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Chapter I: General Introduction 

 

Community ecology & the concepts of community assembly 

The study of organism communities in the field using mathematical means and statistics is almost a 

century old. The principal view that species coexistence is based on the avoidance of competition for 

resources via trade-offs in life-traits forms the foundation of classical community ecology (Hall et al., 

2003, Tilman and May 1982, Tilman and Downing 1994). Mathematical models describing the 

relationships between organisms went from being purely deterministic to the widely established niche-

framework, with the introduction of demographic stochasticity to describe species diversity limits 

(MacArthur 1970, Tilman 2004). This framework was challenged by Hubbell with the proposition that 

community structures can be described solely by dispersal limitation and demographic stochasticity 

(Chave 2004, Gotelli and McGill 2006, Hubbell 2001). Although contradictory in their principal 

assumptions, niche and neutral processes were found to be convergent in terms of their abilities to 

predict species abundance distributions (Chave et al., 2002). Depending on the processes dominant in 

an ecosystem, community dynamics may change from patterns that are best modeled by purely neutral 

dynamics to niche-partitioning based competition systems (Cottenie 2005). Additionally to niche and 

neutral dynamics, other paradigms have been shown to be able to predict the assembly of 

communities, like priority effects (Alford and Wilbur 1985, Plückers et al., 2013), multitrophic 

networks (Cardinale et al., 2006, Van Der Putten 2009), or metacommunity frameworks (Leibold et 

al., 2004, Pillar and Duarte 2010), plus subsequent combinations of these approaches. 

Soil ecosystems have several properties that make them ideal for the investigation of the relative roles 

of processes shaping ecosystems. The high species diversity within a distances of few cm to several m 

allows for the incorporation of processes operating at different scales in a single sampling, while 

sampling density can be sufficiently high to capture the majority of interactions. Additionally, many 

soil-borne species have limited dispersal capability (Mummey and Rillig 2008, Wolfe et al., 2006). 

The lack of studies addressing this topic with rigorous methodology proposed by theoretical biologists 

(Cottenie 2005, Gotelli 2000) as well as the absence of studies on multiple taxa and multiple scales 
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calls for further investigation of this subject. This work focuses on one of the key species groups in 

soil microbial communities, arbuscular mycorrhizal fungi, since they are closely connected to plants 

and their community ecology is only scarcely explored. Studies on AMF have established some 

interesting insights into the patterns underlying their community assembly (Dumbrell et al., 2010a, 

Dumbrell et al., 2010b, Lekberg et al., 2007), however, they lack spatially explicit design and 

therefore have difficulties disentangling the relative roles of niche and neutral processes in relation to 

the scale at which they did their analysis. This work aims at solving these obstacles. 

The spatial scale at which field studies are conducted can directly link to the gained results and hence 

heavily influence conclusions and actions taken from these findings. The question at which scale 

competitive dynamics occur and how it relates to dispersal limitation needs to be taken into account. 

Plant species composition has been related to AMF diversity (Hiiesalu et al., 2014) and AMF 

community changes have been found to be associated with neighboring plants (Vandenkoornhuyse et 

al., 2003). The contrasting findings may be related to the different scales involved. For example, it has 

been shown that AMF can be highly structured at the sub-meter scale (Mummey and Rillig 2008), 

where dispersal and niche processes are prominent, missing out on the scales at which neutral 

processes take place. While hyphal networks have been shown to encompass large spatial areas, the 

sphere of interaction of a single AMF individual with the soil may be significantly smaller in 

comparison. It is therefore important to acknowledge this in designing field studies to assess 

community dynamics properly. The current work therefore uses a spatially explicit design that is 

capable of detecting both neutral and niche processes at the same time.  

 

Oderhänge Mallnow - a study system for fungi and plants 

In order to study the aforementioned processes in a sufficient manner, a study system is needed that 

fits the requirements of spatially explicit design and the capture of both niche and neutral dynamics. A 

high plant diversity is a necessity as well as a significant change of environmental characteristics over 

a short distance. Since this work addresses soil biota, environmental changes are primarily related to 

soil parameters like pH, phosphorus and carbon content. Dry, nutrient-poor grasslands are interesting 

ecosystems for the study of AMF, since they can harbor a lot of mycorrhizal plant species and the 
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plant communities in grasslands can be quite diverse. They often bear drastic changes in soil 

conditions, however, mostly these changes occur over the course of a few hundred meters to several 

kilometers. The Oderhänge Mallnow, located in Brandenburg, Germany, offer steep environmental 

gradients over the course of only a few meters. This region is a biodiversity hotspot which contains 

over 200 plant species and combines features of both steppes and oceanic habitats (Ristow et al., 

2011). Being a historical battleground during World War II, the landscape is shaped by small hills and 

valleys, making it overall quite diverse. Some woody patches exist, but a significant amount of the 

1200 square kilometer region consists of dry grasslands, dominated by grass species like 

Arrhenatherum elatius, Festuca brevipila, or Stipa capillata. It is a natural reserve, harboring several 

endangered plant species like Adonis vernalis, Aster linosyris, Campanula sibirica and Hieracium 

echioides. In this work slopes of the hillsides have been studied (Chapter 2, Fig. 1), since they offer 

the properties sought after: high diversity both in plants and root-associated fungi, and steep gradients 

in soil properties over relatively small scales below 15 meters (Wehner et al., 2014). 

 

A brief overview of AMF research 

The kingdom of fungi features a vast amount of ecologically and economically important species, 

including large amounts of saprotrophs, pathogens and mutualists in ecosystems worldwide. 

Mycorrhizal fungi are of particular importance since they associate with the majority of land plants 

(Smith and Read 2008) and bear a major role in acquiring nutrients for their plant host, therefore being 

of tremendous value both for plant diversity and agroecology. The group of mycorrhizal fungi can be 

divided into several subgroups that are historically classified by the phenotypical appearance of the 

association and the host plant, but have also received classification by phylogenetics in the recent two 

decades. Briefly, the main groups are ectomycorrhizal, ericoid mycorrhizal and arbuscular mycorrhizal 

fungi. Ectomycorrhizal fungi primarily associate with trees, infect root hairs and form a Hartig's net on 

the outside of the root. Ericoid mycorrhiza species primarily associate with plants of the Ericaceae and 

forms fungal coils in the root hairs. Arbuscular mycorrhizal fungi (AMF) associate with the majority 

of all land plants, forming tree-like structures within the root parenchym cells (Smith and Read 2008). 
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Due to the association with almost all important crop plants, AMF have received a significant amount 

of attention in research.  

The classification of AMF, mainly cryptic, asexual fungi, has been historically based on spore 

morphology, but modern sequencing techniques have allowed for a more sophisticated approach and 

hence improved the understanding of diversity in this fungal group. According to fossils, the history of 

AMF symbiosis might date back up to 460 million years into the Early Devonian, indicating that their 

nutrient-transfer mutualism might have co-evolved with plants invading the land (Redecker et al., 

2000). In the first descriptions of a genus named 'Glomus', they were only known for clusters of spores 

in the upper layers of soil, while at the beginning of the 19th century, their role as root-colonizing 

fungi had been discovered (Butler 1939). Later, evidence was found that a Glomus species was the 

source of mycorrhizal colonization in strawberries (Mosse 1953). After being assigned their own order 

(Benjamin 1979), a cladistic analysis based on morphology assigned the then-called Glomerales was 

established (Morton and Benny 1990). While they had originally been classified as imperfect 

Zygomycota, they now form an independent clade of the Glomeromycota. The phylogeny of the AMF 

remained highly debated until modern techniques have led to a phylum-level classification that is in 

use until today (Schüßler et al., 2001, Schüßler and Walker 2010, Stockinger et al., 2010). Together 

with modern classifications, studies arose that found a diversity among the AM fungi that was 

considerably higher than previously established with morphological means (Douds and Millner 1999, 

Lekberg et al., 2007, Lekberg et al., 2013, Torrecillas et al., 2011). 

 

Arbuscular mycorrhizal fungi & their role in ecosystems 

AMF form complex hyphal networks, allowing for plants to exchange of nutrients and allelochemicals 

over a significant distance far beyond the reach of the root system of a single plant (Achatz and Rillig 

2014). They therefore extend the plant„s ability to acquire phosphorous, but also nitrogen (Veresoglou 

et al., 2012), in exchange for carbon (Smith and Read 2008). The important process of soil aggregation 

is influenced by AMF (Leifheit et al., 2015), interactions between soil-borne pathogens and soil 

microarthropods have also been found (Hishi and Takeda 2008, Whipps 2004). A significant amount 

of soils on earth are nutrient-limited, and particularly nitrogen and phosphorous limitations are majorly 
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important for plant growth. AMF have an important role in the acquisition of phosphorous in soil for 

plants, therefore they provide a significant contribution to the plant diversity. They influence the 

possibilities of plant establishment in soils and extend the realized niche of several plant families 

(Bever et al., 2010, Bever et al., 2012). It has been shown that fungi and plant diversity can influence 

each other on several levels (Hiiesalu et al., 2014), which points out the importance of including 

fungal biodiversity in the judgment of conservation plans and restoration efforts. They may aid or 

prevent the establishment of invasive species (Williams et al., 2011), influence the biological activity 

of soil (Alguacil et al., 2014) and provide a possibility for controlling pathogens (Veresoglou and 

Rillig 2012). 

While AMF have been demonstrated to carry significant ecosystem functions, the way how and why 

AMF species interact to form the diverse communities is still an active and developing topic in both 

ecology and molecular biology. AMF possess several traits that make them hard to study in a lab, 

including the obligate biotrophy (Smith and Read 2008), a supposed lack of a sexual lifecycle (Croll et 

al., 2009, Croll and Sanders 2009), heteromorphic spores (Walker and Vestberg 1998) or multiple 

karyotypes per nucleus (Hijri and Sanders 2004), while the assessment of diversity in the field has 

only been promoted to the species level identification since the development of next-generation 

sequencing tools.  

One approach to AMF community assembly rules assumes that the fungi associate primarily via 

interactions with the environment, namely through niche-partitioning based species-sorting. 

Additionally, spatial effects like dispersal limitation have been shown to shape AMF community 

diversity on several spatial scales (Dumbrell et al., 2010a, Dumbrell et al., 2011, Lekberg et al., 2007, 

Lekberg et al., 2011). Another way to deal with AMF community composition is to look at the 

symbiotic partner, the plants, and their way how AMF and plants influence each other. The Passenger 

and Driver framework aims to account for the roles of plants shaping AMF and vice versa, while 

leaving the interactions with the environment as a null hypothesis (Zobel and Öpik 2014). This work is 

aimed at searching for evidence for both systemic and biotic processes in shaping of AM fungal 

communities. 
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DNA-based assessment of AMF communities 

This work utilizes extensive DNA sequencing for studying AM fungal community composition; 

therefore a brief introduction of techniques and tools shall be given. The development of sequencing 

technology has made great improvements over the last ten years. While classical Sanger-sequencing 

only yields one sequence per run, current state-of-the-art sequencing tools enable the generation of 

billions of fragments in only one experimental procedure. While initially developed to deliver a cheap 

and fast technology for genome sequencing (chiefly the Human Genome Project), community 

ecologists quickly became aware of the benefits and possibilities of this new method. Traditional 

Sanger sequencing works by replicating target fragments one nucleotide after another and randomly 

introducing tagged nucleotides fused with a distinct fluorophore unique to each type of nucleotide that 

results in the termination of the replication process. The fragments then are separated from the donor 

strand and ordered according to their length. Detecting the fluorophore at the end of each fragment, 

from the smallest to the largest one, results in the sequence of a given molecule. Next-generation 

pyrosequencing sticks with the single-nucleotide detection system, but extends it to a massive parallel 

scale that creates millions of sequences in one run (Margulies et al., 2005).  

The DNA strands which are to be amplified are tagged with an adapter and a barcode for later 

amplification and separated into single stands. In a first step, they are amplified in an emulsion-based 

PCR, where they are mixed with 28µm metal beads in a ratio that binds one molecule of DNA on one 

single bead. On the surface of these metal beads the amplification takes place, creating millions of 

copies of the target sequence bound to the metal. The beads loaded with DNA strands of one type are 

then distributed on a plate with picoliter wells, one bead per well, and the wells are filled with smaller 

beads carrying immobilized enzymes. The plate is subsequently flushed with solutions containing one 

type of nucleotide each in a cycle. Nucleotide incorporation is detected by the associated release of 

inorganic pyrophosphate, which is converted to a light emission via a set of enzymes (Ronaghi et al., 

1998) and detected with a CCD camera. The information of flow nucleotide content in combination 

with the CCD sensor data allows for reconstruction of the sequence in each well with a bead. 

Bioinformatics tools help with distinguishing background and artifacts from real sequences (Hao et al., 

2011, Quince et al., 2009, Quince et al., 2011). 
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Thesis outline 

This work will provide evidence for processes leading to the assembly of plant and AM fungal 

communities. In Chapter II, the assembly rules that the plants in our ecosystem follow are analyzed, 

determining the influence of spatial and environmental patterns on the plant community composition. 

In Chapter III, the focus lies on AMF species and their community assembly patterns, linking 454-

pyrosequencing data with environmental, spatial and phylogenetic patterns in order to answer how 

individual communities of AM fungi are assembled the way they are. In Chapter IV, the two organism 

groups are being combined in the analysis, and the sampling extent is increased. Therefore, a more 

detailed picture of the influence of AMF on plants or vice-versa can be drawn, comparing the relative 

roles of systemic and biotic patterns on community assembly. The results of the three chapters will be 

subjected to a general discussion in Chapter V.  
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Abstract 

 

Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and 

establishment. As these factors operate at different spatial scales, we asked: Do the environmental 

factors known to determine community assembly at broad scales operate at fine scales (few meters)? 

How much do these factors account for community variation at fine scales? In which way do biotic 

and abiotic interactions drive changes in species composition? 

We surveyed the plant community within a dry grassland along a very steep gradient of soil 

characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three 

replicated macroplots of 15x15, 12x12 and 12x12 meters in extent. Soil samples were taken to 

quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and 

dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning 

to assess the effect of these variables on plant composition and statistically controlled for spatial 

autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random 

patterns in species co-occurrence using randomization schemes that account for patterns expected 

under species interactions.  

At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial 

autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% 

variation. Null model analysis showed that species spatially segregated in a non-random way and these 

spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our 

grassland study suggests that environmental factors found to be directly relevant in broad scale studies 

are present also at small scales, but are supplemented by spatial processes and more direct interactions 

like competition. 

 

Keywords: Assembly pattern; Dispersal limitation; Festuca brevipila; Niche partitioning; Null model; 

Plant community ecology; Variance partitioning 
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Introduction 

 

Plant community assembly is significantly driven by processes on several scales, like competition 

(Aarssen, 1989), dispersal limitation (Ai et al., 2012) and environmental conditions (Latimer and 

Jacobs, 2012). Understanding the processes involved in the assembly of communities is considered 

one of the most important challenges in ecology today (HilleRisLambers et al., 2012; O‟Neill, 1989; 

Turner and O‟Neill, 1995). While the understanding of community assembly has advanced 

significantly within the last 50 years, ecologists still lack precise insight on how the interplay of 

organisms and their environment determines the structure of natural communities (Götzenberger et al., 

2012; Naaf and Wulf, 2012). 

One common idea in ecology about the assembly of a diverse community involves filtering by the 

environment and interactions of organisms that establish local populations. This led to the niche-

partitioning concept (Leibold, 1995; Silva and Batalha, 2011), where assemblages of species are 

viewed as having different tolerances to the abiotic environment and differing abilities to exploit 

resources. With the rise of neutral theory (Hubbell, 2001; Rosindell et al., 2012), the debate on the 

processes influencing biodiversity was reinvigorated and the search for a unified theory has dominated 

the field (Adler et al., 2007). It has been suggested that the combination of investigating both local and 

short-term mechanisms as well as regional processes occurring over longer timescales may be crucial 

for a complete understanding of ecosystem assembly and function (HilleRisLambers et al., 2012).  

