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Introduction

The advance of modern computing technologies has allowed the development of
more complex and realistic models in many scientific fields than was ever pos-
sible previously. Within economics, so-called agent-based models study systems
of boundedly rational, interacting economic agents (e.g., households, firms) by
means of computer simulations. The basic idea is that the microscopic behavior
of the agents is specified via individual rules of behavior and the dynamical
evolution of the whole system as well as related macroscopic quantities (e.g.,
prices, unemployment rates) is iteratively determined by the computer (e.g.,
Tesfatsion and Judd, 2006). These kinds of models have many desired features
that traditional economic models are lacking (e.g., Epstein and Axtell, 1996;
Farmer and Foley, 2009; Gallegati and Richiardi, 2009; Tesfatsion, 2006). How-
ever, their high complexity makes them difficult to understand and analyze (e.g.,
Dawid and Fagiolo, 2008). Up to now, there are few approaches that go beyond
traditional “look and see” analyses and it is in this context that the overall
goal of this thesis, to contribute to the development of approaches to the formal
description and analysis of agent-based models, is to be understood.

Specifications for Agent-Based Models of Exchange

More specifically, in the first part of this thesis, we discuss the need for formal
approaches to agent-based modeling and we present a functional framework for
specifying agent-based models of exchange developed together with colleagues
from the Potsdam Institute for Climate Impact Research, Germany, the Cen-
tre d’Économie de la Sorbonne, Université Paris 1 – CNRS, France, and the
Institute for Software Systems, Hamburg University of Technology, Germany
(see Botta et al., 2013, 2011). This work builds on the observation that, from a
programming perspective, agent-based models are obtained through exploratory
programming. This means that precise specifications for the agent-based com-
puter model, i.e., precise mathematical requirements on the accuracy of solu-
tions delivered by the model, are not available, typically because the modeled
problems are not well understood. As prototype implementations are difficult to
explain, communicate and study, they are usually accompanied by other model
descriptions. These additional model descriptions consist most often of narra-
tives, solitary mathematical equations, and, rarely, pseudo-code. In practice,
these additional model descriptions neither allow the identification of program-
ming errors nor the re-implementation nor the analysis of the model since the
description of a model in natural language is inherently ambiguous, i.e., it can
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12 INTRODUCTION

lead to several possibilites of interpretation and translation into natural lan-
guage (e.g., Hofmann, 2007; Ionescu, 2008; Ionescu et al., 2009; Wolf, 2009;
Wolf et al., 2013).

The developed functional framework for specifying agent-based models of
exchange is based on the agent-based model of exchange by Herbert Gintis
(2006) and represents a first attempt at introducing mathematical specifications
into computational economics. We applied the framework to the Gintis model
and compared the resulting reimplementation with the simulation results of the
original work. This work showed that it is possible to derive consistent model
reimplementations on the basis of the framework (see Botta et al., 2013).

The first part of this thesis aims to concentrate on the basic structure of
the framework necessary to a) clearly formulate the problem of price forma-
tion addressed by agent-based models of exchange, b) expose in this way the
relationship of agent-based models of exchange with more traditional economic
theory, and c) discuss how model analysis can be supported on the basis of the
framework.

Metastability in Stochastic Evolutionary Games

While the first part of this thesis concerns a formal description of agent-based
models, the second part (in particular, Chapters 4 – 6) relates to their analysis.
Since the model of Gintis is too complex to use as a starting point, this part
focuses on stochastic evolutionary games, in which a finite number of individuals
play repeatedly a game and can update their behavioral choice regularly on the
basis of their observations or experiences in previous interactions with other
individuals. In this sense, stochastic evolutionary games can be understood as
simple agent-based models. Mathematically, these games can be described as
Markov chains that fulfill certain conditions on their transition probabilities.
This simple structure is exploited in the second part of the thesis.

More specifically, the second part of this thesis focuses on metastability in
stochastic evolutionary games. This is interesting because metastability is a
dynamic property that many of the stochastic evolutionary games share. It
means that their sample paths exhibit long periods of stasis near one population
state which are infrequently interrupted by switching events after which the
sample paths stay close to a different population state, again for a long period
of time. In stochastic evolutionary game theory, this property is also called
punctuated equilibrium (Young, 1998, 2006).

Metastability has been characterized in the literature as a favorable property
of stochastic evolutionary games (e.g., Young, 1998, 2006), not least because
it might lead to a different perspective on modeling conventions and on the
problem of equilibrium selection (Jaeger, 2008, 2012). In general, conventions
are social norms or customs; that is, they constitute regularities or uniformity
of behavior in populations of individuals in situations in which an individual
has several behavioral alternatives to choose from. In these situations, a con-
vention represents the traditional or ordinary way to act. Examples are rules
of the road, codes of dress, greeting customs, forms of money and credit, con-
tract standards, etc. Since Lewis (1969), conventions have traditionally been
modeled as Nash equilibria of coordination games. However, since coordina-
tion games in general have multiple Nash equilibria, the question arises as to
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how individuals select a certain convention. This problem of equilibrium selec-
tion is a central topic in game theory and numerous refinements of the Nash
equilibrium solution concept have been developed to argue why a particular
Nash equilibrium should be singled out by the players of the game. In fact, so
many refinements have been proposed that almost any Nash equilibrium can
be justified by some refinement (Binmore, 1995). This leaves the approach to
equilibrium selection via refinements of the Nash equilibrium solution concept
unsatisfactory. In stochastic evolutionary games with metastable dynamics, the
particular population states near where the sample paths reside for a long time
can be interpreted as conventions (Young, 1998, 2006). Thus, instead of fixing
a single convention, conventions in stochastic evolutionary games can change –
just as in the real world – and seeing conventions through metastable glasses
might in this context shed new light on how to model and interpret conventions.

The methods used so far in stochastic evolutionary game theory, however,
do not characterize the dynamics of the evolutionary games with respect to
this property. More specifically, the analysis of evolutionary game models ex-
clusively focuses on equilibrium selection, equilibria of mean dynamics, or the
determination of stochastically stable states (Benaim and Weibull, 2003; Elli-
son, 2000; Foster and Young, 1990; Hofbauer and Sigmund, 2003; Kurtz, 1970;
Sandholm, 2010, 2011; Weibull, 1995; Young, 1993a, 1998, 2006). All of these
approaches are not able to thorougly describe metastable dynamic behavior of
the considered evolutionary processes.

This is in contrast to physics and chemistry where there has been much
research in the last century on the mathematical description and analysis of
metastability (for a short historical overview see, e.g., the introductory chapter
of Bovier, 2009). With regard to stochastic evolutionary games, the approach to
characterizing metastability via spectral properties of the transfer operator or
generator of the Markov chain (e.g., Bovier et al., 2001, 2002; Davies, 1982a,b;
Dellnitz and Junge, 1999; Deuflhard et al., 2000; Freidlin and Wentzell, 1984;
Huisinga, 2001; Huisinga et al., 2004; Schütte and Huisinga, 2003) seems es-
pecially promising since this approach is general enough to be applicable to a
wide range of models. More specifically, the approach we are pursuing in this
thesis originates in the study of chemical conformations of large biomolecules.
In a conformation, the large-scale geometric structure is preserved while on
smaller scales the biomolecular system may very well fluctuate. The function
of biomolecules depends on their dynamic characteristic to undergo statistically
rare switches between these conformations. It has been shown that it is possible
to interpret conformations of biomolecules as metastable subsets of state space,
and function analytic approaches to the characterization of metastability as well
as the numerical identification of metastable subsets of state space have been
developed (e.g., Deuflhard et al., 2000; Huisinga, 2001; Huisinga and Schmidt,
2006; Schütte, 1998; Schütte et al., 1999; Schütte and Huisinga, 2003). More-
over, this approach also allows the construction of Markov models of reduced
complexity and the assessment of their approximation errors (see Djurdjevac
et al., 2010; Sarich, 2011; Schütte et al., 2011; Schütte and Sarich, 2013).

The central aim of the second part of this thesis is thus to build on these
existing metastability approaches to present a novel approach to the analysis of
stochastic evolutionary games. More specifically, we present characterizations
of metastability and relate these to stochastic evolutionary games as well as to
existing approaches to their analysis, in particular to the notion of stochastic
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stability. We give an extensive account on the construction of Markov mod-
els of reduced complexity that approximate their essential dynamic behavior,
elaborate on their relationship to the original Markov chain, and assess their
approximation quality. Lastly, we present a simulation-based algorithmic strat-
egy to identify metastable sets of population states, which is well-suited for
stochastic evolutionary games.

Although the second part of this thesis focuses on stochastic evolutionary
games, and in fact, often only on stochastic evolutionary games with reversible
dynamics, it is especially the construction of models of reduced complexity that
takes us full circle back to agent-based models as the motivation of this work.
Agent-based models are in general so complex that models of reduced complex-
ity seem to be needed – not only to see the wood for the trees but also to allow
the application of advanced analytic methods (e.g., to assess the resilience of a
metastable set in consideration, which was, in fact, the aim of the “PATRES:
Pattern resilience” project funded by the European commission; see the mono-
graph Deffuant and Gilbert, 2011). There is, of course, some way to go from
reversible stochastic evolutionary games to agent-based models in general. But,
as explained above, stochastic evolutionary games can be understood as simple
agent-based models and therefore lend themselves well as a starting point to
investigate approaches for the analysis of agent-based models in general. Thus,
what regards the analysis of agent-based models in general, we see the con-
tribution of this thesis in providing a proof of concept for the applicability of
the presented metastability approach to agent-based models, thereby laying the
foundation for future research into this field.

Road Map

• In Chapter 1, “Specifications for Agent-Based Models of Exchange”, we
introduce agent-based modeling and explain the motivation as well as
the expectations behind this approach to economic modeling. We discuss
the need for specifications for agent-based models. We present the basic
structure of the functional framework to specify agent-based models of
exchange. This presentation focuses on exposing the relationship of agent-
based models of exchange with evolutionary game and general equilibrium
theory. More specifically, we show how agent-based models of exchange
can nearly be represented as evolutionary games in the sense of Part II
of this thesis. By doing so, we explicitly show that they are Markov
processes – a fact that is often considered to be only theoretically possible
(but not truly realizable). In addition, we use the introduced framework
to formulate precisely the research question behind agent-based models
of exchange and we discuss how it enables rigorous model analysis and
numerical investigation.

Please note that Chapter 1 uses a different notation than the rest of the
thesis. More specifically, the framework presented in Chapter 1 is written
using a functional notation, which is better suited for writing specifications
– see Section 1.3.

• Chapter 2, “Mathematical Preliminaries”, introduces the necessary math-
ematical concepts and notation used in the second part of this thesis. This
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comprises basics of probability theory (Section 2.1) and of the theory of
discrete-time Markov chains (Section 2.2).

• In Chapter 3, “Stochastic Evolutionary Games”, we introduce stochastic
evolutionary games and show that they can be understood as discrete-
time Markov chains. Subsequent chapters build heavily on this fact. We
discuss, in addition, standard methods of their analysis, such as Nash equi-
libria and equilibrium selection, deterministic approximation, as well as
stochastic stability analysis. We put these standard methods into the con-
text of metastability analysis and show that they are not able to describe
metastable dynamic behavior of evolutionary games.

• Chapter 4, “Characterization of Metastability”, presents two different
characterizations of metastability – one being based on the notion of
hitting times, the other on transition probabilities. Using the notion of
models of evolution with noise (introduced in Ellison, 2000) to facilitate
stochastic stability analysis in stochastic evolutionary games, we relate
both metastability characterizations to stochastic evolutionary games.

• In Chapter 5, “Markov State Modeling”, we present the Markov state
modeling approach to the approximation of Markov processes and apply it
to stochastic evolutionary games. The basic idea of Markov state models is
to approximate the original Markov process by a Markov chain on a small
finite state space. More specifically, a Markov state model is defined as a
Markov chain whose state space consists of the dominant metastable sets
of the original Markov process and whose transition rates between these
macrostates are given by the aggregate statistics of jumps between the
metastable sets. The advantage of this approach in the context of complex
models with large state spaces such as agent-based models is that the
transition probabilities can be estimated on the basis of simulated short-
term trajectory data. Moreover, it has been shown that Markov state
models have good approximation properties if metastability is inherent in
the system of interest. Specific for our focus is that we give an extensive
account of the construction of these Markov state models for discrete state
spaces. We elaborate on the relationship between the original Markov
chain and its Markov state model approximation. Lastly, we discuss their
approximation quality in terms of stochastic stability, with respect to the
propagation of probability distributions in time, as well as with respect to
the approximation of eigenvalues.

• In Chapter 6, “Identification of Metastable Sets for Agent-Based Evolu-
tionary Models”, we use the approximation results of the previous chapter
for an algorithmic approach to identify metastable sets of population states
in stochastic evolutionary games. The algorithmic approach is well suited
for stochastic evolutionary games because it exploits the fact that they
depend on a noise parameter that controls the metastability of the model.
Moreover, the identification algorithm preserves stochastic stability. It is
based on simulated trajectory data only and seems therefore especially in-
teresting in the context of agent-based modeling since agent-based models
usually lack model specifications. One limitation of the approach, how-
ever, is that it depends on the original stochastic evolutionary game to
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be reversible. We discuss this limitation and give an outlook for further
research in this direction.

• The Summary briefly reviews the most important landmarks encountered
on our way and closes with outlining possible future research destinations.



Part I

Formalization
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Chapter 1

Specifications for
Agent-Based Models of
Exchange

1.1 Introduction to Agent-Based Modeling

Agent-based modeling is a relatively new modeling approach in economics which
studies systems of boundedly rational, interacting economic agents (e.g., house-
holds and firms) by means of computer simulations. The basic idea is that the
microscopic behavior of the agents is specified via individual rules of behaviour
while the dynamical evolution of the whole system and related macroscopic
quantities (e.g., prices and unemployment rates) are iteratively determined by
the computer. In this sense, agent-based models (ABMs) can comply with the
wish for microfoundations of macroeconomics: boundedly rational economic
agents and their interactions can be modeled in an intuitive and realistic way.
The resulting economic processes can be observed via simulations – does Adam
Smith’s so-called “invisible hand”, that is, economic coordination, emerge in de-
centralized market economies? How are prices formed and how do they evolve?
How do financial crises arise? These are examples of the central economic ques-
tions argued to be better addressed by agent-based models than by the math-
ematical models used in traditional general equilibrium theory and macroeco-
nomics, since the latter are only mathematically tractable if the behavior of the
agents is restricted in a fundamental way (see Section 1.4.1). Agent-based mod-
els, in contrast, allow the study of emerging macroscopic structures on the basis
of more realistic and diverse behavioral rules (Epstein and Axtell, 1996; Farmer
and Foley, 2009; Gallegati and Richiardi, 2009; Tesfatsion, 2006; Tesfatsion and
Judd, 2006).

Agent-based models differ in their scientific objectives and this is reflected in
their complexity. On one end of the spectrum lie those models that attempt to
model economic processes as realistically as possible. Their objective is to repro-
duce empirical data and to derive normative statements as to the consequences
of economic policies. In such models, there is a huge number and diversity
of agents, such as consumers, decision-makers, bank and corporate managers,

19
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which interact according to the rules determined by the institutions they are
embedded in. Up to now, there are only a few models with this claim to reality,
one of which is the EURACE model developed to provide macroeconomic policy
advice for the EU (Deissenberg et al., 2008).

On the other end of the spectrum are more theoretically motivated agent-
based models. Their underlying research question often relates to existing eco-
nomic theory and addresses the outcomes of interaction processes with certain
properties as well as of different behavioral rules assumed for the agents. In
a general equilibrium model, for example, the Walrasian auctioneer is a fictive
person that determines prices given the demand and supply of the agents (also
see Section 1.4.1). If we do not want to rely on such an artificial construction as
the Walrasian auctioneer, what kind of interactions must at least be specified
in order for the resulting agent-based model to be iterable (Tesfatsion, 2006)?
What prices develop? The agent-based models that can be found on this end of
the spectrum are usually less complex than the ones with more claim to real-
ity. The agent-based model of exchange by Gintis (2006), which was the point
of departure for the developed functional framework for specifying agent-based
models of exchange (see Section 1.4), is an example of such an agent-based
model with a theoretically motivated research question.

1.2 Exploratory Programming and The Need for
Specifications

While agent-based models have many desired features that traditional economic
models lack, they also lead to new challenges. Indeed, there are numerous
agent-based economic models (Tesfatsion, 2014; Tesfatsion and Judd, 2006) but
no precise, established notion of an agent-based model so that most of the
models are developed anew from scratch and assume (seemingly) arbitrary, ad
hoc behavioral rules. Moreover, their inherent complexity renders them difficult
to understand and analyze.

These challenges relate to the fact that agent-based models are computer-
based models that are not developed to solve well-defined problems. In the
case of scientific computing and engineering, for instance, the problems to be
solved are often well understood and can be stated precisely. On this basis,
computer-based algorithms can be developed and applied to deliver (usually
approximate) solutions to the problems. Since the problems to be solved are
well-defined, model developers and implementers are able to design crucial ex-
periments. Negative outcomes of such crucial experiments unambiguously indi-
cate errors in the algorithm or in its implementation. In this way, it is possible
to control the accuracy of the computer-based solutions.

For example, let r2 : Real × Real × Real → Complex be a program that
implements an algorithm for finding the roots of quadratic equations of the
form ax2 + bx + c = 0. In order for r2 to implement such an algorithm, we
require that

∀ a, b, c ∈ Real : a 6= 0 ∧ y = r2(a, b, c) ⇒ |ay2 + by + c| ≤ ε, (1.1)

where ε is an appropriate residuum upper bound. Now if there are a∗, b∗, c∗ ∈
Real such that |a∗y2 + b∗y+ c∗| ≥ ε where y = r2(a∗, b∗, c∗), we unambiguously
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know that r2 does not fulfill requirement (1.1). In this case, two interpretations
are possible; either

• r2 is an incorrect implementation of a correct algorithm for finding the
roots of a quadratic equation of the form ax2 + bx+ c = 0, or

• the utilized algorithm for finding the roots of a quadratic equation of the
form ax2 + bx+ c = 0 is not correct.

In such a situation, the second possibility can be ruled out if the algorithm can
be proved to be correct.

In software engineering, requirements like Eq. (1.1) are usually called spec-
ifications. That is, in the just given example, Eq. (1.1) is a specification for
computer-based models for finding the roots of a quadratic equation of the form
ax2 + bx+ c = 0. The example, moreover, demonstrates that

1. It is helpful to distinguish three notions: the specification, the algorithm,
and the implementation.

2. Specifications can be stated in a clear mathematical notation and are often
written in terms of equations. In many cases, they are called problem
equations, governing equations, or governing laws.

3. Though expressed in mathematical notation, specifations necessarily de-
pend on the computing architecture. In Eq. (1.1), for example, Real
represents a computing architecture dependent set of floating point num-
bers and ε is a value that depends on the sets Real and Complex, and thus,
depends on the computing architecture as well. It is often convenient to
replace Eq. (1.1) by

∀ a, b, c ∈ R : a 6= 0 ∧ y = r2(a, b, c) ⇒ ay2 + by + c = 0; (1.2)

that is, to trade precision of specifications for intuitiveness. This is the
approach taken in the following sections of this chapter. Remember, how-
ever, that Eq. (1.2) is just a convenient stand-in for Eq. (1.1). All crucial
experiments and proofs of correctness have to be based on the original
specification.

4. Algorithms are mostly written in pseudo programming languages (Aho
et al., 1982). Implementations are written in programming languages.
Algorithms are more difficult to read and analyze than specifications, but
still more readable than implementations.

5. For complex computer-based models it is often not feasible to derive, pos-
sibly automatically, implementations from specifications, or even to prove
that implementations are correct in the sense that they fulfill the spec-
ifications. In such a situation, it is usually more realistic to implement
computer-based models by combining software components that have been
proved to be correct, or, at least, for which crucial experiments can be set
up.

Agent-based models, in contrast, are computer-based models developed through
exploratory programming. As an approach to software engineering, exploratory
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programming is characterized by the fact that precise specifications for the com-
puter model are not available. Typically, this results from modeled problems
that are not well understood – as is often the case in agent-based modeling. In-
stead of formal specifications, implementations are accompanied by additional
model descriptions such as narratives, solitary mathematical equations, and,
rarely, pseudo-code. Note that these additional model descriptions are neces-
sary although implementations are often considered as unambiguous, precise
model descriptions themselves. This is because implementations are not very
useful for explaining, communicating, and studying computer-based models.
They expose too many details, lack conciseness and readability, and are thus
almost inaccessible to non-programmers.

It has been argued that, in principle, these additional descriptions could
be sufficient and precise enough to allow for model validation, verification as
well as model reimplementation. Based on this view but aware of the inher-
ent difficulties, there are initiatives that aim at standardizing the description of
agent-based models in a way that facilitates comprehensibility as well as reim-
plementation, most notably the ODD protocol (Overview, Design concepts, De-
tails; Grimm et al., 2006, 2010). Unfortunately, there have been no reported
studies with regard to the reimplementation of agent-based models on the basis
of, for instance, the ODD protocol. While we recognize the advantages of such
a standardized description of agent-based models, we argue that in practice
narrative descriptions always allow multiple possibilities of interpretation and
translation into formal languages (Hofmann, 2007; Ionescu, 2008; Ionescu et al.,
2009; Wolf, 2009; Wolf et al., 2013). Consequently, for consistent, independent
model reimplementations as well as model analysis and dissemination, math-
ematical specifications are necessary and deriving such specifications from the
prototype implementations and narrative descriptions represents the next step
in agent-based model development.

Own work on an agent-based model of exchange put forward by Herbert
Gintis called our attention to this problem setting. More specifically, Gintis
(2006) proclaimed the discovery of a disequilibrium adjustment mechanism that
explains price formation without the presence of a Walrasian auctioneer, the cen-
tral authority generally assumed in mainstream economics to impose prices on
players. His results are obtained by agent-based modeling and are to be seen,
as Gintis (2006, p. 14) puts it, as “empirical rather than theoretical: we have
created a class of economies and investigated their properties for a range of pa-
rameters”. As the understanding of price formation is a long-standing puzzle in
economics, this work is relevant and intriguing. Its presentation, however, leaves
a number of non-trivial questions open: Which class of economies is actually
considered by the model presented by Gintis (2006)? Is it possible to express the
properties investigated by Gintis (2006) formally? What exactly is the relation
between the proposed agent-based model and general equilibrium models, or, in
the words of Gintis (2006, Abstract), what exactly is the “underlying Walrasian
model”?

The relevance of the problem together with these open questions indepen-
dently motivated two groups of researchers, one at the Potsdam Institute for
Climate Impact Research (see Botta et al., 2013, 2011), the other at Chalmers
Technical University, Sweden (see Evensen and Märdin, 2009), to do something
which should be routine, but is hardly ever done: to reimplement the model and
to try to reproduce the results reported by Gintis (2006). Altough the model
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seems to be simple enough to be easily understandable and reimplementable,
initial attempts based only on the description given by Gintis (2006) failed.
Following this, the author kindly provided the source code. Both groups were
now able to discover several ways in which his implementation diverged from
their interpretation of the description given in the paper and thus diverged from
their reimplementations. This exemplifies the problematic ambiguity left open
by the narrative provided by Gintis (2006) – an ambiguity that is often ignored
in agent-based economics as scientists tend to believe that a narrative together
with a few mathematical equations are sufficient descriptions for their models.

Based on these experiences, we set out to develop a formal framework to
specify and study agent-based models of exchange – a framework that allows to
specify agent-based models of exchange of the kind considered by Gintis (2006)
in a concise and unambiguous form (see Botta et al., 2011). As formalization
always involves abstraction, it is obvious that the framework we present is more
general than the specific model presented by Gintis (2006). In addition to this
specific model, it captures the class of models with the same structure as this
specific model (for more on the process of formalization, its advantages and
characteristics, see, e.g., Wolf, 2009). The framework has been applied to the
model presented by Gintis (2006), see Botta et al. (2013). On the basis of
the framework, it is possible to derive consistent model reimplementations, to
relate the model to existing economic theory, as well as to allow rigorous model
analysis and validation (see Botta et al., 2013, 2011).

It is the aim of this chapter to present the basic structure of the framework
necessary to

1. clearly formulate the problem of price formation addressed by agent-based
models of exchange like the one presented by Gintis (2006), and in this
way to

2. expose their relationship with traditional economic theory, specifically
with general equilibrium and game theory, as well as to

3. explicate how model analysis can be supported with the framework.

Thus, the focus of this chapter is to demonstrate how mathematical specifica-
tions support model analysis and problem formulation.

1.3 Basic Notions and Notation

The notation used in this chapter formulates economic notions mainly in terms
of functions and differs in this respect from the notation in Part II of the thesis,
which focuses instead on vectors. This section introduces and motivates such a
functional notation and formulates the most important economic notions needed
to specify models of exchange. In presenting the basic structure of the frame-
work, we will also use basic notions from game theory and probability theory,
which we are not going to introduce here. Instead we refer in the footnotes to
the specific definitions given in Chapter 2 and 3.

In the following, we denote by A and G the set of agents and the set of
goods, respectively. Both sets are assumed to be finite and represent the two
most fundamental economic notions in the framework. Most other economic
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notions which are (as just mentioned) formulated mainly as functions, take
values in A or G. For example, the notion of a stock is represented as a function
that associates to goods in G non-negative real numbers; that is, a stock is a
function of type G→ R≥0 and we write

q : G→ R≥0.

to denote that q is a stock. Similarly, allocations are functions which associate
stocks to the agents in A and we thus write

x : A→ (G→ R≥0)

to posit that x is an allocation. Along the same lines, prices, utilities, and utility
profiles are represented as functions of type G → R>0, (G → R≥0) → R, and
A → ((G → R≥0) → R), respectively. In subsequent sections, we will use the
abbreviations Q, P , and U to denote in short form the set of stocks, the set of
prices and the set of utilities, respectively.

Writing allocations as functions of type A → (G → R≥0) exemplifies our
use of currying in the formulation of the framework. Currying, named after
Haskell Brooks Curry, refers to the representation of functions of more than one
variable as functions of one variable that return function values. In the former
case, an allocation x would, for instance, be written as x : A×G→ R≥0, while
the curried form is x : A → (G → R≥0). Note that → is understood to be
right-associative1, that is, a function A→ G→ R≥0 is understood to be of type
A→ (G→ R≥0).

Furthermore, we denote function application by juxtaposition: x a : G →
R≥0 is the stock of the agent a according to the allocation x and x a g ∈ R≥0

refers to the quantity of good g according to the stock x a. This follows the
common usage in category theory where “evaluation is a special case of composi-
tion” (Lawrence and Rosebrugh, 2003, p.6). Note that we denote multiplication
of two real numbers r1, r2 by r1 ∗ r2 in order to differentiate function applica-
tion denoted by juxtaposition from multiplication, which is often denoted by
juxtaposition as well.

Example 1.1. Let A = {a1, a2, a3}, G = {g1, g2, g3}. Let q1, q2, q3 be defined by

qi gj =

{
2 if i = j
0 otherwise,

(1.3)

and consider the allocation x0 in which agent ai has stocks qi, that is, x0 ai = qi
for i = 1, 2, 3. A prominent example of a utility profile u is the one proposed by

1Note that the notion of right-associativity we use here refers to notational associativity.
Notational associativity is used in programming languages to declare how to interpret terms
in which the same operator occurs without parentheses, e.g., A→ G→ R≥0. If the operations
are grouped from the right, as we do in the case of→, e.g., A→ G→ R≥0 is interpreted asA→
(G → R≥0), the operator is called right-associative. Note that notational associativity of a
specific operator may differ between programming languages. Moreover, the notion is different
from the mathematical notion of associativity according to which an operator is associative if
the value of an expression containing two or more occurrences of the same operator will not
change if parentheses are rearranged. The standard examples for the mathematical notion of
associativity are addition and multiplication. Note that an operator which is mathematically
associative needs no notational associativity because it can be interpreted either way. In
contrast, if the operation is not mathematically associative, its notational associativity needs
to be defined in order for expressions to be unambiguously evaluable.
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Scarf (1960), in which each agent has the same utility function defined by

u a y = min
g∈G

(y g)/(w g), (1.4)

where w is a function of type G→ R>0. Let us consider, for instance,

w =
1

|A|
∗
∑
a∈A

x0 a, (1.5)

where x0 is the just defined allocation, that is, w gi = 2/3 for each i = 1, 2, 3.
Then the utility of each agent given the allocation x is 0, while it is 1 for the
allocation x defined by x a g = 2/3 for all a ∈ A, g ∈ G.

We also use the notion of a list and the related functions elem as well as fold.
Lists are recursively defined data types (Bird, 1998). The empty list is denoted
by []. To refer to the kth element of a list xs, we write xs!!k. In addition,
(x : xs) refers to a list with first element x and subsequent list of elements given
by xs. The boolean function elem is used to test membership in lists:

elem : X → List X → Bool, (1.6a)

elem x xs =

{
true if ∃ k ∈ N such that xs!!k = x,
false otherwise.

(1.6b)

The function fold is, like elem, a polymorphic function. This means that the
function does not refer to specific types, but can instead be used for any type.
Its type

fold : (X → Y → X)→ X → List Y → X (1.7)

depends on two parameters X and Y . Like many functions that operate with
lists, fold is defined recursively via pattern matching (Bird, 1998):

fold f x [] = x, (1.8a)

fold f x (y : ys) = f (fold f x ys). (1.8b)

Example 1.2. Let again A = {a1, a2, a3}, G = {g1, g2, g3}. Let us consider the
list ts = [(a1, a2), (a3, a1), (a2, a3)]. Notice that ts ∈ List (A× A); in words, ts
is a list of agent pairs. Moreover, the first element of the list is ts!!1 = (a1, a2)
and thus we can write ts = ((a1, a2) : ts′), where ts′ = [(a3, a1), (a2, a3)]. We
also have elem (a1, a2) ts = true, but elem (a1, a3) ts = false. Let furthermore
f : (A→ Q)→ (A×A)→ (A→ Q) be defined by

f x (ai, aj) = x′, (1.9)

where x′ is the resulting allocation given by x′ ak = x ak if k 6= i, j, and

x′ ai gl =

 x ai gl − 1 if (l = i ∧ x ai gi ≥ 1)
x ai gl + 1 if (l = j ∧ x aj gj ≥ 1)
x ai gl otherwise;

(1.10)

x′ aj gl =

 x aj gl − 1 if (l = j ∧ x aj gj ≥ 1)
x aj gl + 1 if (l = i ∧ x ai gi ≥ 1)
x aj gl otherwise;

(1.11)
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that is, f can be interpreted as an exchange function according to which the
involved agents switch one unit of “their” good, if possible, where we associ-
ated goods to agents according to their index. For the allocation x0 defined in
Example 1.1, we can now consider

fold f x0 ts = fold f x0 ((a1, a2) : [(a3, a1), (a2, a3)]) (1.12a)

= f (fold f x0 ((a3, a1) : [(a2, a3)])) (a1, a2) (1.12b)

= f (f (fold f x0 ((a2, a3) : []))(a3, a1)) (a1, a2) (1.12c)

= f (f (f (fold f x0 []) (a2, a3)) (a3, a1)) (a1, a2) (1.12d)

= f (f (f x0 (a2, a3)) (a3, a1)) (a1, a2). (1.12e)

Notice that the list ts is executed from the right to the left. First, a2 and a3

exchange one unit of their good, if possible, resulting in the new allocation x′.
Next, a3 and a1 exchange one unit of their good, if possible, resulting in the new
allocation x′′. Finally, a1 and a2 exchange one unit of their good, if possible,
resulting in x′′′, which is the allocation with

x′′′ ai gj =

{
0 if i = j
1 otherwise.

(1.13)

This notation we just introducd is clearly influenced by category theory
and functional programming languages, in particular by Haskell. This becomes
especially evident in the use of currying as well as in the use of juxtaposition for
function application. However, the framework and subsequent discussion can be
understood without mathematical or computing science notions more advanced
than those introduced up to this point.

Although the vector-based notation is more common in mathematical eco-
nomics, we prefer such a functional2 notation as it is clearer and closer to
programming, and thus better suited for writing specifications. Stocks, for ex-
ample, are usually represented in economics as vectors in Rn≥0 where n = |G|.
Now, consider a set G′ with G′ 6= G but |G′| = |G|. In this case, the sets
G → R≥0 and G′ → R≥0 are different sets, but their vector representations

R|G|≥0 and R|G
′|

≥0 are not; that is, both sets coincide with Rn≥0 in the vector-based
notation. This loss of information does not pose a problem if the information
which is missing in the vector-based representation is clear from the context.
Specifications, however, aim exactly at making this context visible, not at hid-
ing information. Moreover, the functional notation paves the way for explicitly
and concisely formulating “what” notions of interest are, i.e., how to determine
and compute them, e.g., through the use of currying and by denoting function
application by juxtaposition. As this is the primary goal of specifications, a
functional notation as just introduced seems more appropriate than a vector-
based one. Building on the formal framework, further approaches to the analysis
of agent-based models of exchange can be considered in which case it is probably
helpful to translate the necessary notions into the more abstract vector-based
notation. In Appendix 6.4, we provide a table of possible translations between
the functional notation and the vector-based notation for selective expressions
used in the formal framework, which the reader unfamiliar with the functional
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notation can consult if necessary.

1.4 A Functional Framework for Specifying Agent-
Based Models of Exchange

The central question addressed by agent-based models of exchange such as the
one proposed by Gintis (2006) is how prices emerge in a free market economy.
This question has fascinated economists for a long time. In fact, it was Adam
Smith (1723–1790) who in his famous work “The Wealth of Nations” (1776) was
one of the first to discuss the role of prices in a free market economy. In this work,
he argues that the pursuit of self-interest in a free market economy, where prices
adjust themselves according to the demand and supply of goods, can indirectly
promote the good of the society. It is this idea which has permeated modern
economic thought and which economists have sought to refine and formalize
ever since:

There is by now a long and fairly imposing line of economists from Adam

Smith to the present who have sought to show that a decentralized econ-

omy motivated by self-interest and guided by price signals would be com-

patible with a coherent disposition of economic resources that could be

regarded, in a well-defined sense, as superior to a large class of possible

alternative dispositions. Moreover, the price signals would operate in a

way to establish this degree of coherence. It is important to understand

how surprising this claim must be to anyone not exposed to this tradi-

tion. The immediate “common sense” answer to the question “What will

an economy motivated by individual greed and controlled by a very large

number of different agents look like?” is probably: There will be chaos.

That quite a different answer has long been claimed true and has indeed

permeated the economic thinking of a large number of people who are in

no way economists is itself sufficient grounds for investigating it seriously

. . . it is important to know not only whether it is true, but also whether

it could be true. (emphasis in original, Arrow and Hahn, 1971, p. vi-vii)

It is against this background that the motivation for and the objective of
agent-based models of exchange of the kind proposed by Gintis (2006) has to
be understood.

Therefore, before we lay out the basic structure of the framework for spec-
ifying agent-based models of exchange (Section 1.4.2), we firstly examine the
problem of price formation and how it has been dealt with in economics (Sec-
tion 1.4.1). Lastly, in Section 1.4.3 we discuss the advantages of the framework,
with a focus on discussing how the framework can help to precisely formulate
the research question of the model of interest and support its analysis.

1.4.1 The Problem of Price Formation

It was Léon Walras (1834–1910) who first put Smith’s idea that the pursuit
of self-interest by individuals in a free market economy can lead to socially

2“Functional” here refers to “functions” and not to “functionals” in the sense used in
functional analysis.
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desirable outcomes in a mathematical setting. Only decades later, beginning
in the 1930s, Abraham Wald, Kenneth J. Arrow, Gérard Debreu and Frank H.
Hahn further developed Walras’ analytical approach into the touchstone model
of modern economics, the so-called general (or, Walrasian) equilibrium model.

As their name suggests, the general equilibrium is the central notion in gen-
eral equilibrium models. If an economic system is in general equilibrium, so the
idea behind it, demand and supply of its economic agents are compatible with
each other. The Walrasian model relies on the introduction of prices in order
to decentralize such an allocation problem.

In the following, we will only consider pure exchange economies, that is,
economies in which the only economic agents are consumers. This is the most
basic setting for general equilibrium models and it is sufficient for our purposes;
that is, pure exchange economies are sufficient to formally express the notion
of general equilibrium, to discuss the criticism general equilibrium models have
received in the last decades, and to put the agent-based modeling approach in
this context.

Definition of General Equilibrium

Now, in a pure exchange economy, we say that an allocation x : A → Q and
prices p ∈ P are in general equilibrium with an initial allocation x0 : A → Q
and a utility profile u : A→ U if

• (optimality conditions) each agent a ∈ A maximizes utility by choosing
the stocks x a under the prices p, that is, if

∀ a ∈ A : x a ∈ argmax
z·p ≤ (x0 a)·p

u a z, (1.14)

where z · p denotes the scalar product between z and p,

z · p =
∑
g∈G

(z g) ∗ (p g), (1.15)

and argmaxz·p ≤ (x0 a)·p u a z denotes the set of stocks y ∈ Q that maxi-
mize utility under the budget constraint, which means

y · p ≤ (x0 a) · p (1.16a)

∧
u a z ≤ u a y ∀ z ∈ Q, z · p ≤ (x0 · p); (1.16b)

and if

• (feasibility conditions) x is a feasible re-allocation of x0, or, put differently,
if total demand equals total supply:

∀ g ∈ G :
∑
a∈A

x a g =
∑
a∈A

x0 a g. (1.17)

The notion of general equilibrium in a pure exchange economy is thus expressed
as a relation E between four functions and we write in short (x, p)E(x0, u). The
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tuple (x, p) is called a general equilibrium of the exchange economy with initial
allocation x0 and utility profile u (see, e.g., Varian, 1992).

Put differently, the |A| equations in (1.14) express an assumption on agent
behavior: agents act to maximize their utility, which derives from the consump-
tion of goods that are offered on markets at a given price and that the individual
can buy according to her budget constraint. This behavior is called rational.

We say that z · p is the value of the stock z according to the prices p. Note
that the prices p appear in (1.14) only in the budget constraint and as linear
factors on both sides of the inequality. It follows that equilibrium prices, if they
exist, can only be unique up to a multiplicative factor:

(x, p)E(x0, u) ∧ λ ∈ R>0 ⇒ (x, λ ∗ p)E(x0, u). (1.18)

In other words, what matters in the notion of general equilibrium are not the
prices of the single goods, but instead the ratios between such prices. It is
therefore common to consider normalized prices. These are obtained by dividing
all prices by the price of a reference good, in economics called the numéraire.

Against the background of this assumption on agent behavior, the |G| equa-
tions in (1.17) express the basic idea of the notion of general equilibrium, that
supply, that is the goods provided in the initial allocation, equals demand, that
is the goods in the allocation which maximizes agents’ utility under the budget
constraints as determined by the initial allocation and the given prices. These
feasibility conditions might also be termed as law of conservation of goods.

