
RELATING THE STRUCTURE

AND DYNAMICS OF

GENE REGULATORY NETWORKS

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von

Ling SUN

Berlin, 2017

Copyright c� 2017 Ling Sun

Erstgutachter: Prof. Dr. Alexander Bockmayr

Zweitgutachter: Dr. Élisabeth Remy, HDR

Tag der Disputation: 25. Oktober 2017

Abstract

A key topic in systems biology is to understand the intricate relations between molecular network
structures, dynamic properties and biological function. In this context, gene regulatory networks
(GRNs) describing the regulatory interactions between genes and their products are of crucial
importance. The general goal of this thesis is to explore the relationship between the structure
and dynamics of GRNs. This is done in a discrete modelling framework using the Thomas
formalism. A GRN is represented by a discrete model which includes an interaction graph (IG)
and a logical parameter function that characterise the regulatory interactions. The dynamics of a
GRN is modelled by an asynchronous state transition graph (ASTG), where the states of the
system can only be changed by asynchronous and unitary updates. In 2011, T. Lorenz proposed
two reverse engineering algorithms for inferring from a given ASTG models satisfying specific
properties.

In the first part of the thesis, the focus is on the explanation, implementation, and gen-
eralisation of the Lorenz algorithms. In order to handle general inputs, three necessary and
sufficient conditions are presented to characterise ASTGs among all graphs on a given state
space. Furthermore, a fourth condition is derived which is necessary and sufficient for an ASTG
to admit a realistic model. These four ASTG conditions provide the basis for a generalisation of
Lorenz algorithms and several applications.

Multistationarity and homeostasis are two important dynamical properties of high biological
relevance, which can be represented by attractors in the ASTG. In the second part of the thesis,
two discrete modelling workflows are developed for exploring all those GRNs that are able to
realise a given functionality. The forward modelling workflow includes enumerating all possible
models and searching for those models whose ASTG exhibits the desired properties. The
reverse engineering workflow starts from enumerating all graphs on the state space satisfying
the dynamic properties and then infers all models of these graphs using the generalised Lorenz
algorithms. To analyse the resulting functional IGs, a logical analysis method is developed,
which encodes IGs by Boolean expressions, and then uses Boolean function minimisation to
obtain a compact representation. The same logical analysis method can also be applied to the
logical parameters.

In the last part of the thesis, the discrete modelling workflows are applied to explore the
space of GRNs realising some typical dynamic behaviours of biological interest. Three case
studies are presented. The first one concerns homeostasis in a simplified MAPK cascade, the
second one multistationarity in cell differentiation, and the third one single-stripe forming in the
embryogenesis of the fruit fly Drosophila melanogaster.

Contents

1 Introduction 1
1.1 Propositional logic and Quine-McCluskey Algorithm 2
1.2 Continuous and discrete modelling frameworks 4
1.3 Preliminaries on discrete modelling of regulatory networks 6
1.4 Overview of the thesis . 9

2 From dynamics to structures: reverse engineering algorithms 11
2.1 Model conditions and ASTG characterisation 11

2.1.1 Model conditions . 12
2.1.2 Row properties of an ASTG . 13
2.1.3 Equivalent models . 18

2.2 Reverse engineering algorithms . 22
2.2.1 Algorithm Logical-Parameters . 22
2.2.2 Algorithm Activity-Value . 25
2.2.3 Algorithm Visibility-Model . 27
2.2.4 Algorithm Observability-Snoussi-Model 30

2.3 Discussion . 35

3 Asynchronous state transition graphs and generalised Lorenz algorithms 39
3.1 Characterising asynchronous state transition graphs 39

3.1.1 Three ASTG conditions . 39
3.1.2 Compatible model condition . 47
3.1.3 Enumerating asynchronous state transition graphs 55
3.1.4 Asynchronous state transition graphs in low dimension 61

3.2 Generalising Lorenz algorithms with ASTG conditions 64
3.2.1 Generalised Lorenz algorithms . 64
3.2.2 Examples for generalised Lorenz algorithms 68

4 Model analysis and discrete modelling workflows 71
4.1 Realizability . 71
4.2 Logical analysis method . 73

4.2.1 Logical analysis on IGs . 73
4.2.2 Logical analysis on parameters . 77

4.3 Discrete modelling workflows . 80
4.3.1 Forward modelling workflow . 81
4.3.2 Reverse engineering workflow . 82
4.3.3 Analysis of the functional models . 83

5 Application: structures reproducing homeostasis 85
5.1 Functional models preserving the cyclic attractor 86

v

vi CONTENTS

5.1.1 Using the reverse engineering workflow 86
5.1.2 Functional IGs and their ASTGs . 86
5.1.3 Realizability of functional IGs . 90
5.1.4 Coupled interactions . 91

5.2 Logical analysis of functional models . 92
5.2.1 Functional IGs . 93
5.2.2 Functional parameters . 96

5.3 Conclusion and discussion . 97

6 Application: structures reproducing multistability 99
6.1 Continuous method: robustness measure . 99

6.1.1 Continuous modelling framework . 100
6.1.2 Specification of stable steady states 101
6.1.3 Robustness measure and its computation 101

6.2 Discrete modelling methods . 104
6.2.1 Initial setup . 104
6.2.2 Different constraints on the desired stable states 105
6.2.3 Forward modelling workflow: from IGs to ASTGs 106
6.2.4 Reverse engineering workflow: from ASTGs to IGs 107

6.3 Results and analysis . 107
6.3.1 Results from the continuous method: robustness measure 107
6.3.2 Results from discrete methods . 108
6.3.3 Comparison of the results . 111
6.3.4 Realizability . 114
6.3.5 Logical analysis on functional models 115

6.4 Conclusion and discussion . 121

7 Application: structures for single-stripe pattern 123
7.1 Discrete modelling workflows: stripe-forming GRNs 124

7.1.1 Modelling setup . 124
7.1.2 Forward modelling workflow . 128
7.1.3 Reverse engineering workflow . 128

7.2 Results and analysis . 129
7.2.1 Results of the forward modelling workflow 129
7.2.2 Results of the reverse engineering workflow 130
7.2.3 Five rules for all functional IGs . 131
7.2.4 Anti-stripe pattern . 133
7.2.5 Realizability and the capacity on stripe-forming IGs 134

7.3 Logical analysis of functional IGs . 134
7.4 Conclusion and discussion . 135

8 Summary and discussion 137
8.1 Summarising the story . 137
8.2 Contributions and applications . 138
8.3 Discussion . 139

Bibliography 141

Chapter 1

Introduction

Systems biology is a highly interdisciplinary research field that studies various components of
a biological system in a systematic way rather than dealing with them in isolation. A central
theme in systems biology is to understand the intricate relationship between the structure of a
biological system, its dynamical properties and biological function [Kitano, 2002]. A variety of
mathematical and computational approaches has been developed to model and analyse these
biological systems, including continuous, discrete, stochastic and various hybrid modelling
methods, see for example [De Jong, 2002, Ingalls, 2013] for review. In continuous modelling,
systems are described by ordinary differential equations (ODEs). ODE models are quantitative
and precise but their application is limited by the hardness of solving large systems of nonlinear
differential equations and determining the huge amount of kinetic parameters. Requiring less
data and parameters, piecewise linear differential equations (PLDEs) can qualitatively describe
a biological system using limited kinetic information. Needing much less data and parameters
than ODEs and PLDEs, the discrete modelling approach can qualitatively describe a system
using integer variables and a finite number of states. Existing discrete methods include logical
networks [Thomas and D’Ari, 1990], Petri nets [Chaouiya et al., 2008] and many others.
Computational methods and analysis may predict biological mechanisms, which can motivate
verification-oriented experiments [Kitano, 2002]. Computational analysis is strongly needed for
better understanding the mechanisms underlying different biological functions, phenomena and
also various diseases.

Gene regulation is the mechanism of controlling gene expression. The product of a gene
can act as a transcription factor (TF) which can activate or inhibit other gene expression. Gene
regulation can happen at the transcriptional or translational level, in single cell systems adjusting
to an external environment, or in multicellular systems in the context of cell differentiation and
morphogenesis. A set of genes and gene products interacting with each other and regulating the
gene expression is called a gene regulatory network (GRN). The regulators can be DNA, RNA,
proteins and their complexes. The interaction can be direct or indirect (through their transcribed
RNA or translated protein).

The goal of this thesis is to study the relationship between the structure and dynamics of
GRNs using a discrete logical modelling approach. Section 1.1 presents basic propositional
logic and the classic Quine-McCluskey algorithm, which will be needed to understand later
work in Chapter 5, 6, 7, 8. A brief history from continuous to discrete modelling of GRNs is
given in Section 1.2. Next the fundamental definitions and concepts used in discrete modelling
of regulatory networks are introduced in Section 1.3. Finally, an overview of the whole thesis
can be found in Section 1.4.

1

2 Chapter 1 Introduction

1.1 Propositional logic and Quine-McCluskey Algorithm

A statement that has a truth value, i.e., TRUE or FALSE, is called a proposition. Propositional
variables can have truth values TRUE (1) or FALSE (0), and can be called logical variables.
Propositional variables can be connected by logical operations including and, or, not, implication
etc. to form logical expressions. If we use 1 and 0 to represent TRUE and FALSE, then the
logical operations can be written as arithmetic expressions. Let x and y be two logical variables,
then:

1. x ‚ y = x + y. Here OR is inclusive or, or disjunction.

2. x · y = xy.

3. x̄ = 1 ≠ x.

At the core of propositional logic are Boolean functions [Crama and Hammer, 2011].
Any logical expression can be described by a Boolean function f : {0, 1}n æ {0, 1} of the
corresponding logical variables. The truth values of all the variables and the Boolean function
can be described by a truth table, where the rows contain the combinations of all possible values
for all the logical variables, and the last column gives the truth value of the Boolean function.
For example, Table 1.1a is a truth table for a Boolean function.

There are two classes of logical expressions of special interest. Let x be a Boolean variable,
then a literal is an expression of the form x or x̄. A conjunction (product) of a set of literals
is called an elementary conjunction, and a disjunction (sum) of a set of literals is called an
elementary disjunction. A disjunctive normal form (DNF) is a disjunction of elementary
conjunctions which are called terms of the DNF. A conjunctive normal form (CNF) is a
conjunction of elementary disjunctions which are called clauses of the DNF. A well-known fact
is that every Boolean function can be written as a DNF and a CNF in [Crama and Hammer,
2011].

Let B = {0, 1}. A minterm on Bn, n Ø 1 is an elementary conjunction involving all n
literals. Let f : Bn æ B be a Boolean function and consider the truth table of f . Each row in the
truth table where f is true can be represented by a minterm. An implicant of a Boolean function
f is an elementary conjunction, such that if this implicant is true, then the Boolean function f
is also true. In other words, there is no value assignment which makes the product term true
and the Boolean function false. An implicant is said to cover a minterm, if this implicant is
true when this minterm is true. An implicant is prime if the number of literals of it cannot be
reduced any more, i.e., removing any literal will change the implicant into a non-implicant. A
prime implicant is essential if it covers a minterm of the Boolean function which no other prime
implicant can cover. These definitions are illustrated later in Example 1.1.

One of the most important topics in the theory of Boolean functions is the representation of a
Boolean function by a DNF, or some logical expression. A Boolean function can have multiple
DNF representations, therefore some ”optimal” one is of particular interest. A DNF can be
short regarding the number of terms and the number of literals. The problem of constructing a
shortest DNF representation of a Boolean function is also called logical minimisation, two-level
logic minimisation or Boolean function minimisation [Crama and Hammer, 2011]. Hammer and
Kogan proved in [Crama and Hammer, 2011, Theorem 3.14] that the logic minimisation problem
is NP-hard when its input is a Boolean function given by the set of its true points. First developed
by Quine and later extended by McCluskey [McCluskey, 1956], the Quine-McCluskey algorithm
is a general method for the minimisation of Boolean functions. The Quine-McCluskey algorithm

1.1 Propositional logic and Quine-McCluskey Algorithm 3

includes the following two steps and is illustrated by Example 1.1.

1. Find all prime implicants of the Boolean function by applying repeatedly the rule xy +

xȳ = x;

2. Put these prime implicants in a prime implicant chart to find all essential prime implicants
of the function, and other prime implicants that are necessary to cover the function.

Example 1.1 (Quine-McCluskey algorithm) Table 1.1 illustrates the algorithm for a Boolean
function of three variables. (This table is generated by the online software (http://www.
mathematik.uni-marburg.de/

˜

thormae/lectures/ti1/code/qmc/) by the
lecture [Thormählen, 2016].)

x
2

x
1

x
0

f
0 : 0 0 0 1

1 : 0 0 1 1

2 : 0 1 0 0

3 : 0 1 1 1

4 : 1 0 0 0

5 : 1 0 1 0

6 : 1 1 0 0

7 : 1 1 1 1

(a) Truth table.

x
2

x
1

x
0

0 : 0 0 0 æ
1 : 0 0 1 æ
3 : 0 1 1 æ
7 : 1 1 1 æ
(b) Implicants (Order 0).

x
2

x
1

x
0

0, 1 : 0 0 ≠ Ô
1, 3 : 0 ≠ 1

Ô
3, 7 : ≠ 1 1

Ô

(c) Implicants (Order 1).

prime implicants x
2

x
1

x
0

0 1 3 7

0, 1 : 0 0 ≠ • ¶ x̄
2

x̄
1

1, 3 : 0 ≠ 1 ¶ ¶ x̄
2

x
0

3, 7 : ≠ 1 1 ¶ • x
1

x
0

(d) Prime implicant chart. “•” denotes essential prime implicants, and “¶” for non-essential ones.

Table 1.1: Quine-McCluskey algorithm for a Boolean function f . (a) The truth table for f .
(b) The rows in (a) with f = 1 are the minterms which are implicants of order 0. (c) Those
implicants of order 0 with only one different variable can be combined (written as ≠), giving
the combined implicants of order 1. Those implicants which cannot be combined any further
are prime, marked with “

Ô
”, otherwise with “æ”. (d) The prime implicant chart is constructed

to find the essential prime implicants of f and other prime implicants which are necessary to
cover all true minterms. A minterm that is covered by only one prime implicant is marked with
“•”. A minterm is marked with “¶” if it is covered by more than one prime implicant. The
prime implicants which cover “•” minterms are essential. The minimal logical expression is
f = x̄

2

x̄
1

‚ x
1

x
0

.

1. All true minterms are selected in Table 1.1b. Using the rule xy + xȳ = x, all minterms
are combined until every row is a prime implicant, shown in Table 1.1c (order 1).

2. A prime implicant chart is constructed based on all prime implicants, which are put in
the table as rows and all minterms with f = 1 as columns. Petrick’s method [Petrick,
1959] is applied to get the minimal DNF, as in Table 1.1d. If a minterm is covered by
only one prime implicant, then it is marked with “•”. If a minterm is covered by more
than one prime implicant, then it is marked with “¶”. A prime implicant is essential if a
true minterm is covered by it, but not by any other prime implicant. All essential prime
implicants must be included in the minimal Boolean expression. After all the essential
prime implicants have been found, a minimum set of prime implicants must be chosen to

http://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/
http://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/
http://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/
http://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/

4 Chapter 1 Introduction

cover the remaining minterm columns.

3. The sum of all the essential prime implicants and the other minimum prime implicants is
the minimisation of the Boolean expression. In this example, f = x̄

1

‚ x
2

x
0

.

—

For more information on the QuineMcCluskey algorithm, we refer to the original work in
[Quine, 1952, McCluskey, 1956]. A standard reference on Boolean functions is [Crama and
Hammer, 2011].

1.2 Continuous and discrete modelling frameworks

In continuous modelling, the concentration of a gene product is described by a real variable. A
gene i can be activated or inhibited by another gene j if the concentration of j reaches a certain
threshold ◊

ij

. The regulatory effect is modelled by a sigmoid curve, which is usually described
by a Hill function [Hill, 1910], see Fig. 1.1.

1

✓

x

1

✓

x

F

+
m

(x, ✓) = x

m

✓

m+x

m F

�
m

(x, ✓) = ✓

m

✓

m+x

m

Figure 1.1: Hill functions, m is the Hill coefficient.

Assume a regulatory network has n genes modelled by n real variables, x
1

, x
2

, . . . , x
n

.
The regulation (activation/inhibition) of i by j is described by a kinetic parameter k

ij

and
the degradation rate k≠i

. The system can be modelled by the following ordinary differential
equations (ODEs), see e.g. [Thomas and Kaufman, 2001]:

dx
i

dt
=

nÿ

j=1

k
ij

F
–

ij

m

(x
j

, ◊
ij

) ≠ k≠i

x
i

, for i = {1, . . . , n} (1.1)

where k
ij

Ø 0, –
ij

œ {+, ≠}, k≠i

> 0 and m Ø 1.

For m æ Œ the Hill function can be approximated as a step function (see Fig. 1.2). Thus,
the ODE can be transformed into a piecewise linear differential equation (PLDE).

dx
i

dt
=

nÿ

j=1

k
ij

F –

ij

(x
j

, ◊
ij

) ≠ k≠i

x
i

, for i = {1, . . . , n} (1.2)

where k
ij

Ø 0, –
ij

œ {+, ≠} and k≠i

> 0.

1.2 Continuous and discrete modelling frameworks 5

1

✓

x

F

+(x, ✓) =

⇢
1, if x > ✓

0, if x < ✓

1

✓

x

F

�(x, ✓) = 1� F

+(x, ✓)

Figure 1.2: The step function.

Thomas and co-workers developed kinetic logic and a generalised logical description of
gene regulatory networks using discrete logical variables [Thomas, 1973, Thomas, 1981], which
can be Boolean (only 0 and 1) or multi-valued.

Suppose a gene i acts on n
i

different genes in the system. Then it is natural to introduce a
threshold for each of the genes: 0 < ◊1 < ◊2 < · · · < ◊n

i (following Thomas, we assume that
all thresholds are different). Using these thresholds, continuous variables can be discretized as
follows:

d
i

: R+ æ {0, 1, . . . , n
i

}, d
i

(x
i

) =

Y
____]

____[

0, if 0 < x
i

< ◊1

1, if ◊1 < x
i

< ◊2

...
n

i

, if x
i

> ◊n

i

(1.3)

The PLDEs (1.2) can be transformed into the discrete equations [Thomas and D’Ari, 1990]:

Xø
i

= d
i

(

nÿ

j=1

K

ij

F –

ij

(X
j

, Ë
ij

)), (1.4)

with discrete variables X
i

, Xø
i

œ {0, . . . , n
i

}, where Xø
i

is the new value of X
i

, K

ij

=

k
ij

/k≠i

Ø 0, and Ë
ij

are discrete thresholds. Furthermore, we obtain discrete logical parameters
defined by

K

ij

:= d
i

(K

ij

)

K

ij+ij

Õ
:= d

i

(K

ij

+ K

ij

Õ
)

(1.5)

Here both genes j and jÕ are regulating gene i, and K

ij

, K

ij+ij

Õ œ {0, . . . , n
i

}, where n
i

is the
maximal concentration level of gene i.
Example 1.2 Figure 1.3 shows two genes regulating each other.

x1 x2
�,#12

+

+,#22

Figure 1.3: An example of a multi-valued interaction graph. x
1

œ {0, 1}, x
2

œ {0, 1, 2}. Let
Ë

12

= 1 < Ë
22

= 2. The arrows denote activation, and the blunt edge represents inhibition.

In Figure 1.3, the ODEs for the system will be:

dx
1

dt
= k

12

F ≠
m

(x
2

, ◊
12

) ≠ k≠1

x
1

(1.6)

dx
2

dt
= k

21

F +

m

(x
1

, ◊
21

) + k
22

F +

m

(x
2

, ◊
22

) ≠ k≠2

x
2

6 Chapter 1 Introduction

After discretization, we get the equations:

Xø
1

= d
1

(K

12

F ≠
(X

2

, 1)) (1.7)

Xø
2

= d
2

(K

21

F +

(X
1

, 1) + K

22

F +

(X
2

, 2))

Let K

12

= d
1

(K

12

), K

21

= d
2

(K

21

), K

22

= d
2

(K

22

) K

21+22

= d
2

(K

21

+ K

22

). Then
the discrete dynamics can be described by the following table:

X
1

X
2

Xø
1

Xø
2

0 0 0 0

0 1 K

12

0

0 2 K

12

K

22

1 0 0 K

21

1 1 K

12

K

21

1 2 K

12

K

21+22

—
Biological feedbacks are an important characteristic of regulatory networks. Feedback

circuits are defined as simple closed cycle of directed interactions [Thieffry, 2007]. They can
be positive or negative depending on whether there is an even or odd number of inhibitions.
R. Thomas formulated two conjectures: a positive circuit in a regulatory network is a necessary
condition for multistationarity and a negative circuit is necessary for stable periodic behaviour
[Thomas and D’Ari, 1990]. Two of the most important biological properties are differentiation
and homeostasis or oscillations. In terms of modelling, they correspond to multistationarity and
stable periodicity. In ODE or PLDE systems, these are related to asymptotically stable steady
states and homeostasis. In discrete dynamical systems, the relevant dynamic behaviours are
called stable states or fix points, and cyclic attractors. Note that asymptotically stable steady
states in a continuous model may correspond to both fix points and cyclic attractors in a related
discrete model [Snoussi, 1989, Jamshidi, 2013].

R. Thomas, E. H. Snoussi, D. Thieffry and co-workers initiated the research on (asynchron-
ous) logical modelling of GRNs and made it an active research area, see for example [Bérenguier
et al., 2013, Chaouiya and Remy, 2013] for recent surveys.

Lots of work has focused on positive/negative feedback circuits and related dynamic proper-
ties including multistationarity and homeostasis, for both Boolean and multi-valued systems
[Soulé, 2003, Remy et al., 2006, Remy and Ruet, 2006, Richard and Comet, 2007, Remy et al.,
2008, Richard, 2009, Richard, 2010, Didier and Remy, 2012, Comet et al., 2013, Melliti et al.,
2015, Remy et al., 2016, Ruet, 2017].

Important work on network inference includes [Bernot et al., 2004, Batt et al., 2010, Corblin
et al., 2010, Klarner et al., 2012b, Klarner et al., 2012a, Klarner, 2015, Videla et al., 2015,
Ostrowski et al., 2016, Streck, 2016]. Note, however, that in contrast to the work presented in
this thesis, all these methods do not start from a complete asynchronous state transition graph as
input for network inference. In the next section, we formally introduce these concepts.

1.3 Preliminaries on discrete modelling of regulatory networks

The following definitions are based on [Lorenz, 2011] and [Lorenz et al., 2013]. In discrete
models, the activity levels of a gene are represented by integer numbers 0, 1, . . . , k, for some

1.3 Preliminaries on discrete modelling of regulatory networks 7

k œ N+

= {1, 2, . . . }. In this section, we give a formal treatment of a purely discrete version of
the Thomas modelling approach introduced in Section 1.2.

A gene and the product of it are modelled by a node, and an interaction from one gene
product to another gene by a directed edge from one node to the other. The resulting graph on
all nodes in the system is called an interaction graph [Lorenz, 2011].
Definition 1.3 (Interaction graph) An interaction graph (IG) I = (V, E, Á, Ë, max) is a directed
graph, with a set of vertices V representing regulatory components, and a set of edges E denoting
regulatory interactions among V . The function Á : E æ {+, ≠} specifies the sign of the edges
in E, where + means activation and ≠ means inhibition. The function Ë : E æ N+ defines
for each edge (u, v) a threshold Ë(u, v),which is the minimal activity level of the component u
that is required by the interaction (u, v) to be effective. The function max : V æ N+ assigns a
positive integer to each component, which is the maximal activity level.
Definition 1.4 (Successor and predecessor) Let (u, v) œ E be an edge. Then v is a successor of
u, and u is a predecessor of v. The set of all predecessors (resp. successors) of u is denoted by
Pre(u) := {v œ V | (v, u) œ E} (resp. Suc(u) := {v œ V | (u, v) œ E}).

The state space X is the Cartesian product of the sets of values of all the components. It
describes all possible states of the regulatory network defined by an IG I .
Definition 1.5 (State Space) For an IG I = (V, E, Á, Ë, max), the state space is defined as
X :=

r
uœV

X
u

, where X
u

= {0, . . . , max

u

} is the activity level interval of the component
u œ V . A state is a vector x := (x

1

, . . . , x|V |) œ X .

The state of a component u depends on a combined effect of all components v regulating u.
The next state of a component u is specified by the so-called resources and the logical parameter
function, which are defined next.
Definition 1.6 (Resource) The resource for a component u œ V in a state x œ X is defined as
the set of predecessors of u which in state x have a present activation or an absent inhibition on
u, i.e.,

Res

u

(x) =

I

v œ Pre(u)

Á(v, u) = + · x

v

Ø Ë(v, u)

Á(v, u) = ≠ · x
v

< Ë(v, u)

J

.

Definition 1.7 (Logical parameter function) A logical parameter function K is a function of
the components and their resources. For all u œ V and Ê ™ Pre(u), the logical parameter
K(u, Ê) œ {0, . . . , max

u

} gives a value to which a component u in a state x with resource
Res

u

(x) = Ê tends.
Definition 1.8 (Model) A model M = (I, K) is composed of an interaction graph I and a
logical parameter function K.

The transition of one state to another is described by the state transition function based on
the logical parameter function.
Definition 1.9 (State transition function) The state transition function ” : V ◊ X æ {≠1, 0, 1}
indicates how a component u can change in a given state x œ X:

”(u, x) :=

Y
_]

_[

1 if x
u

< K(u, Res

u

(x)),
0 if x

u

= K(u, Res

u

(x)),
≠1 if x

u

> K(u, Res

u

(x)).

We mainly focus on two strategies for describing the transitions from one state to another.
According to whether different components of a state are updated simultaneously or not, there
are synchronous and asynchronous update strategies. Depending on whether the value of a

8 Chapter 1 Introduction

component is changed by one or more than one, there can be unitary and non-unitary updates.
In non-unitary updating a component x

u

can be updated to any value in {0, . . . , max

u

}, while
in unitary updating, a component can change at most by value one. According to [Thomas and
D’Ari, 1990], the likelihood of two components being updated in exactly the same moment is
very small, and the accumulation of a gene product is more a continuous process than a sudden
jump. Therefore, the unitary asynchronous update strategy is considered to be more realistic
in describing the dynamics of biological systems. Thus, in this thesis we will mainly use the
unitary asynchronous dynamics.
Definition 1.10 (Asynchronous state transition graph) The dynamics generated by a model M
is described by the asynchronous state transition graph (ASTG) T

M

= (X, S), where

S :=

€

xœX

{(x, x + ”(u, x)e

u

) | u œ V : ”(u, x) ”= 0.}

Here, e

u is the u-th unit vector in X .

As mentioned in Section 1.3, multistationarity and stable periodic behaviour are two import-
ant biological properties. In the discrete modelling framework, these correspond to stable states
and closed cycles (so called cyclic attractors) in the ASTG, which are are defined next.
Definition 1.11 (Attractor) Given an ASTG T = (X, S), a subset A ™ X is called an attractor,
if A is a strongly connected component and there is no transition leaving A. An attractor
containing only one element is called a stable state, and an attractor with more than one element
is called a cyclic attractor.

v1 v2

+, 2
�, 1

+, 1

�, 2

Resv1(00) = {v1}
Resv1(01) = {v1, v2}
Resv1(11) = {v2}
Resv1(20) = �

I

K
! K(v1,!) K(v2,!)

; 0 0
{v2} 1 0
{v1} 1 0

{v1, v2} 2 2

(a) M = (I, K)

00

01

02

10 11

12

20

21 22

�(v2, 00) = 0

v2

v1

A cyclic attractor {00, 10}

�(v1, 00) = 1

�(v1, 10) = �1

�(v2, 01) = �1

(b) T = (X, S).

Figure 1.4: (a) A model M = (I, K). In the IG I , the arrows represent activation, and the edges
with a small dash in the end represent inhibition. At the bottom, there is a logical parameter
function K, where Ê denotes the resource. In between I and K, there are a few examples of
resources. (b) The corresponding ASTG T = (X, S), where the elements of X are given by
sequences of numbers, S is the set of all the transitions in X . A few examples of the state
transition function ”(v, x) are also given. Note that {00, 10} is the only attractor in T , and
{21, 22} is not an attractor because it has outgoing transitions.

1.4 Overview of the thesis 9

1.4 Overview of the thesis

This chapter has introduced some background and preliminaries including propositional logic,
the Quine-McCluskey algorithm, the Thomas formalism, and discrete modelling of regulatory
networks.

Chapter 2 will present and elucidate four reverse engineering algorithms originally proposed
by Therese Lorenz [Lorenz, 2011]. In the sequel, these will be called Lorenz Algorithms. The
principles and details of Lorenz Algorithms will be introduced and illustrated by example.

The main theoretical contribution of this thesis is Chapter 3. First three conditions which are
necessary and sufficient for a graph on the state space to be an ASTG are presented in Section
3.1.1. Based on these three conditions, rules are given in Section 3.1.3 for the enumeration
of all possible ASTGs on a given state space. A model is called compatible if it satisfies the
observability and Snoussi-conditions. In Section 3.1.2, a necessary and sufficient condition
on an ASTG for being able to carry a compatible model is proposed. Lorenz algorithms as
introduced in Chapter 2 require as input a valid ASTG, otherwise the output model is not
guaranteed to regenerate the input. Based on the four conditions developed in Section 3.1.1 and
3.1.2, Lorenz Algorithms are generalised in Section 3.2 to handle also general inputs.

In Chapter 4, first a discrete robustness measure, named realizability, is proposed in Sec-
tion 4.1 in order to describe the ability of an IG of realising a required attractor. Next, a new
logical analysis method to identify regulatory patterns in functional IGs and logical parameter
functions is proposed in Section 4.2.1. Based on the two analysis methods above and the
updated Lorenz Algorithms, two discrete modelling workflows are proposed for exploring the
regulatory structures which can reproduce some given biological function. Starting from the
target function which is modelled by certain attractors, these two workflows are able to find all
functional models which can generate ASTGs with the required attractors. Both workflows rely
on enumeration. Thus they suffer from exponential complexity with an increasing number of
components and even worse if the components have high maximal activity values. After this,
a logical analysis method can be applied on the functional IGs to generate IG patterns. If the
functionality for the required attractors is a Boolean function which is true for each functional
IG, then one can derive a minimal logical description of this set of IGs, usually the minimal DNF
or CNF. Similarly this method can be applied on the logical parameters to identify potential
interesting patterns.

Chapter 5, 6, 7 describe three applications of the methodologies in Chapter 3 and 4, with
different biological targets.

Chapter 5 studies all possible 3-node IGs that are able to reproduce the cyclic attractor from
a simplified 3-node MAPK cascade signalling network [Thobe et al., 2014]. Using the reverse
engineering workflow, 8 functional IGs are identified, where a core motif and 3 interaction-pairs
are found to be relevant IG patterns. When applying the logical analysis method on this set of
IGs, the minimal CNF turns out to provide shorter Boolean expressions than the minimal DNF.

Chapter 6 explores all possible 3-node IGs that are able to reproduce a set of 3 steady
states for a cell differentiation process originally studied by a continuous modelling approach
[Breindl et al., 2011]. Two opposite hypotheses on the 3 stable states are used to define the
target attractors. The discrete modelling workflows are applied to obtain all functional IGs and
IG patterns. The IG patterns from the discrete method are compared with the building blocks
from the continuous approach. The realizability and logical analysis method are applied on the
resulting functional models.

10 Chapter 1 Introduction

Chapter 7 studies all possible underlying GRNs which are able to generate the single
stripe phenomenon observed in the development of the Drosophila embryo [Cotterell and
Sharpe, 2010]. The single stripe phenomenon is modelled by a sequence of attractors under a
morphogen gradient input signal. The details on modelling the morphogen gradient and the
single stripe phenomenon are presented in Section 7.1. Using the discrete modelling workflows,
all functional IGs are found and also the IG patterns are obtained. A compact representation of
all the functional IGs is achieved by applying the logical analysis method, see in Section 7.3.

The thesis finishes in Chapter 8 with a summary and a discussion of possible future work.

Chapter 2

From dynamics to structures: reverse engineer-
ing algorithms

In the discrete modelling framework introduced in Chapter 1, models are defined in a very
general way, so that they may contain unnecessary interactions whose influences are not visible
in the ASTG, or there may be inconsistencies between the IG and the logical parameter function.
Inferring structures from dynamics, called reverse engineering in the sequel, is significant for
understanding the relationship between the dynamics of GRNs and their structure. This chapter
will focus on different model conditions and some reverse engineering algorithms originally
developed by T. Lorenz [Lorenz, 2011].

Section 2.1 provides some theoretical background and the basic principles for the reverse
engineering algorithms. A discrete model can satisfy different model conditions, which will
be discussed in Section 2.1.1. ASTGs are described by row structures, which are introduced in
Section 2.1.2. Furthermore in multi-valued modelling, it is possible that different models can
have the same ASTG. Section 2.1.3 gives definitions and basic properties of equivalent models.

T. Lorenz [Lorenz, 2011] designed four algorithms: two for reverse engineering and two
auxiliary ones. Given a complete ASTG, each of the two reverse engineering algorithms
can infer an optimal model satisfying specific model conditions. Here optimality means that
there are no unnecessary edges regarding the model conditions required by the corresponding
algorithm. The row properties introduced in Section 2.1.2 form the basis for understanding the
two auxiliary algorithms Logical Parameters in Section 2.2.1 and Activity Value in Section 2.2.2.
The model conditions defined in Section 2.1.1 and the notion of equivalent models introduced
in Section 2.1.3 are important to understand the other two algorithms in Section 2.2.3 and 2.2.4.
Section 2.2 gives pseudocode for each of the four algorithms and illustrates them by example.

2.1 Model conditions and ASTG characterisation

Section 2.1.1 will introduce the three model conditions, i.e., visibility, observability and the
Snoussi-conditions. Section 2.1.2 gives a detailed characterisation of the structure of ASTGs,
important principles and theorems. Specifically, the minimisation of violations of the Snoussi-
condition in Section 2.1.3 is needed for understanding the algorithms in Section 2.2.4.

11

12 Chapter 2 From dynamics to structures: reverse engineering algorithms

2.1.1 Model conditions

As defined in Chapter 1, a model M = (I, K) includes an IG I = (V, E, Á, Ë, max) and a
logical parameter function K. Following [Lorenz, 2011], three model conditions are defined
below.
Definition 2.1 (Visibility condition) In a model M = (I, K), an interaction (v, u) œ E is called
visible, if there exists a resource Ê ™ Pre(u) such that

K(u, Ê) ”= K(u, Ê fi {v}).

A model M = (I, K) satisfies the visibility condition if all edges (v, u) œ E are visible.
Definition 2.2 (Observability condition) In a model M = (I, K), an interaction (v, u) is
observable if there exists a resource Ê ™ Pre(u) such that

K(u, Ê) < K(u, Ê fi {v}).

A model M = (I, K) satisfies the observability condition if all edges (v, u) œ E are observable.
Remark 2.3 An observable edge (v, u) is always visible, but a visible edge (v, u) is not always
observable.

The logical parameter function K is based on resources, so that for the observability con-
dition, the relation “<” holds for both the positive and negative interactions. The “<” is
rather natural for an activation. Consider an inhibition (v, u) and two states x, y œ X with
x

v

Ø Ë(v, u) and y
v

< Ë(v, u). Then v /œ Res

u

(x) = Ê, and v œ Res

u

(y) = Ê fi {v}. The in-
hibition (v, u) is observable if K(u, Ê) = K(u, Res

u

(x)) < K(u, Ê fi {v}) = K(u, Res

u

(y)),
where the inhibitor v is present in state x and absent in state y.
Definition 2.4 (Snoussi-condition)

1. An interaction (v, u) œ E of a model M = (I, K) satisfies the Snoussi-condition, if

’Ê ™ Pre(u)\{v}, K(u, Ê) Æ K(u, Ê fi {v}).

2. A component u œ V of a model M = (I, K) satisfies the Snoussi-condition, if

’Ê ™ Î ™ Pre(u), K(u, Ê) Æ K(u, Î).

3. A model M = (I, K) satisfies the Snoussi-condition if each component u œ V satisfies
the Snoussi-condition. This means that when adding positive influences, no component
tends to a lower value.

Remark 2.5 A model M = (I, K) satisfies the Snoussi-condition if every interaction (v, u) œ E
satisfies the Snoussi-condition.

Proof. If every interaction satisfies the Snoussi-condition, then it holds that for all u, v œ V , for
all Ê ™ Pre(u)\{v}, K(u, Ê) Æ K(u, Ê fi {v}). For all resources of u, Ê ™ Î ™ Pre(u), we
can prove that K(u, Ê) Æ K(u, Î).

Let Ê ™ Î ™ V that Î\Ê = {v
1

, . . . , v
b

}, where v
1

, . . . , v
b

œ Pre(u). Let Ê1

= Ê fi {v
1

},
Ê2

= Ê1 fi {v
2

} until Êb

= Êb≠1 fi {v
b

} = Î . Each interaction satisfies the Snoussi-condition,
infers that K(u, Ê) Æ K(u, Ê1

) Æ K(u, Ê2

) Æ · · · K(u, Êb

). So that K(u, Ê) Æ K(u, Î).
Therefore, component u satisfies the Snoussi-condition.

A model M = (I, K) satisfies the Snoussi-condition if every interaction (v, u) œ E satisfies
the Snoussi-condition.

2.1 Model conditions and ASTG characterisation 13

Definition 2.6 (Violation of the Snoussi-condition) In a model M = (I, K), there exists a
violation of the Snoussi-condition:

1. in a component u œ V , if for some Ê ™ Î ™ Pre(u), K(u, Ê) > K(u, Î).

2. in an interaction (v, u), if K(u, Ê) > K(u, Ê fi {v}), for some Ê ™ Pre(u)\{v}.

2.1.2 Row properties of an ASTG

The analysis of u-row properties will be presented in this section, which is one of the key
contributions from [Lorenz, 2011, Lorenz et al., 2013].

Let M = (I, K) be a model with corresponding ASTG T
M

= (X, S
M

), where X is the
state space and S

M

describes the transitions in X . Some definitions and lemmas from [Lorenz,
2011, Lorenz et al., 2013] about rows in X are introduced next.
Definition 2.7 (u-row) [Lorenz, 2011] Given u œ V , a u-row is a sequence of states ·u

=

(x0, . . . , xmax

u

) in X , with x0

u

= 0 and xl

= x0

+ leu, for all l œ {1, . . . , max

u

}, where e

u is
the u-th unit vector.
Definition 2.8 (State transitions of a u-row in direction of u) For a u-row ·u

= (x0, . . . , xmax

u

),
the state transitions of ·u in direction u are given by

”(u, ·u

) = (”(u, x0

), . . . , ”(u, xmax

u

)).

The symmetric difference of two sets A and B is defined by A�B = (A\B) fi (B\A).

Next we recall a Lemma from [Lorenz et al., 2013].
Lemma 2.9 Given a u-row ·u

= (x0, . . . , xmax

u

) in T
M

, let Res

u

(x0

) = Ê.
If (u, u) /œ E, then Res

u

(xi

) = Ê for all i œ {0, . . . , max}.
If (u, u) œ E and Ë(u, u) = t œ {1, . . . , max

u

}, then Res

u

(xi

) = Ê for i < t, and Res

u

(xi

) =

Ê�{u} for i Ø t.

Proof. Let ·u

= (x0, . . . , xmax

u

) be a u-row.

If a component u has no self loop (u, u) /œ E and Res

u

(x0

) = Ê, then Res

u

(xi

) = Ê, for
all i œ {0, . . . , max

u

}.

Suppose u has a self loop (u, u) œ E.

• If Á(u, u) = +, Ë(u, u) = t and Res

u

(x0

) = Ê, then Res

u

(xi

) = Ê, for i < t and
Res

u

(xi

) = Ê fi {u}, for i Ø t.

• If Á(u, u) = ≠, Ë(u, u) = t and Res

u

(x0

) = ÊÕ, note that u œ ÊÕ, by the definition of
resources. It follows Res

u

(xi

) = ÊÕ, for i < t and Res

u

(xi

) = ÊÕ\{u}, for i Ø t.

Proposition 2.10 (Row types) [Lorenz, 2011, Lorenz et al., 2013] Given an ASTG T
M

, for each
u-row ·u

= (x0, . . . , xmax

u

), exactly one of the following situations holds:

(1) ·u has the form:

x

0

x

a
x

t�1

x

t
x

b
x

maxu

14 Chapter 2 From dynamics to structures: reverse engineering algorithms

In the row structure above, there exist a, b œ {0, . . . , max

u

} with a < b and ”(u, xa

) =

”(u, xb

) = 0. There exists t œ {1, . . . , max

u

} so that K
I

(u, Res

u

(xi

)) = a for all i < t
and K

I

(u, Res

u

(xi

)) = b for all i Ø t. Let Res

u

(x0

) = Ê and Res

u

(xmax

u

) = Î . It
follows that

(u, u) œ E, Ë(u, u) = t,
K

I

(u, Ê) = a, K
I

(u, Î) = b,

and Î = Ê�{u}, as (u, u) œ E.

If the model M = (I, K
I

) satisfies the Snoussi-condition, then Á(u, u) = +.

(2) ·u has the form:

x

0

x

t�1

x

t
x

maxu

In the row structure above, there exists t œ {1, . . . , max

u

}, with ”(u, xi

) = 1 for all i < t
and ”(u, xi

) = ≠1 for all i Ø t. Thus K
I

(u, Res

u

(xi

)) > t≠1 for all i œ {0, . . . , t≠1} and
K

I

(u, Res

u

(xi

)) < t for all i œ {t, . . . , max

u

}. Let Res

u

(x0

) = Ê and Res

u

(xmax

u

) = Î .
It follows that

(u, u) œ E, Ë(u, u) = t,
K

I

(u, Ê) > t ≠ 1, K
I

(u, Î) < t,

and Î = Ê�{u}, as (u, u) œ E.

If the model M = (I, K
I

) satisfies the Snoussi-condition, then Á(u, u) = ≠.

(3) ·u has the form:

x

0

x

a
x

maxu

In the row structure above, there exists a œ {0, . . . , max

u

} such that K
I

(u, Res

u

(xi

)) = a
for all i œ {0, . . . , max

u

}. Let Res

u

(x0

) = Ê and Res

u

(xmax

u

) = Î . There are three
possibilities:

a) (u, u) /œ E, K
I

(u, Ê) = a.
b) (u, u) œ E, Ë(u, u) Ø a,

K
I

(u, Ê) = a, K
I

(u, Î) < Ë(u, u).
c) (u, u) œ E, Ë(u, u) < a,

K
I

(u, Ê) Ø Ë(u, u), K
I

(u, Î) = a.

A u-row in T
M

of form (1) or (2) also gives the threshold value Ë(u, u). If there are no such
u-rows of form (1) or (2) in T

M

, then (u, u) /œ E.

Definition 2.11 gives a name for each type of row structure introduced above.
Definition 2.11 (pos, neg, open type) The three row structures in Proposition 2.10 are named as
pos, neg, and open type.

- Row structure (1) is called pos type, because this kind of u-row indicates a positive self
loop.

- Similarly, row structure (2) is called neg type, because it indicates a negative self loop.

- Finally, row structure (3) is called open type, due to the possibility of either having a loop
or no loop at all.

A u-row of pos or neg type with Ë(u, u) = t is called a u-row of threshold t.

2.1 Model conditions and ASTG characterisation 15

Corollary 2.12 and Remark 2.13 directly follow from Proposition 2.10.
Corollary 2.12 Consider a model M which satisfies the observability and the Snoussi-condition
and the corresponding ASTG T

M

. For any component u œ V , the following holds:

1. If (u, u) /œ E, then all u-rows in T
M

are of type open.

2. If (u, u) œ E and Á(u, u) = + (resp. ≠), then there exists at least one u-row in T
M

of
type pos (resp. neg).

3. If there are two u-rows in T
M

of type pos (resp. neg), then the threshold values Ë(u, u)

for both u-rows are the same.

Proof. Assume that M satisfies the observability and the Snoussi-condition.

1. According to Proposition 2.10, there are only three possible row types. Any u-row of
either pos or neg type will indicate a self loop on u. Therefore, if (u, u) /œ E, then all
u-rows are of open type.

2. It is a direct conclusion from Proposition 2.10 in row type 1 and 2.

3. If two u-rows (either of pos or neg type) in T
M

are of different thresholds, then u has
multiple self loops, which violates the definition of the model and the hypothesis that T

M

corresponds to M .

Remark 2.13 If for an ASTG T
M

and a component u œ V there are both type pos and neg
u-rows, then the corresponding model M does not satisfy the Snoussi-Condition.
Example 2.14 Figure 2.1 shows an ASTG T

M

and a corresponding model M . In T
M

, the u-row
·u

0

is of pos type, and ·u

2

is of neg types.

00 01 02

10 11 12

20 21 22

v

u

⌧u0 ⌧u1 ⌧u2

u v

+, 1

�, 2

+, 2

�, 1

! K(u,!)

; 2
{v} 0
{u} 1

{u, v} 2

! K(v,!)

; 0
{v} 0
{u} 0

{u, v} 2

TM M = (I,K)

Figure 2.1: An ASTG T
M

and a corresponding model M .

In T
M

, from ·u

0

and ·u

2

, according to Proposition 2.10, it holds for any model that:

K(u, Res

u

(00)) = 0,K(u, Res

u

(20)) = 2,

K(u, Res

u

(02)) > 1,K(u, Res

u

(22)) < 2.

It holds that K(u, Res

u

(00)) < K(u, Res

u

(20)) and K(u, Res

u

(02)) < K(u, Res

u

(22)).
Moreover, Res

u

(00) and Res

u

(20) correspond to a pair of resources with and without {u}, and
so do Res

u

(02) and Res

u

(22), as shown in Table 2.1. Therefore, for any model of T
M

, there
always exists a violation of the Snoussi-condition on the interaction (u, u).

16 Chapter 2 From dynamics to structures: reverse engineering algorithms

for any model of T
M

if Á(u, u) = + if Á(u, u) = +

extremal states x K(u, Res

u

(x)) Res

u

(x) Res

u

(x)

00 0 {v} {u, v}
20 2 {u, v} {v}
02 > 1 ÿ {u}
22 < 2 {u} ÿ

Table 2.1: The resources of u under different signs of the interaction (u, u).

Definition 2.15 (Extremal state and extremal row) [Lorenz, 2011] A state x œ X is called
extremal, if x

u

œ {0, max

u

}, for all u œ V . A u-row ·u

= (x0, . . . , xmax

u

) is extremal, if one
of x0 and xmax

u is an extremal state.
Lemma 2.16 [Lorenz, 2011] Given an IG I , a component u œ V and a resource Ê ™ Pre(u),
there always exists an extremal state x œ X such that Res

u

(x) = Ê.

Proof. For all v œ V , define

x
v

:=

Y
_____]

_____[

0 v /œ Pre(u)

0 Á(v, u) = + · v /œ Ê
max

v

Á(v, u) = + · v œ Ê
max

v

Á(v, u) = ≠ · v /œ Ê
0 Á(v, u) = ≠ · v œ Ê

(2.1)

Then by construction, Res

u

(x) = Ê.

Definition 2.17 (Isomorphic rows) [Lorenz, 2011] Two u-rows ·u

x

= (x0, . . . , xmax

u

) and ·u

y

=

(y0, . . . , ymax

u

) are isomorphic, if for all i œ {0, . . . , max

u

} we have Res

u

(xi

) = Res

u

(yi

),
”(u, xi

) = ”(u, yi

).
Lemma 2.18 [Lorenz, 2011] Let u ”= v œ V and x œ X with x

v

= x
u

= 0. For every
j œ {0, . . . , max

v

}, let ·u

j

be the u-row with starting state x0

j

= x0

+ je

v

.

• If (v, u) /œ E, all u-rows ·u

0

, . . . , ·u

max

v

are isomorphic to each other.

• If (v, u) œ E, then there are two groups of isomorphic u-rows. More precisely, the
u-rows ·u

0

, . . . , ·u

Ë(v,u)≠1

are isomorphic to each other and the u-rows ·u

Ë(v,u)

, . . . , ·u

max

v

are isomorphic to each other.

Proof. According to Definition 2.8, the state transition vector of a u-row ·u

= (x0, . . . , xmax

u

)

is ”(u, ·u

) = (”(u, x0

), . . . , ”(u, xmax

u

)), where ”(u, xi

) = sgn(K(u, Res

u

(xi

)) ≠ i), i œ
{0, . . . , max

u

} and sgn œ {+1, 0, ≠1}.

If (v, u) /œ E, then for all i œ {0, . . . , max

u

} we have Res

u

(xi

0

) = . . . = Res

u

(xi

max

v

), so
that Res

u

(·u

0

) = . . . = Res

u

(·u

max

u

). Thus ”(u, ·u

0

) = . . . = ”(u, ·u

max

v

), and all u-rows ·u

0

,
. . . , ·u

max

v

are isomorphic to each other.

If (v, u) œ E, let Ë(v, u) = t œ {1, . . . , max

u

}. For all i œ {0, . . . , max

u

}, we have
Res

u

(xi

0

) = . . . = Res

u

(xi

t≠1

) and Res

u

(xi

t

) = . . . = Res

u

(xi

max

v

). Thus ”(u, ·u

0

) = . . . =

”(u, ·u

t≠1

) and ”(u, ·u

t

) = . . . = ”(u, ·u

max

u

). Therefore, the u-rows ·u

0

, · · · , ·u

t≠1

are
isomorphic to each other, and the u-rows ·u

t

, . . . , ·u

max

v

are also isomorphic to each other.

The next Lemma 2.19 shows two u-rows are isomorphic if they contain some states for
which the resources of u only differ in {u} itself.

2.1 Model conditions and ASTG characterisation 17

Lemma 2.19 [Lorenz et al., 2013] Let x, y œ X such that there exists a component u œ V with
Res

u

(x)\u = Res
u

(y)\u. Then the u-row containing x is isomorphic to the u-row containing
y.

The following main theorem from [Lorenz, 2011, Lorenz et al., 2013] shows that an ASTG
can be uniquely characterised by its extremal rows and the corresponding IG.
Theorem 2.20 [Lorenz, 2011, Lorenz et al., 2013] For any model M = (I, K), the state
transition graph T

M

is uniquely determined by I and the extremal rows of T
M

.

Proof. For any u-row (x0, · · · , xmax

u

), one can always find an extremal state y with Res

u

(x0

)

= Res

u

(y), according to Lemma 2.16. By Lemma 2.19, the extremal row including y is
isomorphic to the u-row (x0, · · · , xmax

u

).
Example 2.21 Figure 2.2a shows a model M = (I, K) and its ASTG T

M

. The definitions of a
u-row 2.7 and the state transitions of a u-row 2.8 are illustrated in Figure 2.2b. See the v

2

-row
·v2

0

and v
1

-row · v1
2

.

The v
1

- and v
2

-rows of T
M

also verify Corollary 2.12. v
1

has a self-activation in I , and
v

1

-row · v1
0

is of pos type. Similarly, v
2

has a self-inhibition, and v
2

-row · v2
2

is of neg type.

00 01 02

10 11 12

20 21 22

v2

v1

⌧v10 ⌧v11 ⌧v12

⌧v20

⌧v21

⌧v22

v1 v2

+, 1

�, 2

+, 2

�, 1

! K(v1,!)

�

{v2}
{v1}

{v1, v2}

! K(v2,!)

1

2

0

2

�

{v2}
{v1}

{v1, v2}

0

0 0

0

(a) A model M and its ASTG T
M

.
02

12

22

⌧v12

�(v1, ⌧
v1
0) = (0,�1,�1)

⌧v12 = (02, 12, 22)

�(v2, ⌧
v1
0) = (�1,�1,�1)

Resv1(⌧
v1
2) = (�,�, {v1})

00 01 02 ⌧v20

�(v2, ⌧
v2
0) = (0,�1,�1)

⌧v20 = (00, 01, 02)

�(v1, ⌧
v2
0) = (0, 0, 0)

Resv2(⌧
v2
0) = ({v2}, {v2}, ;)

(b) ·v2
0

and ·v1
2

.

Figure 2.2: (a) A model M = (I, M) and its ASTG T
M

with v
1

-rows: · v1
0

, · v1
1

, · v1
2

, and
v

2

-rows: · v2
0

, · v2
1

, · v2
2

. (b) shows for · v2
0

and · v1
2

, the state transition vectors in direction of v
1

and v
2

, the resource vectors of them.

Lemma 2.18 can be illustrated on the edges (v
2

, v
1

) and (v
1

, v
2

). For (v
2

, v
1

) œ E, the
v

1

-row · v1
0

is different from · v1
1

and · v1
2

which are isomorphic to each other. For (v
1

, v
2

) œ E,
there are also two isomorphic groups of v

2

-rows: {· v2
0

} and {·v2
1

, ·v2
2

}.

To illustrate Theorem 2.20, we take the same IG and the extremal rows of the ASTG from
Figure 2.2.

18 Chapter 2 From dynamics to structures: reverse engineering algorithms

⌧v11 is isomorphic with ⌧v12 .

⌧v21 is isomorphic with ⌧v22 .)
00

01

02

10 11

12

20

21 22

v1 v2

+, 1

�, 2

+, 2

�, 1

00

01

02

10 11

12

20

21 22

v2

v1

⌧v11

⌧v21

⌧v11

⌧v21

⌧v12

⌧v22
⌧v12

⌧v22

Figure 2.3: An IG I and the extremal rows of the ASTG uniquely determine the complete ASTG.
Ë(v

1

, v
2

) = 1 implies that · v2
1

is isomorphic to · v2
2

. Similarly, Ë(v
2

, v
1

) = 1 implies that, · v1
1

is isomorphic to · v1
2

.

—

2.1.3 Equivalent models

A model M = (I, K) may contain unnecessary interactions that are neither visible nor observ-
able. Therefore, for a given ASTG T , there may be many models that generate T . Even two
models with the same necessary interactions that differ only in the logical parameter function
can still generate the same ASTG. We now further explore this issue.
Definition 2.22 (Isomorphic models) Let M

1

= (I, K
1

) and M
2

= (I, K
2

) be two models with
the same IG I = (V, E, Á, Ë, max). M

1

and M
2

are isomorphic if

”
M

1(u, x) = ”
M

2(u, x), ’x œ X, ’u œ V.