Grasslands cover one fourth of the Earth‟s land surface and harbour the majority of annual plant 

diversity (Shantz, 1954). A significant amount of studies on grassland ecosystems are focused on the 

influence of soil characteristics on plant community composition (Wellstein et al., 2007), which, 

together with water, wind and sunlight, represents the bulk of abiotic influences on a plant community 

(Callaway, 1997; Parfitt et al., 2010). Soil characteristics can be strong predictors of plant community 

composition (Gough et al., 2000; Tilman and Olff, 1991), although the scale of the studies influences 

the predictive power of soil parameters like pH, carbon, nitrogen or phosphorus content (Sebastiá, 

2004). But not only abiotic factors are influenced by the scale of a study; positive and negative 
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interspecies associations can occur at small scales and disappear with increasing scale (Wiegand et al., 

2012).  

In this study we aimed at increasing the understanding of scale-dependence in community patterns by 

analysing the plant community composition of a semi-natural grassland (Leibold et al., 2004). While a 

lot of studies on grasslands are trying to approach community composition mechanisms by inferring 

local interactions via the observation of larger-scale composition (Eckhardt et al., 1996; Thomas and 

Palmer, 2007; Toogood et al., 2008), we were aiming at understanding these processes by looking for 

patterns of species composition that could be either deterministically or stochastically structured while 

choosing the smallest local community possible: a single focal plant and its direct rhizosphere 

interaction partners, making the community unit as small and replicable as possible. Other small-scale 

studies have dealt with similar grain sizes like ours (Chu et al., 2007; Reitalu et al., 2009; Turtureanu 

et al., 2014), however, they do not approach single plants with their rhizosphere environment or 

combine small grain and extent. We consider the single plant rhizosphere environment a community, 

implicitly embodying the idea of interactions of plants with the environment and each other.  

Our study area offers unique possibilities of studying steep environmental gradients within only a few 

meters in very species-rich grassland which also harbours one highly abundant plant species, enabling 

us to observe potential environmental filtering as well as spatial processes and biotic interactions in a 

spatially well-defined small-scale area. We selected this plant species, namely Festuca brevipila R. 

TRACEY (Aiken and Darbyshire, 1990; Klotz et al., 2002), as our focal plant to be able to target the 

whole gradient of environmental conditions which our study area offers, and still be able to 

standardize the community perspective on one species. We used patterns of co-variation among plant 

species, environmental and spatial variables derived from a neighbour matrix to answer the following 

questions: i) Do the environmental factors, specifically soil properties, that are known to determine 

community assembly at broad scales also operate at fine scales (1-15 meters) and how much do these 

factors account for community variation at fine scales? ii) In which way do biotic and abiotic factors 

drive changes in species composition? Our questions involve the disentanglement of patterns at 

various small scales, which calls for tools able to quantify the contributions of environmental and 

spatial patterns plus their shared effect. We therefore applied state-of-the-art multivariate analysis 
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(Borcard et al., 1992; Dray et al., 2006) to test our hypotheses and contrast patterns due to 

environmental variables with spatial patterns potentially due to biotic interactions (e.g. segregation 

caused by competition) and/or dispersal dynamics. Large-scale environmental effects that determine 

plant community structure in a range from a few to several hundred kilometres, include climatic 

gradients (Ludewig et al., 2014), altitudinal changes (Krömer et al., 2013) or differences in soil 

biogeochemistry (Khan et al., 2013). At the small scale of our study we focused on soil since this is 

the only variable forming gradients at such scales. Although our sampling design captured strong 

gradients in soil variables, we expected a relatively smaller influence of environmental variables on 

our plant communities in comparison to larger scaled studies, because biotic interactions or neutral-

like effects could outweigh environmental drivers at the small scale of our study.   
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Materials and Methods 

 

Data collection 

The grassland studied is situated in a natural reserve (Mallnow Lebus, Brandenburg, Germany, 

52°27.778' N, 14°29.349' E). The region is influenced by sub-continental climate with a mean annual 

precipitation of below 500 mm (Ristow et al., 2011) and the area is managed by sheep grazing twice a 

year. The sampling strategy was based on a hierarchical nesting of macroplots and plots, and was done 

at the end of June 2011 to minimize influences by spring ephemerals. Three macroplots of 15 x 15, 12 

x 12 and 12 x 12 meters, respectively (Fig. 1), were located on the slopes of hills in an area of about 

five hectares. We found only minor traces of sheep trails which indicate a low grazing pressure on our 

macroplots, likely due to the strong slope. We ensured that all macroplots were part of two closely 

related grassland communities found in Mallnow, namely Sileno otitae-Festucetum-brevipilae Libbert 

1933 corr. Kartzert & Dengler 1999 and Festuco psammophilae-Koelerietum glaucae Klika 1931. Our 

macroplots were comparable concerning vegetation and soil related factors like distance from trees, 

stone content or depth of A-horizon, as well as slope and sun exposure, and therefore can be 

considered a replicated design. The uphill-downhill axes of the macroplots are characterized by a steep 

textural gradient from highly sandy (downhill macroplot) to sandy-loamy (uphill macroplot) soils. 

Preliminary analyses revealed that this gradient causes gradients in many other soil parameters, 

namely pH, carbon, nitrogen and plant available phosphorus. Each macroplot was divided into 3 x 3 m 

plots (Fig. 1). From each macroplot the vegetation of the four corner plots (top left, top right, bottom 

left, bottom right) was sampled: For the measurement of soil properties one soil core per plant was 

taken atop of five randomly chosen F. brevipila plants per plot, creating 60 samples in total. In a 

radius of 15 cm around the chosen F. brevipila plant, the local plant community was assessed visually 

as presence or absence of plant species. This sampling unit represents our main community unit and 

below we refer to it as “sample”. With regard to the smallest sampling unit (“sample”), the 15 cm 

radius ensures that interactions within the rhizosphere of F. brevipila plants were captured. We 

preferred this method to a totally random location of the sampling units (i.e. not having a focal 

species) for the following mutually reinforcing reasons: a random location would have been strongly 
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biased towards F. brevipila in a non-controlled way because F. brevipila is by far the most abundant 

species in the area (in some case the species can cover up to 70 % of one plot); by controlling for this 

critical source of certain bias, we could minimise possible very small scale environmental 

heterogeneity that could confound the interpretation of co-occurrence analysis based on null models 

(see methods below) and the comparison between null models and multivariate analyses based on 

RDA; the plant assemblage can be objectively defined at a biologically meaningful small scale (i.e. 

rhizosphere) as the neighbourhood community of the dominant species. This makes the community 

unit highly replicable: the average composition of this particular but representative assemblage can be 

assessed throughout plots and macroplots as a function of changes in the environment and the effects 

of the environments on how species interact within this assemblage. By having a focal species and 

defining the assemblage as a function of it, we lost some degree of generality but it is also true that our 

focal species and the genus to which it belongs (Festuca) is one of the most abundant if not the most 

abundant and widespread taxon in dry grasslands. Thus, we could compare total plant species richness 

of each plot with the species richness found in the proximity of each of the five randomly sampled F. 

brevipila plant per plot. The corner plots were chosen to use the maximum of the environmental 

gradient along one direction (the downhill-uphill axis) and a minimum of it in the direction orthogonal 

to the environmental gradient while keeping the spatial distances between plots equal. Thus, the three 

macroplots represent three spatial replicates while the environmental gradient is replicated twice 

within each macroplot.  

Each soil core was thoroughly homogenized and representatively subsampled for the different 

analyses. Soil water content was measured as the weight difference between fresh and oven-dried soil 

cores. Soil carbon and nitrogen analysis was performed on a EuroEA 3000 Elemental Analyser 

(EuroVector, Milano, Spain) with a TDC detector using 25 mg of pulverized soil per core. Soil pH 

was measured in 10 mM CaCl2 solution (van Lierop and Mackenzie, 1977) using 3 grams of soil per 

core. Plant available phosphorus was characterized following the CAL-method (Sparks, 1996) using 1 

gram of soil per core. Dehydrogenase assays were conducted according to Rossel (1997), using 1 gram 

of soil per core.  
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 Statistical analysis 

Normality was checked with the Kolmogorov–Smirnov test and variables were transformed to meet 

the requirements of parametric analysis when necessary. The subsequent analysis of patterns in 

community structure was conducted in R 2.15.2 (R Core Team, 2013), with functions from the vegan 

(Oksanen et al., 2012) and the SPACEMAKER (Dray, 2011) package. Source code from the analysis 

in R is provided in the supporting information. 

 

 

 

Figure 1: Sampling location and sampling design: all three macroplots were located on a hill slope in a German 

natural reserve close to the Polish border, offering a high environmental gradient within a few meters. A: A 

general map of Germany with the sampling area as red rectangle (left) and a satellite picture of the sampling area 

(right) (Google, 2013). Purple rectangles labelled as P1, P2 and P3 depict the location and orientation of the 

three macroplots. B: Diagrams of the three macroplots. The spatial gradient is oriented orthogonally to the 

environmental gradient. From the four corner plots (green), five F. brevipila plants were sampled randomly as 

described in the materials and methods section (black dots). Numbers on the diagrams represent the size of the 

respective macroplots in meters. 
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We created a presence ⁄ absence matrix for the plant species recorded in each sample, containing 60 

samples and 68 identified plant species. Environmental factors for each sample were summarized in a 

matrix containing seven columns for the factors and 59 rows for the samples. Eventually, one row had 

to be omitted from all matrices since one soil core was lost prior to analysis. All the species matrices 

including the subsets used were stripped from zero-occurrences spots and species, respectively, prior 

to the subsequent analysis. For completeness reasons, the whole species matrix is included in the 

supplementary information. Multivariate analysis was done on a per-sample basis, while the null 

model analysis was conducted on various subsets of the whole data matrix (see below). 

Species data were Hellinger transformed and subjected to a multivariate analysis to disentangle spatial 

and environmental factors influencing community variation (Legendre and Legendre, 1998). At first a 

canonical correspondence analysis (CCA) was conducted with the coordinates of the samples as 

constraints in order to remove linear spatial patterns. The remaining spatial patterns of the detrended 

community data were summarized, together with the geographical distance matrix of the samples, in 

the Moran eigenvector mapping matrix (MEM) that best accounted for autocorrelation (Dray et al., 

2006). The final spatial matrix used for analysis then contained both the MEMs and the linear trends. 

Spatial autocorrelation represents the predictability of a locally observed response value by response 

variables observed in the surrounding area (Legendre, 1993). The MEM is calculated by multiplying a 

connectivity binary matrix with a weighting matrix. The connectivity matrix represents a graph in 

which samples are connected as networks while the weighting matrix is used to quantify the sample 

dissimilarity by weighting each link of the network (Caruso et al., 2012). In order to test multiple 

spatial patterns, the connectivity and/or weighting algorithms were modified and the best model was 

selected following the Akaike Information Criterion AIC (Akaike, 1973). Thus, the best linear 

combination of eigenvectors was chosen so the correlation with the data would be maximal and the 

AIC values would be minimal (Dray et al., 2006). An extracted eigenvector summarizes spatial 

patterns at a given scale; therefore the cumulative matrix of eigenvectors can describe several spatial 

scales. This matrix then can be used in multivariate regression approaches to predict spatial patterns 

(Dray et al., 2006). The eigenvector method we utilised is able to detect patterns down to a scale of 

1m, which equals roughly twice the average distance between our samples. We used redundancy 
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analysis (RDA) and variance partitioning to resolve the contribution of environmental and spatial 

factors to the total variance (Legendre and Legendre, 1998). The community matrix was used as 

response matrix and measured environmental factors like carbon, nitrogen or pH, plus the MEM 

vectors representing spatial autocorrelation were used as explanatory factors for the response matrix. 

Since plants tend to respond more strongly to a change in nutrient availability when the nutrient is 

scarce than when it is abundant, we followed suggestions by Jones et al. (2008) and tried to transform 

the environmental data by taking their natural logarithm prior to variance partitioning. However, this 

did not change the results compared to untransformed data (see Table S4), we therefore only report 

results from the latter dataset. Variance partitioning is a tool to quantify the unique contribution of 

these two components plus the spatial patterning shared by the environmental data (Borcard et al., 

1992). Multivariate variances were visualized using principal coordinate analysis (Anderson and 

Willis, 2003). Each of the variance partitions was subjected to a constrained redundancy analysis and 

subsequent statistical test at P < 0.05, based on permutation (Oksanen et al., 2012). We applied 

automatic stepwise model building for constrained ordination methods using the ordistep function 

(Blanchet et al., 2008) with forward and backwards selection to include important environmental 

variables only and calculate their respective P-values.  

Since mosses and lichens can affect seedling establishment of higher plants (Soudzilovskaia et al., 

2011), their cover was considered as an additional environmental factor; however, this did not increase 

the variance explained by the environment (data not shown). Lichens and mosses were thus excluded 

from further analysis albeit their inclusion slightly increased the explained variation of the spatial 

component. 

Since variance partitioning quantifies variation in our community data but does not indicate a positive 

or negative trend in terms of species coexistence, which is necessary to infer biotic interactions, we 

applied a null model analysis in PAIRS (Ulrich, 2008). In our null model analysis the C-score index 

was used to compute values of co-occurrence for the given set of presence/absence data. Since the C-

score does not require perfect checkerboard distributions and has a low susceptibility to type II errors, 

it seemed best suited for our purpose (Gotelli, 2000). The input matrix was randomized following the 

suggestions of Gotelli (2000) to minimize type I errors and test for patterns of co-occurrence expected 
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under non-random assembly processes and interacting species. The algorithm used fixed sums of rows 

and sums of columns and applied the Random Knight‟s Tour approach for shuffling the matrix. 

Retaining the row and column totals preserves differences in species richness among sites and 

differences in occurrence frequencies among species, therefore representing a conservative approach 

when testing for patterns in species composition. We applied a nestedness analysis using the matrix 

temperature method (Atmar and Patterson, 1993). Since the results indicated a strongly nested 

community, the data set was split up according to geographic orientation, and in addition to the whole 

community matrix, the subsets of the top, bottom, left and right plots were each subjected to a null 

model analysis. The top and bottom subsets represent the spatial distance since the gradient in each 

subset is minimized. The left and right subsets represent the whole gradient together with the spatial 

component (see Fig. 1) In addition, we included a subset of the diagonal patterns (that is, the top left 

plus the bottom right plots and the top right plus the bottom left plots) in order to account for potential 

tilting of the gradient orientation (compare Fig. 1B).  

The null hypothesis was considered rejected when the observed C-Score was significantly different 

from the average simulated C-Scores (P < 0.05). A C-score lower than the simulated average 

represents an aggregated community, while a higher score represents a segregating community. 

Standardized effect sizes were used to compare results meaningfully and calculate probability values. 

The effect size is calculated as (observed C-score - simulated C-score) / (standard deviation of 

simulated C-score). Negative standardized effect sizes indicate that the observed index was less than 

the mean of the simulated indices while positive values indicate that the observed index was greater 

than the mean of the simulated indices (Gotelli and Entsminger, 2012).   
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Results 

 

 Sampling 

We detected a total of 68 herb and grass species plus five different species of mosses and lichens in the 

survey of the entire plots, outlining the high species richness found in our sample region. Out of these 

herb and grass species, 47 species were found inside the 15 cm radius environment of sampled Festuca 

brevipila plants (see Table S1). Species not found in the 15 cm radius around samples were excluded 

from the species matrix prior to analysis so no zero-occurrences were present in the matrices 

subsequently used. The majority of plant cover was attributed to the grasses Festuca brevipila and F. 

psammophila, accounting together for up to 70% of the plant canopy in a plot. Other abundant plants 

were Arrhenatherum elatius, Carex humilis and Rumex acetosella, which are all common 

representatives of sunny-dry nutrient poor grassland habitats (Hensen, 1997). 

All plots showed steep gradients in pH, carbon and nitrogen content (Fig. 1, Table S2), with macroplot 

3 being generally richer in nutrients than macroplots 1 and 2. Plant available phosphorus content was 

poor in all three macroplots, ranging from 8.7 mg/kg soil to 42.2 mg/kg. Soil C to N ratios ranged 

between 11:1 and 23:1. Measured pH ranged from 3.7 to 7.6, encompassing four orders of magnitude 

in pH change. Macroplot 1 represented almost the whole pH range, while macroplot 2 was more acidic 

and macroplot 3 more alkaline than macroplot 1. Distances between samples in the plots ranged from 

0.32 meters to 2.6 meters, with an average of 1.56 metres. 

