9

9. Abbildungs-, Tabellen- und Abküzungsverzeichnis

Abbildungsverzeichnis

Abb.	1	HRSC-A, Filter der HRSC-A	17
Abb.	2	Rückansicht der teilmontierten HRSC-AX01, Filter der AX	19
Abb.	3	Blockschaltbild HRSC-AX	19
Abb.	4	Für den Flugbetrieb mit HRSC verwendete Flugzeuge: Cessna Grand Caravan 208, Beechcra	ft
		King Air 200, Dassault Falcon, Dornier DO228, Piper Seneca II	21
Abb.	5	Speicherplatzbedarf der HRSC in MB	23
Abb.	6	Übersicht über verschiedene Betriebsmodi der HRSC-AX	25
Abb.	7	Skizze zum Inflight Alignment	26
Abb.	8	Zusammenhang zwischen TN (True North), MN(Magnetic North) und CN(Compass North))
		sowie den Abweichungen VAR (MN-TN=Variation), DEV (CN-MN=Deviation) und der	
		Drift (DA, Drift Angle)	27
Abb.	9	Links: Auswirkungen des Plattformnickens auf die Rohdaten (level2) Rechts: gleicher	
		Ausschnitt, nach photogrammetrischer Prozessierung verbleibender Fehler im Orthobild	30
Abb.	10	Orthobild überlagert mit Vektoren und verbleibender Fehler (rot) nach Anwendung aller	
		Korrekturen	31
Abb.	11	Nickstrecke auf Streifen 09 mit An- und Abflugkurve, Detail aus Streifen 09 beim Übergang	
		zum Plattformnicken	31
Abb.	12	Pergamonmuseum, Überlagerung der Kanäle S1, P1, ND, level2, Geometrie der optisch-	~~
	4.0	mechanischen Abtastung ²⁷	32
Abb.	13	Photogrammetrischen Prozessierung der Daten, CCD-Profil	33
Abb.	14	Graustufendarstellung des DOM HRSC-AX und LIDAR, resultierende Orthobilder	38 20
Abb.	15	HRSC-AXW, Innenansicht	38
Abb.	16	19. Januar 2004, Krater des Vulkans Albor Inolus in der Elysium Region, Topographische Orthobildkarte	10
Ahh	17	Funktionsprinzin I IDAR am Reisniel Rieal I MS-0560	£0 42
Ahh	18	RGB nseudo color und zuazieform digitization	12 43
Abb.	19	Graustufenhild des ersten Echos. Ausschnittsverorößerung (beleuchtet)	45
Ahh	20	Intensitätshild des Echos Ausschnittsverorößerung	45
Abb.	21	CIR. Ausschnittsverorößeruno.	45
Abb.	22	RGB. Ausschnittsvergrößerung	45
Abb.	23	Übersicht Blattschnitt Berlin. Untersuchungsgebiet blau markiert	48
Abb.	24	Ausschnitt Verteilung der Punkte. Detail DOM überlagert mit ALK und Festpunkt	49
Abb.	25	Unterschiede im Oberflächenmodell an den Referenzpunkten	50
Abb.	26	Oberflächenmodell LIDAR, HRSC mit Profillinie, Gendarmenmarkt	51
Abb.	27	Profillinie LIDAR rot, HRSC blau markiert	51
Abb.	28	Direkter Vergleich zwischen RGB, DOM-LIDAR (rot), DOM-HRSC (blau), generierter	
		Kontur und ALK	52
Abb.	29	Streuungsdiagramm, Analyse des Streuungsdiagramms farblich markiert	53
Abb.	30	Streuungsdiagramm, Analyse des Streuungsdiagramms farblich kodiert	54
Abb.	31	Scanmuster Falcon, Verteilung der Messpunkten und Erfassung von Gebäudekanten	56
Abb.	32	Zusammenhang Footprint, Lage- und Höhenfehler	56
Abb.	33	Segmentierung der HRSC-AX Daten mit dem scale parameter 50: unter ausschließlicher	
		Verwendung des Farbhomogenitätskriteriums (links) und unter Verwendung von beiden	
		Homogenitätskriterien für Farbe und Form (rechts).	70
Abb.	34	Verhältnis zwischen den Segmentierungsparametern bei "Multiresolution Segmentation" in	
		Definiens Professional 5.0	71
Abb.	35	Hierarchisches Netzwerk der Bildobjekte in abstrakter Darstellung (links) und in Pixel View	
		(rechts)	74
Abb.	36	Die Segmentierung in Definiens Professional 5.0. Einstellung der Segmentierungsparameter	
	~	für Multiresolution Segmentation	74
Abb.	37	Untersegmentiertes Gebäude, scale parameter 120 (links), dasselbe korrekt segmentierte	
		Gebäude, scale parameter 90 (rechts)	79