Note that two isomorphic models M
1

and M
2

have the same state space X and identical
ASTGs, because the state transition functions ”(·, ·) are the same.
Definition 2.23 (Ê-side of u) [Lorenz, 2011]

• Given a, b, t œ N, we say that a and b lie on different sides of t if a < t Æ b or b < t Æ a.

• Given u œ V , Ê ™ Pre(u), we say that a œ {0, . . . , max

u

} lies on the Ê-side of u if
there exists a state x œ X , with x

u

= a and Res

u

(x) = Ê.

For illustration, we consider in Figure 2.4 the row types pos and neg from Proposition 2.10.
We will look whether K(u, Res

u

(x)) lies on Res

u

(x)-side of u.

2.1 Model conditions and ASTG characterisation 19

x

0
x

a

x

t�1
x

t

x

b

x

maxu

Resu(xa) = ! Resu(xb) = ⇣

K(u,!) = a K(u, ⇣) = b

(a) Pos type

x

0
x

t�1
x

t

x

maxu

Resu(xt�1) = ! Resu(xt) = ⇣

K(u,!) > t� 1 K(u, ⇣) < t

(b) Neg type

Figure 2.4: Two u-rows ·u. (a) Pos type, Res

u

(xa

) = Ê, K(u, Ê) = a lies on Ê-side of u;
Res

u

(xb

) = Î , K(u, Î) = b lies on Î-side of u. (b) Neg type, for all xi with i œ {0, . . . , t ≠
1}, K(u, Res

u

(xi

)) > t ≠ 1, and for all xi with i œ {t, . . . , max

u

}, K(u, Res

u

(xi

)) < t.
K(u, Res

u

(xi

)) does not lie on Res

u

(x)-side of u for all states xi œ ·u.

Definition 2.23 allows characterising the isomorphism of two models with the same interac-
tion graph in terms of their logical parameters, as shown by the following theorem.
Theorem 2.24 [Lorenz, 2011] Two models M1

= (I, K1

) and M2

= (I, K2

) with the same
interaction graph I are isomorphic if and only if, for all components u œ V and all Ê ™ Pre(u),
the following is true:

• If K1

(u, Ê) lies on the Ê-side from u, then K2

(u, Ê) = K1

(u, Ê).

• If K1

(u, Ê) does not lie on the Ê-side from u, neither does K2

(u, Ê).

The following example shows that for a model M = (I, K), the logical parameter function
K may satisfy the Snoussi-condition, while the logical parameter function of an isomorphic
model need not satisfy this condition.
Example 2.25 Figure 2.5 shows two isomorphic models M = (I, K) and M Õ

= (I, K Õ
)

generating the same ASTG T . While the logical parameter function K satisfies the Snoussi-
condition, K Õ does not.

v1 v2

+, 1

�, 2

+, 2

�, 1

(a) I

! K(v1,!)

; 0
{v2} 0
{v1} 1

{v1, v2} 2

! K(v2,!)

; 0
{v2} 0
{v1} 0

{v1, v2} 2

(b) K

00 01 02

10 11 12

20 21 22

v2

v1

(c) T

! K0(v1,!)

; 0
{v2} 0
{v1} 1

{v1, v2} 2

! K0(v2,!)

; 1
{v2} 0
{v1} 0

{v1, v2} 2

(d) K Õ

Figure 2.5: (a) IG I . (b) Logical parameter function K. (c) Corresponding ASTG T . (d)
Alternative logical parameter function K Õ. M = (I, K) and M Õ

= (I, K Õ
) are two isomorphic

models generating the same ASTG T where K satisfies the Snoussi-condition but K Õ does not.

To find a logical parameter function for an IG which can satisfy the Snoussi-condition as
much as possible, the following lemma from [Lorenz, 2011] is used.

20 Chapter 2 From dynamics to structures: reverse engineering algorithms

Lemma 2.26 [Lorenz, 2011] Given a model M = (I, K), the logical parameter function KS

is defined in the following way for all u œ V and Ê ™ Pre(u):

1. If K(u, Ê) lies on the Ê side from u, let

KS

(u, Ê) := K(u, Ê)

2. If K(u, Ê) does not lie on the Ê side from u, let

KS

(u, Ê) :=

Y
___]

___[

Ë(u, u) ≠ 1 Á(u, u) = +, u œ Ê
Ë(u, u) Á(u, u) = +, u /œ Ê
0 Á(u, u) = ≠, u /œ Ê
max

u

Á(u, u) = ≠, u œ Ê

If in MS

= (I, KS

) there is a violation of the Snoussi-condition in component u for
some Ê ™ Î ™ V , then the same is true in all its isomorphic models.

KS has the fewest violations of the Snoussi-condition among all models of the same
isomorphism class. This Lemma has been proved in [Lorenz, 2011]. Here we recall the basic
idea. The first case, KS

(u, Ê) is the same as K(u, Ê). In the second case of Lemma 2.26,
if K(u, Ê) does not lie on the Ê side from u, then by Definition 2.23, for all x œ X with
Res

u

(x) = Ê, we have K(u, Ê) ”= x
u

, and there are the following two cases:

1. In the case Á(u, u) = +, for those states x œ X with Res

u

(x) = Ê, if u œ Ê, then
x

u

Ø Ë(u, u) and K(u, Ê) Ø Ë(u, u); if u /œ Ê, then x
u

< Ë(u, u) and K(u, Ê) < Ë(u, u).
In this case, KS

(u, Ê) takes the closest value to Ë(u, u) which still does not lie on the Ê-side
of u.

2. In the case of Á(u, u) = ≠, for those states x œ X with Res

u

(x) = Ê, if u œ Ê, then
x

u

< Ë(u, u) and K(u, Ê) Ø Ë(u, u); if u /œ Ê, then x
u

Ø Ë(u, u) and K(u, Ê) < Ë(u, u).
In this case, KS

(u, Ê) takes the furthest value to Ë(u, u) so that KS

(u, Ê) does not lie on
Ê-side from u.

Thus the parameters KS

(u, Ê) are chosen in such a way that they always remain on the same
side of the threshold values as K(u, Ê). By Theorem 2.24, this implies the isomorphism of
M and MS . It follows from Lemma 2.26 that MS

= (I, KS

) has the minimal number of
violations of the Snoussi-condition in all models of the isomorphism class. This lemma gives an
intuition on how to build a model that satisfies the Snoussi-condition as much as possible.
Corollary 2.27 Given a model M = (I, K) the following is true.

• If there exists a violation of the Snoussi-condition in an interaction (u, v) œ V , then there
is also a violation in the component u.

• If there exists a violation of the Snoussi-condition in a component u œ V , then there
exists at least one violation in an interaction (v, u) œ E.

A Snoussi-condition violation in an interaction is itself a Snoussi-condition violation in a
component, but a Snoussi-condition violation in a component can mean more than one Snoussi-
condition violations in an interaction.

Proof. 1. If there exists a Snoussi-condition violation in an interaction (v, u) œ V , i.e., there
exists Ê ™ V \{u}, K(u, Ê) > K(u, Êfi{u}), then, let ’ = Êfi{u}, for Ê ™ ’ µ Pre(u),
K(u, Ê) > K(u, ’), so that there is a Snoussi-condition violation in u at the same place.

2.1 Model conditions and ASTG characterisation 21

2. If there exists a Snoussi-condition violation in a component u œ V , i.e., there exists Ê ™
’ ™ Pre(u), K(u, Ê) > K(u, ’), then there must exist at least one component v œ ’\Ê,
such that K(u, Ê) > K(u, ’) Ø K(u, Ê fi {v}), so that K(u, Ê) > K(u, Ê fi {v}). Now
it is easy to see that there exists at least one Snoussi-condition violation in an interaction
(v, u) œ E.

In the next definition we generalise the notion of isomorphic models.
Definition 2.28 (Equivalent models) Let M

1

= (I
1

, K
1

) and M
2

= (I
2

, K
2

) be two models,
where I

1

= (V, E
1

, Á
1

, Ë
1

, max) and I
2

= (V, E
2

, Á
2

, Ë
2

, max). M
1

and M
2

are called
equivalent if

”
M

1(u, x) = ”
M

2(u, x), ’x œ X, ’u œ V.

The following lemma from [Lorenz, 2011] allows constructing equivalent models.
Lemma 2.29 [Lorenz, 2011] Given a model M1

= (I1, K1

) with I1

= (V, E, Á1, Ë1, max).

(a) For IG I2

= (V, E, Á2, Ë, max), a logical parameter function K2 is defined for all u œ V
and Ê œ Pre(u) in I1:

K2

(u, Ê) = K1

(u, ÊÕ
) ÊÕ

:= Ê�{v œ Pre(u) | Á1

(v, u) ”= Á2

(v, u)}

Then the model M2

= (I2, K2

) defines the same ASTG as M1.

(b) For an IG I3

= (V, E3

= E Û EÕ, Á3, Ë3, max), where “Û” is a disjoint union, EÕ is a set of
edges and E fl EÕ

= ÿ. For all u œ V , one can define its predecessors in the following way:

Pre

E

(u) := {v œ V | (v, u) œ E}
Pre

E

Õ
(u) := {v œ V | (v, u) œ EÕ}

Pre

E

3(u) := Pre

E

(u) fi Pre

E

Õ
(u)

If Ë3|
E

© Ë, one can define K3 as follows:

’u œ V ’Ê ™ Pre

E

3(u) : ÊÕ
:= Ê�{v œ Pre

E

| Á1

(v, u) ”= Á3

(v, u)}

K3

(u, Ê) := K1

(u, ÊÕ
)

Then M3

:= (I3, K3

) defines the same ASTG as M1. Moreover, K3 is chosen such that
no edges in EÕ is visible.

M1, M2 and M3 are equivalent according to Definition 2.28. Lemma 2.29 will be the
foundation of Algorithm 2.2.3. Intuitively, the lemma shows that:

1. For a given model M1

= (I1, K1

), one can construct an equivalent model M2

= (I2, K2

),
where I2 differs from I1 only in the signs of the interactions and K2 can be constructed from
K1 according to Lemma 2.29 (a).

2. For a given model M1

= (I1, K1

), one can construct an equivalent model M3

= (I3, K3

)

where I3 includes all edges of I1 and another set of invisible edges EÕ. K3 can be constructed
from K1 according to Lemma 2.29 (b).

Example 2.30 Figure 2.6 shows three equivalent models M1, M2 and M3, which illustrate
Lemma 2.29. One can see that I2 differs from I1 in the interaction (v

1

, v
2

), and I3 carries an
unnecessary interaction (v

2

, v
1

). However, all the three models have the same ASTG, as shown
in Figure 2.7.

22 Chapter 2 From dynamics to structures: reverse engineering algorithms

v1 v2

+, 1

�, 1

+, 2

(a) I1.

v1 v2

�, 1

�, 1

+, 2

(b) I2.

v1 v2

+, 1

�, 1

+, 2

�, 2

(c) I3.
! K1(v1,!)

�

{v1}

! K1(v2,!)

1

0

2

�

{v2}
{v1}

{v1, v2}

0

1

2

(d) K1

! K2(v1,!)

�

{v1}

! K2(v2,!)

1

0

2

�

{v2}
{v1}

{v1, v2}

0

1

2

(e) K2

! K3(v1,!)

�

{v2}
{v1}

{v1, v2}

! K3(v2,!)

1

0

2

�

{v2}
{v1}

{v1, v2}

0

0 1

2

1

(f) K3

Figure 2.6: (a), (d) M1

= (I1, K1

), (b), (e) M2

= (I2, K2

), (c), (f)M3

= (I3, K3

).

00 01 02

10 11 12

20 21 22

v2

v1

Figure 2.7: The ASTG T of the three models in Figure 2.6.

2.2 Reverse engineering algorithms

In this section, we present two reverse engineering algorithms Visibility-Model and Observability-
Snoussi-Model together with the auxiliary algorithms Logical-Parameters and Activation-
Value [Lorenz, 2011]. Each of them will be described in pseudocode and illustrated with
an example.

2.2.1 Algorithm Logical-Parameters

The algorithm Logical-Parameters is based on Lemma 2.16 and Proposition 2.10. This algorithm
requires as input an IG and a suitable ASTG . It returns a logical parameter function K for the IG,
so that the IG and K can regenerate the input ASTG T . The algorithm does not use the threshold
values of the IG. The algorithm was designed for so-called simple IGs ˜I = (V, E, Á, max)

containing no information on the threshold values. The output K and ˜I can only generate the
transitions from all extremal states in T . Nevertheless, after adding suitable threshold values
Ë to ˜I , one can regenerate the full ASTG T . The pseudocode is given in Algorithm 2.1 and

2.2 Reverse engineering algorithms 23

illustrated by Example 2.31. Finally, the complexity of the algorithm will be analysed.

Algorithm 2.1: Logical-Parameters
Input: A simple IG ˜I = (V, E, Á, max), an ASTG T = (X, S). /

*

S is given by

” : V ◊ X æ {≠1, 0, +1}.
*

/

Output: A logical parameter function K, such that ˜I and K can define the outgoing transitions of
all extremal states in T .

1 foreach u œ V do
2 if (u, u) ”œ E then
3 foreach Ê ™ Pre(u) do
4 Construct an extremal state x œ X : Res

u

(x) = Ê /

*

Lemma 2.16

*

/

(x0, . . . , xmaxu
) := ·u

/

*

x œ ·u

*

/;
5 ÷! a œ {0, . . . , max

u

} : ”(u, xa

) = 0 /

*

÷!a: exists a unique a
*

/;
6 K(u, Ê) := a;

7 else
8 foreach Ê ™ Pre(u)\{u} do
9 Construct an extremal state x œ X : Res

u

(x) = Ê;
10 (x0, . . . , xmaxu

) := ·u

/

*

x œ ·u

*

/;
11 if ÷! a < b œ {0, . . . , max

u

} : ”(u, xa

) = ”(u, xb

) = 0 then /

*

pos type

*

/

12 K(u, Res

u

(x0

)) := a;
13 K(u, Res

u

(xmaxu
)) := b;

14 else if ÷! a œ {0, . . . , max

u

} : ”(u, xa

) = 0 then /

*

open type

*

/

15 K(u, Res

u

(x0

)) := a;
16 K(u, Res

u

(xmaxu
)) := a;

17 else /

*

neg type

*

/

18 K(u, Res

u

(x0

)) := max

u

;
19 K(u, Res

u

(xmaxu
)) := 0;

20 return K

Illustration

v1 v2

+
�

+

(a) A simplified IG ˜I

00 01 02

10 11 12

20 21 22

v2

v1

(b) An ASTG T

Figure 2.8: Inputs for algorithm Logical-Parameters. (a) A simple IG ˜I = (V, ˜E, Á̃, max).
Standard arrows denote activations, and blunt arrows inhibitions. max = [max

v1 , max

v2] =

[2, 2]. (b) ASTG T = (X, S), where X = {0, 1, 2}2 and each state x = (x
v1 , x

v2).

Example 2.31 Figure 2.8 gives an ASTG T and a suitable simple IG ˜I as the input for algorithm
Logical-Parameters. The execution is discussed below.

v
1

: (v
1

, v
1

) /œ ˜E, line 2–6 in Algorithm 2.2.1. For every resource of v
1

in ˜I , Ê ™ Pre(v
1

) =

{v
2

}, an extremal state is constructed according to Lemma 2.16. Then the v
1

-row
including this state is found out to assign values for K(v

1

, Ê).

24 Chapter 2 From dynamics to structures: reverse engineering algorithms

1. A resource of v
1

, Ê = ÿ.

- Construct the extremal state x such that Res

v1(x) = ÿ, according to Lemma
2.16. Because v

1

/œ Pre(v
1

), Á̃(v
2

, v
1

) = + and v
1

, v
2

/œ Ê, x = 00. The
extremal row including x is · v1

= (00, 10, 20).

- ”(v
1

, ·v1
) = (1, 1, 0), ”(v

1

, 20) = 0 and · v1 is of open type. Therefore,
K(v

1

, ÿ) := 2.

2. A resource of v
1

, Ê = {v
2

}.

- Construct the extremal state x such that Res

v1(x) = {v
2

}, according to
Lemma 2.16. Because Á̃(v

2

, v
1

) = + and v
2

œ Ê, x = 02. The extremal
row including x is · v1

= (02, 12, 22).

- ”(v
1

, ·v1
) = (0, ≠1, ≠1), ”(v

1

, 12) = 0 and · v1 is of open type. Therefore,
K(v

1

, {v
2

}) := 0.

The logical parameters for v
1

are:

Ê x ·v1 ”(v
1

, ·v1
) row type K(v

1

, Ê)

ÿ 00 (00, 10, 20) (1, 1, 0) open 2

{v
2

} 02 (02, 12, 22) (0, ≠1, ≠1) open 0

v
2

: (v
2

, v
2

) œ ˜E, line 7–19 in Algorithm 2.2.1. For every resource of v
2

in ˜I , Ê ™
Pre(v

2

)\{v
2

} = {v
1

}, an extremal state is constructed according to Lemma 2.16. Then
the v

2

-row including this state is found out to assign values for K(v
2

, Ê).

1. A resource of v
2

, Ê = ÿ.

- Construct the extremal state x such that Res

v2(x) = ÿ, according to Lemma
2.16. Because Á̃(v

1

, v
2

) = +, Á̃(v
2

, v
2

) = ≠ and v
1

, v
2

/œ Ê, x = 02. The
v

2

-row including x is ·v2
= (00, 01, 02).

- ”(v
2

, ·v2
) = (1, ≠1, ≠1), where 0 /œ ”(v

2

, ·v2
). · v2 is of neg type. So that,

K(v
2

, ÿ) := 1 and K(v
2

, {v
2

}) := 0.

2. A resource of v
2

, Ê = {v
1

}.

- Construct the extremal state x such that Res

v2(x) = ÿ, according to Lemma
2.16. Because Á̃(v

1

, v
2

) = +, Á̃(v
2

, v
2

) = ≠ and v
1

œ Ê, v
2

/œ Ê, x = 22. The
v

2

-row including x is ·v2
= (20, 21, 22).

- ”(v
2

, ·v2
) = (1, 1, 0), ”(v

2

, 22) = 0 and · v2 is of open type. So that,
K(v

2

, {v
1

}) := 2 and K(v
2

, {v
1

, v
2

}) := 2.

The logical parameters for v
2

are:

Ê x ·v2 ”(v
2

, ·v2
) row type K(v

2

, Ê) Ê fi {v
2

} K(v
2

, Ê fi {v
2

})

ÿ 02 (00, 01, 02) (1, ≠1, ≠1) open 1 {v
2

} 0

{v
1

} 22 (20, 21, 22) (1, 1, 0) pos 2 {v
1

, v
2

} 2

The logical parameter function K is obtained after visited each component. Because ˜I has
no information about the threshold, the resource of a component under a non-extremal state
is unclear. Therefore, ˜I together with K can only regenerate the outgoing transitions of the
extremal states, see the output in Figure 2.9.

2.2 Reverse engineering algorithms 25

v1 v2

+
�

+

! K(v1,!)

; 2
{v2} 0

! K(v2,!)

; 0
{v2} 2
{v1} 2

{v1, v2} 2

(a) Input ˜I and output K.

00 01 02

10 11 12

20 21 22

v2

v1

(b) Transitions from extremal states.

Figure 2.9: Example 2.31 for algorithm Logical-Parameters

Complexity Next we will discuss the complexity of the algorithm.

The space complexity of the algorithm can be checked from how the input and output are
stored. Let N = |V | œ N+ be the number of the components in the system. The number of
edges in an IG is at most N2. Every component can have at most an activity level N , thus the
size of the state space X is at most (N + 1)

N . The number of edges in an ASTG is at most
|X| ◊ N = N(N + 1)

N . Altogether, the input size in terms of space is a sum of an IG and an
ASTG, and we get the space complexity S(N) = N2

+ N(N + 1)

N

= O(NN+1

).

The time complexity of the algorithm also depends on N . Starting from line 1, the main
loop will be repeated for every component u, i.e.,in total O(N) times.

1. If u has no self loop, we go through lines 3–6. Lines 4–6 will be repeated for all resources
of u, i.e., at most 2

N≠1 times.

(a) line 4: the cost of constructing an extremal state is N , by choosing a value for
each component according to Lemma 2.16. Finding the u-row that includes the
constructed state can be done by assigning the u-th component a value from 0 until
max

u

, which requires N + 1steps.

(b) line 5 includes finding the only state which has state transition 0, which costs also at
most N + 1 steps.

(c) line 6, assigning K(u, Ê) is only one step.

In total we get: 2

N≠1 ◊ (N + (N + 1) + (N + 1) + 1) = 3(N + 1)2

N≠1.

2. If u has a self loop, we go through lines 8–19. Lines 9–19 are repeated for at most 2

N≠1

times. The cost of line 9, 10 and 11 (or 14), which can be calculated similarly, are N ,
N +1 and N +1, respectively. Assigning K(u, Ê) and K(u, Ê fi{u}) requires two steps,
i.e., 2. The sum is: 2

N≠1 ◊ (N + (N + 1) + (N + 1) + 2) = 3(N + 1)2

N≠1, which
equals to that from the previous step.

In total, the running time of the algorithm is T (N) = N ◊ 3(N + 1)2

N≠1

= 3(N2

+

N)2

N≠1

= O(N2

2

N

).

2.2.2 Algorithm Activity-Value

Algorithm Activation-Value can find the threshold value of an interaction (u, v) from given state
transitions in direction of v. It needs the following input: an edge (u, v), a resource Ê with

26 Chapter 2 From dynamics to structures: reverse engineering algorithms

v /œ Ê and K(v, Ê) ”= K(v, Ê fi {u}), and ”(v, ·). Algorithm Activation-Value is called within
the two reverse engineering algorithms, where the input interaction is always positive.

1. For v and the resource Ê, an extremal state x is constructed according to Lemma 2.16.
Accordingly, the v-row containing x is directly known.

(a) If u = v, the edge is a self-loop. According to Proposition 2.10, · v is either of type
pos or negand Ë(v, v) can be obtained from the structure of ·v.

(b) Otherwise, find the first l where · v ”≥
=

· v

x+l·e
u

, and set Ë(u, v) := l. According
to Lemma 2.18, the position from which the row structures start to change is the
threshold value. · v is constructed from x with Res

v

(x) = Ê and u /œ Ê. Therefore,
we have always x

u

= 0 < y
u

, for x in · v and y in · v

x+l·e
u

.

The details of this algorithm are given in the pseudocode below and illustrated by Example 2.32.

Algorithm 2.2: Activity-Value
Input: u, v œ V , Ê ™ V \{u}, ”(v, ·) /

*

K(v, Ê) ”= K(v, Ê fi {u})

*

/

Output: Ë(u, v)

1 Construct an extremal state x œ X : Res

v

(x) = Ê;
2 (x0, . . . , xmaxv

) := ·v ; /

*

x œ ·v

*

/

3 if u = v then
4 if ·v is of type pos then
5 ÷! i < max

v

: ”(v, xi

) Æ 0 · ”(v, xi+1

) Ø 0 /

*

÷!: there is a unique

*

/

6 else /

*

is of type neg

*

/

7 ÷! i < max

v

: ”(v, xi

) = 1 · ”(v, xi+1

) = ≠1;

8 Ë(u, v) := i + 1;

9 else /

*

u ”= v
*

/

10 Ë(u, v) := min{l | ·v ”≥
=

·v

x+l·eu
};

11 return Ë(u, v)

Illustration
Example 2.32 Algorithm Activity-Value is applied to construct the threshold values of two
interactions from Example 2.31. The input is shown in Figure 2.10.

v1 v2
+

+

Edge (v1, v1), a resource {v2}.
Edge (v2, v1), a resource {v1}.

! ˆK(v1,!)

; 2

{v2} 0

{v1} 2

{v1, v2} 2

(a) Edges on v
1

and ˆK(v
1

, Ê)

00 01 02

10 11 12

v2

v1

20 21 22

(b) ”(v
1

, ·)

Figure 2.10: Two inputs for algorithm Activity-Value. (a) Two incoming edges of v
1

. For
(v

1

, v
1

), on resource {v
2

} we have K(v
1

, {v
2

}) ”= K(v
1

, {v
1

, v
2

}). For (v
2

, v
1

), on resource ÿ
we have K(v

1

, ÿ) ”= K(v
1

, {v
2

}). (b) The state transitions ”(v
1

, ·) in direction of v
1

.

1. Edge (v
1

, v
1

), resource {v
2

} with K(v
1

, {v
2

}) ”= K(v
1

, {v
1

, v
2

}).
Algorithm Activity-Value(v

1

, v
1

, {v
2

}, ”(v
1

, ·)):

(a) Construct an extremal state x = 02 with Res

v1(x) = {v
2

} according to Lemma 2.16.
The v

1

-row containing 02 is (01, 12, 22).

2.2 Reverse engineering algorithms 27

(b) (v
1

, v
1

) is a self loop, follow line 3–8 in the pseudocode.

- ”(v
1

, ·v1
) = (1, 0, 0), · v1 is of type pos. There is a unique position 1, where

”(u, x1

) = 0 Æ 0 and ”(u, x2

) = 0 Ø 0.

- Ë(v
1

, v
1

) := 2.

2. Edge (v
2

, v
1

), resource ÿ with K(v
1

, ÿ) ”= K(v
1

, {v
2

}).
Algorithm Activity-Value(v

2

, v
1

, {v
1

}, ”(v
1

, ·)):

(a) Construct the extremal state x = 20 with Res

v1(x) = {v
1

} according to Lemma
2.16. The v

1

-row containing 20 is (00, 10, 20).

(b) (v
2

, v
1

) is not a self loop, follow line 10 in the pseudocode.

- ”(v
1

, ·v1
) = (1, 1, 0).

Û let l = 1, · v1
1

= (01, 11, 21), ”(v
1

, ·v1
1

) = (1, 1, 0), so that · v1 ≥
=

· v1
1

.

Û let l = 2, · v1
2

= (02, 12, 22), ”(v
1

, ·v1
1

) = (0, ≠1, 0), so that · v1 ≥
=

· v1
2

.

- l = 2 is the smallest value that the structures of v
1

-rows change. Therefore,
Ë(v

2

, v
1

) := 2;

—

Complexity The space needed by this algorithm includes: the input including ”(v, ·) of size
|X| ◊ 1 = NN+1, an edge, a resource, a few v-rows as intermediate variables, and an output
Ë(u, v). Altogether, S(N) = NN+1

+ 2 + 2 + max(N + 1, (N + 1)

2

), which is at most
O(NN+1

).

The time complexity can be calculated from the pseudocode. For an input edge (u, v), the
time for constructing an extremal state x is N , and finding the extremal row containing x ·v is
N + 1. Next the algorithm will choose one of the following two parts.

1. If u = v, lines 3–8 are chosen. The state transitions of · v are checked, with cost N + 1

(the length of · v); the threshold value is assigned. Therefore, this step costs O(N).

2. If u ”= v, line 10 is chosen. The worst case is that the row structures starting from · v until
· v

x

u

=max

u

need to be compared. Row ·v is of length (N + 1) and there are max

u

other
v-rows. Therefore, this step costs O(N2

).

The total time is O(N2

).

2.2.3 Algorithm Visibility-Model

Algorithm Visibility-Model is based on Lemma 2.29. For a given ASTG T , this algorithm
constructs a model M which defines the same ASTG T and has minimal number of edges
among all its isomorphic models.

A complete connected IG ˆI is assumed for T with only positive edges, i.e., an activation
between every pair of components. Then algorithm Logical-Parameters is applied to obtain
a pseudo logical parameter function ˆK for ˆI . Next, all visible edges in ˆI are kept in the real
IG, assigned proper signs and threshold values (by algorithm Activity-Value). These visible
interactions define a new IG. Finally, a proper logical parameter function for the new IG has to

28 Chapter 2 From dynamics to structures: reverse engineering algorithms

be constructed, so that the interactions are visible and can regenerate the input ASTG T . Details
of the algorithm can be found in the pseudocode and the illustration in Example 2.33.

Algorithm 2.3: Visibility-Model
Input: An ASTG T = (X, S) with set of components V and maximal activity levels max(·).

/

*

S is given by ” : V ◊ X æ {≠1, 0, +1}.
*

/

Output: A model M = (I, K) with ASTG(M)

≥
=

T which has minimal number of edges among
its isomorphic model class. /

*

≥
=

, is isomorphic to

*

/

1 E := ÿ;
2 ˆE := V ◊ V ;
3 Á̂ :© +;
4 ˆI := (V, ˆE, Á̂, max);
5 ˆK(·, ·) := Logical-Parameters(

ˆI , T);
6 foreach (u, v) œ ˆE do
7 if ÷ Ê ™ V \{u} :

ˆK(v, Ê) ”= ˆK(v, Ê fi {u}) then
8 E := E fi {(u, v)};

9 Á(u, v) :=

I
+, if ˆK(v, Ê) < ˆK(v, Ê fi {u})

≠, if ˆK(v, Ê) > ˆK(v, Ê fi {u})

;

10 Ë(u, v) := Activity-Value(u, v, Ê, ”(v, ·));

11 I := (V, E, Á, Ë, max);
12 foreach v œ V do
13 foreach Ê ™ Pre

I

(v) do
14 Î := {u œ Ê | Á(u, v) = +} fi {u œ Pre

I

(v)\Ê | Á(u, v) = ≠};
15 K(v, Ê) :=

ˆK(v, Î);

16 return M = (I, K)

The main parts of the algorithm can be briefly explained in three steps.

1. Initialisation, line 1–5. Start from a simple IG ˆI defined as a complete digraph with only
positive edges and without any threshold values. Applying algorithm Logical-Parameters
(Section 2.2.1), a suitable logical parameter function ˆK is constructed for ˆI , called pseudo
logical parameter function.

2. Inferring I , line 6–11. An edge (u, v) œ ˆE is visible if one can find a resource Ê µ
Pre

ˆ

I

(v)\{u}, with ˆK(v, Ê) ”= ˆK(v, Ê fi {u}). If (u, v) is visible, then it is added to E.
Furthermore, if ˆK(v, Ê) < ˆK(v, Ê fi {u}), then Á(u, v) := +; if ˆK(v, Ê) > ˆK(v, Ê fi {u}),
then Á(u, v) := ≠. Next, taking Ê and ”(v, ·) as the input for algorithm Activity-Value, a
proper value Ë(u, v) will be found. This inference is repeated for every edge of ˆI . After that,
a new IG I = (V, E, Á, Ë, max) has been obtained containing only visible edges of ˆI .

3. Assigning K, line 12–15. A proper logical parameter function K has to be found for I , so
that ASTG(M)

≥
=

T for M = (I, K). For each component v œ V , for each state x œ X , let
Ê be the resource of v under x in I and let Î be the one in ˆI . Note that Î is just the symmetric
difference of Ê with a set of components for which the outgoing edges to v are negative.
Therefore, K can be obtained by rearranging ˆK. M will generate the same ASTG as T .

Illustration
Example 2.33 Examples for algorithm Visibility-Model
Figure 2.11a shows an ASTG as the input for algorithm Visibility-Model.
Let V = {v

1

, v
2

}, max = [2, 2].

2.2 Reverse engineering algorithms 29

1. Initialisation. ˆI = (V, ˆE, Á̂, max) is constructed and algorithm Logical-Parameters is
called to obtain a pseudo logical parameter function ˆK, see Figure 2.11b.

00 01 02

10 11 12

20 21 22

v2

v1

(a) ASTG T

v1 v2
+

+
+

+

! K̂(v1,!)

; 2
{v2} 0
{v1} 2

{v1, v2} 2

! K̂(v2,!)

; 2
{v2} 0
{v1} 1

{v1, v2} 1

(b) ˆI and ˆK

Figure 2.11: (a) ASTG T . (b) A simple IG ˆI and the pseudo logical parameter function ˆK.

2. Inferring I . The visibility of every interaction in ˆI is checked. For the visible ones, signs
are assigned and the threshold values are obtained by applying algorithm Activity-Value.
For the 4 edges in the example, the details are listed below.

(a) (v
1

, v
1

), a resource {v
2

} is found, where ˆK(v
1

, {v
2

}) = 0 < ˆK(v
1

, {v
1

, v
2

}) = 2,
; E := E fi {(v

1

, v
1

)}, Á(v
1

, v
1

) = +,
Activity-Value((v

1

, v
1

), {v
2

}, ”(v
1

, ·)) ; Ë(v
1

, v
1

) = 2.

(b) (v
2

, v
1

), a resource ÿ is found, where ˆK(v
1

, ÿ) = 2 > ˆK(v
1

, {v
2

}) = 0,
; E := E fi {(v

2

, v
1

)}, Á(v
2

, v
1

) = ≠,
Activity-Value((v

2

, v
1

), ÿ, ”(v
1

, ·)) ; Ë(v
2

, v
1

) = 2.

(c) (v
1

, v
2

), a resource ÿ is found, where ˆK(v
2

, ÿ) = 2 > ˆK(v
2

, {v
1

}) = 1,
; E := E fi {(v

1

, v
2

)}, Á(v
1

, v
2

) = ≠,
Activity-Value((v

1

, v
2

), ÿ, ”(v
2

, ·)) ; Ë(v
1

, v
2

) = 1.

(d) (v
2

, v
2

) œ ˆE, ˆK(v
2

, ÿ) = 2 > ˆK(v
2

, {v
2

}) = 0,
; E := E fi {(v

2

, v
2

)}, Á(v
2

, v
2

) = ≠,
Activity-Value((v

2

, v
2

), ÿ, ”(v
2

, ·)) ; Ë(v
2

, v
2

) = 1.

Now I is constructed, see Figure 2.12a.

3. Assigning K
I

. For all u œ V , for all Ê ™ Pre

I

(u), Î = {v œ Ê | Á(v, u) = +}
fi{v /œ Pre

I

(u)\Ê | Á(v, u) = ≠}, K(u, Ê) :=

ˆK(u, Î), K is set by rearranging ˆK, as
shown in Figure 2.12b.

v1 v2
+, 2

�, 1
�, 1

+, 2

(a) I .

! & K̂(v1, &) = K(v1,!)

; ; 2
{v2} {v2} 0
{v1} {v1} 2
{v1, v2} {v1, v2} 2

! & K̂(v2, &) = K(v2,!)

; {v2} 1
{v2} ; 1
{v1} {v1, v2} 0
{v1, v2} {v1} 2

(b) K.

Figure 2.12: (a) The real IG I . (b) Through Ê and Î , K is rearranged from ˆK.

30 Chapter 2 From dynamics to structures: reverse engineering algorithms

A model M = (I, K) which carries only visible interactions is constructed for T . —

Complexity To determine the space complexity, we need to calculate the size of the input and
output, and the intermediate variables. Let N = |V | be the number of components, the maximal
activity of each is at most N . The input is an ASTG T = (X, S), S is given by ”(·, ·), of size
NN+1N . Within the algorithm, the space for ˆI and ˆK is needed, which are of size N2 resp.
N2

N . The output is an IG I and K, which are of the same size as ˆI and ˆK. Therefore, the total
space complexity is (SN) = NN+1N + 2(N2

+ N2

N

) = NN+2

+ 2N2

+ N2

N+1, which is
O(NN+1

).

The time complexity can be obtained from the three steps in the algorithm.

1. Initialisation, line 1–5, where algorithm Logical-Parameters is called to get ˆK. The
running time is O(N2

2

N

).

2. Inferring I , line 6–10, which checks the visibility of each edge in ˆI and finds out the sign
and threshold value for the visible edges.

- For visibility checking, in the worst case all pairs of resources Ê µ V \{u} and Ê fi {u}
need to be checked, thus the cost is O(2

N≠1

).

- For getting the threshold value of an edge, the algorithm Activity-Value is called, which
costs O(N) for a self loop, and O(N2

) otherwise.

The sum of all costs in the worst case is: N2 ◊ (O(2

N≠1

)+O(N2

)), which is O(N2

2

N

).

3. Assigning K, line 12–15. In the worst case, for all N components, the symmetric
difference has to be calculated for all 2

N resources. Therefore, it costs O(N2

N

).

Altogether, the time complexity of Algorithm 2.2.3 is O(N2

2

N

).

2.2.4 Algorithm Observability-Snoussi-Model

For a given ASTG, the algorithm Observability-Snoussi-Model constructs a model M = (I, K)

which satisfies the observability condition, and the Snoussi-condition as much as possible. The
pseudocode is given in Algorithm 2.4 and illustrated by Example 2.33.

This algorithm includes three steps: initialisation, inferring I and assigning K. Initialisation
and assigning K are exactly the same as in algorithm Visibility-Model. The main difference
between these two reverse engineering algorithm lies in the second step: inferring I .

The basic ideas of the algorithm are explained below. An influence from u to v is positive if
for some Ê ™ Pre(u)\{u}, K(v, Ê) < K(v, Êfi{u}), or negative if K(v, Ê) > K(v, Êfi{u}).
In the pseudocode, lines 6–8 and 18–20 count the positive and negative influences.

1. Initialisation, line 1–4. This step is the same as in Pseudocode 2.3. A simple graph ˆI
is defined as a complete positive graph without any threshold values. A pseudo logical
parameter function ˆK for ˆI is constructed by applying algorithm Logical-Parameters.

2. Inferring I , line 5–26. For each component v œ V :

• Self loop (v, v): count the number of positive influences p and the number n of
negative ones. If either p or n is larger than 0, then:

- E := E fi {(v, v)}, and Á(v, v) is assigned + if p Ø n, and ≠ otherwise.

2.2 Reverse engineering algorithms 31

Algorithm 2.4: Observability-Snoussi-Model
Input: ASTG T = (X, S), the component set V and the maximal activity levels max(·). /

*

S
is given by ” : V ◊ X æ {≠1, 0, +1}.

*

/

Output: Model M = (I, K) with ASTG(M)

≥
=

T , which satisfies the observability condition,
and the Snoussi-condition as much as possible. /

*

≥
=

means isomorphic.

*

/

1 E := ?;
2 ˆE := V ◊ V ; Á̂ :© +;
3 ˆI := (V, ˆE, Á̂, max);
4 ˆK(·, ·) := Logical-Parameters(

ˆI , T);
5 foreach v œ V do
6 p := 0; n := 0;
7 foreach Ê ™ V \{v} do
8 if ˆK(v, Ê) < ˆK(v, Ê fi {v}) then p := p + 1 else if ˆK(v, Ê) > ˆK(v, Ê fi {v}) then

n := n + 1

9 if n + p > 0 then
10 E := E fi {(v, v)};
11 if p Ø n then Á(v, v) := + else if p < n then Á(v, v) := ≠;
12 pick ÊÕ ™ V \{v} :

ˆK(v, ÊÕ
) ”= ˆK(v, ÊÕ fi {v});

13 Ë(v, v) := Activity-Value(v, v, ÊÕ, ”(v, ·));
14 foreach Ê̂ ™ V do
15 if ˆK(v, Ê̂) does not lie on Ê̂-side from v then

16 ˆK(v, Ê̂) :=

Y
___]

___[

Ë(v, v) ≠ 1, if Á(v, v) = +, v œ Ê̂

Ë(v, v), if Á(v, v) = +, v /œ Ê̂

0, if Á(v, v) = ≠, v œ Ê̂

max

v

, if Á(v, v) = ≠, v /œ Ê̂

; /

*

Á œ I, Ê̂ ™ Pre

ˆ

I

(u).

*

/

17 foreach u œ V \{v} do
18 p := 0; n := 0;
19 foreach Ê ™ V \{u} do
20 if ˆK(v, Ê) < ˆK(v, Ê fi {u}) then p := p + 1 else if ˆK(v, Ê) > ˆK(v, Ê fi {u}) then

n := n + 1

21 if n + p > 0 then
22 E := E fi {(u, v)};
23 if p Ø n then Á(u, v) := + else if p < n then Á(u, v) := ≠;
24 pick ÊÕ ™ V \{u} :

ˆK(v, ÊÕ
) ”= ˆK(v, ÊÕ fi {u});

25 Ë(u, v) := Activity-Value(u, v, ÊÕ, ”(v, ·));

26 I := (V, E, Á, Ë, max);
27 foreach v œ V do
28 foreach Ê ™ Pre

I

(v) do
29 Î := {u œ Ê | Á(u, v) = +} fi {u œ Pre

I

(v)\Ê | Á(u, v) = ≠};
30 K(v, Ê) :=

ˆK(v, Î);

31 return M = (I, K)

32 Chapter 2 From dynamics to structures: reverse engineering algorithms

- pick a resource ÊÕ on which ˆK(v, ÊÕ
) ”= ˆK(v, ÊÕ fi {v}), algorithm Activity-

Value is applied to get Ë(v, v).

- minimise the violation of the Snoussi-condition in v. According to Lemma 2.26,
for each resource, if ˆK(v, Ê) does not lie on the Ê-side of v, then ˆK(v, Ê) will
be revised in line 16:

ˆK(v, Ê̂) :=

Y
___]

___[

Ë(v, v) ≠ 1, if Á(v, v) = +, v œ Ê̂
Ë(v, v), if Á(v, v) = +, v /œ Ê̂
0, if Á(v, v) = ≠, v œ Ê̂
max

u

, if Á(v, v) = ≠, v /œ Ê̂

Note that because of Á̂(v, v) = +, the 3rd case Á(v, v) = ≠, v œ Ê̂ here is
equivalent to the case Á(v, v) = ≠, v /œ Ê in Lemma 2.26.

• Other incoming interactions, line 17–25. With the revised ˆK(v, ·), the existence of
other incoming interactions (u, v) œ ˆE is checked. If an interaction exists, similarly
a resource of v with ˆK(v, ÊÕ

) ”= ˆK(v, ÊÕ fi {u}) is picked. algorithm Activity-Value
is applied to find Ë(u, v).

At the end, the IG I = (V, E, Á, Ë, max) has been constructed.

3. Assigning K, line 27–30. A proper logical parameter function K has to be assigned to I ,
so that for M = (I, K) we get ASTG(M)

≥
=

T . For each component v œ V and each
state x œ X , let Ê be the resource of v under x in I and Î the one in ˆI . Then Î is the
symmetric difference of Ê with a set of components for which the outgoing edges to v are
negative. Therefore, K can be obtained by rearranging ˆK: for each v œ V and each Ê,
K(v, Ê) :=

ˆK(v, Î). M = (I, K) generates the same ASTG as T .

This algorithm is a refinement of Visibility-Model in order to achieve a model which satisfies
more conditions. The refinements are in the second step inferring I and include the following.

1. Infer interactions based on components. For each component, this algorithm first detects
the self-loop and then other incoming interactions.

2. Decide the signs of interactions based on counting the positive and negative influences.
For each interaction, this algorithm assigns the sign based on the number of positive and
negative influences.

3. Minimal violations of the Snoussi-condition. According to Lemma 2.26, ˆK(v, ·) is revised
for each v œ V . In this way, with the rearranged K from ˆK, M = (I, K) satisfies the
Snoussi-condition as much as possible.

Two more details should be mentioned.

1. The decision on the signs of an interaction. In line 11 and 23, + is preferred to ≠
because + will be chosen even p = n > 0. However, one can also choose to prefer ≠ by
letting Á(u, v) = ≠ if p Æ n. The resulting model will satisfy the observability and the
Snoussi-condition as much as the model obtained by preferring +.

2. The output model M satisfies the Snoussi-condition “as much as possible” in the following
sense:

(a) M has the fewest violations of the Snoussi-condition in components in the class
of all isomorphic models. The ˆK is revised during the inference of I according to
Lemma 2.26. This revision will enable the output M carrying the fewest violations
of the Snoussi-condition among all models isomorphic to M .

2.2 Reverse engineering algorithms 33

(b) M has the fewest violations of the Snoussi-condition in interactions in the class
of all equivalent models. The number of violations of the Snoussi-condition in
interactions is defined as:

s := #{(u, v, Ê) | (u, v) œ E, Ê ™ Pre(v)\{u} · K(v, Ê) > K(v, Ê fi {u})}.

Lemma 2.26 ensures that among the class of all isomorphic models, M has the lowest
number of violations of the Snoussi-condition in all components, but not necessarily so
among the class of all equivalent models. It is still possible that there exists another model
(with a different interaction graph, among the class of all equivalent models) that has
the same number of Snoussi-condition violations in all interactions, but overall a lower
number of violations of the Snoussi-condition in all components.

By applying the algorithm Observability-Snoussi-Model in Section 2.2.4 we can get the
following result:
Theorem 2.34 [Lorenz, 2011] For a given ASTG T = (X, S), algorithm Observability-Snoussi-
Model will construct a model M which satisfies the observability condition and

1. among all isomorphic models of M , M has the fewest number of violations of the
Snoussi-condition on components.

2. among all equivalent models of M , M has the fewest number of violations of the Snoussi-
condition in interactions.

Illustration
Example 2.35 We take the same ASTG as in Example 2.33 as input for algorithm Observability-
Snoussi-Model.

1. Initialisation. This step is the same as in algorithm Visibility-Model. Like in Figure 2.11,
a simple IG ˆI and the pseudo logical parameter function ˆK are constructed.

2. Inferring I .

(a) For component v
1

:

- (v
1

, v
1

). One positive influence on resource {v
2

} is found, p = 1; there is
no negative influence, n = 0. Thus p Æ n and Á(v

1

, v
1

) := +. Algorithm
Activity-Value with the resource {v

2

} gives Ë(v
1

, v
1

) := 2. Each resource Ê of
v

1

is checked whether ˆK(v
1

, Ê) lies on the Ê-side from v
1

. If not, ˆK(v
1

, Ê)

will be revised accordingly.

Ê̂ v
1

œ Ê̂? ˆK(v
1

, Ê̂) vs 2 on Ê̂-side? revision new ˆK(v
1

, Ê)

ÿ /œ 2 < 2? no Ë(v
1

, v
1

) = 2 2

{v
2

} /œ 0 < 2? yes - 0

{v
1

} œ 2 Ø 2? yes - 2

{v
1

, v
2

} œ 2 Ø 2? yes - 2

- (v
2

, v
1

). Only one negative influence is found on resource ÿ, and there is no
positive influence. Therefore, Á(v

2

, v
1

) := ≠. Applying algorithm Activity-
Value with resource ÿ gives Ë(v

2

, v
1

) := 2.

(b) For component v
2

, the same process is repeated as for v
1

.

34 Chapter 2 From dynamics to structures: reverse engineering algorithms

• For (v
2

, v
2

), only one negative influence is detected on resource ÿ, n = 1,
and there is no positive influence, p = 0. Therefore, Á(v

2

, v
2

) := ≠. Using
algorithm Activity-Value with resource ÿ gives Ë(v

2

, v
2

) := 1.
Each resource Ê of v

2

is checked whether ˆK(v
2

, Ê) lies on the Ê-side from v
2

.
If not, ˆK(v

2

, Ê) will be revised accordingly.

Ê̂ v
2

œ Ê̂? ˆK(v
2

, Ê̂) vs 1 on Ê̂-side? revise new ˆK(v
1

, Ê)

ÿ /œ 2 < 1? no max

v2 = 2 2

{v
2

} œ 0 Ø 1? no 0 0

{v
1

} /œ 1 < 1? no max

v2 = 2 2

{v
1

, v
2

} œ 1 Ø 1? yes - 1

• (v
1

, v
2

). There is one positive influence on resource {v
1

}, p = 1, and no
negative influence. Thus Á(v

1

, v
2

) := +. Applying algorithm Activity-Value
with resource {v

1

} gives Ë(v
2

, v
1

) := 1.

Figure 2.13 shows the output, the IG I and the revised pseudo logical parameter function
ˆK.

v1 v2
+, 2

+, 1
�, 1

�, 2

! K̂(v1,!)

; 2
{v2} 0
{v1} 2

{v1, v2} 2

! K̂(v2,!)

; 2
{v2} 0
{v1} 2

{v1, v2} 1

Figure 2.13: The real IG I , and the revised ˆK.

3. Assigning K. Similar as in Example 2.33, for all v œ V and all Ê ™ Pre

I

(v), set
K(v, Ê) :=

ˆK(v, Î), where Î = {u œ Ê | Á(u, v) = +}fi {u /œ Pre

I

(v)\Ê | Á(u, v) =

≠}. K is an rearrangement of ˆK relating the resources by the symmetric difference with
the set of inhibiting components, see Figure 2.14.

! & K(v1,!) := K̂(v1, &)
; {v2} 0
{v2} ; 2
{v1} {v1, v2} 2
{v1, v2} {v1} 2

! & K(v2,!) := K̂(v2, &)
; {v2} 0
{v2} ; 2
{v1} {v1, v2} 1
{v1, v2} {v1} 2

Figure 2.14: K obtained by rearranging ˆK.

Result: The output model M = (I, K) carries only observable interactions and has no
violations of the Snoussi-condition, and ASTG(M)

≥
=

T . —

Complexity The space complexity is similar to algorithm Visibility-Model. Both algorithms
have the same size of the input and output. Concerning the intermediate variables, algorithm

2.3 Discussion 35

Observability-Snoussi-Model needs a few more: p, n, ÊÕ, which is very small. The space
complexity of algorithm Observability-Snoussi-Model is again O(NN+1

).

The time cost is calculated in three steps.

1. Initialisation, line 1–4. Similar to Algorithm 2.2.3, getting ˆK for ˆI has a maximal running
time of O(N2

2

N

).

2. Inferring I , line 5–24. For each component v:

• Self loop (v, v), line 6–16.

– line 6–8, counting positive and negative influences. In the worst case, each pair
of logical parameters under a resource with and without v has to be compared.
The cost is O(2

N≠1

);

– line 9–13, for assigning Á(v, v) and Ë(v, v) the cost is O(N).

– minimising the violation of the Snoussi-condition: for each resource checking
whether ˆK(v, res) lies on the resource side from v, which costs O(2

N

).

So, for the self loop, the overall cost is O(2

N

).

• Other N ≠ 1 incoming edges, line 17–25:

– line 18–20 counting positive influences p and negative ones n, cost O(2

N

).

– line 21–25, assigning Á(u, v) and Ë(u, v) cost O(2

N

).

Thus for the other (N ≠ 1) other incoming interactions the cost O(N2

N

).

Overall, the time cost of second step is N(O(2

N

) + O(N2

N

)), which is O(N2

N

).

3. Assigning K.. The same as in algorithm Visibility-Model. This step costs O(N2

N

).

In total, the time cost of the algorithm is O(N2

2

N

)+ O(N2

N

)+ O(N2

N

) = O(N2

2

N

).
This algorithm takes more time than algorithm Visibility-Model due to the refinement. However,
they both have the same level of time complexity.

2.3 Discussion

Let the number of components in the system be again |V | = N œ N+. All four algorithms take
as inputs an ASTG which has at least the size of the state space X . If the system is Boolean, then
|X| = 2

N . If the system is multi-valued, every component can have an activity level as high
as the total number of components in the system, which means |X| Æ (N + 1)

N , i.e., O(NN

).
The worst-case space complexity and the time complexity for each algorithm are summarised in
Table 2.2.

Algorithm: S(N) T (N)

Logical-Parameters O(NN+1

) O(N2

2

N

)

Activity-Value O(NN+1

) O(N) or O(N2

)

Visibility-Model O(NN+1

) O(N2

2

N

)

Observability-Snoussi-Model O(NN+1

) O(N2

2

N

)

Table 2.2: The space and time complexity of the four algorithms.

36 Chapter 2 From dynamics to structures: reverse engineering algorithms

Algorithm Logical-Parameters and Activity-Value are called from the other two reverse
engineering (RE) algorithms. Algorithm Visibility-Model and Observability-Snoussi-Model
have very similar procedures to infer a model for a given ASTG T as input. Assuming the input
is really an ASTG, these two algorithms will always generate a model.

1. The first step initialisation is the same in both cases. Algorithm Logical-Parameters
is called to get a pseudo logical parameter function ˆK based on a complete positive
interaction graph ˆI . Once the signs of all incoming interactions of a component are
known, the resource of it for each extremal state can be determined easily. Information on
all state transitions is extracted from the extremal states.

2. In the second step inferring I , the existence of an interaction is based on the visibility
condition. The threshold value of an interaction is assumed to be unique. It is obtained by
calling algorithm Activity-Value on a resource which makes this interaction visible.

3. The last step assigning K is also the same. An IG I is inferred from ˆK with no unnecessary
interactions. A suitable logical parameter function K is needed for I . For each component,
the difference of its resource in I with the one in ˆI is a subset of those unnecessary and
negative incoming interactions.

The difference of these two RE algorithms lies in the second step inferring I .

1. Algorithm Visibility-Model: the sign of each interaction is determined based on the value
of ˆK at a resource which makes the interaction visible. This is similar to choosing the
first resource which makes an interaction (ˆI) visible, and assigning it a “correct” sign in
I , which will be finally observable in the output model M .

2. Algorithm Observability-Snoussi-Model: the sign of each interaction is determined using
an overall comparison of the values of ˆK at all resources which make the interaction
visible based on the observability condition.

3. In algorithm Observability-Snoussi-Model, for each component u, ˆK is revised to get a
minimal number of violations of the Snoussi-condition in u, according to Lemma 2.26.

According to Corollary 2.27, a violation of the Snoussi-condition in an interaction implies
also a violation in a component. However, a violation in an component can mean more than one
violations in some interactions. Checking the total number of Snoussi-condition violations is
expensive, due to the high cost of calculating all pairs of resources Ê ™ Î ™ V .Checking only
the number of Snoussi-condition violations in all interactions is easier for many fewer resource
pairs are compared (all Ê ™ V \{u} vs Ê fi {u}).

Algorithm Observability Snoussi-Model constructs an observable model with minimal
Snoussi-condition violations in its isomorphism class. Because the output model has only
necessary edges, the number of violations of the Snoussi-condition in all interactions is also
minimal in its equivalence class. However, it is still an open question whether this model also
has the lowest number of Snoussi-condition violations in all components among all models of
its equivalence class. It is possible that there exists another model (with a different IG) that has
the same number of Snoussi-condition violations in all interactions, but overall a lower number
of Snoussi-condition violations in all components.

The main memory and time consuming part in both RE algorithms is related to operations on
resources. For a system of N components, the maximal number of resources for each component
is 2

N . Moreover, the comparison of the logical parameters between pairs of resources for the
signs of interactions in both RE algorithms is time consuming and executed more than once.