Example 1.3. Let A = {a1, a2, a3}, G = {g1, g2, g3} and let the utility profile u
be defined as in Example 1.1, i.e.,

u a y = min
g∈G

(y g)/(w g), (1.19)

where w : G → R≥0. In Appendix A of Botta et al. (2011) it is proven that
if the total quantity of each good in x0 is positive and w is a multiple of these
total quantities, i.e.,

w = λ ∗
∑
a∈A

x0 a for some λ ∈ R>0, (1.20)

any price p ∈ P and allocation x : A→ Q with

x a =
(x0 a) · p
w · p

∗ w (1.21)

are in equilibrium with (x0, u). Thus, with the specific x0 and function w given
in Example 1.1, and prices p defined by

p gj = 1/(w gj), (1.22)

we have that (x, p) is in equilibrium with (x0, u), where x is the allocation with
x ai gj = 2/3 for every i, j = 1, 2, 3. The value (x a) · p of the stocks x a in the
equilibrium allocation x under the prices p is 3 for each a ∈ A

The theory of general equilibrium reformulates the conditions of general equi-
librium into a fixed-point problem in order to provide sufficient conditions for its
existence as well as to derive computational methods for finding an equilibrium.
We refer the reader to Kehoe (1991) for an overview of these computational
methods for finding equilibria.
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Criticism

The general equilibrium model has been criticized on several grounds. The main
arguments concern

• the behavioral assumptions: Beginning with Simon (1957), the plausibility
of the rationality assumption on agent behavior has been questioned again
and again. Arguments include, for example, that agents only have incom-
plete information about the utility of goods, and that humans only have
limited computing capabilities. Therefore, they may act purposefully but
not necessarily optimally in case of difficult optimization problems (Gal-
legati and Richiardi, 2009; Kirman, 2008).

Moreover, the careful reader will have noticed that the definition of gen-
eral equilibrium does not involve explicit agent interactions. In fact, the
pure exchange economy considered in this definition is rather character-
ized by the absence of other economic agents and processes, such as firms
and production processes, than by what exchange is and how it takes
place. Consumers take decisions only on the basis of prices that are ex-
ternally given; that is, the model does not explain where prices actually
come from and how they become established. Within the theory of gen-
eral equilibrium, a fictional character, the so-called Walrasian auctioneer,
is assumed to set prices and adjust them according to the demand and
supply of the agents towards their equilibrium prices. However, besides
lacking any real counterpart, the dynamical system implied by this Wal-
rasian tatônnement3 mechanism has been shown to be stable only under
restricted and implausible conditions (Bala and Majumdar, 1992; Fisher,
1983; Saari, 1985). Moreover, the absence of explicit agent interactions
has also been claimed as the reason for the non-uniqueness of the general
equilibrium (see the next point).

• The (non-)uniqueness of the general equilibrium: While existence of a gen-
eral equilibrium is granted under fairly general conditions (the first proof
for an economy with production given in Arrow and Debreu, 1954), unique-
ness requires very restricting conditions on agent behavior (Debreu, 1974;
Mantel, 1976; Sonnenschein, 1972). Put differently, the usual assumptions
on utility functions (e.g., continuity, monotonicity, strict quasi-concavity)
are not sufficient to guarantee the uniqueness of the general equilibrium
and in this sense do not determine the macroscopic behavior of the econ-
omy. A prominent example of a utility profile which supports multiple
equilibria is the one proposed by Scarf (1960), see Example 1.3.

This has far-reaching consequences, especially for macroeconomic model-
ing: uniqueness of the equilibrium is a necessary premise for the applica-
tion of macroeconomic methods. The restricting conditions under which
uniqueness is guaranteed have led to the critical and artifical construction
of the representative agent, a construction that is formally unjustifiable
(Kirman, 1992) but is ubiquitously used in mainstream macroeconomics
because of its analytical simplicity (Stern, 2006) and the lack of alterna-
tives (Edenhofer, 2010).

3French for “groping”.
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It is in response to this criticism that the agent-based models of exchange
have to be understood. More specifically, the aim is to lay out plausible rules
of trading interactions that might

1. explain how equilibrium prices become established, and

2. ensure that equilibrium allocations are reached under these equilibrium
prices.

This research objective itself is not quite new; the agent-based modeling ap-
proach, however, is. In fact, there are game-theoretic approaches to general
equilibrium dating already from the 1980s and early 1990s (e.g., Gale, 1986a,b,
2000; Osborne and Rubinstein, 1990; Rubinstein and Wolinsky, 1985). This
comes as no surprise as game theory is the economic theory of interactions (Os-
borne and Rubinstein, 1994). Gintis himself sees agent-based modeling in this
game-theoretic tradition when he states: “An agent-based model is a computer
simulation of the repeated play of a game” (Gintis, 2006, p. 1). Game-theoretic
approaches, however, often focus on computing for a given game the Nash equi-
libria or some refinement thereof and on showing that these equilibria corre-
spond to the Walrasian ones. This focus has the limitation that games have to
stay quite simple in order to be analyzable. Moreover, no dynamic mechanism
explaining price formation has yet been proposed. The aim of agent-based mod-
eling, in contrast, is not to determine any Nash equilibrium or the like, but to
simulate the outcome of interactions and numerically investigate whether the
proposed interactions might lead to a general equilibrium. This approach has
the advantage that interactions need not be restricted to be analytically sim-
ple. This deserves mentioning at this point as, firstly, the model proposed by
Gintis (2006) can be better understood in this context. Secondly, it points to
a relationship between agent-based modeling and economic theory, which can
be exploited as a starting point for the development of a theoretical basis of
agent-based modeling (e.g., Izquierdo, 2008; Littman, 1994).

1.4.2 Basic Structure of the Framework

In this section, we introduce the functional framework for specifying agent-based
models of exchange (Botta et al., 2013, 2011). As the framework itself is quite
comprehensive with lots of details and its application to the specific agent-based
model of exchange proposed by Gintis (2006) adds even more to these details,
only a basic structure is going to be presented. The aim is to see the forest
for the trees. The focus that guided the selection of notions to be included in
this basic structure has been to show how the research problem described in 1.
and 2. above can be formulated precisely on the basis of the framework. In
addition, for the reasons given in the last paragraph, that is, to expound on the
relationship between game theory and agent-based modeling in the way used by
Gintis (2006), the presentation given here differs from the one given by Botta
et al. (2011) and Botta et al. (2013). In particular, we show how the agent-based
models of exchange can be understood as evolutionary games in the sense used
in Part II of the thesis. That way, we establish a link between the two parts of
this thesis. It is for this reason that the terminology differs from the one used in
Botta et al. (2013, 2011) as it uses more terms from game theory. It should not,
however, pose any difficulties to relate the basic structure of the framework as
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presented here to the functional framework in Botta et al. (2011) as well as to
its application in Botta et al. (2013) to the model presented by Gintis (2006),
and to fill in any details of personal interest. Moreover, we refer in the footnotes
to specific probability and game theoretic definitions provided in Part II.

Overview and Preliminaries

The agent-based models of exchange considered here are based on the one pro-
posed by Gintis (2006). They consist of:

1. a time-discrete model for the evolution of prices, which models in general
a learning process and depends at each iteration on the outcome of

2. a trading game, in which the agent-specific prices determine the trading
strategies of the agents. The outcome of the trading game under these
strategies determines the fitness4 of the prices, on which in turn the prices
of the next time step depend.

In what follows, we formulate what this precisely means. In particular, we
will see that in terms of evolutionary games (Chapter 3), the learning process in
the model of evolution of prices is a kind of revision protocol5 and the trading
game can be understood as a population game6. We will often exemplify the
given specifications on the agent-based model of exchange presented by Gintis
(2006), which we will also refer to as the Gintis model7.

Model of Price Formation

In agent-based models of exchange, the evolution of prices is time-dependent
and usually non-deterministic. In general, time-dependent, non-deterministic
states of a system of interest, such as prices, can be understood as a stochastic
process8. More specifically, the evolution of states can be represented by a
discrete-time Markov process (Xt)t∈N with sample space Θ and state space Z.
It is defined in terms of an initial state z0 ∈ Z and a transition kernel

tr : Z → B(Z)→ [0, 1], (1.23)

where B(Z) denotes a sigma-algebra of Z, which means that 1) tr z : B(Z) →
[0, 1] is a probability measure for every z ∈ Z, and 2) for every A ∈ B(Z) the

4Fitness and utility are related notions. While fitness is mostly used in computing or
biology-related disciplines, utility is more common in economics. We use the term fitness here
to differentiate between the notion of utility as used in the trading game.

5Def. 3.4.
6Def. 3.3.
7The careful reader will notice at some points in the following presentation that the model

as presented in the paper (Gintis, 2006) differs from the implementation as provided by the
author. This raises, of course, the question of what do we actually refer to by “the” Gintis
model – the implementation or its natural language description given in Gintis (2006). How-
ever, as the formal framework captures both and the differences are small details, it should
not pose a problem to refer to both, the implementation and the description, as “the” Gintis
model. If necessary, we explicitly state which of the two we consider.

8Def. 2.1.
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map

Z → [0, 1] (1.24a)

z 7→ tr z A (1.24b)

is measurable9. The value of tr z A can be interpreted as the probability of
being in subset A of state space after one time step given the current state
is z. We can think of such a stochastic process as a random variable of type
Θ→ N→ Z. This way, we write (with obvious abuse of notation)

z : Θ→ N→ Z (1.26)

to denote that z is a time-dependent, non-determistic state, defined by

z θ t = Xt θ (1.27)

for each t ∈ N. Accordingly, z θ for θ ∈ Θ refers to the trajectory of z given θ
and z θ t is the state of the system at time t ∈ N under θ.

In general, it is not possible to generate a complete realization of the infinite
trajectory z θ by simulations. What can only be done, instead, is to sample
sequences of finite length, that is, a random variable zJ with

zJ : Θ→ J → Z (1.28a)

zJ θ j = z θ j, ∀ j ∈ J, (1.28b)

where J ⊂ N is a finite subset of N. Realizations of this random variable are
generated iteratively on the basis of tr. This reflects the simulation-based ap-
proach of agent-based modeling, where trajectories of finite length are sampled
and subsequently analysed.

Now, this general case is introduced since the notion of price will vary from
model to model. The agent-based model by Gintis (2006), for instance, considers
agent-specific private prices. The idea behind agent-specific private prices is
that instead of being “price-takers” as in the Walrasian model, agents are “price-
setters”. Each agent has, through repeated trading encounters, a mental picture
of the current prices and engages in trades accordingly. As a result, prices might
vary from trading encounter to trading encounter. In the long run, so the hope,
“quasi-public” prices evolve in the sense that all agents use more or less the same
prices and these prices reflect the equilibrium prices of the underlying Walrasian
model (see Section 1.4.3 for a precise formulation). Note that in this respect
agent-specific private prices differ from the agent-independent public prices used

9For a definition of a measurable function and of a probability measure see Section 2.1.
Moreover, note that the notion of transition kernel is the generalization of the notion of a
transition matrix for discrete-time, discrete state space Markov processes (see Def. 2.2) to the
general state space case. We consider here the general state space case since prices are usually
thought of as elements in R. Given a transition kernel tr, a sequence of random variables
(Xt)t∈N with state space Z is called a discrete-time Markov process if for any t ∈ N and any
sequence of states x0, x1, · · · , xt the conditional distribution of Xt+1 given Xt = xt, · · · , X0 =
x0 is

P(Xt+1 ∈ A | Xt = xt, · · · , X0 = x0) = P(Xt+1 ∈ A | Xt = xt) = tr xt A. (1.25)

For a textbook on Markov processes on general state spaces, see, e.g., Meyn and Tweedie
(2009)
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in the Walrasian model of exchange. Besides agent-specific private and agent-
independent public prices, price systems that are constant on certain groups of
people or that depend on tuples of agents are yet other possibilities of how the
notion of price could be modeled.

Formally, private prices can be represented as functions A→ P and comprise
the set of states in the model of price formation used in the Gintis model. That
is, in this specific example, Z = A→ P . We write pp θ : N→ A→ P to denote
time-dependent private prices for a given random event θ ∈ Θ.

The transition function tr in agent-based modeling generally derives from
the specification of some learning process (see, e.g., Brenner, 2006), or, in terms
of evolutionary game theory, from the specification of a revision protocol. In the
Gintis model, for instance, the transition kernel tr represents an evolutionary
algorithm. Since its details are not important to the subsequent presentation
and application of the framework, we refer the reader to Botta et al. (2013)
for its complete specification. We just note here that tr generally depends not
only on the current state but also on some assessment of its fitness (see Section
3.1.3). This fitness is calculated on the basis of the outcome of a population
game in which the current state determines the strategy profile. In the case
of agent-based models of exchange, the population game is the trading game
specified further below. We discuss there that in contrast to the evolutionary
games we consider in Part II, the fitness function used in agent-based models is
in general not a deterministic function.

Bilateral exchanges and bilateral trades

The trading games considered in the following are decentralized in that they
focus only on bilateral exchanges and bilateral trades. This is motivated by the
observation that, often, trades and resulting exchanges of goods take place only
between two parties.

More specifically, we say that two allocations x, x′ : A → Q are related
through a bilateral exchange between two agents a1, a2 ∈ A, a1 6= a2, if

x′ a 6= x a⇒ a = a1 ∨ a = a2 (1.29a)

x′ a1 − x a1 = x a2 − x′ a2. (1.29b)

In this case, we write x(X a1 a2)x′. In specification (1.29b), (x′ a1 − x a1) g =
x′ a1 g−x a1 g is the amount of good g exchanged between a1 and a2. Obviously,
allocations which are related by a bilateral exchange are re-allocations of each
other; that is,

x(X a1 a2)x′ ⇒ ∀ g ∈ G :
∑
a∈A

x′ a g =
∑
a∈A

x a g. (1.30)

If, moreover, x′ is a re-allocation of x which preserves the values of the stocks
of the agents; that is,

∀ p ∈ P, a ∈ A : (x′ a) · p = (x a) · p, (1.31)

we call the re-allocation value-preserving.
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In addition, the framework considers only exchanges of exactly two goods,
which are called elementary bilateral exchanges in the functional framework.
These goods are determined by the sectors of the two interacting agents. More
specifically, sectors partition the set of agents such that all agents of a given
sector have in common a sector-specific good. Sectors are represented through
a surjective function

sct : A→ G (1.32a)

∀ g ∈ G : sct−1 g 6= ∅, (1.32b)

where sct−1 denotes the preimage, i.e., sct−1 g = {a ∈ A : sct a = g}. The
idea behind sectors is that an agent can only offer and give away a good g if he
belongs to the sector represented by g (for more on sectors, their interpretation
in terms of, e.g., networks, or with respect to time, see Botta et al., 2011, p.
4032f.).

Thus, given a sector function sct, we say that two allocations x, x′ : A→ Q
are related through an elementary bilateral exchange of two goods g1, g2 ∈ G
between two agents a1, a2 ∈ A if

x(X a1 a2)x′, and (1.33a)

(x′ − x) a1 g 6= 0⇒ g = sct a1 ∨ g = sct a2. (1.33b)

We write in short x(Xe a1 a2)x′ (leaving the sectors of the agents implicit).

Example 1.4. Let again A = {a1, a2, a3} and G = {g1, g2, g3}. Consider the
sector function sct : A→ G with sct ai = gi. Then, for example, x′(Xe ai aj)x
where x′ = f x (ai, aj) with the exchange function f defined in Example 1.2. In
contrast, the equilibrium allocation of Example 1.3 is not related by an elemen-
tary bilateral exchange with the initial allocation x0 from Example 1.1, because
in order to get from x0 to x we need elementary bilateral exchanges between
more than just two agents, i.e., we need a sequence of elementary bilateral ex-
changes.

Elementary bilateral trades in turn are characterized as bilateral interac-
tions which lead to elementary bilateral exchanges as specified by (1.33a) and
(1.33b) above. The definition of an elementary bilateral trade depends on two
policies, an agent-specific offer-and-demand policy and an agent-independent
trade-resolving policy. The term policy is used here in the sense of control
theory, where policies are functions that map states into actions or controls.

In the case of the offer-and-demand policy, the actions consist of the agent’s
offer and demand for two specific goods and are represented as an element of
R2
≥0. The state is model-dependent and agent-specific; that is, it would not

depend on, e.g., the stocks of other agents. It depends, however, on the sectors
of the agents engaged in trade; thus, the offer and demand of an agent a ∈ A
might depend not only on her own sector but also on the sector of the other
agent she is engaged in trade with. In the case of the Gintis model, the state
of an agent a ∈ A depends on model setup values and functions such as its
given initial stocks x0 a, its utility function u a ∈ U , its sector sct a, as well
as on its agent-specific current prices pp θ t a, the sector represented by g ∈ G
of the agent it is engaged in trade with, and on its current stock x a. Leaving
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model setup functions implicit in the notation, the offer-and-demand policy of
the Gintis model is a function of type A→ P → G→ Q→ R2

≥0.
In order to formulate minimal specifications for the offer-and-demand policy

of an agent, let (o, d) be an outcome of the application of agent a’s policy. Here,
o is the amount of good g = sct a the agent offers in exchange for d units of
some other good g′. It is then required that

x a g − o ≥ 0. (1.34)

In words, agent a needs to have at least o units of good g “in stock”. The idea
behind this requirement is that if the agent’s offer and demand are matched by
another agent’s demand and offer at most o units of g will be taken out from his
stock. Specification (1.34) ensures that the resulting stocks will be non-negative,
as required by the type Q = G→ R≥0 of stocks.

The states of the trade-resolving policy, in turn, consist of the offers and
demands of the two interacting agents as determined by their offer-and-demand
policies as well as in other model-specific parameters. The trade-resolving policy
is agent-independent if it does not explicitly depend on the interacting agents.
Put differently, while the trade-resolving policy certainly depends implicitly on
the interacting agents through their offers and demands, it is not the agents’
“identities” that are of interest; every pair of agents is treated as every other
pair10.

When applied to the offers and demands of two interacting agents, the re-
sulting action is an element of R2

≥0 that corresponds to the amounts of the
goods to be exchanged. More explicitly, let (o1, g1), (d1, g

′
1) and (o2, g2), (d2, g

′
2)

denote the offers and demands of two interacting agents a1, a2, where o1 refers
to the amount of good g1 offered by agent a1 to be exchanged in return of d1

units of good g′1. Similarly, o2, d2 are the amounts of g2, g
′
2 offered and asked

for by a2. In addition, let (δ1, δ2) be the amounts of goods to be exchanged as
determined by the application of the trade-resolving policy. That is, agent a1

gives δ1 units of g1 in return for δ2 units of g2 (and vice versa in case of agent
a2). Minimal requirements for the trade-resolving policy could thus read:

g1 6= g′2 ∨ g′1 6= g2 ⇒ δ1 = δ2 = 0 (1.35a)

g1 = g′2 ∧ g′1 = g2 ∧ d1 ≤ o2 ∧ d2 ≤ o1 ⇒ δ1 = d1 ∧ δ2 = d2. (1.35b)

The interpretation of this specification is that for a non-zero exchange to take
place, the goods demanded (offered) by a1 have to coincide with the goods of-
fered (demanded) by a2. If this is the case and the demands of the two agents
are matched by the corresponding offers, then the amounts of g1, g2 to be ex-
changed shall coincide with the demands of the agents. Several trade-resolving
policies are conceivable that fulfill this specification. An example is a simple “fill
and kill” rule that returns zero exchanges whenever the left-hand side of Eq.
(1.35b) evaluates to false. Note at this point that the description of the trading
mechanism in the Gintis model does not yield an unambiguous specification for
a trade-resolving policy. However, its implementation, provided by the author,
is consistent with a specification that does not fulfill Eq. (1.35b). It is a function
of type P → P → (R≥0 ×G)→ (R≥0 ×G)→ (R≥0 ×G)→ (R≥0 ×G)→ R2

≥0.

10It is possible to imagine agent-specific trade-resolving policies, e.g., to model “privileged”
agents. This, however, is not the focus of the agent-based models of exchange considered here.
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Its complete specification is given in Eqs. (21) - (24) of Botta et al. (2013).
Informally, it includes rationing constraints that ensure, for instance, that the
amount of good g1 exchanged does not exceed the demand of agent a2. As it
turns out, these rationing constraints are vital for the price dynamics reported
by Gintis (2006). We discuss this fact in more detail in Section 1.4.3.

Taken together, an elementary bilateral trade between two agents a1, a2 can
be described as a three-step process:

1. Two agents apply their offer and demand policies yielding (o1, d1) and
(o2, d2).

2. The trade-resolving policy is applied to the offer and demands of the two
agents yielding (δ1, δ2).

3. The two agents exchange the amounts of goods as determined by the
trade-resolving policy.

This means formally that an elementary bilateral trade ebt is a function of type
(A→ Q)→ A×A→ (A→ Q) with minimal specification

ebt x (a1, a2) = x′

⇒
x(Xea1a2)x′ (1.36a)

(x′ a1 − x a1) (sct a2) = δ2 (1.36b)

(x′ a2 − x a2) (sct a1) = δ1. (1.36c)

The complete specification is, of course, model-specific. The following is the
specification of ebt as used in the Gintis model, which we present as an example
of general value of how the offer-and-demand policies and the trade-resolving
policy together determine the elementary bilateral trades. More specifically,
the function ebt as used in the Gintis model fulfills in addition to Eqs. (1.36a)-
(1.36c) the following:

(δ1, δ2) = trp p1 p2 (o1, g1) (d1, g2) (o2, g2) (d2, g1) (1.37a)

(o1, d1) = odp a1 p1 g2 (x a1) (1.37b)

(o2, d2) = odp a2 p2 g1 (x a2) (1.37c)

g1 = sct a1 (1.37d)

g2 = sct a2 (1.37e)

p1 = pp θ t a1 (1.37f)

p2 = pp θ t a2, (1.37g)

where trp denotes the trade-resolving policy and pp θ t refers to the current
prices under θ ∈ Θ.

Example 1.5. As a simple example, consider again A = {a1, a2, a3} and G =
{g1, g2, g3}. Let the offer-and-demand policy odp be a function of the same type
as the one used in the Gintis model, i.e., odp : A → P → G → Q → R2

≥0, and
define it by

(o, d) = odp ai p gj q, (1.38)
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where d = 1 and o = 1 if q gj ≥ 1 and o = 0 otherwise. Moreover, let the trade-
resolving policy trp be of the same type P → P → (R≥0 ×G)→ (R≥0 ×G)→
(R≥0 ×G)→ (R≥0 ×G)→ R2

≥0 as used in the Gintis model, and define it by

(δ1, δ2) = trp p1 p2 (o1, g1) (d1, g2) (o2, g2) (d2, g1) (1.39)

with δi = 1 if both o1 ≥ 1 and o2 ≥ 1, otherwise (δ1, δ2) = (0, 0). If we now
consider the elementary bilateral trade function ebt as defined according to Eq.
(1.36a) - (1.37g), then

ebt x (ai, aj) = f x (a1, a2), (1.40)

where f is the exchange function defined in Example 1.2.

The Trading Game

The trading game in the agent-based models of exchange we consider can be
understood as a population game11 – with one difference being how utilities are
defined. More specifically, a population game12 is defined by

• a population A of agents;

• a set of strategies S available to each agent in the population, and the
corresponding set of strategy profiles S = A→ S;

• a consequence function of type S → (Ω → C) , where C denotes the set
of consequences and Ω refers to some probability space (Ω,F ,P). The
consequence function associates to each strategy profile in S a probability
distribution over consequences;

• for each agent, a preference relation � over the set Ω → C; that is, a
relation on Ω→ C which is complete, reflexive, and transitive.

Usually in game theory, it is assumed that the considered preference relations
over Ω → C fulfill the so-called von-Neumann-Morgenstern axioms (e.g., Os-
borne and Rubinstein, 1994). These ensure the existence of a utility function
on the set of consequences; that is a function u : C → R, that represents pref-
erences on C and that can be extended to a utility function ū : (Ω→ C)→ R,
called the von-Neumann-Morgenstern utility (see Kreps, 1988, 1990). ū repre-
sents preferences on Ω → C and is computed on the basis of u by taking the
expected value. That is, the von-Neumann-Morgenstern-utility ū rvC of the
random variable rvC : Ω→ C is given by

ū rvC = E u.rvC, (1.41)

11Def. 3.3.
12The definition of a population game considered here is slightly different from Def. 3.3.

It is adapted to our functional framework and is thus more explicit. For example, the set of
population states here is the set of strategy profiles A→ S, in contrast to the set of strategy
distributions in the population as in Def. 3.3. Moreover, we use the term utility (instead of
payoff) as this reflects the context of the Walrasian general equilibrium model, and we consider
explicitly random outcomes as an intermediate step between states and their utilities. All in
all, it should pose no difficulties to translate from one definition to the other.
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where u.rvC denotes the composition of rvC and u; thus, u.rvC : Ω→ R. We
show now how the trading game can be understood as such a population game
– except for the definition of utilities on random outcomes.

In the following, let, as before, A be the set of agents, x0 ∈ A → Q a fixed
initial allocation, and u : A → U a given utility profile. As we are going to
show, the set of strategies in the Gintis model corresponds to the set of prices
P . Firstly, however, we are going to take the set of strategy profiles as a black
box and specify a consequence function for a general trading game; that is, we
specify the outcome of a specific play of the trading game.

In order to do so, we need the notion of a trading schedule as well as that
of a trading round. A trading schedule determines which pairs of agents engage
in an elementary bilateral trade as well as the order in which these trades take
place. This order determines in general the outcome of a trading round; in a
trading round, the pairs given by the trading schedule engage in elementary
bilateral trades one after another in the order given by the trading schedule.
Therefore, a trading schedule ts is represented by a list of agent pairs. That is,
ts ∈ List (A×A). A minimal specification for ts is:

∀ (a, a′) ∈ A×A : elem (a, a′) ts⇒ sct a 6= sct a′. (1.42)

The outcome of a trading round with trading schedule ts on an allocation x can
now be expressed by folding ebt on ts from x,

fold ebt x ts. (1.43)

Thus, in Eq. (1.7), X = A→ Q and Y = A×A, in agreement with the type of
ebt : (A→ Q)→ A×A→ (A→ Q).

Example 1.6. Let ebt be the elementary bilateral trade function defined in Ex-
ample 1.5, let x0 be the allocation defined in Example 1.1, and let ts be the list
of agent pairs defined in Example 1.2. Then, the outcome of the trading round
with trading schedule ts on the allocation x0 is

x′′′ = fold ebt x0 ts, (1.44)

with x′′′ defined in Example 1.2.

Note that trading rounds as specified by Eq. (1.43) inherit the properties of
elementary bilateral trades. For instance,

• if x′ = fold ebt x ts, then x′ is a re-allocation of x;

• for any a ∈ A, x′ a (sct a) ≤ x a (sct a); and

• for any g ∈ G with g 6= sct a, we have x′ a g ≥ x a g.

Still leaving the set of strategies a black box, we are now in a position to
define the consequence function c : S → (Ω → C). In the agent-based models
of exchange we consider, Ω refers to a probability space (Ω,F ,P) on a set Ω
of finite trading lists, and the set of consequences corresponds to the set of
allocations; that is, C = A → Q. Of course, the particular probability space is
model-specific. See Botta et al. (2013, Section 3.4.1) for the specific case of the
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Gintis model. Given a strategy profile s ∈ S, and a trading schedule ts ∈ Ω, the
resulting allocation c s ts is given by the outcome of the corresponding trading
round with initial allocation x0 as defined in Eq. (1.43); that is,

c s ts = fold ebt x0 ts, (1.45)

where the strategy profile s is implicitly used in the function ebt.

As for the set of strategies an agent can choose from in a trading game,
consider the following question: What is agent-specific about a trading round
as specified in Eq. (1.43)? It is only the agent-specific states of the offer-and-
demand policy. Moreover, we can differentiate between the components of such
an agent-specific state in the following way: 1) there are those components that
are fixed for all times, e.g., model input values and functions such as initial
stocks of an agent, its utility function etc.; 2) there are values or functions that
stay fixed during a trading round, an example being the agent-specific prices in
the Gintis model; 3) there are values or functions that change within a trading
round, such as the current stocks of an agent. It is the second of these kinds of
components that constitute the strategies of an agent in a trading game. It is
in this sense that prices in the Gintis model can be understood, as the author
explicitly points out, as the strategies of the trading game.

Lastly, we explain how agent-based models of exchange use the utility func-
tions on stocks to derive utilities on Ω→ C, where C = A→ Q as shown above.
The underlying idea is that, in complex games, it might be costly or simply not
possible to compute the expected value for each strategy profile. In addition, it
is often argued that in real-world situations, people do not choose their strategy
with respect to an expected utility. Instead, a few sample consequences must
suffice as an indicator of the expected utility on which to base a decision.

To be more precise in the case of agent-based models of exchange, let u :
A → (Q → R) denote the given utility profile and consider its extension to a
utility profile on allocations13 uext : A→ (A→ Q)→ R defined by

uext a x = u a (x a); (1.46)

that is, the utility uext of an allocation x to an agent a is simply the original
utility u of agent a’s stock in the allocation x. Furthermore, let rvC : Ω→ A→
Q represent a random consequence in a specific play of the game. Now, agent-
based models of exchange use a random sample14of rvC in order to compute
an indicator of E (uext a).rvC. To be more precise, let rvCj for j = 1, .., n
denote the random variables of the sample of length n. Then a utility profile
ū : A→ (Ω→ A→ Q)→ (Ω→ R) is defined by

ū a rvC =
1

n

n∑
j=1

(uext a).rvCj . (1.47)

Notice that the thus defined utility profile is not deterministic anymore: for
each agent, the utility of a random consequence is again a random variable, a

13This is just one way of dealing with the fact that the utility functions we have considered so
far are defined as functions on stocks while the consequences of a trading round are allocations.

14For a definition, see p. 53.
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random utility.

The computation of ū brings us back to the model of price formation as
outlined above. In evolutionary game theory or in evolutionary algorithms, a
fitness function f is in general a deterministic function of type S → A → R
associating to each agent’s strategy in the strategy profile s ∈ S = A → S
a real number, its fitness. Put differently, f s a ∈ R denotes the fitness of
agent a’s strategy in the strategy profile s. As in the case of ū, the fitness
function in agent-based models is often non-deterministic. In fact, ū and f
are related through the consequence function: given the consequence function
c : S → Ω→ A→ Q and ū : A→ (Ω→ A→ Q)→ Ω→ R, the fitness function
f is defined by

f : S → A→ Ω→ R (1.48a)

f s a = ū a (c s). (1.48b)

It is such a fitness function that the learning process in the model of price
formation uses to calculate the prices in the next time period.

Although the decision to consider the average of a certain number of samples
of (uext a).rvC : Ω→ R instead of its expected value is, in fact, a modeling issue,
it raises the question of what difference it makes for the dynamic evolution of
the model. Of course, in the limit of large sample sizes, the average approaches
the expected value by the strong law of large numbers15. But what happens in
the case of small sample sizes? How does it effect the learning process via the
fitness function? We are not going to discuss these question further here. We
only point out that it illustrates the usefulness of the framework; by formulating
precisely what the model is supposed to do, mathematical questions are raised
that need to be investigated in order to gain a thorough understanding of the
model (see also Section 1.4.3).

1.4.3 Application

As we have emphasized from the beginning, the functional framework for agent-
based models of exchange as presented by Botta et al. (2013, 2011) does not
only provide complete specifications of an agent-based model of exchange and
thus allows its independent reimplementation, but can be applied in a number
of ways. In the last section (Section 1.4.2), for instance, we introduced and used
the basic structure of the framework so as to make the relationship (in terms
of similarities and differences) of agent-based modeling and game theory more
explicit. In this section, we apply the framework to 1) explicate how to formu-
late the research question behind agent-based models of exchange precisely, and
to 2) discuss how it enables rigorous model analysis and numerical investiga-
tions. Lastly, we refer to Botta et al. (2011, Section 4.1) for how the framework
directly supports model implementation and documentation by, e.g., using the

15The assumptions commonly made on utility functions, in particular, continuity, as well
as the fact that the resources are finite; that is,

∑
a∈A x0 a g < ∞ for all g ∈ G implies

(uext a).rvC is integrable and of finite variance and thus the strong law of large numbers
is applicable since the (uext a).rvCj ’s constitute a sample of (uext a).rvC and are thus
independent.
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specifications to formulate pre- and post-conditions for specific function inter-
faces.

Problem formulation

As we have discussed in Section 1.4.1, agent-based models of exchange have
to be understood as a response to the criticism on general equilbrium models
of exchange and price formation. There we informally described their research
objective as to “lay out plausible rules of trading interactions that

1. might explain how equilibrium prices become established, and

2. ensure equilibrium allocations are reached under these equilibrium prices.”

We are now in a position to consider this objective again, this time in a more for-
mal way. In the following, let x0 be an initial allocation and u : A→ U a utility
profile such that there exists at least one pair (xe, pe) in general equilibrium with
(x0, u) according to Eqs. (1.14) and (1.17). In addition, we require that xe is
unique for pe; that is, (x, pe) is not in general equilibrium with (x0, u) for x 6= xe.

We will focus on point 2. of the above formulated research objective first.
The question is: what does it precisely mean to find plausible trading rules that
under given equilibrium prices ensure equilibrium allocations are reached? This
question involves several aspects:

1. We have to define what “plausible trading rules” are. In terms of the
introduced framework, trading depends on the offer-and-demand policy
odp as well as on the trade-resolving policy trp. To find plausible trading
rules thus translates into finding plausible offer-and-demand as well as
trade-resolving policies. In this context, defining what plausibility of these
policies means entails two things. The first one – what does it mean for
policies to be “economically plausible”? – is a modeling issue that we
are not concerned with here. The second concerns “how to formulate”
whatever it means for a trading rule to be (economically) plausible. The
answer is, of course, to translate the economic idea of a plausible trading
policy into specifications for it. Examples of such translations were given
by the minimal specifications for odp and trp in Eqs. (1.34) and (1.35b),
respectively.

2. We have to specify what equilibrium prices pe exactly mean in the agent-
based model. As we have pointed out in Section 1.4.2, what constitutes
prices differs from model to model. The Walrasian model considers agent-
independent public prices P = G → R, while the Gintis model, for in-
stance, uses agent-specific private prices of type A → P . In this latter
case, we could say that private prices pp ∈ A → P correspond to the
equilibrium prices pe if each agent’s prices are the equilibrium prices; that
is, if pp a = pe.

Moreover, we have to specify how the thus determined prices translate
into strategies in the trading game since it is the trading game in which
allocations are changed and reached. As we have discussed in the previous
section, private prices in the Gintis model translate directly into strategy
profiles for the trading game.
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3. Given the strategy profile se that corresponds to equilibrium prices pe,
we can consider the associated consequences in terms of allocations c se :
Ω → (A → Q). Remember that Ω = (Ω,F ,P) denotes a model-specific
probability space on a set of trading schedules. For ts ∈ Ω, c se ts denotes
the end-allocation resulting from the elementary bilateral trades given by
the trading schedule ts. In this context, i.e., as c se is not a deterministic
function, we have to define what it means to “ensure equilibrium alloca-
tions are reached”. Do we ask for all trading schedules ts ∈ Ω to end in
the equilibrium allocation xe, i.e.,

c se ts = xe (1.49)

for (almost) all ts ∈ Ω? Yet another possibility is to require the distribu-
tion of the random variables c̃ se a g : Ω → R to have mean xe a g and
small variance for each a ∈ A, g ∈ G, where c̃ is the function defined from
c by switching some of the input arguments:

c̃ : S → A→ G→ Ω→ R (1.50a)

c̃ s a g ts = c s ts a g. (1.50b)

These examples should suffice to demonstrate that it is not per se clear
what it means that “equilibrium allocations are reached”. It is a notion
that needs explicit definition.

As for point 1. of the research objective formulated above – what does it
mean for “equilibrium prices to become established”? – this question relates to
the evolution of prices which we represented as a stochastic process

z : Θ→ N→ Z, (1.51)

where Z is a set of states that represents prices. Again, we have to define how
the equilibrium prices pe translate into prices of the agent-based model (see
2. above). Moreover, we have to state more precisely what “become estab-
lished” means. This probably involves some notion of convergence of stochastic
processes, for example, almost sure convergence, convergence in probability,
or convergence in distribution. In addition, since the analysis of agent-based
models depends on simulation data, it has to be made precise how to measure
convergence in the output data. In Gintis (2006), for instance, the author mea-
sures “short-term convergence” of prices in terms of three standard deviations: a
“cross-period standard deviation of mean private prices” and “inter-agent stan-
dard deviations of private producer and consumer prices”. Unfortunately, the
author did not specify how to actually compute these quantities, and the ver-
tical scale in Figure 1 of Gintis (2006) suggests that either these quantities are
not standard deviations or that the probability distribution for the initial prices
is not uniform. We mention this example to emphasize the need for formal
descriptions of agent-based models and their analysis16.

16In order to make the discussion not too complex, we provide another possible interpreta-
tion of “prices becoming established” only here on the side. This interpretation relates to the
fact that prices in the Walrasian model correspond to the exchange ratios of goods (Hilden-
brand and Kirman, 1988, p. 77). Following this understanding of prices in the Walrasian
model, we could decide to look at the exchange ratios according to which bilateral trades take
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At this point, a last remark seems to be in order. We arranged the just
given discussion of the formal interpretation of 1) and 2) above such that it cor-
responds to the intentions and specific setup of the Gintis model. It is, however,
limited in several ways. Firstly, for simplicity we restricted the above discussion
to the case that the equilibrium allocation xe is unique for pe. In the case of
more than one equilibrium alloction, it seems rather odd to ask for all trading
schedules to reach the equilibrium allocation xe. Instead, of course, we would
ask for the trading schedules to reach one of the equilibrium allocations corre-
sponding to the initial allocation x0; which equilibrium allocation is reached will
certainly depend on the specific trading schedule. Secondly, and more impor-
tantly, the interpretation of 1) and 2) above is naturally linked to the question
of which timescales we consider. As we will see in Part II of the thesis, it could
very well be that, e.g., some equilibrium prices are reached on a short time scale
in the sense that the price process stays close to these equilibrium prices on this
short time scale, while at much longer time scales the stochastic price process
switches to other equilbrium prices, again in the sense that the price process
stays close to these other equilibrium prices, see Chapter 4.

Model analysis and numerical investigation

Specifications do not only allow to formulate precisely the problem investigated
by a model, but are a necessary basis for reasoning rigorously about the model17.
In particular, specifications allow us to deduce model properties.