Abb. 38	Übersegmentiertes Gebäude, scale parameter 90 (links), dasselbe korrekt segmentierte Gebäu	ude, 70
11.1. 20	Scule purumeter 120 (recrus)	
A00. 59	Fuische Segmentierung: Innennoj mit Schuttenseite des Sattelduches zusammengejassi (uni	(S),
11.1 10	Gebaude mit nebenan stenender Luterne zusammengejassi (rechts)	/9
A00.40	Fuzzy-Zugenorigkeitsfunktion: "großer uls	00
AUD. 41	Fuzzy Vlassifizionung jur eine Kusse	
A00.42	Guide, 2004)	90
Abb. 43	Workflow der objekt-basierten Klassifizierung	91
Abb. 44	Flugplanung für Berlin 2005, Stadtgrenze durch rosa Polygon markiert	101
Abb. 45	Ausschnitt aus dem Testgebiet, CIR und RGB	102
Abb. 46	Histogramme für den roten Kanal in 8- und 16bit	103
Abb. 47	Oberflächenmodell HRSC und LIDARLIDAR	104
Abb. 48	Segmentierung ohne DOM(1), mit DOM (2), DOM	105
Abb. 49	Klassenhierarchie für level 1 und 2. Groups (links) und Inheritance (rechts)	108
Abb. 50	.Klassifizierungsergebnis für die Klasse waterbodies	108
Abb. 51	Klassenhierarchie für level 3: Groups-(links) und Inheritance-Registerkarten (rechts)	110
Abb. 52	Klassifizierungsergebnis für erhabene Objekte: Kinderklassen in Inheritance-Darstellung,	
	Elternklasse Semantic Elevated in Groups-Darstellung	111
Abb. 53	Falsch klassifizierte Bäume aufgrund der Ausdehnungsunterschiede zwischen Spektraldate	п
	und DOM. Bäume in grün, erhabene Objekte in rosa	112
Abb. 54	Process Tree: Trennung der Brücken von anderen erhabenen Objekten	113
Abb. 55	Klassenhierarchie für level 4, beide Registerkarten sind gleich	115
Abb. 56	Klassifizierungsergebnis der Höhen der erhabenen Objekte	115
Abb. 57	Klassenhierarchie für level 5. Beide Registerkarten sind gleich	116
Abb. 58	Klassifizierungsergebnis der Dachmaterialien	117
Abb. 59	Klassenhierarchie für level 7 und 8: Groups (links) und Inheritance (rechts)	118
Abb. 60	Klassifizierungsergebnis des levels 8: Hochbahn wurde von Gebäuden getrennt klassifiziert	118
Abb. 61	Klassifizierung der begrünten Dächer: unklassifiziert, klassifiziert und als Kinderklasse der	
	Gebäude mit verbleibendem Restfehler	119
<i>Abb.</i> 62	Klassifizierungsergebnis der Gebäude	119
Abb. 63	Klassenhierarchie für level 6	120
Abb. 64	Klassifizierung bewegter Objekte (Schiffe, Autos)	121
Abb. 65	Klassifizierungsergebnis des Analysemodells A	123
Abb. 66	Klassifizierung mit LIDAR	124
Abb. 67	Klassifizierungsendergebnis in optimaler Kombination	124
Abb. 68	Klassifizierungsergebnis des Analysemodells C	125
Abb. 69	Klassifizierung der Innenhöfe, RGB, Analysemodelle A (blau), B (rot) und C (gelb)	127
Abb. 70	Gebäudeklassifizierung, ALK, Differenzbild Gebäude-ALK	128
Abb. 71	Gebäudeklassifizierung, ALK, Differenzbild Gebäude-ALK	128
<i>Abb.</i> 72	Gebäudeklassifizierung, ALK, Differenzbild Gebäude-ALK	129
<i>Abb.</i> 73	RGB, Klassifizierung basierend auf LIDAR-DOM (rot) und auf HRSC-DOM (blau)	130
<i>Abb.</i> 74	Versiegelungsgrad im Umweltatlas und als Verschneidung aus Klassifizierung und ALK	132
Abb. 75	Beispiel für die Erstellung einer action library	133
<i>Abb.</i> 76	MFC Testflug Berlin Adlershof, DLR e.V., 3D Ansicht Oberflächenmodell	137