2.3 Discussion 37

Both RE algorithms can output a model with a minimal number of interactions. Algorithm
Observability-Snoussi-model spends additional efforts to achieve a logical parameter function
for which the output model satisfies more restrictive model conditions.

Without knowing the model in advance, the complete ASTG is hard to obtain by measure-
ments from experiments. However, both RE algorithms were designed to infer a model from a
perfect ASTG which leads to a problem in practice. If the input is not a perfect ASTG, then the
algorithms do not work as they are supposed to:

1. Algorithm Logical-Parameters does not care about the input details beyond the extremal
rows.

2. Both RE algorithms are not sensitive to the presence of multiple edges in the input: for
example, choosing different resources which can make an interaction visible, different
threshold values can be obtained. In this case, the output models are not able to regenerate
the input anymore.

However, if the input is not perfect and carries some incorrect transitions, these two RE
algorithms can still output a model for an ASTG whose extremal rows agree with the input.
These issues will be further explored in Chapter 3.

The size of the state space and the logical parameter function grows exponentially with the
number of components. For this reason, the two RE algorithms slow down for larger regulatory
networks. The four algorithms have been implemented in Matlab version R2016a (about 500 line
of code) on a x86 64 and 4GB memory machine under Linux operation system. The software
runs very fast on small number of components (within 10), within a few seconds. If the number of
components gets larger, it can be very slow. For example, given an ASTG with 32, 739 transitions
from a Boolean GRN of 15 components (mTOR-MAPK signalling transduction network), both
algorithms need more than 4 days and even the verification of the output model takes 3 hours.
The Matlab package is available at https://github.com/riplotus/RE LorenzAlgorithms.

https://github.com/riplotus/RE_LorenzAlgorithms

Chapter 3

Asynchronous state transition graphs and gen-
eralised Lorenz algorithms

When designing Lorenz algorithms as presented in Chapter 2 it was assumed that the input
graph is always a valid ASTG. If this is not the case, the algorithms may still work, but they
will compute a model that does not exactly reproduce the input. In Section 3.1.1 we propose
three conditions that are necessary and sufficient for a graph based on the state space to be a
valid ASTG. These conditions characterise the correct inputs for Lorenz algorithms. Inspired
by these ASTG conditions, a fourth condition for an ASTG to admit a model satisfying the
observability and the Snoussi-conditions is proposed in Section 3.1.2. These four conditions are
then embedded into Lorenz algorithms, as generalised Lorenz algorithms in Section 3.2. The
generalised Lorenz algorithms can tell whether the input is a valid ASTG and if so construct a
model with the required properties.

3.1 Characterising asynchronous state transition graphs

Lorenz algorithms as presented in Chapter 2 will always construct a model, even if the input
is not an ASTG. While this allow the user getting a model even if there are some errors in
the input graph, the output model will not be able to regenerate the input. In general, it is
possible one gives an input which is a directed graph on the state space and is not a valid ASTG.
Such non-ASTG graphs may have incomplete information in order to be ASTGs, unexpected
transitions among some states, influences potentially caused by multiple interactions, etc.

When looking at an ASTG as a directed graph on the state space, graph-theoretical properties
characterising ASTGs are of great interest. In this chapter, three ASTG conditions will be
derived and proven to be necessary and sufficient for a graph based on the state space (see
Definition 3.1) to be an ASTG. These conditions guarantee a valid input for Lorenz algorithms,
such that the output will be a model which regenerates the input. Furthermore, these conditions
can be embedded into an extended version of Lorenz algorithms that is able to handle general
inputs.

3.1.1 Three ASTG conditions

Definition 3.1 (Graph based on a state space, G
X

) A directed graph G
X

= (X, E), where
X = �

uœV

X
u

is a state space with X
u

= {0, . . . , max

u

}, for all u œ V , and E represents

39

40 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

directed edges between the states, is called a graph based on the state space X .

Let G
X

be a graph based on a state space X . In the following, we formulate three conditions,
ASTG condition 1, 2 and 3 to determine whether or not G

X

is an ASTG.
ASTG condition 1 (Asynchronicity) In G

X

, any two states connected by a directed edge have
Hamming distance one, which means that they differ in only one component.
ASTG condition 2 (Unitarity) In G

X

, every state x œ X has at most one outgoing edge in each
direction u œ V , which has length one.

Based on ASTG conditions 1 and 2, we define the notion of destination value.
Definition 3.2 (Destination value) Let G

X

be a graph based on X satisfying the ASTG condi-
tions 1 and 2. Given a u-row ·u

= (x0, . . . , xmax

u

), let ”(u, xi

) œ {≠1, 0, +1} describe the
transition from state xi œ ·u in direction u, for all i œ {0, . . . , max

u

}. The destination value of
xi in direction of u is defined as:

dest(u, xi

) =

Y
_____]

_____[

i if ”(u, xi

) = 0 (a)

i + 1 if ”(u, xi

) = 1 and ”(u, xi+1

) ”= 1 (b)

i ≠ 1 if ”(u, xi

) = ≠1 and ”(u, xi≠1

) ”= ≠1 (c)

dest(u, xi+1

) if ”(u, xi

) = ”(u, xi+1

) = 1 (d)

dest(u, xi≠1

) if ”(u, xi

) = ”(u, xi≠1

) = ≠1 (e)

(3.1)

for i œ {0, . . . , max

u

}. The destination values of the u-row ·u in direction of u are given by
the vector

dest(u, ·u

) = (dest(u, x0

), . . . , dest(u, xmax

u

)).

The concept of destination value is very similar to the notion of monotone target value
(MTV) defined by [Streck et al., 2015]. MTV means the target value that a state can transit to in
one direction in a transition system (TS) (which can be understood as a state transition graph).
In an ASTG, the destination value is the same as the MTV. However, the destination value is
defined on a graph based on a state space G

X

, which does not have to be a valid ASTG.

The following Lemma 3.3 describes the destination values for the three u-row types in an
ASTG.
Lemma 3.3 In an ASTG T

M

, every u-row ·u has at most two different destination values in
direction of u. Given a := dest(u, x0

) and b := dest(u, xmax

u

), there are the following three
cases:

1. If ·u belongs to open-type, then for all x œ ·u, dest(u, x) = a = b.

2. If ·u belongs to pos-type with a threshold t, then it holds that a < t Æ b, and
dest(u, x0

) = · · · = dest(u, xt≠1

) = a and dest(u, xt

) = · · · = dest(u, xmax

u

) = b.

3. If ·u belongs to neg-type with a threshold t, then a Ø t > b, and dest(u, x0

) = · · · =

dest(u, xt≠1

) = a and dest(u, xt

) = · · · = dest(u, xmax

u

) = b.
In addition, a = t and b = t ≠ 1.

Proof. From Definition 3.2 and Proposition 2.10, we get the following cases:

1. If ·u belongs to the open type, then there exist only one state xa with ”(u, xa

) = 0,
”(u, x0

) = · · · = ”(u, xa≠1

) = 1 and ”(u, xa+1

) = · · · = ”(u, xmax

u

) = ≠1. Thus,
dest(u, x0

) = · · · = dest(u, xmax

u

) = a, see Figure 3.1.

3.1 Characterising asynchronous state transition graphs 41

open type
x

0
x

a
· · · · · ·

(1, · · · , 0, · · · ,�1)

(a, · · · , a, · · · , a)

⌧u

�(u, ⌧u) =

dest(u, ⌧u) =

x

maxu

Figure 3.1: A open type u-row ·u, the state transitions and the destination values.

2. If ·u belongs to the pos type with threshold t, then there exists a < b œ {0, . . . , max

u

}, so
that ”(u, xa

) = ”(u, xb

) = 0. It holds that ”(u, xt≠1

) Æ 0 and ”(u, xt

) Ø 0. ”(u, ·u

) =

(”(u, x0

), . . . , ”(u, xa

), . . . , ”(u, xt≠1

), ”(u, xt

), . . . , ”(u, xb

), . . . , ”(u, xmax

u

)) = (1,
. . . , 0, . . . , ≠1, 1, . . . , 1, 0, ≠1, . . . , ≠1). From the definition of the destination value,
dest(u, x0

) = · · · = dest(u, xt≠1

) = a and dest(u, xt

) = · · · = dest(u, xmax

u

) = b,
see Figure 3.2.

pos type
x

0
x

a
x

t�1
· · · · · ·

x

t
x

b
x

maxu

· · · · · ·

(1, · · · , 0, · · · ,�1, 1, · · · , 0, · · · ,�1)

(a, · · · , a, · · · , a,

b, · · · , b, · · · , b)

⌧u

�(u, ⌧u) =

dest(u, ⌧u) =

Figure 3.2: A pos type u-row ·u, the state transitions and the destination values.

3. If ·u belongs to the neg type with threshold t, then ”(u, xi

) = 1 for i œ {0, . . . , t ≠ 1},
and ”(u, xi

) = ≠1 for i œ {t, . . . , max

u

}. From the definition of destination values,
dest(u, xi

) = t for i œ {0, . . . , t ≠ 1}, and dest(u, xi

) = t ≠ 1 for i œ {t, . . . , max

u

}.
Moreover, a = t and b = t ≠ 1, see Figure 3.3.

neg type
x

0
x

t�1
· · ·

x

t
x

maxu
· · ·⌧u

(1, · · · , 1, �1, ,�1)�(u, ⌧u) =

dest(u, ⌧u) = (t, · · · , t,

· · ·

t� 1, · · · , t� 1)

Figure 3.3: A neg type u-row ·u, the state transitions and the destination values.

Therefore, Lemma 3.3 is proved.

According to Proposition 2.10 on the three types u-rows, we can enumerate all possible
kinds of u-rows of a certain length (i.e., their number of states). For example, for all u-rows of
length 4, if the threshold of those u-rows of pos and neg type is set to 2, we can find in total
9 different u-rows: 4 of pos type, 1 of neg type and 4 of open type. Figure 3.4 shows these 9

u-rows and their destination values.

1

2

3

4

5

6

7

8

9

pos type

neg type

open type

x

0
x

1
x

2
x

3 dest(u, ⌧u)

(0, 0, 0, 0)

(1, 1, 1, 1)
(2, 2, 2, 2)
(3, 3, 3, 3)
(1, 1, 2, 2)
(0, 0, 2, 2)

(0, 0, 3, 3)
(1, 1, 3, 3)

(2, 2, 1, 1)

⌧u

Figure 3.4: All 9 u-rows of length 4 with threshold 2 for the pos and neg types and their
destination values.

42 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

We are now able to formulate the third ASTG condition. Note that by ASTG condition 2, for
each state and in each direction, there exists only one destination value.
ASTG condition 3 (u-hypercube) Let G

X

be a graph based on X satisfying the ASTG con-
ditions 1 and 2. For all components u, i œ V , there exists t

ui

œ {0, . . . , max

i

} such that
for all u-hypercubes of the form X

u

:= �

n

i=1

X
i

™ X with either X
i

= {0, . . . , t
ui

≠ 1} or
X

i

= {t
ui

, . . . , max

i

}, we have

’x, y œ X
u

: dest(u, x) = dest(u, y).

The destination value of the u-hypercube in direction of u is denoted as dest(u, X
u

) which
equals to dest(u, x) for all x œ X

u

. Moreover, the set of all these u-hypercubes X
u

is denoted
by H(u).

The motivation behind the u-hypercubes is the following. In an IG, if there exists a regulation
from v to u, then t

uv

œ {1, . . . , max

v

} is the position where this influence can be observed. If
there is no regulation from component v to u, then t

uv

can be any value in {0, max

v

}, so that in
the v-th dimension of X

u

we have X
v

is {0, . . . , max

v

}.
Remark 3.4 Given an ASTG G

X

satisfying the ASTG condition 3 for the set of u-hypercubes
H(u), there always exists a set of u-hypercubes ˜H(u) with ˜t

ui

> 0 for all u, i œ V , such that
G

X

still satisfies the u-hypercube condition on ˜H(u).

Proof. For all u, i œ V , if t
ui

= 0 and X
i

= {0, . . . , max

i

}, let ˜t
ui

be an arbitrary value from
{1, . . . , max

i

}. Then ˜X1

i

= {0, . . . , ˜t
ui

≠ 1}, ˜X2

i

= {˜t
ui

, . . . , max

i

} and every u-hypercube
X

u

œ H(u) can be divided into two u-hypercubes, X 1

u

with ˜X1

i

and X 2

u

with ˜X2

i

. Let ˜H(u)

denote the new set of u-hypercubes. Since X 1

u

and X 2

u

are subsets of X
u

, the destination
values of X 1

u

and X 2

u

are the same as for X
u

. Thus G
X

satisfies the u-hypercube condition on
˜H(u).

Note that for all other dimensions different from u, i.e., for all i ”= u œ V and x, y œ X
u

,
dest(i, x) does not need to be the same as dest(i, y). Before proving necessity of ASTG
condition 3, we first illustrate it on a 2-dimensional and a 3-dimensional example.
Example 3.5 This example is to illustrate ASTG condition 3 on a 2-D ASTG T and a corres-
ponding model M . Note that the model of T does not need to satisfy the Snoussi-condition.
Figure 3.5 shows an ASTG T which satisfies ASTG condition 3, and two models of T . The
hypercubes of T are shown in Figure 3.6 and 3.7.

In particular, Figure 3.6a shows the state transitions in direction of u in T , and Figure 3.6b
shows all 4 u-hypercubes with their destination values. Take for example X 1

u

= {00, 10} in the
top-left of Figure 3.6b. All states have the same destination value, dest(u, X 1

u

) = 0. Table 3.1
shows the set of u-hypercubes.

X j

u

= X
u

◊ X
v

dest(u, X j

u

)

X 1

u

= {0, 1} ◊ {0} 0
X 2

u

= {0, 1} ◊ {1, 2} 2
X 3

u

= {2} ◊ {0} 2
X 4

u

= {2} ◊ {1, 2} 1

Table 3.1: 4 u-hypercubes and their destination values in direction of u, in Figure 3.6.

Similarly, the set of v-hypercubes is shown in Figure 3.7. —

3.1 Characterising asynchronous state transition graphs 43

00 01 02

10 11 12

20 21 22

v

u

⌧u0 ⌧u1 ⌧u2

⌧v0

⌧v1

⌧v2

(a) ASTG T .

! K(u,!) K(v,!)

; 2 0
{v} 0 0
{u} 1 0
{u, v} 2 2

! K 0(u,!) K 0(v,!)

; 1 0
{v} 2 0
{u} 2 0
{u, v} 0 2

(b) K.

u v

�, 1

�, 2

+, 2

�, 1

(c) IG I .

u v

�, 1

�, 2

�, 2

�, 1

(d) IG I Õ.

Figure 3.5: (a) Common ASTG T of the models M = (I, K) and M Õ
= (I Õ, K Õ

). (b) Logical
parameter functions K and K Õ. (c) IG I . (d) IG I Õ. Neither M nor M Õ satisfies the Snoussi-
condition.

u v

+, 2

�, 1

00 01 02

10 11 12

20 21 22

v

u

(a) State transitions of u.

01 02

11 12

20 21 22

dest(u,X 3
u) = 2

dest(u,X 2
u) = 2

dest(u,X 4
u) = 1

00

10

dest(u,X 1
u) = 0

(b) H(u).

Figure 3.6: (a) State transitions in direction of u. For I , the incoming interactions of u are
shown on the top. (b) All X

u

, H(u), and their destination values. For these X
u

, t
uu

= 2 and
t
uv

= 1, which are equal to the thresholds Ë(u, u) and Ë(v, u), respectively.

00 01 02

10 11 12

20 21 22

v

u

u v

�, 1

�, 2

(a) State transitions of v.

00 01 02

dest(v,X 1
v) = 2

dest(v,X 3
v) = 0

dest(v,X 2
v) = 1

dest(v,X 4
v) = 0

10 11

20 21

12

22

(b) H(v).

Figure 3.7: (a) State transitions in direction of v. For I , the incoming interactions of v are shown
on the top. (b) All X

v

, H(v), and their destination values. For these X
v

, t
vu

= 1 and t
vv

= 2,
which are equal to the thresholds Ë(u, v) and Ë(v, v), respectively.

44 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

Example 3.6 This example is to illustrate ASTG condition 3 using a 3-D ASTG T
M

and a
corresponding model M , as shown in Figure 3.8.

Figure 3.9 shows all the transitions in direction of v
1

(Figure 3.9a), and 8 v
1

-hypercubes with
their destination values (Figure 3.9b). Let X 1

v1 = {000, 010, 100, 110} be the v
1

-hypercube
on the top-left of Figure 3.9b. From the transitions of all states in X 1

v1 in direction of v
1

, it is
obvious that dest(v

1

, X 1

v1) = 0. Table 3.2 shows all the 8 v
1

-hypercubes of v
1

.

X j

v1 = X
v1 ◊ X

v2 ◊ X
v3 dest(v

1

, X j

v1)

X 1

v1 = {0, 1} ◊ {0, 1} ◊ {0} 0
X 2

v1 = {0, 1} ◊ {0, 1} ◊ {1, 2} 0
X 3

v1 = {0, 1} ◊ {2} ◊ {0} 0
X 4

v1 = {0, 1} ◊ {2} ◊ {1, 2} 3
X 5

v1 = {2, 3} ◊ {0, 1} ◊ {0} 0
X 6

v1 = {2, 3} ◊ {0, 1} ◊ {1, 2} 3
X 7

v1 = {2, 3} ◊ {2} ◊ {0} 3
X 8

v1 = {2, 3} ◊ {2} ◊ {1, 2} 3

Table 3.2: 8 v
1

-hypercubes and their destination values, in Figure 3.9.

000 001 002

100 101 102

200 201 202

010 011 012

110 111 112

210 211 212

020 021 022

120 121 122

220 221 222
300 301 302

310 311 312

320 321 322

x = (xv1 , xv2 , xv3)

v1
v2

v3

�, 1

�, 3

�, 1+, 2

+, 2

+, 2
+, 1

v1 v2

v3

(a) ASTG T

(b) K

(c) IG I

;
{v3}
{v2}

{v2, v3}
{v1}

{v1, v2}
{v1, v3}

{v1, v2, v3}

! K(v1,!)

0

0

0

2

1

3

3

3

;
{v1}

! K(v3,!)

0

2

;
{v3}
{v2}

{v2, v3}
{v1}

{v1, v2}
{v1, v3}

{v1, v2, v3}

! K(v2,!)

0

0

0

1

0

1

0

2

Figure 3.8: (a) An ASTG T . (b), (c) A model of T , M = (I, K).

000 001 002

100 101 102

200 201 202

010 011 012

110 111 112

210 211 212

020 021 022

120 121 122

220 221 222
300 301 302

310 311 312

320 321 322

x = (xv1 , xv2 , xv3)

v1
v2

v3

(a) State transitions of v
1

.

220

320

dest(v1,X 7
v1) = 3

020

120

dest(v1,X 3
v1) = 0

021 022

121 122

dest(v1,X 4
v1) = 3

000

100

010

110

dest(v1,X 1
v1) = 0

dest(v1,X 6
v1) = 3

201 202

211 212

301 302

311 312

221 222

321 322

dest(v1,X 8
v1) = 3

dest(v1,X 2
v1) = 0

001 002

101 102

011 012

111 112

200

210

300

310

dest(v1,X 5
v1) = 0

+, 2

+, 1
v3

v2

+, 2

v1

Incoming edges of v1

(b) H(v
1

).

Figure 3.9: (a) State transitions in direction of v
1

. All incoming edges of v
1

are shown on
the top-right. (b) All v

1

-hypercubes, H(v
1

), and the destination values of all v
1

-hypercubes.
t
v1v1 = 2, t

v1v2 = 2 and t
v1v3 = 1, which equal to the thresholds of the incoming edges.

3.1 Characterising asynchronous state transition graphs 45

002

dest(v2,X 2
v2) = 1

dest(v2,X 6
v2) = 1

dest(v2,X 8
v2) = 0

112

212

122

222

312

322

dest(v2,X 4
v2) = 1

012

022

dest(v2,X 3
v2) = 0

010 011

020 021

dest(v2,X 5
v2) = 0

100 101

200 201

300 301

dest(v2,X 7
v2) = 0

110 111

210 211

120 121

220 221

310 311

320 321

dest(v2,X 1
v2) = 0

000 001

102

202

302

�, 1

+, 2

v1

v3

�, 1

v2
Incoming edges of v2

(a) H(v
2

).

dest(v3,X 2
v3) = 0

dest(v3,X 1
v3) = 2

300 301 302

310 311 312

320 321 322

001

102

000 002

100 101

200 201 202

010 011 012

110 111 112

210 211 212

020 021 022

120 121 122

220 221 222

�, 3v1

v3

Incoming edges of v3

(b) H(v
3

).

Figure 3.10: (a) All v
2

-hypercubes, H(v
2

) and their destination values. t
v2v1 = 1, t

v2v2 = 1 and
t
v2v3 = 2. (b) v

3

-hypercubes, H(v
3

) and their destination values. t
v3v1 = 3, t

v1v2 = t
v1v3 = 0.

—
We next show that the destination value is the same for all states in the set Xu,Ê introduced

in the following definition.
Definition 3.7 (Set of states for a component under a resource) Let I = (V, E, Ë, Î, max) be an
IG. For a component u œ V and one of its resources Ê ™ Pre(u), the set of states for u under Ê
is defined as Xu,Ê

:= {x œ X | Res

u

(x) = Ê}.
Lemma 3.8 Consider a model M = (I, K) and its ASTG T

M

. For each u œ V and each
resource Ê ™ Pre(u), for all states x, y œ Xu,Ê, dest(u, x) = dest(u, y).

Proof. Firstly, (1) will show that for any u-row, those states in Xu,Ê have the same destination
values in direction of u. Then, (2) will show that the structures of the u-rows which contain
states in Xu,Ê are isomorphic. Lastly, (3) will show for all states in Xu,Ê, they have the same
destination values in direction of u.

(1) According to Lemma 3.3, in an open type u-row, all states have the same destination
value; and in a u-row of pos or neg type, the states where u has resource Ê share the
same destination value a, and those where u has the other resource Ê�{u} share the same
destination value b. Therefore, for any u-rows those states in Xu,Ê have the same destination
values in direction of u.

(2) According to Lemma 2.19, for two states x, y œ X such that there exists a component
u œ V with Res

u

(x)\u = Res
u

(y)\u, the u-row containing x is isomorphic to the u-row
containing y. Therefore, for any states x, y œ Xu,Ê, the u-row containing x is isomorphic
to the u-row containing y.

(3) For any states x, y œ Xu,Ê, one of the following two cases holds:

(a) x and y lie on the same u-row. From (1), dest(u, x) = dest(u, y).

(b) x and y lies on different u-rows. From (2), the u-row ·u

1

= (x0, · · · , xmax

u

) con-
taining x is isomorphic to the u-row ·u

2

= (y0, · · · , ymax

u

) containing y. By Defini-

46 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

tion 3.2 this implies that dest(u, xi

) = dest(u, yi

) for all i œ {0, . . . , max

u

}.

Together with (1), it holds that dest(u, x) = dest(u, y).

Therefore, for all states x, y œ Xu,Ê, dest(u, x) = dest(u, y).
Theorem 3.9 (Necessity) Any ASTG T = (X, S) satisfies the three ASTG conditions 1, 2
and 3.

Proof. According to the definition of an ASTG, there is at least one model M such that
ASTG(M)

≥
=

T . From how ASTG is defined, we know that T is also a graph based on X .
Since the state transitions in an ASTG are asynchronous and unitary, T satisfies the ASTG
condition 1 and 2. Now we want to prove that T satisfies the u-hypercube ASTG condition 3.

1. Firstly, for each component u œ V , we construct a set of u-hypercubes H(u) in the
following way:

(a) For all v œ V , if (v, u) œ E, then let t
uv

:= Ë(v, u); otherwise, let t
uv

be any value
from {0, . . . , max

v

}.

(b) Let H(u) = fiX
u

, and each u-hypercube X
u

:= �

iœV

X
i

, with X
i

either equals to
{0, . . . , t

ui

≠1} or {t
ui

, . . . , max

i

}. Note that, if t
ui

= 0, then X
i

= {0, . . . , max

i

}.

2. Next we show that each u-hypercube X
u

œ H(u) is included in a set of states with the
same resource.

(a) Let Xu,Ê

= {x œ X | Res

u

(x) = Ê} the set of states for u under Ê. For all i œ V ,

- if i œ Pre(u), then t
ui

equals to Ë(i, u). This means, X
i

either equals to
{0, . . . , Ë(i, u) ≠ 1} or {Ë(i, u), . . . , max

i

}. Since the states in Xu,Ê have the
same resource, we have for all x œ Xu,Ê, x

i

œ X
i

.

- if i /œ Pre(u), then t
ui

can be any value from {0, . . . , max

i

}. Since Xu,Ê

i

equals to {0, . . . , max

i

}, and X
i

either equals to {0, . . . , t
ui

≠ 1} or {t
ui

, . . . ,
max

i

}, we have X
i

™ Xu,Ê

i

.

From above, X
u

™ Xu,Ê and each X
u

œ H(u) has a unique resource Ê for u.
Thus there exists a set of states under the same resource Xu,Ê with X

u

™ Xu,Ê.

(b) Let Ê := Res

u

(x), for all x œ X
u

. According to Lemma 3.8, all states of Xu,Ê

have the same destination value in direction of u. Since X
u

™ Xu,Ê, all states in a
u-hypercube have the same destination value.

From the above cases, we proved that, for an ASTG T , for each component u, we can always
construct a set of u-hypercubes H(u), such that all states in each u-hypercube X

u

have the
same destination value in direction of u, i.e., for all x, y œ X

u

, dest(u, x) = dest(u, y) =

dest(u, X
u

). Therefore, T satisfies ASTG condition 3.
Theorem 3.10 (Sufficiency) If a graph G

X

based on a state space X satisfies the three ASTG
conditions 1, 2 and 3, then G

X

is an ASTG.

Proof. Suppose that G
X

satisfies the three ASTG conditions. Without loss of generality, for
all u-hypercubes of G

X

, t
uv

> 0 for all v œ V , according to Remark 3.4. To prove that G
X

is
an ASTG, we first construct a model M = (I, K) with an ASTG T

M

= (X, S
M

) on the same
state space X , and then show that T

M

≥
=

G
X

.

1. The model M = (I, K) is constructed in the following way.

3.1 Characterising asynchronous state transition graphs 47

(a) We choose an IG I = (V, E, Ë, Á, max) with a complete set of positive interactions,
i.e., for all v, u œ V , (v, u) œ E with Á(v, u) = +. The function max can be
extracted from the state space X . Furthermore, for all u, v œ V , let Ë(v, u) := t

uv

.

(b) For each Ê œ Pre(u) = V , we want to show that, the set of states for u under
resource Ê, Xu,Ê œ H(u).

All interactions in I are positive, thus Xu,Ê

= {x œ X | ’v /œ Ê : x
v

< Ë(v, u)

’v œ Ê : x
v

Ø Ë(v, u)

}.

From G
X

and H(u), we can find a u-hypercube, X
u

= �

vœV

X
v

, where for all
v œ V , t

uv

œ {1, . . . , max

v

}. If v /œ Ê, let X
v

= {0, . . . , t
uv

≠ 1}, and if v œ Ê,
let X

v

= {t
uv

, . . . , max

v

}. Then X
u

has the same set of states as Xu,Ê and
dest(u, Xu,Ê

) = dest(u, X
u

). In this case, X
u

is termed as X Ê

u

.

(c) Now we can assign a logical parameter function K proper values. For all x œ X Ê

u

,
let K(u, Ê) := dest(u, X Ê

u

).

2. Now we want to show that, for all x œ X , for all u œ V , if (x, x + e

u

) œ T
M

, then
(x, x + e

u

) œ G
X

and vice versa. In the constructed model M = (I, K), for any x œ X
with Ê = Res

u

(x), the following cases hold.

(a) If (x, x + e

u

) œ T
M

, then:

i. K(u, Ê) > x
u

;

ii. Xu,Ê

= X Ê

u

. For all x œ X Ê

u

, K(u, Ê) = dest(u, x), thus dest(u, x) > x
u

.

This implies that (x, x + e

u

) œ G
X

.

(b) Similarly, if (x, x + e

u

) œ G
X

, with x œ X Ê

u

, then:

i. dest(u, x) > x
u

;

ii. K(u, Ê) = dest(u, x), thus we have K(u, Ê) > x
u

.

This implies that (x, x + e

u

) œ T
M

.

Analogously, for (x, x ≠ e

u

) œ T
M

, it holds also (x, x ≠ e

u

) œ G
X

, and vice versa.

Therefore, the ASTG T
M

from the constructed model M is equivalent with G
X

, i.e., G
X

is an ASTG.

3.1.2 Compatible model condition

The three ASTG-conditions guarantee G
X

to be an ASTG which admits a model M = (I, K).
However, they do not guarantee that the ASTG will admit models which satisfy specific model
conditions. For example, an interaction in I can be assigned signs opposite to its K.
Definition 3.11 (Compatible model M) A model M = (I, K) is compatible if it satisfies both
the observability condition and the Snoussi-condition.
Definition 3.12 (Compatible logical parameter function K for an IG I) A logical parameter
function K is called compatible with an IG I if the model M = (I, K) is compatible.

In this section, we present an ASTG condition 4, which provides a way to judge whether
or not an ASTG can admit a compatible model (see Definition 3.11). Before presenting this
condition, a few lemmas are needed. The first Lemma 3.13 shows that a model which satisfies

48 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

the Snoussi-condition has an equivalent model which satisfies both the observability and the
Snoussi-condition.
Lemma 3.13 For a model M = (I, K) which satisfies the Snoussi-condition, there exists an
equivalent model ˜M = (

˜I, ˜K) which contains only the observable interactions of I and satisfies
both the observability and the Snoussi-condition.

Proof. Let I = (V, E, Á, Ë, max). Assume that M = (I, K) satisfies the Snoussi-condition.
Thus, every interaction of I satisfies the Snoussi-condition. Therefore, for all (v, u) œ E, for
all Ê œ Pre(u)\{v}, K(u, Ê) Æ K(u, Ê fi {v}). A model ˜M = (

˜I, ˜K) is constructed based
on M . Firstly, ˜I = (V, ˜E, Á̃, ˜Ë, max) is constructed to include all observable interactions of I .
Start with ˜E = ÿ. Then, for all (v, u) œ E, repeat the following operations.

1. If there exists Ê œ Pre(u)\{v}, K(u, Ê) < K(u, Ê fi {v}), which means (v, u) is
observable in M , then let ˜E :=

˜E fi {(v, u)}, Á̃(v, u) := Á(v, u) and ˜Ë(v, u) := Ë(v, u).

2. If for all Ê œ Pre(u)\{v}, K(u, Ê) = K(u, Ê fi {v}), thus (v, u) is not observable in
M , then (v, u) /œ ˜E.

Until now, all observable interactions of I are added into ˜I . Since ˜E ™ E, ˜K can be also
constructed from K by setting ˜K(u, Ê) := K(u, Ê), for all u œ V and Ê ™ Pre(u)|

˜

I

. So that,
˜M = (

˜I, ˜K) is equivalent to M . The reason why ˜K can be constructed like this is given next.

a) For all i œ Pre(u)|
I

\ Pre(u)|
˜

I

, for all Ê œ Pre

I

(u), K(u, Ê) = K(u, Ê�{i}).

b) For all x œ X , because ˜E ™ E, for all u œ V , the resource Res

u

(x) in ˜I is a subset of
that in I . Some resources of u which only exist in I are subsets of the components from
the unobservable interactions, i.e., Res

u

(x)|
˜

I

™ Res

u

(x)|
I

and Res

u

(x)|
I

\ Res

u

(x)|
˜

I

™
Pre(u)|

I

\ Pre(u)|
˜

I

.

From how ˜K is constructed, for all x œ X , for all u œ V , it holds that ˜K(u, Res

u

(x)|
˜

I

) = K(u,
Res

u

(x)|
˜

I

) = K(u, Res

u

(x)|
I

). The two models generate the same ASTG, ˜M is equivalent
with M .

Moreover, for all v œ Pre(u), for all ’ ™ Pre(u)|
˜

I

\{v}, we have ˜K(u, ’) Æ ˜K(u, ’ fi {v}),
which means ˜M also satisfies the Snoussi-condition.

In summary, ˜I keeps only those observable interactions from I . ˜M is equivalent with M
and satisfies both the observability and Snoussi-condition. The lemma is proved.

A u-hypercube has a unique destination value. For v œ V , the v-th dimension of a u-
hypercube X

u

is either {0, . . . , t
uv

≠ 1} or {t
uv

, . . . , max

v

}. If t
uu

”= 0, a u-hypercube
contains only part of the u-row. In order to determine the destination values of a full u-row,
the u-hypercube that contains the other part of the u-row has to be found. To be general,
a definition of the complement of X

u

in direction of v is given, so that a complete v-row
· v

= (x0, . . . , xmax

v

) is contained in these two u-hypercubes.
Definition 3.14 (Complement of X

u

in the v-th dimension) Consider a u-hypercube X
u

in
the state space X , where for all i œ V , X

i

= {0, . . . , t
ui

≠ 1} or X
i

= {t
ui

, . . . , max

i

}. The
complement of X

u

in the v-th dimension is a u-hypercube X c

v

u

, where for all i ”= v œ V ,
Xc

v

i

= X
i

, and Xc

v

v

= X
v

\X
v

with X
v

= {0, . . . , max

v

}. If X
v

= X
v

in X
u

, then X c

v

u

= ÿ.
The union of X

u

and X c

v

u

is again u-hypercube, which is denoted by vY
u

= X
u

fi X c

v

u

or
simply Y

u

if v = u.

Figure 3.11 illustrates the complement of a u-hypercube in the v-th dimension.

3.1 Characterising asynchronous state transition graphs 49

0 tuvtuv � 1 maxv

Xu X cv
u

vYu = Xu [X cv
u

Figure 3.11: A u-hypercube X
u

with X
v

= {0, . . . , t
uv

≠ 1}; the complement of it in the v-th
dimension, X c

v

u

. The hypercube below is the union of X
u

and X c

v

u

, vY
u

= X
u

fi X c

v

u

.

For two u-hypercubes X
u

and X c

u

u

, the destination values in direction of u can be discussed
via the u-rows. In an ASTG, if the destination value in direction u of X

u

is not equal to that of
X c

u

u

, i.e., dest(u, X
u

) ”= dest(u, X c

u

u

), then there are either u-rows of type pos or u-rows of
type neg in Y

u

. Lemma 3.15 discusses the three possible cases.
Lemma 3.15 Given an ASTG, consider a u-hypercube X

u

with X
u

= {0, . . . , t
uu

≠ 1} and its
complement in the u-th dimension X c

u

u

. Then all u-rows in Y
u

= X
u

fi X c

u

u

are isomorphic
to each other and there are the following three cases:

1. If dest(u, X
u

) < dest(u, X c

u

u

), then the u-rows of Y
u

are of pos type.

2. If dest(u, X
u

) > dest(u, X c

u

u

), then the u-rows of Y
u

are of neg type.

3. If dest(u, X
u

) = dest(u, X c

u

u

), then the u-rows of Y
u

are of open type.

Proof. Because X c

u

u

is the complement of X
u

in the u-th dimension, Xc

u

u

= {t
uu

, . . . , max

u

}.
Let ·u

= {x0, . . . , xmax

u} be a u-row in Y
u

with {x0, . . . , xt

uu

≠1} ™ X
u

and {xt

uu , . . . ,
xmax

u} ™ X c

u

u

. Suppose ·u

y

= {y0, . . . , ymax

u} is another u-row in Y
u

. For all i œ
{0, . . . , max

u

}, according to the ASTG condition 3, the following holds.

- if yi œ X
u

, then dest(u, yi

) = dest(u, X
u

) = dest(u, xi

).

- if yi œ X c

u

u

, then dest(u, yi

) = dest(u, X c

u

u

) = dest(u, xi

).

So ·u

y

is isomorphic to ·u. Now there are the following cases:

1. If dest(u, X
u

) < dest(u, X c

u

u

), then dest(u, {x0, . . . , xt

uu ≠ 1}) = dest(u, X
u

) <
dest(u, X c

u

u

) = dest(u, {xt

uu , . . . , xmax

u}). According to Lemma 3.3, ·u belongs to
pos type.

2. If dest(u, X
u

) > dest(u, X c

u

u

), then dest(u, {x0, . . . , xt

uu ≠ 1}) = dest(u, X
u

) >
dest(u, X c

u

u

) = dest(u, {xt

uu , . . . , xmax

u}). According to Lemma 3.3, ·u belongs to
neg type.

3. If dest(u, X
u

) = dest(u, X c

u

u

), then for each u-row in Y
u

, dest(u, {x0, . . . , xt

uu ≠
1}) = dest(u, {xt

uu , . . . , xmax

u}). According to Lemma 3.3, ·u belongs to open type.

Figure 3.12 illustrates the first two cases of Lemma 3.15.

50 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

Xu

dest(Xu) = 1 dest(X cu
u) = 3

X cu
u

x

0
x

1
x

2
x

3

u

(a) dest(u, X 1

u

) < dest(u, X 2

u

).

Xu

dest(Xu) = 2 dest(X cu
u) = 1

X cu
u

x

0
x

1
x

2
x

3

u

(b) dest(u, X 1

u

) > dest(u, X 2

u

).
Yu = Xu [X cu

u
u

x

0
x

1
x

2
x

3

⌧

u
0

⌧

u
1

⌧

u
2

(c) Y
u

containing pos type u-rows.

Yu = Xu [X cu
uu

x

0
x

1
x

2
x

3

⌧

u
0

⌧

u
1

⌧

u
2

(d) Y
u

containing neg type u-rows.

Figure 3.12: (a) and (c), Y
u

= X
u

fi X c

u

u

contains u-rows of type pos. (b) and (d), Y
u

=

X
u

fi X c

u

u

contains u-rows of type neg.

According to Lemma 3.15, if dest(u, X
u

) ”= dest(u, X c

u

u

) in an ASTG, then the u-rows
contained in X

u

fi X c

u

u

are of type pos or neg. From Proposition 2.10, if an ASTG contains a
u-row of pos or neg type, then in all models of the ASTG, there exists a self-loop on u.

In an ASTG G
X

, if dest(u, X
u

) ”= dest(u, X c

v

u

), for some v ”= u œ V , then there exists an
influence from v to u in all possible models of G

X

. Lemma 3.16 will show that the destination
values of this pair of hypercubes X

u

and X c

v

u

, are closely related to the logical parameters of u
under a pair of resources differing in v, for all possible models of the ASTG.
Lemma 3.16 Given an ASTG G

X

, consider a u-hypercube X
u

with X
v

= {0, . . . , t
uv

≠ 1},
and its complement in the v-th dimension X c

v

u

, v ”= u. Let Y
u

= X
u

fi X c

u

u

and Y c

v

u

=

(X
u

fi X c

u

u

)

c

v

= X c

v

u

fi X c

u

c

v

u

.

(a) If dest(u, X
u

) < dest(u, X c

v

u

), then there exist two states x œ Y
u

and x̃ œ Y c

v

u

, where
x̃

k

= x
k

, for all k ”= v œ V , such that in all possible models M = (I, K) of G
X

,
K(u, Res

u

(x)) < K(u, Res

u

(x̃)) with Res

u

(x) = Res

u

(x̃)�{v}.

(b) If dest(u, X
u

) > dest(u, X c

v

u

), then there exist two states x œ Y
u

and x̃ œ Y c

v

u

, where
x̃

k

= x
k

, for all k ”= v œ V , such that in all possible models M = (I, K) of G
X

,
K(u, Res

u

(x)) > K(u, Res

u

(x̃)) with Res

u

(x) = Res

u

(x̃)�{v}.

The positions of all mentioned u-hypercubes are shown in Figure 3.13.
0 tuvtuv � 1 maxv

Xu X cv
u

Y
u
=

X
u
[

X
c
u

u

t

u
u
�
1

t

u
u

m
a
x

u X cucv
uX cu

u

Xu

X cu
u

vYu = Xu [X cv
u

X cv
u

X cucv
u

Y
c
v

u
=

X
c
v

u
[

X
c
u
c
v

u

Figure 3.13: u-hypercube X
u

, its complements in the u-th and v-th dimension, together with
Y

u

, vY
u

and Y c

v

u

.

3.1 Characterising asynchronous state transition graphs 51

Proof. (a) and (b) are two opposite cases on dest(u, X
u

) and dest(u, X c

v

u

). We will only give
the proof of case (a), because case (b) can be proved analogously. Depending on X

u

, there are
two ways for finding states x œ Y

u

and x̃ œ Y c

v

u

, such that ”(u, x) < ”(u, x̃). Given a u-row
·u from Y

u

, there always exists a u-row ·̃u ™ Y c

v

u

, such that the states of ·u differ from the
states of ·̃u only in the v-th component.

1. If X
u

= Xc

v

u

= {0, . . . , t
uu

≠ 1}, we take the states x œ ·u, x̃ œ ·̃u with x
u

=

x̃
u

= dest(u, X
u

), and for all k ”= v œ V , x̃
k

= x
k

. According to the definition
of the destination value, dest(u, X

u

) is the smallest value on ·u where ”(u, x) ”= 1,
i.e., ”(u, x) < 1. Since dest(u, X c

v

u

) > dest(u, X
u

), we have ”(u, x̃) = 1. This gives
”(u, x) < ”(u, x̃).

2. If X
u

= Xc

v

u

= {t
uu

, . . . , max

u

}, we take two states x œ ·u, x̃ œ ·̃u with x
u

=

x̃
u

= dest(u, X c

v

u

), and for all k ”= v œ V , x̃
k

= x
k

. According to the definition
of the destination value, dest(u, X c

v

u

) is the biggest value on ·̃u with ”(u, x̃) ”= ≠1,
i.e., ”(u, x̃) Ø 0. Since dest(u, X

u

) < dest(u, X c

v

u

), we have ”(u, x) = ≠1. This also
gives ”(u, x) < ”(u, x̃).

Therefore, for all possible models M = (I, K) for G
X

, on these two states x and x̃,
sgn(K(u, Res

u

(x)) ≠ x
u

) = ”(u, x) < ”(u, x̃) = sgn(K(u, Res

u

(x̃))≠ x̃
u

), since x
u

=

x̃
u

, K(u, Res

u

(x)) < K(u, Res

u

(x̃)). Moreover, because x œ Y
u

and x̃ œ Y c

v

u

, Res

u

(x) =

Res

u

(x̃)�{v}. Thus, the lemma is proved.

According to Lemma 3.16, if dest(u, X
u

) ”= dest(u, X c

v

u

) in an ASTG G
X

, then (v, u) œ
E in all models of G

X

.

Figure 3.14 illustrates Lemma 3.16. In Figure 3.14d, dest(u, X
u

) = 0 < dest(u, X c

v

u

) = 2.
Consider the states x = 00 and x̃ = 02, then for all models of G

X

, K(u, Res

u

(00)) <
K(u, Res

u

(02)).

00 01 02

10 11 12

20 21 22

v

u

(a) ASTG G
X

u v

�, 1

�, 2

�, 2

+, 1

! K(u,!)

�

{v}
{u}

{u, v}

! K(v,!)

2

0

2

0 0

0

�

{v}
{u}

{u, v}

0

0

(b) M = (I, K)

00 01 02

10 11 12

20 21 22

v

u

(c) Transitions of u

01 02

11 12

20 21 22

dest(u,X cu
u) = 0

dest(u,X cv
u) = 2

dest(u,X cvcu
u) = 1

00

10

dest(u,Xu) = 0

(d) H(u).

Figure 3.14: (a) ASTG G
X

. (b) A model M = (I, K) of G
X

. (c) State transitions in direction
of u. (d) All u-hypercubes H(u), and the destination values of each u-hypercube.

52 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

Now we are ready to introduce ASTG condition 4 for characterising ASTGs that admit a
compatible model.
ASTG condition 4 (Compatible model condition) Let G

X

be a graph based on X satisfying the
ASTG conditions 1, 2 and 3. G

X

admits a compatible model if and only if, for no components
u, v œ V (u can be the same as v), there exist 4 u-hypercubes X 1

u

, X 1c

v

u

, X 2

u

, X 2c

v

u

with
X1

v

= X2

v

= {0, . . . , t
uv

≠ 1}, such that both (1) and (2) are true.

(1) dest(u, X 1

u

) < dest(u, X 1c

v

u

).

(2) dest(u, X 2

u

) > dest(u, X 2c

v

u

).
Theorem 3.17 (Necessity) If an ASTG T = (X, S) satisfies the ASTG condition 4, the it admits
a compatible model.

Proof. To prove necessity, an arbitrary ASTG G
X

which violates the compatible model condition
is given. Then an incompatibility position in G

X

is found, for all models that G
X

can have.

Let G
X

be an ASTG which violates the compatible model condition, then there exists such
two u-hypercubes X 1

u

and X 2

u

in G
X

, where X1

v

= X2

v

, such that

dest(u, X 1

u

) < dest(u, X 1c

v

u

) and dest(u, X 2

u

) > dest(u, X 2c

v

u

).

Figure 3.15 illustrates how these u-hypercubes look like. Now we want to find an incompatibility
position in G

X

.

0 tuvtuv � 1 maxv

dest(u,X 1
u)

dest(u,X 1cv
u)

dest(u,X 2
u)

dest(u,X 2cv
u)

<

>

Figure 3.15: Two pairs of u-hypercubes in G
X

, X 1

u

and X 1c

v

u

, X 2

u

and X 2c

v

u

, where X1

v

=

X2

v

= {0, . . . , t
uv

≠ 1}, X1c

v

v

= X2c

v

v

= {t
uv

, . . . , max

v

}.

Depending on whether v equals to u, there are two cases.

1. v = u. According to Lemma 3.15, for all the models of the ASTG which satisfy the
Snoussi-condition, dest(u, X 1

u

) < dest(u, X 1c

v

u

) implies the existence of a positive
self-loop (u, u), and dest(u, X 2

u

) > dest(u, X 2c

v

u

) the existence of a negative self-loop.

From Remark 2.13, in an ASTG, for a component u œ V , if there are both pos and
neg u-rows, then no model of the ASTG satisfies the Snoussi-condition. Therefore, in all
the models of G

X

the Snoussi-condition is violated in the interaction (u, u).

2. v ”= u. According to Lemma 3.16, one can find two pairs of states x œ Y 1

u

, x̃ œ Y 1c

v

u

and y œ Y 2

u

, ỹ œ Y 2c

v

u

, such that for all models of G
X

, the following condition holds for
the logical parameters:

(a) K(u, Res

u

(x)) < K(u, Res

u

(x̃)) where Res

u

(x) = Res

u

(x̃)�{v};

3.1 Characterising asynchronous state transition graphs 53

(b) K(u, Res

u

(y)) > K(u, Res

u

(ỹ)) where Res

u

(y) = Res

u

(ỹ)�{v}.

The range in dimension v of Y 1

u

and Y 2

u

is {0, . . . , t
uv

≠ 1}, and the range of Y 1c

v

u

and
Y 2c

v

u

is {t
uv

, . . . , max

v

}. Therefore, if Á(v, u) = +, then v œ Res

u

(x̃) fl Res

u

(ỹ), and
Case 2b violates the Snoussi-condition. If Á(v, u) = ≠, then v œ Res

u

(x) fl Res

u

(y),
then Case 2a violates the Snoussi-condition. Thus, both Case 2a and 2b lead to a violation
of the Snoussi-condition in the interaction (v, u).

Therefore, if G
X

violates the compatible model condition, then G
X

involves an inherent violation
of the Snoussi-condition in all its models. Analogously, for the other case dest(u, X 1

u

) >
dest(u, X 1c

v

u

) and dest(u, X 2

u

) < dest(u, X 2c

v

u

), the same incompatibility can be found in
all models of G

X

. In conclusion, the compatible model condition has to be satisfied for an
ASTG in order to admit a compatible model.
Theorem 3.18 (Sufficiency) If an ASTG T = (X, S) admits a compatible model, then it
satisfies the ASTG condition 4.

Proof. To prove sufficiency, we show that for any ASTG G
X

satisfying condition 4, a compatible
model can be found.

Let G
X

be an ASTG which satisfies the compatible model condition. According to Re-
mark 3.4, for all u, i œ V , one can find such t

ui

> 0, such that for all u-hypercubes in H(u),
G

X

still satisfies the ASTG condition 3. Now we want to find a compatible model for G
X

.

1. First we construct a model M = (I, K) for G
X

like in the proof for Theorem 3.10,
such that I = (V, E, Á, Ë, max) has a complete set of positive interactions, i.e., for all
v, u œ V , (v, u) œ E with Á(v, u) = +, and the logical parameter function K takes
the destination values of all hypercubes of G

X

. In I , for each interaction (v, u) œ E,
Ë(v, u) > 0. For all u œ V , each u-hypercube X

u

œ H(u) is related to a resource
Ê ™ Pre(u) by Res

u

(X
u

) = Ê, denoted by X Ê

u

where K(u, Ê) = dest(u, X Ê

u

), and
ASTG(M)

≥
=

G
X

.

2. Next, based on M , an equivalent model ˜M = (

˜I, ˜K) is constructed.

(a) Let ˜I = (V, E, Á̃, Ë, max).

For all u, v œ V , for all pairs of u-hypercubes X 1

u

and X 2

u

which differ only
in v, i.e., X1

v

= {0, . . . , t
uv

≠ 1}, X2

v

= {t
uv

, . . . , max

v

} and for all i ”= v œ V ,
X1

i

= X2

i

, there are the following two cases according to the compatible model
condition.

i. If for all pairs X 1

u

, X 2

u

we have dest(u, X 1

u

) Æ dest(u, X 2

u

), then let
Á̃(v, u) := +.

ii. Otherwise, if for all pairs X 1

u

, X 2

u

we have dest(u,X 1

u

) Ø dest(u,X 2

u

), and
there exists at least a pair of u-hypercubes ˜X 1

u

, ˜X 2

u

in G
X

such that dest(u,
˜X 1

u

) > dest(u, ˜X 2

u

), then let Á̃(v, u) := ≠.

(b) Once ˜I has been obtained, ˜K can be constructed from K. For each u œ V , Pre(u)|
˜

I

= Pre(u)|
I

. Let Pre(u)

≠
:= {v œ V | Á̃(v, u) = ≠}.

For each x œ X , it holds that Res

u

(x)|
˜

I

= Res

u

(x)|
I

�Pre(u)

≠. For all ’ ™
Pre(u), let ˜K(u, ’) := K(u, ’�Pre(u)

≠
).

Since ˜K is constructed based on K and it still keeps the destination values, i.e., for all
u œ V , for all x œ X , ˜K(u, Res

u

(x) |
˜

I

) = dest(u, x) = K(u, Res

u

(x)|
I

), we have
ASTG(

˜M) = G
X

. ˜M is an equivalent model to M .

54 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

3. Now we will show ˜M satisfies the Snoussi-condition. From how ˜M is constructed,
for all v, u œ V , for all pairs of u-hypercubes X 1

u

and X 2

u

which differ only in v,
i.e., X1

v

= {0, . . . , t
uv

≠ 1}, X2

v

= {t
uv

, . . . , max

v

} and for all i ”= v œ V , X1

i

= X2

i

, the
following cases hold.

(a) If Á(v, u) = +, then Res

u

(X 2

u

)|
˜

I

= Res

u

(X 1

u

)|
˜

I

fi {v}. In this case, it holds
always dest(u, X 1

u

) Æ dest(u, X 2

u

), which means ˜K(u, Res

u

(X 1

u

)|
˜

I

) Æ ˜K(u,
Res

u

(X 1

u

)|
˜

I

fi {v}).

(b) If Á(v, u) = ≠, then Res

u

(X 1

u

)|
˜

I

= Res

u

(X 2

u

)|
˜

I

fi {v}. In this case, it holds
always dest(u, X 1

u

) Ø dest(u, X 2

u

), which means ˜K(u, Res

u

(X 2

u

)|
˜

I

fi {v}) Ø
˜K(u, Res

u

(X 2

u

)|
˜

I

).

For all u œ V , each u-hypercube X
u

œ H(u) is also related to a resource Î ™ Pre(u)|
˜

I

by Res

u

|
˜

I

(X
u

) = Î where ˜K(u, Î) = dest(u, X
u

).

From (a) and (b), it follows that ˜K(u, Ê) Æ ˜K(u, Ê fi {v}). Every interaction of M
satisfies the Snoussi-condition. According to Remark 2.5, ˜M satisfies the Snoussi-
condition.

From above, ˜M is a Snoussi-model for G
X

. According to Lemma 3.13, for a Snoussi-model,
one can always find an equivalent model which satisfies both the observability and Snoussi-
conditions, thus the sufficiency is proved.

The following Corollary 3.19 is a direct application of ASTG condition 4 in terms of the
extremal states.
Corollary 3.19 Consider an ASTG T and two extremal u-rows ·u

1

= (x0, . . . , xmax

u

) and
·u

2

= (y0, . . . , ymax

u

) where for all i œ {0, . . . , max

u

}, xi

v

= 0 and yi

= xi

+max

v

e

v

. Assume
that dest(u, x0

) ”= dest(u, y0

) and dest(u, xmax

u

) ”= dest(u, ymax

u

). If sgn(dest(u, x0

) ≠
dest(u, y0

)) ”= sgn(dest(u, xmax

u

) ≠ dest(u, ymax

u

)), then T does not satisfy ASTG condi-
tion 4.

Proof. T satisfies u-hypercube ASTG condition 3, according to Theorem 3.9. For some
u, v œ V , for the four extremal states x0 and xmax

u from ·u

1

, and y0 and ymax

u from ·u

2

, assume
without loss of generality dest(u, x0

) < dest(u, y0

) and dest(u, xmax

u

) > dest(u, ymax

u

).

1. dest(u, x0

) < dest(u, y0

) implies t
uv

> 0 for all u-hypercubes. Therefore, x0, y0 are in
two different u-hypercubes, and also xmax

u and ymax

u are in two different u-hypercubes.