As an interesting example that relates to the question of whether equilibrium
allocations are reached under equilibrium prices we come back to the offer-and-
demand and trade-resolving policies used in the Gintis model, see Section 1.4.2.
Again, let x0 denote an initial allocation and u : A → U a utility profile such
that there is at least one pair (xe, pe) in general equilibrium with (x0, u). Let xe
be unique for pe. In addition, p denotes (public) prices p ∈ P . We have already
pointed out that the trade-resolving policy trp of the Gintis model does not
fulfill Eq. (1.35b). It instead satisfies additional rationing constraints, which
result in trp being value-preserving and demand-limited :

(δ1, δ2) = trp p p (o1, g1) (d1, g2) (o2, g2) (d2, g1)

⇒
δ1 ∗ (p g2) = δ2 ∗ (p g1) ∧ (δ1 ≤ d1 ∧ δ2 ≤ d2). (1.52)

Value-preserving trade-resolving policies ensure that all bilateral exchanges in a
trading round yield value-preserving re-allocations. This guarantees, for every
possible trading schedule, that if (xe, p) is in equilibrium with (x0, u) then it
is in equilibrium with all allocations that occur along a trading round under

place in the trading game, interpret these exchange ratios as the prices “on the markets”,
and ask whether these exchange ratios “correspond to equilibrium prices pe” (of course, this
phrase needs a definition, too). This is different from the approach via the stochastic price
process as just outlined since it is not obvious how these prices (i.e., those that determine the
strategies in the trading game) actually determine exchange ratios in the trading game.

17Or, more precisely, model “classes” since specifications usually do not define a single
model but a class of models.
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the given trading schedule. In addition, the offer-and-demand policy odp of the
Gintis model satisfies:

xe a g − x a g = 0⇒ odp a pe g = (0, 0), (1.53)

where x denotes the current allocation, see Botta et al. (2013, 2011). These
constraints on odp and trp are necessary for xe to be reachable from x0 through
a sequence of elementary bilateral trades. The reason for this is obvious; if the
amount of good g that an agent a receives in a trade exceeds xe a g − x a g,
then this agent is going to be left with an amount of good g in excess of its
optimal value. Now, since every agent can only offer the good of his sector,
agent a cannot give away this excess amount of good g and thus will not be able
to reach its optimal stock xe a.

This is interesting because the numerical investigations of the Gintis model
presented by Botta et al. (2013) as well as the analysis of this model presented by
Mandel and Botta‘ (2009) suggest that the rationing constraints which ensure
that trp is demand-limited (see specification (1.52)), prevent the convergence of
prices to certain special prices p̂ ∈ P defined by

p̂ g =
1

w g
, (1.54)

where it is assumed that the utility function of each agent is the Scarf utility
function defined in Example 1.3 with λ = 1/|A|. That is, for each agent a ∈ A,

u a g = min
g∈G

(y g)/(w g), (1.55)

where

w =
1

|A|
∗
∑
a∈A

x0 a. (1.56)

Such a convergence to special prices had been reported by Gintis (2006) as a
property of the model which presupposes rationing, and thus this appears to be
in opposition to the numerical investigations of the same model as presented by
Botta et al. (2013). Since this observation leads to questions about the correct-
ness of the implementation by Botta et al. (2013) and by Gintis (2006) as well
as to the question of whether the specification given by Botta et al. (2013) is
actually a good description of the Gintis model, it motivated further numerical
experiments. In particular, the model was run with a different trade-resolving
policy which did not fulfill the rationing constraints (the rest of the setup stayed
the same)18. If only this trade-resolving policy is changed, agent-specific prices
appear to converge at large times towards the reported special prices. Thus,
while our theoretical reasoning above had led to the conclusion that rationing
constraints in the trade-resolving policy are a necessary condition for equilib-
rium allocation to be reached at given equilibrium prices, they seem to prevent
the convergence of prices towards the special prices. Note, however, that all
numerical results reported by Gintis (2006) as well as by Botta et al. (2013)
have been obtained by assuming a very special utility profile and thus might

18See Eq. (34) and (35) of Botta et al. (2013) for a specification of the other trade-resolving
policy considered.
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not be representative for other utility profiles.

Lastly, besides using specifications to deduce properties of theoretical in-
terest, such as in the example just given, they are also useful for deducing
properties that model implementations have to display if they are consistent
with the specification. Such properties are a prerequisite for designing crucial
experiments in order to validate model implementations. Negative outcomes
of such crucial experiments unambiguously indicate errors in the implementa-
tion (see Section 1.2). Take, for example, again an offer-and-demand policy
which fulfills Eq. (1.53), a trade-resolving policy which is value-preserving and
demand-limited (Eq. (1.52)), constant agent-specific prices pp : A → P , i.e.,
pp a = p for some p ∈ P , as well as the existence of an allocation xe such
that (xe, p) are in equilibrium with given initial allocation x0 : A → Q and
utility profile u : A → U . From these assumptions, it follows directly from the
definition of a general equilibrium (see Eqs. (1.14) and (1.17)) that

(xe, p)E(x0, u)⇒ (xe, p)E(x, u) (1.57)

for all allocations x that result from x0 via sequences of elementary bilateral
trades and thus for all allocations x that occur in every possible trading round.
We can furthermore deduce that∑

a∈A

∑
g∈G

(xe a g − x a g) (1.58)

is non-increasing in time. Thus, if a model implementation yields at one point
in time a trading schedule an allocation x for which the sum in (1.58) is smaller
than for an allocation at some later point in that trading schedule, it cannot be
correct.

Such crucial experiments are essential for validating model implementations.
In particular, in case model implementations cannot be automatically derived
from specifications and proven to be correct, systematically excercising a model
implementation on carefully chosen sets of crucial experiments is the only and
best thing one can do. Crucial experiments, however, can only be set up on
the basis of formal model specifications. If such specifications are not available,
actually very little can be said about a model: implementations can still be
used to obtain numerical results, but the interpretation of these results becomes
problematic not least because the correctness of the implementation cannot be
assessed.

1.5 Conclusion

In this chapter, we discussed the need for specifications for agent-based mod-
els. Specifications provide an intermediate layer between implementations and
narrative descriptions of a model – an intermediate layer which is necessary
but often not provided in the context of agent-based modeling. We introduced
the basic structure of the functional framework for specifying agent-based mod-
els of exchange (Botta et al., 2013, 2011), which is based on the agent-based
model presented by Gintis (2006). The presentation in this chapter exposed
the relationship of agent-based models of exchange with general equilibrium
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theory as well as game theory. The motivation behind this focus was that 1)
agent-based models of exchange of the kind proposed by Gintis (2006) can be
better understood in this context, and that 2) it points to a relationship between
agent-based modeling and economic theory, which can potentially be used as a
starting point for the development of a theoretical basis of agent-based model-
ing. Subsequently, we applied the framework to demonstrate how the framework
helps to formulate the research question behind agent-based models of exchange
precisely. Moreover we discussed how it constitutes a starting point for rigor-
ous model analysis and numerical investigations. On the basis of the given
formal representation of the Gintis model as an evolutionary game, next steps
of analysis could include the investigation of Nash equilibria, the deterministic
approximation of the model, the analysis of stochastically stable states, or a
possible application of methods to analysis metastability and build models of
reduced complexity such as the one presented in Part II of this thesis or other
approaches to analyze the model output (e.g., Horenko, 2011).





Part II

Metastability Analysis
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Chapter 2

Mathematical Preliminaries

This chapter introduces the basic notions and notation used in subsequent chap-
ters. We start with the probabilistic framework within which everything will
be situated (Section 2.1). Next, Markov chains as stochastic processes on finite
state spaces and in discrete time will be defined and their characteristics will be
described (Section 2.2).

2.1 Probability Theory

In Chapter 3, evolutionary games in finite populations are formalized as certain
stochastic processes. This means that the state of the population changes in
time, but that we are not able to specify deterministic laws according to which
these state changes take place. Instead, we only consider how probable certain
states and state changes are. The following aims at specifying the underlying
probabilistic framework within which we can define the stochastic processes that
formalize these ideas. Note that we focus only on finite sample and state spaces
since this context suffices for our purpose.

Probability Space

A probability space consists of a triple (Ω,A,P), where

• Ω is a set;

• A is a σ-algebra on Ω; that is, A is a collection of subsets of Ω with

1. ∅,Ω ∈ A,

2. A ∈ A ⇒ Ω \A ∈ A, and

3. A1, A2, · · · ∈ A ⇒ ∪∞i=1 Ai ∈ A;

• P is a probability measure on A, i.e., P : A → [0, 1] such that

1. P(Ω) = 1, and

51
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2. P
(
∪∞i=1 Ai

)
=
∑∞
i=1 P(Ai) for every sequence A1, A2, · · · of pairwise

disjoint elements of A, i.e., for every A1, A2, · · · ∈ A with Ai∩Aj = ∅,
i 6= j.

Ω represents the set of possible “outcomes” in the random experiment or
situation we consider and is called sample space. A specifies the “events” we
are interested in, i.e., the properties which can be observed, or, in other words,
the questions that can be answered after the experiment is done (e.g., is the
outcome ω ∈ A for A ∈ A?). Note that the tuple (Ω,A) is called a measurable
space.

Now, given (Ω,A), the probability measure assigns to each such subset A of
Ω a number between 0 and 1 with the interpretation that the higher this number,
the higher the probability that the event will happen. Thus, the outcome ω ∈ A,
where P(A) = 1 means the event happens for certain and P(A) = 0 means the
event does not happen for certain. A function µ : A → [0,∞] that satisfies the
2 above but that is not necessarily normed to µ(Ω) = 1 is called a measure.
Probability measures are also called probability distributions1.

By condition 2 above, probability measures on finite sample spaces are
characterized by their values on the elementary outcomes P({ω}), ω ∈ Ω.
The σ-algebra of Ω is the power set of Ω, i.e., the set of all subsets of Ω,
and we can define the probability of any subset A of Ω by the sum of the
probabilities of its elements: P(A) =

∑
ω∈A P({ω}). The resulting function

P is a well-defined probability measure. Thus, in the case of a finite sam-
ple space, we can represent probability measures as functions p : Ω → [0, 1]
with the property that

∑
ω∈Ω p(ω) = 1. We call such a function p proba-

bility measure or probability distribution, too. We furthermore note that we
can also represent probability measures on finite sample spaces by probabil-
ity vectors, i.e., by a vector (pi : i = 1, · · · , n) ∈ ∆n−1, where n = |Ω| and
∆n−1 = {(x1, · · · , xn) ∈ Rn :

∑n
i=1 xi = 1 and xi ≥ 0 for all i} is the unit

simplex.

Random Variables

Random variables formalize the idea that we are often not interested in the
outcome of a random experiment, but in properties derived from the nature
of the outcomes. The terminology is old and somewhat unfortunate, because
random variables are neither “random” nor “variables” in the sense commonly
used in mathematics2.

A random variable on a sample space (Ω,A,P) with state space (Z,B), where

1Distribution functions, however, are a somewhat different albeit related concept.
2Probability theory textbooks sometimes provide lengthy explanations to get used to the

term. One of these, for example, reads (Jacod and Protter, 2004, p.27)

A random variable represents an unknown quantity (hence the term variable)
that varies not as a variable in an algebraic relation (such as x2 − 9 = 0), but
rather varies with the outcome of a random event. Before the random event, we
know which values X could possibly assume, but we do not know which one it
will take until the random event happens. This is analogous to algebra when we
know that x can take on a priori any real value, but we do not know which one
(or ones) it will take on until we solve the equation x2 − 9 = 0 (for example).
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B is a σ-algrebra on a set Z, is a function X : Ω→ Z for which

X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ A for every B ∈ B. (2.1)

The random variable X thus induces a probability measure PX : B → [0, 1] on
(Z,B) by

PX(B) = P(X−1(B)). (2.2)

The probability measure PX is called the distribution of or the law of X. In
order to define such a probability measure on B, we need condition (2.1) above,
i.e., we need to be able to measure the probability of every pre-image of subsets
of B. The collection of all pre-images of sets in B is called the σ-algebra generated
by X. To denote that a random variable X has distribution λ we write X ∼ λ.
Given a random variable X ∼ λ, a random sample of length n ∈ N is a set of n
independent random variables with identical distribution λ. .

The expected value of a random variable X with discrete state space Z ⊂ R
is defined by

E(X) =
∑
z∈Z

z P(X = z). (2.3)

Conditional Probability and Independence

In Section 3 we are going to represent evolutionary games as stochastic pro-
cesses with a specific dependency structure. In order to define this dependency
structure we need the notion of conditional probability.

Given a probability space (Ω,A,P) and two events A,B ∈ A with P(B) > 0,
we define the conditional probability P(A | B) of A given B by

P(A | B) =
P(A ∩B)

P(B)
. (2.4)

The underlying idea is that the information that B happened changes the prob-
ability measurement of A; if we know that B happened, the possible outcomes
that lead to A lie in A ∩ B. We divide by P(B) in order to get a probability
measure PB : A → [0, 1] by PB(A) = P(A | B) for A ∈ A.

Now, what can happen is that the information that B occurred does not
change the probability that A takes place, which is, according to our definition
of conditional probability in Eq. (2.4) above, the case if P(A | B) = P(A), which
is equivalent to P(A∩B) = P(A)P(B). The latter formulation has the advantage
of being defined even in the case of P(B) = 0 and being easily extendible to the
case of a finite number of events; we therefore define: two events A and B are
independent if P(A ∩B) = P(A)P(B). Moreover, we call two random variables
X : Ω → Z1 and Y : Ω → Z2 independent if every pair of events X−1(B1),
Y −1(B2), B1 ∈ B1, B2 ∈ B2 is independent.

Extending this definition to the case of collections of events, we say that a
collection of events (Ak)k∈K , where K is some index set, is mutually independent
or an independent collection if for every finite subset L ⊂ K

P(∩k∈LAk) = Πk∈LP(Ak). (2.5)
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A family (Ak)k∈K of sub σ-algebras of A is independent if for every finite subset
L of K

P(∩k∈LAk) = Πk∈LP(Ak) for all Ak ∈ Ak. (2.6)

Furthermore, we call a collection of random variables (Xk)k∈K : (Ω,A,P) →
(Zk,Bk) independent if the generated σ-algebras X−1

k (Bk) are independent. In
the special case of two random variables, this definition is equivalent to the one
given above.

Stochastic Processes

Let (Ω,A,P) be a probability space with Ω being the sample space, A a σ-algebra
on Ω, and P a probability measure on Ω. A random variable X : Ω→ Z, where
Z is a set endowed with a σ-algreba B, can then be interpreted as a random state
of a system. Stochastic processes add to this construction a time parameter and
thus formalize the fundamental idea of state changes in time which are affected
by chance. More formally, a stochastic process assigns to every point in time
t ∈ T a random variable Xt : Ω→ Z, where T ⊆ [0,∞):

Definition 2.1 (Stochastic process). Let (Ω,A,P) be a probability space and
(Z,B) a measurable space. A stochastic process on Ω with state space Z is a
family X = (Xt)t∈T of random variables Xt : Ω → Z, where T is an index set
with T ⊆ [0,∞).

Given a stochastic process X = (Xt)t∈T and ω ∈ Ω, we call the mapping
X(ω) : T → Z defined by X(ω)(t) = Xt(ω) the path of ω or the trajectory (or,
realization) of the stochastic process X associated with ω.

In this thesis, we concentrate on discrete-time stochastic processes on a finite
state space. That is, the index set T is discrete.

2.2 Markov Chains

In this section, we introduce discrete-time Markov chains on a finite state space.
These are stochastic processes with a specific dependency structure between the
random variables:

Definition 2.2 (Markov chain). Let (Ω,A,P) be a probability space, (Z,B)
a finite state space with B being its power set, and let X = (Xk)k∈N be a
discrete-time stochastic process. X is called a Markov chain if

P(Xk+1 = ik+1 | Xk = ik, · · · , X0 = i0) = P(Xk+1 = ik+1 | Xk = ik) (2.7)

for all ik+1, · · · , i0 ∈ Z, k ∈ N.

This means that X is a Markov chain if the conditional probability distribu-
tions of the process at time (k+1) given the complete history of the process and
the previous state only are indistinguishable. In other words: conditional on
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Xk = ik the distribution of Xk+1 is independent of X0, · · · , Xk−1. The Markov
chain is time-homogeneous if the probability

P(Xk+1 = ik+1 | Xk = ik)

does not depend on the actual time step k; that is,

P(Xk+1 = j | Xk = i) = P(Xn+1 = j | Xn = i) for all k, n ∈ N. (2.8)

In this case, we can define a stochastic matrix P = (pij)i,j∈Z ; that is, a function

P : Z × Z → [0, 1], (i, j) 7→ pij

with the following properties:

1. 0 ≤ pij ≤ 1 for all i, j ∈ Z, and

2.
∑
j∈Z pij = 1 for all i ∈ Z.

This means that each row of P represents a conditional probability distribution
on Z. The matrix P is defined by the transition probabilities of X:

pij = P(Xk+1 = j | Xk = i) (2.9)

for any k ∈ N. The thus defined matrix P is called the transition matrix of the
Markov chain.

Given an initial distribution λ, i.e., P[X0 = i] = λi for all i ∈ Z, and the
transition matrix P , the finite-dimensional distributions of the Markov chain
are completely determined:

P(X0 = i0, · · · , Xk = ik) = λi0pi0i1 · · · pik−1ik . (2.10)

Moreover, given a discrete-time stochastic process whose finite-dimensional dis-
tributions are defined as in Eq. (2.10) for all k ∈ N, the process is a Markov chain
with initial distribution λ and transition probabilities given by the stochastic
matrix P . Thus, the stochastic matrix P together with an initial distribution
λ uniquely characterize a Markov chain. The following theorem guarantees its
existence (for a proof see, e.g., Meintrup and Schäffler, 2005, p. 554):

Theorem 2.1 (Existence of Markov Chains). Let Z be a finite state space, P a
stochastic matrix and λ a probability distribution on Z. There exists a Markov
chain X = (Xk)k∈N with

P(Xk+1 = j | Xk = i) = pij , (2.11a)

P(X0 = i) = λi (2.11b)

for all i, j ∈ Z.

We write Pi to denote the probability measure A → [0, 1] defined by

Pi(A) = P(A | X0 = i). (2.12)

That is, Pi is the probability measure on (Ω,A) conditional on X0 = i. Equiv-
alently, Pλ is the probability measure conditional on X0 ∼ λ.
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Transfer of Probability Distributions

We have seen that a Markov chain is uniquely determined by the transition
matrix P and the initial distribution λ. Since we consider only finite state
spaces Z, we may write Z = {1, · · · , l} for some l ∈ N. The transition matrix
then defines a linear mapping P : Rl → Rl, which is defined by

P(x) = xTP =
( l∑
i=1

pijxi : j = 1, · · · , l
)

(2.13)

Restricted to probability distributions, i.e., x ∈ Rl with xi ≥ 0 and
∑l
i=1 xi = 1,

the result of the application of P is again a probability distribution. Note that
in Eq. (2.13), we did not differentiate between the probability distribution and
its vector representation with respect to the canonical basis {e1, · · · , el} of Rl,
which is common in the case of the canonical basis. In Chapter 5, we are going
to consider other bases as well and thus a differentiation will become necessary.

Given the initial distribution λ represented as a vector in Rl, we can use the
law of total probability to compute

(P(λ))j =

l∑
i=1

pijλi (2.14a)

=

l∑
i=1

P(X1 = j | X0 = i)P(X0 = i) (2.14b)

= Pλ(X1 = j). (2.14c)

In the same manner, using the homogeneity property of the Markov chain, we
can compute

(Pk(λ))j =
(
λTP k

)
j

(2.15a)

= Pλ(Xk = j), (2.15b)

where Pk refers to the k-fold application of P and we write P k = (p
(k)
ij )i,j∈Z

to denote the k-step transition matrix and its entries. Thus, given an initial
distribution, the linear mapping P can be used to determine the probability
distribution of states at later points in time. In this way, we can interpret the
working of the linear mapping P as a transfer of probability distributions in time.

Invariant Distributions

We can interpret P (restricted to probability distributions) as the transition
function of a discrete dynamical system. A fixed point of this system, i.e., a
probability distribution µ that satisfies

P(µ) = µ (2.16)

is called a stationary or invariant distribution of the Markov chain. Thus, from
the definition of P it follows that invariant distributions are left eigenvectors of
the transition matrix P associated with the eigenvalue 1. We know that there
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exists at least one such distribution since P1 = 1, where 1 = (1, · · · , 1) ∈ Rl
and thus there is a left eigenvector associated with the eigenvalue 1 which can
be normalized to a probability distribution.

The invariant distribution is an important notion in the study of Markov
chains. In order to characterize the long-term behavior of Markov chains with
the help of invariant distributions, we first need to introduce the following no-
tions:

1. Class structure and irreducibility :
Communicating classes can be used to break down a Markov chain into
smaller pieces in a such a way that allows us to study the dynamical
behavior of each piece separately and put together the chain again to
understand the behavior of the whole process. More specifically, we say
that a state i ∈ Z leads to state j ∈ Z (or: j is accessible from i) if

Pi(Xk = j for some k ∈ N) > 0 (2.17)

We write i → j. We furthermore say that the states i, j communicate
if i → j and j → i and write i ↔ j. The relation ↔ on Z defines an
equivalence relation whose equivalence classes partition Z. We call these
equivalence classes communicating classes. A Markov chain (Xn)n∈N is
called irreducible if Z is a single communicating class.

A communicating class C is called closed if

i ∈ C, i→ j ⇒ j ∈ C. (2.18)

2. Aperiodicity :
We say that i ∈ Z is aperiodic if the greatest common divisor of the set

{n ≥ 0 : p
(n)
ii > 0} is 1. Aperiodicity is a class property. Moreover, an

irreducible Markov chain (Xk)k∈N can be shown to be aperiodic if for some
i ∈ Z we have P(X1 = i | X0 = i) > 0.

We are now in a position to characterize the long-term behavior of Markov
chains on a finite state space by the following theorem (e.g., Norris, 1998):

Theorem 2.2 (Unique invariant distribution; ergodic theorem; convergence
to the invariant distribution). Let (Xk)k∈N be an irreducible Markov chain on
a finite state space Z with initial distribution λ. Then there exists a unique
invariant distribution µ and, moreover, we have

P
(vi(k)

k
→ µi as k →∞

)
= 1 (2.19)

where vi(k) =
∑k−1
n=0 1Xk=i denotes the number of visits to i before k. If the

Markov chain is in addition aperiodic, we have

Pλ(Xk = j)→ µj as k →∞. (2.20)

Thus, in particular,

p
(k)
ij → µj as k →∞. (2.21)
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The interpretation of Eq. (2.19) is that if the Markov chain is irreducible,
the empirical frequency with which states i ∈ Z are visited during the first n
periods (the probability of being in state i up through time n) converges to the
unique invariant distribution µ with probability 1, independent of the initial
conditions. If the process is also aperiodic, Eq. (2.19) together with Eq. (2.20)
means that for k ∈ N sufficiently large, the probability of being in a certain
state i ∈ Z at time k ∈ N is essentially the same as the probability of being in
state i through time k since both converge to the unique invariant distribution
independently of the initial state.

Example 2.1 (Stationary Distribution for Birth-and-Death Chains). In Section
3.1, we show that, in a special case, stochastic evolutionary games can be rep-
resented as birth-and-death chains on a finite state space Z = {0, · · · , l}. These
are discrete-time Markov chains (Xk)k∈N on Z with a transition matrix P of
the following form:

P =


1− α0 α0 0 · · ·
β1 1− (β1 + α1) α1 0 · · ·
0 β2 1− (β2 + α2) α2 0 · · ·

...
0 · · · 0 βl 1− βl

 , (2.22)

that is,

pi(i+1) = P
(
Xn+1 = i+ 1 | Xn = i

)
= αi for i = 0, · · · , l − 1, (2.23a)

pj(j−1) = P
(
Xn+1 = j − 1 | Xn = j

)
= βj for j = 1, · · · , l, (2.23b)

pij = P
(
Xn+1 = j | Xn = i

)
= 0 if j /∈ {i− 1, i, i+ 1}, (2.23c)

where we assume 0 < αi, βj < 1 for each i = 0, · · · , l − 1, j = 1, · · · , l, and
αm + βm < 1 for m = 1, · · · , l − 1. The parameters αi and βj are called birth
and death parameters.

The thus defined birth-and-death chain is clearly aperiodic and irreducible.
The previous theorem thus implies the existence of a unique stationary distri-
bution that we can compute by solving Equation (2.16):

µTP = µT (2.24)

which is entrywise

µ(i)(1− pii) =
∑

j∈Z,j 6=i

µ(j)pji. (2.25)

A solution can be determined recursively and is given by

µ(i) = µ(0)
α0 · · ·αi−1

β1 · · ·βi
for i = 1, · · · , l. (2.26)

The value of µ(0) is determined by the requirement that∑
i∈Z

µ(i) = 1 (2.27)

which leads to

µ(0)
(

1 +

l∑
i=1

α0 · · ·αi−1

β1 · · ·βi

)
= 1. (2.28)
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Invariant Distributions and Spectral Properties of the Transition Ma-
trix

We have noted above that we can represent a stationary distribution of a Markov
chain as a left eigenvector of the transition matrix P with respect to the eigen-
value 1. The Perron-Frobenius theorem for non-negative matrices tells us even
more about the eigenstructure of transition matrices (see, e.g., Berman and
Plemmons, 1979; Seneta, 1981):

Theorem 2.3 (Perron-Frobenius theorem). Let (Xk)k∈N be an irreducible and
aperiodic Markov chain on a finite state space Z and let P denote its transition
matrix. Then

1. λ = 1 is a simple eigenvalue of P . The associated right eigenvector is
1 = (1, · · · , 1)T , i.e., P1 = 1. The associated left eigenvector µ, i.e.,
µTP = µT can be chosen to be positive.

2. Any other eigenvalue λ′ of P is strictly smaller (in modulus) than λ, i.e.,
|λ′| < 1 for every λ′ ∈ σ(P ) with λ′ 6= λ and where σ(P ) denotes the
spectrum of P , i.e., the set of all eigenvalues of P .

3. If λ1, λ2, · · · , λr with r ≤ l are the eigenvalues of P which are ordered
such that

1 = λ1 > |λ2| ≥ |λ3| ≥ |λr| (2.29)

and such that if |λ2| = |λj | for any 2 < j ≤ r the algebraic multiplicity of
λ2 is greater or equal to the algebraic multiplicity of λj, then

Pn = 1µT +O(nm−1|λ2|n) (2.30)

where m denotes the algebraic multiplicity of λ2.

The interpretation of the first statement above tells us that if the Markov
chain is irreducible and aperiodic, then there is a unique stationary distribution
with positive probability weight on every state. The associated eigenvalue is 1
and all other eigenvalues of the transition matrix are strictly smaller in absolute
value (second statement). The third statement tells us that the rate of conver-
gence to the unique stationary distribution µ is geometric and dictated by the
second largest eigenvalue.

Reversible Markov Chains

We can say even more for the class of Markov chains for which

µ(i)pij = µ(j)pji (2.31)

where µ denotes a strictly positive distribution on the state space Z of the
Markov chain (Xk)k∈N with transition matrix P . In this case, the Markov
chain is called reversible and P and µ are said to be in detailed balance. Eq.
(2.31) implies that µ is a stationary distribution of (Xk). It is unique if (Xk) is
irreducible.
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Example 2.2 (Reversibility of Birth-and-Death Chains). Consider again a birth-
and-death chain as introduced in Example 2.1. Instead of solving the global
balance equation in order to determine the unique stationary distribution µ of
the chain, we now use the detailed balance equation (2.31). Since pij = 0 for
j /∈ {i− 1, i, i+ 1}, we only need to solve for

µ(i)pi(i+1) = µ(i+ 1)p(i+1)i for i = 0, · · · , n− 1. (2.32)

Via recursion, we get again

µ(i) = µ(0)
α0 · · ·αi−1

β1 · · ·βi
for i = 1, · · · , l (2.33)

and µ(0) determined again by the requirement that the entries of µ sum up to
one, in order for µ to be a probability distribution, i.e.,

µ(0)
(

1 +

l∑
i=1

α0 · · ·αi−1

β1 · · ·βi

)
= 1. (2.34)

This implies that birth-and-death chains are reversible.

An important characteristic of an irreducible Markov chain (Xk)k∈N with
transition matrix P is that reversibility of (Xk) with respect to the distribution
µ is equivalent to the transfer operator P being self-adjoint in l2( 1

µ ); that is,

〈P(w1), w2〉 1
µ

= 〈w1,P(w2)〉 1
µ
, (2.35)

where l2( 1
µ ) denotes the vector space Rl equipped with the 1

µ -weighted scalar

product 〈 , 〉 1
µ

:

〈w1, w2〉 1
µ

=

l∑
i=1

w1(i)w2(i)
1

µ(i)
. (2.36)

See, e.g., Brémaud (1999, Ch. 6.2) for details. In the following, we will consider
the associated norms

‖w‖2 = 〈w,w〉 1
µ
, and ‖w‖1 =

∑
z∈Z
|w(z)| 1

µ(z)
. (2.37)

From P being self-adjoint in l2( 1
µ ) follows that P has only real eigenvalues and

the associated eigenvectors can be chosen to form an orthonormal basis of l2( 1
µ ).

Using the last observation, we can derive a spectral decomposition of P and
demonstrate the relationship between the eigenstructure of P and the speed
of convergence to the unique invariant distribution in a straightforward way.
To do so, let (Xk)k∈N denote a reversible Markov chain on a finite state space
Z with transition matrix P and let µ denote its unique invariant distribution.
Furthermore, let the distinct real eigenvalues be denoted by 1 = λ1 > |λ2| ≥
· · · ≥ |λl|, where l = |Z|, and let µ = u1, u2, · · · , ul and 1 = v1, · · · , vl be the
associated l linear independent, orthonormal left and right eigenvectors of P ,
respectively. It thus holds that 〈ui, uj〉 1

µ
= 0 for i 6= j and 〈ui, ui〉 1

µ
= 1 for all
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i = 1, · · · , l, similarly for the right eigenvectors v1, · · · , vj . The matrix P can
thus be rewritten as

P = V ΛUT (2.38a)

=

l∑
i=1

λiviu
T
i , (2.38b)

where V = (1, v2, · · · , vl) is the matrix consisting of the right eigenvectors
and U = (µ, u2, · · · , ul) is the matrix consisting of the left eigenvectors. Since
UTV = Id, we get the following spectral decomposition

P k =

l∑
i=1

λki viu
T
i . (2.39)

Now, let v be an initial probability distribution on Z represented as a vector
v ∈ Rl≥0 with

∑l
j=1 vj = 1. Since µ, u2, · · · , ul are a basis of Rl, we may write

v as a linear combination of these vectors:

v = c1µ+ c2u2 + · · ·+ clul. (2.40)

Let v(k) denote the probability distribution of Xk, i.e., v
(k)
j = Pv(Xk = j).

Then,

v(k)T = vTP k (2.41a)

= (c1µ
T + c2u

T
2 + · · ·+ clu

T
l )P k (2.41b)

= { since 〈ui, vj〉 1
µ

= 0 if i 6= j } (2.41c)

c1µ
T + c2λ

k
2u

T
2 + · · ·+ clλ

k
l u

T
l , (2.41d)

and thus,

‖v(k) − c1µ‖1 ≤ ‖v(k) − c1µ‖ (2.42a)

≤ |c2| |λ2|k ‖u2‖+ · · ·+ |cl| |λl|k ‖ul‖ (2.42b)

→ 0 for k →∞. (2.42c)

It follows that c1 = 1 since both v(k) and µ are probability distributions. The
convergence results from the fact that |λi| < 1 for i = 2, · · · , l.

This illustrates how the eigenvalues of the transition matrix P relate to its
relaxation timescales, i.e., to the timescales on which initial probability distribu-
tions “relax” to the stationary distribution (see, e.g., Levin et al., 2008). These
are defined as Tj = 1/| log |λj ||. More specifically, the relaxation timescale lin-
early approximates the time to decay of the influence of the j-th eigenvector on
the evolution of v(k) in the following sense: let νj = − log |λj |, i.e., |λj | = e−νj .
We can interpolate the sequence |λj |, |λj |2, · · · by e−tνj with t ∈ [0,∞), and
interprete νj as the decay rate associated with the eigenvector uj . Its mean life-
time is given by τj = 1/νj . τj can be interpreted as the amount of time needed
for the influence of uj as measured by ‖uj‖ to be reduced by a factor of 1/e.
In terms of the discrete time sequence |λj |, |λj |2, · · · this implies a timescale of
Tj = 1/| log |λj ||.



62 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Put differently, we have

‖v(k) − µ‖2 = ‖c2λk2u2 + · · ·+ clλ
k
l ul‖2 (2.43a)

=
∑
z∈Z

1

µ(z)

( l∑
j=2

cjλ
k
juj(z)

)2

(2.43b)

≤ {1 > |λ2| ≥ |λj | for each j = 3, · · · , l} (2.43c)

|λ2|2k
∑
z∈Z

1

µ(z)

l∑
j=2

(
cjuj(z)

)2
(2.43d)

= |λ2|2k‖v − µ‖2, (2.43e)

which implies

‖v(k) − µ‖ ≤ |λ2|k‖v − µ‖. (2.44)

Thus, because

|λ2|k = ek log |λ2|, (2.45)

we get for k ≥ 1
| log |λ2|| ≈

1
1−|λ2| that the distance between the initial distribution

v and the stationary distribution µ has reduced by more than 1
e . Moreover, for

a probability distribution v defined by

v =
1

m2
u2 + µ, (2.46)

where

m2 = −min
i∈Z

u2(i)

µ(i)
> 0, (2.47)

we get equality in (2.44), which shows that the upper bound in this equation
is sharp. v is a probability distribution because m2 has been chosen such that
v(i) ≥ 0, and because uT2 1 = 0, which implies

∑
i∈Z v(i) = 1. As λ2 is the sec-

ond largest eigenvalue in absolute value, there are no processes that are slower
to converge to the stationary distribution than the v defined in Eq. (2.46). If
we start the Markov chain with initial distribution v, there are a few trajec-
tories starting near the minimum of u2 weighted with µ and many trajectories
near the maximum of u2 weigthed with µ. As time advances, this imbalance
gets equilibrated3. The larger |λ2| < 1, the slower this process. Similar con-
siderations for the other eigenvalues show that the relaxation timescales can be
interpreted as convergence rates. In this way, we can speak of slow and fast
processes associated with large and small eigenvalues (in absolute value) and
relaxation timescales, respectively. Thus, T1 = ∞ is the trivial timescale on
which the process relaxes to its invariant measure, T2 is the slowest non-trivial

3Why the term “equilibrated” fits well here might be easier to see in terms of probability
densities with respect to µ. We say that ν is a probability distribution with respect to µ
if ν(i) ≥ 0 for all i ∈ Z and

∑
i∈Z ν(i)µ(i) = 1. Then, v = ( 1

m2
u2/µ + 1)µ and thus

its probability density with respect to µ, which is 1
m2

u2/µ + 1, gets equilibrated to the

probability density 1 with respect to µ, i.e., to the densitiy which is uniform on all states.
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timescale, etc. If some eigenvalues are particularly close to 1, the correspond-
ing timescales are very large and significantly longer than the other timescales.
These eigenvalues are called dominant.

Thus, the observation that dominant eigenvalues and the corresponding
eigenvectors relate to the long-time behavior of the Markov chain suggests a re-
lationship between the spectral properties of the transition matrix of a Markov
chain and metastability in the sense that metastability corresponds to the pres-
ence of dominant eigenvalues. The characterization of metastability in terms of
spectral properties of the transition matrix of a Markov chain has been initiated
by Davies (1982a,b, 1983) and has been pursued more recently by, e.g., Bovier
et al. (2001, 2002); Gaveau and Schulman (1998); Huisinga and Schmidt (2006);
Schütte and Huisinga (2003), see Chapter 4 for a detailed discussion and further
references. In Chapter 5, we study the Markov state modelling approach to con-
struct models of reduced complexity. The indicated relationship between the
spectral properties of the transition matrix of the Markov chain and metasta-
bility implies that we would like a small approximation error in the dominant
eigenvalues in order to capture the essential dynamics of the original Markov
chain in terms of metastability. We remark at this point, however, that although
eigenvalues near −1 are related to the long-time behavior of the Markov chain,
they correspond rather to quasi-periodic behavior than to metastable dynamic
behavior. In other words, for a Markov chain with metastable dynamic behavior
we expect positive eigenvalues near 1.

Lastly, we note that the given relationship between the largest eigenvalues
in absolute value and the rate of convergence to stationarity depends on the
special l2 context we chose. There are, of course, other notions that measure
distances between probability distributions such as the total variance distance.
It is therefore not hard to imagine that there are different related notions of mix-
ing times, i.e., measurements of the time it takes to be “close” to the stationary
distribution (see, e.g., Levin et al., 2008), some of which might be in some cases
considerably smaller than the above given relaxation times (e.g., Diaconis and
Saloff-Coste, 1996).

Hitting Times

Hitting times are fundamental notions to the study of metastability (see Chapter
4).

In the following, let (Xk)k∈N be an irreducible time-discrete Markov chain on
a finite state space Z with transition matrix P . Let µ be the unique stationary
distribution.

Definition 2.3 ((First) hitting time). Let A ⊂ Z. The (first) hitting time (or,
first passage time) τA of the Markov chain into the set A measures the first
non-zero time that the Markov chain enters the set A:

τA = inf{k > 0 : Xk ∈ A}. (2.48)

We are particularly interested in the mean (first) hitting time ExτA of the
Markov chain with initial state x ∈ Z to reach a set A ⊆ Z. The mean hitting
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times of the Markov chain can be computed in the following way. Let wA : Z →
R≥0 be defined by

wA(x) =

{
ExτA if x /∈ A
0 if x ∈ A. (2.49)

We can compute wA as the unique solution of the inhomogeneous Dirichlet
problem (Norris, 1998):

(P − Id)wA(x) = −1, x ∈ Z \A (2.50a)

wA(x) = 0, x ∈ A, (2.50b)

where Id is the identity matrix on Z. Then

ExτA =

{
wA(x) if x /∈ A
PwA(x) + 1 if x ∈ A. (2.51)

Finally, we define the notion of recurrence based on hitting times:

Definition 2.4. A state x ∈ Z is recurrent if Px(τx <∞) = 1. Otherwise, it is
called transient.

Put differently, a state x ∈ Z is recurrent if the chain hits x in finite time
with probability one conditional on having started in x. Note that recurrence
is a class property. Moreover, in the finite state space case, which we consider
throughout, we have that a communication class A ⊂ Z is recurrent if and only
if it is closed.



Chapter 3

Stochastic Evolutionary
Games

In this chapter, we define stochastic evolutionary games and show that they can
be represented as discrete-time Markov chains (Section 3.1). Subsequently, we
discuss common approaches to their analysis (Section 3.2). For a comprehen-
sive introduction to game theory and evolutionary game theory, respectively, we
refer the reader to, e.g., Osborne and Rubinstein (1994) and Sandholm (2010).

3.1 Definition

Evolutionary game theory studies the dynamic process of interactive decision-
making in a population of agents. More specifically, it studies how frequencies of
strategies within a population change in time according to the decision-making
of the agents, which is “interactive” in the sense of being interdependent through
the current state of the population as well as through the strategies’ success. We
represent evolutionary games in terms of two notions. The first one is the notion
of a population game, which describes the basic structure of a game played in
a population of agents. The second, in turn, is called revision protocol and
models the decision-making of the agents given a population game. We show
that evolutionary games in finite populations lead to stochastic dynamics that
can be modeled as discrete-time Markov chains. Moreover, they can be seen
as simple, agent-based models1 in the sense used in Chapter 1. Note that in
all that follows we do not model the actual play of the game and it is in this
respect of no importance when and how often the game is played. We are only
interested in aggregate behavior changes over time.