 

Variance partitioning 

From the different models tested for the MEMs, the “Nearest Neighbour” approach for calculating the 

connectivity matrix with a concave-down weighting function yielded the lowest AIC and was 

subsequently used for calculating the eigenvector maps. The spatial component of the variation could 

be described by five low-rank MEMs and one high-ranking MEM, pointing out that in our community 

spatial influences are predominantly small-scaled, that is to say there is more significant spatial 

structure within plots and macroplots than between macroplots. The variance partition attributed 

17.9% of the community variation to spatially independent environmental variables, from which 
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carbon, nitrogen and pH were significant at P < 0.05 (Table 1). The spatial component represented by 

the MEMs accounted for 14.5% of the community variation and was highly significant (Table 1), 

while the spatially structured environmental component (i.e. shared variation between spatial and 

environmental variables) accounted for 4.7% of the variation. Roughly 63% of variance remained 

unexplained (Table 1). 

When we tested for the effect of environmental variables ignoring spatial autocorrelation (Table 1, 

second column), all tested environmental factors except water content and microbial activity were 

significant, indicating that spatial structure in the environment could drive some of the spatial changes 

observed in the plant community (Table 1, compare first two columns). The linear effect of the linear 

spatial coordinates alone accounted for 3.6% of total variation. 

 

Table 1: P-Values of the RDA (redundancy analysis) based permutation tests and decomposition of the total 

variation in the community matrix into unique environmental (soil properties) and spatial (geographic position) 

components. Significant values are bold. Important variables were selected by applying automatic stepwise 

model building for constrained ordination methods including forward and backward selection. Values in italic 

were dismissed in the step-wise selection process from the model. The last line (“explained variation”) shows the 

percentage of explained variation of each component. The amount of unexplained variation was 62.9%. P-values 

for the environmental variables in the column “env” are based on partial-RDA, which accounts for spatial 

autocorrelation. P-values for the same variables but in the column “space + env.” are based on the RDA that does 

not correct for spatial autocorrelation, which can therefore include spatially structured environmental effects. 

Missing values marked with a "-" are non-testable. 

 

component env. space + env. space 

Carbon 0.48 0.01 - 

Nitrogen 0.06 0.05 - 

C/N ratio 0.85 0.21 - 

Phosphorus 0.07 0.01 - 

pH 0.01 0.01 - 

microbial activity 0.04 0.02 - 

water content 0.51 0.64 - 

cumulative <0.01 - <0.01 

explained variation 17.9% 4.7% 14.5% 
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Null model analysis 

The null model analysis revealed that the C-score was consistently higher in the sampled communities 

than in the random ones, making the matrix overall segregated. This was also true for every subset of 

the metacommunity we tested. This clearly shows that species associate non-randomly (Table 2). 

PAIRS reported a list of significant plant pair interactions, which we used to examine types of 

interactions between plants. When we tested the subsets of the community matrix, we noticed that the 

difference in effect size was higher for the left and right subset (i.e. along the environmental gradient) 

than for the top and bottom ones (i.e. orthogonal to the environmental gradient, Table 2). The effect 

size represents a measure of segregation strength, with larger effects sizes indicating more strongly 

segregating communities. The results indicate that the spatially structured environment is a bigger 

segregating factor than the environmental gradient alone, which is consistent with our variance 

partition results. In order to check for biases in the pooling of the subsets, we also compared the effect 

sizes of the three macroplots plus the possible two-macroplot-combinations (1 and 2; 2 and 3; 1 and 

3), however, the effect sizes were comparable in all three subsets (Table 2). Since some of the 

individual gradients were not perfectly aligned with the sides of the macroplots, we also examined 

effect sizes of cross-plot subsets (that is, all plots in the southwest – northeast axis and all plots in the 

southeast – northwest axis). We noticed that the gradient axis oriented towards the pH causes a less 

segregating community than the axis oriented towards carbon and nitrogen (Table S2). 

Mosses and lichens were not included in the null model analysis; however, including them did not 

change the result (data not shown). 
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Table 2: Null model analysis of community variation, using the C-Score index and the algorithm MOD9 in 

PAIRS as described by Ulrich & Gotelli (Gotelli and Entsminger, 2012; 2007). The effect sizes and P-values of 

different subdivisions of the plant community matrix are shown. Positive effect sizes imply a segregating 

community (species repel each other), negative values indicate an aggregating one (species attract each other). P-

Values are depicted as stars: * = P<0.05; ** = P<0.01; *** = P<0.001; NS = not significant. The left table 

represents heterogeneous subsets used for inferences on community composition, while the right table represents 

homogenous subsets used to check the validity of our heterogeneous subset assumptions. 

 

community matrix 
effect 
size 

P 
 

community matrix 
effect 
size 

P 

all plots 7.25 *** 
 macroplot 1 left 3.53 ** 

top plots 5.48 *** 
 macroplot 2 left 1.85 NS 

bottom plots 3.24 ** 
 macroplot 3 left 4.41 ** 

left plots 2.24 * 
 macroplot 1 right 5.54 *** 

right plots 8.04 *** 
 macroplot 2 right 1.55 NS 

macroplot 1 6.40 *** 
 macroplot 3 right -1.03 NS 

macroplot 2 2.75 * 
 plot 1 -1.19 * 

macroplot 3 6.18 *** 
 

plot 2 0.16 NS 

diagonal with gradient 6.49 *** 
 

plot 3 0.71 NS 

diagonal w/o gradient 3.31 ** 
 

plot 4 0.77 NS 

    
plot 5 3.51 ** 

    
plot 6 1.15 NS 

   
 

plot 7 1.14 NS 

    
plot 8 0.66 NS 

    
plot 9 -0.37 NS 

    
plot 10 0.00 NS 

    
plot 11 -0.15 NS 

    
plot 12 -0.58 NS 
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Discussion 

 

Do the environmental factors that are known to determine community assembly at broad 

scales operate at fine scales? 

Given the steep gradients and the high species richness we found in our study area, we could initially 

expect that environmental filtering accounted for significantly more of community variance than the 

spatial component. We found that the environment is on par with spatial processes similar to the 

results found in other ecosystems (Li et al., 2011). The fact that environmental filtering plays a 

significant part in shaping plant communities is a common idea in community ecology (Medinski et 

al., 2010; Olff and Ritchie, 1998; Payne et al., 2011; Silva and Batalha, 2010; Tilman and Olff, 1991; 

Wellstein et al., 2007). We included the soil environmental factors that are generally considered 

important drivers of plant growth and distribution and that should cover the majority of abiotic 

influences (Bardgett, 2005). Even so, we lack a complete analysis of the micronutrients like Mg, Fe or 

Zn, and in general any aboveground environmental data like temperature, rainfall distribution or wind 

strength (even though these macroscopic factors definitely operate at scales much broader than those 

of our study). This might obscure some patterns currently not attributed to the environmental factors. 

Nonetheless, given the influence of key parameters like pH or phosphorus and the conservative 

analysis approach, it is unlikely that measuring more environmental variables would significantly 

increase the amount of variation accounted for by the environment. In fact, variables such as 

micronutrients generally correlate well with the general parameters (e.g., C and pH) we have 

measured. Since every environmental variable was spatially structured in our study area, it is possible 

that a significant influence from an unmeasured variable would be reflected in the spatial eigenvectors 

and could therefore be accounted for indirectly. Also, given the variables we measured, it is unlikely 

that we missed out major environmental predictors of plant communities. Next to the environmental 

part of the variation, a smaller fraction of variation was accounted for by the spatially structured 

environment component, which suggests that the environment might exert its effect in a spatially 

structured fashion (see below). The processes behind patterns found when analyzing communities 
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oriented along the different environmental gradients via null models may account for a significant part 

of the variation that remained unexplained after multivariate analysis.  

Variance partitioning revealed that roughly half of the explained variance in species composition is 

due to the spatial position of the plant species in our sampled macroplots, regardless of environmental 

variation (Table 1). The permutation tests pointed out that the spatial structure of the environment can 

be a major determinant, given the significance of the environmental terms with and without spatial 

autocorrelation corrected (Table 1). This suggests that the prevalent environmental filtering could 

determine changes in species composition via its own spatial structure and/or by interacting with other 

processes, especially biotic interactions which are expressed by stabilizing niche differences (Hall et 

al., 2003). The scale of our study is so small that we can consider dispersal limitation a very minor 

source of spatial variation. Thus, we have a spatially structured effect of the environment, which could 

also be due to biotic interactions mediated by the environment, plus much spatial variation that neither 

the environment nor dispersal limitation can account for.  

The remaining proportion of unexplained variation in community composition is likely to represent 

either random variation or variation related to unmeasured variables that are not spatially auto-

correlated at the scales considered by our sampling design and MEM method (Table 1). It might be 

possible that processes in the sub-meter range may be responsible for parts of the unexplained 

variation; however, our analysis was designed to capture processes taking place between our 

community sampling units on a scale of more than one meter. 

 

 

In which way do biotic and abiotic factors drive changes in species composition? 

Null model analysis confirmed that changes in species between sampling spots are not random. We 

found that the segregation of species is higher in our studied area than expected by chance (Table 2).  

The effect sizes of different subsets we analyzed were all positive, indicating that the segregating 

effects are ubiquitous and do not necessarily correlate with spatial changes in the environment, a result 

consistent with the multivariate results discussed two paragraphs above. Given that it is a fair 

assumption that dispersal limitation does not play a significant role in our study system, we can thus 
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assume that negative biotic interactions (consistent with segregation) can act as a structuring factor 

alongside the environmental filtering processes in our system. We noticed that the effect sizes differed 

noticeably in certain subsets of our data. These differences can be linked to some characteristics of the 

gradient in our plots, thereby suggesting a potential effect of environmental gradients exerted via 

biotic interactions. For example, we see that the plants in the top plots are segregating more strongly, 

thus we can infer that biotic processes like competitive exclusion should be more prevalent there. In 

fact, the upper part of the hills was less sandy and more densely populated with generally larger plants, 

which implies more competition for space or light. It has also been suggested that positive 

relationships between species are related to stressful conditions and negative relationships to 

productive environments (Callaway et al., 2002; Walker and Chapin, 1987), which is in consent with 

our observations given that the upper hill part of our sampling areas is indeed more productive due to 

higher resource availability (like water, nutrients and sunlight).  

Complex interactions among conflicting processes such as competition for space, optimization of 

space utilization or demand for similar resources can facilitate exclusion (Sebastiá, 2004). We found a 

large difference in effect size and hence segregation when comparing the left and right subsets of the 

macroplots, which cannot be attributed just to environmental gradients, but also to patchy processes 

which remain to be investigated. In part, patterns of variation in the effect size of segregation seem to 

correlate with some environmental heterogeneity observed within macroplots (Table 2).  

We never detected aggregation in any heterogeneous subset of the community matrix, which suggests 

that environmental filtering can take place mostly via niche partitioning, although care must be taken 

when inferring these processes from co-occurrence patterns. Given the small scale of our sampling 

design, we are not likely to find local coexistence, therefore any niche partitioning will be observed as 

segregation of species. The scale of observation may influence, how positive and negative interactions 

are related to biodiversity (Gotelli et al., 2010).  
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Conclusion 

 

Overall, our data supports the hypothesis that at small scales steep environmental gradients share equal 

importance in structuring the plant assemblage dominated by Festuca brevipila with either spatially 

structured environmental effects or species spatial segregation due to negative interactions or a 

combination of these two factors. Small scale and high resolution sampling design will in the future 

allow teasing apart these two factors and scaling up their effects.  
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Abstract 

 

Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were 

used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated 

with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a 

steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and 

rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units 

(OTUs) in total. Community-level variance partitioning showed that the role of environmental factors 

in determining AM species composition was marginal when controlling for spatial autocorrelation at 

multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF 

communities: OTUs that were more closely related (and which therefore may have similar traits) were 

more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the 

minor effects of the environment, we propose that at small scales closely related AMF positively 

associate through biotic factors such as plant-AMF filtering and interactions within the soil biota. 
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Introduction 

 

Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the majority of land plants, 

facilitating the uptake of nutrients from soil in exchange for plant-assimilated carbon (Smith and Read, 

2008). They play important roles in ecosystem functioning through their influence on biogeochemical 

processes (van der Heijden et al., 2008; Veresoglou et al., 2012) and on the structure and productivity 

of plant communities (van der Heijden et al., 1998; Jansa et al., 2008). The question which effects 

predominate in structuring AMF communities remains only partially answered and detailed 

information on mechanisms is sparse in spite of recent advances (e.g. Öpik et al., 2009; Öpik et al., 

2010; Caruso et al., 2012; Lekberg et al., 2013).  

Grasslands cover one fourth of the Earth‟s land surface and harbor most of herbaceous plant diversity 

(Shantz, 1954). AM fungi are the dominant symbiotic fungi in these systems. Even though several 

recent studies deal with AMF in grasslands (Karanika et al., 2008; Verbruggen et al., 2010; Stover et 

al., 2012), most of these studies simply catalogued species or use molecular techniques that preclude 

in-depth characterization of AMF communities. The scale of most studies generally exceeds the likely 

extent of an individual AM fungus, and this hampers inferences about species interactions at a local 

scale (Gai et al., 2012; González-Cortés et al., 2012; Verbruggen et al., 2012; Zubek et al., 2012). 

Moreover, AMF niche space is likely to be complex due to small scale heterogeneity of soil 

(Veresoglou et al., 2013), and thus large scale studies may overlook important drivers of local AMF 

community assembly.  

Recent research has shown that niche-based processes and environmental filtering are the dominating 

factors in structuring AMF communities, while neutral dynamics play a minor role (Lekberg et al., 

2007; Dumbrell et al., 2010a; Dumbrell et al., 2010b). Yet, while AMF diversity in natural systems is 

typically measured by using taxon-based approaches, considering AMF phylogeny may provide 

additional information on processes impacting AMF community structure and functioning (Lekberg et 

al., 2013). Indeed, a greenhouse study showed that the phylogenetic breadth of an AMF community 

can positively affect co-existence, and thus the resulting AMF species richness and plant performance 

(Maherali and Klironomos, 2007). It has also been shown that phylogenetic relatedness among AMF is 
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positively associated with coexistence (Roger et al., 2013). However, the study of the predictive power 

of phylogeny relative to spatial and environmental determinants of fungal community structure is in its 

infancy, although mechanisms such as facilitation or the bidirectional interaction between plant and 

AMF in forming the symbiosis may be uniquely signaled by phylogenetic patterns.   

 

Figure 1: Proposed relationship between AM fungal 

community structure and the environmental, spatial 

and phylogenetic components. The symbols 

represent AMF communities of varying species 

composition. We expect the spatially structured 

environment (a) to be influencing AMF community 

composition either by environmental filtering or 

spatial processes. Environmental filtering will lead to 

fungal species aggregating along the environmental 

gradient. AMF communities in similar environments 

will be more similar to each other, no matter the 

spatial position (left diagram). Spatial processes like 

dispersal limitation will cause AMF communities to 

be more similar that are closer to each other, 

independent of the environmental properties in each 

sample (right diagram). The phylogenetic component 

(b) is expected to either cause segregation 

(overdispersion) or aggregation (clustering) of the 

AMF species co-occurrence in a sampled community. Phylogenetic clustering is expected when particular 

phylogenetically conserved trait values are selected in one sample over the other, and will show closely related 

species occurring more frequently (left diagram). Overdispersion is expected when AM fungi with increasingly 

different traits are increasingly more likely to co-occur, e.g. through limiting trait similarity and/or niche 

partitioning, and will show less closely related species occurring more frequently (right diagram). We expect the 

actual data to be composed of a mixture of all the depicted effects, which will be disentangled by variance 

partitioning. 

 

In fact, phylogenetic distance can reflect trait convergence or displacement if traits are 

phylogenetically conserved, which implies that nonrandom phylogenetic patterns in species 

distribution can reflect underlying processes such as competition, interactions with the soil biota or 

habitat filtering (Kembel and Hubbel, 2006; Kembel et al., 2010; HilleRisLambers et al., 2012). For 
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example, phylogenetic dispersion (i.e. segregation) is expected to occur under competitive processes 

while trait selection processes may lead to phylogenetic clustering (i.e. aggregation).  