2. dest(u, x0

) < dest(u, y0

) together with dest(u, xmax

u

) > dest(u, ymax

u

) implies that
at least one of dest(u, x0

) ”= dest(u, xmax

u

) and dest(u, y0

) ”= dest(u, ymax

u

) holds.
This means, one of ·u

1

and ·u

2

is not of open type. Therefore, t
uu

> 0 for all u-hypercubes.

x

0
y

0

x

maxu
y

maxu

v

u

dest(u, x0) < dest(u, y0)

dest(u, xmaxu) > dest(u, ymaxu)

t

uv

t

uu

⌧

u

1 ⌧

u

2

x

0
y

0

x

maxu
y

maxu

t

uv

⌧

u

1 ⌧

u

2

X 1
u

X 1cv
u

X 2
u

X 2cv
u

t

uu

3. Thus, these 4 extremal states are located in four u-hypercubes. Let these 4 u-hypercubes

3.1 Characterising asynchronous state transition graphs 55

be X 1

u

– x0, X 1c

v

u

– y0, X 2

u

– xmax

u , and X 2c

v

u

– ymax

u . From the u-hypercube
condition, the destination value of all states in a u-hypercube is the same. This gives the
following.

• dest(u, X 1

u

) = dest(u, x0

) < dest(u, y0

) = dest(u, X 1c

v

u

)

• dest(u, X 2

u

) = dest(u, xmax

u

) > dest(u, ymax

u

) = dest(u, X 2c

v

u

)

By the assumption of the lemma, it holds that dest(u, X 1

u

) < dest(u, X 1c

v

u

) and
dest(u, X 2

u

) > dest(u, X 2c

v

u

), which contradicts the ASTG condition 4.

3.1.3 Enumerating asynchronous state transition graphs

Based on the three necessary and sufficient ASTG conditions, we now derive rules for construct-
ing all ASTGs on a given state space. Proposition 3.25 explains how to construct ASTGs on a
multi-valued state space. As a special case, Proposition 3.26 considers the ASTGs on a Boolean
state space. Proposition 3.30 shows that all possible ASTGs can be obtained in this way.

A u-row of pos or neg type indicating Ë(u, u) = t is also called a u-row of threshold t (see
Definition 2.11). In order to give more information on the u-rows than just their row type, we
define the set of eligible u-row structures of threshold value t.
Definition 3.20 (Set of eligible u-row structures of threshold value t) Given t œ {0, . . . , max

u

}
the set {·u}t

elg

of eligible u-row structures of threshold value t contains:

1. all pos type of u-rows of threshold t if t > 0;

2. all neg type of u-rows of threshold t if t > 0;

3. all open type of u-rows.

For a Boolean component u, Figure 3.16 shows the eligible set of u-row structures of
threshold value 1. According to Proposition 2.10, there exist only four possible u-row structures
in an ASTG on a Boolean state space, as shown in Figure 3.16.

x

0
x

1

pos type

neg type

open type

Figure 3.16: Set {·u}1

elg

of eligible u-row structures of threshold value 1 in the Boolean case.

Another example is given by the 9 u-rows in Figure 3.4 of Section 3.1.1, which shows the
set of eligible u-row structures of threshold value 2, {·u}2

elg

.

Lemma 3.21 For a given t œ {0, . . . , max

u

}, the number of u-row structures in the set {·u}t

elg

can be calculated according to the row types. We have:

• t(max

u

≠ t + 1) u-row structures of pos type, if t > 0.

• 1 u-row structure of neg type, if t > 0.

56 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

• (max

u

+ 1) u-row structures of open type.

Proof. From Proposition 2.10, given an ASTG, each u-row ·u belongs to exactly one of the
three row types, pos, neg and open type. Let the length of ·u be the number of states, which is
(1 + max

u

).

1. If ·u is of pos type with threshold t œ {1, . . . , max

u

}, let a œ {0, . . . , t ≠ 1} and
b œ {t, . . . , max

u

} be the destination values of states xi with i œ {0, . . . , t ≠ 1}, and
states xj with j œ {t, . . . , max

u

}, respectively. Thus, there are t different choices for a,
and max

u

≠ t + 1 choice for b. For every t œ {1, . . . , max

u

}, the number of possible
structures of ·u is therefore t(max

u

≠ t + 1).

2. If ·u is of neg type with threshold t œ {1, . . . , max

u

}, then the destination value of states
xi with i œ {0, . . . , t ≠ 1} is t, and of states xj with j œ {t, . . . , max

u

} is t ≠ 1. Thus,
the row structure of ·u is uniquely determined.

3. If ·u is of open type, let a œ {0, . . . , max

u

} be the destination values of all states in ·u.
Thus, there are in total max

u

+ 1 different row structures for ·u.

The following proposition provides a combination of the three ASTG conditions:
Proposition 3.22 Given a graph G

X

based on X , consider for each u œ V a set of u-hypercubes
H(u) as defined in ASTG condition 3. If for each u œ V , all u-rows in each pair of u-hypercubes
X

u

fi X c

u

u

are isomorphic and each u-row belongs to the set of eligible u-row structures of
threshold value t

uu

, then G
X

is an ASTG.

Proof. This proposition can be proved using the three ASTG conditions. Let H(u) be the set of
u-hypercubes in G

X

with t
ui

œ {0, . . . , max

i

}, for each i œ V and for each u œ V .

1. By hypothesis, in G
X

, for all u œ V , each u-row belongs to the set of eligible u-row
structures of threshold value t

uu

. From Definition 3.20, {·u}t

uu

elg

contains all u-rows of
pos and neg types at threshold value t

uu

, and all u-rows of open type.

(a) In the three types of u-rows (Proposition 2.10), a state can only transit to the direct
neighbours of Hamming distance 1. Thus the ASTG condition 1 (asynchronicity) is
satisfied.

(b) In the three types of u-rows, each state x can be updated only by distance 1 in one
direction. Thus, the ASTG condition 2 (unitarity) is satisfied.

2. Now we want to prove that the ASTG condition 3 (u-hypercube) also holds.

(a) By hypothesis, all u-rows in each pair of u-hypercubes X
u

fi X c

u

u

are isomorphic.
Take a u-row ·u

= {x0, . . . , xmax

u} from X
u

fi X c

u

u

.

(b) If t
uu

> 0 and in X
u

, X
u

= {0, . . . , t
uu

≠ 1}, then x0 œ X
u

and xmax

u œ X c

u

u

.
According to Lemma 3.3, it holds that dest(u, x0

) = · · · = dest(u, xt

uu

≠1

) and
dest(u, xt

uu

) = · · · = dest(u, xmax

u

). This holds for all u-rows in X
u

fi X c

u

u

.

(c) If t
uu

= 0 and in X
u

, X
u

= {0, . . . , max

u

}, then x0, xmax

u œ X
u

and X c

u

u

= ÿ.
According to Lemma 3.3, it holds that dest(u, x0

) = · · · = dest(u, xmax

u

). This
holds for all u-rows in X

u

fi X c

u

u

.

Hence, X
u

has a unique destination value dest(u, X
u

) = dest(u, x0

), and the same for
X c

u

u

, dest(u, X c

u

u

) = dest(u, xmax

u

). Therefore, ASTG condition 3 holds.

3.1 Characterising asynchronous state transition graphs 57

According to Theorem 3.17, G
X

is an ASTG. Therefore, Proposition 3.22 is proved.

Next we want to show that for a set of u-hypercubes H(u) in a state space X , each u-
hypercube contains at least one extremal state.
Lemma 3.23 Consider a set of u-hypercubes H(u) in a state space X , let t

uv

œ {0, . . . , max

v

}
for all v, u œ V . Then each u-hypercube X

u

œ H(u) contains at least one extremal state of X .
Moreover, if for all u, v œ V , t

uv

> 0, then each u-hypercube contains exactly one extremal
state.

Proof. In a state space X , for each u œ V , each u-hypercube X
u

œ H(u) is of the form X
u

:=

�

n

i=1

X
i

™ X with X
i

= {0, . . . , t
ui

≠ 1} or X
i

= {t
ui

, . . . , max

i

}, and t
ui

œ {0, . . . , max

i

}.
We can find an extremal state xext by considering each dimension of X

u

. For all v œ V , there
are the following two cases.

1. If t
uv

= 0, then X
v

= {0, . . . , max

v

}, there exist two extremal states and xext

v

can be
both 0 and max

v

.

2. If t
uv

> 0, then X
v

can be either {0, . . . , t
uv

≠ 1} or {t
uv

, . . . , max

v

} with xext

v

being
either 0 or max

v

, respectively.

From case 2, if for all u, v œ V , t
uv

> 0, then xext

v

is either 0 or max

v

, for each v œ V .
Therefore, each u-hypercube X

u

œ H(u) contains only one extremal state.

Similarly, for a set of u-hypercubes H(u) in a state space X , each u-hypercube and its
complement in u-direction contain at least one extremal row.
Lemma 3.24 Consider a set of u-hypercubes H(u) in a state space X , let t

uv

œ {0, . . . , max

v

}
for all v, u œ V . Each pair of u-hypercubes X

u

, X c

u

u

œ H(u) contains at least one extremal
u-row of X . Moreover, if for all u, v œ V , t

uv

> 0, then each pair of u-hypercubes contains
exactly one extremal u-row.

Proof. In a state space X , for each u œ V , there exist three possible cases. In each of these
cases, for each u-hypercube X

u

œ H(u), one can find at least one extremal u-row in X
u

fi Xc

u

u

.

1. For all v œ V , t
uv

> 0. According to Lemma 3.23, each X
u

contains exactly one extremal
state. Therefore, for each pair of u-hypercubes X

u

fi X c

u

u

, X
u

fi Xc

u

u

= {0, . . . , max

u

},
only one extremal row is contained.

2. t
uu

= 0 and for all v ”= u œ V , t
uv

> 0. In this case, X
u

= {0, . . . , max

u

}, thus
Xc

u

u

= ÿ. For each pair of u-hypercubes X
u

fi X c

u

u

, X
u

fi Xc

u

u

= {0, . . . , max

u

}.
Similar to case 1, X

u

fi X c

u

u

contains only one extremal u-row.

3. t
uu

= 0 and for some v œ V , t
uv

= 0.

In this case, X
v

is {0, . . . , max

v

}. X
u

contains two extremal states xext1 , xext2 with
xext1

v

= 0 and xext2
v

= max

v

. In X
u

fi X c

u

u

, X
v

= Xc

u

v

= {0, . . . , max

v

}. Therefore,
X

u

fi X c

u

u

contains two extremal u-rows where one row contains xext1 and the other one
contains xext2 .

Let ·u

ext

denote an extremal u-row. The following Proposition 3.25 shows that by arbitrarily
choosing each extremal row from the set of eligible row structures for a certain t value, we can
obtain an ASTG.
Proposition 3.25 Given a state space X , for each u œ V , let t

uu

œ {0, . . . , max

u

}. By choosing
for each extremal u-row an arbitrary row structure from the set of eligible u-row structures of

58 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

threshold value t
uu

, an ASTG can be defined.

Proof. To prove this proposition, we have to construct an ASTG from the arbitrarily chosen
extremal rows.

Let t
uv

be some value from {1, . . . , max

v

}, for all v ”= u œ V , and let H(u) be the
corresponding set of u-hypercubes. For each X

u

œ H(u), we can do the following:

1. If t
uu

> 0, then each u-hypercube X
u

contains only one extremal state, as proved in
Lemma 3.23. If t

uu

= 0, then X
u

contains two extremal states x and y which are in the
same u-row because x

v

= y
v

for all v ”= u œ V , x
u

= 0 and y
u

= max

u

.

2. Each pair of u-hypercubes X
u

fi X c

u

u

contains an extremal u-row, according to Lemma
3.24. Since t

uv

> 0 for all v ”= u œ V , X
u

fi X c

u

u

contains exactly one extremal u-row.
Let the extremal u-row be ·u

ext

, and its row structure be arbitrarily chosen from the set of
eligible u-row structures of threshold value t

uu

.

3. In each pair of u-hypercubes X
u

fi X c

u

u

, let all u-rows be isomorphic to the extremal
u-row ·u

ext

.

According to Proposition 3.22, the resulting graph based on X is an ASTG.

On a Boolean state space, Proposition 3.26 shows how to construct an ASTG using the 4

eligible u-row structures from Figure 3.16.
Proposition 3.26 An ASTG on a Boolean state space can be constructed by arbitrarily choosing
for each row a row structure from the set of eligible Boolean u-row structures (in total 4).

Proof. Let the Boolean state space be X
B

. All possible 4 Boolean row structures are shown in
Figure 3.16, denoted by {·u}1

elg

. If each row structure in X
B

is arbitrarily chosen from {·u}1

elg

,
then a complete graph based on X

B

is constructed. For each u œ V , let t
uv

= 1 for all v œ V .
Then each state defines a u-hypercube. According to Proposition 3.22, the constructed graph
based on X

B

is an ASTG.

As a special case of Proposition 3.25, Proposition 3.27 shows how to construct all ASTGs for
a given IG I . With the threshold values of I for each u œ V , the state space X can be partitioned
into a set of u-hypercubes. Here an ASTG for I means that there exists a model M = (I, K)

which can generate this ASTG, but does not have to satisfy any model conditions. Therefore,
the interactions of I may not be visible or observable in M . Moreover, if an interaction does not
exist in I , then the influence of this interaction is not present in the ASTG.
Proposition 3.27 Consider an IG I = (V, E, Á, Ë, max). For all v, u œ V , if (v, u) œ E, let
t
uv

:= Ë(v, u), otherwise let t
uv

:= 0. Thus a set of u-hypercubes H(u) is defined. All ASTGs
for I can be enumerated in the following way. For each u œ V , for each pair of u-hypercubes
Y

u

= X
u

fi X c

u

u

in H(u), choose arbitrarily one row structure from the set {·u}t

uu

elg

of eligible
u-row structures of threshold value t

uu

, and let all u-rows in Y
u

be isomorphic to the chosen
row structure.

Proof. We will first show that the construction given in the proposition leads to an ASTG T
which admits a model M = (I, K). Then we will show that all possible ASTGs for I can be
obtained in this way.

According to Proposition 3.22, each graph constructed according to the lemma is an ASTG T .
We have to show that there exists a model M = (I, K) for T . In each u-hypercube X

u

œ H(u),
we have for all states x, y œ X

u

that Res

u

(x) = Res

u

(y). For all u, v œ V , one of the following
two cases holds:

3.1 Characterising asynchronous state transition graphs 59

1. If (v, u) œ E, then t
uv

> 0 and Res

u

(X
u

) = Res

u

(X c

v

u

)�{v}. Let K(u, Res

u

(X
u

)

:= dest(u, X
u

) and K(u, Res

u

(X c

v

u

)) := dest(u, X c

v

u

). Since the u-row structure in
Y

u

and Y c

v

u

is arbitrarily chosen from {·u}t

uu

elg

, one of the following two cases holds.

- If for some pair of u-hypercubes X
u

and X c

v

u

, dest(u, X
u

) ”= dest(u, X c

v

u

), then
K(u, Res

u

(X
u

)) ”= K(u, Res

u

(X c

v

u

)). The interaction (v, u) exists in all models of
the ASTG, according to Lemma 3.16.

- If for all pair of u-hypercubes X
u

and X c

v

u

, dest(u, X
u

) = dest(u, X c

v

u

). Then, for
all such pairs of u-hypercubes, K(u, Res

u

(X
u

)) = K(u, Res

u

(X c

v

u

)). The interac-
tion (v, u) is not visible in all models of the ASTG, according to Lemma 3.16.

2. If (v, u) /œ E, then t
uv

= 0. For each u-hypercube X
u

œ H(u), X
v

= {0, . . . , max

v

}
and Xc

v

v

= ÿ. Therefore, v /œ Res

u

(X
u

). Let K(u, Res

u

(X
u

)) := dest(u, X
u

), for
each X

u

œ H(u).

- Let ˜t
uv

be an arbitrary value from {1, . . . , max

v

}, such that each u-hypercube X
u

is
divided into ˜X

u

with ˜X
v

= {0, . . . , ˜t
uv

≠ 1} and ˜X c

v

u

with ˜Xc

v

v

= {˜t
uv

, . . . , max

v

}.
The set of u-hypercubes H(u) becomes ˜H(u) with ˜t

uw

:=

˜t
uw

for all w ”= v œ V .

- dest(u, ˜X
u

) = dest(u, X
u

) = dest(u, ˜X c

v

u

). Therefore, the constructed ASTG still
satisfies the ASTG condition 3 on ˜H(u). The interaction (v, u) is not visible for any
model of the constructed ASTG, according to Lemma 3.16.

Similar to the proof of Theorem 3.10 where K is assigned the destination values from T , the
ASTG of M = (I, K) is T . Therefore, each graph constructed by the lemma is an ASTG for I .

Now assume that T is an arbitrary ASTG for I . Each u-row in T is a member of {·u}t

uu

elg

. If
the structure of a u-row is not contained in {·u}t

uu

elg

, then either it has a different threshold value
for (u, u), or it does not belong to any valid ASTG. Therefore, all possible ASTGs for I are
constructed by the proposition.

By Proposition 3.27, all ASTGs for a given IG can be constructed. However, some interac-
tions of the IG are not visible in any model of some of the constructed ASTGs. For this reason,
Remark 3.29 specifies how to construct all ASTGs for an IG, such that in all models of these
ASTGs, each interaction of the IG is visible. First we define a u-slice along v as a group of
parallel u-rows that differ only in their v values, see Figure 3.17 for two examples.
Definition 3.28 (u-slice along v) In a state space X , for u, v œ V , a u-slice along v is a set
{·u

0

, . . . , ·u

max

v

} of neighbouring u-rows in the direction of v, where for all xi œ ·u

j

, xi

k

are the
same for all i œ {0, . . . , max

u

} for all k ”= u ”= v œ V and xi

v

= j.

In Proposition 3.27, the set {·u}t

uu

elg

contains all u-rows of open type. Since extremal u-rows
can be arbitrarily chosen, interactions in I may not be visible in some of the ASTGs T for
I or, to be more precise, in their corresponding models. An interaction (u, u) in I becomes
invisible in an ASTG T for I if all u-rows in T are of open type. An interaction (v, u) in I
becomes invisible in T if the u-row structures in every u-slice along v are isomorphic. The
following Remark 3.29 explains how to construct all those ASTGs for a given IG I in which all
interactions of I are visible.
Remark 3.29 To construct with Proposition 3.27 all ASTGs T for an IG I = (V, E, Á, Ë, max)

such that in all models of T every interaction in I is visible, the following two constraints have
to be satisfied.

1. For all u œ V , if (u, u) œ E, then at least one extremal u-row is of pos or neg type for
threshold Ë(u, u).

60 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

000 001 002

100 101 102

200 201 202

010 011 012

110 111 112

210 211 212

020 021 022

120 121 122

220 221 222
300 301 302

310 311 312

320 321 322

x = (xv1 , xv2 , xv3)

v1
v2

v3

(a) An ASTG T .

000 001 002

100 101 102

200 201 202

010 011 012

110 111 112

210 211 212

020 021 022

120 121 122

220 221 222

300 301 302

310 311 312

320 321 322

v1
v2

v3
�, 1

+, 2

v1

v3

�, 1

v2
Incoming edges of v2

(b) v
2

-slices.

Figure 3.17: (a) ASTG T from Figure 3.8. (b) One v
2

-slice along v
1

, and one along v
3

. Each
parallelogram contains one v

2

-slice. At the top right is the incoming interactions of v
2

in the IG
for T .

2. For all v, u œ V , if (v, u) œ E, at least one pair of extremal u-rows in the same u-slice
along v have different structures.

By Lemma 3.15 and 3.16, Remark 3.29 guarantees that each interaction of I will be visible
in all models of the resulting ASTGs.

Based on Proposition 3.27, the following proposition shows how to enumerate all ASTGs on
a given state space X .
Proposition 3.30 All possible ASTGs on a state space X can be constructed by the following
two steps.

1. For each u œ V , enumerate all possible values for t(u) = (t
ui

)

iœV

with t
ui

œ {0, . . . ,
max

i

},

2. For each t = (t(u))

uœV

, construct all ASTGs, using Proposition 3.27.

Proof. By Step 1, all possible values for t(u) = (t
ui

)

iœV

with t
ui

œ {0, . . . , max

i

} for each
u œ V are enumerated. Therefore, all possible t = (t(u))

uœV

are obtained which specifies sets
of u-hypercubes H(u) for all u œ V .

Each t = (t(u))

uœV

can be transformed into an IG I by the following. For all v, u œ V , if
t
uv

> 0, then (v, u) œ E and let Ë(v, u) := t
uv

and Á(v, u) := +. If t
uv

= 0, then (v, u) /œ E.
This way, the information given by t = (t(u))

uœV

is the same as the information given by an
IG.

By step 2, for each t = (t(u))

uœV

, one can construct all possible ASTGs using Proposi-
tion 3.27. Therefore, all possible ASTGs on X are constructed.

While Proposition 3.30 allows enumerating all possible ASTGs in a state space X , not all of
these ASTGs will admit compatible models, as explained by Remark 3.31.

3.1 Characterising asynchronous state transition graphs 61

Remark 3.31 The ASTGs constructed in Proposition 3.30 do not always satisfy the ASTG
condition 4.

Proof. The ASTGs on a state space X in Proposition 3.30 are constructed from eligible u-row
structures of the same threshold value, for all u œ V and for all extremal u-rows in X . For
some of the constructed ASTGs and some u œ V , there will exist v-rows · v

1

and · v

2

and pairs
of extremal states x0, xmax

v in · v

1

, and y0, ymax

v in ·v

2

, such that dest(u, x0

) < dest(u, xmax

v

)

and dest(u, y0

) > dest(u, ymax

v

). According to Corollary 3.19, such an ASTG does not satisfy
the ASTG condition 4.

3.1.4 Asynchronous state transition graphs in low dimension

Based on the ASTG conditions and the construction rules, all possible ASTGs in both Boolean
and multi-valued state spaces can be enumerated. Early work on the enumeration of ASTGs
in low dimension can be found in [Glass, 1977]. Glass gives a combinatorial method for
classifying state transition diagrams in N -dimensional Boolean space based on symmetries.
He considers only state transition diagrams with exactly one directed edge between any two
states. The corresponding biological system has no self-regulation and does not need to satisfy
the Snoussi-condition. In our work, self-regulation of components is possible. In the following
examples, both cases with and without the Snoussi-condition are considered.

Using Proposition 3.26, all possible ASTGs in the three Boolean state spaces of 1-D, 2-D
and 3-D are enumerated and the four ASTG conditions are checked. Figure 3.18 shows the 1-D,
2-D and 3-D Boolean state spaces.

00

11

000

111
(a) 1-D (b) 2-D (c) 3-D

0 1

01

10

001

010

100 101

110

Figure 3.18: (a) A 1-D Boolean space. (b) A 2-D Boolean space. (c) A 3-D Boolean space.

Remark 3.32 Enumerating all ASTGs on a Boolean space X
B

in the following two ways leads
to the same set of all possible ASTGs.

1. Enumerate all possible ”(u, x), for all x œ X
B

and for all u œ V .

2. Enumerate all u-rows in X
B

for each component u œ V , chosen from all possible Boolean
u-rows.

There are in total 2

|V |2|V | ASTGs on X
B

and each ASTG satisfies the three ASTG conditions.

Boolean case, dimension 1: In a 1-D Boolean state space, X
B

= {0, 1}, how many ASTGs
do there exist? Do they all satisfy the four ASTG conditions?

A 1-D Boolean state space contains only one row. As shown in Figure 3.16, there are 4

possible Boolean u-rows in an ASTG which are the eligible row structures of threshold value 1.
Therefore, there are exactly 4 possible ASTGs on X

B

= {0, 1}. Each state in the Boolean state

62 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

space defines a hypercube. According to Proposition 3.26, the enumerated ASTGs satisfy all
four ASTG conditions.

Boolean case, dimension 2: In a 2-D Boolean state space, X
B

= {0, 1}2, how many ASTGs
do there exist? How many of them satisfy all four ASTG conditions?

A 2-D Boolean state space contains 2 rows in each dimension. As there are 4 possible
Boolean u-rows, one can have 4

4

= 256 graphs based on X
B

, resulting from a full combination
of the 4 u-rows. One can combine them freely, and this gives all possible graphs based on X

B

.

According to Proposition 3.26, ASTG condition 1, 2 are satisfied. ASTG condition 3 is
also satisfied on all these 256 graphs, where each state corresponds to a u-hypercube in each
dimension. Moreover, every graph has a corresponding model (can be inferred by Lorenz
algorithms). All 256 graphs based on X

B

are ASTGs.

However, only 196 ASTGs satisfy ASTG condition 4, having compatible models after using
the Generalised Algorithm: Observability-Snoussi-Model. In each direction, there are two
u-rows in X

B

. The two u-rows are from all combination of the 4 Boolean rows except two
rows of pos and neg types, thus 4

2 ≠ 2 = 14 different combinations. Therefore, in all there are
14

2

= 196 ASTGs in X
B

.

The other 256 ≠ 196 = 60 ASTGs have at least one violation of the Snoussi-condition,
where pos and neg types of u-rows coexist.

Boolean case, dimension 3: In a 3-D Boolean state space, X
B

= {0, 1}3, how many ASTGs
do there exist? How many of them satisfy all four ASTG conditions?

A 3-D Boolean state space contains 4 rows in each dimension. As there are 4 possible
Boolean u-rows, one can have 4

4◊3

= 2

24 ASTGs, resulting from a full combination of the 4

u-rows. According to Proposition 3.26, one can combine the 4 row structures freely to form all
possible graphs based on X

B

, which is the same as the set of graphs obtained by enumerating
”(u, x) for all 2

3 states in all 3 dimensions. ASTG condition 1, 2 and 3 are satisfied. Therefore,
there exist 2

24 ASTGs.

Like in the 2-D case, not all ASTGs satisfy ASTG condition 4. In the 2

24 graphs, if we look
only at the transitions in one dimension, there are 4

4 different combinations for the 4 rows.

The structure of the state transition in one dimension is isomorphic to the other dimensions.
Due to this isomorphism, instead of checking for all 2

24 graphs, ASTG condition 4 is checked
only in one of the three dimensions.

Among 4

4 different row structures in one single dimension, there are only 104 satisfying
ASTG condition 4. Since the compatibility model condition is based on the u-hypercubes for
each dimension u, this implies that there are 104

3 ASTGs satisfying the compatible model
condition.

The other 256 ≠ 104 = 152 cases all admit at least one violation of the Snoussi-condition,
which have both pos and neg types of u-rows. This number is also verified by the Generalised
Algorithm: Observability-Snoussi-Model.

The last example illustrates the ASTG construction in a non-Boolean state space based on
Proposition 3.25.

3.1 Characterising asynchronous state transition graphs 63

Multi-valued case, dimension 2: Given the state space, X = {0, 1} ◊ {0, 1, 2}, how many
possible ASTGs do there exist? How many of them satisfy all four ASTG conditions?

00

11

v

u

12

0201

10

Figure 3.19: The state space X = {0, 1} ◊ {0, 1, 2}.

Let v be the component with x
v

œ {0, 1}, and u the component with x
u

= {0, 1, 2}. Similar
to the Boolean case, all possible u-rows of length 3 are enumerated in Figure 3.20.

x

0
x

1
x

2

x

0
x

1
x

2

x

0
x

1
x

2neg type

pos type

t = 1

x

0
x

1
x

2

x

0
x

1
x

2

x

0
x

1
x

2

t = 2

x

0
x

1
x

2

x

0
x

1
x

2

x

0
x

1
x

2

open type

Figure 3.20: All possible u-rows of length 3, including pos and neg types of thresholds t = 1

and t = 2, and all the open types.

In X = {0, 1} ◊ {0, 1, 2}, there is one u-slice along v including two u-rows. All u-rows
are chosen from {·u}t

elg

, the set of eligible u-row structures of a threshold value t. According
to Proposition 3.27, all possible ASTGs on X can be enumerated. Both {·u}t=1

elg

and {·u}t=2

elg

contains 6 u-row structures including 3 u-rows of open type, 2 of pos type and 1 of neg type.
For the two u-rows in X in the u-slice along v, there are the following cases.

1. The two u-rows are chosen from {·u}t=1

elg

, there are 6

2 combinations.

2. The two u-rows are chosen from {·u}t=2

elg

, there are 6

2 combinations.

3. The case when the two u-rows are both of open type are included in both cases above,
which are 3

2 combinations.

Therefore, all together there are 6

2

+ 6

2 ≠ 3

2

= 63 different structures u-slices along v.

Since v is Boolean, the two extremal rows in the v-slice along u (including 3 v-rows) are
chosen from the 4 Boolean row structures, which gives 4

2 combinations. The v-row in the
middle is chosen to be isomorphic to one to the extremal rows, which gives 4

2 ◊ 2 combinations.
However, if two extremal v-rows have the same structure, then the middle v-row has only one
choice. Therefore, there are 4

2 ◊ 2 ≠ 4 = 28 possible structures for the three v-rows in the
v-slice along u.

Therefore, there exists 63 ◊ 28 = 1764 possible ASTGs on X . The result is verified by the
Generalised Algorithm Visibility-Model.

However, the compatible model condition does not allow the coexistence of the pos and
neg types of rows, or of different threshold values. For the two u-rows in the u-slice along v,
the following cases will violate the ASTG condition 4.

64 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

1. One u-row is of pos type, and the other is of neg type. There exist 4 u-row structures of
pos type, 2 of neg type. This gives 4 ◊ 2 ◊ 2 = 16 different cases.

2. Two u-rows are of pos type, but with different threshold values. This gives 2 ◊ 2 ◊ 2 = 8

cases.

3. Two u-rows are of neg type, but with different threshold values. There exist 2 cases.

4. Two u-rows (x0, x1, x2

) and (y0, y1, y2

), where sgn(dest(u, x0

) ≠ dest(u, y0

)) ”= 0 is
not the same as sgn(dest(u, x2

) ≠ dest(u, y2

)) ”= 0. According to Corollary 3.19, this
is a violation of ASTG condition 4. The following two pairs of u-rows are of this kind:
(·u

1

, ·u

0

) and (·u

2

, ·u

0

), where

- ·u

0

with ”(u, ·u

0

) = (1, 0, ≠1) and the destination values dest(u, ·u

0

) = (1, 1, 1),

- ·u

1

with ”(u, ·u

1

) = (0, ≠1, 0) and the destination values dest(u, ·u

1

) = (0, 0, 2),

- ·u

2

with ”(u, ·u

2

) = (0, 1, 0) and the destination values dest(u, ·u

2

) = (0, 2, 2).

Thus, for the u-slice along v, there exist 2 ◊ 2 cases containing a violation of ASTG
condition 4.

In total, there are 9

2 ≠ 16 ≠ 8 ≠ 2 ≠ 4 = 51 possible combinations for the u-slice along v in X .

Moreover, from the 2-D Boolean case 3.1.4, there exist 16 ≠ 2 = 14 different cases for the
two extremal v-rows. For the v-slice along u with 3 v-rows, the v-row in the middle can be
isomorphic to one of the extremal rows, which gives 14 ◊ 2 ≠ 4 = 24 structures. Here 4 denotes
the number of cases where the two extremal rows are isomorphic.

Altogether, there are 51 ◊ 24 = 1224 ASTGs satisfying all four ASTG conditions. The
result is verified by the Generalised Algorithm Observable-Snoussi-Model.

3.2 Generalising Lorenz algorithms with ASTG conditions

Based on the three necessary and sufficient ASTG conditions together with the compatible
model condition, Lorenz algorithms are generalised for processing general input, i.e., arbitrary
graphs based on a state space X . While the Lorenz algorithms as presented in Chapter 2 assume
the input to be an ASTG, the generalised versions include ASTG detection. The Matlab package
is available at https://github.com/riplotus/RE LorenzAlgorithms.

3.2.1 Generalised Lorenz algorithms

Generalised Algorithm Logical-Parameters The Generalised Algorithm Logical-Parameters
takes a graph based on the state space and a simple IG as input. For each resource of each
component, if the corresponding extremal row does not belong to the set of eligible u-row
structures, an error of invalid input will be returned.

If no error is detected, then the output is a logical parameter function such that the state
transition of each extremal state can be regenerated, which is the same as from the original
algorithm.

The following remark explains the cases when this algorithm will return errors.
Remark 3.33 A u-row does not belongs to a single row type if any of the following holds:

https://github.com/riplotus/RE_LorenzAlgorithms

3.2 Generalising Lorenz algorithms with ASTG conditions 65

1. There exist two positions i, j œ {1, . . . , max

u

}, i ”= j, such that ”(u, xi≠1

) = 1,
”(u, xi

) = ≠1 and ”(u, xj≠1

) = 1, ”(u, xj

) = ≠1.

2. There exist two positions i, j œ {1, . . . , max

u

}, i ”= j, such that ”(u, xi≠1

) Æ 0,
”(u, xi

) Ø 0 and ”(u, xj≠1

) Æ 0, ”(u, xj

) Ø 0, which means that there are more than
two states ”(u, ·) = 0.

From the simple IG, the predecessor set of each component and the set of resources of each
component are easy to find. Corresponding to each resource of each component, there is an
extremal state. A row that contains this state is an extremal row. If an extremal row of the
input graph visited during the algorithm does not belong to the set of eligible row structures
according to Remark 3.33, then an error of invalid input is returned. If no error is found, the
logical parameter function K is the output. The pseudocode is shown in Algorithm 3.1.

Algorithm 3.1: Generalised Algorithm Logical-Parameters
Input: A simple IG ˜I = (V, E, Á, max) and a graph based on X , G

X

= (X, S). /

*

S is

given by ”GX : V ◊ X æ {≠1, 0, +1}.
*

/

Output: A logical parameter function K, such that ˜I together with K can define the transitions of
all extremal states in T ; or an error is returned if any extremal row of G

X

is not from a
valid ASTG.

1 foreach u œ V do
2 if (u, u) /œ E then
3 foreach Ê ™ Pre(u) do
4 Construct an extremal state x œ X : Res

u

(x) = Ê;
5 (x0, . . . , xmaxu

) := ·u;
6 if ÷! a œ {0, . . . , max

u

} : ”GX (u, xa

) = 0 then
7 K(u, Ê) := a;

8 else /

*

·

u

does not belong to open-type

*

/

9 return Error. IG is not consistent with G
X

.

10 else
11 foreach Ê ™ Pre(u)\{u} do
12 Construct an extremal state x œ X : Res

u

(x) = Ê;
13 (x0, . . . , xmaxu

) := ·u;
14 if ÷! a < b œ {0, . . . , max

u

} : ”GX (u, xa

) = ”GX (u, xb

) = 0 then /

*

pos type

*

/

15 K(u, Res

u

(x0

)) := a;
16 K(u, Res

u

(xmaxu
)) := b;

17 else if ÷! a œ {0, . . . , max

u

} : ”GX (u, xa

) = 0 then /

*

open type

*

/

18 K(u, Res

u

(x0

)) := a;
19 K(u, Res

u

(xmaxu
)) := a;

20 else if ÷!t œ {1, . . . , max

u

}: ”GX (u, xt≠1

) = 1, ”GX (u, xt

) = ≠1 then
/

*

neg type

*

/

21 K(u, Res

u

(x0

)) := max

u

;
22 K(u, Res

u

(xmaxu
)) := 0;

23 else /

*

does not belong to a single row type

*

/

24 return Error. Invalid input G
X

.

25 return K

66 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

Generalised Algorithm Activity-Value The Generalised Algorithm Activity-Value keeps the
main procedure of the original algorithm and adds error detection to deal with more general
inputs. It takes (u, v), Ê, ”G

X

(v, ·) as input. However, the following two special cases and an
error case are considered.

1. Two special cases:

(a) For a self-loop (u, u) and a resource Ê of u, if the extremal u-row corresponding to
Ê belongs to the open type, then let Ë(u, u) := 0.

(b) For an interaction (v, u) and a resource Ê of u, find the u-slice along v via the
extremal state x with Res

u

(x) = Ê.

If all the u-row structures in the u-slice along v are isomorphic to each other, then
let Ë(u, v) := 0.

2. If more than one change occurs in the u-row structures in the u-slice along v, an error
will be returned.

The pseudocode is given in Algorithm 3.2.

Algorithm 3.2: Generalised Algorithm Activity-Value
Input: u, v œ V , Ê ™ V \{u}, ”GX (v, ·)
Output: Ë(u, v)

1 Construct an extremal state x œ X : Res

u

(x) = Ê;
2 ·v

:= (x0, . . . , xmaxu
); /

*

x œ ·

v

*

/

3 if u = v then
4 if ·v is of type pos then
5 ÷! i < max

u

: ”GX (v, xi

) Æ 0 · ”GX (v, xi+1

) Ø 0;
6 Ë(u, v) := i + 1;

7 else if is of type neg then
8 ÷! i < max

u

: ”GX (v, xi

) = 1 · ”GX (v, xi+1

) = ≠1;
9 Ë(u, v) := i + 1;

10 else /

*

is of type open

*

/

11 Ë(u, v) := 0 /

*

From Ê, (u, v) does not exist.

*

/

12 else /

*

u ”= v

*

/

13 x
u

:= 0;
14 ·v

:= (x0, . . . , xmaxv
) ; /

*

x

u

= 0, x œ ·

v

*

/

15 if ÷!l œ {1, . . . , max

u

} : ·v

x+(l≠1)eu
”≥
=

·v

x+leu
then

16 Ë(u, v) := l;

17 else if ’l œ {1, . . . , max

u

} : ·v ≥
=

·v

x+leu
then

18 Ë(u, v) := 0;

19 else /

*

> 1 row structure changes

*

/

20 return Error. Invalid input, graph allows influence from multiple edges.

21 return Ë(u, v)

Generalised Algorithm Visibility-Model This algorithm also keeps the main procedure of
the original algorithm, but includes error detection. It takes a graph based on X as input and
gives as output a visible model if the input is a valid ASTG. In the following cases, an error will
be returned.

3.2 Generalising Lorenz algorithms with ASTG conditions 67

1. Errors returned by calling Generalised Algorithm Logical-Parameters and Generalised
Algorithm Activity-Value.

2. If different threshold values are obtained for the same interaction.

3. If the ASTG of the output model is not isomorphic to the input graph.

The pseudocode is shown in Algorithm 3.3.

Algorithm 3.3: Generalised Algorithm Visibility-Model
Input: A graph G

X

= (X, S) based on X with the component set V and the maximal activity
levels max(·) ; /

*

S is given by ”GX : V ◊ X æ {≠1, 0, +1}.
*

/

Output: A model M = (I, K) with minimal number of edges, and ASTG(M)

≥
=

G
X

; errors
otherwise.

1 E := ? = ÿ;
2 ˆE := V ◊ V ;
3 Á̂ :© +;
4 ˆI := (V, ˆE, Á̂, max);
5 ˆK(·, ·) := Generalised-Logical-Parameters(

ˆI , T) ; /

*

if no errors are

found.

*

/

6 foreach (u, v) œ ˆE do
7 edge candidate := ÿ;
8 foreach Ê ™ V \{u} :

ˆK(v, Ê) ”= ˆK(v, Ê fi {u}) do
9 Ë(u, v) := Generalised-Activity-Value(u, v, Ê, ”GX (v, ·));

10 if ˆK(v, Ê) < ˆK(v, Ê fi {u}) then
11 edge candidate := edge candidate fi {(+, Ë(u, v))};

12 else /

*

K̂(v, Ê) > K̂(v, Ê fi {u})
*

/

13 edge candidate := edge candidate fi {(≠, Ë(u, v))};

14 if ÷ ! Ë(u, v) in edge candidate then
15 E := E fi {(u, v)};
16 (Á(u, v), Ë(u, v)) := one element of edge candidate ; /

*

pick an element

*

/

17 else if edge candidate has more than one threshold value then
18 return Error. Illegal input.

19 I := (V, E, Á, Ë, max);
20 foreach v œ V do
21 foreach Ê ™ Pre

I

(v) do
22 Î := {u œ Ê | Á(u, v) = +} fi {u œ Pre

I

(v)\Ê | Á(u, v) = ≠};
23 K(v, Ê) :=

ˆK(v, Î);

24 if ASTG(M)

≥
=

G
X

then /

*

Validation

*

/

25 return M = (I, K)

26 else
27 return Error. G

X

does not admit a model.

Generalised Algorithm Observability-Snoussi-Model The Generalised Algorithm Observability-
Snoussi-Model again keeps the main procedure of the original algorithm and includes error
detection. It takes a graph based on X as input and gives as output a compatible model, if the
input is a valid ASTG and satisfies the compatible model condition. In the following cases, the
algorithm returns an error.

68 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

1. Errors from using the Generalised Algorithm Logical-Parameters and Generalised Al-
gorithm Activity-Value.

2. If for one interaction, both signs and/or different threshold values are found, then an error
multiple edges will be returned.

3. If the ASTG of the resulting model is not isomorphic to the input graph.

The pseudocode is shown in Algorithm 3.4.

For an ASTG satisfying the four ASTG conditions, the logical parameter function of the
model obtained by the Generalised Algorithm Observability-Snoussi-Model may be different
from the one obtained by Generalised Algorithm Visibility-Model.

3.2.2 Examples for generalised Lorenz algorithms

Example 3.34 Figure 3.21 shows a graph based on X and the output model from Generalised
Algorithm Visibility-Model.

00 01 02

10 11 12

20 21 22

v

u

(a) G
X

u v

�, 1

�, 2

+/�, 2

+/�, 1

in the case "(u, u) = +, "(v, u) = �:

! K(u,!)

; 1
{v} 0
{u} 0
{u, v} 2

! K(v,!)

; 0
{v} 0
{u} 0
{u, v} 2

(b) A possible M = (I, K)

Figure 3.21: (a) A graph G
X

based on X . (b) One possible output model using generalised
Visibility-Model.

The extremal u-row (00, 10, 20) is of pos type, while the other extremal u-row (01, 12, 22)

is of neg type.

Using Generalised Algorithm Visibility-Model, the signs of the two interactions (u, u) and
(v, u) are not unique. After initialisation, the pseudo logical parameters ˆK(u, ·) are ˆK(u, ÿ) = 0,
ˆK(u, {v}) =

ˆK(u, {u}) = 2 and ˆK(u, {u, v}) = 1. For the two incoming interactions of u,
this gives the following.

1. Sign Á(u, u):

(a) ˆK(u, ÿ) = 0 < ˆK(u, {u}) = 2 infers Á(u, u) := +.

(b) ˆK(u, {v}) = 2 > ˆK(u, {u, v}) = 1 infers Á(u, u) := ≠.

2. Sign Á(v, u):

(a) ˆK(u, ÿ) = 0 < ˆK(u, {v}) = 2 infers Á(v, u) := +.

(b) ˆK(u, {u}) = 2 > ˆK(u, {u, v}) = 1 infers Á(v, u) := ≠.

However, when using the Generalised Algorithm Observability-Snoussi-Model, an error
of admitting multiple edges will be returned. This algorithm first checks the self-loop of a
component and then other incoming interactions. If the sign of an interaction is not unique, then

3.2 Generalising Lorenz algorithms with ASTG conditions 69

Algorithm 3.4: Generalised Algorithm Observability-Snoussi-Model
Input: A graph G

X

= (X, S) based on X with the component set V and the maximal activity
levels max(·) /

*

S is given by ”GX : V ◊ X æ {≠1, 0, +1}.
*

/

Output: A model M = (I, K) with ASTG(M)

≥
=

G
X

, which has minimal number of edges,
satisfying the observability condition and Snoussi-condition in every interaction;
otherwise, return error.

1 E := ?;
2 ˆE := V ◊ V ;
3 ˆI := (V, ˆE, Á̂ :© +, max);
4 ˆK(·, ·) := Generalised-Logical-Parameters(

ˆI , T) ; /

*

if no errors are

found.

*

/

5 foreach v œ V do
6 foreach Ê ™ V \{v} :

ˆK(v, Ê) ”= ˆK(v, Ê fi {v}) do
7 Ë(v, v) := Generalised-Activity-Value(v, v, Ê, ”GX (v, ·));
8 if ˆK(v, Ê) < ˆK(v, Ê fi {v}) then
9 edge candidate := edge candidate fi {(+, Ë(v, v))};

10 else /

*

K̂(v, Ê) > K̂(v, Ê fi {v})
*

/

11 edge candidate := edge candidate fi {(≠, Ë(v, v))};

12 if edge candidate has a unique element then
13 E := E fi {(v, v)};
14 (Á(v, v), Ë(v, v)) := edge candidate;
15 foreach Ê̂ ™ V do
16 if ˆK(v, Ê̂) does not lie on Ê̂-side from v then /

*

Á is in I, Ê̂ ™ Pre
Î

(v)
*

/

17 ˆK(v, Ê̂) :=

Y
___]

___[

Ë(v, v) ≠ 1 Á(v, v) = +, v œ Ê̂

Ë(v, v) Á(v, v) = +, v /œ Ê̂

0 Á(v, v) = ≠, v œ Ê̂

max

v

Á(v, v) = ≠, v /œ Ê̂

;

18 else if edge candidate has more than one element then
19 return Error. Invalid input, G

X

admits influences from multiple edges.

20 foreach u œ V \{v} do
21 foreach Ê ™ V \{u} :

ˆK(v, Ê) ”= ˆK(v, Ê fi {u}) do
22 Ë(u, v) := Generalised-Activity-Value(u, v, Ê, ”(v, ·));
23 if ˆK(v, Ê) < ˆK(v, Ê fi {u}) then
24 edge candidate := edge candidate fi {(+, Ë(u, v))};

25 else /

*

K̂(v, Ê) > K̂(v, Ê fi {u})
*

/

26 edge candidate := edge candidate fi {(≠, Ë(u, v))};

27 if edge candidate has only one element then
28 E := E fi {(u, v)};
29 (Á(u, v), Ë(u, v)) := edge candidate;

30 else if edge candidate has more than one element then
31 return Error. Invalid input, G

X

admits influences from multiple edges.

32 I := (V, E, Á, Ë, max);
33 foreach v œ V do
34 foreach Ê ™ Pre

I

(v) do
35 Î := {u œ Ê | Á(u, v) = +} fi {u œ Pre

I

(v)\Ê | Á(u, v) = ≠};
36 K(v, Ê) :=

ˆK(v, Î);

37 if ASTG(M)

≥
=

G
X

then /

*

Validation

*

/

38 return M = (I, K)

39 else
40 return Error. G

X

does not admit a model.

70 Chapter 3 Asynchronous state transition graphs and generalised Lorenz algorithms

the compatible model condition is violated. For this reason, the algorithm will stop after finding
the first error on (u, u).
Example 3.35 Figure 3.22 shows three graphs based on X which are not ASTGs. They
will be used as input for Generalised Algorithm Visibility-Model and Generalised Algorithm
Observability-Snoussi-Model. For each graph, the following errors will be detected by the
generalised Lorenz algorithms.

1. Graph G1

X

in Figure 3.22a: an error will be returned during the call of Generalised
Algorithm Activity-value when checking the value for Ë(v, u). The reason lies in the
u-slice along v, which contains three different u-rows.

2. Graph G2

X

in Figure 3.22b: an error will be returned during the call of Generalised
Algorithm Logical-Parameters when checking the row type of (00, 10, 20), which does
not belong to any single row type.

3. Graph G3

X

in Figure 3.22c: an error will be returned when checking the interaction (u, u)

in both Generalised Algorithm Visibility-Model and Generalised Algorithm Observability-
Snoussi-Model. All u-rows in G3

X

are of pos type, however with different threshold
values.

00 01 02

10 11 12

20 21 22

v

u

(a) G1

X

00 01 02

10 11 12

20 21 22

v

u

(b) G2

X

00 01 02

10 11 12

20 21 22

v

u

(c) G3

X

Figure 3.22: Three graphs based on X . (a) G1

X

, three different u-rows in the same u-slice
along v. (b) G2

X

, one u-row does not belong to any single row type. (c) G3

X

, u-rows of pos type
with different threshold values.

Chapter 4

Model analysis and discrete modelling workflows

Dynamic system behaviours can be modelled as attractors or specific pathways in the corres-
ponding ASTGs. In general, there may exist many regulatory structures generating a specific
dynamic behaviour. One focus of reverse engineering is to explore the structural requirements
necessary for obtaining a given dynamic behaviour. In this context, analysing regulatory struc-
tures and characterising them as a whole is of high interest. In what follows, a regulatory
structure generating a desired dynamic behaviour will be called a functional GRN.

Robustness is a classic measure to describe the ability of an individual structure to maintain
its functionality under perturbations. In the context of discrete modelling, Section 4.1 introduces
the notion of realizability in order to measure the ability of an IG or all functional IGs to generate
a given dynamic property depending on the logical parameter functions.

A set of GRNs can be analysed by detecting motifs in the IGs or other regulatory patterns.
If functionality of a GRN is specified by a Boolean function on the set of all possible GRNs
for a given set of nodes, functional GRNs can be characterised by logical expressions. The
thesis by [Palinkas, 2015] showed a way of encoding multi-valued logical networks by Boolean
expressions and minimising the logical functions to get a minimal representation. Here in
Section 4.2, a logical analysis method is proposed to obtain a compact or minimal description
of a set of models and to detect interesting patterns in it via Quine-McCluskey algorithm. IGs
are transformed into Boolean expressions using a suitable encoding. The same logical method
may also be applied to a set of logical parameter functions.

Two discrete modelling workflows are proposed in Section 4.3, which allow searching for all
functional models and analysing them. Starting from some attractors representing a biological
function of interest, the forward modelling workflow enumerates all possible models in the
discrete modelling framework. In contrast, the reverse engineering workflow first constructs all
possible graphs on the presumed state space that exhibit the desired property. Then it makes use
of the generalised Lorenz algorithms from Chapter 3 to infer the functional models.

4.1 Realizability

Various concepts of robustness have been proposed in the literature to study complex networks
and biological systems. [Kitano, 2004] defines robustness as the ability of a system to maintain
its function under perturbations. [Perkins et al., 2010] propose a hybrid system approach to
relate the logical structure of genetic networks to robust dynamics, trying to understand the

71

72 Chapter 4 Model analysis and discrete modelling workflows

essentials of robustness. Based on Kitano’s definition, [Wagner, 2013] extends to notion of
robustness to the genetic, protein and organism levels of living systems.

[Breindl et al., 2010] use a robustness measure to obtain all GRNs generating certain multista-
bilities. The GRNs are modelled by qualitative differential equations, the robustness measure
is calculated from the global minimum of all perturbations to the regulatory functions. After
discretizing the continuous concentrations to Boolean or multi-valued ranges, the state space
becomes a Cartesian product of intervals, so-called hyperrectangles. For small perturbations
within those ranges the continuous system will stay in the same orthant, without explicit changes
in the discrete states.

The regulatory structures in our discrete modelling framework are IGs, and the dynamic
behaviours of the system can be modelled by one or more attractors in the corresponding ASTGs.
An IG I can have many compatible logical parameter functions and hence different attractors
can be generated by these models with I . If one of those attractors related with I is exactly the
desired system’s behaviours A, this IG I and the related models are called functional for some
desired properties A.
Definition 4.1 (Functional model for a property A) Consider a model M = (I, K) with an IG
I and a compatible logical parameter function K. If the ASTG of M contains some desired
properties A, then M is called functional for A. Moreover, I is a functional IG for A. Together
with I , also K can be called functional for A.

A compatibility model can guarantee that all interactions are observable and agreed by the
logical parameters. To characterise the ability of an IG on realising the desired properties A,
realizability is defined in Definition 4.2.
Definition 4.2 (Realizability of an IG I functional for some desired properties A) For some
desired properties A, the realizability of an IG I is defined as the ratio of its functional logical
parameter functions among all compatible K’s in the parameter space.

RA

I

=

|{functional K
I

}|
|{compatible K

I

}| (4.1)

Here |S| means the cardinality of the set S. This definition gives a way to quantify the ability
of a topology to realise the desired attractors.

For simplicity, in this section, a logical parameter function K is called a parameter. The
functional parameters of I for A is a subset of its compatible parameters. The compatible
parameters of I is a subset in its parameter space. The parameter space of an IG I depends the
maximal activity value and the size of the predecessor set of each node. For a Boolean IG, the
size of the parameter space is �

vœV

2

2

|Pre(v)| . In a compatible model, the parameters of every
component are highly related with the predecessor set. For all compatible parameters of an IG,
the parameters of each component need to be compatible with all incoming interactions of the
component.

In a functional model for some desired properties, the parameters for each component are a
subset of the compatible ones. Due to this reason, the realizability of an IG I for some desired
properties can be decomposed into individual components.
Definition 4.3 (Realizability of a component of an IG I functional for some desired properties
A) Consider an IG I functional for some desired properties A. The realizability of a component
in I for A is defined as the ratio of the number of the functional logical parameters on this

4.2 Logical analysis method 73

component from all compatible ones, termed as RA

I,v

.

RA

I,v

=

|{functional K
I

(v, ·)}|
|{compatible K

I

(v, ·)}| (4.2)

Here, K
I

(v, ·) denotes the logical parameters for component v in IG I and contains
K

I

(v, Res) for all resources Res ™ Pre(v). The relation between RA

I

RA

I,v

is shown by
Equation 4.3.

RA

I

= �

vœV

RA

I,v

. (4.3)

The capacity measure of A describes the possibility of A to be realised by all functional IGs.
Definition 4.4 (Capacity measure) Known all functional IGs I for a desired property A, the
capacity measure of A is defined as the ratio of the number of functional Ks for all IGs in I out
of the number of all compatible Ks for all IGs in I.

CA

=

q
IœI |{functional K

I

}|
q

IœI |{compatible K
I

}| =

|{functional models}|
|{compatible models}| (4.4)

q
IœI |{functional K

I

}| is the same as the number of all possible functional models for A,q
IœI |{compatible K

I

}| is the same as the number of all compatible models that contain this
set of IGs. CA is mainly used when there exists multiple desired properties.

4.2 Logical analysis method

A logical analysis method is proposed to get a compact description of a set of functional models
for a property A, in order to uncover interesting structural patterns. Moreover, this compact
description contains all structural information for the system to have the desired property A.

The property A of the system is given by a Boolean function f such that the value of f
for all functional IGs resp. functional parameters is TRUE. Each functional IG or parameter
will be described by a minterm of f . The compact description will be the shortest or minimal
DNF or CNF representation of f . Getting a shortest DNF (or CNF) representation of the
Boolean function f is a logic minimisation problem. A classical way of solving the logic
minimisation problem is the Quine-McCluskey algorithm, see Section 1. Theorem 3.14 in
[Crama and Hammer, 2011] shows that the logic minimisation problem is NP-hard when its
input is a Boolean function given by the set of its true points. The task of getting a “minimal”
description of all functional IGs for A is exactly this NP-hard problem.