Since evolutionary game theory builds on classical game theory and lots of
examples of evolutionary games are classical games played in a population of
players, we first introduce the classical notion of a game before that of an evo-
lutionary one.

1 Or rather, computer-based implementations that simulate the dynamic behavior of the
evolutionary game would be called agent-based model.

65
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3.1.1 Games in Strategic Form

Classical game theory differentiates between the representation of a game and
solutions for the game. A representation specifies the rules of the game – the
players, the order of moves and possible actions of the players, etc. – but does
not include any assumptions about the behavior of the agents or conclusions
from these assumptions about how agents should reasonably behave. Solutions
of a game suggest reasonable choices of the participants of the game under
certain behavioral assumptions. The fundamental solution concept is the notion
of Nash equilibrium. In risk of oversimplification, one can say that classical
game theory thus differs from evolutionary game theory in that it focuses on
how players should reasonably choose their strategies, e.g., in order to maximize
their payoff which depends on the strategies chosen by the co-players (who, in
turn, strive to maximize their payoff).

A standard representation of a game is the strategic form as given in the
following definition:

Definition 3.1 (Game in strategic form). A game G in strategic (or normal)
form consists of

• a finite set N = {1, · · · , n} of players,

• a set S = ×j∈N Sj of strategy profiles, where for each player i ∈ N the set
Si is a nonempty set of strategies available to player i,

• for each player i ∈ N a function πi : S → R, called the payoff function of
player i, which specifies for each player i ∈ N the payoff πi(s) of a strategy
profile s ∈ S.

We write in short G = (N,S, (πi)i∈N ).

As such, games in strategic form only describe the structure of game-like
situations, but not the actual play. Simple examples are board games, how to
greet (shake hands or bow), as well as paying or evading taxes, etc. Games in
strategic form cover the class of games in which the players’ moves are sequen-
tially taken such as in the games tic-tac-toe or chess2.

In the following, we often consider games with two players in which each
player can choose from two strategies. We denote these games as 2x2-games. A
typical graphical representation of a 2x2 game is a table (see Figure 3.1). The
payoff matrices A = (aij) and B = (bij) for i ∈ S1 and j ∈ S2 are defined by

aij = π1(i, j) (3.1a)

bij = π2(i, j). (3.1b)

Moreover, our focus are symmetric 2x2-games. These are games in which, ac-
cording to the notation used in Figure 3.1, π1(T, L) = π2(T, L), π1(B,R) =
π2(B,R), π1(T,R) = π2(B,L), and π1(B,L) = π2(T,R). Thus, in symmetric
2x2-games, if we identify T with L and B with R (e.g., T and L are the first
strategy available, and R and B are the second strategy available), it does not

2Actually, the formal representation that can be seen as the direct translation of the se-
quential structure of these games is called the extensive form. There is, however, a strategic
form game for every extensive form one.
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matter in which player position the players play the game. Instead of T or L,
and B or R, we write 1 and 2 for “first” and “second” strategy, respectively
(see Figure 3.2). Note that in symmetric games, we have A = BT for the payoff
matrices.

Player 1

Player 2

L R

T π1(T, L), π2(T, L) π1(T,R), π2(T,R)

B π1(B,L), π2(B,L) π1(B,R), π2(B,R)

Figure 3.1: Graphical representation of a two-player game in strategic form
in which each player has two possible strategies.

1 2

1 a, a b, c

2 c, b d, d

Figure 3.2: Graphical representation of a symmetric 2x2-game.

In the following, let S−i = ×j∈N
j 6=i

Sj denote the strategy profile of all play-

ers except player i and let (si, s−i) ∈ Si × S−i denote the strategy profile
(s1, · · · , si−1, si, si+1, · · · , sn) ∈ S. That is, (si, s−i) is the profile of strategies
s ∈ S according to which the i-th player plays strategy si and the rest of the
players play according to s−i.

The fundamental solution concept in game theory, the Nash equilibrium, has
been introduced by John Nash in his PhD dissertation (Nash, 1950). In a Nash
equilibrium, every players choice is optimal given the choices of the others.

Definition 3.2 (Nash equilibrium). A Nash equilibrium of the strategic game
(N,S, (πi)) is a strategy profile s∗ ∈ S for which

πi(s
∗) ≥ πi(si, s∗−i) for all si ∈ Si. (3.2)

It is called strict if the above inequality holds strictly.

One traditional interpretation of the Nash equilibrium solution concept –
that is, an explanation of when and why we might expect players to actually
play a Nash equilibrium – assumes that a Nash equilibrium

“results from analysis and introspection by the players in a situation
where the rules of the game, the rationality of the players, and the
players’ payoff functions are all common knowledge” (Fudenberg and
Levine, 1998, p. 1).
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According to this interpretation, a Nash equilibrium is the only “viable out-
come of careful reasoning by ideally rational players” (Binmore, 1995, p. x).

This interpretation has received similar criticism as the general equilibrium
model (see Section 1.4.1)3. In short, it has been argued that this interpretation
is

• unreasonable because of the underlying behavioral assumptions: real-
world players are often not fully rational and do not have common knowl-
edge and information about the game structure and the other players’
rationality (Simon, 1957). Moreover, they often do not have the com-
putational capabilities of calculating the optimal play (as is the case for,
e.g., chess, and other complex decision situations; Gallegati and Richiardi,
2009; Kirman, 1992); and

• uninformative because most games possess multiple equilibria: if a game
has multiple Nash equilibria, it is not possible to single out a unique play
of the game on the basis of this notion.

Example 3.1. A simple example of a game with multiple equilibria, which we will
often use in the subsequent sections and chapters, is a 2x2 pure coordination
game, see Figure 3.3 for its graphical representation. The payoffs in a pure
coordination game are such that (1, 1) and (2, 2) are strict Nash equilibria,
payoffs of the remaining strategy profiles (1, 2) and (2, 1) are 0. The question
thus is on which of the Nash equilibria do the players coordinate?

1 2

1 a, a 0, 0

2 0, 0 b, b

Figure 3.3: A pure coordination game.

An interpretation of such a pure coordination game can be phrased in terms
of currencies. Each of the strategies is a currency, e.g., strategy 1 is “gold”
and strategy 2 is “silver”. Players can only exchange goods and thus obtain a
positive payoff from the exchange if they use the same currency. If players hold
different mediums of exchange, they are not able to exchange goods and thus
the payoff from the encounter is zero.

The problem setting described in the second point above has been termed
the problem of equilibrium selection. Refinements of the Nash equilibrium no-
tion, such as payoff or risk dominance (for a definition of these notions see,
e.g., Osborne and Rubinstein, 1994), constitute one approach to the problem of
equilibrium selection – an approach that is, however, still unsatisfactory since
the behavioral assumptions are even stronger and because, as Binmore (p. ix
1995) puts it,

3This is not a coincidence but results from the fact that the general equilibrium model is
an abstract game. Arrow and Debreu (1954) introduced abstract games as a generalization
of a game and used a corresponding generalization of the Nash equilibrium notion in order to
prove the existence of a general equilibrium in economies with production.
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“different game theorists proposed so many different rationality def-
initions that the available set of refinements of Nash equilibrium
became embarassingly large. Eventually, almost any Nash equilib-
rium could be justified in terms of someone or other’s refinement”.

This discontent with traditional game theory has motivated the study of
evolutionary games, which we pursue in the following.

3.1.2 Population Games

In contrast to games in strategic form, population games put emphasis not
on each player’s strategy choices and the resulting strategy profile but on the
distribution of strategies in the population.

In the following, we consider only games played by a single, finite population.

Definition 3.3 (Population game). A population game consists of

• a population of n agents,

• a strategy set S = {1, · · · ,m} available to each agent in the population,
i.e., each player faces the same set of strategies,

• the set of population states is ∆m−1
n = ∆m−1 ∩ 1

nZ
m = {x ∈ ∆m−1 :

nx ∈ Zm}, where ∆m−1 = {x ∈ Rm≥0 :
∑
j∈S xj = 1} is the unit (m− 1)-

simplex and the j-th component of x ∈ ∆m−1
n represents the proportion

of agents choosing the strategy j in the population; thus, ∆m−1
n is the

grid in the simplex ∆m−1 with spacing 1
n , which has

(
n+m−1
m−1

)
=
(
n+m−1

n

)
states (Scheffé, 1958), and

• a payoff function F : ∆m−1
n → Rm, where Fi(x) represents the payoff to

playing strategy i when the population state is x.

Note that we restrict ourselves to payoff functions which are independent of
the population size n; this is sufficient for our purposes. See (Sandholm, 2010)
for population games with population size dependent payoff functions. The
following example draws a relationship between population games and games in
strategic form:

Example 3.2 (Complete matching in symmetric two-player strategic form games).
Let A ∈ Rm×m be the payoff matrix in a symmetric, two-player strategic form
game with a strategy set of size m. We define a payoff function F : ∆m−1

n → Rm
for a population of n agents by F (x) = Ax. These payoffs could, for instance,
be interpreted as resulting from a complete matching of the agents in the pop-
ulation to play the given game in strategic form.

As a concrete example, consider agents in a population of size n are ran-
domly matched to play the 2x2 pure coordination game with parameters a and
b from Example 3.1. For x ∈ ∆1

n, let x1 denote the proportion of agents in
the population playing strategy 1 (“gold”) and x2 = 1 − x1 the proportion of
agents playing strategy 2 (“silver”). The payoff an agent playing strategy 1 or
2 obtains is thus F1(x1, x2) = ax1 or F2(x1, x2) = bx2, respectively. Because
of the interpretation of the strategies in terms of currencies (see Example 3.1),
we will call this specific population game with parameters a and b the currency
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game.

Further prominent examples of population games are congestion games and
potential games (see, e.g., Sandholm, 2010, and Chapter 6.3).

3.1.3 Revision Protocol, Stochastic Evolutionary Games

Given a population game, we now model the strategy updating process of the
agents. The idea is the following: at every moment in time, each agent has
chosen a strategy in the strategy set S. At times t = kδ, where δ = 1/n, k ∈ N,
exactly one agent is randomly drawn (with equal probability for all agents) to
reconsider her strategy choice. We assume statistical independence between
successive draws. Thus, the expected time interval an individual has to wait
between opportunities to change the strategy is 1.

The following definition of a revision protocol4 formulates how agents choose
a strategy given a revision opportunity. In what follows, we assume for simplicity
that all agents display the same strategy-updating behavior, i.e., act according
to the same revision protocol.

Definition 3.4 (Revision Protocol). A revision protocol is a function ρ :
∆m−1 × Rm → Rm×m≥0 with

∑m
j=1 ρij(x, π) = 1 for each i ∈ S, all population

states x ∈ ∆m−1, and all possible payoffs π ∈ Rm.

The revision protocol thus associates to each population state x ∈ ∆m−1 and
payoffs π ∈ Rm a matrix of transition probabilities5 ρ(x, π) = (ρij(x, π))i,j=1,...,m

where ρij(x, π) represents the probability of the agent to switch from strategy
i to strategy j given the current population state x and payoffs π.

Remark 3.1. Note that we modeled a revision protocol as a map with domain
∆m−1 × Rm. Of course, if we focus on a specific population of size n, we
could instead focus on maps with domain ∆m−1

n × Rm. Revision protocols are,
however, often defined independent of a specific population and thus indepen-
dent of a specific population size. For that reason, we prefer the domain to be
∆m−1 × Rm.

We now give prominent examples of revision protocols.

Example 3.3 (Best response). The best response (BR) strategy updating pro-
tocol with its resulting mean dynamics (see Section 3.2.2) is one of the leading
dynamics studied in evolutionary game theory. It is defined as follows: Let
B : ∆m−1 → P(S), where P(S) is the power set of S, be the best response
function defined by

B(x) = {i ∈ S : Fi(x) ≥ Fj(x) for all j ∈ S} (3.3a)

= argmax
i∈S

Fi(x), (3.3b)

i.e., B(x) represents the set of strategies that optimize payoff given the current
population state x. We shall write (with obvious abuse of notation) j = B(x)

4The definition of a revision protocol given here differs from the one given in (Sandholm,
2010) in that we consider time-discrete updating processes instead of time-continuous ones.

5The revision protocol is not to be confused with the transition matrix of the aggregate
strategy updating process, see below.
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in the case of a unique best response j to the population state x ∈ ∆m−1
n .

Under the best response revision protocol, updating players always choose a
best response to the current population state (Gilboa and Matsui, 1991). More
formally, for j 6= i,

ρij(x, F (x)) = 0 if j /∈ B(x), (3.4a)

ρij(x, F (x)) ∈ [0, 1] if j ∈ B(x), such that (3.4b){ ∑
j∈B(x),j 6=i ρij(x, F (x)) = 1 if i /∈ B(x)∑
j∈B(x),j 6=i ρij(x, F (x)) ≤ 1 if i ∈ B(x).

(3.4c)

In words, the revising player chooses a probability distribution on the set of
best replies to the current population state6. The resulting revision protocol is
therefore not uniquely defined.

One often-used possibility to circumvent this is to focus on population games
where the best responses are uniquely determined for each population state.
In the case of the currency game (Example 3.2), this could be established by
slightly changing the payoff parameters. More specifically, the best response is
unique for all population states x ∈ ∆1

n with x1 6= b
a+b . Thus, if x1 6= b

a+b

for all x ∈ ∆1
n, the best response revision protocol is well-defined. To ensure

that x1 6= b
a+b for all x ∈ ∆1

n, we could assume, e.g., that a is irrational. The
resulting revision protocol is provided by

ρ21(x, F (x)) =

{
1 if x1 >

b
a+b

0 if x1 <
b
a+b

(3.5)

ρ12(x, F (x)) =

{
0 if x1 >

b
a+b

1 if x1 <
b
a+b .

(3.6)

Example 3.4 (Best response with mutations). A revising agent using the best
response with mutations (BRM) revision protocol at mutation rate 0 ≤ ε < 1
updates his strategy choice as follows: with probability (1−ε) he chooses a best
response b ∈ B(x) to the current population state, while with probability ε he
chooses a strategy s ∈ S at random (uniform distribution; Kandori et al., 1993;
Young, 1993a). Note that for ε = 0, the BRM revision protocol reduces to the
best response revision protocol (Example 3.3).

More formally, this means for j 6= i,

ρij(x, F (x)) =
ε

m
if j /∈ B(x) (3.7a)

ρij(x, F (x)) ∈ [
ε

m
, 1− m− 1

m
ε] if j ∈ B(x) and such that{ ∑

j∈B(x),j 6=i(ρij(x, F (x))− ε
m ) = 1− ε if i /∈ B(x),∑

j∈B(x),j 6=i(ρij(x, F (x))− ε
m ) ≤ 1− ε if i ∈ B(x).

(3.7b)

Note that Eq. (3.7b) translates in the case of a unique optimal strategy given
the population state x ∈ ∆m−1

n to the following

ρij(x, F (x)) =

{
1− m−1

m ε if j = B(x)
m−1
m ε otherwise.

(3.8)

6This is called a mixed strategy in game theory.
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Under the BRM revision protocol, the probability of choosing a suboptimal
strategy is the same for each suboptimal strategy, e.g., it is independent of
the payoffs associated with each suboptimal strategy. This means that the
mutations do not favor alternatives with higher payoffs over those with lower
payoffs. As ε→ 0, the protocol chooses the best replies with probability one.

More specifically, in the case of the currency game as defined in Example
3.2, the best response with mutation revision protocol is given by (assuming, as
in the case of the best response revision protocol that x1 6= b

a+b for all x ∈ ∆1
n):

ρ21(x, F (x)) =

{
1− ε

2 if x1 >
b
a+b

ε
2 if x1 <

b
a+b

(3.9)

ρ12(x, F (x)) =

{ ε
2 if x1 >

b
a+b

1− ε
2 if x1 <

b
a+b

(3.10)

Notice that ρ12(x, F (x)) and ρ21(x, F (x)) are not continuous in x. Moreover,
it is only the ratio b

a+b that matters for the BRM revision protocol and not
the specific parameters a and b. We can therefore restrict the analysis of the
currency game to the b = 1 case7.

Figure 3.4a displays ρ12 as a function of the proportion x1 of strategy 1
players in the population for various values of ε with a = 1, b = 1. Notice that
in the m = 2 case we consider here, the proportion x1 uniquely determines
the values of the revision protocol since given the proportion x1 of strategy 1
players, the proportion x2 of strategy 2 players and thus the population state
x = (x1, x2) ∈ ∆1

n is given by 1 − x1 and (x1, 1 − x1), respectively. Moreover,
notice that the corresponding ρ21 is given by ρ21 = 1 − ρ12. It shows that for
ε → 0, the functions approach those of the best response (without mutations)
revision protocol. For ε → 1, the functions approach those of a uniform choice
protocol. Figure 3.4b displays the function for various values of the payoff
parameter a with ε = .3, b = 1. It shows how the value ρ12(x, F (x)) (and thus
also ρ21(x, F (x))) depends on whether x1 < b

a+b or x1 > b
a+b . For sake of

clarity, we do not consider a value of x = (b/(a+ b), 1− b/(a+ b)) in the figures
since the value of these functions at these points is not uniquely defined. It
might assume any value in [ ε2 , 1−

ε
2 ].

Example 3.5 (Logit choice). The logit choice revision protocol is one of the most
widely used models of discrete choice making (McFadden, 2001; Train, 2003)
and has a long history in economics and psychology dating back to Thurstone
(1927). In the context of stochastic evolutionary games it has been introduced
by Blume (1993). It is defined for j 6= i by

ρij(x, F (x)) =
exp(σFj(x))∑
i∈S exp(σFi(x))

(3.11)

where F : ∆m−1
n → Rm≥0 denotes the payoff function of the population game.

The parameter σ ≥ 0 is called the noise level. If σ = 0, the choice probabilities
are uniform; if σ → ∞, then the revision protocol approximates the best re-
sponse revision protocol. In contrast to the best response revision protocol, the
logit choice is continuous in x and is therefore also called smoothed best response
(see Figure 3.5).

7If b 6= 1, we can find a′ such that 1
a′+1

= b
a+b

. Since the ratios coincide, so do the

corresponding revision protocols.
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Figure 3.4: Best response with mutations revision protocol: ρ12 as a function
of the proportion x1 of strategy 1 players: (a) shows the functions for various
values of ε, where the payoff parameter a is set to 1; (b) shows the functions for
various values of the payoff parameter a and ε = .3.

Rewriting Eq. (3.11) using payoff differences to an optimal strategy k∗, i.e.,
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Figure 3.5: Logit choice revision protocol: ρ12(x) as a function of the propor-
tion x1 of strategy 1 players. (a) shows the function for various values of the
noise parameter σ and payoff parameter a = 1; (b) shows the same for a = 10.
As before, the graph of the function ρ21 can be deduced from the one of ρ12 via
ρ21 = 1− ρ12.



3.1. DEFINITION 75

by multiplying both numerator and denominator by exp(−σFk∗(x)), we get

ρij(x, F (x)) =
exp(σ(Fj(x)− Fk∗(x)))∑
i∈S exp(σ(Fi(x)− Fk∗(x)))

(3.12)

and see that in contrast to the BRM revision protocol, the logit choice revision
protocol puts a higher probability on choosing a strategy with a higher payoff,
i.e., better strategies are more likely to be chosen. In other words, more costly
mistakes are less likely to be made. In the context of the currency game (Ex-
ample 3.2), this is also visible by comparing Figure 3.4 with Figure 3.5. The
values of ρ12(x, F (x)) and ρ21(x, F (x)) for the BRM revision protocol only de-
pend on whether x1 <

b
a+b , x1 = b

a+b , or x1 >
b
a+b (and not on the specific

x). In contrast, in the case of the logit choice revision protocol, ρ12(x, F (x))
and ρ21(x, F (x)) depend on the specific values of x and F (x). More specifi-
cally, for small σ, the functions are roughly constant (and thus reflect a uniform
choice distribution); for medium size values of σ (e.g., σ = 5 in Figure 3.5),
the functions reflect that the revision protocol puts a higher probability on
choosing a strategy with a higher payoff, or in other words, the smaller the
difference in payoffs between the two strategies (this is the case for popula-
tion states x with x1 approaching b

a+b ), the more the values of the revision
protocol reflects a uniform choice distribution on the two strategies (this is,
ρ12(x, F (x)) → .5 and ρ21(x, F (x)) → .5 for x → ( b

a+b , 1 −
b
a+b )). For large

values of σ, the functions approach, however, the best response revision pro-
tocol (ε = 0) and thus the less the payoff difference matters (see also Figure
3.5). More specifically, the logit choice revision protocol pointwise converges
to the best response protocol for σ → ∞ for all x ∈ ∆m−1

n for which the best
response is unique (since exp(σ(Fj(x) − Fk∗(x))) → 1 for σ → ∞ if j ∈ B(x)
and exp(σ(Fj(x)− Fk∗(x)))→ 0 for σ →∞ if j /∈ B(x)).

Notice that our running example in the following chapters builds on the
BRM revision protocol. In Chapter 6.3, we consider an extended example in
which we concentrate on the logit choice revision protocol. For more examples
of revision protocols we refer the reader to Sandholm (2010).

We now turn to the aggregate strategy updating process; given a given
population game with payoff function F and revision protocol ρ, only one agent
is drawn from the whole population (with uniform distribution) to reconsider its
strategy choice. This means, on the aggregate level, that transitions between
population states are only possible, i.e., have a probability greater 0, if they
differ in at most one component by at most 1/n. Moreover, the probability
of drawing an agent that currently holds strategy i ∈ S corresponds to the
share xi of strategy i in the current population state x, and the probability
that an agent holding strategy i changes to strategy j when given the chance
to reconsider the strategy choice is given by ρij(x, F (x)). Assuming statistical
independence, the strategy updating process on the population level is thus a
time-discrete Markov chain X = (Xt)t∈T on the set of population states ∆m−1

n ,
where T = {kδ | k ∈ N, δ = 1/n}. Its transition matrix P = (pxy)x,y∈∆m−1

n
is
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given by

pxy =


xiρij(x, F (x)) if y = x+ 1

n (ej − ei), i, j ∈ S, i 6= j,
1−

∑
i∈S
∑
j 6=i xiρij(x, F (x)) if x = y,

0 otherwise.

In the examples that follow, we will mostly concentrate on games with two
strategies only. In this case, we can identify the state x ∈ ∆1

n ⊂ R2 with
χ = x1 (since x2 = 1 − x1). We can thus restrict our analysis of the chain
(Xt)t∈T to the state space Z = {0, 1

n , · · · , 1} and we will write (with abuse of
notation) F (χ) for F (x) (i.e., F : Z → R2) and ρ(χ, F (χ)) for ρ(x, F (x)) (i.e.,
ρ : Z × R2 → R2×2

≥0 ). Moreover, the aformentioned considerations about repre-
senting general evolutionary games as discrete-time Markov chains imply that
stochastic evolutionary games with two strategies are birth-and-death chains
(see Examples 2.1 and 2.2) with transition matrix

P =


1− α0 α0 0 · · ·
β1 1− (β1 + α1) α1 0 · · ·
0 β2 1− (β2 + α2) α2 0 · · ·

...
0 · · · 0 βn 1− βn

 , (3.13)

where the parameters are

αj =
(

1− j

n

)
ρ21

( j
n
, F
( j
n

))
for j = 0, · · · , n− 1 (3.14)

βj =
j

n
ρ12

( j
n
, F
( j
n

))
for j = 1, · · · , n. (3.15)

Example 3.6. Consider the currency game introduced in Example 3.2, and let
ρ : ∆1

n × R2 → R2×2
≥0 be the BRM revision protocol with noise parameter ε.

The resulting evolutionary game represented by the discrete-time Markov chain
(Xt)t∈T with state space Z = {0, 1

n , · · · , 1} is going to be the running example
in the following sections and chapters and will be referred to as our (running)
example. Figure 3.6 gives an impression of characteristic sample paths for a
resulting evolutionary process with parameters a = b = 1, n = 11, ε = .3. It
shows the characteristic metastable behavior that we are going to focus on in
the subsequent chapters.

3.2 Analysis

This section considers existing approaches to the analysis of evolutionary games
and puts them in the context of metastability.
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Figure 3.6: Typical sample path of the number of agents holding strategy 1
in the evolutionary game defined by the currency game and the BRM revision
protocol (a = b = 1, n = 11, ε = .3).

3.2.1 Nash Equilibrium and Refinements

The evolutionary game theory program is a different approach to the problem
of equilibrium selection, an approach that is viewed as more realistic than Nash
equilibrium refinements since it does not rely on overly idealistic requirements
on the behavior of the agents (see Section 3.1.1). The body of literature on evo-
lutionary game theory and its approach to the problem of equilibrium selection
is large (for a comprehensive introduction and references, see, e.g., Sandholm,
2010; Weibull, 1995). Here, we can only give a rough overview necessary for an
understanding of the subsequent sections.

The aim of the evolutionary game theory approach to the problem of equilib-
rium selection is an actual population foundation that emphasizes the individual
decision-making of boundedly rational players and wants to observe the resulting
aggregate dynamics. Typical questions in this context are:

• Can a Nash equilibrium of the underlying game in strategic form be im-
plemented in the population of agents in the sense that to each of these
Nash equilibria there is a distribution of strategies in the population?

• Does a Nash equilibrium arise as the long-run outcome of an evolutionary
game?

• Does a Nash equilibrium emerge in the limit of large population sizes
n→∞?
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As we will see in the following sections, the second of these questions relates to
the analysis of the stochastically stable states of an evolutionary game (Section
3.2.4) while the third is linked to its deterministic approximation (Section 3.2.2).
With respect to the first question, consider the following definition:

Definition 3.5 (Nash Equilibrium of Finite-Population Games). The popula-
tion state x ∈ ∆m−1

n is a Nash equilibrium of the finite population game with
payoff function F : ∆m−1

n → Rm if no individual player receives a higher payoff
by changing his strategy. More formally, this means that x ∈ ∆m−1

n is a Nash
equilibrium for the finite population game if

xi > 0⇒ Fi(x) ≥ Fj(x) for all i, j ∈ S. (3.16)

We denote the set of Nash equilibria of a finite population game with payoff
function F by NE(F ).

Let F be the payoff function of a finite population game which is defined
by a complete matching of agents to play a strategic form game (see Example
3.2). The definition then implies that every Nash equilibrium of the population
game is a Nash equilibrium of the strategic game. In this case, we can view the
Nash equilibrium of the population game as implementing the Nash equilibrium
of the underlying strategic form game. We only mention that the other way
around needs not hold, which is different to the case of continuous population
games, and refer to Sandholm (2010) and Bernerg̊ard and Wärneryd (2011) for
examples and discussion of further particularities of finite population games.

Example. In the currency game with parameters a, b, and a population of size
n, the set of Nash equilibria of the population game resulting from a complete
matching of the agents is

NE(F ) =

{
{(0, 1), (1, 0), ( b

b+a , 1−
b
a+b )} if ( b

a+b , 1−
b
a+b ) ∈ ∆1

n

{(0, 1), (1, 0)} otherwise.
(3.17)

The Nash equilibria of the population game thus relate to the Nash equilibria
of the underlying pure coordination game (Example 3.1). If ( b

a+b , 1−
b
a+b ) is a

population state, i.e., ( b
a+b , 1 −

b
a+b ) ∈ ∆1

n it corresponds to a mixed strategy
Nash equilibrium, i.e., to a probability distribution over strategies which is a
Nash equilibrium, for a definition see Sandholm (2010).

Lastly, with a view on metastability, we note that the notion of Nash equilib-
rium is obviously not a dynamic notion. If the evolutionary game has metastable
dynamics between different Nash equilibria, an analysis of the dynamics from
the viewpoint of metastability might enhance the understanding of the evolu-
tionary process of interest.

3.2.2 Deterministic Approximation

This section addresses the question of how well stochastic evolutionary games
can be approximated by deterministic, mean dynamics. There are two reasons
why this question is of interest. First, from a mathematical and computational
point of view, the analysis of the differential equations that describe the mean
dynamics of the stochastic evolutionary game under consideration is often more
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feasible and efficient. Second, major results in evolutionary game theory assume
a continuum of agents, where the dynamics are considered deterministic and
are given in terms of ordinary differential equations that are viewed to describe
the changes in population shares over a large number of individual strategy
switches (e.g., Weibull, 1995). In order for these results to be of relevance,
the solutions to the differential equations describing the mean dynamics need to
be good approximations of the discrete-time Markov chains that represent the
stochastic evolutionary games in finite but large populations.

We first consider the case of mean dynamics with a Lipschitz continuous
vector-field. After this, we turn to best response dynamics. Lastly, we interpret
the results with a view on metastability and equilibrium selection.

In the following, let (Xn(t))t∈T, where T = {δnk | k ∈ N, δn = 1/n}, be the
Markov chain defined by the population game (n, S,∆m−1

n , F ) and the revision
protocol ρ. Since we are going to consider different population sizes, it is impor-
tant for us to note that this notation makes the dependence of the Markov chain
on the population size explicit; while the state space ∆m−1

n as well as the time
steps δn depend on n, we assume for simplicity that both the payoff function F
as well as the revision protocol ρ do not depend on the population size n. Under
certain conditions, however, the following considerations and results hold also
in the case of population size dependent payoff functions or revision protocols
(Kurtz, 1970; Sandholm, 2010). Note, moreover, that in the following, equilibria
(without the “Nash” prefix) always refer to equilibria in the dynamical systems,
not to Nash equilibria. If we speak of Nash equilibria, we will always use the
prefix “Nash”.

Lipschitz Continuous Vector-Field

As shown in Section 3.1.3, (Xn(t))t∈T is a Markov chain with transition matrix
P = (pxy)x,y∈∆m−1

n
given by

pxy =


xiρij(x, F (x)) if y = x+ 1

n (ej − ei), i, j ∈ S, i 6= j,
1−

∑
i∈S
∑
j 6=i xiρij(x, F (x)) if x = y,

0 otherwise.

Now we are in a position to calculate the expected net increase per time unit
Vi(x) associated with strategy i ∈ S in the proportion of players conditional
on the current population state x ∈ ∆m−1

n ; that is, Vi is a function of type
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∆m−1
n → R defined by:

Vi(x) =
1

δn
E
(
Xn
i ((k + 1)δn)−Xn

i (kδn)
∣∣∣Xn(kδn) = x

)
(3.18a)

=
1

δn

∑
y∈∆m−1

n

(yi − xi) P
(
Xn
i ((k + 1)δn) = yi

∣∣∣Xn(kδn) = x
)

(3.18b)

=
1

δn

∑
y∈∆m−1

n ,yi 6=xi

(yi − xi) pxy (3.18c)

=
1

δn

(∑
j 6=i

1

n
xjρji(x, F (x))−

∑
j 6=i

1

n
xiρij(x, F (x))

)
(3.18d)

=
∑
j 6=i

xjρji(x, F (x))− xi
∑
j 6=i

ρij(x, F (x)), (3.18e)

where the second to last equals sign follows from the fact that if yi 6= xi and
neither y = x + 1

n (ei − ej) nor y = x + 1
n (ej − ei) for some j ∈ S, j 6= i, then

pnxy = 0.

Notice that since we assume that neither F nor ρ depends on n, the function
Vi as defined by Eq. (3.18e) does also not depend on n. This means that it
is uniquely defined for all x ∈ ∆m−1 and thus we can view it as a function
Vi : ∆m−1 → R. Moreover, we have∑

i∈S
Vi(x) = 0 (3.19)

for every x ∈ ∆m−1 and thus, the Vi’s together yield a function V : ∆m−1 →
T∆m−1, where T∆m−1 = {z ∈ Rm |

∑
i∈S zi = 0} is the tangent space of ∆m−1,

and V (x) = (V1(x), · · · , Vm(x)). Notice that if F is a continuous payoff function
and ρ a continuous revision protocol, then V is continuous and bounded as well.

In what follows, we will identify ∆m−1 with Rm−1
≥0 and T∆m−1 with Rm−1.

This is possible because in both cases the spaces are isomorph. Moreover, by
Tietze’s extension theorem, we can extend a continuous and bounded function
Rm−1
≥0 → Rm−1 to a function Rm−1 → Rm−1 with the same properties. It is

in this way that we regard V in the following as a function Rm−1 → Rm−1.
The function V : Rm−1 → Rm−1 is called the vector-field associated with the
Markov chain (Xn(t))t∈T. It gives for large populations and short time intervals
the expected net increase in each population share during the time interval, per
time unit.

Now, consider the associated mean-field equations:

ẋi = Vi(x) =
∑
j 6=i

xjρji(x, F (x))− xi
∑
j 6=i

ρij(x, F (x)). (3.20)

Assume that V is locally Lipschitz continuous; that is, V is continuous and
for each x0 ∈ ∆m−1 exists an open neighborhood U(x0) ⊆ ∆m−1 such that
there is a constant L ∈ R≥0 with

‖V (x)− V (y)‖ ≤ L‖x− y‖ for each x, y ∈ U(x0). (3.21)
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Then we know from the theorem of Picard and Lindelöf that the initial value
problem

ẋ = V (x), x(0) = x0

has a unique solution for every x0 ∈ ∆m−1. Furthermore, the solutions leave
the set of population states ∆m−1 forward invariant since

∑m
i=1 Vi(x) = 0, i.e.,

the sum of population shares are left constant, and Vi(x) ≥ 0 if xi = 0, i.e.,
population shares cannot turn negative. This just means that if x(t) is a solution
of

ẋ = V (x), x(0) ∈ ∆m−1,

then x(t) ∈ ∆m−1 for all t ≥ 0. An example of a revision protocol which leads
to a Lipschitz continuous vector field is the logit choice revision protocol, see
Example 3.5. We will not, however, consider this example in depth since deter-
ministic approximations are not the main focus of this thesis. We instead give
an example in the case of the best response with mutations revision protocol
(see below) and refer to, e.g., Sandholm (2010) for more on the logit choice
revision protocol and its deterministic approximation.

The following result is due to Kurtz (1970). Stronger approximation results
have recently been established by Benaim and Weibull (2003).

Theorem 3.1. Let (Xn(t))t∈T be the discrete-time Markov chain associated
with the population game (n, S,∆m−1

n , F ) and revision protocol ρ. Let V denote
the associated vector-field and suppose V is locally Lipschitz continuous. Let
x(· ;x0) denote the solution to the initial value problem

ẋ = V (x), x(0) = x0.

Suppose that8Xn(0) = xn0 → x0 ∈ ∆m−1 for n → ∞. Then for any T > 0 and
ε > 0,

lim
n→∞

P
(

sup
τ∈[0,T ]

‖Xn(bτc)− x(τ ;x0)‖∞ < ε
∣∣∣ Xn(0) = xn0

)
= 1. (3.22)

where ‖Xn(bτc) − x(τ ;x0)‖∞ = maxi∈S |Xn
i (bτc) − xi(τ ;x0)| and b c denotes

the floor function, i.e., bτc is the largest integer not greater than τ .

Thus, for any finite time horizon, the solution to the mean-field equations
(uniformly) approximates the evolutionary games arbitrarily well as the popu-
lation size goes to plus infinity. Put differently, given a finite time span T and
ε, η > 0, then for large enough population sizes n, the probability that (Xn(t))
stays within ε of (x(t;x0)) through time T is at least 1− η.

Lastly, we want to point out that since V is in general nonlinear, we have in
the finite population case

E
(
V (Xn(t))

)
6= V

(
E(Xn(t))

)
, (3.23)

and thus, the solution to the mean-field equations do not coincide with the mean
of the sample paths in the finite population case, as one might expect from their
name. It is only in the limit n→∞ that this is true.

8Notice that since the state space ∆m−1
n changes with changing population size n, the

initial state Xn(0) ∈ ∆m−1
n of the Markov chain (Xn(t))t∈T changes as well.
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Best Response with Mutations Dynamics

The mean dynamics of the best response with mutations revision protocol can
be derived similar to Eq. (3.18e), for details see Sandholm (2010). They are in
general described by the differential inclusion

ẋ ∈
(
1− ε

m

)
BM(x)− x, (3.24)

where BM : ∆m−1 ↪→ ∆m−1 is the (mixed strategies’) best response correspon-
dance9, i.e., BM(x) ⊆ ∆m−1 with y ∈ BM(x) ≡ y ∈ argmaxz∈∆m−1 zTF (x).
In other words, BM(x) is the set of probability distributions over strategies that
are a best reply to the current population state x. Eq. (3.24) is a differential
inclusion. It can be shown that for continuous payoff functions F , the right-
hand side of Eq. (3.24) is non-empty, convex and bounded as well as upper
semicontinuous. Thus, there is at least one solution x : R≥0 → ∆m−1 with
x(0) = x0, which is absolutely continuous and satisfies Eq. (3.24) for almost
every τ ∈ R≥0 (Aubin and Cellina, 1984).

Note, that if x(τ) is a solution of Eq. (3.24) such that for all τ in the time
interval [0, T ] the best response to the states x(τ) is unique, e.g., i ∈ S, then
during this time interval, the evolution of the mean dynamics is described by
the differential equation

ẋ = ei
(
1− ε

m

)
− x, (3.25)

where ei denotes the vector with 1 in the ith coordinate and 0’s elsewhere. Thus,
it is clear that the solution moves straight to ei(1− ε

m ). It is explicitly given by

x(τ) = (1− e−τ )
(
1− ε

m

)
ei + e−τx0 for all τ ∈ [0, T ]. (3.26)

More specifically, in the case of our running example (see Example 3.6), the
mean dynamics are given as follows:

ẋ =

{
(1− ε

2 )− x if x > b
a+b

ε
2 − x if x < b

a+b

(3.27a)

ẋ ∈
(
1− ε

2

)
[0, 1]− x if x =

b

a+ b
. (3.27b)

If ε
2 < b

a+b and 1 − ε
2 > b

a+b , the equilibria are the population states x = ε
2

and x = 1 − ε
2 , respectively. Both are asymptotically stable. If ε

2 > b
a+b or

1− ε
2 <

b
a+b , then the equilibrium x = ε

2 or x = 1− ε
2 disappears, respectively

(see Figure 3.7).
Solutions to this differential equation with initial population density x(0) =

x0 6= b
a+b are

x(τ) =

{
(1− ε

2 )− e−τ (1− ε
2 − x0) if x > b

a+b
ε
2 − e

−τ ( ε2 − x0) if x < b
a+b .

(3.28)

9Note that BM differs from the function B introduced in Ex. 3.3 in that B consid-
ers “strategies” which are a best reply whereas BM chooses “probability distributions over
strategies” which are a best reply. Probability distributions over strategies are called “mixed
strategies” in game theory.
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Figure 3.7: Equilibria of the best response with mutations (ε = .3) mean
dynamics in our running example (Example 3.6) as a function of the payoff
parameter a (assuming b = 1). The payoff ratio 1/(a + 1) divides the state
space into two basins of attraction: all solutions of initial points x0 > 1/(a+ 1)
approach x = 1− ε

2 provided that 1− ε
2 >

1
a+1 , whereas all solutions with initial

values x0 < 1/(a+ 1) approach x = ε
2 provided ε

2 <
1
a+1 .