Tabellenverzeichnis

Tab. 1	Technische Daten HRSC-A	18
Tab. 2	Erläuterungen zum Blockschaltbild	20
Tab. 3	Übersicht über die Betriebskosten und technischen Daten einiger Flugzeuge	21
Tab. 4	Prozessierungslevel	37
Tab. 5	Technische Daten der HRSC-Kameras	
Tab. 6	Instrumente an Bord von Mars Express	41
Tab. 7	Technische Details LIDAR	46
Tab. 8	Zusammenfassung der Ergebnisse	51
Tab. 9	Übersicht: Unterschiede im HRSC und LIDAR-DOM	54
Tab. 10	Mathematische Darstellung einer Konfusionsmatrix (nach Congalton u. Green)	
<i>Tab.</i> 11	Beispiel einer Konfusionsmatrix (nach Congalton u. Green)	94
<i>Tab.</i> 12	Übersicht der minimal notwendigen Segmentierungen	
<i>Tab.</i> 13	Kombinationen der für drei unterschiedliche Analysemodelle verwendeten Daten	122
<i>Tab.</i> 14	Kappa-Statistik	126

Abkürzungsverzeichnis

ADC	Airborne Digital Camera
ADS	Airborne Digital Sensor
AGAFE	Arbeitsgemeinschaft für angewandte Forschung und Entwicklung von Mitgliedern der Fachhochschule Wiesbaden
ALTM	Airborne LASER Terrain Mapper
ALK	Automatisierte Liegenschafts Karte
ASPRS	American Society for Photogrammetry and Remote Sensing
ATKIS	AmtlichesTopographisch-Kartographisches Informationssystem
CAIP	International Conference on Computer Analysis of Images and Patterns
CCD	Charged Coupled Device
CCU	Camera Comand Unit
CIR	Color Infra Red
DLR	Deutsches Zentrum für Luft- und Raumfahrt e.V.
DGPF	Deutsche Gesellschaft für Photogrammetrie und Fernerkundung
DGM	Digital Ground Model
DGPS	Differential Global Positioning System
DOM	Digitales Oberflächenmodell
DSM	Digital Surface Model
DTM	Digital Terrain Model
ERDAS	Earth Resource Data Analysis System
ENVI	Environment for Visualising Images
ESA	European Space Agency
FIG	Fédération Internationale des Géomètres
FMC	Forward Motion Compansation
FU	Freie Universität
FOV	Field of View
GPS	Global Positioning System
GIS	Geoinformationsystem
HRSC-A	High Resolution Stereo Camera - Airborne
HRSC-AX	~ -Airborne eXtended
HRSC-AXW	~ -Airborne eXtended Wideangle
IDL	Interactive Data Language
IFOV	Instantaneous field of view
IGI	Ingenieur Gesellschaft für Interfaces mbH
IMU	Inertial Measurement Unit
INS	Inertial Navigation System

ISPRS	International Society for
	Photogrammetry and Remote Sensing
JPL	Jet Propulsion Labortory
LASER	Light Amplification by Stimulated Emission of Radiation
LIDAR	Light Detecting and Ranging
MEX	Mars Express
MFC	Multifunctional Camera Head
MGS	Mars Global Surveyer
MS-DOS	Microsoft Disk Operating System
MSVC++	Microsoft Visual C++
NASA	National Aviation and Space Agency
NIR	Near Infrared
NM	Nautical Mile, 1 Meridianminute
PAMI	Pattern Analysis and Machine Intelligence
PFG	Zeitschrift für Photogrammetrie -
	Fernerkundung - Geoinformation
PI	Principal Investigator
RADAR	Radio Detection And Ranging
RAID	Redundant Array of Independent Disks
RGB	Red Green Blue
RLG	Ring Laser Gyro
RMS	Root Mean Square
SIG	Système d'information géographique
sm	Seemeile
SRC	Super Resolution Camera
SPOT	Systeme Probatoire d'Observation de la
	Terre
SUSAN	Smallest Univalue Segment Assimilating Nucleus
TDI	Time Delayed Integration
TIN	Triangulated Irregular Network
VICAR	Video Image Communication and Retrival
VHSR	Very High Spatial Resolution