

the VS between young and older adults. However, direct dopaminergic influence on response 

inhibition was indicated in striatal areas in recent research (Ghahremani et al., 2012) and striatal 

dopamine was shown to decline with increasing age (Braskie et al., 2008; Kumakura et al., 

2010). Additionally, it was proposed that gating function of the striatal signal to the prefrontal 

cortex may be related to postsynaptic dopamine function in more complex tasks (Ghahremani 

et al., 2012). These changes might also be related to age-related neurochemical changes 

(Braskie et al., 2008; Zahr et al., 2008; Karlsson et al., 2011).  

Therefore, we investigated inhibitory processing in the striatum in the age range 

between 20 and 80 years. Striatal neural activity in reinforcement areas was associated with 

dopaminergic and glutamatergic neurotransmission. However, in contrast to reward processing, 

functional and neurochemical aspects of response inhibition in the striatum seem to be less 

affected by aging. In the following, I will discuss the results in more detail. 

A recent study by Ghahremani et al. (Ghahremani et al., 2012) highlighted a positive 

relationship between inhibition-related BOLD activity and dopamine D2/D3 receptor 

availability in the caudate nucleus. Dopamine synthesis capacity, which was measured in the 

current study, is associated with endogenous presynaptic dopaminergic neurotransmission, 

reflecting a background level of dopamine receptor stimulation (Ito et al., 2011; Schlagenhauf 

et al., 2012). Thus, with the present study using F18 DOPA PET we demonstrate that not only 

post- but also presynaptic dopaminergic status seems to be associated with functional properties 

of response inhibition. Furthermore, we showed that better individual inhibition performance 

was accompanied by stronger inhibition-related BOLD activity in the caudate nucleus. These 

findings are also in line with previous research (Vink et al., 2005; Ghahremani et al., 2012). 

Additionally, the striatal glutamate concentration was positively associated with striatal 

inhibition-related BOLD activity. Although studies quantifying glutamate concentrations in 

vivo in the striatum are very scarce, a recent MRS study reported a positive relationship of 

striatal glutamate concentration with performance in tests of executive functions (Zahr et al., 

2008). This observation may argue for the role of glutamate within the fronto-striatal network, 

with relevance for executive functions and motor commands (Zahr et al., 2008; Chambers et 

al., 2009), which are negatively affected in older age. However, to our knowledge, this is the 

first study showing a relationship of striatal glutamate concentration to a neuronal correlate of 

response inhibition. Still, in contrast to functional and dopaminergic indices from earlier study 
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(Ghahremani et al., 2012), in the present study, we were unable to demonstrate a significant 

relationship between presynaptic dopamine function and behavioral inhibition performance. 

Thus, it may be that postsynaptic rather than presynaptic dopaminergic neurotransmission is 

directly related to response inhibition behavior.  

We further did not observe aging effects regarding the response inhibition. Future 

research should investigate pre- and postsynaptic contributions to response inhibition more 

systematically. Still, in the present study we were able to add evidence regarding presynaptic 

dopaminergic neurotransmission and glutamate concentrations to the complex neurochemical 

interactions of response inhibition in the caudate nucleus. 

5.3 Indications of Glutamate-Dopamine Interactions and Reward Processing over 

the Lifespan for Mental Diseases  

 Interestingly, during adolescence, dopaminergic and glutamatergic factors undergo 

strong changes in reward circuits (Insel et al., 1990; Somerville and Casey, 2010). Further, 

research on young subjects at high risk for psychosis and schizophrenia patients showed 

abnormalities in glutamatergic and dopaminergic factors (Stone et al., 2010; Bloemen et al., 

2011; Howes et al., 2011; Marsman et al., 2013; Schwerk et al., 2014) as well as indications of 

abnormal reward processing prior to the onset of psychosis (Juckel et al., 2012). Further, the 

onset of schizophrenia related symptomatology starts early in adolescence (Paus et al., 2008) 

and is highly associated with changes in dopaminergic and glutamatergic factors (Stone et al., 

2010, 2010; Howes et al., 2012; Poels et al., 2014) as well as to abnormal reward processing 

(Esslinger et al., 2012; Grimm et al., 2014). After full-blown onset of psychosis, increased 

striatal dopamine synthesis capacity and abnormal reward processing is typical for 

schizophrenia (McGowan et al., 2004; Kumakura et al., 2007; Howes et al., 2012; Fusar-Poli 

and Meyer-Lindenberg, 2013). It has been proposed that a hypofunction of prefrontal NMDA 

receptors, which is also related to age associated processes during adolescence (Insel et al., 

1990) may lead to the observed elevation of striatal presynpatic dopamine function in patients 

(Marsman et al., 2013; Poels et al., 2014; Schwerk et al., 2014). Additionally, striatal and 

prefrontal glutamate may contribute to increased dopamine activity observed in schizophrenia 

(Gleich et al., 2015). 

 Further, the presented findings can be considered relevant for other mental diseases. For 

instance, in addiction, blunted pre- and postsynaptic striatal dopamine function is a well-known 

finding (e.g. Volkow et al., 1996; Heinz et al., 2004; Martinez et al., 2005); Abnormal glutamate 

concentrations in various frontal lobe structures like the ACC were also reported (Mon et al., 
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2012). Glutamate concentrations in the ACC were also observed to vary as a function of 

abstinence (Mon et al., 2012; Abé et al., 2013). Further, dopamine and glutamate related 

abnormalities may be related to the onset of addiction in adolescence (Nixon and McClain, 

2010; Cohen-Gilbert et al., 2014; Setiawan et al., 2014). While animal models of addiction 

disorders have intensively investigated the interaction of glutamate and dopamine for reward 

learning (Adrover et al., 2014; Nimitvilai et al., 2014), human investigations are still largely 

lacking. Thus, the present findings provide a starting point for studying glutamate-dopamine 

interactions in humans across glutamate and dopamine associated mental diseases.  

6. Conclusion 

The present findings contribute to the understanding of lifespan-related changes in 

reward associated processing as well as to response inhibition and may further advance the 

understanding of healthy aging in terms of neurochemical and functional interactions. 

Moreover, the present work demonstrates the importance of taking lifespan-related alterations 

in dopaminergic, glutamatergic and functional parameters into account when conducting 

research in human beings of different ages. Additionally, those lifespan-related changes may 

be basic to the understanding of the onset of many glutamate and dopamine associated mental 

diseases and may also lead to better understanding and improvement of the effectiveness of 

psychopharmacological medication and therapy for mental disease throughout the life. 

Finally, the present studies emphasize the importance of multimodal imaging to investigate 

the interaction of major neurotransmitters with neurofunctional and behavioral parameters. 
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