As the mean dynamics of the best response with mutations revision protocol
are given by a differential inclusion, whose vector-field is not Lipschitz contin-
uous even when the mean dynamics reduce to differential equations, Theorem
3.1 does not apply. There is, however, an analogue for mean dynamics of best
response with mutations revision protocols (Roth and Sandholm, 2013):

Theorem 3.2. Let (Xn(t))t∈T be the continuous-time Markov chain associated
with the population game (n, S,∆m−1

n , F ) and a best response with mutations
protocol ρ, i.e., Eq. (3.7b) is satisfied for some 0 < ε < 1. Let Φ denote the set
of all solutions to the differential inclusion associated with the mean dynamics
of the Markov chain for all possible initial states x(0) = x ∈ ∆m−1, i.e., Φ
represents the set of all solutions to Eq. (3.24). Then for any T > 0 and α > 0,

lim
n→∞

P
(

inf
z∈Φ

sup
0≤s≤T

‖Xn(bsc)− z(s)‖∞ ≥ α
∣∣∣ Xn(0) = x

)
= 0 (3.29)

uniformly in x.

In words, if ρ is a best response with mutations revision protocol and Xn =
(Xn(t))t∈T is the associated discrete-time Markov chain, then for any T >
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0, α > 0, η > 0 there is at least one solution to the associated differential inclu-
sion (not necessarily with the same initial condition as the one of Xn) such that
the probability that sample paths of population shares of the evolutionary game
Xn deviate more than α from the population shares determined by that solution
in the time interval [0, T ] is less than η for all initial states of the Markov chain
Xn(0) = x ∈ ∆m−1

n , provided n is large enough. See Figure 3.8 for a compar-
ison of mean dynamics with sample paths in case of our example (Example 3.6).
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Figure 3.8: Comparison of a single sample paths with the corresponding
solution of the mean dynamics in our running example (see Example 3.6;
a = b = 1, n = 11, ε = .3).

Deterministic Approximation in the Context of Metastability and
Equilibrium Selection

We now put the results of this section into the context of Part II of this thesis.
It should be clear that, as metastability is an inherently probabilistic notion,
deterministic approximations of stochastic evolutionary games are in general
not able to capture any metastable dynamic behavior, see, e.g., Figure 3.8.

The deterministic approximation results necessarily rely on bounded time
intervals. This is obvious since, for instance, for fixed population size n, the
evolutionary games that result from full support revision protocols (see Def.
3.6) are irreducible discrete-time Markov chains. Thus, every population state
is visited infinitely often with probability one, which would not be possible if
sample paths were to stay near the deterministic solution of the mean dynamics
for all times.

However, on short time scales, the approximation results might give a hint
on where to find metastable subsets of population state space. For certain
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classes of stochastic evolutionary games, global convergence to Nash equilibria
or perturbed10 Nash equilibria has been established (see, e.g., Sandholm, 2010;
Weibull, 1995). As, for instance, in our running example (Example 3.6), the
population states 1 − ε

2 and ε
2 are asymptotically stable equilibria of the asso-

ciated mean dynamics (provided 1 − ε
2 >

b
a+b and ε

2 <
b
a+b , respectively) and

their basins of attraction almost cover the whole state space (except the popu-
lation state b

a+b ). We therefore know that if the deterministic dynamics start

in a population state x 6= b
a+b , it will converge to either equilibrium. Both of

these states can be understood as perturbed Nash equilibria. Now, if the con-
vergence rate is not too slow, as is the case in our example where convergence is
exponentially fast, we might thus expect the metastable subsets of state space
around the perturbed Nash equilibria.

3.2.3 Stationary Distribution and Reversibility

Both the BRM and the logit choice revision protocol are so called full revision
protocols that lead to an irreducible and aperiodic Markov chain X = (Xt)t∈T
at the population level:

Definition 3.6 (Full support revision protocol). A revision protocol ρ : ∆m−1×
Rm → Rm×m≥0 is a full support revision protocol if there is a constant C > 0 such
that

ρij(x, π) ≥ C for all i, j ∈ S, x ∈ ∆m−1, π ∈ Rm. (3.30)

Thus, in the case of a full support revision protocol, the probability that
a revising agent switches to the strategy j is always strictly positive. At the
population level, it follows that there is a strictly positive possibility to move
between two arbitrary population states x1, x2 ∈ ∆m−1

n . This means that the
Markov chain at the population level is irreducible. It is also aperiodic since the
probability of staying in the same population state is strictly positive.

Thus, as we have outlined in Section 2.2, Theorem 2.2, irreducibility and
aperiodicity of the Markov chain implies

1. the existence of a unique invariant distribution µ;

2. the convergence of the time t probability distributions to the unique in-
variant distribution as t→∞, no matter the initial distribution:

lim
t→∞

P(Xt = j) = µj for all j ∈ S (3.31)

(from an ex-ante point of view, this means that, in the sufficiently distant
future, we would expect to find the chain to be in locations determined
by µ);

10For instance, in the case of perturbed best response dynamics, it cannot be expected
that the dynamics lead to Nash equilibria. The appropriate notion instead is that of perturbed
Nash equilibria, which are population states “near” the Nash equilibria. How far the perturbed
Nash equilibria are from the Nash equilibria usually depends on the perturbation parameter,
ε and σ in our examples of the best response with mutations revision protocol, Ex. 3.4, and
the logit choice revision protocol, Ex. 3.5, respectively (see, e.g., Sandholm, 2010).



86 CHAPTER 3. STOCHASTIC EVOLUTIONARY GAMES

3. that the proportion of time spent at each state j ∈ S in the long run and
along almost every sample path is again determined by µ (ex-post point
of view):

Pν
(

lim
t→∞

∫ t

0

1{Xt=j}dt = µj

)
= 1 for all j ∈ S, (3.32)

where ν denotes the initial distribution.

In the case of population games with two strategies, we can easily deter-
mine its unique stationary distribution (see Examples 2.1 and 2.2); for χ ∈
{ 1
n , · · · ,

n−1
n , 1}, the weights µ(χ) of the stationary distribution are determined

by

µ(χ) = µ(0)
α0α1 · · ·αnχ−1

β1β2 · · ·βnχ
(3.33a)

= µ(0)

nχ∏
j=1

α(j−1)

βj
(3.33b)

= µ(0)

nχ∏
j=1

(1− j−1
n )

j
n

·
ρ21( j−1

n , F ( j−1
n ))

ρ12( jn , F ( jn ))
(3.33c)

= µ(0)

nχ∏
j=1

n− j + 1

j
·
ρ21( j−1

n , F ( j−1
n ))

ρ12( jn , F ( jn ))
(3.33d)

with µ(0) determined by the restriction that
∑
χ∈∆1

n
µ(χ) = 1.

The example 2.2 also showed that birth-and-death chains are reversible.
This is an important property, on which most of the metastability methods
introduced in the subsequent chapters rely. We only note here that population
games with two strategies under full support revision protocols do not constitute
the only class of examples with reversible dynamics. Another large class consists
of finite-population potential games under the logit choice revision protocol (see
Sandholm, 2010, and Chapter 6.3).

Example. Figure 3.9 shows the weights of the stationary distribution in our
example (Example 3.6) with parameters a = b = 1, n = 11. This stationary
distribution µ can be computed according to Eq. (3.33d). The example demon-
strates that the stationary distribution can predict the empirical frequency of
population states, but it does not tell us that typical sample paths stay in one
subset of population state space for a long time and then switch to the other,
as shown by the typical sample path in Figure 3.6.

3.2.4 Stochastic Stability Analysis

Introduction and Definition

The concept of stochastic stability is related to the infinite-horizon analysis of
Markov chains. In Section 3.2.2, we summarized results on the deterministic
approximation of stochastic evolutionary games and showed that over finite-
time horizons, the mean dynamics provide a good prediction of the dynamic
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Figure 3.9: Stationary distribution µ for our running example for a = b = 1,
n = 11, ε = 0.3 (see Example 3.6).

behavior of the Markov chain conditional on the initial state. However, if we
are interested in the infinite-horizon dynamic behavior, we need to consider the
stationary distribution, see Section 3.2.3. For full support revision protocols,
the stationary distribution is unique, has positive mass on each population state,
and is independent of the initial state – in contrast to the respective mean dy-
namics, which is initial state dependent. Consider, for example, a stochastic
evolutionary game with multiple locally stable equilibria in the mean dynam-
ics. Whereas the mean dynamics converge to a locally stable equilibrium, the
stochastic dynamics of the evolutionary game can drive the system into a differ-
ent basin of attraction and thus to a different locally stable equilibrium. Thus,
the central motivation for studying the stationary distribution is that it might
provide predictions about a population’s very long-run behavior independent of
the initial state.

More specifically, the hope is that the limiting stationary distribution for
the population size n → ∞ or the noise parameter ε, σ → 0 converges to a
point mass at a single population state; in the best case, this population state
is a state in which all players use the same strategy, a Nash equilibrium of the
underlying strategic game (see Figure 3.10 for the case of our running example,
Example 3.6). In such a case, this population state is seen as the conventional
way of playing the game and it is said that the agents coordinate on this Nash
equilibrium (Young, 1993a). Moreover, in this case, the sketched approach can
single out a Nash equilibrium as more plausible than the other Nash equilibria
and thus provides an approach to the problem of equilibrium selection. Besides
this game theoretical interest to study the limiting stationary distribution, there
is also the practical motivation that the limiting distribution might be easier to
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calculate than the stationary distribution for a specific ε.
Here, we focus on stochastic stability as the noise parameter approaches 0,

which is what most of the literature does and which suits well the context of
this thesis. We refer the reader interested in the limiting distribution when
the population size n approaches ∞ to Sandholm (2010, Chapter 12 and corre-
sponding chapter notes), which gives an overview of the small literature on this
topic. In the following, we will always denote the noise parameter by ε, but the
reader should keep in mind that in doing so we do not always refer to the best
response with mutation revision protocol, but instead to the general case of a
noise parameter dependent revision protocol.

In order to formulate a precise definition of stochastically stable states, let
(Xε(t))t∈T denote the discrete-time Markov chain defined by the population
game (n, S,∆m−1

n , F ) and full support revision protocol ρε. Note that this
notation, in contrast to the one used in Section 3.2.2, makes the dependence
on the noise parameter of the revision protocol as well as the resulting Markov
chain explicit. The population size n is fixed. Let µε denote its unique stationary
distribution. If limε→0 µ

ε exists, we can define:

Definition 3.7 (Stochastically Stable States). A population state x ∈ ∆m−1
n

is called stochastically stable if µ∗(x) = limε→0 µ
ε(x) > 0.

This notion of stochastically stable states was introduced into evolutionary
game theory by Foster and Young (1990), Young (1993a), and Kandori et al.
(1993). Building largely on work by Freidlin and Wentzell (1984) on perturbed
dynamical systems, they show how to calculate the stochastically stable states
of Markov chains that comply with certain regularity conditions by solving a
series of shortest path problems in graphs11. Building on this approach, a large
literature has developed with the goal of determining the stochastically stable
states for different types of games and adjustment processes (e.g., Ben-Shoham
et al., 2004; Binmore and Samuelson, 1997; Binmore et al., 2003; Ellison, 1993;
Kandori and Rob, 1995, 1998; Nöldeke and Samuelson, 1993, 1997; Robson and
Vega-Redondo, 1996; Serrano and Volij, 2008; Young, 1993b, 1998).

The algorithm by Foster and Young (1990), Kandori et al. (1993), and Young
(1993a) has the advantage of being always applicable. However, it is difficult
and not so intuitive to apply in the case of complex evolutionary models. It
involves, for example, determining all recurrent classes of the underlying “un-
perturbed” process and the computation of a certain “least-cost tree” – which
is a complicated graph-theoretic problem.

Here, we will focus on a different approach to the identification of stochas-
tically stable states, which in contrast to the algorithm by Foster and Young
(1990), Kandori et al. (1993), and Young (1993a), does not provide a neces-
sary but only a sufficient condition for population states to be stochastically
stable. For our purposes, it has the advantage of suggesting a relationship to
metastability, which we will exploit in more detail in Section 4.3.

In short, the approach by Ellison (2000) is based on two measures, the radius
and (modified) coradius describing the basins of attraction of the underlying un-
perturbed process. These two measures give bounds on the expected time to
stay in a basin of attraction of a recurrence class and on the expected time to

11In fact, the results of Young (1993a) can be considered a finite version of Freidlin and
Wentzell’s results on continuous diffusion processes (see Young, 1993a, Appendix).
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Figure 3.10: Stationary distribution weights of the evolutionary game in our
running example (see Example 3.6) for ε = .3, .15, .05. (3.10a): Parameters are
a = b = 1, n = 11; for ε→ 0, the weights approach .5 for the population states
x = 0, 1 and 0 otherwise. (3.10b): Parameters are a = 1.2, b = 1, n = 11; for
ε→ 0, the stationary distribution seems to approach a point mass at x = 1.

return to a basin of attraction from the basin of attraction of another recur-
rence class, respectively. A recurrence class then is stochastically stable if the
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expected time to return is smaller than the expected time to stay in that class.
This approach thus not only determines the stochastically stable population
states but gives additionally bounds on expected hitting times.

Identification of Stochastically Stable States

Ellison (2000) uses the following definition of a model of evolution with noise12as
a framework for his approach:

Definition 3.8 (Model of Evolution with Noise). Let (Xε)ε≥0 , be a family of
discrete-time Markov chains Xε = (Xε(k))k∈N on a finite state space Z. Let P ε

denote the respective transition matrices. We call (Xε)ε≥0 a model of evolution
with noise if there exists an ε̄ > 0 such that

1. P ε is ergodic for every ε ∈ (0, ε̄),

2. P ε is continuous in ε, and

3. there exists a (possibly asymmetric) cost function c : Z×Z → R≥0∪{∞}
such that for all pairs of states z, z′ ∈ Z, 0 < limε→0 P

ε
zz′/ε

c(z,z′) < ∞
exists if c(z, z′) <∞ and P εzz′ = 0 for sufficiently small ε if c(z, z′) =∞.

We call X0 = (X0(k))k∈N the unperturbed Markov chain.

This definition captures many of the models studied in the literature. It
implies the existence of a unique stationary distribution µε for each ε ∈ (0, ε̄)
as well as of the limiting distribution µ∗ = limε→0 µ

ε (see Ellison, 2000, p. 22,
footnote 5). The cost function can be interpreted as indicating how unlikely it
is for transitions between states to take place.

Example. For each ε ∈ [0, 1), let (Xε(t))t∈T be the Markov chain of the evolu-
tionary game defined by our running example (Example 3.6). We assume that
b
a+b /∈ Z = {0, 1

n , · · · , 1}. Let P ε denote the respective transition matrices.
Then this family of Markov chains is a model of evolution with noise with cost
function c : Z × Z → R≥0 ∪ {∞} defined by

c(x, y) =


0 if P 0

xy > 0,

1 if (y < b
a+b ∧ y = x+ 1

n ) ∨ (y > b
a+b ∧ y = x− b

a+b )∨
(x = y 6= 0, 1),

∞ otherwise.

In order to state the main results by Ellison (2000), we need the following
definitions:

Definition 3.9 (Path, Cost of a Path). Let A,B ⊂ Z. A path13 from A to B
is a finite sequence of distinct states (z1, · · · , zn) with z1 ∈ A, zk /∈ B for k < n,

12This definition differs from the one given by Ellison (2000) in that it is given in terms of
the Markov chains and not just in terms of transition matrices.

13Note that the notion of a path given in this definition is not related to and should not be
confused with the notion of a (sample) path of a stochastic process.
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and zn ∈ B. The cost of a path (z1, · · · , zn) is

c(z1, · · · , zn) =

n−1∑
k=1

c(zk, zk+1). (3.34)

In what follows, we denote by S(A,B) the set of all paths from A to B.
Moreover, we extend the cost function on paths to a set-to-set cost function C
by

C(A,B) = inf
(z1,...,zn)∈S(A,B)

c(z1, · · · , zn). (3.35)

From Young (1993a) we know that the stochastically stable states of a model
of evolution with noise are contained in the recurrent classes of the unperturbed
chain. In the literature on evolutionary models with noise the recurrent sets are
also called limit sets.

Definition 3.10 (Basin of Attraction). Let L be a limit set of the unperturbed
Markov chain X0. The basin of attraction B(L) of L is the set of states from
which the unperturbed chain reaches L with probability one. More formally,

B(L) = {z ∈ Z : Pz(X0(k) ∈ L) = 1 for some k ∈ N}. (3.36)

We are now in a position to introduce the radius and coradius of a basin of
attraction:

Definition 3.11 (Radius of a Basin of Attraction of a Limit Set). The radius
r(L) of a basin of attraction of a limit set L is the minimum cost of any path
starting in L and leaving its basin of attraction B(L); that is,

r(L) = C(L,Z \B(L)). (3.37)

In essence, the radius counts the minimum number of “mutations” (ε - prob-
ability events) that are necessary to escape the basin of attraction of a limit set.
Ellison (2000) shows that the ε-perturbed chain Xε spends at least kε−r(L) num-
ber of periods in B(L) before leaving, where k is some constant. Put differently,

1

Exτεy
= O(εr(L)) for all x ∈ L, y /∈ L, (3.38)

where τε denotes the first hitting time of the ε-perturbed chain Xε (see Defini-
tion 2.3).

Definition 3.12 (Coradius of a Basin of Attraction of a Limit Set). The cora-
dius cr(L) of the basin of attraction of L is defined by

cr(L) = sup
y/∈L

C(y, L). (3.39)

Note that supy/∈L C(y, L) = supy/∈B(L) C(y,B(L)) since the cost of getting to
L from any element of B(L) is zero (Ellison, 2000, p. 23). The coradius provides
a measure of the maximum of the minimum number of mutations necessary to
reach the limit set L from outside.
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Ellison (2000) shows that the expected number of periods the chain Xε

spends outside of the limit set L is bounded from above by k′ε−cr(L) for some
constant k′, i.e., EyτεL = O(ε−cr(L)) for y /∈ L . In this sense, the coradius
presents a measure of the attractiveness of the limit set. The following modified
coradius can be used to obtain a tighter bound.

Definition 3.13 (Modified Cost Function, Modified Coradius of a Basin of
Attraction). Let L be a union of limit sets and let (z1, · · · , zn) be a path from
z1 = y to L. Suppose that A1, · · · , Ak is a sequence of limit sets the path hits
consecutively with Ai 6⊂ L for i < k and Ak ⊂ L, and with the convention
that a limit set can appear on the list multiple times but not successively. The
modified cost function c∗ for such a path is defined by

c∗(z1, · · · , zn) = c(z1, · · · , zn)−
k−1∑
i=2

r(Ai). (3.40)

Extending this definition to a point-to-set concept by

c∗(y, L) = inf
(z1,...,zn)∈S({y},L)

c∗(z1, · · · , zn), (3.41)

the modified coradius is defined by

cr∗(L) = sup
y/∈L

c∗(y, L). (3.42)

Note that cr∗(L) ≤ cr(L), and EyτεL = O(ε−cr
∗(L)) for y /∈ L. The idea

behind the modified coradius is that larger state changes happen more rapidly
if they can be accomplished by passing through a sequence of limit sets.

Using the results on the radius and coradius of a basin of attraction, Ellison
(2000) shows that if we have r(L) > cr∗(L) for a limit set L, then this set L
contains all stochastically stable states of the model of evolution with noise. We
summarize the results in the following

Theorem 3.3. Let (Xε)ε≥0 be a model of evolution of noise. Let L be a union
of limit sets of X0. Then,

1

Exτεy
= O(εr(L)) for all x ∈ L, y /∈ L, and (3.43)

EyτεL = O(ε−cr
∗(L)) for y /∈ L. (3.44)

Moreover, r(L) > cr∗(L) implies that L contains all stochastically stables states.

Example 3.7. In our running example (Example 3.6), the recurrent sets of the
unperturbed chain X0 are the sets L0 = {0}, L1 = {1}. Their radii and coradii
are given by

r(L0) =
⌊ b

a+ b
n
⌋

+ 1 (3.45)

r(L1) = n−
⌊ b

a+ b
n
⌋

(3.46)

cr∗(L0) = cr(L0) = n+ 1− r(L0) = r(L1) (3.47)

cr∗(L1) = cr(L1) = n+ 1− r(L1) = r(L0). (3.48)
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It thus follows from Theorem 3.3 that the stochastically stable population states
are

• 0 and 1 if a = b = 1;

• 1 if a > b; and

• 0 if b > a.

This example reflects the impression we got from Figure 3.10. In addition, it
points to the fact that stochastically stable states per se are not able to capture
metastable dynamics. Firstly, in the case of more than one stochastically stable
state, as is the case in our running example for the parameters a = b = 1,
applying the notion of stochastic stability might tell us to expect these states
in the limit ε → 0, but it does not inform us about the dynamics between
those states. Secondly, the notion of stochastic stability depends on the limit
ε→ 0. We are, however, often interested in the behavior of a model of evolution
with noise for fixed ε > 0. In this case, there might be other metastable states
which are visited often, but less and less for smaller and smaller ε. In our
running example, for instance, the state 0 is such a metastable state that is not
stochastically stable for a > b, but for ε > 0 is still visited often. And again, the
notion of stochastic stability does not inform us about the essential dynamics
for ε > 0. In Chapter 5, we will introduce the Markov state modeling approach,
which can be used to fill exactly this gap. Moreover, in Chapter 4.3, we study
metastability in models of evolution with noise using the notions of radius and
coradius introduced by Ellison (2000) in order to identify stochastically stable
states.





Chapter 4

Characterization of
Metastability

Metastability is a characteristic of dynamical systems exhibiting different time
scales; on a short time scale, the system stays within a confined subset of the
state space and thus appears to be in equilibrium, while at much longer time
scales, transitions to other subsets of state space are possible, in which the sys-
tem again stays for a long period of time. These areas of state space where the
systems stays for a long period of time are called metastable. Often, metastabil-
ity is not built into the model as such but results as a macroscopic feature from
the microscopic specification of the system. In this case, the length and time
scales of the microscopic specification can differ by many orders of magnitude
from the resulting macroscopic effect.

Metastability is of interest in many different fields. Examples range from the
classical example of phase transitions in physics, to conformational changes in
large bio-molecules, long-term changes in the climate system, insect or pathogen
outbreaks in population biology and epidemics, and business cycles and price
fluctuations in economics and finance – just to name a few.

Here, we focus on metastability in stochastic evolutionary games. This is
interesting because metastability is a dynamic property that many stochastic
evolutionary games share. In the evolutionary game literature, this property
is also called punctuated equilibrium and is considered a favorable property of
stochastic evolutionary games (e.g., Young, 1998, 2006), not least because con-
sidering metastability in stochastic evolutionary games might lead to a different
perspective on modeling conventions and the problem of equilibrium selection
(Jaeger, 2008, 2012, see also the Introduction and Chapter 3). As we have out-
lined in the previous chapter (Section 3.2), however, the methods used so far
in stochastic evolutionary game theory do not characterize the dynamics of the
evolutionary games with respect to this property. This is in contrast to physics
and chemistry where there has been much research in the last century on the
mathematical description and analysis of metastability (for a short historical
overview see, e.g., the introductory chapter of Bovier, 2009). It is this fact that
we are going to exploit in this and the following chapters when we introduce
methods to analyze metastability in stochastic evolutionary games that stem
for the most part from the study of large bio-molecules (e.g., Deuflhard et al.,

95
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2000; Huisinga, 2001; Huisinga and Schmidt, 2006; Schütte, 1998; Schütte et al.,
1999; Schütte and Huisinga, 2003).

Against this background, it is the aim of this chapter to characterize the
given intuitive notion of metastability in a more formal way. There are several
characterizations of metastability (see, e.g., Bovier et al., 2001; Davies, 1982a,b;
Schütte and Huisinga, 2003). We will present two different characterizations
and relate these to the study of stochastic evolutionary games. Section 4.1
characterizes metastability in terms of the time the system spends within a sub-
set of state space. According to this characterization, the subset is metastable
if the system stays with high probability within the subset longer than some
reference macroscopic time scale. Section 4.2, on the other hand, characterizes
metastability in terms of the transition probability between sets. Here, a subset
is called metastable if the probability of exiting this subset in the next time
step is significantly small. We are going to relate these characterizations to the
spectral properties of the transition matrix of the Markov chain under inves-
tigation. Moreover, Section 4.3 uses the approach of Ellison (2000) to relate
both characterizations to the notion of stochastic stability as introduced in the
previous chapter (Section 3.2.4).

In the subsequent chapter, we present different ways of approximating stochas-
tic evolutionary games and assess to what extent these approximations capture
the dynamic behavior on the metastable sets. The motivation stems from the
fact that, often, one is interested in resolving not all the microscopic details of
the dynamics, but to take advantage of the metastable property and to derive
approximative models of reduced complexity that still capture the dynamical
behavior on the length- and time-scales of interest.

One final comment seems to be in order at this point. As the introductory
words to this chapter indicate, the concept of metastability is inherently an
imprecise notion, as Davies (1982a) puts it:

“qualitative properties [of metastable states] are really not exact,
but only appear so because various errors are small, and certain
instabilities only appear after very long times” (p. 133).

This is going to be reflected in the formal characterizations of metastability
in that they involve certain quantities to be sufficiently small or large.

4.1 Metastability based on Hitting Times

The intuitive characterization given at the beginning of this chapter leads to
the following possible definition of a metastable Markov chain (also compare
Bovier, 2006):

Definition 4.1 (Metastable Markov chain based on Mean Hitting Times). Let
T denote some discrete time index set. The Markov chain (Xt)t∈T on the
finite state space Z is called metastable if there are k ≥ 2 disjoint subsets
C1, · · · , Ck ⊂ Z, such that

RC
mini=1,...,kWCi

� 1, (4.1)
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where C = ∪ki=1Ci denotes the union of the subsets C1, · · · , Ck; RC for C $ Z
is the return time to C, i.e.,

RC = sup
x/∈C

ExτC , (4.2)

and in case C = Z, RC denotes a reference time scale τref on which single step
transitions take place; and WCi for i = 1, · · · , k is the (mean) residence time
(or, waiting time) of the process in the subset Ci; that is,

WCi =
1

µ(Ci)

∑
x∈Ci

µ(x) ExτC\Ci . (4.3)

In this definition, the reference time scale τref represents the time scale on
which single step transitions take place and is built into the definition to capture
the case of a full decomposition of state space for which the return time RC =
−∞. In the case of the stochastic evolutionary games given by a population
game (n, S,∆m−1

n , F ) and revision protocol ρ, the reference time scale is τref =
1/n. Furthermore, RC can be interpreted as the longest expected time the
evolutionary process takes to return to C from outside of C, and WCi represents
the µ-weighted mean time to exit the subset Ci.

Def. 4.1 of metastable discrete-time Markov chains is thus a straightforward
translation of the intuitive notion of metastability given at the beginning of this
chapter; a discrete-time Markov chain is metastable according to this definition
if there are disjoint subsets of state space such that the residence times in the
subsets are much longer than the return time to the union of the subsets. In
other words, the process stays in general for a long time in one of the subsets and
when it leaves a specific subset, it returns quickly to one of the subsets again,
see Example 4.1 for the application of the definition to our example (Example
3.6).

Remark 4.1. In the case of a noise parameter dependent family of Markov
chains such as models of evolutions with noise (Def. 3.8), the definition might
be interpreted to mean that the left hand side of Eq. (4.1) gets small as ε→ 0,
i.e.,

RC
mini=1,...,kWCi

= o(1) for ε→ 0. (4.4)

If C $ Z, it is possible to relate the return time RC to spectral characteristics
of the operator P of the Markov chain under investigation. In order to do so,
let PC denote the projected operator defined by PC = SPS, where S is the
orthogonal projection of Rl onto Z \ C (with respect to the standard scalar
product 〈 , 〉). PC is thus an operator on the space RlC , lC = l − |C|. The
matrix PC representing the linear operator PC results from deleting all rows
and columns associated with states in C from the transition matrix P , which
represents the operator P, see Eq. (2.13). Thus,

PC(x, y) = P (x, y) for x, y ∈ Z \ C. (4.5)
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Theorem 4.1 (Bovier (2006)). Let λC be the largest eigenvalue of PC . Then,

1

1− λC
≤ RC . (4.6)

This theorem provides a lower bound on the return time RC to the set C
from states outside of C. It implies that a necessary condition for quick returns
to C is that the largest eigenvalue of PC is not near 1; otherwise the fraction
on the left side of Eq. (4.6), and thus also the return time RC , gets large. The
projection of P onto RlC defined above must therefore remove all dominant
timescales of the Markov chain under investigation (see Section 2.2, “Invariant
Distribution and Spectral Properties”).

4.2 Metastability based on Transition Probabil-
ities

The characterization of metastability in terms of transition probabilities is based
on the idea that a metastable subset of state space of a system under investiga-
tion is almost invariant in the sense that the system exits this subset only with
small probability. The presentation in this section is based on Huisinga (2001),
Schütte and Huisinga (2003), and Huisinga and Schmidt (2006).

In the following, let (Xk)k∈N denote a discrete-time, reversible Markov chain
on a finite state space Z with |Z| = l with transition matrix P and unique
stationary distribution µ.

The characterization of metastability in terms of transition probabilities re-
lies on the following notion of transition probabilities between subsets of state
space:

Definition 4.2. Let A,B ⊆ Z. The transition probability from A to B is the
conditional probability

p(A,B) = Pµ[X1 ∈ B|X0 ∈ A] =
1

µ(A)

∑
x∈A,y∈B

µ(x)P (x, y) (4.7)

if µ(A) > 0 and 0 otherwise, where µ(A) =
∑
x∈A µ(x).

In words, p(A,B) gives the probability of the system having started in A
and distributed according to the stationary distribution to be found in set B
after one time step and thus measures the dynamical fluctuations within the
stationary distribution µ.

Definition 4.3 (Invariant Subset, Metastable Subset, Joint Metastability). We
call A ⊆ Z invariant if p(A,A) = 1 and metastable if p(A,A) ≈ 1. The joint
metastability of a partition D = {Ai}i=1,...,m of state space is defined by

M(D) =

m∑
i=1

p(Ai, Ai). (4.8)

We call D metastable if M(D) ≈ m.
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Given an arbitrary decomposition D = {Ai}mi=1 of state space, we give in
Theorem 4.2 sharp upper and lower bounds on its joint metastability which are
related to the spectral properties of the transition matrix. To do so, let

λl ≤ · · · ≤ λm ≤ · · · ≤ λ2 < λ1 = 1

be the l real eigenvalues of P counted according to their (algebraic) multiplic-
ity and let v1, · · · , vl denote the corresponding orthonormal (right) eigenvec-
tors. Let furthermore Q : l2(µ) → l2(µ) be the orthogonal projection onto
span{1A1

, · · · ,1Am} with respect to the µ-weighted scalar product 〈 , 〉µ; that
is,

Q(v) =

m∑
i=1

〈v,1Ai〉µ
〈1Ai ,1Ai〉µ

1Ai . (4.9)

Theorem 4.2 (Huisinga and Schmidt (2006)). The metastability of an arbitrary
partition of state space D = {A1, · · · , Am} is bounded from above and from below
by

1 + ρ2λ2 + · · ·+ ρmλm + c ≤ m(D) ≤ 1 + λ2 + · · ·+ λm (4.10)

where ρj = ‖Q(vj)‖2 = 〈Q(vj), Q(vj)〉µ ∈ [0, 1] and c = λl(1−ρ2 + · · ·+1−ρm).

Thus, the joint metastability of a partition of state space {A1, · · · , Am} can-
not be larger than the sum of the first m eigenvalues, 1 + λ2 + · · · + λm. This
upper bound is thus independent of the actual decomposition considered. The
lower bound is close to this upper bound if ρj ≈ 1. For each j, the value ρj
measures how constant the eigenvector vj is on the subsets of the decomposition
{A1, · · · , Am}; equality holds if and only if vj restricted to each of the subsets
of the decomposition is constant. Thus, in order to maximize the lower bound,
one should look for a decomposition on which the eigenvectors are as constant
as possible. This is the basis for algorithmic strategies of metastable state space
decompositions (Deuflhard et al., 2000; Deuflhard and Weber, 2005). The over-
all quality of the decomposition with respect to its joint metastability can be
judged by comparing the upper and the lower bound.

Example 4.1. We now apply both characterizations to our example (Example
3.6). The simulations (see Figure 3.6) suggest that there are two metastable
subsets A1 = {0, 1/n, · · · , r/n} and A2 = {(r + 1)/n, · · · , 1} for some r ∈
{0, · · · , n}. Figures 4.1–4.3 show for different sets of parameters the calculated
metastability M(C) of the decomposition C = (A1, A2) for r = 0, · · · , n; the
lower bound as provided by Theorem 4.2; as well as min{WA1 ,WA2} which
determines the metastability in terms of mean hitting times (see Def. (4.1)).

The figures show that both the decomposition C with highest joint metasta-
bility M(C) in terms of transition probabilities as well as the decomposition
with largest minimal waiting times depends on the ratio of the payoff parame-
ters b/(a+ b). It is given by r = bbn/(a+ b)c. These metastable decompositions
thus correspond (as expected) to the basins of attraction of the deterministic
approximation (see Section 3.2.2, pp. 82–83). The smaller the perturbation pa-
rameter ε, the higher the value M(C) for all decompositions. The lower bound
seems to be a good approximation for the partitions with highest joint metasta-
bility.
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Figure 4.1: Metastability in terms of (a) transition probabilities and in terms
of (b) minimum waiting times in the case of our example (Example 3.6) for
different decompositions C = (A1, A2), where A1 = {0, 1/n, · · · , r/n} and A2 =
{(r + 1)/n, · · · , 1} for r ∈ {0, · · · , n}. The star (*) on the x-axis indicates the
value of γ = b

a+b = 1
a+1 . The parameters are a = 1, b = 1, ε = .3, n = 11.

The upper bound 1 + λ2 of the joint metastability M(C) for these parameters
is 1.9986.
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Figure 4.2: Metastability in terms of (a) transition probabilities and in terms
of (b) minimum waiting times in the case of our example (Example 3.6) for
different decompositions C = (A1, A2), where A1 = {0, 1/n, · · · , r/n} and A2 =
{(r + 1)/n, · · · , 1} for r ∈ {0, · · · , n}. The star (*) on the x-axis indicates the
value of γ = b

a+b = 1
a+1 . The parameters are a = 2, b = 1, ε = .3, n = 11.

The upper bound 1 + λ2 of the joint metastability M(C) for these parameters
is 1.9890.
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Figure 4.3: Metastability in terms of (a) transition probabilities and in terms
of (b) minimum waiting times in the case of our example (Example 3.6) for
different decompositions C = (A1, A2), where A1 = {0, 1/n, · · · , r/n} and A2 =
{(r + 1)/n, · · · , 1} for r ∈ {0, · · · , n}. The star (*) on the x-axis indicates the
value of γ = b

a+b = 1
a+1 . The parameters are a = 2, b = 1, ε = .1, n = 11.

The upper bound 1 + λ2 of the joint metastability M(C) for these parameters
is 1.9996.
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Table 4.1 compares for different values of a and ε (assuming b = 1, n = 11)
the weight in the stationary distribution, the transition probabilities as well as
the waiting times for the sets A1, A2 in the decomposition C = (A1, A2) with
r = bbn/(a+b)c; that is, for the decomposition with the maximal joint metasta-
bility as well as maximal minimal waiting times. The table shows that while a
decomposition might be metastable according to both definitions, it can hap-
pen that the statistical weight of one of the subsets is close to 0. The empirical
frequency with which sample paths visit such a subset is thus close to 0, which
means that in such a case we are not going to observe very often sample paths
that visit this subset (see Theorem 2.2). Put differently, it is unlikely to observe
metastability in the sample paths.

ε = .4 ε = .3 ε = .1
subset A1 A2 A1 A2 A1 A2

a = 1
µ(Ai) .5 .5 .5 .5 .5 .5

p(Ai, Ai) .996 .996 .999 .999 1 1
WAi 331 331 1188 1188 3.7 ∗ 105 3.7 ∗ 105

a = 1.2
µ(Ai) .204 .796 .151 .849 .05 .95

p(Ai, Ai) .983 .996 .994 .999 1 1
WAi 155 331 428 1188 4.2 ∗ 104 3.7 ∗ 105

a = 2
µ(Ai) .003 .997 .001 .999 0 1

p(Ai, Ai) .962 1 .982 1 1 1
WAi 39 9404 82 7 ∗ 104 2346 2.7 ∗ 108

Table 4.1: Statistical weight µ(Ai), transition probability p(Ai, Ai), as well as
waiting times WAi for the sets Ai, i = 1, 2, in the decomposition C = (A1, A2)
with r = b b

a+bnc. Note that all values are approximative.

4.3 Metastability in Models of Evolution with
Noise

In this section, we study the two different characterizations of metastability in
models of evolution with noise. In order to differentiate the two characterizations
of metastability given in the previous sections, we write in short metastable-H
to mean to “metastable based on hitting times” and metastable-T to mean
“metastable in terms of transition probabilities”; similarly for metastability-H
and metastability-T.

In the following, let Xε = (Xε(k))k∈N for ε ≥ 0 be a model of evolution with
noise with state space Z (Def. 3.8). Let P ε denote for each ε ≥ 0 the transi-
tion matrix of Xε, and let µε denote the corresponding stationary distribution
provided ε > 0. For each ε ≥ 0, let τεA denote the ε-dependent hitting time of
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the set A of the Markov chain Xε (Def. 2.3).

4.3.1 Metastability based on Hitting Times in Models of
Evolution with Noise

As remarked in Section 3.2.4, it is the measures of radius and coradius that turn
out to be useful to study metastability-H in models of evolution with noise:

Proposition 4.3. Let L1, · · · , Lk, k ≥ 2, be disjoint limit sets of the unperturbed
Markov chain X0. Let L = ∪iLi. Then the sets L1, · · · , Lk are metastable-H if

min
i=1,...,k

r(Li) > cr∗(L). (4.11)

Proof. For each i = 1, · · · , k we have by Theorem 3.3:

1

Exτy
= O(εr(Li)) for x ∈ Li, y /∈ L, ε→ 0, (4.12)

which implies

1

WLi

= O(εr(Li)) for ε→ 0, (4.13)

since by definition of WLi we have

WLi =
1

µε(Li)

∑
w∈Li

µε(w) EwτεL\Li (4.14a)

≥ 1

µε(Li)

∑
w∈Li

µε(w) min
x∈Li

ExτεZ\Li (4.14b)

≥ min
x∈Li,y∈Z\Li

Exτεy . (4.14c)

Moreover, again by Theorem 3.3,

RL = sup
y/∈L

EyτεL = O(ε−cr
∗(L)). (4.15)

It thus follows that

RL
mini=1,...,kWLi

= O(εmini=1,...,k r(Li)−cr∗(L)), (4.16)

which implies the assertion.