4.2.1 Logical analysis on IGs

Firstly, to analyse all functional IGs using the logical analysis method, each IG will be trans-
formed into a Boolean expression. For any pair of components in the IG, there can be a positive,
a negative interaction or no interaction at all. Therefore, IGs are represented by Boolean
variables for the interactions.

74 Chapter 4 Model analysis and discrete modelling workflows

Encoding IGs with Boolean variables Consider an IG I = (V, E, Á, Ë, max), where V =

{v
1

, v
2

, . . . , v
N

}. Every interaction (v, u), for all v, u œ V is labelled with a sign Á(v, u) œ
{+, ≠} and a threshold Ë(v, u) œ {1, . . . , max

v

}.

Suppose first that max

i

= 1 for all i œ V , i.e., I is a Boolean network. All thresholds are by
default 1. From v to u, there can be a positive or a negative edge, or no edge at all. Two Boolean
variables are used to denote the positive and negative edges:

- positive edge (v, u): x+

uv

= 1 denotes the existence of a positive edge (u, v) and x+

uv

= 0

denotes the non-existence of it.

- negative edge (v, u): x≠
uv

= 1 denotes the existence of a negative edge (u, v) and x≠
uv

= 0

denotes the non-existence of it.

And in an IG, from v to u, there can be the following three cases:

1. Á(v, u) = +, then x+

uv

= 1 and x≠
uv

= 0, which is x+

uv

x≠
uv

.

2. Á(v, u) = ≠, then x+

uv

= 0 and x≠
uv

= 1, which is x+

uv

x≠
uv

.

3. (v, u) /œ E, then x+

uv

= 0 and x≠
uv

= 0, which is x+

uv

x≠
uv

.

Therefore, for each possible edge (u, v) with u, v œ V , 2 Boolean variables are needed.
A Boolean IG of N nodes can have N2 possible edges. Therefore, 2N2 Boolean variables
are needed to describe a Boolean IG of N nodes. This IG can be encoded by the product or
conjunction of these 2N2 variables.

If an IG I is multi-valued, an interaction can have different thresholds. Similarly, two
variables are used for each possible interaction. For example, let (v, u) œ E and max

v

= 2.
Then the interaction (v, u) can be + or ≠ and the threshold can be 1 or 2. Thus, 4 Boolean
variables are needed to describe (v, u): x+1

uv

, x≠1

uv

, x+2

uv

and x≠2

uv

.

In general, there are the following possibilities for an edge from v to u: an interaction (v, u)

with Ë(v, u) = a œ {1, . . . , max

v

}, or no edge. Then there are the following three cases:

1. Á(v, u) = +, then x+a

uv

= 1 and x≠a

uv

= 0. (v, u) is described by: x+a

uv

x≠a

uv

· Â, where

Â =

i”=a

�

1ÆiÆmax

v

x+i

uv

x≠i

uv

.

2. Á(v, u) = ≠, then x+a

uv

= 0 and x≠a

uv

= 1. (v, u) is described by: x+a

vu

x≠a

uv

· Â, where

Â =

i”=a

�

1ÆiÆmax

v

x+i

uv

x≠i

uv

.

3. no edge from v to u, then x+i

uv

= 0 and x≠i

uv

= 0, for i œ {1, . . . , max

v

}. (v, u) is
described by: �

1ÆiÆmax

v

x+i

uv

x≠i

uv

.

To encode a multi-valued IG,
Nq

i=1

(2max

i

N2

) Boolean variables are needed. However, no

multiple edges are allowed in these IGs. Therefore, it is transformed into a constraint on the
related Boolean variables.
Constraint 4.5 For an IG I without any multiple edges, for the possible interaction from v to u
with v, u œ V , there are the following constraints:

1. if (v, u) œ E with with Ë(v, u) = a, then one of the Boolean variables x+a

uv

and x≠a

uv

is
true (1), i.e., x+a

uv

ü x≠a

uv

= 1. Here ü means exclusive disjunction.

4.2 Logical analysis method 75

2. if (v, u) œ E with with Ë(v, u) = a, then for all i ”= a œ {1, . . . , max

v

}, x+i

uv

and x≠i

uv

are both false (or 0).

3. if (v, u) /œ E, then for all i ”= a œ {1, . . . , max

v

}, x+i

uv

and x≠i

uv

are false (or 0).

Using Constraint 4.5, the encoding of an interaction can be simplified, which will be called
partial encoding.

If v is Boolean, then for the three cases Á(v, u) = +, Á(v, u) = ≠ and (v, u) /œ E, the full
and partial encodings are the following:

cases x+a

uv

x≠
uv

constraint full encoding partial encoding

Á(v, u) = + 1 0 x+

uv

ü x≠
uv

= 1 x+

uv

x≠
uv

x+

uv

Á(v, u) = ≠ 0 1 x+

uv

ü x≠
uv

= 1 x+

uv

x≠
uv

x≠
uv

(v, u) /œ E 0 0 x+

uv

x≠
uv

x+

uv

x≠
uv

If v is not Boolean, then for the cases Á(v, u) = + and ≠, let Ë(v, u) := a, and the case
(v, u) /œ E, the full and partial encodings are the following:

cases x+a

uv

x≠a

uv

constraint full encoding partial encoding

Á(v, u) = + 1 0 x+a

uv

ü x≠a

uv

= 1 x+a

uv

x≠a

uv

·
i”=a

�

1ÆiÆmax

v

x+i

uv

x≠i

uv

x+a

uv

Á(v, u) = ≠ 0 1 x+a

uv

ü x≠a

uv

= 1 x+a

uv

x≠a

uv

·
i”=a

�

1ÆiÆmax

v

x+i

uv

x≠i

uv

x≠a

uv

(v, u) /œ E 0 0

max

v

�

i=1

x+i

uv

x≠i

uv

max

v

�

i=1

x+i

uv

x≠i

uv

Under the Constraint 4.5, the full encoding of an interaction (v, u) in I can be simplified
into the partial encoding.
Example 4.6 As an example, Figure 4.1 shows a Boolean network of two components, being
transformed into Boolean variables using full and partial encodings. Let V = {v

1

, v
2

}, then
2 ◊ 2

2

= 8 variables are needed. To simplify notation, nodes are denoted by numbers in the
Boolean variables. For example, (v

2

, v
1

) is denoted by x+

12

and x≠
12

.

76 Chapter 4 Model analysis and discrete modelling workflows

v1 v2
x

+
21x

�
21

x

+
21x

�
21

x

+
12x

�
12

x

+
12x

�
12

x

+
11x

�
11

x

+
11x

�
11

x

+
22x

�
22

x

+
22x

�
22

x

+
21 x

�
21

x

+
22 x

�
22

x

+
12 x

�
12

x

+
11 x

�
11

Full encoding of an IG is:

e11 2 {x+
11x

�
11, x

+
11x

�
11, x

+
11 x

�
11}

e21 2 {x+
21x

�
21, x

+
21x

�
21, x

+
21 x

�
21}

e12 2 {x+
12x

�
12, x

+
12x

�
12, x

+
12 x

�
12}

e22 2 {x+
22x

�
22, x

+
22x

�
22, x

+
22 x

�
22}

e11 · e21 · e12 · e22, where

(a)

v1 v2
x

+
21

x

�
21

x

+
12

x

�
12

x

+
11

x

�
11

x

+
22

x

�
22

x

+
21 x

�
21

x

+
22 x

�
22

x

+
12 x

�
12

x

+
11 x

�
11

Partial encoding of an IG is:

e11 2 {x+
11, x

�
11, x

+
11 x

�
11}

e21 2 {x+
21, x

�
21, x

+
21 x

�
21}

e12 2 {x+
12, x

�
12, x

+
12 x

�
12}

e22 2 {x+
22, x

�
22, x

+
22 x

�
22}

e11 · e21 · e12 · e22, where

(b)

Figure 4.1: Encoding of IGs of two components. (a) Full encoding. (b) Partial encoding. Arcs
without directions denote “no interaction”, arrows denote “activation” and blunt arcs denote
“inhibition”. e

ij

denotes the Boolean expression for an edge (j, i).

Minimal representation: logic patterns Obtaining a minimal representation of the Boolean
expressions of all functional IGs for a given property A is a logic minimisation problem. The
Quine-McCluskey algorithm can be applied to obtain a minimal disjunctive normal form (DNF).
The software PyBoolNet [Klarner et al., 2016] is used to calculate the minimal DNF.

The minimal DNF covers every true point, which are exactly the Boolean expressions of
all functional IGs for A. The clauses in the minimal DNF are translated back to interactions
between components, which are called logical IG patterns. These logical IG patterns provide a
full description of all the functional IGs for A.

Example 4.7 will illustrate the logical analysis method on a set of Boolean IGs.
Example 4.7 Assume that for a desired property A, there are the 4 functional IGs in Figure 4.2a.
These 4 functional IGs are transformed into Boolean expressions. 8 Boolean variables are
needed. We have V := {v

1

, v
2

} and x+

11

resp. x≠
11

represents Á(v
1

, v
1

) = + and ≠, respectively.
Similarly, x+

21

and x≠
21

represents Á(v
1

, v
2

) = + and ≠, etc. see Figure 4.2a.

Given as input the sum of the four Boolean expressions, PyBoolNet is applied to obtain the
minimal DNF where the core function is the Quine-McCluskey algorithm. The details of using
PyBoolNet to get the minimal DNF is omitted here. Figure 4.2b shows the results.

4.2 Logical analysis method 77

I1

I2

I3

I4

v1 v2 x

+
11x

�
11 x

+
12x

�
12x

+
21x

�
21x

+
22x

�
22

x

+
11 x

�
11 x

+
12x

�
12x

+
21x

�
21x

+
22x

�
22

x

+
11x

�
11 x

+
12x

�
12x

+
21x

�
21 x

+
22 x

�
22

x

+
11 x

�
11 x

+
12x

�
12x

+
21x

�
21 x

+
22 x

�
22

x

+
11x

�
12x

+
21x

+
22

x

+
11 x

�
11x

�
12x

+
21x

+
22

x

+
11x

�
12x

+
21x

+
22 x

�
22

x

+
11 x

�
11x

�
12x

+
21x

+
22 x

�
22

Full encoding

Partial encoding

v1 v2

v1 v2

v1 v2

(a)
Minimal DNF

x

�
11 x

+
12x

�
12x

+
21x

�
21 x

�
22 x

�
11x

+
21x

�
12x

�
22

from full encoding

from partial encoding

v1 v2

(b)

Figure 4.2: (a) 4 functional IGs for some property A, the Boolean expressions in full and partial
encodings. (b) The minimal DNF from both full and partial encoding. There is only one clause
in the minimal DNF, which is translated back into a graphical logical IG pattern. Arrows denote
“activation”, blunt arcs “inhibition”. The dashed arrows denote “no inhibition”, which is either
an activation or no influence. —

4.2.2 Logical analysis on parameters

Given a set of functional parameters for a desired property A, the logical analysis method can be
applied to obtain a compact description and to discover potential logical parameter patterns. It
should be noted that logic minimisation in the logical analysis method is based on a a two-valued
logic, while the logical parameters can be Boolean or multi-valued depending on the discrete
variables that are used.

Give one IG functional for property A, it is interesting to find out which rules / parameters
can enable it to be functional.

The compatible parameters of an IG reflect the correctness of the signs and monotonicity of
the regulations. Given a compatible model of an IG and a parameter function K, changing the
sign of an interaction does not change the compatibility of the parameter with the new IG. From
only a compatible parameters of the IG, the signs of the interactions are not certain.

There are two sets of parameters of high interest.

1. The set of all functional parameters for one functional IG for A.

2. The set of all functional parameters for all functional IGs for A.

For simplicity, we discuss only Boolean parameters. A component u œ V has at most 2

|Pre

u

|

resources. For each resource Ê ™ Pre(u), K(u, Ê) œ {0, 1} because u is Boolean. Intuitively,
one Boolean variable x

Ê

œ {0, 1} is used to represent K(u, Ê). Therefore, to encode the
parameters of u, 2

|Pre

u

| Boolean variables are needed. The conjunction of all 2

|Pre

u

| Boolean
variables can represent the parameters of u for all resources. Each K(u, Ê) is represented by
one Boolean variable. To encode a complete K (for Boolean IGs), at most N2

N variables are
needed.

Due to the high complexity of the logic minimisation problem, a large number of Boolean
variables may render impossible the practical solution. However, the logical parameters for

78 Chapter 4 Model analysis and discrete modelling workflows

a component are independent from those of another component. Given a set of parameters
{K1, . . . , Km}, one can encode the parameters for each component independently, and the
number of Boolean variables can be considerably reduced.

Once the target set of parameters has been encoded into Boolean expressions, PyBoolNet
can be applied on the conjunction of these expressions to obtain the minimal DNF. The resulting
minimal DNF can be understood as the basic regulatory rule of u.

Example 4.8 will illustrate the logical analysis on functional parameters of an IG.
Example 4.8 Consider a functional IG of 4 components {a, b, c, d} for a desired property A
which has 14 functional parameters. Let K

u

denote the logical parameters K(u, ·). Among
those 14 parameters, K

a

and K
b

are identical, while K
c

and K
d

are different from each other.
From the IG, Pre(c) = {a, b, d} and Pre(d) = {c, d}. Thus c has 8 resources and d has 4. K

c

and K
d

are analysed together. Let K
c,d

represent K
c

and K
d

, as shown in Table 4.1, for all 14

cases.

The process of translating all K
c,d

’s into Boolean expressions is not included in the table. Let
the Boolean variables x

1

, . . . , x
8

, x
9

, . . . , x
12

represent the 8 resources of c and 4 of d. For ex-
ample, K1

c,d

can be translated into the Boolean expression: x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

.
The minimal DNF obtained from the sum of 14 products by PyBoolNet contains 12 clauses,
so-called Kp

c,d

patterns. They are listed in the lower part of Table 4.1.

The minimal DNF has 12 clauses, which is only slightly less than the 14 at the beginning.
10 patterns Kp have only one position for a choice between {0, 1}. This is not the most efficient
way of encoding the parameters. There are better ways of combining the K

c,d

’s to get a shorter
representation, as illustrated next. Developing a general method for applying logical analysis to
logical parameter functions is a topic for further research.

variable K
c

(ÿ) K
c

({d}) K
c

({b}) K
c

({b, d})

x
1

0 0 0 0

x
2

0 0 0 1

x
3

0 1 1 1

x
4

0 1 0 1

x
5

0 0 1 1

(a) Encoding K
c≠1

variable K
c

({a}) K
c

({a, d}) K
c

({a, b}) K
c

({a, b, d})

y
1

0 0 0 1

y
2

1 1 1 1

y
3

0 1 1 1

y
4

0 0 1 1

y
5

0 1 0 1

(b) Encoding K
c≠2

variable K
d

(ÿ) K
d

({d}) K
d

({c}) K
d

({c, d})

z
1

0 0 0 1

z
2

0 1 1 1

(c) Encoding K
d

Figure 4.3: (a) 5 variables encode the 1st part of 4 resources of K
c

. (b) 5 variables encode the
2nd part of 4 resources of K

c

. (c) 2 variables encode the 4 resources of K
d

.

In Table 4.1, there are many repetitions of K(c, Ê) for the first 4 resources ÿ, {c}, {b}, {b, c}.

4.2
Logicalanalysis

m
ethod

79

K
c,d

(Res) K
c

≠ ÿ {d} {b} {b, d} {a} {a, d} {a, b} {a, b, d} K
d

≠ ÿ {d} {c} {c, d} function
K1

c,d

0 0 0 0 0 0 0 1 0 1 1 1 1

K2

c,d

0 0 0 0 0 1 1 1 0 1 1 1 1

K3

c,d

0 0 0 1 0 0 1 1 0 0 0 1 1

K4

c,d

0 0 0 1 0 0 1 1 0 1 1 1 1

K5

c,d

0 0 0 1 0 1 0 1 0 0 0 1 1

K6

c,d

0 0 0 1 0 1 0 1 0 1 1 1 1

K7

c,d

0 0 0 1 0 1 1 1 0 0 0 1 1

K8

c,d

0 0 0 1 0 1 1 1 0 1 1 1 1

K9

c,d

0 0 0 1 1 1 1 1 0 0 0 1 1

K10

c,d

0 1 1 1 1 1 1 1 0 0 0 1 1

K11

c,d

0 0 1 1 0 1 1 1 0 0 0 1 1

K12

c,d

0 0 1 1 0 1 1 1 0 1 1 1 1

K13

c,d

0 1 0 1 0 1 1 1 0 0 0 1 1

K14

c,d

0 1 0 1 0 1 1 1 0 1 1 1 1

Kp1
c,d

0 0 0 0 0 0 0 1 0 1 1 1 (K1

)

Kp2
c,d

0 1 1 1 1 1 1 1 0 0 0 1 (K10

)

Kp3
c,d

0 0 0 1 0 ≠ 1 1 0 0 0 1 (K3

+ K7

)

Kp4
c,d

0 0 0 1 0 ≠ 1 1 0 1 1 1 (K4

+ K8

)

Kp5
c,d

0 0 0 1 0 1 ≠ 1 0 0 0 1 (K5

+ K7

)

Kp6
c,d

0 0 0 1 0 1 ≠ 1 0 1 1 1 (K6

+ K7

)

Kp7
0 ≠ 0 1 0 1 1 1 0 0 0 1 (K7

+ K13

)

Kp8
c,d

0 0 ≠ 1 0 1 1 1 0 0 0 1 (K7

+ K11

)

Kp9
c,d

0 0 0 1 ≠ 1 1 1 0 0 0 1 (K7

+ K9

)

Kp10
c,d

0 ≠ 0 1 0 1 1 1 0 1 1 1 (K8

+ K14

)

Kp11
c,d

0 0 ≠ 1 0 1 1 1 0 1 1 1 (K8

+ K12

)

Kp12
c,d

0 0 0 ≠ 0 1 1 1 0 1 1 1 (K2

+ K8

)

Table
4.1:

1
4

K
c
,
d s

and
1
2

K
p

c
,
d

patterns.’≠
’m

eans
itcan

be
either

1
or

0.

80 Chapter 4 Model analysis and discrete modelling workflows

K
c,d

(Res) K
c

≠ 1 K
c

≠ 2 K
d

f
K1

c,d

x
1

y
1

z
2

1

K2

c,d

x
1

y
3

z
2

1

K3

c,d

x
2

y
4

z
1

1

K4

c,d

x
2

y
4

z
2

1

K5

c,d

x
2

y
5

z
1

1

K6

c,d

x
2

y
5

z
2

1

K7

c,d

x
2

y
3

z
1

1

K8

c,d

x
2

y
3

z
2

1

K9

c,d

x
1

y
1

z
1

1

K10

c,d

x
3

y
1

z
1

1

K11

c,d

x
5

y
3

z
1

1

K12

c,d

x
5

y
3

z
2

1

K13

c,d

x
4

y
3

z
1

1

K14

c,d

x
4

y
3

z
2

1

(a) 14 K
c,d

’s.

K
c,d

(Res) K
c

≠ 1 K
c

≠ 2 K
d

K1+2 x
1

(y
1

|y
3

) z
2

Ô
K3+4 x

2

y
4

(z
1

|z
2

) æ
K5+6 x

2

y
5

(z
1

|z
2

) æ
K7+8 x

2

y
3

(z
1

|z
2

) æ
K9+10

(x
1

|x
3

) y
2

z
1

Ô
K11+12 x

5

y
3

(z
1

|z
2

) æ
K13+14 x

4

y
3

(z
1

|z
2

) æ
(b) First order combine.

K
c,d

(Res) K
c

≠ 1 K
c

≠ 2 K
d

K3+4+5+6 x
2

(y
4

|y
5

) (z
1

|z
2

) æ
K5+6+7+8 x

2

(y
3

|y
5

) (z
1

|z
2

) æ
K3+4+7+8 x

2

(y
4

|y
3

) (z
1

|z
2

) æ
K11≥14

(x
5

|x
4

) y
3

(z
1

|z
2

)

Ô

(c) Second order combine.

K
c,d

(Res) K
c

≠ 1 K
c

≠ 2 K
d

K3≥8 x
2

(y
3

|y
4

|y
5

) (z
1

|z
2

)

Ô

(d) Third order combine.

Figure 4.4: (a) 14 K
c,d

’s encoded by 12 Boolean variables. (b) The 1st order combine from (a).
(c) The 2nd order combine from (b). (d) The 3rd order combine from (c).

Similar repetitions can be found in the other resources of K
c

and K
d

. Another way of
encoding these parameters is introduced where a Boolean variable is used to encode a group
of logical parameters, as shown in Figure 4.3. Each K

c,d

can be represented by much less
Boolean variables than the number of resources, see in Figure 4.4a. For example, the Boolean
representation of K1

c,d

is x
1

y
1

z
2

. A compact representation is obtained using Quine-McKluskey
algorithm. The process is shown in Figure 4.4.

A compact representation of f is below, with + denoting “disjunction” / “or”.

f = x
1

(y
1

+ y
3

)z
2

+ (x
1

+ x
3

)y
2

z
1

+ x
2

(y
3

+ y
4

+ y
5

)(z
1

+ z
2

) + (x
5

+ x
4

)y
3

(z
1

+ z
2

).

—

4.3 Discrete modelling workflows

Consider a set V of N genes which are related to some desired property of the system. Given
the maximal activity levels max = (max

i

)|
iœV

, the state space X = �

iœV

{0, . . . , max

i

} can
be determined. Assume that the desired property of the system can be modelled by a set of
attractors A in the ASTG. Then the set of all ASTGs on X that contain A represents all the
possible dynamics of the system that exhibit the desired property. To explore the relations
between regulatory structures and the desired property, two discrete modelling workflows are
proposed: “Forward modelling” and “Reverse engineering”, see the flowchart in Figure 4.5.

Both workflows start from V , max and A to determine the functional models for A. Then

4.3 Discrete modelling workflows 81

START

V , max, A.

Enum all models

on V and max.

Forward modelling:

Functional models M
whose ASTGs

carry attractor(s) A.

END

IG and K patterns

related with A.

Analysis of the functional models Mfw
f .

(a)

START

V , max, A.

END

IG and K patterns

related with A.

Reverse engineering:

inferred from

all ASTGs in GX .

Functional models M

Enum all graphs

based on X, GX

with attractor(s) A.

Analysis of the functional models Mre
f .

(b)

Figure 4.5: Discrete modelling workflows. (a) Forward modelling workflow. (b) Reverse
engineering workflow.

these models are analysed by computing the realizability measure and by applying the logical
analysis method to uncover interesting logical patterns related to the desired property.

The difference of these two workflows lies in how they find all functional models for A.

1. The “forward modelling” workflow first enumerates all compatible models based on V
and max and then checks whether their ASTGs carry A. Getting the ASTGs from the
models follows the standard discrete modelling approach, from the model to its ASTG.
Thus, this workflow is called “forward modelling”. For example, both [Cotterell and
Sharpe, 2010] and [Breindl et al., 2011] used ”forward” modelling within a continuous
framework.

2. The “reverse engineering” workflow first enumerates all ASTG’s based on the state
space X and then uses the generalised Lorenz Algorithms to obtain all functional models.
Constructing the model from the ASTG corresponds to a reverse engineering. Therefore,
this workflow is named “reverse engineering”.

4.3.1 Forward modelling workflow

Given the set of genes V and their maximal activity levels max = (max

i

)|
iœV

, |V | = N , the
process of “enumerate all models on V and max” is the following.

82 Chapter 4 Model analysis and discrete modelling workflows

1. Enumerate the set I of all IGs. A component u can activate or inhibit another component
v at a threshold value {1, . . . , max

u

}, or has no influence on v. This leads to (2max

u

+1)

possibilities. Therefore, there are in total �

uœV

(2max

u

+ 1)

N IGs in I.

2. Enumerate all compatible parameters KI

cmpt

for all IG I œ I. For each I œ I,

(a) each gene u œ V has 2

|Pre(u)| resources. For all Ê ™ Pre(u), K(u, Ê) œ
{0, . . . , max

u

}. Thus, there are (max

u

+ 1)

2

|Pre(u)| possible parameters for K(u, ·).

(b) all K(u, ·) are checked whether they are compatible with the incoming interactions
of u. Store compatible K(u, ·), for all u œ V , denoted by KI

cmpt

.

All possible models are enumerated, denote as M = (I, K|K
I

cmpt

IœI). A model is functional for
A if its ASTG carries the desired attractor A. After checking each model in M, all functional
models for A are obtained, denoted by Mfw

f

.

The most time consuming part is enumerating all compatible parameters for all possible IGs
on V . For a component u œ V and predecessors Pre(u), compatibility checking involves the
following two conditions: for all Ê ™ Î ™ Pre(u), whether K(u, Ê) Æ K(u, Î), and for each
v œ Pre(u), there exists Ê ™ Pre(u)\{v} with which K(u, Ê) < K(u, Ê fi {v}).

Generating all possible models on V and max is very expensive. For example, a Boolean
component with 5 predecessors has 2

5 resources. The parameter space of this component is 2

2

5 ,
which is more than 4 billion. If each parameter requires 0.01s, the compatible check on this
component will take more than one year. For this reason, the forward modelling workflow will
be applied only on systems where the maximal in-degree of each component is 4.

4.3.2 Reverse engineering workflow

Given the desired attractors A, the reverse engineering workflow starts from enumerating the
set of all graphs G

X

based on the state space X that contain the attractors A. This involves the
following: For each x œ X ,

1. if x /œ A, then for each u œ V , ”(u, x) can be any of {≠1, 0, +1}.

2. if x œ A, then depending on A,

(a) if x is a stable state, for all u œ V , ”(u, x) = 0;

(b) if x is in a cyclic attractor, then x has only the outgoing transitions which are
contained in A, and no other outgoing transitions.

Therefore, there are at least 3

|X|≠|A| graphs based on X . All possible ASTGs carrying the
attractors A are included in these enumerated graphs. For each G

X

, the generalised Lorenz
Algorithms are applied. If G

X

is an ASTG and satisfies the compatible model condition, then a
compatible model can be inferred. This model is called functional for A, because its ASTG has
the desired attractors A. After the model inference for all enumerated graphs, the functional
models for A are obtained, denoted by Mre

f

.

The running time depends on the enumeration of all graphs based on X . The more informa-
tion in A, the less graphs will be obtained from the enumeration.

4.3 Discrete modelling workflows 83

4.3.3 Analysis of the functional models

The following methods are applied for analysing the set of functional models.

1. IG building blocks. Extracting all functional IGs from M
f

. A building block of a node
consists of the incoming interactions which are included in the functional IGs. Building
blocks for each node can be found. The idea is to decompose all functional IGs into
building blocks which can be combined to recover all functional IGs.

2. Realizability and capacity measure. Realizability of each IG for the desired property is
the ratio of the functional parameters out of the parameter space. The capacity measure
gives out how possible the desired property can be realised.

3. Logical analysis method on IGs and parameters. A compact logical description of the
whole set of functional IGs can give an overview of the whole set, as well as uncover
interesting logical IG patterns. Similarly, the logical analysis method can be applied to a
set of parameters to uncover interesting logical parameter patterns.

Both the forward modelling and the reverse engineering workflow are aimed to identify
underlying structural features related to certain dynamic properties of the system. The forward
modelling workflow searches the functional models Mfw

f

from all possible models on the
presumed components. By contrast, the reverse engineering workflow first enumerates all
possible dynamics involving the desired property. Then it makes use of the generalised Lorenz
Algorithms to infer the corresponding functional models Mre

f

. For the same desired property
on Boolean systems, the two workflows lead to the same set of functional models. If the
desired property contains a high amount of information on the dynamics, the reverse engineering
workflow is preferable. Otherwise, one can choose any one of the workflows, for they have
similar cost.

Chapter 5

Application: structures reproducing homeostasis

In an asynchronous state transition graph (ASTG), homeostasis corresponds to cyclic attractors.
This chapter focuses on exploring the underlying GRN structures that can realise a homeostatic
behaviour in the dynamics. The Mitogen-Activated Protein Kinase (MAPK) cascade is one of the
most significant and well described signalling pathways in cellular systems [Orton et al., 2005].
The authors of [Orton et al., 2005] established a mathematical model of the crosstalk between
the MAPK cascade and the mammalian Target of Rapamycin (mTOR) signalling pathway.
These two pathways were evidenced to show a lot of mutations in cancer cells [Chappell et al.,
2011, Mendoza et al., 2011, Winter et al., 2011]. A crosstalk in a signalling transduction network
is like a feedback edge in an interaction graph (IG). The main focus of the thesis by [Thobe,
2017] is the crosstalk analysis between MAPK and PI3K pathways, which play an important role
in cancer research. In this chapter, we consider a simplified core model of the MAPK pathway
taken from [Thobe et al., 2014]. The core of the MAPK model is the Raf/MEK/ERK pathway
which begins with the activation of Raf by self-activating receptor tyrosine kinases (RTK).
Raf is a serine/threonine-protein kinase which can activate MEK. MEK is the MAPK/ERK
kinase which activates ERK, the extracellular-signal-regulated kinase which inhibits Raf. This
simplified MAPK cascade pathway is modelled by a Boolean IG of four components Raf, MEK,
ERK and an input RTK. If the input RTK is on, the dynamics of the system has a cyclic attractor.
If RTK is off, the system has a trivial stable state with all components off.

To focus on the cyclic attractor part, RTK is set constantly on. The IG is simplified into three
components. The original rules in [Thobe et al., 2014] are transformed into a logical parameter
function for the simplified IG. Figure 5.1 shows the MAPK model and the corresponding ASTG.

Raf = RTK ^ ¬ERK
MEK = Raf
ERK = MEK

RTK

Raf

MEK

ERK

(a) The core of MAPK

! K(!, Raf)
; 0

{ERK} 1 ! K(!, ERK)
; 0

{MEK} 1

! K(!,MEK)
; 0

{Raf} 1

Raf

MEK

ERK

(b) Simplified MAPK model

State x = {Raf ,MEK ,ERK}

000 100

010 110

001 101

011 111

Raf

ERK
MEK

(c) The ASTG of the simplified
model.

Figure 5.1: (a) The core of the MAPK cascade model and its logical rules [Thobe et al., 2014].
(b) Fix RTK = 1, the simplified model and the logical parameter function. (c) The ASTG of
the simplified model.

85

86 Chapter 5 Application: structures reproducing homeostasis

For the simplified model, the ASTG has a cyclic attractor { 000, 100, 110, 111, 011, 001}
which covers 6 states out of 2

3 in the state space.

5.1 Functional models preserving the cyclic attractor

Do there exist other IGs which can realise the same cyclic attractor? If the answer is yes, what
are they? Are there any common features among these IGs? Applying the reverse engineering
workflow, we will answer these questions.

5.1.1 Using the reverse engineering workflow

The reverse engineering workflow is applied. First, all functional structures for the cyclic
attractor are searched.

1. All possible graphs based on X = {0, 1}3 containing the cyclic attractor are enumerated,
termed as G

X

.

2. The generalised algorithm Observability-Snoussi-Model is applied on these graphs to
infer compatible models from all graphs in G

X

.

3. Analysis of the functional models.

The cyclic attractor includes 6 states, (0, 0, 0) æ (1, 0, 0) æ (1, 1, 0) æ (1, 1, 1) æ
(0, 1, 1) æ (1, 0, 1) æ (0, 0, 0). In the state transition function ”, each of these 6 states has only
outgoing transitions included in this cycle. The other two states (0, 1, 0) and (1, 0, 1) in X can
have outgoing transitions in 3 directions.

A graph based on X containing the cyclic attractor means that for these 6 states no other
outgoing transitions are allowed other than those in the cyclic attractor. The remaining two
states (0, 1, 0) and (1, 0, 1) may or may not have outgoing transitions in every dimension. Thus,
2

(2

3≠6)ú3

= 2

6

= 64 graphs based on X are enumerated.

According to Proposition 3.26, all 64 graphs based on X are valid ASTGs. Applying the
generalised Observability-Snoussi-Model algorithm, 64 compatible models are inferred from
these graphs.

5.1.2 Functional IGs and their ASTGs

Among these 64 compatible models, there are only 8 different IGs, which are shown in Fig-
ure 5.2.

5.1 Functional models preserving the cyclic attractor 87

Raf

Mek

Erk

(a) IG 1

Raf

Mek

Erk

(b) IG 2

Raf

Mek

Erk

(c) IG 3

Raf

Mek

Erk

(d) IG 4

Raf

Mek

Erk

(e) IG 5

Raf

Mek

Erk

(f) IG 6

Raf

Mek

Erk

(g) IG 7

Raf

Mek

Erk

(h) IG 8

Figure 5.2: 8 functional IGs from the 64 functional models.

IG # models Show figures
IG 1 1 Figure 5.1
IG 2 3 Figure 5.3
IG 3 3 Figure 5.4
IG 4 3 Figure 5.5
IG 5 9 Figure 5.6
IG 6 9 Figure 5.7
IG 7 9 Figure 5.8
IG 8 27 Figure 5.9

Table 5.1: The IGs in Figure 5.2 are contained in multiple models, which were inferred from all
enumerated ASTGs. Some of the corresponding ASTGs are shown in the figures listed in the
third column.

We call the ASTG in Figure 5.1 the original ASTG. The IGs 5, 6 and 7 in Figure 5.2e, 5.2f
and 5.2g resp. each contain two self-loops.

1. IG 5 has two self-loops on Raf and MEK . The ASTGs related with IG 5 are different
from the original ASTG in transitions in direction of Raf and MEK .

2. IG 6 has two self-loops on Raf and ERK and the ASTGs related with IG 6 have different
transitions from the original ASTG in Raf and ERK .

3. IG 7 has two self-loops on Raf and ERK and those ASTGs related with IG 7 differ from
the original ASTG in direction of MEK and ERK .

IG 8 in Figure 5.2h has the most interactions among all 8 IGs. There are 27 models with
IG 8 from 27 corresponding ASTGs. 5 out of these 27 ASTGs have been selected for illustration
in Figure 5.9.

88 Chapter 5 Application: structures reproducing homeostasis

Raf

MEK

ERK

x = {Raf ,MEK ,ERK}
Raf

ERK
MEK

(a) IG 2

000 100

001 101

010 110

011 111

(b) ASTG 1

000 100

001 101

010 110

011 111

(c) ASTG 2

000 100

001 101

010 110

011 111

(d) ASTG 3

Figure 5.3: (a) IG 2 (5.2b) from Figure 5.2. (b), (c), (d) are the 3 ASTGs among all 64 ASTGs
which carry the models with IG 2.

Raf

MEK

ERK

x = {Raf ,MEK ,ERK}
Raf

ERK
MEK

(a) IG 3

000 100

001 101

010 110

011 111

(b) ASTG 1

000 100

001 101

010 110

011 111

(c) ASTG 2

000 100

001 101

010 110

011 111

(d) ASTG 3

Figure 5.4: (a) IG 3 (5.2c) from Figure 5.2. (b), (c), (d) are the 3 ASTGs among all 64 ASTGs
which carry the models with IG 3.

Raf

MEK

ERK

x = {Raf ,MEK ,ERK}
Raf

ERK
MEK

(a) IG 4

000 100

001 101

010 110

011 111

(b) ASTG 1

000 100

001 101

010 110

011 111

(c) ASTG 2

000 100

001 101

010 110

011 111

(d) ASTG 3

Figure 5.5: (a) IG 4 (5.2d) from Figure 5.2. (b), (c), (d) are the 3 ASTGs among all 64 ASTGs
which carry the models with IG 4.

5.1 Functional models preserving the cyclic attractor 89

Raf

MEK

ERK

x = {Raf ,MEK ,ERK}
Raf

ERK
MEK

(a) IG 5

000 100

001 101

010 110

011 111

(b) ASTG 1

000 100

001 101

010 110

011 111

(c) ASTG 2

000 100

001 101

010 110

011 111

(d) ASTG 3

000 100

001 101

010 110

011 111

(e) ASTG 4

000 100

001 101

010 110

011 111

(f) ASTG 5

000 100

001 101

010 110

011 111

(g) ASTG 6

000 100

001 101

010 110

011 111

(h) ASTG 7

000 100

001 101

010 110

011 111

(i) ASTG 8

000 100

001 101

010 110

011 111

(j) ASTG 9

Figure 5.6: (a) IG 5 (5.2e). All 9 ASTGs ((b) to (j)) are the 9 ASTGs among all 64 ASTGs
which carry the models of IG 5.

Raf

MEK

ERK

x = {Raf ,MEK ,ERK}
Raf

ERK
MEK

(a) IG 6

000 100

001 101

010 110

011 111

(b) ASTG 1

000 100

001 101

010 110

011 111

(c) ASTG 2

000 100

001 101

010 110

011 111

(d) ASTG 3

000 100

001 101

010 110

011 111

(e) ASTG 4

000 100

001 101

010 110

011 111

(f) ASTG 5

000 100

001 101

010 110

011 111

(g) ASTG 6

000 100

001 101

010 110

011 111

(h) ASTG 7

000 100

001 101

010 110

011 111

(i) ASTG 8

000 100

001 101

010 110

011 111

(j) ASTG 9

Figure 5.7: (a) IG 6 (5.2f). (b) to (j) are all 9 ASTGs among all 64 ASTGs which carry the
models of IG 6.

90 Chapter 5 Application: structures reproducing homeostasis

Raf

MEK

ERK

x = {Raf ,MEK ,ERK}
Raf

ERK
MEK

(a) IG 7

000 100

001 101

010 110

011 111

(b) ASTG 1

000 100

001 101

010 110

011 111

(c) ASTG 2

000 100

001 101

010 110

011 111

(d) ASTG 3

000 100

001 101

010 110

011 111

(e) ASTG 4

000 100

001 101

010 110

011 111

(f) ASTG 5

000 100

001 101

010 110

011 111

(g) ASTG 7

000 100

001 101

010 110

011 111

(h) ASTG 7

000 100

001 101

010 110

011 111

(i) ASTG 8

000 100

001 101

010 110

011 111

(j) ASTG 9

Figure 5.8: (a) IG 7 (5.2g). (b) to (j) are all 9 ASTGs among all 64 ASTGs which carry the
models of IG 7.

Raf

MEK

ERK

x = {Raf ,MEK ,ERK}
Raf

ERK
MEK

(a) IG 8

000 100

001 101

010 110

011 111

(b) ASTG 1

000 100

001 101

010 110

011 111

(c) ASTG 2

000 100

001 101

010 110

011 111

(d) ASTG 3

000 100

001 101

010 110

011 111

(e) ASTG 4

000 100

001 101

010 110

011 111

(f) ASTG 5

Figure 5.9: (a) IG 8 (5.2h). (b) to (f) are 5 selected ASTGs out of 27 in total.

5.1.3 Realizability of functional IGs

The realizability (see Chapter 4) of every functional IG for the cyclic attractor has been calculated.
The size of the predecessor set plays an important role in the number of compatible logical
parameter functions for an IG. To illustrate this, Table 5.2 shows the following items.

• the in-degree for each component,

• the number of functional and compatible parameter and the realizability for each compon-
ent of each IG

• the number of functional and compatible parameter and the realizability for each IG,

5.1 Functional models preserving the cyclic attractor 91

• the capacity measure of the cyclic attractor.

IG 1 2 3 4 5 6 7 8 others
in-degree Raf 1 3 1 1 3 3 1 3

in-degree MEK 1 1 3 1 3 1 3 3

in-degree ERK 1 1 1 3 1 3 3 3

functional K(Raf , ·)Õs 1 3 1 1 3 3 1 3

compatible K(Raf , ·)Õs 1 9 1 1 9 9 9 9

realizability RA

I,Raf

1 1/3 1 1 1/3 1/3 1/3 1/3

functional K(MEK , ·)Õs 1 1 3 1 3 1 3 3

compatible K(MEK , ·)Õs 1 1 9 1 9 1 9 9

realizability RA

I,MEK

1 1 1/3 1 1/9 1 1/3 1/3

functional K(ERK , ·)Õs 1 1 1 3 1 3 3 3

compatible K(ERK , ·)Õs 1 1 1 9 1 9 9 9

realizability RA

I,ERK

1 1 1 1/3 1 1/3 1/3 1/3

functional K Õs 1 3 3 3 9 9 9 27

q
= 64

compatible K Õs 1 9 9 9 81 81 81 729

q
= 1000

realizability RA

I

1 1/3 1/3 1/3 1/9 1/9 1/9 1/27

capacity measure
q

I

functional KÕs/
q

I

compatible KÕs = 64/1000 = 0.064

Table 5.2: The charts of incoming degrees, the number of functional and compatible parameters
K’s, and the realizability of 8 functional IGs for the cyclic attractor A. The last row is the
capacity measure of the required cyclic attractor.

For each IG from IG 1 to IG 8, RA

I

= RA

I,Raf

RA

I,MEK

RA

I,ERK

.

5.1.4 Coupled interactions

All 8 functional IGs share IG 1 as a common subgraph (Figure 5.2a), which is called the core
motif. Besides the core motif, 3 pairs of interactions are found in the other 7 IGs, which we call
coupled interactions.
Definition 5.1 (Coupled interactions) Consider all functional IGs for a desired property A, two
interactions are called coupled interactions if in every functional IG, either both of them are
present, or both are absent.

(Raf , Raf) and (MEK , Raf) are coupled interactions, because both of them are present in
IG 2, 5, 6, 8 and both are absent in the other IGs. Similarly, the other two coupled interactions
are (MEK , MEK) and (ERK , MEK) resp. (ERK , ERK) and (Raf , ERK), as shown in
Figure 5.10.

92 Chapter 5 Application: structures reproducing homeostasis

Raf

Mek

Erk

(a) Coupled interactions 1.

Raf

Mek

Erk

(b) Coupled interactions 2.

Raf

Mek

Erk

(c) Coupled interactions 3.

Figure 5.10: 3 pairs of coupled interactions. (a) (Raf , Raf) and (MEK , Raf). (b)
(MEK , MEK) and (ERK , MEK). (c) (ERK , ERK) and (Raf , ERK). Blunt edges represent
inhibitions and arrows represent activations.

The core motif together with the 8 possible combinations of the three coupled interactions
yields exactly the 8 functional IGs. However, the simplest IG, which is the core motif, can
already generate the desired cyclic attractor. How to understand the other IGs which have extra
coupled interactions? To answer this question, the way to obtain these coupled interactions in
the functional models has to be clarified.

Take IG 3 as example. Figure 5.4 shows three ASTGs whose transitions differ from the
original ASTG in direction of MEK . For an input graph based on X , the generalised algorithm
Observability-Snoussi-Model first constructs during initialisation a pseudo logical parameter
function ˆK, assuming a complete positive IG. Then in the second step, an IG is inferred from
ˆK.

Let the original ASTG be the input. From the information of the states in the cyclic attractor,
only part of the ˆK can be decided.

1. Initialisation. A pseudo logical parameter function ˆK is constructed using the general-
ised algorithm Logical-Parameters. All 3 ASTGs share the same cyclic attractor as the
original ASTG. From the cyclic attractor (0, 0, 0) æ (1, 0, 0) æ (1, 1, 0) æ (1, 1, 1) æ
(0, 1, 1) æ (1, 0, 1) æ (0, 0, 0) part of ˆK can be constructed. For example, on compon-
ent MEK , some values of ˆK(MEK , ·) can be inferred already from the cyclic attractor,
which will be denoted by the subscript “

c

”. Table 5.3 shows the process of obtain-
ing part of ˆK

c

(MEK , ·), values ˆK
o

(MEK , ·) for the original ASTG, and ˆK
1

(MEK , ·),
ˆK

2

(MEK , ·), ˆK
3

(MEK , ·) for the other 3 ASTGs related with IG 3.

2. Inferring (MEK , MEK) and (Raf , MEK). Table 5.4 and 5.5 show the inference of the
interaction (MEK , MEK) and (Raf , MEK) respectively, for the original ASTG and the
other three ASTGs.

In summary, each change in ”
o

(MEK , 010) and ”
o

(MEK , 101) will cause the appearance
of the coupled interactions, i.e., positive (MEK , MEK) and negative (ERK , MEK).

Similarly, if we change the transitions in the original ASTG 5.1c in direction of Raf and
ERK , the other two coupled interactions will appear in the resulting IGs. IG 3 and IG 4 with
the corresponding ASTGs are shown in Figure 5.4 and 5.5, respectively.

5.2 Logical analysis of functional models

The logical analysis method introduced in Chapter 3 is now applied to the functional IGs and
the logical parameter functions of some of those IGs.

5.2 Logical analysis of functional models 93

Ê ™ V \{MEK} „ {Raf } {ERK} {Raf , ERK}
extremal state x 000 100 001 101

·MEK

(000, 010) (100, 110) (001, 011) (101, 111)

”
c

(MEK , ·MEK

) (0, ≥) (1, 0) (0, ≠1) (≥, 0)

row type ≥ open open ≥
ˆK

c

(MEK , Ê) ≥ 1 0 ≥
ˆK

c

(MEK , Ê fi {MEK}) ≥ 1 0 ≥
”

o

(MEK , ·MEK

) (0, ≠1) (1, 0) (0, ≠1) (1, 0)

row type open open open open
ˆK

o

(MEK , Ê) 0 1 0 1

ˆK
o

(MEK , Ê fi {MEK}) 0 1 0 1

”
1

(MEK , ·MEK

) (0, ≠1) (1, 0) (0, ≠1) (0, 0)

row type open open open pos
ˆK

1

(MEK , Ê) 0 1 0 0

ˆK
1

(MEK , Ê fi {MEK}) 0 1 0 1

”
2

(MEK , ·MEK

) (0, 0) (1, 0) (0, ≠1) (0, 0)

row type pos open open pos
ˆK

2

(MEK , Ê) 0 1 0 0

ˆK
2

(MEK , Ê fi {MEK}) 1 1 0 1

”
3

(MEK , ·MEK

) (0, 0) (1, 0) (0, ≠1) (0, 0)

row type pos open open open
ˆK

3

(MEK , Ê) 0 1 0 1

ˆK
3

(MEK , Ê fi {MEK}) 1 1 0 0

Table 5.3: The ˆK(MEK , ·) during initialisation: the cyclic attractor (“
c

”), the original ASTG
(“

o

”) and three ASTGs related with IG 3 (“
1

”, “
2

”, “
3

”). Row 1: the resources Ê ™ V \{MEK}.
Row 2 and 3 show the corresponding extremal states and extremal rows. Below is the process
on looking for ˆK(MEK , Ê) and ˆK(MEK , Ê fi {MEK}). The states of the cycle attractor are
in bold, “≥” stands for “unknown”.

5.2.1 Functional IGs

The 8 IGs in Figure 5.2 can be translated into Boolean expressions. For example, x≠
RM

œ {0, 1}
describes the existence of an inhibition of Raf by MEK , i.e., x≠

RM

= 1 (resp. 0) means there
exists (resp. not exists) an inhibition (MEK , Raf).

Raf

Mek

Erk

(a) IG 1

Raf

Mek

Erk

(b) IG 2

Raf

Mek

Erk

(c) IG 3

Raf

Mek

Erk

(d) IG 4

Raf

Mek

Erk

(e) IG 5

Raf

Mek

Erk

(f) IG 6

Raf

Mek

Erk

(g) IG 7

Raf

Mek

Erk

(h) IG 8

Figure 5.11: 8 IGs contained in the 64 functional models for the cyclic attractor.

Each IG is encoded using the partial encoding from Section 4.2.1 with 18 Boolean variables.

94 Chapter 5 Application: structures reproducing homeostasis

K
o

(MEK , ·) original ASTG
Ê ™ V \{MEK} „ {Raf } {ERK} {Raf , ERK}

K
o

(MEK , Ê) 0 1 0 1

K
o

(MEK , Ê fi {MEK}) 0 1 0 1

÷(MEK , MEK)? @
K

1

(MEK , ·) ASTG 1

Ê ™ V \{MEK} „ {Raf } {ERK} {Raf , ERK}
K

1

(MEK , Ê) 0 1 0 0
K

1

(MEK , Ê fi {MEK}) 0 1 0 1
÷(MEK , MEK)? ÷

Á(MEK , MEK) +

K
2

(MEK , ·) ASTG 2

Ê ™ V \{MEK} „ {Raf } {ERK} {Raf , ERK}
K

2

(MEK , Ê) 0 1 0 0
K

2

(MEK , Ê fi {MEK}) 1 1 0 1
÷(MEK , MEK)? ÷ ÷

Á(MEK , MEK) + +

K
3

(MEK , ·) ASTG 3

Ê ™ V \{MEK} „ {Raf } {ERK} {Raf , ERK}
K

3

(MEK , Ê) 0 1 0 1

K
3

(MEK , Ê fi {MEK}) 1 1 0 1

÷(MEK , MEK)? ÷
Á(MEK , MEK) +

Table 5.4: Inferring (MEK , MEK): original ASTG (“
o

”) and the 3 ASTGs from IG 3 (“
1

”, “
2

”,
“

3

”).

To get a compact logical description of the 8 IGs, the Quine-McCluskey algorithm is applied
using the software tool PyBoolNet [Klarner et al., 2016] on the disjunction (or sum) of these
8 Boolean expressions. It turns out that the minimal disjunctive normal form (DNF) of the 8

Boolean expressions is the same as the input, which means that it cannot be further simplified.
However, the conjunctive normal form (CNF) of these 8 IGs gives a shorter expression and
characterises the core and the three coupled interactions in a meaningful way. The process of
getting the minimal CNF is now further described.

From Table 5.6, we can get the following knowledge on the 8 IGs.

1. x≠
RR

© 0, x≠
MM

© 0, x≠
EE

© 0, because the three self-loops (Raf , Raf), (MEK , MEK)

and (ERK , ERK) are never negative.

2. x+

RM

© 0, x+

RE

© 0, for there does not exist positive (Raf , MEK) and positive
(Raf , ERK).

3. x≠
MR

© 0, x+

ME

© 0, for there does not exist negative (Raf , MEK) and positive
(MEK , ERK).

4. x≠
ER

© 0, x≠
EM

© 0, for there does not exist negative (ERK , Raf) and negative
(ERK , MEK).

Therefore, only 9 Boolean variables are needed to encode an IG, which are for Raf , {x+

RR

,
x≠

RM

, x≠
RE

}, for MEK , {x+

MM

, x+

MR

, x≠
Me

} and for ERK , {x+

EE

, x+

ER

, x+

EM

}. Using these 9

variables, the 8 IGs are transformed into the following expressions:

5.2 Logical analysis of functional models 95

K
o

(MEK , ·) original ASTG
Ê ™ V \{ERK} „ {Raf } {MEK} {Raf , MEK}

K
o

(MEK , Ê) 0 1 0 1

K
o

(MEK , Ê fi {ERK}) 0 1 0 1

÷(ERK , MEK)? @
K

1

(MEK , ·) ASTG 1

Ê ™ V \{ERK} „ {Raf } {MEK} {Raf , MEK}
K

1

(MEK , Ê) 0 1 0 1

K
1

(MEK , Ê fi {ERK}) 0 0 0 1

÷(ERK , MEK)? ÷
Á(ERK , MEK) ≠

K
2

(MEK , ·) ASTG 2

Ê ™ V \{ERK} „ {Raf } {MEK} {Raf , MEK}
K

2

(MEK , Ê) 0 1 1 1

K
2

(MEK , Ê fi {ERK}) 0 0 0 1

÷(ERK , MEK)? ÷ ÷
Á(ERK , MEK) ≠ ≠

K
3

(MEK , ·) ASTG 3

Ê ™ V \{ERK} „ {Raf } {MEK} {Raf , MEK}
K

3

(MEK , Ê) 0 1 1 1

K
3

(MEK , Ê fi {ERK}) 0 1 0 1

÷(ERK , MEK)? ÷
Á(ERK , MEK) ≠

Table 5.5: Inferring (ERK , MEK): original ASTG (“
o

”) and the 3 ASTGs from IG 3 (“
1

”, “
2

”,
“

3

”).

Edges (R, R) (R, M) (R, E) (M, R) (M, M) (M, E) (E, R) (E, M) (E, E)

IG 1 : x+

RR

x≠
RR

x+

RM

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
MM

x+

ME

x≠
ME

x+

ER

x≠
ER

x+

EM

x+

EE

x≠
EE

IG 2 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
MM

x+

ME

x≠
ME

x+

ER

x≠
ER

x+

EM

x+

EE

x≠
EE

IG 3 : x+

RR

x+

RM

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x≠
ER

x+

EM

x+

EE

x≠
EE

IG 4 : x+

RR

x≠
RR

x+

RM

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
MM

x+

ME

x≠
ME

x+

ER

x+

EM

x+

EE

IG 5 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x≠
ER

x+

EM

x+

EE

x≠
EE

IG 6 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
MM

x+

ME

x≠
ME

x+

ER

x+

EM

x+

EE

IG 7 : x+

RR

x≠
RR

x+

RM

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

IG 8 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

Table 5.6: Encoding the 8 functional IGs with 18 Boolean variables. The Boolean expression of
each IG is the product of all variables in the row.

Edges (R, R) (R, M) (R, E) (M, R) (M, M) (M, E) (E, R) (E, M) (E, E)

IG 1 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

IG 2 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

IG 3 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

IG 4 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

IG 5 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

IG 6 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

IG 7 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

IG 8 : x+

RR

x≠
RM

x≠
RE

x+

MR

x+

MM

x≠
ME

x+

ER

x+

EM

x+

EE

Table 5.7: Encoding the 8 functional IGs with 9 Boolean variables. The Boolean expression of
each IG is the product of all variables in the row.

96 Chapter 5 Application: structures reproducing homeostasis

Next we apply the answer set programming (ASP) code by [Becker et al., 2016] to obtain
the minimal CNF. The minimal CNF of these 8 IGs is

minCNF = x+

EM

x≠
RE

x+

MR

(x+

ER

+ x+

EE

)(x+

ER

+ x+

EE

)

(x+

MM

+ x≠
ME

)(x+

MM

+ x≠
ME

)(x+

RR

+ x≠
RM

)(x+

RR

+ x≠
RM

).
(5.1)

This CNF yields a very compact Boolean representation of all 8 functional IGs and can be
explained in four parts.