AMF species identification has historically been based on spore morphology, which suffers from some 

significant shortcomings (Hempel et al., 2007; Taylor et al., 2013). Classical cloning and Sanger 

sequencing is costly, often preventing in-depth sequencing of environmental samples. The 

development of next generation sequencing techniques (Margulies et al., 2005) facilitates the 

assessment of AM fungal communities at the species level in environmental samples (Öpik et al., 

2009; Öpik et al., 2010), overcoming limitations inherent to morphological or genetic fingerprinting-

based identification. The development of a new AMF-specific primer-set (Krüger et al., 2009; Krüger 

et al., 2012) allows access to an unprecedented amount of AMF diversity data in the field, as this 

primer set is both highly specific to AMF and amplifies all taxa within this group (Krüger et al., 

2009).  

Here, we assessed the role of different factors that shape the AMF community in a semi-natural 

grassland. We had three main questions: 1) Do environmental factors structure the AMF community? 

2) How much influence do distance-based effects and stochastic events have on AMF community 

structure? 3) Is the AMF community phylogenetically structured? 

Our hypotheses regarding the community effects of each of the three components under investigation 

are further described in Figure 1. In order to disentangle the explanatory power of each of these three 

known factors shaping community composition, we extensively sampled the dominant plant species 

and used a variance partitioning approach to estimate variance explained by these factors while 

controlling for potential co-variation.  
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Materials and Methods 

 

Study area and sample collection 

The grassland we studied is situated in a natural reserve at Mallnow, Lebus (Brandenburg, Germany, 

52°27.778' N, 14°29.349' E). The reserve is known for its different types of species rich dry grassland 

and has been managed by low-intensity sheep grazing for at least 500 years (Ristow et al., 2011). At 

the beginning of October 2010, we sampled a larger plot of 15x15m (henceforth called “macroplot”), 

located on the slope of a hillside. The uphill-downhill axis of the hillside where the macroplot is 

located is characterized by a steep soil textural gradient from highly sandy (downhill) to sandy-loamy 

(uphill) soils. Geochemical analysis revealed that other soil parameters highly relevant for AMF 

communities, namely pH, carbon, nitrogen and plant available phosphorous (Kivlin et al., 2011) 

strongly varied along the soil texture gradient (Table S1). Specifically, pH, which is known to have 

important effects on AMF (Dumbrell et al., 2010b), varied from 5.5 to 8.3.  

We assessed the local AM fungal community in the roots and surrounding soil of Festuca brevipila R. 

Tracey. F. brevipila is by far the most abundant species in our macroplot (coverage > 60 % and in 

some case > 80 %) as well as throughout the grassland of the study area. This approach standardized 

the observed AM fungal community on an organism of wide prevalence, allowing a precise, yet 

general definition of the community unit: the AM fungi associated with the rhizosphere of the 

dominant grass. We used nine plots of 3x3m, equally distributed across the macroplot in order to 

reduce the amount of sampling necessary for capturing the whole extent of the gradient. Despite this 

sub-partitioning of the macroplot, we analyzed the samples across sampling locations (i.e. the roots of 

an individual grass and its soil form the community unit), rather than based on plots. The sampling 

was replicated by taking soil cores (5 cm radius, 15 cm deep) centered on six randomly chosen 

F. brevipila individuals per plot, resulting in 54 (6 plants x 9 plots) sampling locations (henceforth 

called "samples") in total. This sampling allowed us to detect spatial patterns within and between plots 

with intervals ranging from about 1 to nearly 15 m. Each soil core was thoroughly homogenized prior 

to subsampling for the different analyses. Roots were washed in Millipore water before subsequent 

analysis. Soil variables were measured according to the protocol provided in the supplementary 
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information. To assess AMF colonization, a subsample of the roots was stained with Trypan Blue, 

assessed at 200X using the magnified gridline intersect method (McGonigle et al., 1990).  

 

DNA extraction, 454-pyrosequencing and OTU delineation 

We used 250 mg of each soil and washed root material per core to extract DNA using the PowerSoil 

DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, USA) and the procedures in the 

manufacturer‟s manual. Then we created 454-pyrosequencing amplicon pools using AMF specific 

primers (Krüger et al., 2009) following the protocol in the supplementary information, which involved 

three PCRs of 30 cycles each. We used a primer mixture, which increased competition for target 

molecules, delays exponential growth of products and therefore justifies an increased cycle number, 

but should theoretically also lead to a reduced PCR bias towards more abundant species. Since our 

results are consistent with the findings of other diversity studies on AMF concerning the 

representation of genera (Öpik et al., 2010; Maherali and Klironomos, 2012), we assume no bias 

despite the high number of PCR cycles. Sequencing of the samples was done using the primer set LR3 

and LR0R (Hofstetter et al., 2002). These two primers span an area of about 900-950bp, including the 

variable D1-D2-D3 region of the LSU and are conserved among eukaryotes (Vilgalys and Hester, 

1990), therefore preserving the diversity obtained by the AMF specific primers. LR3 was tagged with 

Adapter B, LR0R was fused with the Adapter A and error-correcting barcode sequence (Hamady et 

al., 2008) for the 454 run, so we sequenced from the 3‟-end of our target sequence towards the start of 

the LSU. 454-Pyrosequencing was done at Duke University Sequencing core facility (Durham, USA) 

using the Titanium chemistry from Roche (Basel, CH). 

Resulting sequence sets were subjected to a denoising and clustering pipeline. Sequences were 

denoised using the PyroNoise approach implemented in Mothur (Schloss et al., 2009). This denoising 

approach removes bad quality sequences, creates sequence clusters and removes chimera sequences, 

while being based on clustering flowgrams rather than sequences alone, which allows 454 errors to be 

modeled and removed naturally (Quince et al., 2009; Quince et al., 2011). We used the standard 

parameters for Titanium sequencing as suggested by Quince (2009), with a minimum flow amount of 

360 and a maximum of 720. After denoising, the sequences of roots and soil were clustered using 
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CROP. The program uses a Bayesian clustering algorithm, which addresses species delineation 

uncertainty better than hierarchical clustering methods due to its flexible cut-off and therefore creates 

significantly fewer artificial OTUs than other fixed cut-off clustering approaches (Hao et al., 2011). 

Runtime parameters and source code from the analysis in R described below are provided in the 

supplementary information.   

Due to the nature of pyrosequencing, there were differences in read numbers for every sampling 

location, so we resampled the read numbers to equal amounts of 700 reads per sampling location, 350 

each for root and soil subsample, using a bootstrap approach. Sampling locations with considerably 

lower read numbers than the resampling value (<260 per root or soil sample) were discarded (9 soil 

and no root samples). Based on read numbers, rarefaction curves were calculated for each root or soil 

sample per location. Since all species accumulation curves were leveling off, no sample was excluded. 

Singletons were removed from all samples. The resulting OTUs where represented by an abundance 

matrix. 

 

Phylogenetic tree calculation 

Tree calculation was done with RAxML (Stamatakis, 2006) and BEAST (Drummond and Rambaut, 

2007). We added representative sequences of an SSU-ITS-LSU AMF reference alignment (Krüger et 

al., 2012) to our dataset to determine the phylogenetic position of our OTUs. Using the position of an 

OTU in a phylogenetic tree relative to reference sequences creates more reliable species estimation 

than just using database queries (Ross et al., 2008). In order to compare the quality of our tree and to 

add more description to the OTUs, we annotated them using the BLAST hit with the lowest E-value. 

The reference alignment was first trimmed to the region present in our sequences and then used as a 

template in Mothur to align our OTU sequences. The two alignments were combined and further 

refined in MUSCLE (Edgar, 2004). We used phylogenetic trees to further refine our OTU set and 

remove sequences which clustered outside the Glomeromycota and are therefore likely to be erroneous 

or non-AMF sequences. We used two different tree calculation approaches to validate the accuracy of 

the obtained phylogeny. Using RAxML, we calculated 1.000 rapid bootstrap trees and subsequently 

applied a thorough Maximum Likelihood analysis. BEAST was run with the Extended Bayesian 
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Skyline Plot as a tree model (Minin et al., 2008) with a chain length of 10 million generations, from 

which the best tree was chosen for evaluation. Trees were then inspected and edited using FigTree 

(Rambaut, 2012).  

 

Phylogenetic community structure 

We addressed community structure by analyzing phylogenetic diversity (PD) between the AM fungal 

communities. Using the picante package (Kembel et al., 2010) in R 3.0.2 (R Core Team, 2013), we 

obtained two estimates of PD: (1) the standardized effect size of mean pair wise distance (SES-MPD) 

which measures alpha-diversity, and (2) inter-community mean pair wise distance (IC-MPD) which 

measures beta-diversity. Phylogenetic distances between OTUs serving as input for the estimates of 

PDs were calculated using the Needleman-Wunsch implementation of Esprit (Sun et al., 2009). The 

SES-MPD was calculated using the phylogenetic distance matrix of the OTUs plus the abundance 

matrix of the OTUs per sample and applied a null model randomization. The result was an NRI value 

for each sample, which is defined as [–(MPD –MPDnull)/SD(MPDnull)], where MPD is the mean pair-

wise phylogenetic distance among species in the sample (Kembel and Hubbel, 2006). The mean values 

of the NRIs of all samples of roots and soil, respectively, were then used as the alpha-diversity 

measure to judge the clustering or segregation of the overall AMF community. Positive NRI values are 

correlated with clustering, negative values with overdispersion. The null model algorithm we used was 

“independentswap” with 999 randomized null communities. “Independentswap” retains column and 

row totals for null model analysis of species co-occurrence (Gotelli, 2000). This approach is 

particularly suited to problems that concern differences in species composition, because it accounts for 

variations in other community attributes such as diversity and richness. Significance of the calculated 

NRIs was tested using t-test.  

IC-MPD calculates pair-wise phylogenetic distances of the samples, based on pair-wise genetic 

distances between OTUs and yields a sample x sample distance matrix as a measure of beta diversity. 

In order to include the IC-MPD information in a subsequent variance partitioning analysis (Legendre 

and Legendre, 1998), the distance matrix was subjected to a principal coordinate analysis (PCoA), a 

commonly used tool to reduce dimensionality which provides a measure of the amount of variance 
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explained in the a few independent principal axes (Legendre and Legendre, 1998). The first two PCoA 

axes which represented a major of amount of total phylogenetic variation were extracted and used as 

the phylogenetic explanatory variables.  

 

Variance partitioning 

The analysis of patterns in community structure was conducted in R, using the vegan (Oksanen et al., 

2012) and the SPACEMAKER (Dray, 2011) package and the abundance matrix obtained from 

processing the sequences as response matrix. Spatial information (pair-wise distance between 

samples), log-transformed environmental data (sample pH and C, N, P, and water content, and C/N 

ratio) and the estimates of phylogenetic beta diversity were used as explanatory variables.  

The OTU abundance matrix was Hellinger transformed and subjected to a multivariate analysis to test 

for effects of spatial, environmental and phylogenetic variables influencing community variation. In 

variance partitioning “space” stands indeed for spatial autocorrelation: moran eigenvector mapping 

(MEM) was used to factor in spatial autocorrelation at multiple scales in community variance 

partitioning (Dray et al., 2006). This method represents a general, more powerful version of the widely 

used PCNM (Borcard et al., 2004), which allows testing for several types of spatial structure. Several 

competing spatial models are possible and the most parsimonious model is selected using a 

multivariate extension of the Akaike Information Criterion AIC (Akaike, 1973). This model provides 

the best linear combination of eigenvectors accounting for spatial autocorrelation at multiple spatial 

scales and each eigenvector represents a certain scale (Dray et al., 2006). We used redundancy 

analysis (RDA) and variance partitioning to resolve the contribution of each of the factors to the total 

variance (Legendre and Legendre, 1998). As this was an observational study, we applied a 

conservative logic: unequivocal evidences of the effect of a certain factor are obtained only when 

controlling for the effect of other factors. For example, shared variation between spatial and 

environmental factors might depend on the fact that we sampled along an environmental gradient. 

However, this correlation does not imply causation since linear changes in community composition 

can also be observed along directions where there is little environmental variation or the gradient 

might not structure the community directly (Legendre and Legendre, 1998). Thus, a non-spatially 
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structured effect of the environment would suggest that communities are similar if their environments 

are similar, regardless of their spatial position. This is more robust evidence of independent effects of 

the environment in the framework of observational studies. This is also the reason why spatial 

autocorrelation at multiple scales needs to be accounted for in order to perform a robust test of factors 

that are spatially structured (Legendre and Legendre, 1998; Borcard et al., 2004). In this sense, it is not 

the spatial variation in itself that is under investigation since this variation can be due to several 

possible and collinear factors that neither have been measured nor can be disentangled from measured 

factors. Given this logic, variance partitioning is the appropriate tool to quantify the unique 

contribution of the three factors investigated in the present study (Borcard et al., 1992). Factors were 

tested using a partial-RDA based permutation approach, which tests for the focal factors by controlling 

for the other factors (Oksanen et al., 2012). 
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Results 

 

Study area and sample collection 

The study area was characterized by steep gradients in all measured environmental components, 

following roughly the uphill-downhill direction (Figure S1). Plant available phosphorus concentration 

was low in most of the plots, with a range from 10.9 mg/kg soil to 85.0 mg/kg (median 30.1 mg/kg). 

Soil C to N ratios varied between 13:1 and 43:1 (median 19:1), pH showed a range from 5.5 to 8.3 

(median 7.4), and root colonization by AMF ranged from 5% to 99% (median 77.5%). The 

colonization was significantly correlated with an increase in loam content of the soil, which linearly 

correlated with water content and organic content (Figure S2; for all environmental data see Table S1). 

We did not find a correlation between root colonization and phylogenetic distance. Correlation 

analysis shows that most of the environmental variables were correlated with each other, confirming 

our prediction of a single linear environmental gradient, with the exception of soil phosphorus (Table 

S3). 

 

454-pyrosequencing and OTU delineation 

After resampling and removal of singletons and non-AMF sequences, the root data set consisted of 54 

OTUs and the soil dataset of 73 OTUs, with a total of 74 OTUs. Almost half of the detected OTUs (32 

of 74) belonged to the genus Glomus sensu Schüßler and Walker (2010), and in most samples this was 

the most abundant taxon. The others were spread across all major AM fungal groups, spanning ten 

different AMF genera (Figure 2), suggesting that our methods are capable of detecting all major 

lineages within AMF. The dominance of Glomus was also found when comparing the read numbers of 

each of the AMF genera instead of OTU numbers (Figure 2). The highest abundance of sequence reads 

to any of the OTUs was attributed to a member of the Rhizophagus genus, which based on BLAST 

annotations is likely the cosmopolitan Rhizophagus irregularis found in high abundance in several 

studies (Öpik et al., 2006; Lekberg et al., 2013).  

After denoising of a total of 67558 (roots) and 50594 (soil) sequences with PyroNoise and the 

Bayesian clustering step in CROP, 301 OTUs were obtained. Further removal of OTUs was based on 
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the elimination of singletons (164), the exclusion of OTUs which did not yield any BLAST result (33), 

resampling (13) and removal of non-AMF sequences identified from the trees. Our primers proved to 

be highly AMF-specific, with only a few non-target OTUs from the Chytridiomycota phylum and 

other fungi (17).  

 

 

 

Figure 2: Number of OTUs and number of sequence reads per AMF genus. OTU numbers are represented by 

white bars (left y-axis). OTU sequence reads are represented by dark-gray bars (right y-axis). 

 

If sampled sufficiently, the root community should ideally represent a subset of the soil community. 

We found only one OTU in the root dataset, which was not part of the soil dataset and which was very 

likely a sampling effect on the very rare OTU. The rarefaction curves (Figure S3) showed that all the 

communities were leveling off or were very close to saturation. The sequences clustered well with 

Glomeromycota reference data (Figure 3) as published in Krüger et al. (2012). In general phylogenetic 

position in the tree could assign many OTUs to genera that were only poorly annotated in the NCBI 

database (e.g. “uncultured Glomeromycetes”, Figure 3). 

 

Phylogenetic community structure 

The SES-MPD null model analysis showed significant differences from random distribution, when the 

abundance weighed data was used (Table 1). Mean net relatedness indices (NRIs) for both root and 
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soil datasets were positive with comparable sizes (0.27 and 0.26), which means that AMF 

communities contain taxa that are phylogenetically more related than expected by chance (i.e. 

significantly clustered). In the non-abundance weighted SES-MPD indices, the trend towards 

clustering is still present, albeit not significant. Since the number and relative abundance of OTUs was 

strongly biased towards the Glomus group (Figure 2), we split up the data into Glomus and non-

Glomus OTUs and performed a separate analysis on each group. For both data sets the significant 

phylogenetic clustering persisted, suggesting the pattern is valid independent of whether closely or 

distantly related taxa are compared. In the Glomus dataset, significance was independent of 

abundance, with effect sizes being comparable in root and soil. In the non-Glomus OTU set, results 

were similar to the complete OTU set. The magnitude of the NRI was comparable in root and soil.  