Since cr∗(L) = 0 if B(L) = Z while always mini r(Li) > 0, we immediately
get:

Corollary 4.4. Let L1, · · · , Lk, k ≥ 2, be disjoint limit sets of the unperturbed
Markov chain X0 such that B(L) = Z for L = ∪iLi. Then L1, · · · , Lk are
metastable-H.

It does not suffice to replace the condition (4.11) in Proposition 4.3 by the
sufficient condition for stochastic stability r(L) > cr∗(L), as this example demon-
strates:
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Figure 4.4

Example 4.2. Consider a model of evolution with noise with limit sets L1, L2, L3

and transition costs between these limit sets as depicted in Figure 4.4.
Then,

r(L2) = 1 (4.17)

r(L3) = 1 (4.18)

r(L) = +∞ (4.19)

cr∗(L) = 9, (4.20)

where L = L2 ∪ L3. It follows that r(L) > cr∗(L) (and thus L contains all
stochastically stable states by Theorem 3.3). However, L2, L3 are not metastable-
H since

RL
min{WL2

,WL3
}
→ +∞ for ε→ 0. (4.21)

Thus, L contains all stochastically stable states but L2, L3 is not metastable-H.

Furthermore, the following example shows that the converse direction of
Proposition 4.3 need not hold.

Example 4.3. Consider a model of evolution with noise with limit sets L1, L2, L3, L4

and transition costs between these limit sets as depicted in Figure 4.5.
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kk
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UU

Figure 4.5

Then,

r(L2) = 10 (4.22)

r(L3) = 4 (4.23)

cr∗(L) = 9, (4.24)

where L = L2 ∪ L3. Thus, cr∗(L) = 9 > 4 = min{r(L2), r(L3)}, but (Xε(t)) is
metastable-H since for the sets L2, L3 and L = L2 ∪ L3 we have

RL
min{WL2

,WL3
}

= O(ε10−9) = O(ε) for ε→ 0. (4.25)
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This follows from the observation that the waiting times WL2
,WL3

consider
only transitions from states in L2 to states in L3 and from states in L3 to states
in L2, respectively, while the radii r(L2) and r(L3) consider all transitions out
of L2 and L3, respectively (and thus also transitions from L2 or L3 to L4),
compare Definition 4.1.

4.3.2 Metastability based on Transition Probabilities in
Models of Evolution with Noise

There is a direct relationship of limit sets of the unperturbed Markov chain X0

as well as of their basins of attraction (see Def. 3.10) with metastable-T, i.e.,
almost invariant, subsets of state space:

Proposition 4.5. Let L be a recurrent set of the unperturbed Markov chain X0

and let B(L) denote its basin of attraction. Then L as well as B(L) are almost
invariant under P ε.

Proof. First, notice that since L is a recurrent set und thus a closed communi-
cation class of X0, we have for each x ∈ L:∑

y∈L
P 0(x, y) = 1. (4.26)

Moreover, the same holds for x, y ∈ B(L): If not, there is a z ∈ Z \ B(L)
such that P 0(x, z) > 0. But this implies that x /∈ B(L) since in this case,
Px(X0(k) ∈ L) < 1 for all k ∈ N. Thus, we have proved by contraposition that
for each x ∈ B(L) we have ∑

y∈B(L)

P 0(x, y) = 1. (4.27)

Now, since (Xε)ε≥0 is a model of evolution with noise, the transition prob-
abilities P ε(x, y) are continuous in ε with limit P 0(x, y). This implies

pε(L,L) =
1

µε(L)

∑
x∈L

µε(x)
∑
y∈L

P ε(x, y) (4.28a)

→ 1 for ε→ 0. (4.28b)

Similarly for B(L).

It follows directly that a decomposition of state space into disjoint limit sets
is metastable-T:

Corollary 4.6. Let (L1, · · · , Lk) be a decomposition of state space Z into
disjoint limit sets of the unperturbed Markov chain X0. Then, (L1, · · · , Lk)
represents a metastable-T decomposition of Z.

The following example demonstrates that almost invariant subsets of state
space might not coincide with limit sets:
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Example 4.4. Consider a model of evolution with noise (Xε)ε≥0 on the state
space Z = {0, 1, 2} with transition matrix P 0 of the unperturbed Markov chain
X0 given by

P 0 =

 1− δ δ 0
1
2 0 1

2
0 δ 1− δ

 (4.29)

where 1 > δ > 0 is another parameter. Then, P 0 (for fixed δ) has a single limit
set which consists of the whole state space Z. For δ � 1, the sets {0} and {1}
are, however, almost invariant, as well.

Summarizing the results of this and the previous subsection, we get

Proposition 4.7. Let (Xε)ε≥0 be a model of evolution with noise with state
space Z. Let L1, · · · , Lk, k ≥ 2, be disjoint limit sets of the unperturbed
Markov chain X0 with B(L) = Z, where L = ∪iLi. Then (L1, · · · , Lk) is
both metastable-H and metastable-T.

Proof. By Corollary 4.4 and Corollary 4.6.

In contrast to the case of metastability-H, where a union L of limit sets which
fulfills the condition r(L) > cr∗(L) for containing all stochastically stable states
(see Theorem 3.3) need not be metastable-H, see Example 4.2, all limit sets and
all unions of limit sets are metastable-T in the sense of being almost invariant.
Thus, also a union of limits sets L for which r(L) > cr∗(L) is metastable-T.

Lastly, we point out that the results of this and the previous subsection
present an approach to the identification of metastable subsets of state space
for models of evolution with noise – provided that the identification of the limit
sets of the unperturbed Markov chain as well as their radii and coradii is not
too involved.

Example. In our running example (Example 3.6), the state space Z = {0, 1
n , · · · , 1}

can be decomposed into the basins of attraction of the two limit sets L0 = {0}
and L1 = {1} of the unperturbed Markov chain. Thus, by Proposition 4.7, these
limit sets are metastable-H as well as metastable-T. This confirms the numerical
results given in Example 4.1.





Chapter 5

Markov State Modeling

Markov state modelling is a modelling approach for the approximation of com-
plex dynamical processes that are characterized by metastable behavior. It has
been developed primarily for the application context of molecular dynamics (see
Deuflhard et al., 2000; Djurdjevac et al., 2010; Noé et al., 2007a, 2009; Schütte,
1998; Schütte et al., 1999; Schütte and Huisinga, 2003; Schütte et al., 2011,
and references therein). The motivation for such an approximation approach
is two-fold. First, models of large biomolecules like most models of complex
systems are usually too complicated to be analyzed analytically. Thus, com-
puter simulations are an important tool to explore their dynamic behavior.
Moreover, macromolecules are characterized by metastable dynamic behavior,
which is essential for understanding their biochemical functioning1. In this case
of metastable dynamic behavior on large state spaces, however, direct numer-
ical simulation becomes very costly or even infeasible from a computational
point of view since the transitions between metastable subsets of state space
are rare events. Second, although modern computing technologies make it more
and more possible to simulate large scale systems and to provide insights into
complex dynamical systems, the amount of data generated is too large to be
understood without rigorous methods for the analysis of their essential struc-
ture and dynamics (e.g., Sarich et al., 2014; Schütte et al., 2011). Against this
background, Markov state models have been developed as models of reduced
complexity whose construction takes only short trajectory data obtained by
simulation into account. As agent-based models are also computational mod-
els of large scale and high complexity (see Chapter 1), it seems worthwhile to
use the Markov state modelling approach as a tool for their analysis in case
metastability is present.

The basic idea of Markov state models is to approximate the original Markov
process by a Markov chain on a small finite state space. More specifically, a
Markov state model is defined as a Markov chain whose state space consists of
the dominant metastable sets of the original Markov process and whose tran-
sition rates between these macrostates are given by the aggregate statistics of

1 More specifically, macromolecules conserve their large scale geometric structure on long
time-scales – the so-called conformations – while on smaller time-scales the system may well
change. Switches between conformations are rare. Thus, conformations can be understood as
metastable subsets of state space.

109
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jumps between the metastable sets. The advantage of this approach in the con-
text of complex models with large state spaces is that the transition probabilities
can be estimated on the basis of short-term trajectory data. Moreover, it has
been shown that Markov state models have good approximation properties if
metastability is inherent in the system of interest (Sarich, 2011; Sarich et al.,
2010; Schütte and Sarich, 2013).

In Section 5.1, we first introduce further notions necessary for the under-
standing of the rest of the chapter such as the transfer operator T , orthogonal
projections, as well as committor functions. In Section 5.2, we introduce full
partition Markov state models as the Markov chain that approximates the jump
process between the subsets of a given partition. This construction allows us to
estimate the transition matrix of the full partition Markov state model from tra-
jectory data. We show how this construction relates to orthogonal projections;
more precisely, we show that the transition matrix of the full partition Markov
state models corresponds to the matrix representation of the projected transfer
operators onto the subspace of Rl, l = |Z|, spanned by the indicator functions
on the subsets of the partition. Subsequently, in Section 5.3, we use this last
observation as motivation to define general Markov state models as the Markov
chains with the transition matrix which corresponds to the matrix represen-
tation of the projected transfer operators. The core set Markov state models
are a special case of this construction in which the subspace of Rl considered
for the projection is spanned by the committor functions on disjoint, nonempty
subsets of Rl that do not necessarily constitute a full partition. Moreover, there
is an interpretation of the transition matrix of core set Markov state models
that allows as well its estimation from trajectory data. Finally, in Section 5.4
we discuss the approximation quality of Markov state models with respect to
stochastic stability and the propagation of probability distributions as well as
with respect to the approximation of eigenvalues. In Chapter 6, we relate these
approximation results to the identification of metastable subsets of state space.

Throughout the chapter, let Z denote the state space with |Z| = l. Let
(Xk)k∈N be an irreducible, reversible Markov chain on Z with transition matrix
P and let µ denote its unique stationary distribution.

5.1 Preliminaries

5.1.1 Transfer Operators

In Chapter 2.2, we introduced the transfer operator P that transfers probability
distributions in time. We can similarly consider a transfer operator T that
transfers probability densities with respect to the stationary distribution µ;
that is, functions v : Z → R≥0 with

∑
i∈Z v(i)µ(i) = 1. It is defined by

T : Rl → Rl (5.1)

with

T (v)(j) =
1

µ(j)

l∑
i=1

v(i)µ(i)P (i, j). (5.2)
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The operator T maps probability densities with respect to µ to probability
densities with respect to µ. Note that we did not differentiate between the
probability density with respect to µ and its representation as a vector since we
considered again the canonical basis {e1, · · · , el} of Rl.

In matrix notation, we may write

T (v) = Qv, (5.3)

where Q = (MPM−1)T is the transition matrix of the time-reversed Markov

chain, M = diag(µ(1), µ(2), · · · , µ(l)). Written differently, Q(i, j) = µ(j)
µ(i)P (j, i).

In general, the two operators are related via

µT (v) = P(µv), (5.4)

where for a density v with respect to µ we denote by µv the probability dis-
tribution w defined by w(j) = v(j)µ(j). Notice that (Xk) is reversible if and
only if Q = P and thus T (v) = Pv. Moreover, we have noted in Chapter 2.2
that the reversibility of (Xk) is equivalent to P being self-adjoint in l2( 1

µ ). In

the case of the transfer operator T this translates to (Xk) being reversible with
respect to µ if and only if T is self-adjoint in l2(µ); that is,

〈T (v1), v2〉µ = 〈v1, T (v2)〉µ, (5.5)

where l2(µ) is the vector space Rl equipped with the scalar product 〈 , 〉µ,

〈v1, v2〉µ =

l∑
i=1

v1(i)v2(i)µ(i). (5.6)

Note that

〈v1, v2〉µ = 〈µv1, µv2〉 1
µ
. (5.7)

In what follows, we see T as an operator on l2(µ) and P as an operator
on l2( 1

µ ). Doing so allows to take advantage of the Hilbert space framework.
In the finite state space case we consider in this thesis, this does not represent
a restriction, but in the continuous state space it does. We note that in this
setting, Equation (5.4) can be depicted as a commutative diagram, see Figure

5.1. The arrows l2( 1
µ )

1/µ−−→ l2(µ) in the diagram denote the reweighting of

probability distributions w ∈ l2( 1
µ ) with 1/µ which yields a probability density

v = w/µ ∈ l2(µ) with respect to µ defined entrywise by v(j) = w(j)/µ(j).

Similarly, the arrows l2( 1
µ )

µ←−− l2(µ) denote the entrywise reweighting with µ of

probability densities v ∈ l2(µ) with respect to µ to yield probability distributions
w = µv ∈ l2( 1

µ ).

We mention these relationships between the spaces l2( 1
µ ) and l2(µ), and

between the transfer operators P and T , because in the discrete state space
case we consider here it is common to think and work in terms of probability
distributions, but less so in probability densities with respect to the stationary
distribution. For this reason, we will state the main results and their interpre-
tation in the following in terms of probability distributions, and thus, in l2( 1

µ )

and using the operator P. Using Eq. (5.4), we can relate the results to the case
of l2(µ) and the transfer operator T , and thereby to the existing literature.
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Figure 5.1: Commutative diagram for Equation (5.4).

5.1.2 Orthogonal Projections

The principal idea behind Markov state modelling is the best approximation and
thus orthogonal projection of the dynamics on a lower dimensional subspace.

In the case of a given orthogonal basis {u1, · · · , um} of the considered sub-
space D ⊂ Rl, we can compute the result of the orthogonal projection of a
vector v ∈ Rl onto D via

QD(v) =

m∑
j=1

〈v, uj〉
〈uj , uj〉

uj . (5.8)

In general, given a (not necessarily orthogonal) basis {q1, · · · , qm}, we can write

QD(v) =

m∑
i,j=1

S−1(i, j)〈v, qi〉qj , (5.9)

where S is the matrix with entries S(i, j) = 〈qi, qj〉. The matrix S is invertible
since the qi’s are assumed linearly independent.
Note that in the above equations we have not specified the scalar product con-
sidered. In the following, we will denote by QµD the orthogonal projection onto

D with respect to 〈 , 〉µ and by Q1/µ
D the orthogonal projection onto D with

respect to 〈 , 〉 1
µ

.

5.1.3 Committor Functions

Let C1, · · · , Cm be nonempty, disjoint sets that do not constitute a full partition
of state space Z. Let C = ∪mi=1Ci. The forward committor q+

i : Z → [0, 1] is
the function that gives for a state z ∈ Z the probability that the Markov chain
(Xk) will visit the set Ci first rather than C \ Ci. More formally,

q+
i (z) = P[τ0

Ci < τ0
C\Ci | X0 = z], (5.10)

where τkA = inf{k′ ≥ k | Xk′ ∈ A} for k ≥ 0. Note that in this notation
the hitting time τA introduced in Def. 2.3 is just τ1

A. The forward committor
q+
i is the solution to the following linear system with boundary conditions (see
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Metzner et al., 2009b):

(P − Id)q+
i (z) = 0 if z ∈ Z \ C, (5.11a)

q+
i (z) = 1 if z ∈ Ci, (5.11b)

q+
i (z) = 0 if z ∈ C \ Ci. (5.11c)

Similarly, the backward committor q−i : Z → [0, 1] is defined as the probability
that (Xk) came last from Ci rather than from C \ Ci, conditional on being in
state z ∈ Z. The function q−i solves

(Q− Id)q−i (z) = 0 if z ∈ Z \ C, (5.12a)

q−i (z) = 1 if z ∈ Ci, (5.12b)

q−i (z) = 0 if z ∈ C \ Ci, (5.12c)

where Q refers to the transition matrix of the time-reversed Markov chain, see
Section 5.1.1. Now, if (Xk) has a unique stationary distribution which is non-
vanishing on all of the sets C1, · · · , Cm then Eqs. (5.11) and (5.12) have a unique
solution. Moreover, for reversible Markov chains (Xk) we know that P = Q and
thus q+

i = q−i . In this case, we write in short qi and refer to the committor
function.

Example 5.1. Let (Xt)t∈T be the Markov chain on state space Z = {0, 1
n , · · · , 1}

with transition matrix P of our example (see Example 3.6). Let C1 = {0} ⊂ Z
and C2 = {1} ⊂ Z. Figure 5.2 displays the committor function q1 as well as the
eigenvector u′2 associated with the eigenvalue of second largest absolute value
normalized such that u′2(0) = 1. The figure hints at the observation that, for
ε→ 0, committor functions get close to eigenvectors (Bovier et al., 2002).

5.2 Full Partition Markov State Models

In this section, we are going to focus on full partition Markov state models.
These models consider a full partition of state space and the aggregate jump
statistics between the sets in the partition. As we show in the next section, the
full partition Markov state models are a special case of core set Markov state
models.

5.2.1 Construction of Full Partition Markov State Models

Let (Xk)k∈N be a discrete-time Markov chain on a finite state space Z =
{1, · · · , l}. Our goal is to construct a Markov chain (X̂k)k∈N on the state space
Ẑ = {1, · · · ,m} with m considerably smaller than l such that (X̂k) captures
the essential dynamics of the original Markov chain (Xk).

For the construction of a Markov state model based on a full partition of
state space, we consider subsets A1, · · · , Am of Z that partition Z; that is,

m⋃
j=1

Aj = Z and Ai ∩Aj = ∅ for i 6= j. (5.13)
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Figure 5.2: Comparison of the committor function q1 with the eigenvector u′2
associated with the eigenvalue of second largest absolute value normalized such
that u′2(0) = 1 for the parameter values a = 2, b = 1, n = 11 and (a) ε = .3, (b)
ε = .1.
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The reduced chain (X̂k) on Ẑ = {1, · · · ,m} with transition matrix P̂ = (p̂ij) is
then defined by setting

p̂ij = P[X̃1 = j | X̃0 = i], (5.14)

where (X̃k)k∈N is the discrete-time process on Ẑ that describes the dynamics of
(Xk) between the sets A1, · · · , Am, i.e.,

X̃k = i⇔ Xk ∈ Ai. (5.15)

Note that we differentiate between (X̂k) and (X̃k) because (X̃k) is in general
not Markovian.

Example 5.2. Consider the Markov chain (Xε(t))t∈T of our running example
(Example 3.6). Let (A,B) be the partition of its state space Z = {0, 1

n , · · · , 1}
into the basins of attraction of the limit sets of the unperturbed Markov chain
(X0(t)); that is, A = {0, · · · , r/n} and B = {r+1/n, · · · , 1}, where r = bbn/(a+
b)c. Then,

Pµ
(
Xε(t+ 1/n) ∈ B | Xε(t) ∈ A

)
=

1

µ(A)

∑
i∈A

µ(i)
∑
j∈B

p(i, j) (5.16a)

=
µ(r)

µ(A)
p(r, r + 1), (5.16b)

where the last equality follows from the fact that the only transition possible
from A to B is from r to r + 1. Furthermore,

Pµ
(
Xε(t+ 1/n) ∈ B | Xε(t) ∈ A,Xε(t− 1/n) ∈ B

)
(5.17a)

= Pµ
(
Xε(t+ 1/n) ∈ B | Xε(t) = r

)
(5.17b)

= p(r, r + 1) (5.17c)

6= Pµ
(
Xε(t+ 1/n) ∈ B | Xε(t) ∈ A

)
, (5.17d)

since µ(A) > µ(r) if r 6= 0 because in this case the set A contains more than one
population state each of which has positive weight in the stationary distribution.
Thus, the process (X̃ε(k)) defined according to Eq. (5.15) with respect to the
partition (A,B) is not memoryless and thus does not have the Markov property.

The reason why (X̃k) is not Markovian is called the recrossing problem. This
name refers to the issue that transitions between the subsets of state space are
much more likely at the boundaries of the sets. However, we still want to ap-
proximate (Xk) by a Markov chain which is why we consider (X̂k). In Section
5.4, we give an upper bound on the error of approximating (X̃k) by (X̂k) and
discuss under which conditions the approximation is nevertheless acceptable.
Apparent advantages of a reduced state space Markov chain are that it is eas-
ier to compute eigenvalues and eigenvectors as well as other properties such as
waiting times.

Example (Continuation). In our example (Example 3.6) with parameters a =
b = 1, n = 11, ε = .3, we have r = 5/11 and A = {0, · · · , 5/11}, B =
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{6/11, · · · , 1}. The resulting matrix P̂ is given by (rounded to four decimal
places)

P̂ =

(
.9989 .0011
.0011 .9989

)
. (5.18)

From this we can easily calculate Ŵ1 = E1τ̂2 = 1/p(A,B) (=Ŵ2 = E2τ̂1 =
1/p(B,A), since P̂ is symmetric), where Ŵ1, Ŵ2 and τ̂ refer to the waiting
times in state 1, 2, and to the hitting time of the chain (X̂t)t∈T, respectively.
See Table 5.1 for a comparison of WA and Ŵ1 as well as of the two dominant
eigenvalues of P with the two eigenvalues of P̂ . It shows that the approximation
underestimates the waiting times.

(Xt) (X̂t)

WA = 1188 Ŵ1 = 909

λ1 = 1 λ̂1 = 1

λ2 = .9986 λ̂2 = .9978

Table 5.1: Waiting times and dominant eigenvalues of (Xt) and (X̂t), respec-
tively.

The following proposition shows that (X̂k) is reversible if (Xk) is:

Proposition 5.1 (Reversibility of (X̂k)). Let (Xk)k∈N be a reversible discrete-
time Markov chain on a finite state space Z with transition matrix P and
unique stationary distribution µ. Let A1, A2, · · · , Am be a full partition of Z
and let (X̂k)k∈N be the Markov chain on Ẑ = {1, · · · ,m} whose transition ma-
trix P̂ = (pij)i,j=1,...,m is defined by Eq. (5.14). Then, {X̂k} has the stationary

distribution µ̂ defined on Ẑ by

µ̂(i) = µ(Ai) for all i = 1, · · · ,m. (5.19)

Moreover, P̂ and µ̂ are in detailed balance:

µ̂(i)P̂ (i, j) = µ̂(j)P̂ (j, i) for all i, j = 1, · · · ,m. (5.20)

Thus, (X̂k) is reversible as well.

Proof. It follows straightforwardly from the reversibility of (Xk) with respect
to µ that

µ̂(i)P̂ (i, j) = µ(Ai)
1

µ(Ai)

∑
k∈Ai

µ(k)
∑
l∈Aj

P (k, l) (5.21a)

=
∑
k∈Ai

∑
l∈Aj

µ(l)P (l, k) (5.21b)

= µ(Aj)
1

µ(Aj)

∑
l∈Aj

µ(l)
∑
k∈Ai

P (l, k) (5.21c)

= µ̂(j)P̂ (j, i). (5.21d)
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Last but not least, another important feature of the transition matrix P̂ is
that it can be estimated from trajectory data of the original process (Xk) only.
Given a trajectory of M datapoints xk, k = 1, · · · ,M where xk refers to the
realization of the random variable Xk. Then, P̂ can be estimated by

p̂∗ij =
Nij
ni

, (5.22)

where ni is the number of times the process spent in Ai, i.e., ni = |{xk : xk ∈
Ai}|, and Nij is the number of transitions made from the set Ai to the set Aj ,

i.e., Nij = |{(xk, xk+1) : xk ∈ Ai and xk+1 ∈ Aj}|. P̂ ∗ is a maximum likelihood

estimator for P̂ . The resulting statistical error ‖P̂ − P̂ ∗‖ can be further ana-
lyzed (Metzner et al., 2009a; Noé, 2008; Röblitz, 2008; Singhal and Pande, 2005).

5.2.2 The Full Partition Markov State Model and Orthog-
onal Projections

In this section, we are going to give another interpretation of the reduced chain
(X̂k) and its transition matrix P̂ in terms of projected transfer operators. As
we said before, one way to arrive at an approximation of the chain (Xk) is
via orthogonal projection of its dynamics onto a lower dimensional subspace
D ⊂ Rl. As a matter of fact, the transition matrix P̂ is the matrix repre-
sentation of the transfer operators T and P projected onto the subspace D =
span{1A1

, · · · ,1Am} and µD, respectively, where µD = span{µ1A1
, · · · , µ1Am}

(just as P is the matrix representation of the transfer operators P and T ). See
Figure 5.3 for a commutative diagram that serves as an orientation for the re-
lationships shown in this section.

l2( 1
µ ) ⊃ µD

Q1/µ
µD P

��

l2( 1
µ )

Q1/µ
µDoo

1
µ //

l2(µ)
QµD //

µ
oo D ⊂ l2(µ)

QµDT

��
l2( 1

µ ) ⊃ µD
1
µ //

D ⊂ l2(µ)
µ

oo

Figure 5.3: Relationships between the projected transfer operators

Q1/D
µD PQ

1/µ
µD and QµDT Q

µ
D.

Now, let D = span{1A1
, · · · ,1Am}. Note that 1 ∈ D and thus D as a

subspace of l2(µ) can be considered the space of probability densities with re-
spect to µ that are still representable in our reduced model. In other words,
only probability densities with respect to µ that are constant on the subsets
A1, · · · , Am of the considered partition are elements of D.
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In this way, µv for a v ∈ D is a probability distribution and we can consider

the subspace µD = span{ϕ1, ϕ2, · · · , ϕm} of l2( 1
µ ) where ϕj =

µ1Aj
µ̂(j) for the

subspace of probability distributions which are still representable in the reduced
model. In other words, µD can be interpreted as the subspace of probability
distributions that are considered for the approximation. A distribution w is an
element of µD if its probability density w/µ with respect to µ defined entrywise
by w(j)/µ(j) is an element of D and thus if w/µ is constant on the subsets of
the partition. Put differently, w ∈ µD if it is distributed within the subsets of
the partition according to the stationary distribution µ. We consider the ϕj as
a basis of this subspace (instead of, e.g., µ1Aj ) since if µD 3 w =

∑m
j=1 ŵ(j)ϕj

is a vector representation of w with respect to the basis {ϕ1, · · · , ϕm} then

1 =

l∑
i=1

w(i) (5.23a)

=

l∑
i=1

( m∑
j=1

ŵ(j)ϕj
)
(i) (5.23b)

=

m∑
j=1

ŵ(j)

µ̂(j)

∑
i∈Aj

µ(i) (5.23c)

=

m∑
j=1

ŵ(j). (5.23d)

It follows that ŵ is a probability distribution on Ẑ = {1, · · · ,m} if and only if
w is a probability distribution on Z (the non-negativity of ŵ follows from the
non-negativity of w).

Now, for w′ ∈ l2( 1
µ ), we have that its projection w = Q1/µ

µD (w′) can be

represented in terms of the basis {ϕj} as w =
∑m
j=1 ŵ(j)ϕj . Moreover, since by

straightforward calculation we get

〈ϕj , ϕj〉 1
µ

=
1

µ̂(j)
(5.24)

as well as

〈P(ϕk), ϕj〉 1
µ

=
1

µ̂(k)µ̂(j)

∑
z∈Z

(µ1Ak)TP (z)µ1Aj (z)
1

µ(z)
(5.25a)

=
1

µ̂(k)µ̂(j)

∑
z∈Aj

(µ1Ak)TP (z) (5.25b)

=
1

µ̂(k)µ̂(j)

∑
z∈Aj

∑
x∈Z

(µ1Ak)(x)P (x, z) (5.25c)

=
1

µ̂(k)µ̂(j)

∑
x∈Ak

µ(x)
∑
z∈Aj

P(X1 = z | X0 = x) (5.25d)

=
1

µ̂(k)µ̂(j)

∑
x∈Ak

µ(x)P(X1 ∈ Aj | X0 = x) (5.25e)

=
1

µ̂(j)
P̂ (k, j), (5.25f)
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it follows by definition of the orthogonal projection Q1/µ
µD that

Q1/µ
µDP(ϕk) =

m∑
j=1

〈P(ϕk), ϕj〉 1
µ

〈ϕj , ϕj〉 1
µ

ϕj (5.26a)

=

m∑
j=1

P̂ (k, j)ϕj . (5.26b)

Thus,

Q1/µ
µDP(w) =

m∑
j=1

(ŵT P̂ )(j) ϕj , (5.27)

which means that ŵP̂ is a vector representation of Q1/µ
µDP(w) with respect to

the basis {ϕj} and thus P̂ is a matrix representation of the projected transfer

operator Q1/µ
µDP|µD.

Now, given a probability density v′ ∈ l2(µ) with respect to µ. Since {1A1 , · · · ,1Am}
is a basis of D, its projection v = QµD(v′) can be represented by

v =

m∑
j=1

v̂(j)1Aj . (5.28)

Notice at this point that v̂ is a probability density on Ẑ = {1, · · · ,m} with
respect to µ̂ if and only if v is a probability density with respect to µ:

1 =

l∑
i=1

v(i)µ(i) (5.29a)

=

l∑
i=1

µ(i)
( m∑
j=1

v̂(j)1Aj
)
(i) (5.29b)

=

m∑
j=1

v̂(j)
∑
i∈Aj

µ(i) (5.29c)

=

m∑
j=1

v̂(j)µ̂(j). (5.29d)

This is why we consider the basis {1Ai} for D (the non-negativity of v̂ follows
from the non-negativity of v).
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Moreover, we have by the definition of the orthogonal projection QµD that

QµDT Q
µ
D(1Ai) =

m∑
j=1

〈T (1Ai),1Aj 〉µ
〈1Aj ,1Aj 〉µ

1Aj (5.30a)

=

m∑
j=1

〈P(µ1Ai), µ1Aj 〉 1µ
µ(Aj)

1Aj (5.30b)

=

m∑
j=1

µ̂(i)〈P(ϕi), ϕj〉 1
µ
1Aj (5.30c)

=

m∑
j=1

µ̂(i)

µ̂(j)
P̂ (i, j)1Aj , (5.30d)

which implies

QµDT Q
µ
D(1Ai) =

m∑
j=1

P̂ (j, i)1Aj , (5.31)

since (P̂ , µ̂) are in detailed balance, see Proposition 5.1.
From this follows for v =

∑m
j=1 v̂(j)1Aj that

QµDT Q
µ
D(v) =

m∑
j=1

(P̂ v̂)(j)1Aj , (5.32)

which means that P̂ v̂ is a vector representation of QµDT Q
µ
D(v) with respect to

the basis {1Aj} and P̂ is a matrix representation of the projected transfer op-
erator QµDT|D with respect to the basis {1Aj}.

Lastly, to complete the sketched relationship between the projected transfer
operators, note that if w′ = µv′, then ŵ = µ̂v̂ where ŵ and v̂ are the vector

representations of Q1/µ
µD (w′) and QµD(v′) with respect to the bases {ϕj} and

{1Aj}, respectively. It then follows that

Q1/µ
µDPQ

1/µ
µD (w′) =

m∑
j=1

ŵT P̂ (j) ϕj (5.33a)

=

m∑
j=1

((µ̂v̂)T P̂ )(j) ϕj (5.33b)

= { detailed balance of (P̂ , µ̂)} (5.33c)
m∑
j=1

P̂ v̂(j) (µ1Aj ) (5.33d)

= µ

m∑
j=1

P̂ v̂(j) 1Aj (5.33e)

= µQµDT Q
µ
D(v′). (5.33f)

Summarizing, we get
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Proposition 5.2. Let (Xk)k∈N be a reversible Markov chain with transition
matrix P and stationary distribution µ. Let (A1, · · · , Am) be a partition of state
space Z and let (X̂k)k∈N denote the reduced Markov chain defined in Eqs. (5.14)
and (5.15) with state space Ẑ = {1, · · · ,m}, transition matrix P̂ , and stationary
distribution µ̂. Let furthermore D and µD be the subspaces of Rl defined by D =
span{1A1

, · · · ,1Am} and µD = span{ϕ1, · · · , ϕm}, where ϕj = µ1Aj/µ̂(j).

Then P̂ is the matrix representation of the projected transfer operators Q1/µ
µDP|µD

and QµDT|D with respect to the multiplication of vectors to the matrix from the
left and right, respectively:

Q1/µ
µDP|µD : µD → µD

w 7→
m∑
j=1

(ŵT P̂ )(j)ϕj where w =

m∑
j=1

ŵ(j)ϕj ,

and

QµDT|D : D → D

v 7→
m∑
j=1

(P̂ v̂)(j)1Aj where v =

m∑
j=1

v̂(j)1Aj .

Moreover, we have the relationship

Q1/µ
µDPQ

1/µ
µD (w′) = µQµDT Q

µ
D(v′) (5.34)

for all v′, w′ ∈ Rl such that w′ = µv′.

5.3 Core Set Markov State Models

In the previous section, we defined Markov state models for a full partition
of state space and showed that there is a one-to-one relationship between the
Markov chain (X̂k) and the matrix representation of the projected transfer op-
erators. In this section, we generalize the projected transfer operator approach
to subspaces D that are not necessarily spanned by the indicator functions on
the sets of a partition of state space. We derive the matrix representation for
the projected transfer operators and show that the same relationships between
the projected transfer operators hold (see again Figure 5.3). On this basis,
we define general Markov state models as the Markov chain whose transition
matrix corresponds to the matrix representation of the projected transfer op-
erators. Subsequently, we show that there is an interpretation of the matrix
representation which allows to estimate it from trajectory data in the case the
subspace D is spanned by committor functions with respect to so-called core
sets; that is, some nonempty, disjoint sets which do not necessarily form a full
partition of state space. It is this essential feature that makes core set Markov
state models so interesting.
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5.3.1 Projected Transfer Operators on General Subspaces

In what follows, let {q1, · · · , qm} be a basis of D. The only assumption we will
make on D is that 1 ∈ D, which means that the probability density with respect
to µ is an element of D. As in the case of full partition models, we interpret D
as the subspace of Rl which represents the probability densities with respect to
µ that are representable in the reduced model, and we interpret the associated
subspace µD as the subspace of Rl which comprises the probability distributions
representable in the reduced model.

Note that if we define µ̂ by

µ̂(j) =
∑
i∈Z

µ(i)qj(i), (5.35)

then, as before, we have that v ∈ D is a probability density with respect to µ if
and only if v̂ is a probability density with respect to µ̂:

1 =
∑
i∈Z

v(i)µ(i) (5.36a)

=
∑
i∈Z

µ(i)
( m∑
j=1

v̂(j) qj
)
(i) (5.36b)

=

m∑
j=1

v̂(j)
∑
i∈Z

µ(i)qj(i) (5.36c)

=

m∑
j=1

v̂(j)µ̂(j). (5.36d)

Now, let {ϕ1, · · · , ϕm} be a basis of µD, where ϕj =
µqj
µ̂(j) . This basis seems

natural for µD since if w ∈ µD is a probability distribution, then its vector
representation with respect to the ϕj ’s, i.e., w =

∑m
j=1 ŵ(j)ϕj , is again a prob-

ability distribution:

1 =
∑
i∈Z

w(i) (5.37a)

=
∑
i∈Z

( m∑
j=1

ŵ(j)ϕj
)
(i) (5.37b)

=

m∑
j=1

ŵ(j)
∑
i∈Z

ϕj(i) (5.37c)

=

m∑
j=1

ŵ(j)
∑
i∈Z

µqj(i)

µ̂(j)
(5.37d)

=

m∑
j=1

ŵ(j)
1

µ̂(j)

∑
i∈Z

µ(i)qj(i) (5.37e)

=

m∑
j=1

ŵ(j). (5.37f)

(5.37g)
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We define the matrices P̂ and W by

P̂ (j, k) = µ̂(k)〈P(ϕj), ϕk〉 1
µ

(5.38)

=
〈T (qj), qk〉µ

µ̂(j)
,

and

W (i, j) = µ̂(j)〈ϕi, ϕj〉 1
µ

(5.39)

=
〈qi, qj〉µ
µ̂(i)

.

At this point, notice that (P̂ , µ̂) are in detailed balance:

µ̂(j)P̂ (j, k) = 〈T (qj), qk〉µ (5.40a)

= 〈qj , T (qk)〉µ (5.40b)

= µ̂(k)P̂ (k, j) (5.40c)

by self-adjointness of T with respect to 〈 , 〉µ.

Furthermore, we get by straightforward calculation,

〈ϕi, ϕj〉 1
µ

=
S(i, j)

µ̂(i)µ̂(j)
, (5.41)

where S(i, j) = 〈qi, qj〉µ. Thus if S(ϕ) is the matrix defined by Sϕ(i, j) =
〈ϕi, ϕj〉 1

µ
, then

S−1
ϕ (i, j) = µ̂(i)µ̂(j)S−1(i, j). (5.42)

With this we get by the definition of the orthogonal projection Q1/µ
µD

Q1/µ
µDP(ϕk) =

m∑
i,j=1

S−1
ϕ (i, j)〈P(ϕk), ϕi〉 1

µ
ϕj (5.43a)

=

m∑
j=1

ϕj

m∑
i=1

S−1(i, j)µ̂(i)µ̂(j)
P̂ (k, i)

µ̂(i)
(5.43b)

=

m∑
j=1

ϕj

m∑
i=1

P̂ (k, i)W−1(i, j) (5.43c)

=

m∑
j=1

(P̂W−1)(k, j) ϕj . (5.43d)

This means that P̂W−1 is a matrix representation of Q1/µ
µDP|µD with respect to

the basis {ϕj}. If ŵ is a vector representation of w ∈ µD with respect to {ϕj},
i.e., w =

∑m
j=1 ŵ(j)ϕj , then ŵT P̂W−1 is a vector representation of Q1/µ

µDP(w).
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Similarly in the case of the transfer operator T , we get by the definition of
QµD that

QµDT (qk) =

m∑
i,j=1

S−1(i, j)〈T (qk), qi〉µ qj (5.44a)

= {W (i, j) =
S(i, j)

µ̂(i)
⇒W−1(j, i) = µ̂(i)S−1(j, i) = µ̂(i)S−1(i, j)}(5.44b)

m∑
j=1

qj

m∑
i=1

W−1(j, i)

µ̂(i)
µ̂(k)P̂ (k, i) (5.44c)

= { detailed balance of (P̂ , µ̂)} (5.44d)
m∑
j=1

qj

m∑
i=1

W−1(j, i)P̂ (i, k) (5.44e)

=

m∑
j=1

(W−1P̂ )(j, k) qj . (5.44f)

It follows that if v ∈ D has the vector representation v̂ with respect to the
basis {qi}, i.e., v =

∑m
j=1 v̂(j)qj , then

QµDT (v) =

m∑
j=1

(W−1P̂ v̂)(j) qj , (5.45)

and thus, W−1P̂ v̂ is a vector representation of QµDT (v) with respect to the basis

{qi} and QµDT|D has the matrix representation W−1P̂ with respect to the basis
{qi}.

Lastly, we show that

Q1/µ
µDPQ

1/µ
µD (w′) = µQµDT Q

µ
D(v′), (5.46)

where w′ = µv′. In order to show this, notice that if w = Q1/µ
µD (w′) =∑m

j=1 ŵ(j)ϕj and v = QµD(v′) =
∑m
j=1 v̂(j)qj , then by straightforward cal-

culation ŵ = µ̂v̂.