1. x+

EM

x≠
RE

x+

MR

, denotes the three interactions in the core motif;

2. (x+

ER

+ x+

EE

) (x+

ER

+ x+

EE

) = (x+

ER

x+

EE

+ x+

ER

x+

EE

), denotes the coupled interactions
(Raf , ERK) and (ERK , ERK);

3. (x+

MM

+x≠
ME

) = (x+

MM

x≠
ME

+x+

MM

x≠
ME

), denotes the coupled interactions (MEK , ERK)

and (MEK , MEK);

4. (x+

RR

+x≠
RM

)(x+

RR

+x≠
RM

) = (x+

RR

x≠
RM

+x+

RR

x≠
RM

), denotes the coupled interactions
(Raf , Raf) and (ERK , Raf).

5.2.2 Functional parameters

In the 8 IGs, a component can have at most 2

3

= 8 resources. If we use one Boolean variable
per logical parameter K(node, res), then 24 Boolean variables are needed to encode a logical
parameter function. However, for this number of variables, it is already very hard to compute a
minimal logical representation.

Applying the logical analysis method directly to the functional K’s is not practical. However,
the regulations of one component and those of another component do not depend on each
other. Thus, the logical parameters of one component and those of another component are also
independent. Therefore, without changing the final representation, the logical analysis method
can be applied individually on the logical parameters of each component, which requires at most
8 variables.

In the 64 logical parameter functions, there are only 4 different functions for v, namely K
v

,
for each v œ {Raf , MEK , ERK}. Among these 4 functions for v, there are 3 functions for 8

resources where |Pre(v) = 3| and 1 function is for 2 resources where |Pre(v)| = 1.

The logical analysis method is applied to get a compact description of the 3 functions for
v where v has 8 resources. Table 5.8, 5.9, 5.10 shows the results of using the logical analysis
method on the functions of all three components K

Raf

, K
MEK

and K
ERK

.

Res æ ÿ {ERK} {MEK} {MEK , ERK} {Raf } {Raf , ERK} {Raf , MEK} {Raf , MEK , ERK} f

K1

Raf

0 0 0 1 0 1 0 1 1

K2

Raf

0 0 0 1 0 1 1 1 1

K3

Raf

0 1 0 1 0 1 1 1 1

Kp1
Raf

0 0 0 1 0 1 ≠ 1 (K1

+ K2)

Kp2
Raf

0 ≠ 0 1 0 1 1 1 (K2

+ K3

)

Table 5.8: Minimal representation of 3 K
Raf

’s, 2 Kp

Raf

’s. “≠” denotes either 0 or 1.

In Table 5.8, the functions Ki

Raf

for i œ {1, . . . , 3} are first transformed into Boolean expres-
sions. For each Ki

Raf

, let x
Res1 = 1 or 0 if Ki

(Raf , Res

1

) = 1 or 0, respectively. For example,

5.3 Conclusion and discussion 97

K2

Raf

is encoded as x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

. The sum of all 3 Boolean expressions is given to
PyBoolNet to calculate the minimal DNF. The resulting minimal DNF is x

1

x
2

x
3

x
4

x
5

x
6

x
8

+

x
1

x
3

x
4

x
5

x
6

x
7

x
8

. The resulting minimal DNF is transformed back into the form of logical
parameters, so called Kp

Raf

patterns.

Therefore, if |Pre(Raf)| = 3, then K
Raf

can be represented by Kp1

Raf

+Kp2

Raf

. If Pre(Raf) =

{ERK}, then there is only one choice: K(Raf , ÿ) = 0 and K(Raf , {ERK}) = 1.

Similar analysis can be done for MEK and ERK . The results are shown in Table 5.9 and
Table 5.10, respectively.

Res æ ÿ {ERK} {MEK} {MEK , ERK} {Raf } {Raf , ERK} {Raf , MEK} {Raf , MEK , ERK} f

K1

MEK

0 0 0 0 0 1 1 1 1

K2

MEK

0 0 0 1 0 1 1 1 1

K3

MEK

0 0 0 1 1 1 1 1 1

Kp1
MEK

0 0 0 ≠ 0 1 1 1 (K1

+ K2)

Kp2
MEK

0 0 0 1 ≠ 1 1 1 (K2

+ K3)

Table 5.9: Minimal representation of 3 Ki

MEK

s, 2 Kp

MEK

. “≠” denotes either 0 or 1.

Res æ ÿ {ERK} {MEK} {MEK , ERK} {Raf } {Raf , ERK} {Raf , MEK} {Raf , MEK , ERK} f

K1

ERK

0 0 0 1 0 0 1 1 1

K2

ERK

0 0 0 1 0 1 1 1 1

K4

ERK

0 0 1 1 0 1 1 1 1

Kp1
ERK

0 0 0 1 0 ≠ 1 1 (K1

+ K2)

Kp2
ERK

0 0 ≠ 1 0 0 1 1 (K2

+ K3)

Table 5.10: Minimal representation of 3 Ki

ERK

s, 2 Kp

ERK

. “≠” denotes either 0 or 1.

5.3 Conclusion and discussion

This chapter studied all structures that can reproduce the homeostasis of a simplified 3-node
MAPK-cascade signalling network. The cyclic attractor in the 3-dimensional Boolean state
space is (000 æ 100 æ 110 æ 111 æ 101 æ 001 æ 000). [Perkins et al., 2010] investigated
a similar cyclic attractor originating from a repressilator system of 3 Boolean components (v

1

inhibits v
2

which inhibits v
3

which inhibits v
1

), which is (100 æ 101 æ 001 æ 011 æ
010 æ 110 æ 100). The ASTG and IG from [Perkins et al., 2010] and those from this Chapter
are shown in Figure 5.12. Both ASTGs are based on a 3-node Boolean system. One can
observe that v

1

receives only one inhibition from v
3

and similarly, only ERK inhibits Raf .
The state transitions in direction of v

1

are isomorphic to those in direction of Raf . Moreover,
the incoming regulations of v

2

and v
3

are inhibitions, while for MEK and ERK there are
activations. The state transitions for v

2

and v
3

are all in opposite direction to those for MEK

and ERK , respectively.

Raf

MEK

ERK

000 100

010 110

001 101

011 111

v1

v2

v3

v1

v2v3

R

ME
000 100

010 110

001 101

011 111

Figure 5.12: The repressilator system and its ASTG in [Perkins et al., 2010] (left) and those
from this chapter (right).

98 Chapter 5 Application: structures reproducing homeostasis

The reverse engineering workflow was applied. Starting from the cyclic attractor in the ASTG
of the simplified 3-node model, 64 graphs based on the state space {0, 1}3 were enumerated.
From these, 64 functional models were obtained using the generalised algorithm Observability-
Snoussi-Model. The results show that the 64 models contain only 8 functional IGs, which consist
of a core motif and three pairs of coupled interactions.

All 64 enumerated graphs based on {0, 1}3 were verified to be ASTGs and all carry a
compatible model. If an ASTG can be obtained by changing some transitions of the original
ASTG, then we call it a modification of the original ASTG. Correspondingly, the IG of the
model obtained from a modified ASTG is usually different from the original IG. While keeping
the cyclic attractor in the enumerated ASTGs, modifications are only allowed on the outgoing
transitions from the states 010 and 101. We have the following observations.

1. If a modification is done on a state x œ {010, 101} in direction of v œ V , then the IG of
the new model changes by a pair of coupled interactions of v, see examples in Figures 5.3,
5.4 and 5.5.

2. If modifications are done on transitions of two states {010, 101} in direction of v œ V ,
then the IG of the new model changes by a pair of coupled interactions of v, see examples
in Figures 5.3, 5.4 and 5.5.

3. If modifications are done on one state or two states in more than one directions, then the
IG of the new model changes by the corresponding pairs of coupled interactions of the
revised components. This can be seen as a combination of the IG changes caused by each
individual modification, see examples in Figures 5.6, 5.7 and 5.8.

Section 5.1.2 showed all 8 functional IGs for the required cyclic attractor. IG 1 has the 3

interactions, one compatible model which is 1 functional, therefore, the realizability is 1. The 3

interactions are the core motif which are contained in all 8 functional IGs. IG 2, 3 and 4 has
the core motif and one pair of coupled interactions. Each of them has 9 compatible models of
which 3 are functional. IG 8 has the highest number of interactions with 27 functional models.
The core motif is needed for all IGs to be functional.

The logical analysis method has been applied in Section 5.2 both on functional IGs and
logical parameter function. Firstly, the 8 functional IGs are encoded into Boolean expressions,
and the Quine-McCluskey algorithm is applied using the software PyBoolNet to get a minimal
DNF. The resulting minimal DNF is still the full sum of the 8 IGs. However, the minimal CNF
obtained by using the ASP code from [Becker et al., 2016] can characterise these 8 IGs in a
shorter way. Among the 64 K’s contained in all 64 models, there are only 4 distinctive functions
K

v

for each component v. Therefore, the logical analysis method could be applied on the logical
parameters of individual components to get a compact description, which is given in Table 5.8,
5.9 and 5.10.

Chapter 6

Application: structures reproducing multista-
bility

Multistability is an important dynamical property referring to the existence of multiple stable
states or attractors in a regulatory network. In biology, this can be related to cell differentiation
or fate decisions. To analyse the underlying regulatory structures, both continuous and discrete
methods can be applied. Using a continuous framework together with a robustness measure to
decide whether a GRN can generate the required functionality, [Breindl et al., 2010, Schittler
et al., 2010, Breindl et al., 2011] studied all GRNs composed of 3 transcriptional regulators
(TRs) that are able to produce 3 distinct stable steady states.

Here, we explore this question using a discrete modelling approach. The forward modelling
workflow enumerates all possible regulatory structures together with their regulatory rules and
searches for models that can generate the required multistability. The reverse engineering
workflow enumerates all graphs based on the state space that contain the required stable states.
Then it uses the generalised Lorenz algorithms to infer all the underlying models. The results
from the two workflows can also be used to give a validation of each other.

The continuous method from [Breindl et al., 2011] will be introduced in Section 6.1. Af-
terwards in Section 6.2, the initial requirements from Breindl et al. are adapted to the discrete
setting. The two discrete modelling workflows will be applied to obtain all functional IGs for
the required multiple stable states. In particular, in the reverse engineering workflow, we may or
may not allow the stable states to be isolated and the existence of other attractors. As a result,
using the discrete modelling approach, many more functional IGs are discovered than with
the continuous method. The different results in terms of their building blocks are compared in
Section 6.3. Realizability and the logical analysis method are applied to analyse the functional
IGs under each hypothesis. Additionally, the logical analysis method is applied to compare the
results of the two hypotheses.

6.1 Continuous method: robustness measure

[Breindl et al., 2011] studied the structure and the robustness of small networks composed of
three interacting transcriptional regulators (TRs) crucial for cell differentiation. They applied a
modelling framework based on ordinary differential equations (ODEs) (introduced in Sec 1.2),
which uses qualitative information on the network and will be introduced in Section 6.1.1. With
the help of a robustness measure on the network structure presented in Section 6.1.3, they are

99

100 Chapter 6 Application: structures reproducing multistability

able to find those regulatory structures which can reproduce certain specified stable steady states
(Section 6.1.2).

6.1.1 Continuous modelling framework

The regulations between the TRs are described by monotonous activation and inhibition func-
tions.
Definition 6.1 (Activation and Inhibition Function) [Breindl et al., 2011] An activation (inhibi-
tion) function is ‹ : [0, Œ) æ [0, N)(µ : [0, Œ) æ (0, N]) with N œ R

+

, and

i) ‹ (µ) is continuously differentiable,

ii) ‹(0) = 0 and ‹(x) æ N as x æ Œ (µ(0) = N and µ(x) æ 0 as x æ Œ),

iii) ‹(x) (µ(x)) is monotonously increasing (decreasing).

This definition covers commonly used rate laws like Michaelis-Menten and Hill kinetics.
The dynamics of a regulatory network with n TRs is described by

ẋ
i

= ≠k
i

x
i

+ f
i

(x), i = 1, . . . , n. (6.1)

Here x œ Rn

+

is the concentration vector of the TRs, the term ≠k
i

x
i

describes linear degradation
and f

i

is a function representing all the influences from the TRs in the network on TR i. In
what follows, the symbol Ï denotes both ‹ and µ, while “¶” stands for both sum ‘+’ and
multiplication “·”. The function f

i

then can be written as

f
i

(x) = Ï
i,j1(x

j1) ¶ · · · ¶ Ï
i,j

k

(x
j

k

), (6.2)

where {j
1

, . . . , j
k

} ™ {1, . . . , n}. For the activation or inhibition function Ï
i,j

q

(x
j

q

), with
q œ {1, . . . , k}, i is a TR which is regulated by the TRs j

1

, . . . , j
k

, where j
q

specifies the q-th
transcription factor and k denotes the number of TRs. It is assumed that each TR can only either
activate, inhibit, or has no influence on the production of another TR. This means that a variable
x

j

q

can be the argument of at most one function Ï
i,j

q

, q œ {1, . . . , k}, for each i œ {1, . . . , n}.
Because k

i

and the exact shape of the activation or inhibition function Ï
i,j

k

(x
j

k

) are generally
unknown, the equation (6.1) only captures the topology of the network.

An IG of three components is represented by an interaction matrix:

A = {a
ij

}
i,jœ{1,2,3}, a

ij

:=

Y
_]

_[

1 j activates i
≠1 j inhibits i

0 no interaction
. (6.3)

To show an example of the interaction matrix:

A =

S

WU
1 ≠1 0

1 1 ≠1

1 0 ≠1

T

XV .

Then the network will be:

ẋ
1

= ≠k
1

x
1

+ ‹
1

(x
1

) · µ
2

(x
2

),
ẋ

2

= ≠k
2

x
2

+ ‹
3

(x
1

) · ‹
4

(x
2

) · µ
5

(x
3

),
ẋ

3

= ≠k
3

x
3

+ ‹
6

(x
1

) · µ
7

(x
3

).

6.1 Continuous method: robustness measure 101

6.1.2 Specification of stable steady states

For each TR, concentration levels xlow

i

, xhigh

i

and xmax

i

with 0 Æ xlow

i

Æ xhigh

i

Æ xmax

i

are
specified. A concentration x

i

in the interval I low

x

i

= [0, xlow

i

] or x
i

œ Ihigh

x

i

= [xhigh

i

, xmax

i

] is
considered as low or high respectively.
Definition 6.2 (Forward-invariant set) [Breindl et al., 2010] A set F œ Rn is forward-invariant
for system (6.1) if, for each initial condition x(0) = x

0

œ F , its solution x(t; x
0

) remains in F ,
i.e., for all t > 0 : x(t; x

0

) œ F .

The stable steady states of the network determine the cell types. In the state space, for the
variability between cells and the uncertainties during measurements, the concentration values of
the components are considered to be intervals instead of exact values [Breindl et al., 2010]. So
that, it is assumed that a steady state can be represented by a forward-invariant hyperrectangular
set x = I l1

x1 ◊ · · · ◊ I l

n

x

n

with l
i

œ {low, high}. Multiple stable steady states are treated as a
group of forward-invariant sets in the state space.

[Breindl et al., 2011] are interested in a set of three stable steady states: a progenitor factor
A, a differentiated cell type B, and a competing differential cell type C, which are given as
x(i)

= (l(i)
1

, l(i)
2

, l(i)
3

), i œ {A, B, C}. The states x(B) and x(C) are assumed to carry a high level
of x

2

and x
3

, respectively. For x(A), two opposite specifications of stable steady states are
assumed according to whether TR x

1

works as a progenitor or differentiation factor.

(S1) x
1

is a progenitor factor. The cell achieves differentiation by down-regulating it.

x(A)

= (high, low, low)

x(B)

= (low, high, low)

x(C)

= (low, low, high)

(6.4)

(S2) x
1

is a differentiation factor. The cell achieves differentiation by up-regulating it.

x(A)

= (low, low, low)

x(B)

= (high, high, low)

x(C)

= (high, low, high)

(6.5)

6.1.3 Robustness measure and its computation

A robustness measure R is defined to determine to what extent a regulatory network can
reproduce the required multistability [Breindl et al., 2010, Breindl et al., 2011]. The idea of R
is to quantify whether and how well a system (6.1) can generate the forward-invariant sets in
(6.4) and (6.5). The definition of R involves several steps [Breindl et al., 2010].
Definition 6.3 (Perturbation measure) [Breindl et al., 2010]
Given an activation (inhibition) function Ï and a perturbed function Ïp, the integral

P(Ï ≠ Ïp

) =

⁄ Œ

0

|Ï(x) ≠ Ïp

(x)|dx

is a measure for the perturbation of Ï.

The desired cell types are characterised by the forward-invariant sets x

z, z = {1, . . . , m}.
[Breindl et al., 2011] define the robustness value R œ R in terms of the interaction matrix A.
The basic intuition is as follows:

102 Chapter 6 Application: structures reproducing multistability

1. If a value R is assigned to the system A, then there exist monotonous functions Ï
i,j

q

such that x

z, z = 1, . . . , m are forward-invariant;

2. If all the monotonous functions are perturbed by R or less, i.e., for all i, j
q

, P(Ï
i,j

q

≠
Ïp

i,j

q

) Æ R, then x

z, z = 1, . . . , m remain forward-invariant;

3. If any of the monotonous function is perturbed by more than R, i.e., there exists i, j
q

,
P(Ï

i,j

q

≠ Ïp

i,j

q

) > R, then x

z, z = 1, . . . , m are no longer forward-invariant.

Two more notions are needed before giving the definition of R. A tube for an activation
(inhibition) function is defined next and illustrated in Figure 6.1.
Definition 6.4 (Tube for an activation (inhibition) function) [Breindl et al., 2010]
A 3-tuple of pairs of positive real numbers

• T
‹

=

1
(xlow , “low

), (xhigh , “high

), (xmax, “max

)

2
with “low Æ “high Æ “max and xlow Æ

xhigh Æ xmax is called a tube for an activation function.

• T
µ

=

1
(xlow , “high

), (xhigh , “low

), (xmax, “min

)

2
with “min Æ “low Æ “high and xlow Æ

xhigh Æ xmax is called a tube for an inhibition function.
Definition 6.5 (An activation (inhibition) function satisfies a tube) [Breindl et al., 2011]
An activation function ‹ (inhibition function µ) is said to satisfy a tube T

‹

(T
µ

), denoted by
‹ |= T

‹

(µ |= T
µ

) if the following inequalities hold:

’x Æ xlow

: ‹(x) Æ “low

(µ(x) Ø “high

), (6.6)

’x Ø xhigh

: ‹(x) Ø “high

(µ(x) Æ “low

), (6.7)

’x Æ xmax

: ‹(x) Æ “max

(µ(x) Ø “min

). (6.8)

N

�

max

�

high

�

low

x

low

x

high

x

max0 x

⌫(x)

(a)

N

�

high

�

low

�

min

x

low

x

high

x

max0 x

µ(x)

(b)

N
λmax

λhigh

λlow

xlow xhigh xmax0 x

ν(x) j= Tν

γmax

γhigh

γlow

(c)

Figure 6.1: (a) An activation function. (b) An inhibition function. (c) A tube for an activation
function.

Breindl et al. compute the robustness measure R by relaxing all monotonous functions ‹ or
µ in a tube T

‹

or T
µ

as much as possible, such that the set x is still forward-invariant. This idea
is introduced in the following proposition [Breindl et al., 2010].
Proposition 6.6 [Breindl et al., 2010]
Given a set x = I l1

x1 ◊ · · · ◊ I l

n

x

n

with l
i

œ {low, high} and given tubes T i,k which satisfy the
conditions

’i œ {1, . . . , n} : ≠k
i

· x
i

+ “
i,1

· · · · · “
i,q

i

Ø 0 (6.9)

6.1 Continuous method: robustness measure 103

where x
i

= min

x

i

œIl

i

x

i

x
i

and, with x
j

denoting the argument of Ï
i,k

,

“
i,k

=

I
0 if Ï

i,k

= ‹
i,k

· 0 œ I l

j

x

j

min{“ : (x, “) œ T i,k · x œ I l

j

x

j

} otherwise

and
’i œ {1, . . . , n} : ≠k

i

· x̄
i

+ “̄
i,1

· · · · · “̄
i,q

i

Æ 0 (6.10)

where x̄
i

= maxIl

i

x

i

x
i

and, with x
j

denoting the argument of Ï
i,k

,

“̄
i,k

= max{“ : (x, “) œ T i,k · x
j

œ I l

j

x

j

}.

If for all i, k : Ï
i,k

|= T i,k, then x is a forward-invariant set for system (6.1).

Proposition 6.6 is a sufficient but not necessary condition for x

z being forward-invariant
sets, as proved in [Breindl et al., 2010].

For each tube T i,k, the goal is to find a function Ï̃
i,k

best centred to the tube T i,k. This
means that Ï̃

i,k

needs more perturbation than any other function Ï
i,k

|= T i,k to violate one
of the constraints from (6.6) to (6.8). In order to achieve a violation of the tube constraints,
the minimal perturbation of the best centred function Ï̃

i,k

is reformulated as an optimisation
problem [Breindl et al., 2010]:

Rmax

(T i,k

) = max

Ï

i,k

|=T

i,k

Rmin

(Ï
i,k

, T i,k

), (6.11)

with
Rmin

(Ï
i,k

, T i,k

) = min

Ï

i,k

”|=T

i,k

P(Ï
i,k

≠ Ïp

i,k

). (6.12)

The robustness measure is obtained by maximising the minimal P(Ï
i,k

, T i,k

) over all tubes
T i,k that satisfy Proposition 6.6.
Definition 6.7 (Robustness measure) [Breindl et al., 2011]
Given a system (6.1) with unspecified activation and inhibition functions. The robustness
measure R for the system (6.1) is defined as

R = max

T

i,k

min

i,k

Rmax

(T i,k

) (6.13)

such that for all x

z

: (6.9) and (6.10) hold.

Proposition 6.6 gives only a sufficient condition for x

z to be forward-invariant. Thus, R is a
lower bound of the maximally obtainable robustness values.

Next an analytical solution for Equation 6.11 is given.
Proposition 6.8 [Breindl et al., 2010]
Given a tube T , the maximal value Rmax

(T) is given by

R(T
‹

) =

“low · (“max ≠ “high

)

“low

+ (“max ≠ “high

)

· (xhigh ≠ xlow

), (6.14)

if T is a tube for activation functions, and

R(T
µ

) =

(N ≠ “high

) · (“low ≠ “min

)

(N ≠ “high

) + (“low ≠ “min

)

· (xhigh ≠ xlow

), (6.15)

if T is a tube for inhibition functions.

104 Chapter 6 Application: structures reproducing multistability

With the analytic solution for Equation 6.11 in Proposition (6.8), the robustness measure
in (6.13) can be transformed into a convex optimisation problem if ”¶” takes only multiplication
” · ”.

If the optimisation problem in (6.13) is feasible, then there exists a realization for the IG
with monotonous functions to regenerate the required forward-invariant sets. In other words,
for an IG given by system (6.1), if a value for R from the solution of problem (6.13) can be
assigned, then this IG is able to regenerate the required multistability.

6.2 Discrete modelling methods

The specific multistability problem from Section 6.1.1 is now analysed by our discrete methods.
The two specifications with the low and high concentration levels from the continuous method
can be naturally discretized into Boolean states. If l is low or high, xl is assigned 0 or 1 as
Boolean values. The three stable states, a progenitor factor A, a differentiated cell type B and
a competing differential cell type C, i.e., xA, xB, xC are discretized into xa, xb, xc. The two
hyperrectangular sets (S1) and (S2) can be transformed as follows:

(S1) and the corresponding Boolean states:

xa

= (high, low, low) ∆ (1, 0, 0),

xb

= (low, high, low) ∆ (0, 1, 0),

xc

= (low, low, high) ∆ (0, 0, 1).

(6.16)

(S2) and the corresponding Boolean states:

xa

= (low, low, low) ∆ (0, 0, 0),

xb

= (high, high, low) ∆ (1, 1, 0),

xc

= (high, low, high) ∆ (1, 0, 1).

(6.17)

The discrete modelling method will be applied to obtain those functional IGs which can
regenerate the two hypotheses (S1) and (S2). In order to compare the results from the continuous
and the discrete method, the initial setup of the continuous method is transformed into an equi-
valent discrete version (Section 6.2.1). The two discrete modelling workflows from Chapter 4.3
are then applied in Section 6.2.3 resp. 6.2.4 to obtain all functional IGs for the multistabilities
(S1) and (S2) .

6.2.1 Initial setup

The first initial setup is that every IG shall be at least weakly connected. A weakly connected
digraph is a digraph that, after removing the directions of the edges, is connected as an undirected
graph.

The second initial setup is the monotonicity of the activating and inhibiting functions in
Definition 6.1. In the discrete modelling framework, activation and inhibition are represented
through resources and the logical parameter functions K.

6.2 Discrete modelling methods 105

i) ‹(µ) is continuously differentiable: Continuous variables are discretized into integers
representing intervals. The logical parameters for a component result from discretizing
sigmoid functions into step functions [Thomas and D’Ari, 1990]. Although a step function
can be approximated with arbitrary precision by continuously differentiable functions, the
condition of continuous differentiability has no counterpart in the discrete setting.

ii) ‹(0) = 0 and ‹(Œ) æ N (µ(0) = N and µ(Œ) æ 0): ‹ and µ are the regulatory
functions among TRs. If one TR is activated by another, it stays on the low level if the other
TR is at zero, and goes to the maximal possible level if the other TR is at its highest level.
If one TR is inhibited by another, the regulated TR goes to 0 as the regulating TR goes to
its highest value, and vice versa. In the discrete setting, an influence from one component
to another is reflected by the logical parameter functions. For example, an interaction (u, v)

is observable, if there exists a resource Ê of v which enables K(v, Ê) < K(v, Ê fi {u}).
Therefore, requirement ii) is replaced with the observability condition that there exists
Ê ™ Pre(v)\{u}, such that, K(v, Ê) < K(v, Ê fi {u}), which means that (u, v) is
observable.

iii) ‹(µ) is monotonously increasing (decreasing): let (u, v) be an interaction in a discrete
model. This monotonicity can be expressed as follows: for all resources Ê\{u}, there is
K(v, Ê) Æ K(v, Ê fi {u}), i.e., (u, v) should satisfy the Snoussi-condition. Therefore,
requirement iii) is captured by the Snoussi-condition.

iv) In Equation 6.2, f
i

(x) there are only multiplications of activation and inhibition functions:
this related to the question of how to deal with the combined effect of all regulators on a
TR. Allowing only multiplication of regulatory functions makes the optimisation problem
for the robustness measure easily solvable. The multiplication of two activation functions
is still an activation function, and that of two inhibition functions is still an inhibition
function. However, when multiplying an activation and an inhibition function, it is hard to
decide which one is more dominant without knowing the exact shapes of both functions. In
discrete modelling, the combined effect from several regulating components is given by a
logical parameter. The effect of these combined functions can be illustrated as: let u be a
component in the system, in terms of K(u, ·), for all resource ’ ™ Ê ™ Pre(u), there is
always K(u, ’) Æ K(u, Ê).

This means that every component satisfies the Snoussi-condition. Part of the K’s correspond
to the continuous parameters which can be only combined by multiplication. One can find
another part of K’s have no correspondence in the continuous method [Breindl et al., 2011],
and still satisfy the Snoussi-condition. It is expected that more structures will be found
using discrete methods.

As a summary for the second setup, all models shall be compatible, i.e., satisfy the observab-
ility and the Snoussi-condition.

The third initial setup in Section 6.1.1 is that a TR can only activate or inhibit or give no
influence to a TR. This means that no multiple edges are allowed, which is the same as in our
discrete modelling framework.

6.2.2 Different constraints on the desired stable states

Some ASTGs may have more stable states than those specified by (S1) or (S2). In the discrete
setting, stable states may also be isolated, i.e.,, they cannot be reached from any other state.

106 Chapter 6 Application: structures reproducing multistability

From the specification in [Breindl et al., 2011], it is not clear whether the specified states (S1)
or (S2) can be isolated or not, or whether the existence of other stable states is excluded.

We may consider the following scenarios:

(a) There can be other stable states besides the specified ones; isolated states are allowed.

(b) There are only the specified stable states; isolated states are allowed.

(c) There are only the specified stable states; no isolated state is allowed.

(d) There can be other stable states besides the specified ones; no isolated state is allowed.

Constraint (a) imposes no restriction, thus more ASTGs are included in the enumeration. The
ASTGs obtained under the other constraints form a subset of those from (a). In their continuous
setting, [Breindl et al., 2011] do not address the question of isolated states and other possible
attractors. For this reason, constraint (a) has been chosen for the discrete modelling method.
The results are shown in Section 6.3.2 and 6.3.2.4.

6.2.3 Forward modelling workflow: from IGs to ASTGs

The forward modelling workflow starts from the enumeration of all possible IGs to find those
that are functional for the target stable states (S1) or (S2). The process is shown below.

1. IG-enumeration. Between any two components (including self-loops), there are three possible
cases: (activation, inhibition and no influence). For the interactions in a 3-component system,
there are 9 possible cases and 3

9 different IGs.

2. K-enumeration. For every component u œ V , there are 2

|Pre(u)| resources, where |Pre(u)|
is the cardinality of u’s predecessor set. For each resource Ê ™ Pre(u), K(u, Ê) œ
{0, . . . , max

u

}. Thus there are (max

u

+ 1)

2

|Pre(u)| combinations in K-enumeration. A
parameter K is compatible with an IG, if the logical parameters K(u, ·) from each compon-
ent u are compatible with the incoming interactions of u in the IG. Therefore, the parameter
space of K can be obtained by finding the compatible K(u, ·)’s from each component.

The table below shows different cardinality up to 3 of the predecessor set of a Boolean
component u and the number of compatible logical parameters K(u, ·), which is obtained by
checking the compatibility of all possible logical parameters.

predecessor # resources # K(v, ·) # compatible K(v, ·)|Pre(v)| 2

|Pre(v)|
2

2

|Pre(v)|

1 2 4 1

2 4 16 2

3 8 256 9

3. ASTG generation and checking stable states. The enumerated IGs and their compatible K’s
form the set of all compatible models M. Those models whose ASTGs carry (S1) or (S2)
are called functional.

4. Extracting functional IGs. The IGs of all functional models from both (S1) and (S2) are
extracted for further analysis of structural properties.

Step 2 for the K enumeration is the most time and memory consuming. A Boolean compon-
ent u with k predecessors has 2

k resources. The logical parameter under a resource K(u, Ê)

has two possible values {0, 1}. The number of all logical parameters of u under all resources,

6.3 Results and analysis 107

K(u, ·), is 2

2

|Pre|
= 2

2

k , i.e., the number is double exponentially increasing with the size of the
predecessor set.

6.2.4 Reverse engineering workflow: from ASTGs to IGs

The reverse engineering workflow starts from enumerating all graphs based on the state space
that have the required stable states from (S1) or (S2). The process is shown below.

1. Enumerate all graphs G
X

based on X = {0, 1}3. For all x œ X , u œ V , there are 2

possibilities for x
u

: it either keeps its value or is negated. For the required conditions (S1) or
(S2), the transition function of the three stable states is fixed to (0, 0, 0). The number of the
other possible transitions is: 2

(8ú3≠3ú3)

= 2

15.

2. ASTG-checking and model inference for all G
X

. The generalised algorithm Observability-
Snoussi-Model is applied on all graphs G

X

. All possible functional models are obtained.

3. Extracting functional IGs. The IGs from all functional models for both (S1) and (S2) are
extracted for further analysis of structural properties.

6.3 Results and analysis

This section contains the results of the continuous and the discrete method together with a
comparison between them. On the functional IGs resulting from the discrete method, the
realization measure and logical analysis are also applied.

6.3.1 Results from the continuous method: robustness measure

A TR can activate, inhibit or have no effect on another TR, thus there are three possibilities
(a

ij

œ {+1, ≠1, 0}) for each entry of the interaction matrix A. [Breindl et al., 2011] studied
only those interacting structures which are at least weakly connected. The number of all weakly
connected interaction matrices A of three TRs is 19008. For each interaction matrix A, a
robustness measure R is calculated.

Each interaction matrix denotes a topology. A topology is considered to be able to reproduce
the forward-invariant set in spite of perturbations, if there exists a feasible solution for R the
optimisation problem (6.13).

[Breindl et al., 2011] found 206 GRNs that can reproduce (S1) and 242 GRNs that can
reproduce (S2). For these functional GRNs, the complete enumeration of all “building blocks”
are shown in Figure 6.2. Here a building block is a TR with only incoming links. All networks
that are assembled from these building blocks are able to generate the specified (S1) or (S2), as
shown in Figure 6.2.

108 Chapter 6 Application: structures reproducing multistability

vi vivi vivi vi

(a) For (S1), i œ {1, 2, 3}.

v1v1v1 v1

(b) For (S2), x
1

.

vj vj vj vj

vj vj vj vj

(c) For (S2), i œ {2, 3}.

Figure 6.2: [Breindl et al., 2011] Building blocks from the robustness measure method in
[Breindl et al., 2011]. (a) shows the results from (S1), the two interactions entering x

i

from the
bottom are from the other two TRs. (b) and (c) show results from (S2). In (b), those incoming
arrows from bottom left and right denote regulations from x

2

and x
3

respectively. In (c), those
incoming arrows from the top right and right side are regulations from x

1

, and from TRs other
than x

i

, respectively.

6.3.2 Results from discrete methods

The functional models for the hypotheses (S1) and (S2) found by the forward modelling
workflow are the same as those from the reverse engineering workflow. The results for (S1) and
(S2) are summarised below.

6.3.2.1 Hypothesis (S1)

The forward modelling workflow obtained from 3

9 IG candidates 2197 functional models, whose
ASTGs satisfy (S1) (with stable states (0, 0, 1), (0, 1, 0), (1, 0, 0)). The reverse engineering
workflow started from enumerating all the 2

15 graphs based on X with fixed (S1), and inferred
the same set of 2197 functional models. These 2197 functional models contain 512 different
IGs and 1000 different K’s.

There are 512 functional IGs for (S1). Besides 10 non-weakly connected IGs, there are 502

weakly connected IGs with 2187 models. The 1000 K’s are comprised of 10 different logical
parameters for each component K

v1 , K
v2 and K

v3 , respectively.

The 512 IGs have different numbers of functional models. There is one IG which has 216

functional models. Some IG can have 36 functional models and overall there are 21 such IGs. A
complete statistics is given below.

IGs 1 21 147 343

funct. models 216 36 6 1

6.3 Results and analysis 109

6.3.2.2 Hypothesis (S2)

The forward modelling workflow obtained from 3

9 IG candidates 2197 functional models, whose
ASTGs satisfy (S2) (with stable states (0, 0, 0), (1, 0, 1), (1, 1, 0)). The reverse engineering
workflow found the same set of 2197 functional models from enumerating all 2

15 graphs based
on X with fixed (S2). These 2197 functional models also contain 512 different IGs and 1000

different K’s.

Like for (S1), there are 512 functional IGs for (S2). Besides 10 non-weakly connected IGs,
there are 502 weakly connected IGs with 2187 models. The 1000 K’s are composed by 10

different logical parameters for K
v1 , K

v2 and K
v3 , respectively.

A complete statistics for (S2) is given below.

#IGs 1 21 147 343

#funct. models 216 36 6 1

Note that although the numbers for (S2) are the same as for (S1), the set of functional models
for (S1) and (S2) are different.

6.3.2.3 Building blocks

The components x
1

, x
2

and x
3

in the continuous method are v
1

, v
2

and v
3

in the discrete
approach. An IG can be decomposed into three parts by looking at the incoming interactions
of each component. A building block for one component includes the incoming interactions
contained in the functional IGs. All functional IGs can be decomposed into such building blocks,
and they can also be recomposed from these.

The 512 IGs functional for (S1) are a full combination of the 8 building blocks for every
component v

1

, v
2

and v
3

. Figure 6.3 shows the building blocks for (S1). Similarly, the 512

functional IGs for (S2) contain also 8 building blocks from every component v
1

, v
2

and v
3

.
Figure 6.4 shows the building blocks for (S2).

For each IG assembled from these building blocks, there exists at least one model which can
realise (S1) (or (S2)). By combining three building blocks out of these 8 one can obtain all 512

IGs.

vi vivi vi vi vi vivi

Figure 6.3: The building blocks of (S1) from discrete modelling method. The arrows going to v
i

from below left and right are from v
j

and v
k

, respectively, where j ”= i and k = {1, 2, 3}\{i, j}.

110 Chapter 6 Application: structures reproducing multistability

v1 v1 v1v1 v1v1 v1 v1

(a) For (S2), v
1

.

vj vj vj vj

vj vj vj vj

(b) For (S2), i œ {2, 3}.

Figure 6.4: The building blocks of (S2) from discrete modelling method. (a) Building blocks of
component v

1

, the arrows going to v
1

from below left and right are from v
2

and v
3

, respectively.
(b) Building blocks of components v

j

with j œ {2, 3}, the links going to v
j

from top right is
from v

1

, and from right side is v
k

, k = {2, 3}\{j}.

Proposition 6.9 1. All functional IGs for (S1) can be obtained as combinations from these
building blocks. The IGs that are composed by choosing any of the 8 building blocks of
each of the three components in Figure 6.3 are functional for (S1).

2. All functional IGs for (S2) can be obtained as combinations from these building blocks.
The IGs that are composed by choosing any of the 8 building blocks of each of the
components in Figure 6.4 are functional for (S2).

Proof. For (S1), the following cases hold.

1. The forward modelling workflow is the process of searching for all compatible models for
all possible IGs of 3 components and extracting all functional IGs. If an IG has at least
one compatible model that can regenerate (S1), then this IG is included in the result. It
follows that the 512 IGs cover all possible functional IGs of 3 components.

2. The 8 building blocks from each of the three components can be freely combined to
recover the full set of 8

3

= 512 IGs.

Analogously, the above cases also hold for (S2). Proposition 6.9 is proved.

6.3.2.4 Additional constraints on stable states

While the numbers of functional models, IGs and building blocks are the same for (S1) and
(S2), the corresponding sets are different. The functional models under the constraints (b), (c)
and (d) in Section 6.2.2 are subsets of those under the constraint (a). The 8 building blocks for
each component appear also for the other constraints. For both (S1) and (S2), the 8 building
blocks of the three components can be combined freely to recover all 512 functional IGs under
constraint (a. This does not hold for the other constraints. As the most general case, the results
for constraint (a) are chosen for further analysis.

The results based on all four constraints are listed in Table 6.1.

6.3 Results and analysis 111

constraint # models # IGs # building blocks
v

1

v
2

v
3

(a) 2197 512 8 8 8

(b) 441 176 8 8 8

(c) 336 154 8 8 8

(d) 784 233 8 8 8

Table 6.1: Number of functional models, IGs and building blocks for condition (S1) or (S2),
depending on the four constraints (a) - (d).

6.3.3 Comparison of the results

[Breindl et al., 2011] used the robustness measure to determine all functional GRNs of three TRs.
A comparison with the results from the discrete modelling method is given in Section 6.3.3.1.
Moreover, some building blocks for (S1) are the same as for (S2). They are compared in
Section 6.3.3.2.

6.3.3.1 Discrete vs continuous methods

For (S1), the building blocks from the discrete and the continuous method are shown in Fig-
ure 6.5.

vi vivi vi vi

(a) discrete and continuous

vi vivi

(b) discrete

vi

(c) continuous

Figure 6.5: (S1), building blocks for v
i

, i œ {1, 2, 3} by the discrete and the continuous method.
(a) Both discrete and continuous. (b) Only discrete. (c) Only continuous. Links going to v

i

from
bottom left and right represent interactions from nodes v

j

, j ”= i, and v
k

, i ”= k ”= j.

The similarities and differences between the two approaches are further analysed below.

1. In the results obtained by the discrete method:

(a) The self-loop of a component v
i

, i œ {1, 2, 3} is always positive.

(b) The interactions between two different components can be positive or negative.

2. In the results obtained by the continuous method:

(a) The self-loop of a component v
i

, i œ {1, 2, 3} can be positive or negative.

(b) The interactions between two different components are always negative.

Similarly for (S2), the building blocks from the discrete and continuous method are shown
in Figure 6.6 and 6.7.

112 Chapter 6 Application: structures reproducing multistability

v1v1

(a) discrete and continuous

v1 v1v1 v1v1 v1

(b) discrete

v1 v1

(c) continuous

Figure 6.6: (S2), building blocks for v
1

by the discrete and the continuous method. (a) Both
discrete and continuous. (b) Only discrete. (c) Only continuous. Links going to v

1

from below
left and right represent interactions from v

2

and v
3

.

vj vj vj

vj vj vj

(a) discrete and continuous

vj

vj

(b) discrete

vj

vj

(c) continuous

Figure 6.7: (S2), building blocks for v
j

, j œ {2, 3} by the discrete and the continuous method.
(a) Both discrete and continuous. (b) Only discrete. (c) Only continuous. Links entering v

j

from top right is from v
1

, and from right side is v
k

, k = {2, 3}\{j}.

The differences between the building blocks for v
1

are as follows:

1. In the results obtained by discrete method:

(a) If v
1

has no self-activation, it receives two activations from v
2

and v
3

.

(b) The interactions (v
2

, v
1

) and (v
3

, v
1

) can be positive or negative.

2. In the results obtained by the continuous method:

(a) v
1

always has a self-activation.

(b) The interactions between two different components are always negative.

The difference between the building blocks of v
2

and v
3

are the following:

1. In the results obtained by discrete method:

(a) The self-loop of a component v
j

, i œ {2, 3} is always positive.

(b) The interactions between v
2

and v
3

can be positive or negative.

2. In the results obtained by the continuous method:

(a) The self-loop a component v
j

, i œ {2, 3} can be positive or negative.

(b) The interactions between v
2

and v
3

are always negative.

6.3.3.2 Discrete methods on (S1) and (S2)

The stable states in (S1) 100, 001 and 010 are in a some way symmetric to the stable states 000,
101 and 110 in (S2). They have the same values in components x

v2 and x
v3 , but opposite value

in x
v1 . The same number of functional IGs are obtained under both hypotheses (S1) and (S2).

Moreover, the functional IGs for (S1) and (S2) have exactly opposite signs in the interactions

6.3 Results and analysis 113

(v
1

, v
2

), (v
2

, v
1

), (v
1

, v
3

) and (v
3

, v
1

). In other words, if the signs of these four interactions in
each functional IG for (S1) are changed from positive to negative, and from negative to positive,
we get exactly the set of functional IGs for (S2). The reason lies in the symmetry of the two
hypotheses.

All 512 functional IGs for (S1) are summed up together with every present interaction. The
occurrence rate of an interaction is defined as how many times it shows up among all 512 IGs,
as shown in Figure 6.8a. The same process is made for the functional IGs of (S2), as shown in
Figure 6.8b.

v1

v2 v3

0.875

0.5 0.5

0.5

0.8750.875 0.25

(a) (S1)

v1

v2 v3

0.875

0.875 0.875

0.5

0.5

0.5

0.25

(b) (S2)

Figure 6.8: Sum of all 512 functional IGs for: (a) (S1) and (b) (S2). The weight of an interaction:
occurrence rate. Arrows: activations. Blunt links: inhibitions. The thickness of lines denote the
occurrence rates.

From Figure 6.8, the following can be observed.

• For (S1):

1. The self-loop of each component is always positive. The occurrence rate is 0.875.

2. For the interactions between different components, more inhibitions appear than
activations. The occurrence rate of each inhibition is 0.5 and of each activation is
0.25.

• For (S2):

1. The self-loop of each component is always positive. The occurrence rate is 0.875.

2. For the interactions between v
1

and v
2

, and between v
1

and v
3

, more activations
appear than inhibitions. The occurrence rate of each activation is 0.5 and of each
inhibition is 0.25.

3. For the interactions between v
2

and v
3

, more inhibitions appear than activations.
The occurrence rate of each inhibition is 0.5 and of each activation is 0.25.

In summary, for both (S1) and (S2), only self-activations are observed. The occurrence
rate of inhibitions in (S2) between v

2

and v
3

is higher than in (S1). The occurrence rate
of activations in (S2) between v

1

and v
j

with j œ {2, 3} is also higher than in (S1).

The two sets of functional IGs for (S1) and (S2) have 180 IGs in common. Moreover, these
180 IGs are a full combination of 5 building blocks for v

1

, and 6 building blocks for both v
2

and v
3

, as shown in Figure 6.9.

114 Chapter 6 Application: structures reproducing multistability

v1 v1v1 v1 v1

(a) v
1

vj vj vj

vj vj vj

(b) v
j

Figure 6.9: The building blocks of the 180 IGs functional for both (S1) and (S2). (a) From v
1

,
the links entering v

1

from below left and right are from v
2

and v
3

. (b) v
j

, the links entering
v

j

from top right come from v
1

, and from right come from v
k

, k = {2, 3}\{j}. Arrows:
activations. Blunt links: inhibitions.

The sum graph of these 180 IGs is shown in Figure 6.10.

v1

v2 v3

180

60180 180
727260 60

90

72
72

Figure 6.10: The sum of the 180 IGs. The numbers on the links denote the occurrence numbers
of each interaction.

From Figure 6.9 and 6.10, the following can be observed.

1. Each component always has a self-activation.

2. v
1

gets the same amount of activations and inhibitions from the other two components.

3. v
1

has the same amount of activations and inhibitions towards the other two components.

4. There are more inhibitions than activations between v
2

and v
3

.

6.3.4 Realizability

For each functional IG for (S1) and (S2), the realizability can be calculated. Because the position
of (S1) and (S2) are symmetric in the state space, for each functional IG for (S1), there exists
exactly one IG for (S2) such that the realizabilities of these two IGs are the same. No surprise
that, the capacity measures for the two hypotheses are also the same, 0.0276.

For the functional IGs for (S1) and (S2), a classification is done based on the number of the
functional and compatible parameters of each IG. Table 6.2 shows the number of the functional
and compatible parameters of each functional IG for (S1) or (S2). In the third row, the number
of IGs means that there are this amount of IGs which have this number of compatible and
functional parameters.

6.3 Results and analysis 115

of funct K 1 1 1 1 1 6 1 6 1 6 1 6 36 1 6 36 1 6 36 216

of compt K 1 2 4 8 9 9 18 18 36 36 81 81 81 162 162 162 729 729 729 729

of IGs 1 9 27 27 9 3 54 18 81 27 27 18 3 81 54 9 27 27 9 1

Table 6.2: Number of K’s for functional IGs for (S1) or (S2) (20 columns).

The numbers in Table6.2 are in common for (S1) and (S2). The reason is that for the stable
states (S1) and (S2) are very symmetric and only differ in one component.

There are 180 IGs functional for both (S1) and (S2). IGs do not have the same number of
functional parameters for both (S1) and (S2). In total, these 180 IGs have 1210 models for (S1)
and also 1210 models for (S2). A classification is done on the number of the functional and
compatible parameters of each IG, as shown in Table 6.3 for (S1) and 6.4 for (S2).

of funct K 1 1 1 1 6 1 6 1 6 1 6 36 1 6 36 1 6 36 216

of compt K 1 2 4 9 9 18 18 36 36 81 81 81 162 162 162 729 729 729 729

of IGs 1 2 1 9 3 12 4 3 1 27 18 3 18 12 2 27 27 9 1

Table 6.3: Functional parameters for (S1) for the 180 IGs functional for both (S1) and (S2) (19

columns).

of funct K 36 1 6 6 1 6 1 6 36 1 6 1 6 36 1 6 36 1 6 36 216

of compt K 1 2 2 4 9 9 18 18 18 36 36 81 81 81 162 162 162 729 729 729 729

of IGs 1 1 1 1 6 6 9 5 2 2 2 28 19 1 18 10 4 37 23 3 1

Table 6.4: Functional parameters for (S2) for the 180 IGs functional for both (S1) and (S2) (21

columns).

6.3.5 Logical analysis on functional models

To further analyse the functional models, the logical analysis method is applied on the functional
IGs and the logical parameters.

Logical analysis on IGs. In order to find meaningful logical IG patterns, the functional IGs
for the desired attractors are transformed into a sum of Boolean expressions. Here, the target
dynamics includes (S1) and (S2). As introduced in Chapter 4, transforming an IG of 3 Boolean
components into a Boolean expression, 18 Boolean variables are needed. The core of this logical
analysis method is the Quine-McCluskey algorithm (using the software PyBoolNet [Klarner
et al., 2016]) in order to compute the minimal DNF. However, 18 Boolean variables and 512 IGs
is too much to get the prime implicants in a reasonable time. Alternative tools can be applied,
but the number of prime implicants is still too high.

For this reason, the logical analysis method is applied on the building blocks of every
component. A building block includes at most three incoming interactions. Thus 6 Boolean
variables are needed for encoding. For example, the Boolean expressions of the building blocks
of v

i

for (S1) are shown in Figure 6.11.

116 Chapter 6 Application: structures reproducing multistability

vi vi vi vi vi vi vi vi

x

+
iix

�
ijx

�
ik x

+
iix

+
ij x

�
ijx

�
ik x

+
iix

+
ijx

�
ik x

+
iix

�
ijx

+
ik x

�
ik x

+
iix

�
ijx

+
ik x

+
iix

+
ij x

�
ij x

+
ik x

�
ik

x

+
iix

+
ijx

+
ik x

+
ii x

�
iix

�
ijx

�
ik

Figure 6.11: The Boolean expressions of all building blocks for (S1). Links going from bottom
left and right are v

j

and v
k

, respectively. i, j, k œ {1, 2, 3}.

The sum of these Boolean expressions is given as input into PyBoolNet to get the minimal
DNF. This minimal DNF provides a compact description of all building blocks. The minimal
DNF of the 8 Boolean expressions in Figure 6.11 is a disjunction of 5 clauses. In Figure 6.12,
they are transformed back to the form of graphs.

vi vi vivivi

x

�
ii x

�
ijx

�
ik x

+
iix

+
ij x

+
ik x

+
iix

+
ijx

+
ik

x

+
iix

�
ij x

+
iix

�
ik

Figure 6.12: The minimal DNF of all building blocks from (S1). Arrows: activations, blunt links:
inhibitions, dashed arrows: non-inhibitions, blunt dashed links: non-activations, dot-ended line:
any one of activation, inhibition and no influence.

The full combination of these 5 logical IG patterns is exactly the same set as the 512

functional IGs for (S1). In total there are 5

3

= 125 combinations in terms of logical expressions,
which is much less than 512.

Similarly, the minimal DNF of the 8 Boolean expressions from the building blocks for (S2)
is a disjunction of 5 clauses. Figure 6.13 shows them in terms of graphs.

v1 v1 v1 v1 v1

x

�
11 x

+
12x

+
13 x

+
11x

+
12 x

+
13 x

+
11x

�
12x

�
13 x

+
11x

+
12 x

+
11x

+
13

(a) v
1

vjvj vj vj vj

x

�
ji x

+
jjx

+
jk x

�
jix

+
jjx

+
jk x

+
jix

�
jjx

�
jk x

+
jjx

�
jk x

+
jix

+
jj

(b) v
j

, j œ {2, 3}

Figure 6.13: The minimal DNF of all building blocks from (S2). Arrows: activations, blunt links:
inhibitions, dashed arrows: non-inhibitions, blunt dashed links: non-activations, dot-ended line:
any one of activation, inhibition and no influence.

The full combination of these 5 logical IG patterns again gives exactly the same set of 512

functional IGs for (S2). In total there are 5

3

= 125 combinations in terms of logical expressions,
which is much less than 512.

6.3 Results and analysis 117

v1 v2

v3

Figure 6.14: An IG which has 216

functional K’s for (S1).

Logical analysis of K’s: (S1) One functional IG for
(S1) has 216 functional K’s, which is the maximum
among all 512 IGs. This IG is shown in Figure 6.14.
Moreover, if we look at the logical parameters for each
component, the 216 K’s are a full combination of 6 dif-
ferent K(v

i

, ·), for each v
i

œ {v
1

, v
2

, v
3

}. To keep the
problem simple, the logical analysis method is applied
on the logical parameters of an individual component,
K(v

i

, ·). It is enough to consider v
1

because it has similar results in the logical parameters and
structure of state transitions as component v

2

and v
3

.

The logical parameters K(v
1

, ·) in the case of 8 resources are transformed into a Boolean
expression using 8 Boolean variables. The minimal DNF obtained from the sum of 6 different
K(v

1

, ·)’s contains 5 clauses. They are translated back to the form of logical parameters, as
shown in Table 6.5. The results for K(v

2

, ·) and K(v
3

, ·) are not shown because they are similar
to v

1

.

K(v
1

, ·)\Res ÿ {v
3

} {v
2

} {v
2

, v
3

} {v
1

} {v
1

, v
3

} {v
1

, v
2

} {v
1

, v
2

, v
3

} f
K1

(v
1

, ·) 0 0 0 0 0 0 0 1 1

K2

(v
1

, ·) 0 0 0 0 0 1 1 1 1

K3

(v
1

, ·) 0 0 0 1 0 0 1 1 1

K4

(v
1

, ·) 0 0 0 1 0 1 1 1 1

K5

(v
1

, ·) 0 0 0 1 0 1 0 1 1

K6

(v
1

, ·) 0 0 0 1 1 1 1 1 1

Kp1

(v
1

, ·) 0 0 0 0 0 0 0 1 (K1

)

Kp2

(v
1

, ·) 0 0 0 ≠ 0 1 1 1 (K2

+ K4

)

Kp3

(v
1

, ·) 0 0 0 1 ≠ 1 1 1 (K4

+ K6

)

Kp4

(v
1

, ·) 0 0 0 1 0 ≠ 1 1 (K3

+ K4

)

Kp5

(v
1

, ·) 0 0 0 1 0 1 ≠ 1 (K4

+ K5

)

Table 6.5: For the IG in Figure 6.14 ((S1)), 6 K(v
1

, ·)’s. The minimal DNF is shown as 5

Kp

(v
1

, ·)’s. “≠”: either 0 or 1.

The 5 clauses in the minimal DNF are just one less than the number of logical parameters.
Combining two Boolean expressions by extracting the largest common factors, we can get a
shorter description of 3 logical parameter patterns, as shown in Table 6.6. This description is

x
1

x
2

x
3

(x
4

x
5

(x
6

x
7

+ x
6

x
7

) + x
4

x
5

(x
6

x
7

+ x
6

x
7

) + x
4

x
6

x
7

) x
8

.