 

Variance partitioning and community clustering 

The variance of the whole OTU set was significantly explained by spatial and phylogenetic patterns 

plus their combined effects (Figure 4, Table S2). The phylogenetically structured environmental effect 

was very small (<0.0001) in all of the treatments, so this partition was omitted. The influence of 

spatial position was more important in soil than in roots when abundance data were used, while with 

presence-absence data phylogenetic composition was more important in soil than in roots. Effects of 

spatially structured environment as well as environment alone remained comparable among root and 

soil, as well as between abundance and presence-absence data, but in general abundance data 

increased the amount of variation explained.  
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Figure 3: Maximum likelihood tree of 74 OTUs from the root and soil dataset, complemented with 114 

sequences from the Krüger et al. (2012) SSU-ITS-LSU alignment and one non-AMF outgroup (“D74UF_OG”, 

an unidentified member of the Chytridiomycota). Tree calculation was done in RAxML. Nodes ending in 

triangles represent collapsed species divisions which did not contain any of our OTUs, in order to increase 

visibility. Node numbers represent Bootstrap values. The node descriptions containing a “ROOT” or “SOIL” tag 

represent the OTUs defined in our study, while the other nodes represent the sequences from Krüger et al.  
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For the Glomus OTU variation, the major explanatory components were again phylogeny and the 

spatial signal (Figure 4, Table S2). Differences between root and soil indicated that environmental 

filtering is more selective in soil.  

 

Table 1: t-Test results of the NRI of mean pair wise distance (SES-MPD) of the root and soil community 

matrices, including a division of the data set into Glomus only and non-Glomus OTUs. Either abundance data 

(+abu) or presence / absence data (-abu) was used when calculating the effect sizes and P-values. 

 

data set t df p-value 

all OTUs 

root 
+abu 2.644 53 0.011 

-abu 0.929 53 0.357 

soil 
+abu 2.031 47 0.048 

-abu 1.156 47 0.254 

Glomus OTUs only 

root 
+abu 2.889 46 0.006 

-abu 2.588 46 0.013 

soil 
+abu 2.750 44 0.009 

-abu 3.227 44 0.002 

all OTUs except 
Glomus 

root 
+abu 2.994 42 0.005 

-abu 1.479 42 0.147 

soil 
+abu 3.347 43 0.002 

-abu 1.477 43 0.147 

 

 

In the data set of all OTUs except Glomus, spatial and phylogenetic components were again the major 

variables contributing to explained variation (Figure 4, Table S2) and major differences were found 

between root and soil. Phylogeny was a major explanatory variable, but it decreased significantly from 

root to soil. In the roots, the decrease in phylogenetic signal was also found in the joint effect of spatial 

structure and phylogeny. Finding comparable results when removing the most abundant taxon group 

shows that the patterns are not exclusively shaped by Glomus alone.  
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Figure 4: Percentage of variation explained by permutation tests based on RDA (redundancy analysis) and 

decomposition of the total variation in the community matrix into unique environmental (soil properties), spatial 

(geographic position) and phylogenetic (genetic distance) components. Bars of combined effects represent the 

shared variation between these two components. Either abundance data (+abu) or presence-absence data (-abu) 

was used when calculating the phylogenetic component for the variance partitioning. Values are based either on 

the whole OTU set or on the Glomus OTUs and the non-Glomus groups, respectively. 
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Discussion 

 

In the present study we have been able to quantify the relative predictive power of different factors in 

explaining small-scale AMF community composition in a semi-natural grassland. The three main 

community factors under investigation were environmental drivers, spatial structure and phylogenetic 

distance and below we discuss each of them with regard to our three main questions. 

 

Do environmental factors structure AMF communities?  

Previous studies addressing AMF community structure and applying variance partitioning have shown 

the dependence of AM fungi on the environment (e.g. Lekberg et al., 2007; Dumbrell et al., 2010b). In 

our study, the non-spatially structured environmental component explained only little of the variation 

in community structure. Despite our expectations that a gradient like the one we found in our field site 

should significantly shape a soil community, the environment was only found to be significant in the 

“Glomus only” and “non-Glomus” subsets. Given that these two groups might respond slightly 

differently to environmental properties, this could then lead to diminished significance in the overall 

dataset. However, environmental effects can definitely exert their effect along a gradient in a spatially 

structured manner, as indicated by the variance fraction accounting for spatially structured effects of 

the environment. Nevertheless, even if one sums that amount of variation accounted for by spatially 

structured and not spatially structured environmental effect, the total contribution of the environment 

remains small relative to the other investigated factors.  

Instead, our results suggest that the AMF communities in our study area are predicted mainly by the 

spatial distance between samples and phylogenetic distance between OTUs, when the effect of the 

environment has been taken into account. Since our environmental gradient was quite steep and 

concentrated in a small area, we have reduced confounding factors such as historical events and/or 

dispersal limitation, which are present in broad scale studies. Moreover, confounding effects due to 

plant identity are also absent given that the observed AM fungal community is standardized on an 

organism of wide prevalence that belong to a genus (Festuca) that very often dominates dry grasslands 

world-wide. Certainly, at broader spatial scales the relative role of the various drivers of community 
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composition may change and we stress that the local community we are here investigating must 

represent a local subset of the regional AMF pool. Ultimately, our local community is therefore also 

the result of broad scale dispersal processes and environmental filtering processes that we cannot 

resolve in our study. For this same reason, we believe that, given the state-of-the-art, our approach 

offers a fair compromise between the ecologists‟ quest for general conclusions derived from large 

scale fully randomized design (e.g. no focal plant) and the need for the collection of robust patterns 

from field studies performed at local spatial, temporal and taxonomic scales. In other words, the 

locality of our study is showing fairly dominant non random phylogenetic and spatial patterns in AMF 

communities: these patterns could have been neglected in the past given the multitude of factors that 

structure AMF assemblages from very local to regional scales. Indeed, in other studies stronger 

environmental effects have been found: Dumbrell et al. (2010b) studied an extremely pronounced pH 

gradient (<4-8), the study of Lekberg et al. (2007) focuses on agricultural fields at larger scales, and 

thus different community-structuring mechanisms may operate under different ecological settings. It is 

also possible that significant effects of the environment on AM fungi might be confounded with 

environmental effects on the host plants (Sharma et al., 2009). 

The results therefore indicate that spatial and phylogenetic distance are the major representatives of 

the underlying processes shaping the community at small spatial scales, with soil results being similar 

to the roots, but more clearly separated into spatial and phylogenetic components (Figure 4, Table S2). 

An explanation for the higher amount of variation explained in soil is that root communities may be 

strongly shaped by heavily root colonizing (i.e. abundant taxa). The communities may also be more 

(temporally) dynamic, and thus more prone to sampling effects, that is, which plant species and when 

during their life cycle is sampled. 

 

How much influence do distance-based effects and stochastic events have on AMF community 

structure?  

We observed a large fraction of AMF community variance explained by spatial patterns after 

controlling for environmental factors and phylogenetic distance. Dispersal or unmeasured 

environmental factors as well as biotic interactions not leaving a phylogenetic signal are all possible 
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factors behind these spatial patterns (Chang et al., 2013). Given the variables we measured, it is 

unlikely that we missed out major environmental predictors of AMF communities. In addition to that, 

every measured environmental variable was spatially structured in our study area along the sampled 

gradient and it is therefore reasonable to assume that effects of unmeasured environmental variables 

are included in the variation shared by spatial eigenvectors and the measured environmental variables. 

On the small scale of our study, dispersal limitation is less likely but AM communities can be 

exceptionally patterned already at a sub-meter scale (Mummey and Rillig, 2008), so that dispersal 

constraints can indeed play a role at a 15 meter scale. Stochastic population dynamics due to irregular, 

unpredictable environmental or demographic fluctuation might also contribute to these patterns. 

Spatial structure that is independent of environmental factors indicates that chance-events play a role 

in community composition although biotic interactions such as competition may also contribute to 

spatial patterning. Dumbrell et al. (2010a) suggested that chance-events could lead to a positive 

feedback mechanism on any taxon in the community, which could be random and self-reinforcing. 

This hypothesis could explain a diminished environmental signal and a strong spatial patterning. 

Regardless of the contribution of stochastic effects, the significant phylogenetic structure of the 

assemblages shows that AMF communities are also significantly shaped by deterministic processes.  

 

Is the AMF community phylogenetically structured? 

We find that phylogenetic distance can account for a relative large and statistically significant fraction 

of AMF community: AMF communities consist of taxa that are more related than expected by chance. 

This can be an effect of at least three processes: convergence via habitat filtering because taxa that are 

similar in traits respond in a similar way to environmental factors; or plant-AMF interactions are such 

that the focal plant selects phylogenetically clustered AMF assemblages. Third, fungal interactions 

with the soil biotic community (e.g. arthropods) could create interactions that support assemblages of 

conserved traits: the selected AMF are those that share traits that allow them to coexist. Whichever the 

cause, the effect propagates to the soil AMF assemblage and seems even stronger in some cases in the 

soil than in the roots. Given that the soil abiotic environment has little effect on AMF, especially when 

controlling for spatial autocorrelation, our results suggest that biotic interactions are more likely to be 



59 

 

responsible for the AMF phylogenetic community pattern, although we cannot completely rule out 

environmental filtering as one of the source of the observed phylogenetic signal. 

In AMF, phylogenetic community patterns can inform on assembly processes (HilleRisLambers et al., 

2012) because AMF traits are phylogenetically conserved (Powell et al., 2009). The fact that 

phylogenetic clustering was more intense when abundance was taken into account suggests that taxa 

within the most abundant group, Glomus, share traits that allow them to coexist. This coexistence can 

take place due to similar, positive interactions with the host: if the host plant selects for a particular set 

of conserved AMF traits from a pool that varies from one place to the other, this will result in higher 

clustering than expected by chance. Besides this process, the neighboring plant community of our 

focal species could also play a role in determining phylogenetic patterns in the AMF community: 

analyzing the neighboring plant community of the F. brevipila plants showed that significant plant-

plant interactions contribute to  plant community composition in close proximity of F. brevipila (Horn 

et al., unpublished), and this could in turn also influence the AMF communities of the focal plant 

(Hausmann and Hawkes, 2009), but it is not straightforward what the effect would be in terms of 

expected phylogenetic pattern (clustering vs. dispersion). Our results are similar to those of Roger et 

al. (2013), who found closely related AMF to be more likely to coexist, presumably due to lack of 

competitive exclusion. This counterintuitive agreement between studies appears to indicate a general 

pattern and warrants future study. It might indicate that closely related AMF are similar in traits that 

are favored by plants (due to spatial-temporal dynamics), and that this is not offset by competition for 

root or soil space because competition should reduce phylogenetic clustering if traits involved in the 

competition processes are phylogenetically conserved. 

Other members of the plant microbiome have been shown to exhibit similar community patterns (i.e. 

phylogenetic clustering) as we find here for AMF, for instance rhizobia (Sachs et al., 2009) and 

endophytic bacteria (Sessitsch et al., 2004). Facilitative interactions between fungi have been shown in 

ectomycorrhiza (Shaw et al., 1995; Koide et al., 2005), ericoid mycorrhiza species (Gorzelak et al., 

2012) and have been recently indicated for AMF as well (Thonar et al., 2014). Facilitation between 

closely related AMF as well as antagonism between distantly related taxa would ultimately result in a 

phylogenetically clustered AMF community. Only more mechanistic, experimental studies will in the 
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future tell which of the proposed mechanisms contribute to community phylogenetic clustering in 

AMF.  
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Conclusions 

 

Here we report that in AMF communities spatial and phylogenetic patterns independent of 

environmental factors appear to be a major source of community variation even at the small scale of 

the present study, which suggests that environmentally independent and even stochastic events can 

deeply affect AMF assemblages already at fairly small (1-10 m) scales. AMF communities are 

strongly structured in terms of phylogenetic relationships between fungi as evidenced from their 

phylogenetic clustering. Given the weak effects of the environment, we propose that this pattern is 

explained by direct or indirect positive interactions among fungi and their biotic environment. 

Phylogenetic clustering was observed both in the roots and the soil and in some cases phylogeny 

explained more variation in soil. In order to elucidate the mechanisms behind these patterns, the study 

of fungal traits offers a promising research avenue in microbial ecology. 
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Abstract 

 

Arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila in a semi-arid grassland with 

steep environmental gradients were analyzed using next-generation sequencing and markers covering 

the full Glomeromycota phylum. Additionally, plant diversity in the rhizosphere environment was 

assessed in order to address interactions between these two groups in the context of the Passenger and 

Driver framework, which provides hypotheses for the environment shaping AMF and plant 

communities (independent), plant communities driving AMF (passenger) or AMF communities 

driving the plants (driver). The AMF community consisted of 73 OTUs, the plant community of 47 

different species. Community-level variance partitioning showed that environmental factors played a 

very minor role in determining AMF community composition. Instead, phylogeny and spatial structure 

were main determinants of the AMF community. Analysis of the plant neighborhood of focal plant 

AMF communities via plant phylogeny and presence / absence as a predictor for AMF composition 

and vice-versa showed significant, but small interaction between these two organism groups. This 

points out that, in context of the Passenger-Driver framework, at small scales these groups appear 

mostly "independent" and to a small extent passengers. This suggests that plant and AMF community 

assembly rules differ on small scales, leading to a decoupling of the two species groups from each 

other. We therefore propose that plant and AMF communities are mainly dependent on spatio-

environmental factors, interactions within their species groups and their phylogenetic properties, while 

interactions between the two organism groups lack major contributions to the community assembly in 

the field.  
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Introduction 

 

Arbuscular mycorrhizal fungi (AMF) are one of the most important symbiont groups for plants, 

forming relationships with the majority of land plants and playing a significant role in the acquisition 

of phosphorus (Smith and Read 2008). They facilitate the uptake of nutrients from soil and are 

considered to have been important for the transition from aquatic to terrestrial habitats by plants. Yet, 

the community ecology of these organisms remains only coarsely understood, mainly due to the 

cryptic nature of the group and the complexity of the three-way interaction between plants, AMF and 

the environment. Additionally, indirect interactions further complicate the picture.  

The study of AMF in grasslands is of particular importance since grassland ecosystems cover a 

significant proportion of earth‟s surface and harbor the majority of herbaceous plant diversity (Shantz 

1954). Understanding the interaction of plant diversity and fungal community ecology is crucial for 

understanding ecosystem functions (Wardle et al., 2011). Studies on plant biodiversity in grassland 

ecosystems on small scales have revealed connections between species richness of AMF and plants 

(Hiiesalu et al., 2014) and clear host plant effects on AMF community composition (Vályi et al., 

2015). Despite the fact that AMF can form hyphal networks, the influences of the environment happen 

on a fairly small scale (Mummey and Rillig 2008). To date, only a few studies have dealt with this fact 

and applied a sufficiently fine sampling scheme to provide a solid statistical basis for the analysis of 

these local biotic interactions in the field (Horn et al., 2014). 

The AMF-plant symbiosis represents a very close relationship. However, plants and AMF interact as 

two sets of communities associated with each other due to their independent dispersal, with the plant 

set potentially driving the structure of the fungal set and vice versa (Fig. 1). The Passenger and Driver 

hypothesis (Hart et al., 2001, Zobel and Öpik 2014) creates a theoretical framework which states that 

AMF are considered the Driver if their communities shapes the plants, while they may be considered 

the Passenger if plants shape AMF communities. If neither is influenced by the other, they behave 

independently. According to the Driver hypothesis, an AMF community shapes the composition of a 

local plant community through processes such as AMF taxon-specific impacts on plant performance. 
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Figure 1: Potential interactions of AMF and plants in their respective community assembly. A) Plant community 

composition may influence AMF community composition. Zobel & Öpik (2014) called this the Passenger 

hypothesis. Different plant communities will lead to different AMF communities (compare B). B) AMF 

community composition may shape the plant community. This was called the Driver hypothesis. Different AMF 

communities lead to different plant communities (compare A). C) AMF may interact with each other, spatial and 

environmental processes in shaping their communities, independently of plants. This represents the Null 

hypothesis. 