5.3. CORE SET MARKOV STATE MODELS 125

It follows that

Q1/µ
µDPQ

1/µ
µD (w′) =

m∑
j=1

ŵT P̂W−1(j) ϕj (5.47a)

=

m∑
j=1

(µ̂v̂)T P̂W−1(j) ϕj (5.47b)

=

m∑
j=1

ϕj

m∑
k=1

µ̂(k)v̂(k)P̂W−1(k, j) (5.47c)

=

m∑
j=1

ϕj

m∑
k=1

v̂(k)µ̂(j)W−1P̂ (j, k) (5.47d)

=

m∑
j=1

W−1P̂ v̂ (j)µ̂(j) ϕj (5.47e)

=

m∑
j=1

W−1P̂ v̂ (j) (µqj) (5.47f)

= µ

m∑
j=1

W−1P̂ v̂ (j) qj (5.47g)

= µQµDT Q
µ
D(v′), (5.47h)

where we used the fact that

µ̂(j)P̂W−1(j, i) = µ̂(i)W−1P̂ (i, j), (5.48)

since (P̂ , µ̂) are in detailed balance as is (W−1, µ̂):

µ̂(i)W−1(i, j) = µ̂(i)µ̂(j)S−1(i, j) (5.49a)

= µ̂(i)µ̂(j)S−1(j, i) (5.49b)

= µ̂(j)W−1(j, i). (5.49c)

We summarize the results in the following

Proposition 5.3. Let (Xk)k∈N be a reversible Markov chain with transition ma-
trix P and stationary distribution µ. Let D ⊂ Rl with 1 ∈ D and let q1, · · · , qm
be a basis of D. Let P̂ , W and µ̂ be defined according to Eqs. (5.38), (5.39),
and (5.35), respectively. Moreover, let µD be the subspace of Rl with basis
{ϕ1, · · · , ϕm}, where ϕj = µqj/µ̂(j). Then P̂W−1 is the matrix representation

of the projected transfer operator Q1/µ
µDP|µD with respect to the multiplication of

vectors to the matrix from the left:

Q1/µ
µDP|µD : µD → µD

w 7→
m∑
j=1

(ŵT P̂W−1)(j) ϕj where w =

m∑
j=1

ŵ(j)ϕj .

Similarly, W−1P̂ is the matrix representation of the projected transfer operator
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QµDT|D with respect to the multiplication of vectors to the matrix from the right:

QµDT|D : D → D

v 7→
m∑
j=1

(W−1P̂ v̂)(j) qj where v =

m∑
j=1

v̂(j)qj .

Moreover, we have the relationship

Q1/µ
µDPQ

1/µ
µD (w′) = µQµDT Q

µ
D(v′) (5.50)

for all v′, w′ ∈ Rl such that w′ = µv′.

5.3.2 General Markov State Models

On the basis of Proposition 5.3, we can define general Markov state models in
such a way that there is again a correspondence between the matrix representa-
tion of the projected transfer operators and the transition matrix of the Markov
chain. To do so, let D be the subspace of Rl with basis q1, · · · , qm and let P̂ ,W,
and µ̂ be defined according to Eqs. (5.38), (5.39), and (5.35), respectively. Let
Ẑ = {1, · · · ,m}.

Now, let us define the general Markov state model as the Markov chain
(X̂k)k∈N with quasi-transition matrix P̂W−1. We write “quasi”-transition ma-
trix since we are not sure that P̂W−1 is always a stochastic matrix. We only
know that its rows sum up to one since this is the case for both P̂ and W , and
thus also for W−1 as well as P̂W−1. In the examples, the entries of P̂W−1 are
also non-negative, but we are not sure whether this holds in general.

Furthermore, notice that µ̂ is the stationary distribution of (X̂k) since (P̂ , µ̂)
as well as (W−1, µ̂) are in detailed balance, which implies that µ̂P̂ = µ̂ and
µ̂W−1 = µ̂, respectively. Thus,

µ̂P̂W−1 = µ̂W−1 = µ̂. (5.51)

Therefore, the time-reversed matrix (see Section 5.1.1) with (i, j)th entry

given by µ̂(j)
µ̂(i) P̂W

−1(j, i) is well-defined. By Eq. (5.48), the time-reversed matrix

thus corresponds to W−1P̂ . This implies that (X̂k) is reversible with respect to
µ̂ if and only if P̂ and W−1 commute; that is,

P̂W−1 = W−1P̂ . (5.52)

By Proposition 5.3, the definition of (X̂k) is made in such a way that, just as
in the case of full partition Markov state models, both a) the transfer operator
P̂ : Rm → Rm of (X̂k) has the same matrix representation P̂W−1 (with respect

to the canonical basis of Rm) as the projected transfer operator Q1/µ
µDP (with

respect to the ϕj ’s), and b) the transfer operator T̂ : Rl → Rl of (X̂k) has the

same matrix reprentation W−1P̂ (with respect to the canonical basis) as the
projected transfer operator QµDT (with respect to the qj ’s).

Lastly, notice that we can again consider the spaces l2(µ̂) and l2( 1
µ̂ ), which

correspond to Rm equipped with the scalar products 〈 , 〉µ̂ and 〈 , 〉 1
µ̂

, respec-

tively. We again get the relationship

〈v1, v2〉µ̂ = 〈µ̂v1, µ̂v2〉 1
µ̂
. (5.53)
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However, in general,

〈v̂1, v̂2〉µ̂ 6= 〈v1, v2〉µ, (5.54)

where v̂1, v̂2 are the vector representations of v1, v2 with respect to the basis
{q1, · · · , qm} of D, i.e., v1 =

∑m
j=1 v̂1(j)qj and v2 =

∑m
j=1 v̂2(j)qj . Thus, in

general,

‖v̂‖µ̂ 6= ‖v‖µ, (5.55)

where v̂ is the vector representation of v ∈ D with respect to the qj ’s. Equality
holds in (5.54), e.g., if the basis vectors q1, · · · , qm are orthogonal with respect
to 〈 , 〉µ and

‖qj‖2µ = µ̂(j). (5.56)

This is, for instance, the case for full partition Markov state models. Similarly,
in general

〈ŵ1, ŵ2〉 1
µ̂
6= 〈w1, w2〉 1

µ
, (5.57)

where ŵ1, ŵ2 are vector representations of w1, w2 ∈ µD with respect to the basis
{ϕ1, · · · , ϕm}, as well as

‖ŵ‖ 1
µ̂
6= ‖w‖ 1

µ
, (5.58)

where ŵ is the vector representation of w ∈ µD with respect to the ϕj ’s. Equal-
ity holds in (5.57) under the same conditions as equality in (5.54), for instance,
in the case of full partition Markov state models.

5.3.3 Core Set Markov State Models: Interpretation and
Estimation

We now focus on special subspaces D. For this, let us consider pairwise disjoint
sets C1, · · · , Cm ⊂ Z, which we call core sets. Let C = ∪mi=1Ci. In contrast to
the case of full partition Markov state models, we here do not assume that these
sets C1, · · · , Cm form a full partition of state space. In this case, the definition
of the process X̃ in Eq. (5.15) has to be adjusted since it is not well defined
anymore. We set

X̃k = i⇔ Xσ(k) = i, where σ(k) = max{t ≤ k | Xt ∈ C}. (5.59)

We call the thus defined process (X̃k) the milestoning process. Equation (5.59)
means that the milestoning process remains in state i as long as the original
Markov chain (Xk) last visited core set i.

Now, let q1, · · · , qm be the committor functions on the core sets C1, · · · , Cm.
Note that the qi’s are linearly independent and

m∑
i=1

qi(x) = 1 for each x ∈ Z, (5.60)
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thus
∑m
i=1 qi = 1. We can thus consider the subspace D = span{q1, · · · , qm} for

the construction of Markov state models. Markov state models that result from
projections onto subspaces D spanned by committor functions on core sets are
called core set Markov state models.

Note that we can interpret a state i ∈ Ẑ of the core set Markov state model
as representing the affiliation with core set Ci. In the case of full partition
Markov state models, which are a special case of core set Markov state models
(see Remark 5.1), a state i ∈ Ẑ is interpreted as “being in subset Ci”. In the
case that the Ci’s do not constitute a full partition of state space, the committor
functions on these set can, because of Eq. (5.60), still be interpreted as affiliation
functions that associate to each state x ∈ Z its affiliation with the respective
core set. In this way, being in a state i ∈ Ẑ can be interpreted as giving for
each z ∈ Z the degree qi of belonging to subset Ci.

Example 5.3. Let (Xt)t∈T be again the Markov chain on state space Z =
{0, 1

n , · · · , 1} with transition matrix P in our running example (Example 3.6).
Let us consider the core sets C1 = {0} and C2 = {1}. The respective committor
function q1 is shown in Figure 5.2 and q2 = 1 − q1. The core set Markov state
model is thus a Markov chain on the state space Ẑ = 1, 2 where state i ∈ Ẑ
refers to qi, i = 1, 2. The matrices P̂ are W given by

P̂ =

(
.9327 .0673
.0673 .9327

)
, (5.61)

W =

(
.9333 .0667
.0667 .9333

)
. (5.62)

We can thus calculate

P̂W−1 =

(
.9993 .0007
.0007 .9993

)
, (5.63)

W−1P̂ =

(
.9993 .0007
.0007 .9993

)
. (5.64)

Thus, P̂W−1 is a stochastic matrix and P̂W−1 = W−1P̂ . The Markov chain
(X̂t)t∈T representing the core set Markov state model is thus reversible with
stationary distribution µ̂ = (.5, .5). Table 5.2 shows the two largest eigenvalues
in absolute value. It shows that, in terms of the approximation of dominant
eigenvalues, the core set Markov state model is better than the full partition
model considered in Example 5.2.

(Xt) (X̂t)

λ1 = 1 λ̂1 = 1

λ2 = .99863 λ̂2 = .99857

Table 5.2: Dominant eigenvalues of (Xt) and (X̂t), respectively.

Using the milestoning process (X̃k), we can give an interpretation of the
matrices P̂ and W given in Eqs. (5.38) and (5.39), respectively, which determine
the matrix representation of the core set Markov state model, see Proposition
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5.3. In order to do so, we first note the following relationship between the
committor functions and the milestoning process:

qi(z) = P(X̃k = i | Xk = z). (5.65)

In words, the probability of the milestoning process being in state i at time k
conditional on the original Markov chain being in state z is given by qi(z). This
implies

P(X̃k = i) =
∑
z∈Z

P(X̃k = i | Xk = z) (5.66a)

=
∑
z∈Z

qi(z)µ(z) (5.66b)

= { Eq. (5.35) } (5.66c)

µ̂(i). (5.66d)

Moreover, using Bayes Theorem, we get

P(Xk = x | X̃k = i) =
P(X̃k = i | Xk = x)P(Xk = x)

P(X̃k = i)
(5.67a)

=
qi(x)µ(x)

µ̂(i)
, (5.67b)

which implies

P(Xk ∈ A | X̃k = i) =
∑
z∈A

qi(z)µ(z)

µ̂(i)
. (5.68)

With this we get

P(τkCj < τkC\Cj | X̃k = i)

=
∑
z∈Z

P(τkCj < τkC\Cj | Xk = z)P(Xk = z | X̃k = i) (5.69a)

=
∑
z∈Z

qi(z)µ(z)

µ̂(i)
P(τkCj < τkC\Cj | Xk = z) (5.69b)

=
∑
z∈Z

qi(z)qj(z)µ(z)

µ̂(i)
(5.69c)

=
〈qi, qj〉µ
µ̂(i)

(5.69d)

= W (i, j). (5.69e)
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Furthermore,

P(τk+1
Cj

< τk+1
C\Cj | X̃k = i) (5.70a)

=
∑
z∈Z

P(τk+1
Cj

< τk+1
C\Cj | Xk = z)P(Xk = z | X̃k = i) (5.70b)

=
∑
z∈Z

qi(z)µ(z)

µ̂(i)

∑
x∈Z

P(τk+1
Cj

< τk+1
C\Cj | Xk+1 = x)P(Xk+1 = x | Xk = z)(5.70c)

=
∑
z∈Z

qi(z)µ(z)

µ̂(i)

∑
x∈Z

qj(x)P (z, x) (5.70d)

=
∑
z∈Z

qi(z)µ(z)

µ̂(i)
(Pqj)(z) (5.70e)

=
〈qi, T (qj)〉µ

µ̂(i)
(5.70f)

=
〈T (qi), qj〉µ

µ̂(i)
(5.70g)

= P̂ (i, j), (5.70h)

where the second to last equality follows by the self-adjointness of T in l2(µ).

We have thus just shown the following relationship between the core set
Markov state models and the milestoning process (X̃k):

Proposition 5.4. Let (Xk) be a reversible Markov chain. Let C1, · · · , Cm be
some given core sets and let (X̃k) denote the associated milestoning process. Let
D = span{q1, · · · , qm}, where the qi’s are the committor functions associated
with the core sets. Moreover, let P̂ and W be defined according to Eqs. (5.38)
and (5.39), respectively. Then,

W (i, j) = P(τkCj < τkC\Cj | X̃k = i), (5.71)

P̂ (i, j) = P(τk+1
Cj

< τk+1
C\Cj | X̃k = i). (5.72)

Thus, in words, W (i, j) for j 6= i gives the probability that the Markov chain
next hits Cj while being in a state in Z \C at some time k and last came from

core set Ci, where C = ∪mj=1Cj . Similarly, P̂ (i, j) gives the probability that the
next core set hit is Cj conditional on having hit the core set Ci last at some
time k. Note that

W (i, j) =

{
P(τkCj < τkC\Cj , Xk ∈ Z \ C | X̃k = i) if j 6= i

1−
∑m
l=1,l 6=i P(τkCl < τkC\Cl , Xk ∈ Z \ C | X̃k = i) if j = i.

(5.73)

Remark 5.1. The full partition Markov state models present a special case of
core set Markov state models. In this case, the committor functions on the core
sets are again the indicator functions on the respective sets. Thus the matrix
W reduces to the identity matrix Id. Moreover, µ̂(i) =

∑
z∈Ci = µ(Ci), and

P̂ (i, j) = Pµ(X̃1 = j | X̃0 = i), (5.74)
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just as the matrix P̂ was defined for the full partition Markov state models.
Note that Eq. (5.74) does not generally hold for Markov state models with core
sets that do not form a full partition of state space. Instead,

P(X̃k+1 = j | X̃k = i) =

{
P̂ (i, j)−W (i, j) if j 6= i

P̂ (i, i)−W (i, i) + 1 if j = i,
(5.75)

see Djurdjevac et al. (2010) for a proof.

Using Proposition 5.4, it follows that both matrices W and P̂ can be esti-
mated from trajectory data in the following way: given a realization (x0, · · · , xK)
of (Xk) of length K, we can estimate

W ∗,K(i, j) =

{
RKij
rKi

if j 6= i,

1−
∑
j 6=iW

∗,K(i, j) otherwise,
(5.76)

P̂ ∗,K(i, j) =
R+,K
ij

rKi
, (5.77)

where RKij denotes the number of times where the chain came from core set Ci,

is in a state in Z \ C and hits Cj next, rKi is the total number of time steps

the trajectory was in i; that is, X̃k = i, and R+,K
ij denotes the number of times

where the chain came from core set Ci and hit Cj next.

5.4 Approximation Quality

In this section, we use the results of the previous sections on Markov state
models and orthogonal projections to consider how well Markov state models
actually approximate the original Markov chain.

5.4.1 Stationary Distribution and Stochastic Stability

We have shown in Eq. 5.51 that µ̂ as defined according to Eq. (5.35) is a station-
ary distribution of both full partition and core set Markov state models. Given
a model of evolution with noise (Xε(k))k∈N, we can thus consider the sequence
of stationary distributions µ̂ε and ask whether the construction of Markov state
models preserves stochastic stability in the sense that if x ∈ Ci for some core
set i = 1, · · · ,m then the state i is stochastically stable for (X̂ε(k))k∈N. This
is obvious in the case of a full partition. In the case of core set Markov state
models, it seems reasonable to assume that every stochastically stable state
x ∈ Z is contained in some core set, say Ci. Then qi(x) = 1 while qj(x) = 0 for
all j 6= i and thus the state i is stochastically stable with respect to µ̂ε for ε→ 0.

Example 5.4. Let (Xε
t )t∈T be the Markov chain of our running example (Ex-

ample 3.6) with population size 11 and revision protocol parameter ε. Let

(X̂ε,f
t )t∈T denote the Markov state model with full partition (A1, A2), where

A1 = {0, · · · 5/11}, A2 = {6/11, · · · , 1}. From Example 3.7, we know that the
stochastically stable population states of (Xε

t ) are
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• 0 and 1 if a = b = 1;

• 1 if a > b; and

• 0 if b > a.

This is reflected in the values of µ̂ε, see Figure 5.4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

b = 1, n = 11

ε

 

 

a = 1

a = 1.2

a = 2

Figure 5.4: Value of µ̂ε(2) for the full partition Markov state model (X̂ε,f
t )t∈T

for various values of the payoff parameter a and as a function of ε, where the
state 2 of (X̂ε,f

t )t∈T refers to the set A2.

5.4.2 Propagation of Probability Distributions

In the case of a full partition (Section 5.2.1), we defined the process (X̃k)k∈N
on the basis of which we defined the transition matrix P̂ . We noted, however,
that the process (X̃k) is, however, in general non-Markovian. The question thus
arises what error we make when approximating (X̃k) by the Markovian (X̂k). In
general, this question translates to considering the approximation error between

Q1/µ
µDPk|µD and (Q1/µ

µDP|µD)k. The following theorem gives an upper bound on
this approximation error:

Theorem 5.5. Let (Xk)k∈N be a reversible discrete-time Markov chain on a
finite state space Z with transition matrix P and unique stationary distribution
µ. Let 1 = λ1 > |λ2| ≥ · · · ≥ |λld | denote the ld ≤ l dominant eigenvalues of
P . That is, for every other eigenvalue λ we have |λld | > r ≥ |λ| such that r
is an upper bound on the remaining spectrum. Let 1 = u1, u2, · · · , uld be the
corresponding orthonormal left eigenvectors, i.e.,

ujP = λjuj , 〈ui, uj〉 1
µ

= δij . (5.78)
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Furthermore, set η = r
|λ2| and define

δ = max
i=2,...,ld

‖Q1/µ,⊥
µD (ui)‖ 1

µ
, (5.79)

where Q1/µ,⊥
µD = Id − Q1/µ

µD and Q1/µ
µD is the orthogonal projection onto some

subspace D ⊂ l2(µ) with 1 ∈ D, i.e., Q1/µ,⊥
µD is the projection onto the orthog-

onal complement of µD in l2( 1
µ ) and δ is the maximal projection error of the

eigenvectors onto the space µD. Then, we have for k ∈ N,

E(k) = ‖Q1/µ
µDP

k
|µD − (Q1/µ

µDP|µD)k‖ 1
µ
≤ |λ2|k min{2, C(δ, η, k)}, (5.80)

where ‖ · ‖ 1
µ

refers to the operator norm corresponding to the l2( 1
µ )-norm on

vectors; that is,

‖B‖ 1
µ

= max
‖w‖ 1

µ
=1
‖B(w)‖ 1

µ
(5.81)

for operators B : l2( 1
µ )→ l2( 1

µ ); and

C(δ, η, k) = ((ld − 1)δ + η)
(
Cspace(δ, k) + Cspec(η, k)

)
(5.82)

Cspace(δ, k) = (ld − 1)1/2(k − 1)δ (5.83)

Cspec(η, k) =
η

1− η
(1− ηk−1). (5.84)

Proof. Note that by Proposition 5.3, we have Q1/µ
µDP|µD = µQµDT|D and thus

‖Q1/µ
µDP

k
|µD − (Q1/µ

µDP|µD)k‖ 1
µ

= ‖QµDT
k
|D − (QµDT|D)k‖µ, (5.85)

where ‖ · ‖µ refers to the operator norm associated with the vector norm on
l2(µ). Moreover,

‖Q1/µ,⊥
µD (w)‖ 1

µ
= ‖Qµ,⊥D (w/µ)‖µ for each w ∈ Rl, (5.86)

and therefore

‖Q1/µ,⊥
µD (ui)‖ 1

µ
= ‖Qµ,⊥D (ui/µ)‖µ, (5.87)

where ui/µ is the normalized right eigenvector of P corresponding to λi.
The proof of the theorem now closely follows the proof of Theorem 5 of Sarich

(2011) with the only difference being to consider the absolute value of eigenvalues
when it comes to estimating the upper bound of the norm of involved quantities
since in our case we have to consider the possibility of negative eigenvalues
whereas in Sarich (2011) only non-negative eigenvalues are accounted for.

In case equality holds in (5.57), as is the case for full partition models, we
can reformulate the error E(k) in terms of the Markov state model (X̂k)k∈N
on state space Ẑ = {1, · · · ,m} whose quasi-transition matrix is P̂W−1, where
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P̂ and W are defined according to Eqs. (5.38) and (5.39), respectively. The
approximation error E(k) in inequality (5.80) then translates to

E(k) = ‖P̂k − P̂k‖ 1
µ̂

(5.88)

= ‖P̂kW−1 − (P̂W−1)k‖ 1
µ̂
, (5.89)

where P̂k is the transfer operator of (X̂k)k∈N that transfers probability distri-
butions k time steps ahead; that is,

P̂k : Rm → Rm

ŵ 7→ ŵT P̂kW
−1,

with P̂kW
−1 being the matrix representation of the projected transfer operator

Q1/µ
µDPk|µD. According to Eq. (5.38), P̂k thus has entries

P̂k(i, j) = µ̂(j)〈Pk(ϕi), ϕj〉 1
µ
. (5.90)

Theorem 5.5 shows that the projection error δ plays a crucial role in the
upper bound of the approximation error E(k); in order to make E(k) as small
as possible we should thus find a subspace D such that this projection error δ
is as small as possible. For full partition models, this is the case if the right
eigenvectors are as constant as possible on the sets of the partition. This re-
lationship between the approximation qualities of full partition Markov state
models and the projection error δ motivates approaches that partition state
space by clustering algorithms (as has, for example, been done in the molecu-
lar dynamics context by Krivov and Karplus, 2004; Noé et al., 2007b; Rao and
Caflisch, 2004). Similarly, in terms of core set Markov state models, finding core
sets C1, · · · , Cm so that the projection error δ is as small as possible can be in-
terpreted as a fuzzy clustering problem (Djurdjevac, 2012; Sarich, 2011). Note,
moreover, that we encountered the projection error δ already in Theorem 4.2
where it determines the lower bound of the joint metastability of the partition.
The smaller δ, the higher the joint metastability. Thus, a small projection error
δ in the case of a full partition Markov state model implies not only a small
approximation error E(k) but also a high joint metastability of the partition.

Moreover, the upper bound in (5.80) depends on η = r/|λ2| as well as on |λ2|
itself. More specifically, decreasing η and decreasing |λ2| leads to an improved
upper bound. There are now two ways to arrive at a smaller η: one point of
departure is to notice that η decreases with an increasing number of eigenvalues
since the upper bound on the remaining spectrum r decreases. We could thus
make the approximation error E(k) as small as possible by

1. making η small by choosing an appropriate number of eigenvalues, and
then

2. choosing a partition of state space or the core sets in such a way that the
resulting projection error on the associated eigenvectors is small.

However, if we fix the dimension of the subspace D we consider for projection,
the projection error δ usually increases with the number of eigenvalues taken
into consideration. Thus, in this case, increasing the number of eigenvalues does
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not lead to an improved upper bound. Fixing the dimension of the subspace D
is interesting since from Theorem 4.2 we know that we should not choose the
number of sets in the partition higher than the number of dominant eigenvalues.
Thus, for a full partition Markov state model with high joint metastability, we
would fix the dimension of the subspace to the number of dominant eigenvalues.

Another approach to improving the upper bound is to introduce a lag time
κ, where we require that κ = νk with ν ∈ N, and to consider the snapshot dy-
namics (Xκ) with associated transition matrix Pκ. In this case, the second and
third largest eigenvalues of Pκ are just λκ2 and λκ3 , respectively, and thus, we
get an improved ηκ = (|λ3|/|λ2|)κ. Moreover, introducing a lag time does not
only decrease the ratio between the second and third eigenvalues, but also the
second eigenvalue itself, and this also lowers the upper bound as given in (5.80).
Notice, however, that this approach might be impractical for applications, i.e.,
when estimating the matrices P̂κ and W from trajectory data, because we might
need a κ so large that it is not feasible to generate enough trajectory data to
hold the resulting statistical error within acceptable bounds.

Example 5.5. Let us consider the Markov chain (Xt)t∈T of our running example
(Example 3.6) with parameters a = 1, b = 1, ε = .3, n = 11. For this case, we
analyze the error E(t) where E(t) corresponds to the error E(k) in (5.80) with
k = nt, and we will focus on Markov state models with two states only. In this
case, the error as well as the upper bound in (5.80) is smallest for ld = 2, which
is the reason we set ld = 2 in what follows. Notice that all eigenvalues of the
associated transition matrix are positive.

The state space of (Xk) is Z = {0, 1
11 , · · · , 1} and we consider the core

set Markov state models with core sets C1 = {0, · · · , r/11} and C2 = {1 −
r/11, · · · , 11} for r = 0, · · · , 6. Notice that r = 6 corresponds to the full parti-
tion Markov state model considered in Example 5.2. In Figure 5.5, we display
the projection error δ for the different core set models. It is smallest for r = 2,
i.e., for core sets C1 = {0, 1/11} and C2 = {10/11, 1}, and largest for the full
partition model.

We next consider the upper bound in (5.80) for various values of η and for
the projection errors δf and δc corresponding to the full partition Markov state
model (X̂f

t )t∈T, i.e., r = 6, and to the core set Markov state model (X̂c
t )t∈T with

core sets C1 = {0, 1/11}, C2 = {10/11, 1}, respectively. Figure 5.6 displays these
upper bounds as functions of time. Notice that for fixed δ, the upper bound
is a monotonically increasing function of η. The figure shows that in the case
of (X̂f

t ) the upper bound is – in fact, even for small values of η – close to the
worst case upper bound, which is given according to (5.80) by 2λnt2 , whereas
considering the core set model already improves on this a lot. However, since in
our example η = λ3/λ2 = .9079, the upper bound given by (5.80) just coincides
in both cases, except for very small times, with the worst case upper bound.
As Figure 5.7 demonstrates, we can improve the upper bound considerably by
considering the snapshot dynamics (Xt) for t = νt with ν ∈ N.

In addition to the upper bound, we investigated the approximation error
E(t) for both (X̂f

t ) and (X̂c
t ), see Figure 5.8. It shows that the upper bound

considerably overestimates the error E(t) for both Markov state models. In fact,
the approximation quality is especially good in the core set model.

Lastly, notice that the projection error δ is itself a function of the popula-
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Figure 5.5: Projection error δ for the core set Markov state models with core
sets C1 = {0, · · · , r/11} and C2 = {1− r/11, · · · , 1} for r = 0, · · · , 6.

tion size n and the parameter ε of the revision protocol, see Figure 5.9. The
projection error δ is monotonically decreasing in population size and the differ-
ence in the projection errors between the full partition model and the core set
model gets less pronounced for increasing n. In contrast, the projection error
is a monotone increasing function of ε and the difference between the projec-
tion errors between the two models is less pronounced for small ε. Notice that
this actually does not come as a surprise since the second eigenvector u2 as
well as the committor function q1 approach a step function for larger n and
small ε, see Figures 5.10 and 5.11. However, at the same time as the projec-
tion error decreases, i.e., for increasing population size n and decreasing ε, the
value of η increases, see Figure 5.12. The impact of changing the population
size or the revision protocol parameter ε thus has to be judged from case to case.



5.4. APPROXIMATION QUALITY 137

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

U
p
p
e
r 

b
o
u
n
d
 o

f 
E

(t
)

a = 1, b = 1, ε = 0.3, n = 11

 

 

η = 0.6

η = 0.3

η = 0.1

 2 λ
n t

(a)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

U
p
p
e
r 

b
o
u
n
d
 o

f 
E

(t
)

a = 1, b = 1, ε = 0.3, n = 11

 

 

η = 0.6

η = 0.3

η = 0.1

 2 λ
n t

(b)

Figure 5.6: Upper bound of E(t) as provided in (5.80) for (a) the full partition

model (X̂f
t ) and (b) the core set model (X̂c

t ).
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Figure 5.7: Upper bound of the E(t), where E(t) corresponds to E(k) with
k = nνt as provided in (5.80).
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Figure 5.9: The projection error δ as a function of (a) the population size
n and (b) as a function of the revision protocol parameter ε for the Markov

state models (X̂f
t ) and (X̂c

t ) based on the Markov chain of our running example
(Example 3.6) with parameter values a = 1, b = 1, ε = .3 and core sets C1 =
{0, 1/n}, C2 = {n− 1/n, 1}.
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Figure 5.10: The second eigenvector u2 normalized such that u2(0) = 1 of
our running example (Example 3.6, with parameter values a = 1, b = 1, n = 11)
for various values of (a) the population size n and (b) of the revision protocol
parameter ε.
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Figure 5.11: Committor function q1 of our running example (Example 3.6,
with parameter values a = 1, b = 1, n = 11) for the core sets C1 = {0, 1/n},
C2 = {n− 1/n, 1} for various values of (a) the population size n and (b) of the
revision protocol parameter ε.
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Figure 5.12: The second and third largest eigenvalue of P as a function of
(a) population size and (b) of the revision protocol parameter ε for our running
example (Example 3.6) with parameters a = 1, b = 1, ε = .3, n = 11.
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5.4.3 Eigenvalues

Next, we consider how well the constructed Markov state models approximate
the eigenvalues and thus the timescales of the original Markov chain (Xk)k∈N:

Theorem 5.6. Let (Xk)k∈N be a reversible Markov chain on a finite state space
Z with transition matrix P and unique stationary distribution µ. Let 1 = λ1 >
λ2 > · · · > λld be the ld dominating eigenvalues of the transfer operator P, i.e.,
for every other eigenvalue λ of P we have λ < λld . Let 1 = u1, · · · , uld be
the corresponding orthonormal left eigenvectors. Moreover, let D ⊂ l2(µ) be a

subspace of dimension m ≥ ld with 1 ∈ D and let 1 = λ̂1 > λ̂2 > · · · > λ̂ld be

the dominating eigenvalues of the projected transfer operator Q1/µ
µDP|µD. Then,

max
i=2,...,ld

|λi − λ̂i| ≤
(

max{0, λ2} −min{0, λld}
)

(ld − 1)δ2, (5.91)

where

δ = max
i=2,...,ld

‖Q1/µ,⊥
µD (ui)‖ 1

µ
(5.92)

with Q1/µ,⊥
µD = Id−Q1/µ

µD .

In terms of Markov state models, Theorem 5.6 translates straightforwardly
into the following

Corollary 5.7. Let (Xk)k∈N be a reversible Markov chain on a finite state space
Z with transition matrix P and unique stationary distribution µ. Let (X̂k)k∈N
be an associated Markov state model on state space Ẑ = {1, · · · ,m} with quasi-
transition matrix P̂W−1 and stationary distribution µ̂ defined according to
Eqs. (5.38), (5.39) and (5.35), respectively. Let 1 = λ1 > λ2 > · · · > λld be the

ld ≤ l dominating eigenvalues of P and 1 = λ̂1 > λ̂2 > · · · > λ̂ld be the ld ≤ m

dominating eigenvalues of P̂W−1. Then,

max
i=2,...,ld

|λi − λ̂i| ≤
(

max{0, λ2} −min{0, λld}
)
(ld − 1)δ2, (5.93)

where

δ = max
i=2,...,ld

‖Q1/µ,⊥
µD (ui)‖ 1

µ
(5.94)

with Q1/µ,⊥
µD = Id−Q1/µ

µD .

Proof of Theorem 5.6. We have by Proposition 5.3 that λ is an eigenvalue of

Q1/µ
µDP(µv) if and only if λ is an eigenvalue of QµDT|D:

λv = λ(µv)/µ (5.95a)

= Q1/µ
µDP(µv)/µ (5.95b)

= QµDT|D(v). (5.95c)

Moreover,

‖Q1/µ,⊥
µD (ui)‖ 1

µ
= ‖Qµ,⊥D (ui/µ)‖µ, (5.96)
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for every ui, and ui/µ being the corresponding normalized right eigenvector
of P . Using these relationships, the proof of the theorem follows the proof of
Theorem 7 of Sarich (2011) closely. The only difference is that we have to take
account of possibly negative eigenvalues when bounding the eigenvalue error
using the Rayleigh-Ritz majorization error bounds from Knyazev and Argentati
(2010). This requires us to change Equation (3.46) of Sarich (2011) to2

max
i=2,...,ld

|λi − λ̂i| ≤
(

max{0, λ2} −min{0, λld}
)

max
j

sin2(θj(U,D)), (5.97)

where Θ = Θ(U,D) = (θ1, · · · , θld) is a vector of principal angles between the
subspaces U = span{u1, · · · , uld} and D.

Thus, the projection error δ again plays a crucial role in that a small pro-
jection error δ implies good approximation quality of our Markov state models
in terms of the dominant eigenvalues.

Example 5.6. We again consider the Markov chain (Xt)t∈T of our running

example (Example 3.6) and the Markov state models (X̂f
t ) and (X̂c

t ) corre-
sponding to the full partition ({0, 1/11, · · · , 5/11}, {6/11, · · · , 1}) of state space
Z = {0, 1

n , · · · , 1} and to the core sets C1 = {0, 1/11}, C2 = {10/11, 1}, re-
spectively. The projection error δ is shown in Figure 5.9 as a function of the
population size n and the revision protocol parameter ε. Figure 5.13 shows the
eigenvalue error |λ2 − λ̂2| as well as the upper bound of this error as provided
by Equation 5.93. It shows that the upper bound is a good approximation for
the eigenvalue error, especially in the case of larger population sizes and smaller
values of ε. Moreover, it shows that the eigenvalue error as well as the upper
bound are both considerably smaller for the core set model, which makes a
difference in the case of smaller population sizes and larger values of ε. This
is precisely the case where the other approximation approaches of stochastic
evolutionary games (see Chapter 3.2) cannot be applied. This example thus
demonstrates that core set Markov state models fill a gap and constitute an
important complement to existing approximation approaches.

2There is a slight difference in notation between this thesis and Sarich (2011). Equation
5.97 above is stated in the notation used here. For ease of comparison with Sarich (2011) we
also give the equation in the notation of Sarich (2011):

max
i=1,...,m−1

|λi − λ̂i| ≤
(

max{0, λ1} −min{0, λm−1}max
j

sin2(θj(U,D)). (5.98)
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Figure 5.13: The eigenvalue error |λ2 − λ̂2| and the upper bound as provided

by (5.93) for the Markov state models (X̂f
t ) and (X̂c

t ) as a function of (a)
population size n, with parameters a = 1, b = 1, ε = .3, and (b) of the revision
protocol parameter ε, with parameters a = 1, b = 1, n = 11.





Chapter 6

Identification of Metastable
Sets for Agent-Based
Evolutionary Models

In Chapter 3 we introduced stochastic evolutionary games and showed that there
is a need for the characterization and identification of metastable dynamic be-
havior in these models. We subsequently discussed in Chapter 4 different char-
acterizations of metastability and introduced in Chapter 5 an approach to the
construction of Markov models on a reduced state space, which is appealing
because the resulting Markov chains can be estimated from trajectory data and
because we can give upper bounds for the resulting approximation errors. We
learned that an important quantity in the upper bound for both the approxima-
tion error E(k) as well as the eigenvalue error is the projection error δ defined
via Equation (5.79) as the maximal projection error of the dominant eigenvec-
tors onto the subspace µD considered for the construction of the Markov state
model. Thus, if we want to construct core set Markov state models of reduced
complexity that reproduce well the dominant timescales, and in this sense the
metastability of our original Markov chain, we have to find core sets such that
this projection error δ is minimized.

Against this background, we consider in this chapter the approach intro-
duced by Sarich (2011) to the identification of core sets which result in a small
projection error. This approach seems well suited since it is developed for
Markov chains in which the overall metastability is controlled by a parame-
ter ε > 0 in the sense that for smaller ε the metastability of the system under
investigation should increase – and this is just the case for the models of evolu-
tion of noise which we introduced in Chapter 3.2.4. More specifically, in Section
6.1 we motivate the approach, building on which we introduce in Section 6.2
the algorithmic strategy to the identification of core sets and the construction
of the resulting Markov state model. The algorithmic strategy is based only on
trajectory data and seems especially interesting in the context of agent-based
modeling since agent-based models usually lack model specifications and are, in
addition, too complex to be investigated analytically, see Chapter 1. Moreover,
we show that the identification algorithm to be presented preserves stochastic
stability in the sense that, if a population state x is stochastically stable, it will

147
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be identified as an element of the core set region C. One limitation of the ap-
proach, however, is that it depends on the initial Markov chain to be reversible.
In Section 6.4 we therefore discuss this limitation and give an outlook for further
research in this general direction.

6.1 Motivation

Starting point for the algorithmic strategy to the identification of core sets is the
observation that in order to construct Markov state models which reproduces
well the dominant timescales, we have to have a small maximal projection error
of the dominant eigenvectors onto the subspace µD ⊂ l2( 1

µ ) considered for
the construction of the Markov state model. That is, we would like a small
projection error

δ = max
i=2,...,ld

‖Q1/µ,⊥
µD (ui)‖ 1

µ
, (6.1)

where u2, · · · , uld are the dominant, orthonormal left eigenvectors of the tran-
sition matrix P corresponding to the dominant eigenvalues 1 > λ2 > · · · > λld ,

and where Q1/µ,⊥
µD = Id − Q1/µ

µD with Q1/µ
µD denoting the orthogonal projection

onto µD, see Theorem 5.5 and 5.6.
Using this result as a starting point for an approach to the identification of

core sets may seem awkward – since it assumes the subspace D from the outset.
Moreover, in general, we cannot assume to know the dominant eigenvectors
u2, · · · , uld . Fortunately, Sarich (2011) provides the following upper bound on

‖Q1/µ,⊥
µD (u)‖ 1

µ
for u being a normalized left eigenvector of P and under the

condition that the subspace D is spanned by committor functions on core sets,
which nicely translates into an algorithmic strategy for the identification of core
sets knowing neither the core sets nor the dominant eigenvectors:

Proposition 6.1. Let (Xk)k∈N be an irreducible, reversible Markov chain on
state space Z with transition matrix P and stationary distribution µ. Let λ be an
eigenvalue of P and let u denote the corresponding normalized, left eigenvector.
In addition, let D denote the subspace of Rl, l = |Z|, spanned by the committor

functions on the core sets C1, · · · , Cm, and let Q1/µ,⊥
µD = Id − Q1/µ

µD with Q1/µ
µD

being the orthogonal projection onto µD. Then

‖Q1/µ,⊥
µD (u)‖ 1

µ
≤ p(u) + 2µ(T )pmax(u) + r(T )(1− λ)

(∑
z∈T

u(z)2/µ(z)
)1/2

, (6.2)

where T = Z \ ∪mj=1Cj, denotes the transition region, and with

r(T ) = sup
‖w‖ 1

µ
=1,w=0 on C

(
1∑

z∈T
(
w(z)− (wP )(z)

)2
/µ(z)

)1/2

(6.3)

p(u) = ‖e‖ 1
µ

(6.4)

pmax(u) = ‖e/µ‖∞ = max
z∈Z
|e(z)/µ(z)| (6.5)

e(z) =

{
0 if z ∈ T,
u(z)− 1

µ(Cj)

∑
x∈Cj u(x) if z ∈ Cj . (6.6)
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For the interpretation of this upper bound, notice first that we can decom-

pose it into the terms r(T )(1−λ)

(∑
z∈T u(z)2/µ(z)

)1/2

and p(u)+2µ(T )pmax(u).