K(v
1

, ·)\Res ÿ {v
3

} {v
2

} {v
2

, v
3

} {v
1

} {v
1

, v
3

} {v
1

, v
2

} {v
1

, v
2

, v
3

} f
Boolean variable x

1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

K1

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K2

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K3

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K4

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K5

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K6

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

Kp1

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

(x
6

x
7

+ x
6

x
7

) x
8

(K1

+ K2

)

Kp2

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

(x
6

x
7

+ x
6

x
7

) x
8

(K3

+ K5

)

Kp3

(v
1

, ·) x
1

x
2

x
3

x
4

x
6

x
7

x
8

(K4

+ K6

)

Table 6.6: For the IG in Figure 6.14 ((S1)), a short description of 6 K(v
1

, ·)’s in terms of
Boolean variables.

118 Chapter 6 Application: structures reproducing multistability

All 6 K(v
1

, ·) differ from each other in 4 resources. This can be directly related to the
state transitions in direction of v

1

in the state space. Figure 6.15 shows the state transitions in
direction of v

1

in the state space.

v3

v1

v2

000

111110

100
101

001

010 011

t1 t2 t3 t4 t5 t6

Figure 6.15: The 6 state transitions in direction of v
1

, from all functional ASTGs of IG in
Figure 6.14. Three black dots: (S1).

The incoming interactions of v
1

in Figure 6.14 include an activation (v1, v1), and two
inhibitions (v2, v1) and (v3, v1). The state transitions in Figure 6.15 can be tracked back to
K(v

1

, Res

v1(state)). For example, in state 101, Res

v1(101) = {v
2

, v
3

}, Ki

(v
1

, {v
2

, v
3

}) = 0

for i œ {1, 3}, Ki

(v
1

, {v
1

, v
1

}) = 1 for i œ {2, 3, 4, 6}. In state 000, Res

v1(000) = {v
2

, v
3

},
Ki

(v
1

, {v
2

, v
3

}) = 0 for i œ {1, 2}, Ki

(v
1

, {v
2

, v
3

}) = 1 for i œ {3, 4, 5, 6}. The structures
in Figure 6.15 correspond one by one to the K(v

1

, ·)’s in Table 6.5.

v1 v2

v3

Figure 6.16: An IG which has 216

functional K’s for (S2).

Logical analysis on K’s: (S2) Similarly, there is an
IG functional for (S2) which has 216 functional K’s.
These 216 K’s are a full combination of 6 K(v

i

, ·)’s,
for each v

i

œ {v
1

, v
2

, v
3

}. This IG is shown in
Figure 6.16 and the minimal DNF of its functional
K(v

i

, ·)’s for each component is analysed. Because v
2

is similar to v
3

both in the logical parameters and the
structure of state transitions, only the results of v

1

and
v

2

are presented in Table 6.7 and 6.9.

K(v
1

, ·)\Res ÿ {v
3

} {v
2

} {v
2

, v
3

} {v
1

} {v
1

, v
3

} {v
1

, v
2

} {v
1

, v
2

, v
3

} f
K1

(v
1

, ·) 0 0 0 0 0 1 1 1 1

K2

(v
1

, ·) 0 0 0 1 0 1 1 1 1

K3

(v
1

, ·) 0 0 0 1 1 1 1 1 1

K4

(v
1

, ·) 0 0 1 1 0 1 1 1 1

K5

(v
1

, ·) 0 1 0 1 0 1 1 1 1

K6

(v
1

, ·) 0 1 1 1 1 1 1 1 1

Kp1

(v
1

, ·) 0 1 1 1 1 1 1 1 1

Kp2

(v
1

, ·) 0 ≠ 0 1 0 1 1 1 1

Kp3

(v
1

, ·) 0 0 ≠ 0 0 1 1 1 1

Kp4

(v
1

, ·) 0 0 0 ≠ 0 1 1 1 1

Kp5

(v
1

, ·) 0 0 0 1 ≠ 1 1 1 1

Table 6.7: For the IG in Figure 6.16, 6 functional K(v
1

, ·)’s for (S2), 5 K(v
1

, ·)p’s from the
minimal DNF. “≠”: either 0 or 1.

All 6 K(v
1

, ·) differ from each other in 4 resources. Again, this can be directly related to the
state transitions in direction of v

1

in the state space. Figure 6.17 shows the state transitions in
direction of v

1

according to IG (Figure 6.16) and the 6 different K(v
1

, ·).

6.3 Results and analysis 119

v3

v1

v2

000

111110

100
101

001

010 011

t1 t2 t3 t4 t5 t6

Figure 6.17: The 6 state transitions in direction of v
1

, from all functional ASTGs of IG in
Figure 6.16. Three black dots: stable states of (S2).

There are 5 clauses obtained in the minimal DNF by using direct encoding and PyBoolNet on
6 K(v

1

, ·). The parameters in Table 6.7 are very similar with the K(v
1

, ·)’s for (S1). Combining
two Boolean expression by extracting the largest common factors, we can get a short description
of these logical parameters, as shown in Table 6.8.

K(v
1

, ·)\Res ÿ {v
3

} {v
2

} {v
2

, v
3

} {v
1

} {v
1

, v
3

} {v
1

, v
2

} {v
1

, v
2

, v
3

} f
Boolean variable x

1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

K1

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K2

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K3

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K4

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K5

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

K6

(v
1

, ·) x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

1

Kp1

(v
1

, ·) x
1

x
2

x
3

x
5

x
6

x
7

x
8

(K1

+ K2

)

Kp2

(v
1

, ·) x
1

(x
2

x
3

+ x
2

x
3

) x
4

x
5

x
6

x
7

x
8

(K3

+ K6

)

Kp3

(v
1

, ·) x
1

((x
2

x
3

+ x
2

x
3

) x
4

x
5

x
6

x
7

x
8

(K4

+ K5

)

Table 6.8: For the IG in Figure 6.16, a short description of 6 K(v
1

, ·)’s in terms of Boolean
variables, for (S2).

K(v
2

, ·)\Res ÿ {v
3

} {v
2

} {v
2

, v
3

} {v
1

} {v
1

, v
3

} {v
1

, v
2

} {v
1

, v
2

, v
3

} f
K1

(v
2

, ·) 0 0 0 0 0 0 0 1 1

K2

(v
2

, ·) 0 0 0 0 0 1 1 1 1

K3

(v
2

, ·) 0 0 0 1 0 0 1 1 1

K4

(v
2

, ·) 0 0 0 1 0 1 1 1 1

K5

(v
2

, ·) 0 0 0 1 0 1 0 1 1

K6

(v
2

, ·) 0 0 1 1 0 1 1 1 1

Kp1

(v
2

, ·) 0 0 0 0 0 0 0 1 1

Kp2

(v
2

, ·) 0 0 ≠ 1 0 1 1 1 1

Kp3

(v
2

, ·) 0 0 0 ≠ 0 1 1 1 1

Kp4

(v
2

, ·) 0 0 0 1 0 ≠ 1 1 1

Kp5

(v
2

, ·) 0 0 0 1 0 1 ≠ 1 1

Table 6.9: For the IG in Figure 6.16, 6 functional K(v
2

, ·)’s. 5 Kp

(v
2

, ·)’s from the minimal
DNF, for (S2). “≠”: either 0 or 1.

Similarly, the state transitions in direction of v
2

according to IG (Figure 6.16) and the 6

different K(v
2

, ·) are shown in Figure 6.18

120 Chapter 6 Application: structures reproducing multistability

v3

v1

v2

000

111110

100
101

001

010 011

t1 t2 t3 t4 t5 t6

Figure 6.18: The 6 state transitions in direction of v
2

, from all functional ASTGs of IG in
Figure 6.16. Three black dots: stable states of (S2).

In Table 6.9, there are 5 Kp

(v
2

, ·)’s obtained in the mDNF by using direct encoding and
PyBoolNet on 6 K(v

2

, ·). By combining two Boolean expression by extracting the largest
common factors, we can get a shorter description of these logical parameters, as shown in
Table 6.10.

K(v
1

, ·)\Res ÿ {v
3

} {v
2

} {v
2

, v
3

} {v
1

} {v
1

, v
3

} {v
1

, v
2

} {v
1

, v
2

, v
3

} f
Boolean variable x

1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

re-order ÿ {v
3

} {v
1

} {v
1

, v
2

, v
3

} {v
2

} {v
2

, v
3

} {v
1

, v
3

} {v
1

, v
2

}
x

1

x
2

x
5

x
8

x
3

x
4

x
6

x
7

K1

(v
2

, ·) x
1

x
2

x
5

x
8

x
3

x
4

x
6

x
7

1

K2

(v
2

, ·) x
1

x
2

x
5

x
8

x
3

x
4

x
6

x
7

1

K3

(v
2

, ·) x
1

x
2

x
5

x
8

x
3

x
4

x
6

x
7

1

K4

(v
2

, ·) x
1

x
2

x
5

x
8

x
3

x
4

x
6

x
7

1

K5

(v
2

, ·) x
1

x
2

x
5

x
8

x
3

x
4

x
6

x
7

1

K6

(v
2

, ·) x
1

x
2

x
5

x
8

x
3

x
4

x
6

x
7

1

Kp1

(v
2

, ·) x
1

x
2

x
5

x
8

x
3

x
4

(x
6

x
7

+ x
6

x
7

) (K1

+ K2

)

Kp2

(v
2

, ·) x
1

x
2

x
5

x
8

x
3

x
4

(x
6

x
7

+ x
6

x
7

) (K3

+ K5

)

Kp3

(v
2

, ·) x
1

x
2

x
5

x
8

x
4

x
6

x
7

(K4

+ K6

)

Table 6.10: For the IG in Figure 6.16, a short description of 6 K(v
2

, ·)’s in terms of Boolean
variables, for (S2).

Structure comparison The structures of the state transitions in direction of v
1

for (S1) are
very similar to those for (S2). The symmetry of the two groups is related to the different
incoming interactions of the IG. The regulations from v

2

and v
3

to v
1

for (S1) are activations,
while for (S2) there are inhibitions. As can be seen from Figure 6.19, the structures of the
v

1

-transitions for (S2) are like a “flip” in the dimension of v
1

.

v3

v1

v2

000

111110

100
101

001

010 011

t1 t2 t3 t4 t5 t6

(S1)

t6 t3 t5 t4 t2 t1

000

111110

100
101

001

010 011

v3

v1

v2

(S2)

Figure 6.19: Symmetric structures of the state transitions in direction of v
1

for (S1) from all
functional ASTGs of IG in Figure 6.14, and for (S2) from all functional ASTGs of the IG in
Figure 6.16.

6.4 Conclusion and discussion 121

Moreover, the structures of the state transitions in direction of v
1

and v
2

for (S2) are also
very similar. v

1

has only positive incoming interactions, while v
2

has one inhibition from v
3

.
From Figure 6.20 for (S2), the structures of v

2

-transitions are like a “rotation” to the back by
180 degrees plus a“flip” in the dimension of v

2

.

v3

v1

v2

000

111110

100
101

001

010 011

t1 t2 t3 t4 t5 t6

t5 t3 t1t2 t4t6

000

111110

100
101

001

010 011

v2

v1

Figure 6.20: Symmetric structures of the state transitions in direction of v
1

and v
2

for (S2), from
all functional ASTGs of the IG in Figure 6.16.

6.4 Conclusion and discussion

This chapter explored the structures that are functional for multistabilities. In this specific
application, multistabilities are modelled by two hypotheses on three stable states within a
system of 3 regulatory components. Without prior knowledge, exhaustive searching is a first
choice to spot all solutions under certain required criteria which includes the way of modelling
the regulatory system and in which situation is the desired multistabilities satisfied. Both
continuous and discrete modelling approaches were applied to obtain all possible regulatory
patterns related with these multistabilities.

[Breindl et al., 2011] found a group of GRNs which are able to realise the required three stable
steady states. A GRN is modelled by differential equations with only qualitative information
from the topology of the GRN. The three stable steady states are treated as a forward invariant
set for the system. For each network structure, a robustness measure is defined and transformed
into an optimisation problem. A GRN is counted as functional only when there exists a feasible
solution to this optimisation problem. For the hypothesis (S1), 206 weakly connected GRNs
are found to be functional. For each transcription factor, 6 building blocks are found. A similar
process was applied for the hypothesis (S2). 242 weakly connected GRNs are found to be
functional, where 4 building blocks are found for one transcription factor, and 8 for the other
two.

The two discrete modelling workflows were applied to reveal the relations between multista-
bility and all possible functional GRNs. The multistabilities were modelled as three stable
states in a system of three Boolean components. Equivalent initial setups to those in [Breindl
et al., 2011] were applied. Both hypotheses (S1) and (S2) are transformed into stable states in a
Boolean state space. The forward modelling workflow searches functional IGs from enumerated
models whose ASTGs are able to generate the required stable states. For both hypotheses (S1)
and (S2), 512 IGs were found where for each component there are 8 building blocks. The
reverse engineering workflow was applied as well. It enumerates all graphs on the Boolean state
space which have the required stable states. The generalised Lorenz Algorithms are applied to

122 Chapter 6 Application: structures reproducing multistability

infer all functional models. At the end, the same set of functional models is found as with the
forward modelling workflow.

The reasons for finding more GRNs by the discrete than by the continuous method from
[Breindl et al., 2011] can be the following.

1. The parameters space. For an IG, all compatible logical parameter functions enable us
to see all possible models of this IG. However, in the continuous method, in case of
multiple incoming regulations only multiplication was allowed. Therefore, certain types
of parameters in the discrete method are not considered in [Breindl et al., 2011].

2. Modelling the required dynamics. The three stable steady states in continuous modelling
were treated as forward invariant sets. This does not give information whether other stable
steady states are allowed. In our discrete modelling method, we allow the existence of
other steady states and these can even be isolated. There are some ASTGs which are
functional in our approach, but not considered in [Breindl et al., 2011].

Further analysis of these IGs including realizability and the capacity measure show how
much those IGs can realise the required dynamics. The logical analysis method is applied
on the building blocks for each component and on some logical parameters. More compact
descriptions can be obtained. As a result, a few logical IG patterns are found for the two
hypotheses. Moreover, the logical parameter patterns are highly related with the state transitions
in direction of the corresponding dimension in the state space. The symmetry properties between
these structures of the state transitions may lead to other ways of reducing the search space.

Chapter 7

Application: structures for single-stripe pattern

A. Turing in the 1950’s described biological pattern formation as a morphogen phenomenon
[Turing, 1952]. Later, Wolpert formally developed the concept of morphogen gradient and
proposed the famous “French flag” model for the stripe-forming in the embryogenesis of the fruit
fly Drosophila melanogaster [Wolpert, 1996]. Experimental evidence shows that cells receive
positional information which instructs them to develop different shapes and structures [Wolpert,
1996]. In the early stages of the embryogenesis of Drosophila melanogaster, the forming
of single stripes is a crucial spatial phenomenon. Here, the concentration gradient of the
transcription factors Bicoid and Dorsal plays a significant role [Jaeger et al., 2004], similar to
the role of Activin in the development of the vertebrate neural tube in the frog Xenopus [Green,
2002].

A graded signal called morphogen gradient leads to gene expression changes in cells and cell
differentiation in a concentration-dependent way [Kitano, 2004, Ashe and Briscoe, 2006]. Some
morphogen gradients are increasing from the lowest concentration along the cell development,
and some are decreasing from high concentration to low. Figure 7.1 illustrates a decreasing
morphogen gradient.

morphogen gradient

Cell index

thresholds

c
o
n
c
e
n
t
r
a
t
i
o
n
o
f
m
o
r
p
h
o
g
e
n

1 2

... ... i

Figure 7.1: The morphogen gradient.
Vertical axis: concentration level of
the morphogen signal. Horizontal axis:
the spatial cell lines receiving differ-
ent concentration of the morphogen
signal.

It is not clear yet how the morphogen should be inter-
preted and how it relates to the robustness and precision
of biological patterns. Various studies explored the pos-
sible mechanisms for morphogen interpretation [Ashe
and Briscoe, 2006, Cotterell and Sharpe, 2010, Schaerli
et al., 2014, Seeger, 2012]. For example, the mechan-
isms can be binding-site affinity, combinatorial input,
the feed-forward loop, positive feedback, cross repres-
sion and reciprocal repressor gradient etc.

For decades, the process of stripe-forming by the
morphogen gradient in the early embryo development
of Drosophila melanogaster has been an important
topic in developmental biology. [Wolpert, 1968] pro-
posed the famous French Flag problem to model this
problem. Later, [Cotterell and Sharpe, 2010] studied a
simplified version of the French Flag problem using partial differential equations. They came
up with an atlas of GRNs that are able to realise a single stripe. 3-component GRNs were
used to model the underlying regulatory system of single stripe-forming: an input gene which
receives the morphogen gradient signal, an output gene whose concentration level will show a

123

124 Chapter 7 Application: structures for single-stripe pattern

single stripe pattern along the cell line, and a third gene representing other factors that affect the
stripe-forming. The concentration of the output/target gene is low-high-low in a single stripe
under the low-medium-high levels of the morphogen gradient. At the end, [Cotterell and Sharpe,
2010] identified six distinct regulatory mechanisms to implement the morphogen on a single
stripe.

[Seeger, 2012] studied the single stripe-forming problem using discrete modelling and model
checking. The morphogen gradient and the single stripe pattern are modelled in the Thomas
formalism. The dynamics of the single stripe is then translated into computational tree logic
(CTL) and attractor logic for model checking. Two Boolean components are used to model the
morphogen gradient, therefore in total 5 components are needed for modelling the stripe-forming
system. A Boolean variable with five predecessors has 2

5

= 32 resources. There are more
than 4 billion possible choices for the logical parameter function, which makes it impractical to
search through all of them. To deal with a component carrying 5 incoming interactions, [Seeger,
2012] reduced the running time by slicing the scale based on the input layer and stopping search
once reaching a certain criteria. Thousands of regulatory networks which can generate a stripe
with a certain set of parameters were obtained. Comparing these results with [Cotterell and
Sharpe, 2010], five mechanisms out of six were found to be able to form a single stripe. The
sixth mechanism was not considered in Seeger’s work because the input gene is the same as the
output.

In Section 7.1 we study the single stripe problem using our discrete modelling workflows in
order to explore possible functional GRNs. The single stripe is modelled by attractors which can
include stable states and cyclic attractors. The morphogen gradient signal is modelled by two
Boolean components like in [Seeger, 2012]. Section 7.2 presents the results together with a first
analysis. The structural properties of these functional IGs are further studied using the logical
analysis method in Section 7.3. Finally, we give a conclusion and discussion in Section 7.4.

7.1 Discrete modelling workflows: stripe-forming GRNs

The discrete modelling workflows start with a hypothesis on the desired property of a regulatory
system. This desired property usually corresponds to some attractors in the dynamics. The
number of components in the regulatory system and the state space need to be determined
before representing the desired property by some attractors. Both the enumeration of all possible
models or all possible ASTGs with the desired property is taking a lot of time and memory. A
full enumeration of a 5-component system would take too much time. For this reason, our goal
is to model the system with up to 4 components.

For modelling the low-medium-high levels of the morphogen gradient, a multi-valued
component seems natural. But, to keep the same setup as [Cotterell and Sharpe, 2010], the
morphogen gradient should only regulate the input gene. Section 7.1.1 will present the modelling
of the single stripe pattern and the morphogen gradient.

7.1.1 Modelling setup

Single stripe pattern [Cotterell and Sharpe, 2010] defined a single stripe as a continual
changing variable along a line of 32 cells. These 32 parallel cells receive a fixed decreasing
morphogen gradient signal to the target gene. The output gene shows a single stripe pattern if
the following 3 regions are continually observed: a region of low concentration level for at least

7.1 Discrete modelling workflows: stripe-forming GRNs 125

2 consecutive cells, followed by a region of high level for a maximum of 16 successive cells,
and a region of low level for at least 2 consecutive cells.

[Seeger, 2012] modelled the single stripe in the following way. When the morphogen input
is low, the required output gene will be low after enough time, eventually. For the medium
morphogen input, the output gene will stay at high level, eventually. For the high level of
morphogen input, the output gene will eventually stay at low level.

The gene names from [Seeger, 2012] are applied in this study where the input gene is
coloured in red and the target gene in green. Let rr be the input gene and gg be the output
gene. The concentration of the gene product can be low or high, denoted by 0 or 1, respectively.

morphogen gradient

thresholds

c
o
n
c
e
n
t
r
a
t
i
o
n
o
f
m
o
r
p
h
o
g
e
n

0

1

output gene

d
i
s
c
r
e
t
e
a
c
t
i
v
i
t
y
l
e
v
e
l

Cell index

1 2

... ... i

l
o
w

m
e
d
i
u
m

h
i
g
h

Figure 7.2: The concentration level of the output
gene is high when the morphogen signal is at
medium level, and low in other two levels.

The output gene is supposed to show the off-
on-off pattern under the low-medium-high
level input signal, as shown in Figure 7.2. The
concentration level of gg eventually reaches
a low (or high) level is specified as: there is
at least an attractor where x

gg

= 0 (or 1) for
all states. This attractor can be a stable state
or a cyclic attractor in the ASTG.
Definition 7.1 (Single stripe pattern) Con-
sider a GRN including the morphogen gradi-
ent signal, an input gene accepting the signal
and an output gene. The ASTG of the GRN
shows a single stripe pattern, if the following
appears.

1. When the morphogen signal is at low
or high level, there exists at least one
attractor where the output gene is stable
at low level.

2. When the morphogen signal is at me-
dium level, there exists at least one at-
tractor where the output gene is stable
at high level.

An IG is called a stripe-forming IG, if it can have a compatible model that generates the
single stripe pattern in its ASTG, as in Definition 7.2.
Definition 7.2 (Stripe-forming IG) An IG I (with an input component and an output component)
is called a stripe-forming IG if, in the ASTG generated by a compatible model M = (I, K), the
output component shows a single stripe pattern.

Modelling the morphogen input A morphogen gradient is shown either as an increasing
or a decreasing concentration of a gene product. Here we choose an increasing morphogen
gradient. This does not change the set of functional models for the single stripe. To achieve
low-medium-high levels of the morphogen gradient in a discrete setting, at least three distinct
concentration ranges are needed. A direct choice is to use a multi-valued component representing
the morphogen input m. Let the concentration levels of m be x

m

œ {0, 1, 2}.

Gene rr is receiving the morphogen input and gene gg is the output. We have x
rr

, x
gg

œ
{0, 1}, for rr and gg are Boolean. Therefore, the state space X is {0, 1, 2} ◊ {0, 1}2. Let the

126 Chapter 7 Application: structures for single-stripe pattern

order of components in a state x be (x
m

x
rr

x
gg

). Let 0≠≠ represent a subspace including the
states with x

m

= 0, and “≠≠” denoting the subspace {0, 1}2 for x
rr

and x
gg

. The morphogen
gradient m only regulates the input gene rr . Gene gg can be regulated by rr and itself. Therefore,
there are no state transitions between the subspaces Xm0

= {0}◊{0, 1}2, Xm1
= {1}◊{0, 1}2

and Xm2
= {2} ◊ {0, 1}2.

Take three states from these three subspaces with the same values for x
rr

and x
gg

. Let
M = (I, K) be some model with V = {m, rr , gg} and m œ Pre(rr). The state transitions in
the rr-dimension of the three states are defined by the logical parameters K(rr , Res

rr

(state)).

morphogen level x
m

x Res

rr

(x) K(rr , Res

rr

(x))

low 0 (0x
rr

x
gg

) Ê K(rr , Ê)

medium 1 (1x
rr

x
gg

) Ê
1

K(rr , Ê
1

)

high 2 (2x
rr

x
gg

) Ê
2

K(rr , Ê
2

)

Table 7.1: Logical parameters K(rr , Res

rr

(state)) under three states of different morphogen
levels.

Assume that m activates the input gene rr . As long as no multiple edges are allowed in the
modelling, Ë(m, rr) can be either 1 or 2.

1. If Ë(m, rr) = 1, we get m /œ Res

rr

(0x
rr

x
gg

) = Ê and Ê
1

= Ê
2

= Ê fi {m}. Thus,
K(rr, Ê

1

) = K(rr, Ê
2

).

2. If Ë(m, rr) = 2, we get m /œ Ê
1

= Ê and Ê
2

= Ê fi {m}. Thus, K(rr, Ê) = K(rr, Ê
1

).

Though x
m

can be constant at three different levels, m can only give one influence to rr .
Depending on Ë(m, rr), the state transitions in two subspaces are isomorphic, either X0 and
X1, or X1 and X2. In this way, the single stripe pattern is only possible if the ASTG contains
two kinds of attractors with x

gg

constantly being at 0 and 1. This is not a natural setup for a
model to form a three-regional single stripe.

In the continuous approach [Cotterell and Sharpe, 2010], m also only regulates rr , but all
three levels of effect on gg can be achieved. Multiple edges with m regulating rr on both
thresholds 1 and 2 would be needed. However, this is not allowed in our modelling framework.
Therefore, the strategy of using a multi-valued component to model the morphogen gradient is
not applied. [Seeger, 2012] applied two Boolean components to model the morphogen gradient,
three values 00, 01 and 10 are used to denote the levels low, medium and high respectively.
There is no restriction on gg if the morphogen components are 11.

The state space X for using two components for the morphogen signal is {0, 1}4. A state
of the system is described by the vector x = (x

m0x
m1x

rr

x
gg

). 00≠≠ represents a subspace
where x

m0x
m1 = 00, and “≠≠” means x

rr

and x
gg

in {0, 1}2. From the setup, the morphogen
components m

0

and m
1

only regulate themselves and the input gene rr . Gene gg can only be
regulated by rr and itself. Therefore, for any model satisfying this setup, in the corresponding
ASTG, there do not exist state transitions between the four subspaces X00

= {00} ◊ {0, 1}2,
X01

= {01} ◊ {0, 1}2, X10

= {10} ◊ {0, 1}2, and X11

= {11} ◊ {0, 1}2.

Now we show that this set up is suitable for generating the single stripe pattern and that it
does not cause multiple edges. Let M = (I, K) be a model with V = {m

0

, m
1

, rr , gg} and let
Ê denote the resource of rr in state 00x

rr

x
gg

. The logical parameters K(rr , Res

rr

(state)) for
the different states are listed in Table 7.2.

7.1 Discrete modelling workflows: stripe-forming GRNs 127

morphogen level (x
m0x

m1) x Res

rr

(x) K(rr , Res

rr

(x))

low (00) (00x
rr

x
gg

) Ê K(rr , Ê)

medium (01) (01x
rr

x
gg

) Ê fi {m
1

} K(rr , Ê fi {m
1

})

high (10) (10x
rr

x
gg

) Ê fi {m
0

} K(rr , Ê fi {m
0

})

other (11) (11x
rr

x
gg

) Ê fi {m
0

, m
1

} K(rr , Ê fi {m
0

, m
1

})

Table 7.2: Logical parameters K(rr , Res

rr

(state)) for states with different morphogen levels.

The components m
0

and m
1

are fixed to activate the input gene rr . A model M = (I, K) is
more realistic if it satisfies the observability and the Snoussi-conditions. In order to get a single
stripe in the ASTG of M , the following two requirements are needed for the logical parameters
K(rr , ·).

1. (m
0

, rr) and (m
1

, rr) are observable. In M = (I, K), there exists resources ’1 ™
Pre(rr)\{m

0

} and ’2 ™ Pre(rr)\{m
1

}, such that

(a) K(rr , ’1

) < K(rr , ’1 fi {m
0

}),

(b) K(rr , ’2

) < K(rr , ’2 fi {m
1

}).

2. (m
0

, rr) and (m
1

, rr) satisfy the Snoussi-condition. In M = (I, K), for all resources
’1 ™ Pre(rr)\{m

0

}, ’2 ™ Pre(rr)\{m
1

}, it holds that

(a) K(rr , ’1

) Æ K(rr , ’1 fi {m
0

}),

(b) K(rr , ’2

) Æ K(rr , ’2 fi {m
1

}).

For the four resources of rr Res œ {Ê, Ê fi {m
0

}, Ê fi {m
1

}, Ê fi {m
0

, m
1

}}, it is possible that
for some K(rr , Res) œ {0, 1}, the two requirements above can be satisfied.

Summary The single stripe pattern is modelled by a set of attractors with the target gene gg

being off-on-off along a low-medium-high morphogen gradient. The latter is modelled by three
cases 00, 01, 10 of two Boolean components m

0

and m
1

that activate rr .

Figure 7.3 shows the setup of the method. Each stripe-forming IG contains two Boolean
component m

0

and m
1

(the morphogen gradient), an input gene rr which is activated by m
0

and m
1

, and an output gene gg. The regulatory interactions between the components rr and gg

are not fixed.

rr gg

m0 m1

+ +

+ +

Figure 7.3: The structure of a possible IG. Arrows denote activations, and arrows with blunt
dash denote one of the three: positive, negative, no influence.

128 Chapter 7 Application: structures for single-stripe pattern

7.1.2 Forward modelling workflow

After fixing the target ASTG attractors and the initial setup of the stripe-forming IGs, the forward
modelling workflow can be applied as follows.

1. Enumerate all possible IGs on {rr , gg} with morphogen inputs m
0

and m
1

activating rr .
Between rr and gg, there are 4 possible interactions, each of which can be an activation,
an inhibition, or no influence at all. Therefore, there are 3

4

= 81 possible IGs.

2. For each IG, enumerate all compatible logical parameter functions. These can be obtained
as all the combinations of the logical parameters of each component. For a component
u and a resource Ê, we have K(u, Ê) œ {0, 1}. For all 2

|Pre(u)| resources, the logical
parameters of u belong to {0, 1}2

|Pre(u)| . This gives 2

2

|Pre(u)| possible values. All logical
parameters K(u, ·) have to be checked whether they are compatible with the IG. The
number of compatible logical parameters for different cases of a Boolean component v is
shown below.

predecessor # resources # K(u, ·) # compatible K(u, ·)|Pre(u)| 2

|Pre(u)|
2

2

|Pre(u)|

1 2 4 1

2 4 16 2

3 8 256 9

4 16 65536 114

At the end of this step, 6, 916 compatible models are found.

3. All enumerated compatible models are checked whether their ASTGs contain a single
stripe pattern.

4. Functional model analysis. The realizability is calculated. Building blocks of each
component are found in all functional IGs. The logical analysis method is applied for
interesting patterns.

7.1.3 Reverse engineering workflow

The reverse engineering workflow includes three steps: enumerating all graphs based on a
state space with the single stripe information, model inference with the generalised Lorenz
Algorithms and functional model analysis.

Here are the details for the first step. The single stripe information is modelled by a sequence
of attractors. These attractors are not fixed but described by a property of x

gg

. Since m
0

and m
1

only have self-regulations, in any ASTG for such IGs, there do not exist state transitions between
the 4 subspaces corresponding to the different values of x

m0x
m1 : 00 ◊ {0, 1}2, 01 ◊ {0, 1}2,

10 ◊ {0, 1}2 and 11 ◊ {0, 1}2. In other words, the ASTG is a graph with 4 isolated subgraphs.
Moreover, because gg receives no direct regulations from m

0

and m
1

, the state transitions in
direction of gg in all 4 subgraphs of such an ASTG are isomorphic to each other.

According to Proposition 3.30 on ASTG construction in Section 3.1.3, the ASTGs in a state
space can be constructed by choosing from the eligible row structures for each component. Thus,
the enumeration of all graphs based on the state space {0, 1}4 is executed for each component
with the prior knowledge that the state transitions in direction of gg in all 4 subgraphs of such
an ASTG being isomorphic.

7.2 Results and analysis 129

The whole process of the reverse engineering workflow is detailed below.

1. Enumerate all graphs based on X = {0, 1}4 containing a single stripe pattern in two
steps:

(a) Construct all sub-ASTGs based on a subspace X
rr ,gg

= {0, 1}2. It is the same as in
Example 3.1.4, there exists 196 ASTGs which can carry a compatible model.

i. There are 84 ASTGs carrying attractors where gg is stable at low level, denoted
by T

0

.

ii. There are 84 ASTGs carrying attractors where gg is stable at high level, denoted
by T

1

.

(b) Construct graphs based on X = {0, 1}4 by combining sub-ASTGs on the four
subspaces.

i. For the sub-ASTGs in subspace 00 ◊ {0, 1}2, choose a sub-ASTG from T
0

.

ii. For the sub-ASTGs in subspace 01 ◊ {0, 1}2, choose a sub-ASTG from T
1

.

iii. For the sub-ASTGs in subspace 10 ◊ {0, 1}2, choose a sub-ASTG from T
0

.

iv. For the sub-ASTGs in subspace 11 ◊ {0, 1}2, choose any one of the 196

sub-ASTGs.

v. The state transitions in direction of gg in all four subspaces are isomorphic,
because there is no regulation from m

0

and m
1

to gg. T
0

and T
1

have 7 gg-slices
along rr in common.

Moreover, there are only 14 different rr-slices along gg in each subspace. In total,
14

4 ◊ 7 = 268, 912 graphs based on X are enumerated, denoted by G
X

.

2. Model inference. The generalised algorithm Observable-Snoussi-Model is applied for
each enumerated graph based on X . Thus, all functional models for the single stripe
pattern can be obtained.

3. Functional model analysis. This step is the same as in the forward modelling workflow.

7.2 Results and analysis

7.2.1 Results of the forward modelling workflow

Using the forward modelling workflow, 1520 stripe forming models are obtained which contain
37 different IGs. In every IG, m

0

and m
1

are activating themselves and rr . Figure 7.4 shows
the building blocks of rr and gg consisting of the incoming interactions to the component in
these stripe-forming IGs.

130 Chapter 7 Application: structures for single-stripe pattern

(1) (2) (3) (4)

(5) (6) (7) (8) (9)

m0 m1

rr rr

rr rr rr

rr rr

rrrr

rr

(a) Building blocks of rr .

gg gg gg gg gg

(a) (b) (c) (d) (e)

(b) Building blocks of gg.
rr gg

{(1), (4)} {(a)}
{(3), (6)} {(e)}

{(1), . . . , (9)} {(b), (c), (d)}
{(7), (8), (9)} {(a), (b), (c), (d), (e)}

(c) Stripe-forming IGs.

Figure 7.4: Building blocks from rr and gg from 37 stripe-forming IGs. Blunt edges represent
inhibition and arrows denote activation. (a) Two morphogen inputs activate rr , and 9 building
blocks of rr . (b) 5 building blocks of gg. (c) 37 stripe-forming IGs represented by 4 groups of
building blocks of rr from (a) and of gg from (b), i.e.,, combining one building block from the
left column under rr and one from the right column under gg gives a stripe-forming IG.

7.2.2 Results of the reverse engineering workflow

From all ASTGs carrying a single stripe, 227 stripe-forming IGs are obtained from the reverse
engineering workflow, which can be listed as follows.

Case (m
0

, rr) (m
1

, rr) # of IGs
1 (m

0

, rr) /œ E (m
1

, rr) /œ E 27

2 Á(m
0

, rr) = +/≠ (m
1

, rr) /œ E 21

3 (m
0

, rr) /œ E Á(m
1

, rr) = +/≠ 21

4 Á(m
0

, rr) = + Á(m
1

, rr) = ≠ 21

5 Á(m
0

, rr) = ≠ Á(m
1

, rr) = + 21

6 Á(m
0

, rr) = ≠ Á(m
1

, rr) = ≠ 37

7 Á(m
0

, rr) = + Á(m
1

, rr) = + 37

Table 7.3: Seven cases among all 227 functional IGs which are obtained by the reverse engin-
eering workflow. For example, case 1 means there are 27 IGs which contain no interactions
(m

0

, rr) and (m
1

, rr).

The 37 IGs in Case 7 with m
0

and m
1

activating rr are the same as the 37 IGs obtained by

7.2 Results and analysis 131

the forward modelling workflow in Section 7.2.1. Moreover, there are in total 37 sub-IGs on
components rr and gg among all 227 functional IGs. Case 1 is not considered because there are
no regulations from the two morphogen components to rr . All sub-IGs on {rr , gg} in Case 1 to
6 are contained in those of Case 7.

7.2.3 Five rules for all functional IGs

Only the IGs combined from the building blocks of rr and gg in Figure 7.4c are stripe-forming.
The interactions of the morphogen components are the same for all IGs. Therefore, we focus on
the remaining part of the IG, the so-called sub-IG including only interactions from rr and gg.
To characterise the functional IGs, we can use the following 5 rules.
Proposition 7.3 Consider an IG with four Boolean components, including 2 morphogen com-
ponents m

0

and m
1

, an input gene rr and an output gene gg. The components m
0

and m
1

can
only activate themselves and the input gene rr . Rule 1 and 2 have to be always satisfied. An IG
is stripe-forming if it satisfies one of the Rules 3, 4 and 5.

1. gg has no self-inhibition.

2. gg has at least one incoming interaction.

3. An IG is stripe-forming if gg has a self-activation.

4. An IG is stripe-forming if rr has a self-activation and gg satisfies Rule 1 and 2.

5. An IG is stripe-forming, if there is a positive feedback loop between rr and gg and gg

satisfies Rule 1.

A detailed analysis on how these rules are related with the stripe-forming ability is given
below with respect to the subspaces of X .

a) Rule 1, {gg} has no self-inhibition. Suppose, gg has a self-inhibition. Then, for a compatible
model, there always exists a gg-row in the ASTG such that ”(gg, · gg

) = (1, ≠1)

in all four sub-ASTGs. The transitions of a gg-row are either (1, 0) or (0, ≠1), but will never
be of pos-type (0, 0). The gg-slices along rr are isomorphic in the four sub-ASTGs, x

gg

in
the attractors in four sub-ASTGs are the same.

This means, if Rule 1 does not hold, no single-stripe pattern can be generated.

b) Rule 2, {gg} has at least one incoming interaction. This rule is added for the following two
reasons:

(a) An output gene is supposed to have at least an incoming regulation. Otherwise, it is
trivial that there is no impact from the morphogen signal.

(b) To carry a single stripe pattern in the ASTG, the incoming regulation can be from rr or
itself.

With gg self-activating, it is always possible that in every sub-ASTG, there are two
attractors. All states in one attractor are with x

gg

= 0, and in the other one with
x

gg

= 1, which forms exactly a single stripe pattern.

c) Rule 3, an IG is stripe-forming if gg has a self-activation. If gg has a self-activation,
there always exist suitable parameters which enable the existence of two attractors in every
sub-ASTG, one with x

gg

= 0 and one with x
gg

= 1.

132 Chapter 7 Application: structures for single-stripe pattern

d) Rule 4, an IG is stripe-forming if rr has a self-activation and gg satisfies Rule 1 and 2.
Because rr has a self activation, there always exists at least one parameter such that in
each sub-ASTG, there is a rr-row · rr with ”(rr , · rr

) = (0, 0). For the other three possible
interactions, (rr , gg) and (gg, rr) can be either positive or negative or no influence, gg can
have a self-activation or no self-regulation. For all 5 building blocks from gg, with suitable
parameters, in all four sub-ASTGs, there always exist two attractors, one with x

gg

= 0 and
one with x

gg

= 1.

e) Rule 5, an IG is stripe-forming, if there is a positive feedback loop between rr and gg and
gg satisfies Rule 1. The interactions between rr and gg can be two positive or two negative
interactions. So that there always exist suitable logical parameters to enable two attractors
in every sub-ASTG, one with x

gg

= 0 and one with x
gg

= 1. For example, the logical
parameters on rr and gg can be constructed as follows:

(a) If |Pre(gg)| = 1, there is only one possible logical parameter for K(gg, ·). If
Pre(gg) = {rr}, K(gg, ÿ) = 0 and K(gg, {rr}) = 1. If Pre(gg) = {gg}, K(gg, ÿ) =

0 and K(gg, {gg}) = 1.

(b) If Pre(gg) = {rr , gg}, there exists two possible logical parameters for K(gg, ·).

Ê K1

(gg, Ê) K2

(gg, Ê)

ÿ 0 0

{gg} 0 1

{rr} 0 1

{rr , gg} 1 1

From the possible logical parameters for gg, there always exist two attractors, one with
x

gg

= 0 and one with x
gg

= 1. Therefore, if an IG satisfies Rule 5, then this IG is
stripe-forming.

Moreover, if there is a negative feedback loop between rr and gg, then in each sub-ASTG,
there always exists a cyclic attractor in which x

gg

is oscillating, either between {(x
m0x

m100),
(x

m0x
m110), (x

m0x
m101), (x

m0x
m101)} or between {(x

m0x
m1x

rr

0), (x
m0x

m1x
rr

1))}.

Now we want to show how the 37 IGs can be recovered from the 5 rules.

1. Rule 1 and 2 will always be satisfied.

2. Rule 3. If there is a self-activation on gg, then all IGs under the same context are stripe-
forming. Together with three possible choices (activation, inhibition, no influence) for
the other three possible interactions (rr , rr), (rr , gg), (gg, rr), there are 3

3

= 27 stripe-
forming IGs. This rule holds for the combinations of building blocks {(1), . . . , (9)} for
rr and {(b), (c), (d)} for gg.

3. Rule 4. If there is no self-loop on gg and there is a self-activation on rr , then (gg, rr) can
be +, ≠ or no influence. (rr , gg) is either positive or negative, in total we get 3 ◊ 2 = 6

stripe-forming IGs. This rule holds for the combinations of building blocks {(7), (8), (9)}
for rr and {(a), (e)} for gg.

4. Rule 5. If there is neither a self-activation on gg, nor on rr , then (rr , rr) can be only
self-inhibition or have no self-loop, while (rr , gg) and (gg, rr) have to be either both
positive, or both negative, which leads to 2 ◊ 2 = 4 stripe-forming IGs. This rule holds
for the combinations of building blocks {(1), (4)} and (a), resp. {(3), (6)} and (e).

7.2 Results and analysis 133

7.2.4 Anti-stripe pattern

These 37 IGs are not only functional for a single stripe, but also for a so-called anti-stripe. An
anti-stripe is symmetric to the single stripe, and is defined below.

1. If the morphogen signal is at low or high level, gg is on and eventually stays at a high
concentration level. In the ASTG, there exists at least one attractor with x

gg

= 1.

2. If the morphogen signal is at medium level, gg is off and eventually stays at a low
concentration level. In the ASTG, there exists at least one attractor with x

gg

= 0.

Moreover, a single stripe and an anti-stripe pattern can coexist in the same ASTG. A stripe-
forming IG can be also an anti-stripe-forming IG with the same logical parameter function.
Using the same forward modelling workflow, we add a criterion to check for an anti-stripe
pattern in the ASTGs from all enumerated models. The result is that the anti-stripe-forming IGs
are exactly the same as the stripe-forming IGs.

A self-activation corresponds to a positive circuit at a component. Each of these 37 IGs has
at least one positive circuit on rr , or on gg, or between rr and gg.

These positive circuits are crucial for these regulatory systems to generate multiple stable
states which verifies the Thomas conjecture about the positive circuits [Thomas and D’Ari,
1990]. Related research on mutistationarity can be found in [Remy et al., 2006, Remy and Ruet,
2006, Remy et al., 2008, Richard, 2009, Thomas and Kaufman, 2001, Didier and Remy, 2012].

In 4 of these 37 IGs, gg receives no regulation from rr . This means that the morphogen
components have no impact on gg. Every compatible model of these 4 IGs can generate ASTGs
that can carry both single stripe and anti-stripe patterns. Every ASTG from the models of these 4

IGs has four isomorphic gg-slices along rr in four subgraphs. Figure 7.5 shows these 4 sub-IGs
and the example of a gg-slice along rr .

rr gg rr gg

I1 I3 I4

ASTG T3 ASTG T4

rr gg

I2

ASTG T1

rr gg

ASTG T2

gg

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

Figure 7.5: 4 sub-IGs where rr does not regulate gg in the IGs that are both stripe-forming and
anti-stripe-forming. Below each sub-IG is a gg-slice along rr in all subspaces from one ASTG of
the above IG. The logical parameters for the 4 sub-IGs are: for I

1

and I
3

, K(rr , {rr , gg}) = 1,
K(gg, {gg}) = 1; for I

2

, K(rr , {rr}) = 1, K(gg, {gg}) = 1; for I
4

, K(gg, {gg}) = 1, other
unspecified logical parameters under other resources are by default 0.

The appearance of these 4 IGs in the results can have two reasons.

- One reason lies in the discrete modelling method. If an ASTG on {0, 1}4 has isomorphic
state transitions in the four subspaces x

m0x
m1 ◊ {0, 1}2, then in any compatible model

of this ASTG, the IG contains isolated components. Moreover, the state transitions in one

134 Chapter 7 Application: structures for single-stripe pattern

dimension depend only on the incoming interactions of the component and its logical
parameters. Therefore, in a fixed state space, the state transitions in one dimension do not
effect the transitions in the other dimensions.

- Another reason lies in the way of modelling the single-stripe pattern. It does not exclude
other attractors. An anti-stripe coexists with a single stripe in the same ASTG. For an array
of multiple cells under the morphogen gradient signal, there are the following possibilities
for the output gene: x

gg

is always on, or x
gg

is always off along the whole cell line, or
x

gg

shows a stripe off-on-off, or an anti-stripe on-off-on.

7.2.5 Realizability and the capacity on stripe-forming IGs

There are 9 IGs where rr does not regulate gg (building blocks: (1) to (9) for rr combined
with (c) for gg). In the remaining 28 IGs, one IG has the highest realizability, as shown in
Figure 7.6a. Out of these 9 IGs, 4 have a realizability 1. They all have a self-regulation on rr

but no regulation from rr to gg. The ASTGs generated by all compatible models of these 4 IGs
always carry a single stripe pattern. Besides the two morphogen components activating rr , they
can be combined with one of the building blocks {(1), (3), (7), (9)} for rr and {(c)} for gg, as
shown in Figure 7.6b.

rr gg

m0 m1

(a)

rr gg

m0 m1

+/�
+/�

(b)

Figure 7.6: (a) An IG has 228 compatible models, 210 of which can generate a single stripe,
RA

I

= 0.9211. (b) All 4 IGs have 114 compatible parameters which are all functional, RA

I

= 1.
Arrows denote activation, arrows with a dash denote either activation or inhibition.

In the remaining 28 stripe-forming IGs, some IGs have the same number of functional and
compatible parameters, as shown in Table 7.4.

funct. K Õs 210 162 114 66 18 9 96 50 22 2 14 9 4 2 5 1 2 1

compt. K Õs 228 228 228 228 228 228 114 114 114 114 18 18 18 18 9 9 4 4

RA

I

0.92 0.71 0.5 0.29 0.08 0.04 0.84 0.44 0.19 0.02 0.78 0.5 0.22 0.11 0.56 0.11 0.5 0.25

IGs 1 1 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1

Table 7.4: Realizability of 28 stripe forming IGs (rounded to 2 digits).

7.3 Logical analysis of functional IGs

The logical analysis method is applied on the resulting stripe-forming IGs in order to get a
compact description. Let the stripe-forming ability be represented by a Boolean function f ,
which takes the value TRUE for the 37 stripe-forming IGs.

As introduced in Chapter 4, an IG can be be transformed into a Boolean expression which is
a conjunction of Boolean variables representing its interactions. This transformation will be

7.4 Conclusion and discussion 135

done for all 37 IGs.

All 37 IGs have in common the two morphogen components activating themselves and
rr . To keep the encoding short and simple, only the interactions related within rr and gg are
encoded by Boolean variables. Therefore, using partial encoding, only 8 Boolean variables are
needed for the 8 possible interactions between two components, as shown in Figure 7.7.

rr gg

x

�
gr

x

�
rg

x

+
rr

x

+
gg

x

+
gr

x

+
rg

x

�
ggx

�
rr

x

+
gr x

�
gr

x

+
rg x

�
rg

x

+
rr x

�
rr

x

+
gg x

�
gg

(a) 8 Boolean variables

rr gg
x

�
gr

x

�
rg

x

+
rr

x

+
rrx

�
grx

�
rgx

+
gg

x

+
gg

(b) An example

Figure 7.7: (a) 8 Boolean variables needed. (b) An example.

The disjunction of the 37 Boolean expressions is given to the Software PyBoolNet [Klarner
et al., 2016], where the Quine-McCluskey algorithm is applied to obtain the minimal DNF. As a
result, there are five conjunctive clauses in the minimal DNF, which can be transformed back
into sub-IGs, as shown in Figure 7.8.

rr ggx

�
rgx

�
grx

�
gg

x

+
rgx

+
grx

�
gg

x

+
rrx

�
grx

�
gg

x

+
rrx

+
grx

�
gg

x

+
gg

rr gg

rr gg

ggrr gg rr

¬� {+,�, 6 9}

Figure 7.8: The 5 conjunctive clauses in the minimal DNF and the corresponding graphical
sub-IGs. Arrows: activations, blunt arcs: inhibitions; dashed arrows ending with a dot: non
negative, ¬≠; dashed arrows ending with a dash and a dot: one of activation, inhibition or no
influence, {+, ≠, ” ÷}.

Together with the two morphogen components activating rr , these five conjunctive clauses
are a complete description of all 37 stripe-forming IGs. Moreover, they agree with the 5 rules in
Proposition 7.3.

7.4 Conclusion and discussion

This chapter explored the functional structures for single stripe-forming using the discrete
modelling workflows. The single stripe is a simplified version of the morphogen interpretation
problem. It is modelled by a sequence of attractors where the target output gene is stable at
off-on-off level for low-medium-high levels of the morphogen gradient signal. The morphogen
gradient is modelled by two self-activating Boolean components {0, 1}2, where 00, 01 and 10

denote low, medium and high levels of the morphogen gradient, respectively. It is supposed that
the morphogen gradient can only regulate the input gene.

136 Chapter 7 Application: structures for single-stripe pattern

Using the forward modelling workflow, from the all possible IGs and their compatible para-
meters, 1520 functional models are found that contain 37 IGs. Five rules about the regulations
between the input and output genes have been extracted from these results. There is at least
one positive feedback loop in each single-stripe-forming IG which can include a self-activation
on the input gene and/or the output gene, and/or a positive feedback circuit between these two
genes. All single-stripe-forming IGs have no self-inhibition on the output gene.

In Section 7.1.3, the stripe-forming IGs are explored through the reverse engineering work-
flow. From the theory on ASTG construction, the enumeration of all graphs based on the state
space {0, 1}|V | can be done separately in each dimension.

With the prior knowledge about the single stripe pattern, all possible state transitions for one
gene are enumerated. After that, these state transitions in the different dimensions are combined
to get all graphs based on the state space with the single stripe pattern prescribed.

As a result, the same set of functional IGs is found as with the forward modelling workflow.
The results from both workflows can validate each other and guarantee that all possible stripe-
forming IGs have been discovered.

Interestingly, every stripe-forming IG is also anti-stripe-forming, which corresponds to the
pattern off-on-off. There can be two reasons for the appearance of this anti-stripe pattern. One is
that in the discrete modelling method, the state transitions in one dimension are independent
from the other dimensions. The other is the possibility of other attractors besides the single
stripe pattern.

Using the logical analysis method on the 37 single stripe-forming IGs, the minimal DNF
as a compact description is obtained using the Quine-McCluskey algorithm provided by the
software PyBoolNet. 5 clauses are found in the minimal DNF, which agree with the 5 rules
extracted before.

As future work, other hypotheses can be applied for modelling the single-stripe pattern. The
single-stripe pattern can be modelled with a wider range of on. Three components instead of two
might be considered for the system. The morphogen gradient signal can be allowed to regulate
multiple input genes. If the complexity of the parameter space can be reduced to a reasonable
level, multi-valued modelling of each component may provide more structural information.

Chapter 8

Summary and discussion

8.1 Summarising the story

Based on the Thomas formalism and discrete modelling, gene regulatory networks (GRNs) can
be modelled by interaction graphs (IGs) and logical parameter functions. The expression level
of a gene is an integer from 0, 1 to its maximal activity level. A vector of the expression levels of
all components is called a state of the regulatory system. In a particular state, a gene is regulated
depending on present activators and absent inhibitors, the so-called regulatory resources. The
logical parameter functions define the rules of the regulatory system, i.e., the tendency of each
component under all possible regulatory resources. An IG together with a logical parameter
function is called a model. The dynamics of a model is given by the asynchronous state transition
graph (ASTG), which describes all possible system behaviours. The most interesting behaviours
of GRNs are multistationarity and homeostasis. In the ASTGs these behaviours correspond to
attractors, which can be stable states or cyclic attractors. The topic of this thesis is exploring the
relations between the structure and the dynamics of GRNs.

A circuit in the IG is called positive (negative) if the number of negative interactions in it is
even (odd). The Thomas conjectures state that positive circuits are necessary for multistationarity
and negative circuits are necessary for homeostasis. Much work has been done on studying the
possible types of attractors for positive and negative circuits.

Going from GRN structures to dynamics is straightforward in terms of a model and the
corresponding ASTG. Of particular interest are so-called reverse engineering methods, which
aim at model inference from given dynamic information. In 2011, T. Lorenz proposed two
reverse engineering algorithms which infer from a given ASTG a model satisfying specific model
conditions [Lorenz, 2011]. The algorithm Visibility-Model can infer a model which satisfies the
visibility condition and has only necessary interactions. The algorithm Observability-Snoussi-
Model can infer a model that satisfies the observability condition and the Snoussi-conditions
as much as possible. Two auxiliary algorithms are Logical-Parameter, which assigns a proper
logical parameter function to a given IG and input ASTG, and Activity-level, which assigns a
threshold value to a given interaction.

The original Lorenz algorithms [Lorenz, 2011] expect as input an ideal ASTG with complete
information, and the constructed model will regenerate the dynamics of the input. However, if
the input is not a valid ASTG, this is not possible. Chapter 3 introduces three necessary and
sufficient conditions for a graph based on the state space to be a valid ASTG. These include
the asynchronicity, unitarity and the u-hypercube condition. Furthermore, the compatible

137

138 Chapter 8 Summary and discussion

model condition for an ASTG is proposed. A model is more realistic if it is compatible, i.e., it
satisfies both the observability and the Snoussi-conditions. In Chapter 3, the Lorenz algorithms
are generalised for dealing with general input based on the proposed ASTG conditions. The
generalised algorithm Visibility-Model will infer a model which satisfies the visibility condition
if the input is a valid ASTG, and report an error, if this is not the case. The generalised algorithm
Observability-Snoussi-Model will output a compatible model if the input is an ASTG satisfying
all 4 ASTG conditions, and errors will be reported otherwise.