 

By contrast, the Passenger hypothesis postulates that an existing community of host plants shapes the 

composition of a local AMF community, e.g. through differential rewarding of AMF taxa with 

carbohydrates (Zobel and Öpik 2014). The Independence hypothesis from Zobel and Öpik (2014) 

represents a null hypothesis for the above working hypotheses and states that plant and AMF 

communities do not influence each other, while they can be related through e.g. shared environmental 

associations. Field studies on this particular subject are rare, given the difficulties in distinguishing 
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cause and effect in correlations between the two organism groups and hence making judgment difficult 

who is the passenger and who is the driver. Therefore, in order to overcome this issue, in-depth 

sampling efforts need to be combined with a small-scale approach to account for the specific traits of 

AMF, combined with a conservative analysis devoted to find correlations after accounting for a set of 

other potential factors influencing community composition. Therefore one would need a dedicated 

analysis of AMF and plant community plus their environment at a given location to paint a more 

complete picture of who influences whom, or if there is influence at all. General contributions to each 

other's community composition could be addressed by variance partitioning or linear modeling. Our 

study aims at generating hypotheses about possible mechanisms in the small-scale interaction sphere 

by using a spatially explicit sampling design, a standardized focal organism of high abundance and an 

exhaustive sampling approach at sufficiently small scales, taking into account AMF, plants, and their 

environment.  

AMF and plant communities are thought to be influenced by niche-based processes and environmental 

filtering (Dumbrell et al., 2010a, Dumbrell et al., 2010b, Lekberg et al., 2007, Peng et al., 2009, Silva 

and Batalha 2011), including dispersal, abiotic filtering and biotic interactions (Götzenberger et al., 

2012).  Negative  interactions  among AMF  species in  competition for  the  same  root space would  

result  in  the superior  competitor  persisting on  the root (Hart et al., 2001, Thonar et al., 2014). 

Greenhouse studies as well as field observational work has shown that phylogenetic patterns are 

connected to co-occurrence (Horn et al., 2014, Maherali and Klironomos 2007). However, 

understanding the predictive power of phylogeny in relation to the environmental determinants of 

fungal communities is still in its infancy. Studies suggest that AMF traits are phylogenetically 

conserved (Powell et al., 2009), therefore phylogenetic distance can reflect displacement or trait 

dissimilarity. Mechanisms like facilitation or feedbacks between plants and AMF may be uniquely 

signaled by phylogenetic patterns, since closely related species would receive similar facilitation due 

to similar traits (Anacker et al., 2014). That implies that phylogenetic patterns in communities may 

reflect underlying processes such as competition, interactions with soil and plant biota or habitat 

filtering (HilleRisLambers et al., 2012, Kembel and Hubbel 2006, Kembel et al., 2010). 
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The identification of AMF species has been facilitated by the development of modern parallel 

sequencing techniques (Margulies et al., 2005), overcoming issues connected to spore morphology  or 

classical Sanger sequencing, which often prevented identification of AMF on a species level (Öpik et 

al., 2009). New primers which combine high specificity to AMF and broad coverage within the 

Glomeromycota have allowed unprecedented access to the AMF diversity in the field (Krüger et al., 

2009). 

In this study we aimed at elucidating patterns shaping AMF communities colonizing a single plant 

species (F. brevipila) in a semi-natural grassland in comparison with their surrounding plant 

community on a small scale. We set our results in the context of the Passenger and Driver framework 

and tested for patterns that are consistent with this framework. If the plant community composition 

variation surrounding our focal plant is related to the AM fungal communities in soil or the roots of 

the focal plant, this would provide evidence for the Driver framework. If plants were able to act as 

predictor for AM fungal community composition, this would point to the Passenger hypothesis. If 

neither is prevalent, interactions among the AMF, based on phylogeny, space or environment, could be 

determinants for their community composition, indicating an independent behavior. Therefore our 

main questions were: Are AMF communities influenced by present plant identity and vice-versa? Are 

AMF communities assembled through interspecific interactions? How important is the role of the 

variation in environmental parameters? 

We conducted an intense sampling of the AMF species on three macroplots and added the plant 

biodiversity to our analysis. By partitioning variance caused by the respective species group 

individually for AMF on plants and plants on AMF, and by using generalized linear models to look for 

contributions on each other after removing all other effects, we aimed at qualifying and quantifying 

individual influences of plants on AMF and vice-versa to generate a statement on the potential 

Passenger or Driver effects of our analyzed community. We also tried to estimate processes explained 

by the environment, spatial factors, AMF and plant phylogeny, while controlling for potential co-

variation. Sampling was conducted in a nature protection area located in north-eastern Germany, a 

Natura 2000 biodiversity hotspot which contains over 200 different plant species and combines floral 

elements of steppes and oceanic habitats. Given the high diversity of plants and (Ristow et al., 2011) 
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and a previously found high diversity in AMF (Horn et al., 2014), this sampling location is very 

suitable for the questions we pose in this study. 
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Methods 

 

Study area and sample collection 

The grassland of this study is located in a natural reserve at Mallnow, Lebus (Brandenburg, Germany, 

52°27.778' N, 14°29.349' E). The reserve consists of different types of species rich dry grassland and 

has been managed by sheep herding for several hundred years (Ristow et al., 2011). The mean annual 

precipitation in this sub-continental climate is below 500 mm. Our sampling strategy was based on a 

hierarchical nesting of plots, and was done at the beginning of spring in April. Twelve plots of 3x3m 

were sampled. They represented the four corners of three larger plots of 15x15m (henceforth called 

“macroplots”), which were located on the slopes of a hillside. The uphill-downhill axes of the 

macroplots were characterized by a steep textural gradient from sandy-loamy (uphill) to highly sandy 

(downhill) soils. Geochemical analysis showed that soil parameters like pH, C, N and P varied along 

the texture gradient (Horn et al., 2015).  

We assessed the local AM fungal community in the roots and surrounding soil of Festuca brevipila 

plants plus the neighboring plant species around these Festuca plants. Festuca brevipila is one of the 

most abundant species in our macroplots (Ristow et al., 2011, Horn et al., 2015). Soil cores (5 cm 

radius, 15 cm deep) were taken from five randomly chosen F. brevipila plants per plot, resulting in 60 

(5 plants x 12 plots) sampling locations in total., Plant presence / absence was assessed in the 

surrounding area in a radius of 15cm around each soil core to target local interactions present in the 

rhizosphere of our focal plant. We chose presence / absence instead of abundance since above- and 

belowground abundances are not linearly correlated, representing a more conservative approach 

(Hiiesalu et al., 2012, Hiiesalu et al., 2014). 

Each soil core was thoroughly homogenized and representatively subsampled for soil geochemical 

analyses of water content, pH, carbon, nitrogen, phosphorus and dehydrogenase activity. Roots were 

washed in Millipore water before analysis. Soil properties were analyzed following the procedure 

utilized in a recent study (Horn et al., 2014). 
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DNA extraction, 454-pyrosequencing and OTU delineation 

We used 250 mg of each soil and washed root material per core to extract DNA using the PowerSoil 

DNA Isolation Kit (MoBio Laboratories Inc.) following the procedure described in the manufacturer‟s 

manual., Then we created 454-pyrosequencing amplicon pools for the AMF using specific primers 

(Hofstetter et al., 2002, Krüger et al., 2009, Vilgalys and Hester 1990), following the protocol 

presented in our previous study (Horn et al., 2014). 

Sequences were denoised using the PyroNoise approach (Quince et al., 2009) implemented in Mothur 

(Schloss et al., 2009). The denoising approach removes bad quality sequences, creates sequence 

clusters and removes chimera sequences. After denoising and preclustering, sequences of roots and 

soil were clustered into operational taxonomic units (OTUs) using CROP, which utilizes a Bayesian 

clustering algorithm. This approach addresses species delineation uncertainty better than hierarchical 

clustering methods due to its flexible cut-off and therefore creates significantly less artifact OTUs than 

fixed cut-off clustering approaches (Hao et al., 2011).  

Due to the nature of pyrosequencing, we found differences in read numbers for every sampling 

location, so we resampled the read numbers to equal amounts of 500 reads per sample using a 

bootstrap approach with 10.000 iterations per sample (Wehner et al., 2014). Samples with 

considerably lower read numbers than the estimated resampling threshold (<70%) were discarded. 

Additionally, singletons were removed. All subsequent statistical analysis was done in R 3.1 (Team 

2013), the source code from the analysis is provided in the supporting information.   

 

Phylogenetic tree calculation 

We calculated a phylogenetic tree for the AMF OTUs using RAxML (Stamatakis 2006) in order to 

further refine the OTU definitions following our approach from a previous study (Horn et al., 2014). 

About 110 representative sequences of an SSU-ITS-LSU AMF reference alignment (Krüger et al., 

2012) plus an outgroup sequence from the Chytridiomycota were added to our own sequences to 

determine the phylogenetic position of our OTUs. With the help of the phylogenetic tree we removed 

sequences which clustered outside the Glomeromycota and are therefore likely to be erroneous or non-
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AMF sequences. OTUs were annotated according to the results of a BLAST search prior to 

phylogenetic tree calculation. 

 

Phylogenetic community structure 

When testing for Driver and Passenger hypothesis, we wanted to include not only abundance data but 

also the phylogenetic sorting of the respective communities. In order to account for the different roles 

of plant and AMF communities influencing each other, we started with analyzing phylogenetic 

diversity (PD) within the AM fungal and plant communities. We chose the Daphne plant tree for our 

plant phylogenetic analysis (Durka and Michalski 2012), a tree consisting of most major Central 

European plant species, since it provides a complete set of phylogenetic distances for our plant dataset. 

Using the picante package (Kembel et al., 2010), we obtained two estimates of PD: the standardized 

effect size of mean pair wise distance (SES-MPD), which calculates the net relatedness index (NRI 

from beta-diversity with a null model, and inter-community mean pair wise distance (IC-MPD), which 

calculates beta-diversity as phylogenetic distance between communities. Phylogenetic distances 

between AMF OTUs were calculated using the Needleman-Wunsch implementation of Esprit (Quince 

et al., 2009, Sun et al., 2009). The distances between plant species were calculated as pairwise 

distances from the trimmed Daphne phylogenetic tree using the cophenetic.phylo function of the ape 

package (Paradis et al., 2004). The SES-MPD represents a net related index (NRI) value for each 

sample, which is defined as [–(MPD –MPDnull)/SD(MPDnull)], where MPD is the mean pair-wise 

phylogenetic distance among species in the sample (Kembel and Hubbel 2006, Li et al., 2014). The 

mean values of the NRIs of all samples of AMF were then used as the alpha-diversity measure to 

judge the clustering or segregation of the overall AMF community. Positive NRI values are related to 

clustering, negative values to overdispersion. The same approach was applied to the plant community. 

The null model algorithm we used was “independentswap” with 999 randomized null communities. 

“Independentswap” retains column and row totals for null model analysis of species co-occurrence 

(Caruso et al., 2012a, Gotelli 2000). This approach is particularly suited to problems that concern 

differences in species composition, because it accounts for variations in other community attributes 

such as diversity and richness. Significance of the calculated NRIs was tested using t-test.  



79 

 

IC-MPD were calculated as pair-wise phylogenetic distances of the samples, based on pair-wise 

genetic distances between OTUs and plant species, respectively, and yielded a sample x sample 

distance matrix as a measure of beta diversity. In order to include the IC-MPD information in a 

subsequent variance partitioning analysis (Caruso et al., 2012b, Legendre and Legendre 1998), the 

distance matrices of plants and AMF were subjected to a principal coordinate analysis (PCoA), a 

commonly used tool to reduce dimensionality which provides a measure of the amount of variance 

explained in the few independent principal axes (Legendre and Legendre 1998). The PCoA axes were 

extracted and used as the phylogenetic explanatory variables in order to quantify the individual 

contributions of plant phylogeny on AMF community composition and vice-versa in the variance 

partitioning analysis. The use of phylogeny allows for dealing with beta-diversity correlations, while 

abundance data will be utilized as means for alpha-diversity in the subsequent variance analysis.  

 

Null model analysis 

In order to account for non-random species associations that are linked to biotic influences of AMF 

and plant on each other, we performed null models on plant and AMF species, respectively. Null 

model analysis was done in EcoSim (Gotelli and Entsminger 2012). In our null model analysis the C-

score index was used to compute values of co-occurrence for the given set of presence/absence data. 

Since the C-score does not require perfect checkerboard distributions and has a low susceptibility to 

type II errors, it seemed best suited for our purpose (Gotelli 2000). The input matrix was randomized 

following the suggestions of Gotelli (2000) to minimize type I errors and test for patterns of co-

occurrence expected under non-random assembly processes and interacting species. The algorithm 

used fixed sums of rows and sums of columns and applied the Random Knight‟s Tour approach for 

shuffling the matrix. Retaining the row and column totals preserves differences in species richness 

among sites and differences in occurrence frequencies among species, therefore representing a 

conservative approach when testing for patterns in species composition. The null hypothesis was 

considered rejected when the observed C-Score was significantly different from the simulated C-

Scores (P < 0.05). A C-score lower than the simulated average represents an aggregated community, 

while a higher score represents a segregating community. Segregating communities indicate species 
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sorting processes by niche-partitioning or biotic interactions, which would, in combination with results 

from variance partitioning, show potential influences of AMF on plants and vice-versa. 

 

Models of correlations between plants and AMF  

In order to judge whether AM fungi are the Driver or the Passenger in the plant-AMF interaction, we 

quantified the variation in phylogenetic distance and abundance of AMF that explained the respective 

plant community, plus the vice-versa analysis using plant phylogenetics and plant presence / absence 

as a predictor for AM fungal community composition. We combined the extracted PCA axes of the 

IC-MPD (see above) with a forward selection model to choose the proper number of axes to include in 

the analysis. Additionally, we checked the generalized linear response of the relative abundance of 

AM fungal taxa on plant presence / absence and vice-versa using the manyglm function from the 

mvabund package (Wang et al., 2012, Warton et al., 2012) with a negative binominal error 

distribution. We removed contributions from environment and space by conducting an RDA on the 

predictor's abundance or presence / absence table, respectively, and used the residuals with the 

generalized linear model function. 

The analysis of patterns in community structure was conducted so that the Null hypothesis of the 

Driver and Passenger framework as well as potential influences of plants on AMF and vice-versa 

could be quantified. Calculation was done in R, using the vegan (Oksanen et al., 2012) and the 

spacemakeR (Dray 2011) package. We analyzed the relative AMF abundance obtained from 

processing the sequences as response variable. Spatial information (pair-wise distance between 

samples), log-transformed environmental data (sample pH, carbon, nitrogen, phosphorus, water 

content, and dehydrogenase activity as a proxy for microbial activity) and the plant presence / absence 

matrix plus the respective phylogenetic distance matrices were used as additional explanatory 

variables. Furthermore, plant presence / absence and phylogeny were used as response variable while 

using environment, space and the AMF as explanatory variables. 

In variance partitioning “space” represents spatial autocorrelation: Moran eigenvector mapping 

(MEM) was used to account for spatial autocorrelation at multiple scales in community variance 

partitioning (Dray et al., 2006, Legendre et al., 2009). This method represents a general, more 
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powerful version of the widely used PCNM (Borcard et al., 2004), which allows testing for several 

types of spatial structure. Several competing spatial models are possible and the most parsimonious 

model is selected using a multivariate extension of the Akaike Information Criterion AIC (Akaike 

1973). This model provides the best linear combination of eigenvectors accounting for spatial 

autocorrelation at multiple spatial scales and each eigenvector represents a certain scale (Dray et al., 

2006, Horn et al., 2014).  

Mixed partitions in variance partitioning represent the difference between the sums of the modeled 

variance for the individual partitions and the modeled variance of all partitions, therefore they do not 

have a testable null-hypothesis and thus no attributable P-value in an ANOVA.  
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Results 

 

454-pyrosequencing and OTU delineation 

The clustered and denoised data set consisted of 325 OTUs. During the resampling, we removed 7 root 

and 1 soil sample based on minimal read numbers of 500 reads. After resampling and removal of 

singletons, we found the majority of the remaining 130 OTUs to cluster well within our tree with the 

reference sequences (Fig. 2), but 57 OTUs were removed prior to matrix calculation since they 

clustered outside the reference sequences and thus membership to Glomeromycota could not be 

ascertained. The OTUs found in our tree span across most of the known AMF families, indicating that 

the primers we utilized are fairly exhaustive in covering the AMF phylum (Fig. 2). From the families 

included in the reference sequences, we only lacked OTUs of the Geosiphon clade, while all other 

families were represented by at least one OTU. 