The first of these terms depends only on whether or not a state z ∈ Z is an
element of a core set (and not on the specific core set it might be in). Moreover,
r(T ) measures how quickly the process leaves the transition region T . This
interpretation of r(T ) can be seen by noticing that

r(T ) =
1

‖S(Id− P)S‖ 1
µ

, (6.7)

where S is the orthogonal projection of Rl onto Z \ ∪mj=1Cj with respect to the
standard scalar product. Then, if λC is the largest eigenvalue of PC = SPS,
we get that

r(T ) =
1

‖S(Id− P)S‖ 1
µ

(6.8a)

≤ 1

1− λC
(6.8b)

≤ RC (6.8c)

where the last equality follows from Theorem 4.1 with

RC = sup
z∈T

EzτC (6.9)

denoting the return time to C = ∪mj=1Cj . Now, in the upper bound, r(T ) is
compared to (1 − λ). Thus in order for r(T )(1 − λ) to be small, we either
need λ close to 1, or r(T ) to be small. Thus, the more eigenvalues we want to
approximate, the faster the transition region T has to be left.

As for the term p(u) + 2µ(T )pmax(u), notice that it depends only on the
assignment of x ∈ C to the specific core set Cj . Moreover, both p(u) and
pmax(u) measures how constant the eigenvectors are in each core set. Thus, for
a small upper bound on the projection error, we want the dominant eigenvectors
to be almost constant on the core sets C1, · · · , Cm.

As we will see in the next section, this interpretation of Proposition 6.1
nicely motivates an algorithmic strategy whose first step consists of identifying
the transition region T . Secondly, the remaining states C = Z \ T are clustered
into core sets.

Example 6.1. We consider again the Markov chain (Xε
t )t∈T of our running ex-

ample (Example 3.6) with parameters a = 1, b = 1, ε = .15, n = 11. Let µ
denote its stationary distribution and let µ∗ be the stationary distribution of
the evolutionary process with the same parameters except for ε∗ = .3. Note that
both stationary distributions have the same form in the sense of local minima
and maxima, but the stationary distribution µ∗ with increased noise intensity
is less peaked. The distributions Pt(µ∗) of µ∗ under the transfer operator P of
(X .15

t ) converge to µ for t→∞ and the comparison of µ∗ with Pt(µ∗) for some
t ∈ T will provide the information we need in order to identify the transition
region T , see Figure 6.1.

More specifically, we set

Tα = {x ∈ 41
11 : µ∗(x) > Pα(µ∗)(x)} (6.10)
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Figure 6.1: Weights of the stationary distribution µ∗ for the stochastic
evolutionary game of our running example (Example 3.6) with parameters
a = 1, b = 1, ε∗ = .3, n = 11 and its propagation Pt(µ∗) under the stochas-
tic evolutionary game with parameters a = 1, b = 1, ε = .15, n = 11, t = 10/11.

as this is the set of all population states that are less attractive in the stochastic
evolutionary game with decreased noise parameter ε = .15. The other popula-
tion states, i.e., the set

Cα = {x ∈ 41
11 : µ∗(x) < Pα(µ∗)(x)}, (6.11)

is more attractive and thus we consider it as the union of core sets.
In our example, Cα is the set {0, 1/11, 10/11, 1} for all α ∈ T. This suggests

the partition of Cα into the core sets C1 = {0, 1/11} and C2 = {10/11, 1}.
In Example 5.6 we discussed the eigenvalue error we make by considering this
core set Markov state model; it turned out to be a good approximation and
considerably better than the full partition model we considered in this example
as well.

The resulting core set Markov state model (X̂ .3
t )t∈T has the transition matrix

P̂W−1 =

(
.9993 .0007
.0007 .9993

)
. (6.12)

Table 6.1 shows that the eigenvalues corresponding to the Markov chain
(X .3

t ) and the Markov state model (X̂ .3
t ).

For the approximation quality in terms of the propagation of probability
distributions see Example 5.5.
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(Xt) (X̂t)

λ1 = 1 λ̂1 = 1

λ2 = .99863 λ̂2 = .99861

Table 6.1: Dominant eigenvalues of (X .3
t ) and (X̂ .3

t ), respectively.

6.2 Algorithmic Strategy

In this section we consider the simulation-based approach to the identification
of core sets and the construction of the resulting Markov state model based on
Sarich (2011). That is, we will neither for the identification of core sets nor for
the construction of the Markov state model assume that we have an expression
for the dynamics of the evolutionary process. Instead, we take the setting of the
models of evolution with noise introduced in Chapter 3.2.4 in which each Markov
chain (Xε

k) depends on a noise parameter ε that determines the metastability
of the stochastic evolutionary game such that the metastability increases for
decreasing ε, see Chapter 4.3.

The algorithm proceeds as suggested by the interpretation of Proposition
6.1: Given a realization (xk) of the Markov chain (Xε

k) for k = 1, · · · ,K, we
first identify the transition region T ; second, we cluster the remaining states
Z \ T into core sets; and third, we construct the Markov state model such
that its transition matrix P̂W−1 corresponds to the matrix representation of
the projected transfer operators as described in Chapter 5.3. As for the last
of these steps, remember that we gave in Proposition 5.4 an interpretation of
the matrices P̂ and W in terms of the milestoning process (X̃ε

k), which allows
their estimation from trajectory data. Moreover, as we want to use the given
trajectory x1, · · · , xK for the estimation of P̂ and W , we only have to tell for
these data points whether they belong to T or not – and not for the whole
state space, which is advantageous in the case of large state spaces. In the last
section, we showed that, in order for a state to be included into the core sets,
it should be an element of the most metastable regions and should be relatively
attractive if compared with the dominant timescales of interest. Now, given the
set T , the second step, that is, the clustering of Z \ T into core sets, is usually
straightforward as constantness of the eigenvectors on the core sets implies that
the core sets are dynamically well separated. In more complex cases, one can
apply, for instance, spectral clustering methods like PCCA (see Deuflhard and
Weber, 2005).
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Algorithm 1: Simulation-Based Core Set Identification and Construction
of Markov State Model

Data: Trajectory (xk), k = 1, · · · ,K of (Xε∗

k ); noise parameter ε < ε∗;
time step α > 0; ν ∈ N; radius r > 0

Result: Core sets C1, · · · , Cm; transition matrix P̂W−1

1 yκ ← xνκ, κ = 1, · · · , K̃ with K̃ ← bK/νc;
2 C ← ∅, T ← ∅;
3 for κ← 1 to K̃ do
4 Simulate yεκ ← Xε

α with Xε
0 ← yκ

5 end
6 for k ← 1 to K do
7 if #{yεκ ∈ Br(xk)} > #{yκ ∈ Br(xk)} then
8 C ← C ∪ {xk};
9 else

10 T ← T ∪ {xk};
11 end

12 end
13 Cluster C;

14 Estimate P̂ ,W as explained in Chapter 5.3.3;

15 Calculate P̂W−1;

The interpretation of the algorithm is as follows. First, notice that since the
Markov chain (Xε∗

k ) is irreducible and aperiodic, we can estimate µ∗(A) by

µ∗(A) = lim
K→∞

#{yκ ∈ A}
bK/νc

(6.13)

for every measurable set A ⊂ Z. With this we get

Pα(µ∗)(A) = lim
K→∞

#{yεκ ∈ A}
bK/νc

, (6.14)

where P is the transfer operator of the Markov chain (Xε
k) with decreased

noise intensity ε < ε∗ and, thus, increased metastability. The appropriate noise
parameter ε for the identification depends on the specific model. It should
be chosen such that there is a noticable difference in the metastable dynamic
behavior between the Markov chain with parameter ε∗ and ε < ε∗. In our
running example, for instance, we might choose ε = ε∗/2.

According to Equations (6.13) and (6.14), we can thus approximately say
that Pα(µ∗)(Br(xk)) > µ∗(Br(xk)) if the number of data points yεκ in Br(xk) is
larger than the number of points yκ in Br(xk), where Br(xk) denotes a ball of
small radius r > 0 around the data point xk. This results in assigning a point
xk to the core sets, i.e., xk ∈ C, if

#{yεκ ∈ Br(xk)} > #{yκ ∈ Br(xk)}. (6.15)

Having determined the set C, we cluster it into the core sets C1, · · · , Cm, esti-
mate P̂ ,W and calculate P̂W−1 as discussed before. Notice that the parameter
α is associated with the timescale we want to approximate, i.e., the larger α, the
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more attractive the states need to be in order to be identified as an element of
C. Furthermore, in the case of a small state space, as in our running example,
we can simplify the above by considering r so small that the balls around the
data points xk consist only of xk itself. Thus, in order to determine whether
x ∈ C, we compare #{yεκ = xk} with #{yκ = xk}. As should be clear, the
computational effort of the algorithm increases with increasing α and increas-
ing population size n as well as decreasing ν. However, for large state spaces,
which ensue rather quickly in population games from increasing population size
and increasing size of the strategy set1, considering the balls around the data
points is vital since the weight of a single state in the stationary distribution
µ∗ as well as in the propagated stationary distribution Pα(µ∗) might get so
small that it is difficult to statistically estimate this difference from simulated
trajectory data.

Remark 6.1. The identification of the core set region C by the algorithm pre-
serves stochastic stability in the sense that if a state x is stochastically stable
it will be identified as an element of C. The reason is that the weight of a
stochastically stable state cannot decrease under Pα compared to its weight in
µ∗, where P denotes the transfer operator of (Xε

k) and µ∗ denotes the station-
ary distribution of (Xε∗

k ), because a decreasing weight would mean that the
states becomes less attractive with decreasing ε which contradicts the notion
of stochastic stability. Note, however, that not every core set identified needs
to contain a stochastically stable state as we will demonstrate in Example 6.3
below.

Example 6.2. Let us consider again the model of evolution with noise (Xε∗

t )t∈T
from our running example (Example 3.6). We simulated the Markov chain
(Xε

t ) with a = 1, b = 1, ε∗ = .3, n = 11 to get a trajectory of population
states (xt) for t = 1/11, . . . , 50000 and thus of length 5.5 · 105. We applied
the algorithm for the identification of core sets and the construction of the
Markov state model with parameters ε = ε∗/2, α = 10/11, ν = 10 to this
trajectory of data points. It resulted in C = {0, 1/11, 10/11, 1}, which suggests
straightforwardly the core sets C1 = {0, 1/11} and C2 = {10/11, 1}. Remember
that we singled out specifically these core sets in Examples 5.5 and 5.6 as the
core sets with the least projection error and thus best approximation quality
in terms of the propagation of probability distributions as well as in terms of
the eigenvalue error. See Figure 6.2 for the data points of the trajectory with
t = 0, 1/11, · · · , 1000 and the respective data points which are identified as
elements of core sets.

Based on the core sets and the trajectory of data points, the estimated
transition matrix P̂ ∗W ∗,−1 is given by

P̂ ∗W ∗,−1 =

(
.9993 .0007
.0007 .9993

)
, (6.16)

1Remember that the size of the set ∆m−1
n of population states in a population game with

population size n and size m of the strategy set is given by
(n+m−1

m−1

)
=
(n+m−1

n

)
(Scheffé,

1958). This means that the state space ∆m−1
n grows polynomially in m with exponent n for

m→∞ and fixed n, and polynomially in n with exponent m for n→∞ and fixed m. More
formally, ∆m−1

n = Θ(mn) for m → ∞ and fixed n; and ∆m−1
n = Θ(nm) for n → ∞ and m

fixed.
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Figure 6.2: (a) Piece of the trajectory (xt) and (b) corresponding data points
which are identified as belonging to a core set by the identification algorithm.

with second eigenvalue λ̂∗2 = .99863, which is thus a very good approximation
of the transition matrix P̂W−1 and its second eigenvalue, compare Example 6.1.
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Example 6.3. We consider again the model of evolution with noise (Xε
t ) of

our running example (Example 3.6), this time with parameters a = 1.2, b =
1, ε∗ = .3, n = 11. From Example 3.7 we know that in this case, the only
stochastically stable state in the population state space Z = {0, 1

n , · · · , 1} is
1. We simulated this Markov chain to get a trajectory of population states
xt, t = 1, · · · , 50000 and applied the identification algorithm with parameters
ε = ε∗/2, α = 10/11, ν = 10. It resulted in C = {0, 1/11, 10/11, 1} which sug-
gests again the clustering C1 = {0, 1/11} and C2 = {10/11, 1}, see Figure 6.3.
As the core set C1 in this example demonstrates, the core sets identified by the
algorithm need not contain stochastically stable states. Moreover, for small ε∗

and large enough α, the algorithm recaptures the stochastically stable states
as is to be expected. For instance, in our running example with parameters
a = 1.2, b = 1, n = 11, this is the case for ε∗ = .1, ε = ε∗/2 and α ≈ 105 where
C = {1} while for α = 10 the algorithm results in C = {0, 1} (based on a
simulated trajectory of states (xt), t = 1/11, · · · , 105 and ν = 1).

6.3 Extended Example

So far, we have only considered the simple example of the currency game un-
der the best response with mutations revision protocol. Another example of
reversible stochastic evolutionary games are finite-population potential games
with clever agents under a logit choice revision protocol. We start with a few
definitions:

Definition 6.1. Let (n, S,∆m−1
n , F ) be a finite-population game. It is a po-

tential game if there is a function f : ∆m−1
n → R, called the potential function,

such that

Fj
(
x+

1

n
(ej − ei)

)
− Fi(x) = f

(
x+

1

n
(ej − ei)

)
− f(x) (6.17)

for all i, j ∈ S and x ∈ ∆m−1
n with xi > 0.

Thus, in a potential game, the change in payoff for an agent that changes
from strategy i to strategy j equals the resulting change in potential. Potential
games are an important class of games in transportation science, economics and
population genetics. Examples of finite-population potential games are:

• Two-strategy games: Let F : ∆m−1
n → R2 be any payoff function for

a finite population game with strategy set S = {0, 1}. F admits the
following potential function f : ∆m−1

n → R:

f(x) =

nx1∑
j=1

[
F1

(
x+

j − 1

n
(e0 − e1)

)
− F0

(
x+

j

n
(e0 − e1)

)]
(6.18)

where x = (x0, x1).

• Matching with self-matching in common interest games: Let A ∈ Rm×m
be the payoff matrix of a common interest two-player game in strategic
form, i.e., A = AT . Let F : ∆m−1

n → Rm denote the associated payoff
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Figure 6.3: (a) Piece of the trajectory (xt) and (b) corresponding data points
which are identified as belonging to a core set by the identification algorithm.

function in the finite-population game under matching with self-matching,
i.e., F (x) = Ax. Then F admits the following potential function f :
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∆m−1
n → R:

f(x) =
1

2

(
nxTAx+

∑
k∈S

akkxk

)
. (6.19)

Example 6.4. In the examples that follow, we are going to consider the potential
game that results from matching with self-matching in the strategic game with
strategy set S = {1, 2, 3} and payoff matrix

A =

a 0 0
0 b 0
0 0 c

 . (6.20)

For n = 5, its potential function f : ∆2
5 → R is given as in Eq. (6.19). In

Figure 6.4 we depicted f as a function of the first two components (x1, x2) of
the population state (x1, x2, x3) ∈ ∆2

5; this is possible since the third component
x3 (and thus also the value of f at (x1, x2, x3)) is uniquely determined by the
condition

∑
j∈S xj = 1.
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Figure 6.4: Potential function of the finite-population potential game that
results from matching with self-matching in a common interest game with payoff
matrix A and parameters a = 1.2, b = 1, c = 1.2, n = 5.

In general, the revision of an agent’s strategy involves the comparison of the
payoffs that the agent receives from using each strategy in the population game.
In a finite-population, a switching agent also changes the population state and
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thus the payoffs to be received. More specifically, if an i-player switches to
strategy j, the population state changes from x and payoffs F (x) to the state
x+ 1

n (ej − ei) and to the payoffs F (x+ 1
n (ej − ei)), where the ej ’s denote the

standard unit vectors. Thus, it seems reasonable to assume that an i-agent
compares his current payoffs Fi(x) to the payoffs Fj(x+ 1

n (ej − ei) rather than
to Fj(x) when considering switching from strategy i to strategy j ∈ S. Agents
that revise in this way are called clever, otherwise simple.

Sandholm (2010, p. 430 f.) proves the following proposition:

Proposition 6.2. Let F : ∆m−1
n → Rm be the payoff function of a finite-

population potential game with potential function f : ∆m−1
n → R. Suppose that

agents are clever and use the logit choice revision protocol with noise level σ for
strategy updating, i.e., ρ : ∆m−1 → Rm×m≥0 is defined according to Eq. 3.11.
The resulting discrete-time Markov chain (Xt)t∈T is reversible with stationary
distribution

µ(x) =
1

C

n!

Πk∈S(nxk)!
exp(σf(x)) (6.21)

for x ∈ ∆m−1
n , where C is determined by the constraint

∑
x∈∆m−1

n
µ(x) = 1.

Thus, the stationary distribution of the resulting stochastic evolutionary
process at state x is proportional to the product of a multinomial coefficient
and the exponential of the potential function weighted with the noise level. The
multinomial coefficient counts the number of ways the players can be assigned to
strategies such that the resulting proportion of strategies is x, i.e., the likelihood
that state x would result from a random assignment of agents to strategies.

Example 6.5. Consider the potential game from Example 6.4. From Proposition
6.2, we know that, assuming clever agents and the logit choice revision protocol,
the resulting stochastic evolutionary game (Xσ(t))t∈T with transition matrix P
is reversible with stationary distribution µ as given by Eq. 6.21, see Figure 6.5.

Note that for σ → ∞, the stochastically stable states correspond to those
population states that maximize the potential function f (see, e.g., Sandholm,
2010, Theorem 12.2.1; more generally, see Chapter 12 for how the finite-population
potential games under the logit choice revision protocol fit into the context of
models of evolution with noise). Thus, in our example, the stochastically sta-
ble population states correspond to those population states in which players
uniformly play strategy i = 1, 2, or 3, and for which i ∈ argmaxj=1,2,3A(j, j).

We applied the identification algorithm for two different values of the timescale
parameter α and ν = 1 to a simulated trajectory (xt) of length 5 · 106 of
the stochastic evolutionary game given in terms of the potential game that
results from matching with self-matching in the strategic game with payoff ma-
trix A, parameters a = 1.2, b = 1, c = 1.2, n = 5, and assuming clever agents
that behave according to the logit choice revision protocol with noise intensity
σ∗ = 3.5. See Figure 6.6 for a graphical display of the initial piece of the tra-
jectory; the noise intensity σ corresponding to a higher metastability was set to
σ = σ∗ + 1 = 4.5.

We obtained the following results:

• For α = 20, the algorithm identified C = {(0, 0, 1), (1, 0, 0)} as the core set
region, which suggests the core sets C1 = {(0, 0, 1)} and C2 = {(1, 0, 0)}.
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Figure 6.5: Stationary distribution of the stochastic evolutionary game given
in terms of the finite-population potential game that results from matching with
self-matching in a common interest game with payoff matrix A and parameters
a = 1.2, b = 1, c = 1.2, n = 5 and assuming clever agents and the logit choice
revision protocol with noise intensity σ = 3.5.

The estimated transition matrix P̂ ∗W ∗,−1 of the associated core set Markov
state model (X̂3.5

t ) is given by

P̂ ∗W ∗,−1 =

(
.9931 .0069
.0067 .9933

)
(6.22)

with eigenvalues λ̂∗i compared to the eigenvalues λi, i = 1, 2 of the transi-
tion matrix P given by

(X3.5
t ) (X̂3.5

t )

λ1 = 1 λ̂∗1 = 1

λ2 = .98630 λ̂∗2 = .98634

See Figure 6.7 for the data points of the simulated trajectory (xt) identified
as core sets.

• For α = 2. the core set region identified by the algorithm is C =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}, which suggests the core sets C1 = {(0, 0, 1)},
C2 = {(0, 1, 0)}, and C3 = {(1, 0, 0)}; that is, each core set corresponds to
a population state with uniform strategy choice among the players. The
estimated transition matrix of the corresponding core set Markov state
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Figure 6.6: Initial piece of the simulated trajectory (xt)t=0,...,1000 of the
stochastic evolutionary game given in terms of the finite-population potential
game that results from matching with self-matching in a common interest game
with payoff matrix A and parameters a = 1.2, b = 1, c = 1.2, n = 5 and assuming
clever agents and the logit choice revision protocol with noise intensity σ = 3.5.

model (X̂3.5
t ) is given by

P̂ ∗W ∗,−1 =

.9915 .0030 .0055
.0156 .9686 .0158
.0053 .0030 .9916

 . (6.23)

Its eigenvalues λ̂∗i compared to the eigenvalues λi of P are

(Xt) (X̂t)

λ1 = 1 λ̂∗1 = 1

λ2 = .98630 λ̂∗2 = .986160

λ3 = .966355 λ̂∗3 = .965564

See Figure 6.8 for the data points of the simulated trajectory (xt) identified
as core sets.

Note that in both cases, i.e., for α = 10 as well as α = 100, the results of the
identification algorithm correspond to the results obtained by applying the ana-
lytical approach outlined in Example 6.1. The example nicely demonstrates the
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Figure 6.7: Data points corresponding to the identified core set region C
for α = 20 of the initial piece of the simulated trajectory (xt)t=0,...,1000 of the
stochastic evolutionary game given in terms of the finite-population potential
game that results from matching with self-matching in a common interest game
with payoff matrix A and parameters a = 1.2, b = 1, c = 1.2, n = 5 and assuming
clever agents and the logit choice revision protocol with noise intensity σ∗ = 3.5.

role of the timescale parameter α. For the smaller α, the algorithm identified
another core set which corresponds to a set of population states that became
attractive on this shorter timescale.

6.4 Discussion and Outlook

The identification algorithm presented in Section 6.2 is appealing with regard
to agent-based modeling because it does not rely on analytical expressions for
the dynamics as it is a simulation-based approach. However, the algorithm and,
more generally, the approach presented in the second part of this thesis relied
heavily on the assumption that the considered Markov chain is reversible.

We gave two examples of classes of stochastic evolutionary games with re-
versible dynamics: the class of population games with two strategies under full
support revision protocols (see Section 3.2.3) and the class of finite-population
potential games with clever agents under a logit choice revision protocol. Sand-
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Figure 6.8: Data points corresponding to the identified core set region C
for α = 2 of the initial piece of the simulated trajectory (xt)t=0,...,1000 of the
stochastic evolutionary game given in terms of the finite-population potential
game that results from matching with self-matching in a common interest game
with payoff matrix A and parameters a = 1.2, b = 1, c = 1.2, n = 5 and assuming
clever agents and the logit choice revision protocol with noise intensity σ∗ = 3.5.

holm (2010, Chapter 11.5.3) provides more general conditions on revision pro-
tocols under which finite-population potential games with clever agents result
in reversible dynamics.

In general, it will be difficult to say whether it is reasonable to assume
that an agent-based model results in a reversible Markov chain. One reason
for this difficulty is that, if we estimate the transition matrix from simulated
trajectory data, it does not need to fulfill the detailed balance equation, even if
the underlying Markov chain is reversible (Noé, 2008; Prinz et al., 2011). In the
context of molecular dynamics, however, it was possible to derive approximative
models that can be proven to be reversible although the original model is not.
An example is the diffusion model, which represents an approximation to the
Langevin model in the limit of high friction (see, e.g., Schütte and Sarich, 2013,
Chapter 2 and references therein). As a future research question, it seems
worthwhile to explore whether similar results can be obtained for agent-based
models; that is, whether there are approximations of certain agent-based models
that can be shown to be reversible.

Beyond that, we would like an approach that applies also to non-reversible
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Markov dynamics. Notice that it is not difficult to derive a construction of a
matrix representation of the core set Markov state models for given core sets in
the case of non-reversible Markov chains (see, e.g., Djurdjevac, 2012; Djurdjevac
et al., 2010). However, we neither have results with respect to their approxima-
tion quality nor an approach to the identification of metastable subsets for non-
reversible Markov chains. One fundamental problem is that the eigenvalues and
eigenvectors of the transfer operators corresponding to non-reversible Markov
chains need not be real anymore. In this case, the interpretation of the spectral
information for the identification of metastable sets is unclear. Up to now, there
are few approaches that apply also to non-reversible Markov chains (Eckhoff,
2002; Gaudillière and Landim, 2011; Horenko, 2011; Sarich and Schütte, 2014).

The identification of Markov state models for general agent-based models is
therefore an open problem and will be a topic of future research. The examples
of this chapter nevertheless constitute a proof of concept for the usefulness and
applicability of the Markov state modeling approach for general agent-based
models.





Summary

This thesis is concerned with the formal description (Part I) and metastability
analysis (Part II) of agent-based evolutionary models. Part I discussed the need
for specifations as an intermediate layer between implementations and narra-
tive descriptions of computer-based models – an intermediate layer which is
necessary but often not provided in the context of agent-based modeling. We
presented the basic structure of a functional framework for the specification of
agent-based models of exchange. Introducing such a framework as a basis for
model description, analysis and reimplementations is novel for computational
economics. The focus of the presentation was to expose the relationship of
agent-based models of exchange with existing economic theory, in particular,
with evolutionary game theory and general equilibrium theory. We explicitly
represented these models as discrete-time Markov processes and showed that
they differ from stochastic evolutionary games only in that their fitness func-
tion is in general not deterministic. We applied the framework to demonstrate
how to formulate the research question behind agent-based models of exchange
precisely, which establishes a direct relationship with general equilibrium the-
ory. Moreover, we discussed how it constitutes a starting point for formal model
analysis and further numerical investigations by allowing us to deduce specific
formal model properties from the specifications. This part of the thesis made
clear that although specifications might seem obvious and at the same time te-
dious, they are an indispensable basis for a rigorous understanding and analysis
of agent-based models. In this way, specifications are fundamental for agent-
based modeling to get out of its infancy.

Part II presented a novel approach to the analysis of stochastic evolutionary
games, which are simple agent-based models. We motivated this approach by
the observation that stochastic evolutionary games often exhibit metastable dy-
namics but the existing approaches to their analysis, such as Nash equilibrium
solution concepts, deterministic approximation, and stochastic stability analy-
sis, are not able to capture this behavior. We derived the aggregated strategy
updating process for general stochastic evolutionary games as a discrete-time
Markov chain on a finite state space. We presented two characterizations of
metastability, one in terms of hitting times and one in terms of transition prob-
abilities. Both characterizations build on the representation as a Markov chain
and relate to spectral properties of the transfer operator associated with the
Markov chain. We investigated both of these characterizations for stochastic
evolutionary games. In particular, we showed that every decomposition of state
space into limit sets of the unperturbed Markov chain of the stochastic evolu-

165
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tionary game is metastable according to both characterizations.
We furthermore considered the core set Markov state modeling approach

to the construction of Markov models on a reduced state space for stochastic
evolutionary games. Given some disjoint subsets of the set of population states,
which are called core sets, the underlying idea of the construction is the orthog-
onal projection, and thus best approximation, of the transfer operators of the
original Markov chain onto the subspace spanned by the committor functions
on core sets or onto this subspace weighted with the stationary distribution
of the original Markov chain, depending on the considered transfer operator.
We derived the matrix representation of both projected transfer operators and
elaborated on the relationship between the projected transfer operators as well
as on the relationship of the original Markov chain with the core set Markov
state model, which is defined as the Markov chain on the state space {1, · · · ,m}
with transition matrix given by the matrix representation of the transfer oper-
ators, where m is the number of core sets considered. This construction of core
set Markov state models is appealing, because the matrix representation of the
projected transfer operators can be estimated from simulated trajectory data.
Moreover, the construction preserves stochastic stability in the sense that, if
a core set contains a stochastically stable state of the original Markov chain,
the corresponding state in the core set Markov state model is also stochasti-
cally stable. We showed how to use the results on the approximation error we
make with respect to the propagation of probability distributions as well as with
respect to the approximation of eigenvalues for an algorithmic strategy to the
simulation-based identification of core sets in such a way that the approximation
error is small and the resulting core set Markov state model reproduces well the
dominant timescales and in this sense the metastability of the original Markov
chain. Lastly, we discussed the fact that the presented simulation-based ap-
proach to the identification of core sets and the construction of core set Markov
state models is appealing in the context of agent-based modeling because it does
not rely on analytical expressions for the dynamics. However, the approach is
built on the assumption that the original Markov chain is reversible, an assump-
tion which is usually not fulfilled for general agent-based models. We gave two
important examples of classes of stochastic evolutionary games with reversible
dynamics and gave an overview of the state-of-the-art of Markov models on
reduced state space for Markov chains with non-reversible dynamics.

Taken as a whole, the second part of this thesis presents not only a novel
approach to the analysis of stochastic evolutionary games but constitutes a proof
of concept for the applicability of the core set Markov state modeling approach
to agent-based models. In this respect, it is a foundation for future research
into the analysis of agent-based models.



Translation between
Notations

Table 2 provides a translation of selective expressions from functional notation
to the vector-based notation as used in mathematical economics (see, e.g., Var-
ian, 1992).
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Table 2: Translation table. The page number in the first column refers to the page of the first occurrence of the expression.

Expression Functional notation Vector-Based Notation

Name Page

Stocks 24 q : G→ R≥0 q ∈ Rn≥0, where n = |G|.
Allocations 24 x : A→ Q x = (q1, · · · , qk) ∈ Rn×k≥0 , where k = |A|.
Representation of functions of
more than one variable

24 Example x : A→ G→ R≥0 x : A×G→ R≥0.

Function application 24 Example x a ∈ Q for x function of type
A→ Q

x(a) ∈ Q.

Example x a g ∈ R≥0 for function x of
type x : A→ G→ R≥0

x(a)(g) or x(a, g) depending on whether x is
represented in curried form x : A → G →
R≥0 or uncurried form x : A × G → R≥0,
respectively.

Multiplication 24 r1 ∗ r2 r1r2

Stocks of an agent in an alloca-
tion

24 x a ∈ Q xi ∈ Rn≥0, where a is the ith agent.

Amount of a good of an agent in
an allocation

24 x a g ∈ R≥0 xij where agent a is the ith agent and good g
is the jth good.

Lists of type X 25 List X Set of all sequences (x0, · · · , xl) in X of finite
length

Empty list 25 [] ( )



Table 2: Translation table (continued).

Expression Functional notation Vector-Based Notation

Name Page

kth element of a list 25 xs!!k for list xs xk for list (x1, · · · , xk)

List with a certain first element 25 (x : xs) (x, x1, · · · , xl)
Membership function elem 25 Example elem x xs There is no standard notation for such a mem-

bership function in the vector-based notation.
We could define one similarly to the definition
given on page 25 in the functional notation.

fold 25 Example x′ = fold f x ys, where f :
X → Y → X, x ∈ X, ys ∈ List Y

There is no standard function for fold in the
vector-based notation. What is often done,
instead, is to define for a function f : X×Y →
X, x ∈ X and a finite sequence (y0, · · · , yl) of
elements in y the resulting x′ recursively as
follows: x′ = xl+1 = f(xl, yl), where x0 = x
and xi = f(xi−1, yi−1) for i = 1, · · · , l.

Realizations of a stochastic pro-
cess (Xt)t∈N with sample space
Θ and state space Z

33 z θ : N→ Z defined by z θ t = Xt θ for
t ∈ N

z(θ) ∈ ZN defined by z(θ)(i) = Xi(θ).

Expected utility 39 E u.rvC E(u ◦ rvC).



Table 2: Translation table (continued).

Expression Functional notation Vector-Based Notation

Name Page

Outcome of a trading round 39 x′ = fold ebt x ts, where ebt : (A →
Q) → A × A → (A → Q), x : A → Q,
and ts ∈ List (A×A)

Let K = {1, · · · , k}. Define x′ for the
function ebt : Rn×k≥0 × (K × K) → Rn×k≥0 ,

x ∈ Rn×k≥0 and a finite sequence of pairs
((i0, j0), (i1, j1), · · · , (il, jl)) in K, which de-
notes a finite sequence of agent pairs, recur-
sively by x′ = xl+1 = ebt(xl, (il, jl)), where
x0 = x and xm = ebt(xm−1, (im−1, jm−1)) for
m = 1, .., l.

Average utility of n samples 40 1
n

∑n
j=1(uext a).rvCj

1
n

∑n
j=1 uext,i ◦ rvCj
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of almost invariant aggregates in reversible nearly uncoupled Markov chains.
Linear Algebra and its Applications, 315:39–59.

Deuflhard, P. and Weber, M. (2005). Robust perron cluster analysis in confor-
mation dynamics. Linear Algebra and its Applications, 398:161184.

Diaconis, P. and Saloff-Coste, L. (1996). Logarithmic Sobolev inequalities for
finite Markov chains. The Annals of Applied Probability, 6(3):695–750.

Djurdjevac, N. (2012). Methods for analyzing complex networks using random
walker approaches. PhD thesis, Fachbereich Mathematikund Informatik, FU
Berlin.
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Röblitz, S. (2008). Statistical Error Estimation and Grid-free Hierarchical Re-
finement in Conformation Dynamics. PhD thesis, Fachbereich Mathematik
und Informatik, FU Berlin.

Robson, A. and Vega-Redondo, F. (1996). Efficient equilibrium selection in
evolutionary games with random matching. Journal of Economic Theory,
70:65–92.

Roth, G. and Sandholm, W. H. (2013). Stochastic approximations with con-
stant step size and differential inclusions. SIAM Journal on Control and
Optimization, 51:525–555.

Rubinstein, A. and Wolinsky, A. (1985). Equilibrium in a market with sequential
bargaining. Econometrica, 53:1133–50.



178 BIBLIOGRAPHY

Saari, D. (1985). Iterative price mechanisms. Econometrica, 53:1117–1131.

Sandholm, W. H. (2010). Population Games and Evolutionary Dynamics. MIT
Press, Cambridge.

Sandholm, W. H. (2011). Stochastic evolutionary game dynamics: foundations,
deterministic approximation, and equilibrium selection. Sigmund, Karl (ed.),
Evolutionary game dynamics. American Mathematical Society short course,
January 4–5, 2011, New Orleans, Lousiana, USA. Providence, RI: American
Mathematical Society (AMS). Proceedings of Symposia in Applied Mathe-
matics 69, 111-141 (2011).

Sarich, M. (2011). Projected Transfer Operators. PhD thesis, Fachbereich Math-
ematikund Informatik, FU Berlin.

Sarich, M., Banisch, R., Hartmann, C., and Schütte, C. (2014). Markov state
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Zusammenfassung

Inhalt dieser Arbeit ist die Formalisierung (Teil I) und Metastabilitätsanalyse (Teil
II) agenten-basierter, evolutionärer Modelle. Teil I diskutiert die Notwendigkeit von
Spezifikationen als komplementärer Bestandteil der Beschreibung agenten-basierter
Modelle neben der Implementierung und einer Beschreibung in natürlicher Sprache.
Es wurde die Grundstruktur eines funktionalen Frameworks für die Spezifizierung
agenten-basierter Austauschmodelle präsentiert. Der Hauptfokus dabei lag auf der
Herausarbeitung des Zusammenhangs agenten-basierter Austauschmodelle mit tradi-
tioneller ökonomischer Theorie. Es zeigte sich, dass die untersuchten Modelle sich
von evolutionären Spielen nur darin unterscheiden, dass die Fitnessfunktion nicht de-
terministisch ist. Das Framework wurde weiterhin benutzt um die Fragestellung der
Modelle präzise herauszuarbeiten und damit einen direkten Bezug zu allgemeinen Gle-
ichgewichtsmodellen herzustellen. Darüberhinaus wurde aufgezeigt, wie das Frame-
work unerlässliche Grundlage für die formale und numerische Analyse ist.

Teil II beinhaltet die Metastabilitätsanalyse evolutionärer Spiele in endlichen Pop-
ulationen, welche einfache agenten-basierte Modelle sind. Die Motivation basiert auf
der Beobachtung, dass evolutionäre Spiele häufig metastabile Dynamik aufweisen,
bisherige Analyseansätze diese Dynamik jedoch nicht beschreiben können, wie z.B.
die Analyse von Nash-Gleichgewichten, die deterministische Approximation oder die
Analyse stochastischer Stabilität. Die evolutionären Spiele wurden als zeit-diskrete
Markovketten repräsentiert. Darauf aufbauend wurden zwei formale Charakterisierun-
gen von Metastabilität vorgestellt und in den Kontext evolutionärer Spiele gebettet.
Es zeigte sich, dass jede Partition des Zustandsraumes metastabil hinsichtlich beider
Charakterisierungen ist.

Weiterhin betrachteten wir für die evolutionären Spiele den Ansatz der Core-Set
Markov-State-Modellierung zur Konstruktion von zeit-diskreten Markovketten, welche
die essentielle, metastabile Dynamik erfassen, dabei jedoch einen wesentlich kleineren
Zustandsraum und dadurch eine reduzierte Komplexität aufweisen. Grundlegende
Idee ist die Bestapproximation und damit orthogonale Projektion eines Transfer-
Operators des evolutionären Spiels auf den Unterraum, welcher aufgespannt wird
durch die Committor-Funktionen bzgl. gegebener, disjunkter Teilmengen des Zus-
tandsraumes, der sogenannten Core-Sets. Die darstellende Matrix dieser Projektion
ist die Übergangsmatrix der reduzierten Markovkette. Zusammenhänge zwischen der
ursprünglichen und der reduzierten Markovkette wurden detailliert herausgearbeitet.
Es wurde gezeigt, dass die Konstruktion stochastische Stabilität erhält. Aufbauend
auf der Analyse des Approximationsfehlers wird ein Algorithmus zur Identifikation von
Core-Sets präsentiert, sodass das resultierende Core-Set Modell die dominanten Zeit-
skalen und in diesem Sinne die Metastabilität gut wiedergibt. Sowohl die Identifikation
von Core-Sets als auch die Konstruktion des entsprechenden Core-Set Markov-State-
Modells können simulationsbasiert umgesetzt werden; d.h. sowohl die Core-Sets als
auch die Übergangsmatrix des reduzierten Modells können aus simulierten Trajek-
tionsdaten geschätzt werden und sind somit auch im Rahmen der agenten-basierten
Modellierung reizvoll. Obwohl der Anwendungsbereich durch die Annahme reversibler
Dynamik für allgemeine agenten-basierte Modelle eingeschränkt ist, legt diese Arbeit
einen Grundstein für zukünftige Arbeiten in diesem Bereich. Wir geben zwei Beispiele
für Klassen reversibler evolutionärer Spiele und einen Überblick über Ansätze für nicht-
reversible Markovprozesse.
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