In Chapter 4, inspired by the classical concept of robustness for the ability of a structure to
maintain a specific function under perturbation, a new measure called realizability is proposed
for the context of discrete modelling. Given some desired dynamical properties, the realizability
of an IG is defined as the ratio of all possible functional models over all compatible models. The
capacity measure is defined as the ratio of all possible functional models from all functional IGs
over all compatible models, which tells how possible the desired properties can be realised.

Two discrete modelling workflows are proposed in Chapter 4. The overall goal is to find
all underlying GRNs for some desired dynamical properties, which are modelled as attractors
in a predefined state space. Further analysis of the functional models may then allow one to
uncover interesting structural patterns. The forward modelling workflow starts from brute force
enumeration of all possible models on a set of components and searches for those models whose
ASTG admits the required attractors. The reverse engineering workflow starts from enumerating
all possible graphs on a state space where the required attractors are prescribed, and obtains all
models from the set of enumerated ASTG using the generalised Lorenz algorithms. The set of
functional models obtained by both workflows for the same setup and target attractors should be
the same. The last step in both workflows is to analyse the set of functional models.

Usually, there are multiple possible GRNs which can realise the same desired function. A
classical way is to identify building blocks for each component within the whole set of functional
IGs. In Chapter 4, a new logical method for analysing a set of functional IGs is also proposed.
Every interaction in an IG is represented by a Boolean variable. An IG can be encoded by a
conjunction or product of these variables (and their negation), a set of IGs by a disjunction of
these products. The Quine-McCluskey-algorithm is applied on the sum of all these expressions
to achieve a minimal disjunctive normal form (DNF). At the end, each clause in the minimal
DNF is translated back into an interaction pattern. All functional IGs can be recovered from
these interaction patterns. The same logical method can be also applied on a set of logical
parameters to obtain a minimal description.

8.2 Contributions and applications

On the methodological side, the main contributions of this thesis include the following:

1. Explaining, implementing, and generalising Lorenz algorithms.

2. Proposing three necessary and sufficient ASTG conditions for a graph based on a state
space being a valid ASTG, and a fourth condition for an ASTG being able to have a
compatible model.

3. Developing two discrete modelling workflows to explore all GRN structures functional
for some desired dynamic properties.

4. Applying the logical analysis method on a set of functional IGs and logical parameters

8.3 Discussion 139

in order to get a compact description of the whole set and to identify interesting logical
patterns.

On the application side, different kind of attractors have been analysed. Chapter 5 studied
all potential 3-node IGs that are able to reproduce the cycle from a simplified 3-node MAPK
cascade signalling network [Thobe et al., 2014]. Eight different IGs are found in the end, where
a core motif and three interaction-pairs cover all cases. While the logical analysis method
based on the DNF does not lead to a more compact representation in this particular example,
conjunctive normal forms (CNF) provide an interesting alternative, which could be further
explored in future research.

Chapter 6 explored all potential 3-node IGs able to produce two types of multiple steady-
states related to two hypotheses on cell differentiation in a paper by [Breindl et al., 2011], where
a continuous modelling approach is used. The results show that for each hypothesis, there are
512 functional IGs and 8 different incoming-interaction patterns for each component. Any
combination of these 8 incoming-interaction patterns forms a functional IG. The results from our
discrete method are compared with those from the continuous method. The capacity measure of
all IGs and the realization measure of the required attractors is computed, which shows that the
two different setups of attractors have the same realization measure. 512 IGs and 18 Boolean
variables would be needed for logical encoding, which is too big for the current available
software to compute the minimal DNF. Therefore, the logical analysis method is applied only
on the 8 incoming-interaction patterns. The results show that there are 5 interactions-patterns
for each component under both hypotheses, which can be freely combined and cover the whole
set of functional IGs. Additionally, the logical analysis method has been applied on a set of
logical parameter functions.

Chapter 7 studied all possible IGs that are able to generate a sequence of attractors for
different levels of an input signal, which is one way of modelling the single-stripe phenomenon
during the development of the Drosophila embryo, the so-called morphogen interpretation
[Cotterell and Sharpe, 2010]. Two Boolean components were used for modelling three levels of
the morphogen gradient. An input gene receives the activating input signals. An output gene is
supposed to exhibit the single-stripe pattern by showing low expression when the input signal is
low resp. high, and high expression for medium input. Due to high computational cost, 2-node
IGs are applied instead of the three nodes in the literature. The expected attractors can be one
or more steady states, or a cyclic attractor with the output gene getting stable at the required
level depending on the input signal. Using the reverse engineering workflow, 37 functional IGs
were found, which contain 9 different incoming-interaction patterns on the input gene and 5

on the output gene. With the logical analysis method, there are 5 IG patterns obtained from
the Boolean encoding of these IGs, which characterise the functional IGs for the single-stripe
phenomenon.

8.3 Discussion

There are several limitations of this work. First, the discrete modelling workflows have been
applied only on 2- and 3-node GRNs. Both in the forward modelling and the reverse engineering
workflow, the double exponentially increasing enumeration space prevents the method from
being directly applied to larger systems. Second, the work does not start from experimental data,
so that the steps of selecting, curating and discretizing data were skipped. Instead, we started
directly from well-studied biological phenomena where the desired dynamic properties were

140 Chapter 8 Summary and discussion

easy to model by attractors, and the results could be easily compared with. Emphasis was on
ASTGs and the generalised Lorenz algorithms for finding a model with a minimal number of
interactions in the IG. Moreover, modelling the desired dynamic features by attractors in the
ASTGs was done manually. Thus, different hypotheses about the desired functionality require
manually selecting the corresponding target attractors.

There are different promising ways for reducing the enumeration space. In the forward
modelling workflow, the enumeration of all parameters for an IG can be done separately for
each component. In the reverse engineering workflow, all graphs based on the state space with
the prescribed attractors can be enumerated component-wise. Therefore, the desired dynamic
properties can be decomposed into prior information on each component. With this prior
information, only some of the logical parameters enable the desired state transitions for each
component. Similarly, the desired attractors on each component can be applied as filters to avoid
brute force enumeration.

Another promising direction is to make use of symmetry properties of the graph-theoretical
structures representing both IGs and ASTGs. The functional IGs for two similar hypotheses
on a desired dynamical behaviour may be similar as graphs. It may be possible to find a
transformation so that from a known set of functional IGs for one hypothesis, one can obtain the
set of functional IGs for the other hypothesis, without using the discrete modelling workflows.
Additionally, those models whose IGs have the same set of edges but with different signs show
symmetric graph-theoretical structures in the ASTGs. Each IG can represent a symmetry class
of similar IGs, and each ASTG as a graph on the state space can represent a symmetry class of
ASTGs. Therefore, a library of IG structures and ASTG structures can be built up for much
faster and easier research on GRNs with a small number of components.

Bibliography

[Ashe and Briscoe, 2006] Ashe, H. L. and Briscoe, J. (2006). The interpretation of morphogen
gradients. Development, 133(3):385–394.

[Batt et al., 2010] Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., and de Jong,
H. (2010). Efficient parameter search for qualitative models of regulatory networks using
symbolic model checking. Bioinformatics, 26:i603–i610.

[Becker et al., 2016] Becker, K., Gebser, M., Schaub, T., and Bockmayr, A. (2016). Answer
set programming for logical analysis of data. In Workshop on constraint-based methods for
bioinformatics (WCB’16), page 15.

[Bérenguier et al., 2013] Bérenguier, D., Chaouiya, C., Monteiro, P. T., Naldi, A., Remy, E.,
Thieffry, D., and Tichit, L. (2013). Dynamical modeling and analysis of large cellular regu-
latory networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(2):025114.

[Bernot et al., 2004] Bernot, G., Comet, J.-P., Richard, A., and Guespin, J. (2004). Application
of formal methods to biological regulatory networks: extending Thomas’ asynchronous
logical approach with temporal logic. Journal of Theoretical Biology, 229(3):339–347.

[Breindl et al., 2010] Breindl, C., Schittler, D., Waldherr, S., and Allgöwer, F. (2010). A
robustness measure for the stationary behavior of qualitative gene regulation networks. In
Proceedings of the 11th International Symposium on Computer Applications in Biotechnology,
Leuven, Belgium, pages 36–41.

[Breindl et al., 2011] Breindl, C., Schittler, D., Waldherr, S., and Allgöwer, F. (2011). Structural
requirements and discrimination of cell differentiation networks. IFAC Proceedings Volumes,
44(1):11767–11772.

[Chaouiya and Remy, 2013] Chaouiya, C. and Remy, E. (2013). Logical modelling of regulat-
ory networks, methods and applications. Bulletin of Mathematical Biology, 75(6):891–895.

[Chaouiya et al., 2008] Chaouiya, C., Remy, E., and Thieffry, D. (2008). Petri net modelling
of biological regulatory networks. Journal of Discrete Algorithms, 6(2):165–177.

[Chappell et al., 2011] Chappell, W. H., Steelman, L. S., Long, J. M., Kempf, R. C., Ab-
rams, S. L., Franklin, R. A., Bäsecke, J., Stivala, F., Donia, M., Fagone, P., et al. (2011).
Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to
inhibiting these pathways in human health. Oncotarget, 2(3):135–164.

[Comet et al., 2013] Comet, J.-P., Noual, M., Richard, A., Aracena, J., Calzone, L., Demongeot,
J., Kaufman, M., Naldi, A., Snoussi, E., and Thieffry, D. (2013). On circuit functionality in
boolean networks. Bulletin of Mathematical Biology, 75(6):906–919.

141

142 BIBLIOGRAPHY

[Corblin et al., 2010] Corblin, F., Fanchon, E., and Trilling, L. (2010). Applications of a formal
approach to decipher discrete genetic networks. BMC Bioinformatics, 11(1).

[Cotterell and Sharpe, 2010] Cotterell, J. and Sharpe, J. (2010). An atlas of gene regulatory
networks reveals multiple three-gene mechanisms for interpreting morphogen gradients.
Molecular Systems Biology, 6(1):425.

[Crama and Hammer, 2011] Crama, Y. and Hammer, P. L. (2011). Boolean functions: theory,
algorithms, and applications. Cambridge University Press.

[De Jong, 2002] De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a
literature review. Journal of Computational Biology, 9(1):67–103.

[Didier and Remy, 2012] Didier, G. and Remy, E. (2012). Relations between gene regulatory
networks and cell dynamics in boolean models. Discrete Applied Mathematics, 160(15):2147–
2157.

[Glass, 1977] Glass, L. (1977). Combinatorial Aspects of Dynamics in Biological Systems,
pages 585–611. Springer US, Boston, MA.

[Green, 2002] Green, J. (2002). Morphogen gradients, positional information, and Xenopus:
interplay of theory and experiment. Developmental Dynamics, 225(4):392–408.

[Hill, 1910] Hill, A. V. (1910). The possible effects of the aggregation of the molecules of
hmoglobin on its dissociation curves. The Journal of Physiology, 40:i–vii.

[Ingalls, 2013] Ingalls, B. P. (2013). Mathematical modeling in systems biology: an introduc-
tion. MIT press.

[Jaeger et al., 2004] Jaeger, J., Blagov, M., Kosman, D., Kozlov, K. N., Myasnikova, E.,
Surkova, S., Vanario-Alonso, C. E., Samsonova, M., Sharp, D. H., Reinitz, J., et al. (2004).
Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melano-
gaster. Genetics, 167(4):1721–1737.

[Jamshidi, 2013] Jamshidi, S. (2013). Comparing discrete, continuous and hybrid modelling
approaches of gene regulatory networks. PhD thesis, Freie Universität Berlin.

[Kitano, 2002] Kitano, H. (2002). Systems biology: a brief overview. Science, 295(5560):1662–
1664.

[Kitano, 2004] Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5(11):826–
837.

[Klarner, 2015] Klarner, H. (2015). Contributions to the analysis of qualitative models of
regulatory networks. PhD thesis, Freie Universität Berlin.

[Klarner et al., 2012a] Klarner, H., Siebert, H., and Bockmayr, A. (2012a). Time series depend-
ent analysis of unparametrized Thomas networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), 9(5):1338–1351.

[Klarner et al., 2012b] Klarner, H., Streck, A., Šafránek, D., Kolčák, J., and Siebert, H. (2012b).
Parameter identification and model ranking of Thomas networks. In Computational methods
in systems biology, pages 207–226. Springer.

[Klarner et al., 2016] Klarner, H., Streck, A., and Siebert, H. (2016). Pyboolnet: a python
package for the generation, analysis and visualization of boolean networks. Bioinformatics,
33(5):770–772.

BIBLIOGRAPHY 143

[Lorenz, 2011] Lorenz, T. (2011). Vergleich von zwei- und mehrwertigen Modellen bioregulat-
orischer Netzwerke. Diplomarbeit, Freie Universität Berlin.

[Lorenz et al., 2013] Lorenz, T., Siebert, H., and Bockmayr, A. (2013). Analysis and character-
ization of asynchronous state transition graphs using extremal states. Bulletin of Mathematical
Biology, 75(6):920–938.

[McCluskey, 1956] McCluskey, E. J. (1956). Minimization of boolean functions. Bell System
Technical Journal, 35(6):1417–1444.

[Melliti et al., 2015] Melliti, T., Noual, M., Regnault, D., Sené, S., and Sobieraj, J. (2015).
Asynchronous dynamics of boolean automata double-cycles. In Unconventional Computation
and Natural Computation - 14th International Conference, UCNC 2015, Auckland, New
Zealand, August 30 - September 3, 2015, Proceedings, pages 250–262.

[Mendoza et al., 2011] Mendoza, M. C., Er, E. E., and Blenis, J. (2011). The Ras-ERK and
PI3K-mTOR pathways: cross-talk and compensation. Trends in Biochemical Sciences,
36(6):320 – 328.

[Orton et al., 2005] Orton, R. J., Sturm, O. E., Vyshemirsky, V., Calder, M., Gilbert, D. R., and
Kolch, W. (2005). Computational modelling of the receptor-tyrosine-kinase-activated mapk
pathway. Biochemical Journal, 392(2):249–261.

[Ostrowski et al., 2016] Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., and Guziolowski,
C. (2016). Boolean network identification from perturbation time series data combining
dynamics abstraction and logic programming. Biosystems, 149:139–153.

[Palinkas, 2015] Palinkas, A. (2015). Integrated modelling of metabolic and regulatory net-
works. PhD thesis, Freie Universität Berlin.

[Perkins et al., 2010] Perkins, T., Wilds, R., and Glass, L. (2010). Robust dynamics in minimal
hybrid models of genetic networks. Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, 368(1930):4961–4975.

[Petrick, 1959] Petrick, S. (1959). On the minimization of boolean functions. In Proceedings
of the international conference information processing, Paris, pages 422–423.

[Quine, 1952] Quine, W. V. (1952). The problem of simplifying truth functions. The American
Mathematical Monthly, 59(8):521–531.

[Remy et al., 2016] Remy, E., Mossé, B., and Thieffry, D. (2016). Boolean dynamics of
compound regulatory circuits, pages 43–53. Springer International Publishing, Cham.

[Remy and Ruet, 2006] Remy, E. and Ruet, P. (2006). On differentiation and homeostatic
behaviours of boolean dynamical systems. Lecture Notes in Computer Science, 4230:153–
162.

[Remy et al., 2006] Remy, É., Ruet, P., and Thieffry, D. (2006). Positive or negative regulatory
circuit inference from multilevel dynamics. Positive Systems, pages 263–270.

[Remy et al., 2008] Remy, É., Ruet, P., and Thieffry, D. (2008). Graphic requirements for
multistability and attractive cycles in a boolean dynamical framework. Advances in Applied
Mathematics, 41(3):335–350.

[Richard, 2009] Richard, A. (2009). Positive circuits and maximal number of fixed points in
discrete dynamical systems. Discrete Applied Mathematics, 157(15):3281 – 3288.

144 BIBLIOGRAPHY

[Richard, 2010] Richard, A. (2010). Negative circuits and sustained oscillations in asynchron-
ous automata networks. Advances in Applied Mathematics, 44(4):378 – 392.

[Richard and Comet, 2007] Richard, A. and Comet, J.-P. (2007). Necessary conditions for
multistationarity in discrete dynamical systems. Discrete Applied Mathematics, 155(18):2403–
2413.

[Ruet, 2017] Ruet, P. (2017). Negative local feedbacks in boolean networks. Discrete Applied
Mathematics, 221:1–17.

[Schaerli et al., 2014] Schaerli, Y., Munteanu, A., Gili, M., Cotterell, J., Sharpe, J., and Is-
alan, M. (2014). A unified design space of synthetic stripe-forming networks. Nature
Communications, 5.

[Schittler et al., 2010] Schittler, D., Hasenauer, J., Allgöwer, F., and Waldherr, S. (2010). Cell
differentiation modeled via a coupled two-switch regulatory network. Chaos, 20(4).

[Seeger, 2012] Seeger, M. (2012). Morphogene interpretation in boolean regulatory networks.
Bachelor thesis, Freie Universität Berlin.

[Snoussi, 1989] Snoussi, E. H. (1989). Qualitative dynamics of piecewise-linear differential
equations: a discrete mapping approach. Dynamics and Stability of Systems, 4(3-4):565–583.

[Soulé, 2003] Soulé, C. (2003). Graphic requirements for multistationarity. ComPlexUs,
1(3):123–133.

[Streck, 2016] Streck, A. (2016). Toolkit for reverse engineering of molecular pathways via
parameter identification. PhD thesis, Freie Universität Berlin.

[Streck et al., 2015] Streck, A., Lorenz, T., and Siebert, H. (2015). Minimization and equival-
ence in multi-valued logical models of regulatory networks. Natural Computing, 14(4):555–
566.

[Thieffry, 2007] Thieffry, D. (2007). Dynamical roles of biological regulatory circuits. Briefings
in Bioinformatics, 8(4):220–225.

[Thobe, 2017] Thobe, K. (2017). Logical modeling of uncertainty in signaling pathways of
cancer systems. PhD thesis, Freie Universität Berlin.

[Thobe et al., 2014] Thobe, K., Streck, A., Klarner, H., and Siebert, H. (2014). Model in-
tegration and crosstalk analysis of logical regulatory networks, pages 32–44. Springer
International Publishing, Cham.

[Thomas, 1973] Thomas, R. (1973). Boolean formalization of genetic control circuits. Journal
of Theoretical Biology, 42(3):563 – 585.

[Thomas, 1981] Thomas, R. (1981). On the relation between the logical structure of systems
and their ability to generate multiple steady states of sustained oscillations. Springer Series
Synergetics, pages 180–193.

[Thomas and D’Ari, 1990] Thomas, R. and D’Ari, R. (1990). Biological feedback. CRC press.

[Thomas and Kaufman, 2001] Thomas, R. and Kaufman, M. (2001). Multistationarity, the
basis of cell differentiation and memory. II. Logical analysis of regulatory networks in
terms of feedback circuits. Chaos: An Interdisciplinary Journal of Nonlinear Science,
11(1):180–195.

BIBLIOGRAPHY 145

[Thormählen, 2016] Thormählen, T. (2016). Lecture of technical computer science I, inter-
active demonstrations, 5.3 Quine-McCluskey algorithm. http://www.mathematik.

uni-marburg.de/

˜

thormae/lectures/ti1/code/qmc/.

[Turing, 1952] Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Trans-
actions of the Royal Society of London B: Biological Sciences, 237(641):37–72.

[Videla et al., 2015] Videla, S., Guziolowski, C., Eduati, F., Thiele, S., Gebser, M., Nicolas, J.,
Saez-Rodriguez, J., Schaub, T., and Siegel, A. (2015). Learning boolean logic models of
signaling networks with ASP. Theoretical Computer Science, 599:79–101.

[Wagner, 2013] Wagner, A. (2013). Robustness and evolvability in living systems. Princeton
University Press.

[Winter et al., 2011] Winter, J. N., Jefferson, L. S., and Kimball, S. R. (2011). ERK and Akt
signaling pathways function through parallel mechanisms to promote mTORC1 signaling.
American Journal of Physiology-Cell Physiology, 300(5):C1172–C1180.

[Wolpert, 1968] Wolpert, L. (1968). The french flag problem: a contribution to the discussion
on pattern development and regulation. Towards a Theoretical Biology, 1:125–133.

[Wolpert, 1996] Wolpert, L. (1996). One hundred years of positional information. Trends in
Genetics, 12(9):359–364.

http://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/
http://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/

Nomenclature

� symmetric difference, page 13

” state transition function, page 7

”(u, ·u

) state transitions of a u-row in direction of u, page 13

”(u, x) state transition function of a component u in a given state x, page 7

dest(u, ·u

) destination values of a u-row in direction of u, page 40

dest(u, xi

) destination value of a state xi in a u-row, page 40

e

u the u-th unit vector in X , page 8

CA the capacity measure of an IG I for a desired property A , page 73

G
X

= (X, E) a graph based on a state space X , page 40

RA

I

realizability of an IG I functional for some desired properties A, page 72

RA

I,v

realizability of a component of an IG I functional for some desired properties A ,
page 73

Suc(u) the predecessor set of node u, page 7

X
u

u-hypercube, t is an integer, page 42

X c

v

u

complement of X
u

in the v-th dimension, page 48

Pre(u) the predecessor set of node u, page 7

Res

u

(x) the resource for u in a state x, page 7

·u a u-row, page 13

{·u}t

elg

set of eligible u-row structures of a threshold value , page 55

A an attractor, can be a stable state or cyclic attractor, page 8

F +

(x, Ë), F ≠
(x, Ë) step functions, page 5

F +

m

(x, Ë), F ≠
m

(x, Ë) Sigmoid curves, Hill functions, page 4

H(u) the set of all u-hypercubes in X , page 42

I = (V, E, Á, Ë, max) an interaction graph, V : components, E: edges, Á: signs of E, Ë:
thresholds of E, max: maximal activity levels of V , page 7

K logical parameter function, page 7

K(u, Ê) logical parameter of a component u with resource Ê, page 7

147

148 BIBLIOGRAPHY

M = (I, K) a model, page 7

S transitions among all states, page 8

T
M

= (X, S) asynchronous state transition graph of a model M , page 8

X a state space, page 7

x a state, page 7

Xu,Ê set of states for a component under a resource , page 45

X
i

X
i

= {0, . . . , max

i

}, page 42

List of Figures

1.1 Hill functions, m is the Hill coefficient. 4
1.2 The step function. 5
1.3 An example of a multi-valued interaction graph. x

1

œ {0, 1}, x
2

œ {0, 1, 2}.
Let Ë

12

= 1 < Ë
22

= 2. The arrows denote activation, and the blunt edge
represents inhibition. 5

1.4 (a) A model M = (I, K). In the IG I , the arrows represent activation, and the
edges with a small dash in the end represent inhibition. At the bottom, there is
a logical parameter function K, where Ê denotes the resource. In between I
and K, there are a few examples of resources. (b) The corresponding ASTG
T = (X, S), where the elements of X are given by sequences of numbers, S
is the set of all the transitions in X . A few examples of the state transition
function ”(v, x) are also given. Note that {00, 10} is the only attractor in T ,
and {21, 22} is not an attractor because it has outgoing transitions. 8

2.1 An ASTG T
M

and a corresponding model M 15
2.2 (a) A model M = (I, M) and its ASTG T

M

with v
1

-rows: · v1
0

, · v1
1

, · v1
2

, and
v

2

-rows: · v2
0

, · v2
1

, · v2
2

. (b) shows for · v2
0

and · v1
2

, the state transition vectors in
direction of v

1

and v
2

, the resource vectors of them. 17
2.3 An IG I and the extremal rows of the ASTG uniquely determine the com-

plete ASTG. Ë(v
1

, v
2

) = 1 implies that · v2
1

is isomorphic to · v2
2

. Similarly,
Ë(v

2

, v
1

) = 1 implies that, · v1
1

is isomorphic to · v1
2

. 18
2.4 Two u-rows ·u. (a) Pos type, Res

u

(xa

) = Ê, K(u, Ê) = a lies on Ê-side
of u; Res

u

(xb

) = Î , K(u, Î) = b lies on Î-side of u. (b) Neg type, for all
xi with i œ {0, . . . , t ≠ 1}, K(u, Res

u

(xi

)) > t ≠ 1, and for all xi with
i œ {t, . . . , max

u

}, K(u, Res

u

(xi

)) < t. K(u, Res

u

(xi

)) does not lie on
Res

u

(x)-side of u for all states xi œ ·u. 19
2.5 (a) IG I . (b) Logical parameter function K. (c) Corresponding ASTG T . (d)

Alternative logical parameter function K Õ. M = (I, K) and M Õ
= (I, K Õ

) are
two isomorphic models generating the same ASTG T where K satisfies the
Snoussi-condition but K Õ does not. 19

2.6 (a), (d) M1

= (I1, K1

), (b), (e) M2

= (I2, K2

), (c), (f)M3

= (I3, K3

). 22
2.7 The ASTG T of the three models in Figure 2.6. 22
2.8 Inputs for algorithm Logical-Parameters. (a) A simple IG ˜I = (V, ˜E, Á̃, max).

Standard arrows denote activations, and blunt arrows inhibitions. max =

[max

v1 , max

v2] = [2, 2]. (b) ASTG T = (X, S), where X = {0, 1, 2}2 and
each state x = (x

v1 , x
v2). 23

2.9 Example 2.31 for algorithm Logical-Parameters 25
2.10 Two inputs for algorithm Activity-Value. (a) Two incoming edges of v

1

. For
(v

1

, v
1

), on resource {v
2

} we have K(v
1

, {v
2

}) ”= K(v
1

, {v
1

, v
2

}). For (v
2

, v
1

),
on resource ÿ we have K(v

1

, ÿ) ”= K(v
1

, {v
2

}). (b) The state transitions ”(v
1

, ·)
in direction of v

1

. 26

149

150 LIST OF FIGURES

2.11 (a) ASTG T . (b) A simple IG ˆI and the pseudo logical parameter function ˆK. . 29
2.12 (a) The real IG I . (b) Through Ê and Î , K is rearranged from ˆK. 29
2.13 The real IG I , and the revised ˆK. 34
2.14 K obtained by rearranging ˆK. 34

3.1 A open type u-row ·u, the state transitions and the destination values. 41
3.2 A pos type u-row ·u, the state transitions and the destination values. 41
3.3 A neg type u-row ·u, the state transitions and the destination values. 41
3.4 All 9 u-rows of length 4 with threshold 2 for the pos and neg types and their

destination values. 41
3.5 (a) Common ASTG T of the models M = (I, K) and M Õ

= (I Õ, K Õ
). (b)

Logical parameter functions K and K Õ. (c) IG I . (d) IG I Õ. Neither M nor M Õ

satisfies the Snoussi-condition. 43
3.6 (a) State transitions in direction of u. For I , the incoming interactions of u are

shown on the top. (b) All X
u

, H(u), and their destination values. For these X
u

,
t
uu

= 2 and t
uv

= 1, which are equal to the thresholds Ë(u, u) and Ë(v, u),
respectively. 43

3.7 (a) State transitions in direction of v. For I , the incoming interactions of v are
shown on the top. (b) All X

v

, H(v), and their destination values. For these
X

v

, t
vu

= 1 and t
vv

= 2, which are equal to the thresholds Ë(u, v) and Ë(v, v),
respectively. 43

3.8 (a) An ASTG T . (b), (c) A model of T , M = (I, K). 44
3.9 (a) State transitions in direction of v

1

. All incoming edges of v
1

are shown
on the top-right. (b) All v

1

-hypercubes, H(v
1

), and the destination values of
all v

1

-hypercubes. t
v1v1 = 2, t

v1v2 = 2 and t
v1v3 = 1, which equal to the

thresholds of the incoming edges. 44
3.10 (a) All v

2

-hypercubes, H(v
2

) and their destination values. t
v2v1 = 1, t

v2v2 = 1

and t
v2v3 = 2. (b) v

3

-hypercubes, H(v
3

) and their destination values. t
v3v1 = 3,

t
v1v2 = t

v1v3 = 0. 45
3.11 A u-hypercube X

u

with X
v

= {0, . . . , t
uv

≠ 1}; the complement of it in the
v-th dimension, X c

v

u

. The hypercube below is the union of X
u

and X c

v

u

,
vY

u

= X
u

fi X c

v

u

. 49
3.12 (a) and (c), Y

u

= X
u

fi X c

u

u

contains u-rows of type pos. (b) and (d), Y
u

=

X
u

fi X c

u

u

contains u-rows of type neg. 50
3.13 u-hypercube X

u

, its complements in the u-th and v-th dimension, together with
Y

u

, vY
u

and Y c

v

u

. 50
3.14 (a) ASTG G

X

. (b) A model M = (I, K) of G
X

. (c) State transitions in direction
of u. (d) All u-hypercubes H(u), and the destination values of each u-hypercube. 51

3.15 Two pairs of u-hypercubes in G
X

, X 1

u

and X 1c

v

u

, X 2

u

and X 2c

v

u

, where
X1

v

= X2

v

= {0, . . . , t
uv

≠ 1}, X1c

v

v

= X2c

v

v

= {t
uv

, . . . , max

v

}. 52
3.16 Set {·u}1

elg

of eligible u-row structures of threshold value 1 in the Boolean case. 55
3.17 (a) ASTG T from Figure 3.8. (b) One v

2

-slice along v
1

, and one along v
3

. Each
parallelogram contains one v

2

-slice. At the top right is the incoming interactions
of v

2

in the IG for T . 60
3.18 (a) A 1-D Boolean space. (b) A 2-D Boolean space. (c) A 3-D Boolean space. . 61
3.19 The state space X = {0, 1} ◊ {0, 1, 2}. 63
3.20 All possible u-rows of length 3, including pos and neg types of thresholds t = 1

and t = 2, and all the open types. 63
3.21 (a) A graph G

X

based on X . (b) One possible output model using generalised
Visibility-Model. 68

LIST OF FIGURES 151

3.22 Three graphs based on X . (a) G1

X

, three different u-rows in the same u-slice
along v. (b) G2

X

, one u-row does not belong to any single row type. (c) G3

X

,
u-rows of pos type with different threshold values. 70

4.1 Encoding of IGs of two components. (a) Full encoding. (b) Partial encoding.
Arcs without directions denote “no interaction”, arrows denote “activation” and
blunt arcs denote “inhibition”. e

ij

denotes the Boolean expression for an edge
(j, i). 76

4.2 (a) 4 functional IGs for some property A, the Boolean expressions in full and
partial encodings. (b) The minimal DNF from both full and partial encoding.
There is only one clause in the minimal DNF, which is translated back into a
graphical logical IG pattern. Arrows denote “activation”, blunt arcs “inhibition”.
The dashed arrows denote “no inhibition”, which is either an activation or no
influence. — 77

4.3 (a) 5 variables encode the 1st part of 4 resources of K
c

. (b) 5 variables encode
the 2nd part of 4 resources of K

c

. (c) 2 variables encode the 4 resources of K
d

. 78
4.4 (a) 14 K

c,d

’s encoded by 12 Boolean variables. (b) The 1st order combine from
(a). (c) The 2nd order combine from (b). (d) The 3rd order combine from (c). . 80

4.5 Discrete modelling workflows. (a) Forward modelling workflow. (b) Reverse
engineering workflow. 81

5.1 (a) The core of the MAPK cascade model and its logical rules [Thobe et al.,
2014]. (b) Fix RTK = 1, the simplified model and the logical parameter
function. (c) The ASTG of the simplified model. 85

5.2 8 functional IGs from the 64 functional models. 87
5.3 (a) IG 2 (5.2b) from Figure 5.2. (b), (c), (d) are the 3 ASTGs among all 64

ASTGs which carry the models with IG 2. 88
5.4 (a) IG 3 (5.2c) from Figure 5.2. (b), (c), (d) are the 3 ASTGs among all 64

ASTGs which carry the models with IG 3. 88
5.5 (a) IG 4 (5.2d) from Figure 5.2. (b), (c), (d) are the 3 ASTGs among all 64

ASTGs which carry the models with IG 4. 88
5.6 (a) IG 5 (5.2e). All 9 ASTGs ((b) to (j)) are the 9 ASTGs among all 64 ASTGs

which carry the models of IG 5. 89
5.7 (a) IG 6 (5.2f). (b) to (j) are all 9 ASTGs among all 64 ASTGs which carry the

models of IG 6. 89
5.8 (a) IG 7 (5.2g). (b) to (j) are all 9 ASTGs among all 64 ASTGs which carry the

models of IG 7. 90
5.9 (a) IG 8 (5.2h). (b) to (f) are 5 selected ASTGs out of 27 in total. 90
5.10 3 pairs of coupled interactions. (a) (Raf , Raf) and (MEK , Raf). (b) (MEK , MEK)

and (ERK , MEK). (c) (ERK , ERK) and (Raf , ERK). Blunt edges represent
inhibitions and arrows represent activations. 92

5.11 8 IGs contained in the 64 functional models for the cyclic attractor. 93
5.12 The repressilator system and its ASTG in [Perkins et al., 2010] (left) and those

from this chapter (right). 97

6.1 (a) An activation function. (b) An inhibition function. (c) A tube for an activation
function. 102

152 LIST OF FIGURES

6.2 [Breindl et al., 2011] Building blocks from the robustness measure method in
[Breindl et al., 2011]. (a) shows the results from (S1), the two interactions
entering x

i

from the bottom are from the other two TRs. (b) and (c) show results
from (S2). In (b), those incoming arrows from bottom left and right denote
regulations from x

2

and x
3

respectively. In (c), those incoming arrows from the
top right and right side are regulations from x

1

, and from TRs other than x
i

,
respectively. 108

6.3 The building blocks of (S1) from discrete modelling method. The arrows going
to v

i

from below left and right are from v
j

and v
k

, respectively, where j ”= i
and k = {1, 2, 3}\{i, j}. 109

6.4 The building blocks of (S2) from discrete modelling method. (a) Building
blocks of component v

1

, the arrows going to v
1

from below left and right
are from v

2

and v
3

, respectively. (b) Building blocks of components v
j

with
j œ {2, 3}, the links going to v

j

from top right is from v
1

, and from right side
is v

k

, k = {2, 3}\{j}. 110
6.5 (S1), building blocks for v

i

, i œ {1, 2, 3} by the discrete and the continuous
method. (a) Both discrete and continuous. (b) Only discrete. (c) Only continu-
ous. Links going to v

i

from bottom left and right represent interactions from
nodes v

j

, j ”= i, and v
k

, i ”= k ”= j. 111
6.6 (S2), building blocks for v

1

by the discrete and the continuous method. (a) Both
discrete and continuous. (b) Only discrete. (c) Only continuous. Links going to
v

1

from below left and right represent interactions from v
2

and v
3

. 112
6.7 (S2), building blocks for v

j

, j œ {2, 3} by the discrete and the continuous
method. (a) Both discrete and continuous. (b) Only discrete. (c) Only con-
tinuous. Links entering v

j

from top right is from v
1

, and from right side is v
k

,
k = {2, 3}\{j}. 112

6.8 Sum of all 512 functional IGs for: (a) (S1) and (b) (S2). The weight of an
interaction: occurrence rate. Arrows: activations. Blunt links: inhibitions. The
thickness of lines denote the occurrence rates. 113

6.9 The building blocks of the 180 IGs functional for both (S1) and (S2). (a) From
v

1

, the links entering v
1

from below left and right are from v
2

and v
3

. (b) v
j

,
the links entering v

j

from top right come from v
1

, and from right come from v
k

,
k = {2, 3}\{j}. Arrows: activations. Blunt links: inhibitions. 114

6.10 The sum of the 180 IGs. The numbers on the links denote the occurrence
numbers of each interaction. 114

6.11 The Boolean expressions of all building blocks for (S1). Links going from
bottom left and right are v

j

and v
k

, respectively. i, j, k œ {1, 2, 3}. 116
6.12 The minimal DNF of all building blocks from (S1). Arrows: activations, blunt

links: inhibitions, dashed arrows: non-inhibitions, blunt dashed links: non-
activations, dot-ended line: any one of activation, inhibition and no influence. . 116

6.13 The minimal DNF of all building blocks from (S2). Arrows: activations, blunt
links: inhibitions, dashed arrows: non-inhibitions, blunt dashed links: non-
activations, dot-ended line: any one of activation, inhibition and no influence. . 116

6.14 An IG which has 216 functional K’s for (S1). 117
6.15 The 6 state transitions in direction of v

1

, from all functional ASTGs of IG in
Figure 6.14. Three black dots: (S1). 118

6.16 An IG which has 216 functional K’s for (S2). 118
6.17 The 6 state transitions in direction of v

1

, from all functional ASTGs of IG in
Figure 6.16. Three black dots: stable states of (S2). 119

LIST OF FIGURES 153

6.18 The 6 state transitions in direction of v
2

, from all functional ASTGs of IG in
Figure 6.16. Three black dots: stable states of (S2). 120

6.19 Symmetric structures of the state transitions in direction of v
1

for (S1) from all
functional ASTGs of IG in Figure 6.14, and for (S2) from all functional ASTGs
of the IG in Figure 6.16. 120

6.20 Symmetric structures of the state transitions in direction of v
1

and v
2

for (S2),
from all functional ASTGs of the IG in Figure 6.16. 121

7.1 The morphogen gradient. Vertical axis: concentration level of the morphogen
signal. Horizontal axis: the spatial cell lines receiving different concentration of
the morphogen signal. 123

7.2 The concentration level of the output gene is high when the morphogen signal
is at medium level, and low in other two levels. 125

7.3 The structure of a possible IG. Arrows denote activations, and arrows with blunt
dash denote one of the three: positive, negative, no influence. 127

7.4 Building blocks from rr and gg from 37 stripe-forming IGs. Blunt edges
represent inhibition and arrows denote activation. (a) Two morphogen inputs
activate rr , and 9 building blocks of rr . (b) 5 building blocks of gg. (c) 37

stripe-forming IGs represented by 4 groups of building blocks of rr from (a)
and of gg from (b), i.e.,, combining one building block from the left column
under rr and one from the right column under gg gives a stripe-forming IG. . . 130

7.5 4 sub-IGs where rr does not regulate gg in the IGs that are both stripe-forming
and anti-stripe-forming. Below each sub-IG is a gg-slice along rr in all sub-
spaces from one ASTG of the above IG. The logical parameters for the 4

sub-IGs are: for I
1

and I
3

, K(rr , {rr , gg}) = 1, K(gg, {gg}) = 1; for I
2

,
K(rr , {rr}) = 1, K(gg, {gg}) = 1; for I

4

, K(gg, {gg}) = 1, other unspe-
cified logical parameters under other resources are by default 0. 133

7.6 (a) An IG has 228 compatible models, 210 of which can generate a single stripe,
RA

I

= 0.9211. (b) All 4 IGs have 114 compatible parameters which are all
functional, RA

I

= 1. Arrows denote activation, arrows with a dash denote either
activation or inhibition. 134

7.7 (a) 8 Boolean variables needed. (b) An example. 135
7.8 The 5 conjunctive clauses in the minimal DNF and the corresponding graphical

sub-IGs. Arrows: activations, blunt arcs: inhibitions; dashed arrows ending
with a dot: non negative, ¬≠; dashed arrows ending with a dash and a dot: one
of activation, inhibition or no influence, {+, ≠, ” ÷}. 135

List of Tables

1.1 Quine-McCluskey algorithm for a Boolean function f . (a) The truth table for f .
(b) The rows in (a) with f = 1 are the minterms which are implicants of order 0.
(c) Those implicants of order 0 with only one different variable can be combined
(written as ≠), giving the combined implicants of order 1. Those implicants
which cannot be combined any further are prime, marked with “

Ô
”, otherwise

with “æ”. (d) The prime implicant chart is constructed to find the essential
prime implicants of f and other prime implicants which are necessary to cover
all true minterms. A minterm that is covered by only one prime implicant
is marked with “•”. A minterm is marked with “¶” if it is covered by more
than one prime implicant. The prime implicants which cover “•” minterms are
essential. The minimal logical expression is f = x̄

2

x̄
1

‚ x
1

x
0

. 3

2.1 The resources of u under different signs of the interaction (u, u). 16
2.2 The space and time complexity of the four algorithms. 35

3.1 4 u-hypercubes and their destination values in direction of u, in Figure 3.6. . . 42
3.2 8 v

1

-hypercubes and their destination values, in Figure 3.9. 44

4.1 14 K
c,d

s and 12 Kp

c,d

patterns. ’≠’ means it can be either 1 or 0. 79

5.1 The IGs in Figure 5.2 are contained in multiple models, which were inferred
from all enumerated ASTGs. Some of the corresponding ASTGs are shown in
the figures listed in the third column. 87

5.2 The charts of incoming degrees, the number of functional and compatible
parameters K’s, and the realizability of 8 functional IGs for the cyclic attractor
A. The last row is the capacity measure of the required cyclic attractor. 91

5.3 The ˆK(MEK , ·) during initialisation: the cyclic attractor (“
c

”), the original
ASTG (“

o

”) and three ASTGs related with IG 3 (“
1

”, “
2

”, “
3

”). Row 1: the
resources Ê ™ V \{MEK}. Row 2 and 3 show the corresponding extremal
states and extremal rows. Below is the process on looking for ˆK(MEK , Ê)

and ˆK(MEK , Ê fi {MEK}). The states of the cycle attractor are in bold, “≥”
stands for “unknown”. 93

5.4 Inferring (MEK , MEK): original ASTG (“
o

”) and the 3 ASTGs from IG 3

(“
1

”, “
2

”, “
3

”). 94
5.5 Inferring (ERK , MEK): original ASTG (“

o

”) and the 3 ASTGs from IG 3 (“
1

”,
“

2

”, “
3

”). 95
5.6 Encoding the 8 functional IGs with 18 Boolean variables. The Boolean expres-

sion of each IG is the product of all variables in the row. 95
5.7 Encoding the 8 functional IGs with 9 Boolean variables. The Boolean expression

of each IG is the product of all variables in the row. 95
5.8 Minimal representation of 3 K

Raf

’s, 2 Kp

Raf

’s. “≠” denotes either 0 or 1. . . . 96

155

156 LIST OF TABLES

5.9 Minimal representation of 3 Ki

MEK

s, 2 Kp

MEK

. “≠” denotes either 0 or 1. . . . 97
5.10 Minimal representation of 3 Ki

ERK

s, 2 Kp

ERK

. “≠” denotes either 0 or 1. . . . 97

6.1 Number of functional models, IGs and building blocks for condition (S1) or
(S2), depending on the four constraints (a) - (d). 111

6.2 Number of K’s for functional IGs for (S1) or (S2) (20 columns). 115
6.3 Functional parameters for (S1) for the 180 IGs functional for both (S1) and (S2)

(19 columns). 115
6.4 Functional parameters for (S2) for the 180 IGs functional for both (S1) and (S2)

(21 columns). 115
6.5 For the IG in Figure 6.14 ((S1)), 6 K(v

1

, ·)’s. The minimal DNF is shown as 5

Kp

(v
1

, ·)’s. “≠”: either 0 or 1. 117
6.6 For the IG in Figure 6.14 ((S1)), a short description of 6 K(v

1

, ·)’s in terms of
Boolean variables. 117

6.7 For the IG in Figure 6.16, 6 functional K(v
1

, ·)’s for (S2), 5 K(v
1

, ·)p’s from
the minimal DNF. “≠”: either 0 or 1. 118

6.8 For the IG in Figure 6.16, a short description of 6 K(v
1

, ·)’s in terms of Boolean
variables, for (S2). 119

6.9 For the IG in Figure 6.16, 6 functional K(v
2

, ·)’s. 5 Kp

(v
2

, ·)’s from the
minimal DNF, for (S2). “≠”: either 0 or 1. 119

6.10 For the IG in Figure 6.16, a short description of 6 K(v
2

, ·)’s in terms of Boolean
variables, for (S2). 120

7.1 Logical parameters K(rr , Res

rr

(state)) under three states of different morpho-
gen levels. 126

7.2 Logical parameters K(rr , Res

rr

(state)) for states with different morphogen
levels. 127

7.3 Seven cases among all 227 functional IGs which are obtained by the reverse
engineering workflow. For example, case 1 means there are 27 IGs which
contain no interactions (m

0

, rr) and (m
1

, rr). 130
7.4 Realizability of 28 stripe forming IGs (rounded to 2 digits). 134

Zusammenfassung

Ein Schlüsselthema der Systembiologie ist das Verstehen der komplexen Beziehungen zwischen
molekularen Netzwerkstrukturen, dynamischen Eigenschaften und biologischer Funktion. In
diesem Zusammenhang sind genregulatorische Netzwerke (GRN), welche die regulatorischen
Interaktionen zwischen Genen und ihren Produkten beschreiben, von grundlegender Bedeutung.
Das allgemeine Ziel dieser Dissertation ist die Erforschung der Beziehungen zwischen der
Struktur und der Dynamik genregulatorischer Netzwerke. Dies geschieht in einem diskreten
Modellierungsrahmen unter Verwendung des Thomas-Formalismus. Ein GRN wird durch ein
diskretes Modell dargestellt, das einen Interaktionsgraphen (IG) und eine logische Parameter-
funktion umfasst, welche die regulatorischen Interaktionen charakterisieren. Die Dynamik des
GRN wird durch einen asynchronen Zustandsübergangsgraphen (ASTG) modelliert, bei dem
Zustände nur durch asynchrone und unitäre Updates geändert werden können. Im Jahr 2011
schlug T. Lorenz zwei Rückwärtsinferenzalgorithmen vor, um aus einem gegebenen ASTG
Modelle mit spezifischen Eigenschaften herzuleiten.

Im ersten Teil der Dissertation liegt der Schwerpunkt auf der Erläuterung, Implementierung
und Verallgemeinerung der Lorenz-Algorithmen. Um allgemeine Eingaben zu behandeln,
werden drei notwendige und hinreichende Bedingungen vorgeschlagen, um ASTGs in der
Menge aller Graphen auf einem gegebenen Zustandsraum zu charakterisieren. Darüber hinaus
wird eine vierte Bedingung hergeleitet, die notwendig und hinreichend dafür ist, dass ein ASTG
ein realistisches Modell zulässt. Diese vier ASTG Bedigungen bilden die Grundlage für eine
Verallgemeinerung der Lorenz-Algorithmen und mehrere Anwendungen.

Multistationarität und Homöostase sind zwei wichtige dynamische Eigenschaften von hoher
biologischer Relevanz, die durch Attraktoren im ASTG dargestellt werden können. Im zweiten
Teil der Dissertation werden zwei diskrete Modellierungsabläufe entwickelt, um all diejenigen
GRN zu untersuchen, die in der Lage sind, eine gegebene Funktionalität zu realisieren. Der
Vorwärtsablauf beinhaltet die Aufzählung aller möglichen Modelle und die Suche nach denjeni-
gen Modellen, deren ASTG die gewünschten Eigenschaften aufweist. Der Rückwärtsablauf
beginnt mit der Aufzählung der Graphen im Zustandsraum, die die dynamischen Eigenschaften
erfüllen, und leitet daraus unter Verwendung der verallgemeinerten Lorenz-Algorithmen alle
zugehörigen Modelle her. Zur Analyse der erhaltenen funktionalen IG wird ein logisches
Analyseverfahren entwickelt, das IG durch Boolesche Ausdrücke codiert und daraus durch
Minimierung Boolescher Funktionen eine kompakte Darstellung gewinnt. Dieses logische
Analyseverfahren kann auch auf die logischen Parameter angewandt werden.

Im letzten Teil der Dissertation werden die diskreten Modellierungsabläufe angewandt, um
den Raum der GRN zu untersuchen, die einige typische dynamische Verhaltensweisen von biolo-
gischem Interesse umsetzen. Drei Fallstudien werden vorgestellt. Die erste betrifft Homöostase
in einer vereinfachten MAPK-Kaskade, die zweite Multistationarität in der Zelldifferenzierung
und die dritte die Bildung einfacher Streifen in der Embryonalentwicklung der Fruchtfliege
Drosophila melanogaster.

Acknowledgements

My most sincere, deepest and heartfelt gratitude is for my supervisor, Prof. Dr. Alexander
Bockmayr, for his unlimited support and guidance in every step of my PhD, for his great patience
and tolerance so that I could take my time to learn and try different topics, for his thoroughness,
encouragement, for the countless time committed in our discussion and proofreading.

Next, I want to thank Dr. Élisabeth Remy, HDR for kindly accepting to become a reviewer
of the thesis.

I would like to thank Therese Lorenz, for her valuable advice and proofreading the mathem-
atics in the thesis, for all those interesting and enlightening discussions. I have enjoyed working
with her and benefited from her solid mathematics knowledge.

I also want to thank all present and former colleagues in the work groups, Mathematics in
Life Sciences and Discrete Biomathematics, for creating this friendly and supportive research
atmosphere, namely Alexander, Heike, László, Shahrad, Hannes, Aljoscha, Arne, Alexandra,
Kirsten, Firdevs, Annika, Yaron, Therese, Katinka, Matilde, Steffen, Adam, Robert, Lı́n, Neveen
and Markus. I want to thank Shahrad, Hannes, Aljoscha, Kirsten, Firdevs, Katinka, Annika and
Alexandra for all the helpful tips and discussions. I want to thank those with whom I shared the
same office, László, Marco, Annika, Yaron, Therese and Neveen. Moreover, I want to thank
Katja Geiger and Ekaterina Engel for all the help and especially in many documents. Because
of you all, Berlin becomes my another hometown.

I am very grateful for the four years scholarship from China Scholarship Council which
allows me to start and focus on the PhD study, and for additional funding and support from
Freie Universität Berlin through Dahlem Research School.

Thanks to all my friends who keep me supported and connected all through my years of
PhD. Thanks to Raphael, Sunil and Lı́n Liú for proofreading a few chapters. Special thank to
Tiěyuán, Wénxiù, Shūjūan, Zhı̀guǎng for all the time encouragement. To Liú Pı́ngpı́ng, Lóng
Tāo, Hé Jı̀ng and Zhı̀mı́n Xiāo, Jiāl̀u, Lı́n Rén, Zhèngxīng, Hán, Jǐngwēi, Hào, Yuè, Wěi, Xǔe,
Guóxīng, Zhènghào, Wáng Biāo, Yàn Lǐ and Sunil who contributed on my well-being during
my PhD study.

I want to thank Zhı̀yǒng Liáng who has joined me in Berlin, consistently supported me and
renewed my understanding of life.

Last, I want to express my very deep appreciation to my parents, my brother and uncle
Déqiáng Lěng, for the life time unconditional everlasting trust, support and love.

Selbständigkeitserklärung

Hiermit erkläre ich, dass ich alle Hilfsmittel und Hilfen angegeben habe und versichere, auf
dieser Grundlage die Arbeit selbständig verfasst zu haben. Die Arbeit wurde nicht schon einmal
in einem früheren Promotionsverfahren eingereicht.

———————————————–

Ling Sun

Berlin, August 2017

	Referee
	Abstract
	1 Introduction
	1.1 Propositional logic and Quine-McCluskey Algorithm
	1.2 Continuous and discrete modelling frameworks
	1.3 Preliminaries on discrete modelling of regulatory networks
	1.4 Overview of the thesis

	2 From dynamics to structures: reverse engineering algorithms
	2.1 Model conditions and ASTG characterisation
	2.1.1 Model conditions
	2.1.2 Row properties of an ASTG
	2.1.3 Equivalent models

	2.2 Reverse engineering algorithms
	2.2.1 Algorithm Logical-Parameters
	2.2.2 Algorithm Activity-Value
	2.2.3 Algorithm Visibility-Model
	2.2.4 Algorithm Observability-Snoussi-Model

	2.3 Discussion

	3 Asynchronous state transition graphs and generalised Lorenz algorithms
	3.1 Characterising asynchronous state transition graphs
	3.1.1 Three ASTG conditions
	3.1.2 Compatible model condition
	3.1.3 Enumerating asynchronous state transition graphs
	3.1.4 Asynchronous state transition graphs in low dimension

	3.2 Generalising Lorenz algorithms with ASTG conditions
	3.2.1 Generalised Lorenz algorithms
	3.2.2 Examples for generalised Lorenz algorithms

	4 Model analysis and discrete modelling workflows
	4.1 Realizability
	4.2 Logical analysis method
	4.2.1 Logical analysis on IGs
	4.2.2 Logical analysis on parameters

	4.3 Discrete modelling workflows
	4.3.1 Forward modelling workflow
	4.3.2 Reverse engineering workflow
	4.3.3 Analysis of the functional models

	5 Application: structures reproducing homeostasis
	5.1 Functional models preserving the cyclic attractor
	5.1.1 Using the reverse engineering workflow
	5.1.2 Functional IGs and their ASTGs
	5.1.3 Realizability of functional IGs
	5.1.4 Coupled interactions

	5.2 Logical analysis of functional models
	5.2.1 Functional IGs
	5.2.2 Functional parameters

	5.3 Conclusion and discussion

	6 Application: structures reproducing multistability
	6.1 Continuous method: robustness measure
	6.1.1 Continuous modelling framework
	6.1.2 Specification of stable steady states
	6.1.3 Robustness measure and its computation

	6.2 Discrete modelling methods
	6.2.1 Initial setup
	6.2.2 Different constraints on the desired stable states
	6.2.3 Forward modelling workflow: from IGs to ASTGs
	6.2.4 Reverse engineering workflow: from ASTGs to IGs

	6.3 Results and analysis
	6.3.1 Results from the continuous method: robustness measure
	6.3.2 Results from discrete methods
	6.3.3 Comparison of the results
	6.3.4 Realizability
	6.3.5 Logical analysis on functional models

	6.4 Conclusion and discussion

	7 Application: structures for single-stripe pattern
	7.1 Discrete modelling workflows: stripe-forming GRNs
	7.1.1 Modelling setup
	7.1.2 Forward modelling workflow
	7.1.3 Reverse engineering workflow

	7.2 Results and analysis
	7.2.1 Results of the forward modelling workflow
	7.2.2 Results of the reverse engineering workflow
	7.2.3 Five rules for all functional IGs
	7.2.4 Anti-stripe pattern
	7.2.5 Realizability and the capacity on stripe-forming IGs

	7.3 Logical analysis of functional IGs
	7.4 Conclusion and discussion

	8 Summary and discussion
	8.1 Summarising the story
	8.2 Contributions and applications
	8.3 Discussion

	Bibliography
	Zusammenfassung
	Acknowledgements
	Declaration