 

Table 1: Percentage of explained AMF community variation by decomposition of total variance in the AMF 

community matrix into unique predictors: environment (soil properties), space (geographic position) and 

phylogeny (phylogenetic position). Depicted are percentage values of total variance in all macroplots and the 

individual macroplots each in root and soil. MP = macroplot. Significance: *** = P<0.001; ** = P<0.01; * = 

P<0.05; NS = not significant, NT = not testable.  

 

  environment space phylogeny 
env + 
space 

space + 
phylo 

env + 
space + 

phylo 

not 
explained 

all MPs root 1
 NS

 16
 ***

 11
 ***

 1
 NT

 14
 NT

 6
 NT

 51 

MP1 root 13
 ***

 20 
***

 18
 ***

 0
 NT

 19
 NT

 0
 NT

 30 

MP2 root 0
 NS

 31 
***

 28
 ***

 0
 NT

 0
 NT

 24
 NT

 17 

MP3 root 0
 NS

 4
 **

 30
 ***

 0
 NT

 9
 NT

 12
 NT

 45 
                

        all MPs soil 4
 NS

 24 
***

 15
 ***

 0
 NT

 10
 NT

 6
 NT

 41 

MP1 soil 3
 NS

 5
 **

 14
 ***

 9
 NT

 13
 NT

 0
 NT

 56 

MP2 soil 9
 ***

 17 
***

 15
 ***

 8
 NT

 42
 NT

 0
 NT

 9 

MP3 soil 0
 NS

 21 
***

 25
 ***

 0
 NT

 7
 NT

 6
 NT

 41 
                

 

  



83 

 

 

Figure 2: Maximum likelihood tree of 73 OTUs from the root and soil dataset, complemented with 110 

sequences from the Krüger et al. (2012) SSU-ITS-LSU alignment and one non-AMF outgroup (“D74UF_OG”, 

an unidentified member of the Chytridiomycota). Tree calculation was done in RAxML. Node numbers 

represent Bootstrap values. The node descriptions containing a “ROOT” or “SOIL” tag represent the OTUs 

defined in our study, while the other nodes represent the sequences from Krüger et al. 
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In the end, the root data set consisted of 68 OTUs and the soil dataset of 59 OTUs, with a total of 73 

OTUs. Overall OTU richness per macroplot was comparable, ranging from 31 to 44 in roots and from 

28 to 41 in soil (Table 2). The dominant fungal groups in our soils and roots were Glomus ssp. and 

Rhizophagus ssp. 

 

Table 2: AMF phylogeny and null model results from community abundance data. The OTU numbers for all 

macroplots and each individual macroplot in root and soil are depicted in the "OTUs" column. The mean pair 

wise distance between the communities of all macroplots and each individual macroplot in root and soil are 

depicted in the "MPD" column. The effect size and respective P-value for the null model analysis of the 

communities in all macroplots and the individual macroplots in root and soil are depicted in the columns headed 

with "null model". Positive effect sizes / mean pair wise distances indicate a segregated community (species 

repel each other), while negative values represent an aggregated community (species attract each other). MP = 

macroplot. 

 

  phylogeny null model 

  OTUs MPD 
effect 
size 

P 

all MPs root 68 0.01 11.75 <0.001 

MP1 root 42 -0.02 4.08 0.002 

MP2 root 31 -0.07 1.13 0.137 

MP3 root 44 0.00 -0.73 0.250 

          

     all MPs soil 59 0.01 19.42 <0.001 

MP1 soil 41 0.08 10.96 <0.001 

MP2 soil 28 -0.14 10.66 <0.001 

MP3 soil 39 0.08 1.61 0.068 

          

 

 

Null model interactions 

The AMF community was found to be significantly segregated overall. In roots the effect was only 

significant for the first macroplot and the whole dataset (Table 2). In soil the first, second, and overall 

datasets were significantly segregated. Effect sizes were considerably higher in soil than in root data 

sets (Table 2).  
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Phylogenetic diversity 

Despite the fact that we found significant portions of variation in AMF community composition 

explained by AMF phylogenetic distance between samples (see below), we could not find a significant 

NRI difference overall. While neither the root nor the soil sets of the phylogenetic data showed 

significantly segregated or aggregated communities on a per-macroplot or per-data-set basis (Table 2), 

individual distances of the spots themselves were showing a broad range of phylogenetically 

segregated and aggregated communities.  

 

Variance partitioning and AMF-plant correlations 

The overall effect of the environment on AMF alone was very low. With an exception of the root data 

set of macroplot 1, environmental data explained less than 10%. Pure space was a major predictor of 

the overall data set and even within the macroplots showed significant and large proportions (up to 

31%) of explained variation (Table 1). About 5-7 eigenvectors were responsible for this effect, and 

these were predominantly from the very low (>100m) or very high (<10m) rank class. Phylogeny was 

the second largest explanatory component in the variance partitioning of the AMF without plants. Up 

to 30% of variation could be explained by the phylogenetic distance of the AMF in our data set (Table 

1). Additionally, we found the spatial-phylogenetic partition (spatial phylogenetic turnover) explained 

large parts of the AMF variance. 

The generalized linear models (GLM) we applied showed a significant role of plant species presence / 

absence in prediction of AMF species abundance in roots (P<0.001) and soil (P<0.001). The vice-

versa approach did not show any significance. In the variance partitioning analysis, the plant presence 

/ absence accounted for a significant amount of explained variation in the root AMF communities, 

confirming the above results from the GLM approach (Table 3). However, the phylogeny was no 

significant predictor for fungal community pattern. We found a weak signal from the partition of 

spatial variation plus plant community in the AMF data set, which was stronger for presence / absence 

than for phylogeny (Table 3). When using the AMF as a predictor for the plant community, the 

explained variation by the fungi was very low, yielding a maximum of 3% variation of fungal 

phylogeny explained in the root data set (albeit not significant), and otherwise negligible amounts. The 
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spatially structured AMF community was a slightly better predictor and explained up to 5% of the 

plant community variation (Table 4).  

 

 

Table 3: AMF / plant interaction by decomposition of total variance in the AMF community matrix into unique 

predictors: Plant phylogeny (left) or plant presence / absence (right) + environment (soil properties) + space 

(geographic position). Depicted are percentage values of total variance. Significance: *** = P<0.001; ** = 

P<0.01; NS = not significant, NT = not testable. 

 

  AMF vs. plant phylo AMF vs. plant p/a 

  root soil root soil 

environment 0
 NS

 0
 NS

 3
 ***

 0
 NS

 

space 30
 ***

 29
 ***

 19
 ***

 24
 ***

 

plants 0
 NS

 0
 NS

 4
 **

 0
 NS

 

env + space 4
 NT

 3
 NT

 11
 NT

 5
 NT

 

space + plants 0
 NT

 6
 NT

 11
 NT

 10
 NT

 

env + plants 0
 NT

 0
 NT

 0
 NT

 0
 NT

 

env + space + plants 3
 NT

 3
 NT

 0
 NT

 2
 NT

 

unexplained 63 59 52 54 

 

 

Table 4: AMF / plant interaction by decomposition of total variance in the plant community matrix into unique 

predictors: AMF phylogeny (left) or AMF abundance (right) + environment (soil properties) + space (geographic 

position). Depicted are percentage values of total variance. Significance: *** = P<0.001; ** = P<0.01; NS = not 

significant, NT = not testable. 

 

  plants vs. AMF phylo plants vs. AMF abu 

  root soil root soil 

environment 8 
***

 7 
***

 20 
***

 19 
***

 

space 12 
***

 8 
***

 5 
**
 6 

***
 

AMF 3
 NS

 0
 NS

 0
 NS

 0
 NS

 

env + space 1 
NT

 1 
NT

 0 
NT

 0 
NT

 

space + AMF 0 
NT

 3 
NT

 5 
NT

 4 
NT

 

env + AMF 11 
NT

 12 
NT

 0 
NT

 0 
NT

 

env + space + AMF 0 
NT

 0 
NT

 0 
NT

 0 
NT

 

unexplained 65 69 70 71 
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Discussion 

 

Are AMF communities influenced by plant community composition or vice-versa? 

The Passenger and Driver framework is working with the assumption that AMF and plants influence 

each other's community dynamics. Our analysis showed that AMF community variance is mostly 

influenced by their spatial position and their phylogenetic composition (Table 1, Table 3), while the 

plants are strongly influenced by the environment (Table 4), as well as spatial position. Plants were 

found to be significantly segregated in a previous study (Horn et al., 2015). The generalized linear 

models we applied, however, showed a significant role of plant presence / absence in prediction of 

AMF abundance, while the vice-versa analysis was not significant, pointing to the Passenger role of 

AM fungi. This was confirmed in part by the variance analysis. It has been shown that plants may 

reward the best fungal partners with more carbohydrates (Bever et al., 2009) or that particular plant 

communities may cause the development of specific AMF communities (Hausmann and Hawkes 

2009). While our AMF communities are fairly diverse, the plant diversity in our sampling area is 

dominated by a set of a few indicator species, which may explain the diminished effect of plants found 

in the variance analysis of AMF compared with the generalized linear models. The variance analysis is 

using RDA-based matrix regressions while the generalized linear model we apply here is fitted 

separately to each species of the response variable, therefore allowing higher contributions of 

individual species / OTUs to surface. 

When it comes to support for the Driver hypothesis, our data can only provide a negligible amount of 

support. In the root data set, AMF phylogeny showed to explain a small amount of plant community 

variation (Table 4). However, given that we sampled from a single plant species, the root colonizing 

fungi might have limited ability to influence the surrounding plant communities, and one would rather 

expect such an effect to be more dominant in the soil. Since the effect was not present in the 

surrounding soil, the phylogenetic effect of AMF on plants is not very convincing, and moreover, 

cannot be causally attributed to either AMF or plants unambiguously. The dominance of Glomus ssp., 

Rhizophagus irregularis and other generalist taxa in the AMF community might, in combination with 

the phylogenetic pattern, be another explanation for the lack of community interactions on a small 
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scale between plants and AMF. Grassland plant communities harbor a lot of C3 grasses which are not 

very dependent of mycorrhiza. There is evidence that these plants prefer generalist AMF taxa 

(Helgason et al., 2007, Öpik et al., 2009, Vályi et al., 2015), and therefore might not apply strong 

selection processes on specialist AMF species. 

 

Are AMF communities assembled through interspecific interactions?  

Our analyzed AMF communities were found to be structured non-randomly. Null model analysis 

showed strongly segregating communities, while community beta-diversity indices indicating 

phylogenetic aggregation or segregation patterns were not significant. In a previous analysis of AMF 

communities in this sampling area, we found phylogenetic aggregation (Horn et al., 2014), however, 

the overall segregation in a non-phylogenetic null model analysis was found in both analyzes. Despite 

that, we found that the phylogenetic signal explained a significant amount of variance of the AMF 

community.  These segregation results may be caused by our sampling being at the beginning of the 

vegetative period in our sampling area, which in turn leads to lessened interactions and coexistence 

mainly due to spatial and temporal cohabitation of a certain spot in soil. While the vegetation in our 

grassland decays over winter and rebuilds in the spring, AMF communities are of a more perennial 

nature and the mycorrhizal networks have been shown to survive winter periods (McGonigle and 

Miller 1999). It might be that in the beginning of the growth season, plant-mycorrhiza interactions 

were still at the beginning and therefore selection pressure differed, forcing a changed balance 

between competitors and persistors.  

Nevertheless, AMF community structure is determined by their phylogeny and spatial position. Given 

the amount of variation explained by these two parameters, compared to the plant data, it is reasonable 

to conclude that the AMF in our sampling area assemble mostly independently from the plants. We see 

in our variance partitioning that especially on the single-macroplot level, environment, space and 

phylogeny are not clearly separated from each other in their influence on AM fungal communities, 

however, dispersal limitation found to exist both in the AMF and in the plant community may be an 

explanation for this effect. The presence of low-ranking MEM eigenvectors (indicating the influence 

of large-scale spatial segregation) emphasized the findings of the non-phylogenetic null model that the 
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spatial range of AMF was limited at the time of sampling and that dispersal limitation could be a main 

contributor to the spatial signal we found. We do find that the AMF exhibit a stronger spatial signal 

than plants, however, it is difficult to disentangle random effects from actual dispersal limitation when 

trying to quantify this effect. Given our small scale, the assumptions of Zobel and Öpik (2014) might 

not apply here.  

The replication of macroplots confirmed findings from a previous sampling regarding the phylogenetic 

sorting of the AMF community (Horn et al., 2014), which may be caused by interspecific interactions, 

meaning that the majority of AMF on a local scale is interacting rather with other AMF species in 

establishing communities than with plants. Trait convergence (Powell et al., 2009) could be an effect 

that causes this kind of selection process. 

 

How important is the variation in environmental parameters? 

Patterns within our macroplots differed despite the relative similarity in plant diversity and 

environmental features. In the soil data set, the environment showed a small signal mainly attributed to 

pH variance, which was found more strongly in macroplot 1 and 2. Macroplot 3 showed a generally 

different behavior. We believe this is due to the more sandy soil structure of this macroplot, which in 

turn selects for a set of more drought persistent individuals, both among plant and AMF species. 

Therefore species selection processes may be different here. In roots only macroplot 1 showed a 

significant environmental signal, which indicates a AMF population that is more dependent on the 

environmental gradient there. Spatially structured phylogeny was also among the important partitions, 

especially in the individual macroplots, suggesting that the phylogenetic species sorting process is of a 

perennial nature and is still able to structure the community at the beginning of the growth season, 

albeit being influenced by a lower amount of living plant roots and therefore creating phylogenetic 

islands which are mainly spatially structured.  

When we compare the results found here with the ones found in a previous study (Horn et al., 2014), 

we see several similarities, be it the level of AMF diversity or the general structure along space and 

phylogeny. This provides evidence that our utilized response variables could be not highly sensitive to 

seasonal effects. Since the spatial extent of spore distribution in AMF is quite low, it comes to no 
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surprise that community patterns in the soil in a previous year are also found in the subsequent 

growing season. The cover of live plant biomass in German grasslands vanishes to a great extent 

during winter every year, which leads to the necessity to reestablish a certain amount of mycorrhizal 

colonization in the beginning of every growth period (Kabir et al., 1997). This provides some 

indications for a certain seasonal effect and a possible explanation that the interactions of the AMF 

species are stronger in our previous study which was conducted at the end of the growth period. 

However, given we only have two sampling points in time, the implications of seasonality we can 

conclusively assess are limited.  
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Conclusion 

 

The tenet of the Passenger hypothesis, meaning direct influence of plant communities on AMF 

communities, could be shown, but their overall influence on AMF composition was low. Data indicate 

that the AMF could be following primarily a species-sorting process led by phylogenetic dynamics 

and dispersal limitation, pointing to a mainly independent behavior. The shape of these processes may 

be linked to the seasonal state of the biotic interaction in our research area, pointing out the different 

spatio-temporal dynamics of plants and AMF.  
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Chapter V: General discussion 

 

In this study the community assembly principles of plants and AMF in a highly diverse system were 

analyzed on a small scale, enabling the discovery of processes linked to direct influences on these 

organisms. Community ecology dealing with plants and / or AMF in the field tends to address fairly 

large areas covering a wide range of organisms to paint a full picture of processes taking place in an 

ecosystem, however, the actual selection processes always happen at a single spot at a given time, 

therefore the inference of patterns is increasingly more difficult the more broad the applied scale is. 

The success of neutral theory in describing systems with a high species density like tropical rainforests 

(Hubbell 2001) demonstrates that the amount of local interactions and selection processes constructed 

in multiple layers illustrates that stochastic processes or multitudes of interactions may be so dominant 

they overlay the common assumptions of classical niche theory. For my thesis it was important to not 

only focus on organisms whose interactions may happen at a more confined spatial scale but also 

adjust the size of the analyzed ecosystem to an area suitable to capture the majority of the significant 

interactions taking place and therefore being able to model a more inclusive approach. The study 

design was spatially explicit and utilized a fine-scale approach, linking high sampling density and 

small spatial extent in a way not done before. The hypotheses in the chapters tried to approach 

everything from a conservative stance, since field observational studies lack manipulative testing for 

mechanisms. Hence, the analysis of patterns focused on major factors known for their importance, the 

AMF OTU assignment involved a conservative approach to both clustering and sequence removal, and 

the calculation of spatial portions of variance followed the strict selection among a diversity of models 

using Akaike Information Criterion (AIC) (Akaike 1973). 

The idea behind the chapters was to initially analyze the individual organism groups to determine how 

likely a strong interaction between the two species groups was. Given that plant assemblages are 

commonly thought to be shaped by their environment and interactions via niche selection for almost 

half a century and that only in recent decades have been linked to belowground microbial diversity, it 

seemed fair to assess them alone at first, so that a general baseline existed when comparing them with 

the AMF. Since AMF are highly important plant symbionts (Smith and Read 2008), they were the first 
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choice for elucidating plant-microbe interactions. So subsequently in Chapter II the plant community 

assembly was assessed at a fairly small scale. This assembly is driven by processes taking place on 

several scales like competition (Aarssen 1989), dispersal limitation (Ai et al 2012) and environmental 

conditions (Latimer and Jacobs 2012). The results of Chapter II indicate that plants behave according 

to niche sorting processes and dispersal limitations, which is likely expressed through competitive 

exclusion. The plant communities were significantly overdispersed in the Null model analysis, 

indicating that species sorting processes influence the establishment of a plant species at a given spot 

(Gotelli 2000). Since the variance partitioning illustrated the importance of spatial processes and 

environmental filtering in plant community composition, this overdispersion was likely caused by 

species establishment according to niche differences (Chave et al 2002), which prevented other species 

from establishing at a given spot. Examples for this behavior were different Festuca species, with 

Festuca brevipila being more dominant in the upper regions of the plots where soil contained more 

clay and hence more moisture, while Festuca psammophila was almost exclusively found in the lower 

regions of the hill slopes, where the high sand content caused the soil pH to be lower and the soil 

overall to be dryer. The strong spatial signal could be an indicator of dispersal limitation, however, 

given the short distances between the different macroplots, it was unlikely that dispersal limitation was 

a dominating process there. Nevertheless, examples of plants were found that were spatially 

segregated, for example Bromus sterilis, which was found only in the most distant macroplot 3, or 

Stipa capillata, which was only found in macroplot 1. Neutral behavior or random influences were the 

more favorable explanation for the spatial signal. The findings confirm the baseline assumption that 

plants are strongly connected to aboveground interactions, even at a very small scale, indicating that 

current assumptions for plant community assembly are also valid in the chosen study system. It also 

reassures the common concepts of community composition rules function at very small scales, which 

might also be an outlook for neutral behavior in that sense that decreasing scale of analysis might 

actually capture a more fine-scaled subset of interactions and therefore remove the neutral properties 

of a community. 

After acquiring a baseline idea of plant community assembly, the same approach was taken for the 

AMF. Arbuscular mycorrhizal fungi have a yet to be conclusively described diversity, therefore 
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limiting the amounts of generalizable findings from greenhouse experiments. Field studies using 

exhaustive parallel sequencing are currently the only feasible approach of dealing with such unknown 

diversity in a community context. The design of the study of Chapter III allowed to find general AMF 

community assembly rules and to differentiate the role different abundance can play. General trait 

manipulation is exceptionally difficult for field studies on AMF, and only a few proper studies exist on 

this subject (van der Heijden and Scheublin 2007). Therefore approaching the community assembly 

the way it was done in Chapter III provides one means to overcome or at least diminish this restriction. 

This includes that the different assembly rules of dominant and rare AMF are likely to be connected to 

the individual traits of these groups and can act as a proxy to understand their role in the ecosystem. 

When looking at the AMF in Chapter III, where sampling took place roughly 6 months before the 

sampling used for Chapter II and IV, the analysis pipeline revealed a surprising amount of AMF OTUs 

for the small sampling area (15 x 15m), namely 74. Most of them belonged to the Rhizophagus and 

Glomus genus, but altogether 10 different families of AMF could be found. In contrast to the plants, 

the environment played only an insignificant role in AMF community composition, while spatial 

processes and phylogenetic sorting were dominant. Previous studies had found a significant influence 

of the environment (Dumbrell et al 2010, Lekberg et al 2011, Macek et al 2011), however, these 

studies did not share the same small-scale approach that was applied here. In contrast to the plants, 

AMF do seem to be affected significantly by the scale that is applied to analyzing them, which comes 

to no great surprise given that AMF are thought to be more spatially restricted than plants (Wolfe et al 

2006). The famous and now clearly outdated microbial concept of "everything is everywhere but the 

environment selects" (Baas Becking 1934) is therefore not valid, given that AMF are known to be 

inefficient dispersers (Smith and Read 2008). While there are cosmopolits among the AMF (Lekberg 

et al 2013, Öpik et al 2006), the actual community composition analysis indicated other selection 

processes than the environment. The AMF in our study area behaved phylogenetically aggregated, 

which lead to the assumption that selection processes beneficial for the establishment of one AMF 

species would also be beneficial for genetically closely related species (Powell et al 2009). Given that 

several studies speculate on the selective role of plants on AM fungal species (Bever et al 2009, Bever 

et al 2010), this seems to be a valid assumption, since the phylogenetic signal was found not only in 
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this but also the subsequent sampling in Chapter IV. The seasonal effects and spatial influence of 

plant-microbial interactions has been shown (Davey et al 2012, Dumbrell et al 2011, Lekberg et al 

2011), so the aggregated behavior might be an effect depending on seasonal situations or the spatial 

position of the sampling, emphasized by the fact that the particular observation of phylogenetic 

aggregation could not be reproduced in the subsequent sampling that took place in spring. The strong 

spatial signal is an indicator of the described spatial limitations of AMF species in terms of dispersal 

and the general extent of a single AMF individual. Although the definition of AMF species had to rely 

on a mathematical background, the modern approach that was chosen closed the gap between the 

actual species and the definition of an OTU to a certain extent (Powell 2012). It is therefore a valid 

assumption that spatial limitations observed in Chapter III were indeed related to the actual behavior 

of AMF species. Even though a strongly skewed abundance distribution was observed, with a 

significant dominance of Glomus and Rhizophagus species, the effect of spatial limitation and 

phylogenetic sorting could also be found in the rare families, further emphasizing that the observed 

effect is indeed real. That proved interesting since the common idea of the rare species in a species-

rich ecosystem describes them as a sort of functional redundancy system, which is used as an 

explanation why species-poor ecosystems are more prone to losing functional traits and therefore are 

less stable than the species-rich systems. The conclusion from this would be that the rarity of species is 

more dependent on the selection principles that apply, and therefore their community composition 

should be more dependent on spatial position and niche dynamics rather than their phylogenetic 

relationship amongst each other. The opposite was true in Chapter III, which pointed to the idea that 

either the influence of plants on the AMF might be a significant selector or that abundance and 

rareness are mere traits of an AM fungal species that are shaped by the distribution capabilities of that 

species. They would be expressed by the amounts of spores or the amount of hyphal growth rather 

than biotic selection procedures like in plant communities. 

Given the noticeably different processes of species establishment in AMF and plants already apparent 

in Chapter II and III, it became clear that the analysis of the influence of the two organism groups on 

each other was a necessity to understand more about the processes in the study system and was 

subsequently done in Chapter IV. It was possible to reaffirm previous findings that point to a niche-
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based sorting process among the plants and a spatially-phylogenetic sorting paradigm among the 

AMF. But the more important question dealt with the interactions between the two groups. The 

variance partitioning indicated that AMF and plants are independent of each other, not only in light of 

abundance or presence-absence, but also when looking at the phylogenetic systematics of the two 

organism groups that were sampled. Some support was found for the Passenger hypothesis which 

states that AMF communities are influenced by the plant communities surrounding them, and evidence 

for the Driver hypothesis was negligible. Findings that point to influences both of AMF on plants and 

vice-versa only could be found when applying generalized linear models. A problem with such an 

analysis is that correlation is not necessarily causality, which makes it exceptionally difficult to 

disentangle Driver and Passenger effects from each other in a field study. Despite the fact that Zobel 

and Öpik stated that in reality, AMF and plant community interaction might represent a mixture of 

Passenger, Driver and independent behavior, the AMF communities in the applied sampling regime in 

Chapter IV behaved primarily independently. This might be influenced by dispersal limitations of 

either plants (Turnbull et al 2000) or AMF (Mummey and Rillig 2008, Smith and Read 2008), 

especially when looking at the strong spatial signal observed in both communities. When looking at 

the results from Chapters II and III, the mixture of different selection processes comes to no real 

surprise, given the strong dependence on environmental (for the plants) or intraspecific (for the AMF) 

processes. This is also the context in which the linear model result should be seen: If plants select for 

certain genetic traits in AM fungi, this will eventually lead to species sorting along a phylogenetic 

gradient, while the actual interaction can appear to be dependent on plant community composition. 

Since field observational studies generally lack the possibility to conclude the exact mechanisms 

causing the observed patterns, it is difficult to tell if plants actively "lock out" undesired AM fungal 

species or if genetically closely related AMF species are able to "break in", once a favorable species 

has found its way into the plant root. Given that there is evidence for both, it might as well be a 

mixture of the two processes.  

The interaction of plants and AMF in assembling their respective communities has been shown to be 

limited in the small scale analysis conducted here. Instead, evidence suggests that both groups have 

their own sets of assembly rules, and that they are characterized by the individual traits of the 
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respective group. It has been shown that AMF do influence plant communities by enhancing growth of 

rare species, for example by supplying additional resources along the mycorrhizal network to plants 

with higher mycorrhizal dependency, therefore promoting species diversity (van der Heijden et al 

1998a, van der Heijden et al 1998b). However, this view is based on studies dealing with artificial 

communities, field samplings with outdated sampling methods for AMF and neglect of the different 

spatial extents of the two organism groups. In the present work, it was possible to quantify the 

influence of the whole AMF community on whole plant communities in relation to their individual 

assembly patterns. It was therefore possible to put into perspective the contributions of individual 

AMF species on isolated plant species that are commonly cited as evidence for the AMF influence on 

plants. They without doubt do provide important ecosystem services, but the actual contribution to the 

assembly of a plant community remained not fully understood. While the potential influence of AMF 

on plants has been conclusively shown, the relative influence in comparison with other factors has 

only been addressed in a few studies (Klironomos et al 2011). The present work provided insight into 

the fact that AMF and plants, despite their close mutualistic relationship, exist in their own individual 

domains and their interaction might be based on a system of individual benefits for the plant and AMF 

species. I would suggest in the context of this work, that AMF and plants perceive each other merely 

as an extended environmental factor providing nutrients for each other. 

Naturally, the field studies presented here could analyze only a snapshot of a highly dynamic 

ecosystem. The role of seasonal effects and the differences in the spatio-temporal properties of AMF 

and plant species could not be addressed to a satisfying extent, which warrants further sampling taken 

at a more dense system of points in time. Additionally, the analysis presented here represents only a 

look at one ecosystem, however, the community composition processes of the AMF were verified 

twice here and a third time in a Eucalyptus woodland in Sydney, Australia (Horn et al., unpublished). 

In that study, AMF community differences could be related to a certain extent to the age of their 

surrounding host trees, but were again mainly spatially and phylogenetically structured, despite the 

fact that the ecosystem analyzed was of a different nature, in a different climate zone and in the 

Southern hemisphere half-way around the world. Therefore, the insights gained here may very well be 

of a common validity and should help gain a balanced perspective towards the role of AM fungi in 
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plant assemblages. In the future, this view should be more refined by adding more ecosystems to the 

analysis, and by adding a more extended examination of plant and AMF interaction via the analysis of 

more individual plants over a wider range of species and their respective AM fungal communities. 

Given that sequencing technology is advancing even as this work is written, the feasibility of doing so 

will be given even more in the future. Further perspectives may shift the paradigm of the ubiquitous 

dependence of plant communities on AMF more towards an egalitarian perspective or provide 

evidence for an inherent difference of AM fungal behavior in different ecological contexts. 
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Chapter VI: Summary 

 

The study of assembly of plants and microbial communities is an important subject of ecological 

research as it aids our understanding of species diversity and hence ecosystem functions. Mycorrhizal 

fungi are of particular importance due to their role as prime symbionts for most land plants. The 

community composition of plants and mycorrhizal fungi are governed by environmental, spatial and 

biotic patterns, whose individual contributions are an active field of research and ongoing debate. 

Since the processes are tightly interwoven, greenhouse experiments offer limited access to the actual 

processes which take place in nature.  

In the present dissertation, the community assembly rules of plants, AMF and the interplay between 

the two organism groups were studied in a high diversity ecosystem in the "Oderhänge Mallnow", 

offering a large diversity of plants and steep gradients in soil environmental properties on a small 

scale. Two field samplings were conducted, one studying a single macroplot of 15x15m and analyzing 

the AM fungi community composition of the focal plant on the study site, Festuca brevipila roots and 

surrounding soil. The second sampling was conducted 6 months later, using three macroplots of 

15x15m, 12x12m and 12x12m, and focused on AMF communities in root and soil of Festuca 

brevipila plus the composition of the surrounding plant communities. 

In Chapter II, the plant community assembly patterns were studied. It was found that important roles 

of environmental factors that prevail at larger scales also are present at smaller scales. Additionally, 

biotic interactions causing species segregation and effects of the spatially structured environment share 

a significant influence in plant community composition. 

In Chapter III, the AM fungal communities from the first sampling and their respective assembly 

patterns were analyzed. Results indicate that environmental influences are negligible for AMF, but 

rather spatial and phylogenetic patterns dominate the assembly of communities. Phylogenetic 

clustering was observed not only in the dominant but also in the rare species, indicating that trait 

conservatism and resulting selection principles are a main route for AMF community assembly. Apart 

from this, dispersal limitation and stochastic position events contribute to the composition of an AMF 
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community at a given spot, as evident due to the low mobility of AM fungi in the soil. These patterns 

may be related to direct or indirect positive interactions among fungi and their biotic environment. 

In Chapter IV, the interactions of AMF and plant communities from the second sampling were 

analyzed in context of the Passenger and Driver framework. AMF follow their strong spatial structure 

and phylogenetic sorting patterns, albeit strong phylogenetic clustering could not be observed in this 

particular sampling, indicating potential seasonal influences. They only have insignificant influence on 

either their surrounding plant community composition or their phylogenetic distribution, hence 

rejecting the Driver hypothesis. Environment only has minor influences on AMF community 

composition, confirming findings from Chapter III. The plants follow more or less the same patterns as 

in Chapter II, even when adding AMF communities as explanatory variables to the equation. They do 

however have a significant influence on AM fungi community composition in context of generalized 

linear models, indicating evidence for the Passenger hypothesis.  

In summary, plant and AMF may share a close mututalistic relationship, however, the rules governing 

diversity and composition of their respective communities seem to be independent of each other. 

While plants follow classical niche-partitioning based systematics, AMF possess a stronger focus on 

biotic patterns, be it intra-specific as shown by phylogenetic sorting, or inter-specific as in their 

influence by plants. Their low mobility and limited dispersal capabilities add a layer of random spatial 

position, leading to the conclusion that there is no single rule of acquisition regarding AM fungi 

community and diversity in an ecosystem. 
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Zusammenfassung 

 

Die Ökologie der Artengemeinschaften von Pflanzen und Mikroorganismen ist ein wichtiges Thema 

ökologischer Forschung, da es ein primärer Faktor bei der Gestaltung von Artenvielfalt und daraus 

folgend Ökosystem-Funktionen ist. Mykorrhizapilze sind von besonderer Bedeutung aufgrund ihrer 

Rolle als Hauptsymbionten für die meisten Landpflanzen. Die Zusammensetzung der Gemeinschaften 

von Pflanzen und Mykorrhizapilzen werden von Umweltfaktoren, räumlichen und biologischen 

Mustern bestimmt, deren individuelle Einflüsse ein aktives Forschungsfeld und Thema laufender 

Debatten sind. Da diese Prozesse eng mit einander verwoben sind, bieten Gewächshausexperimente 

nur begrenzten Zugang zu den tatsächlich in der Natur stattfindenden Prozessen.  

In der vorliegenden Dissertation wurden die Regeln der Zusammensetzung von Pflanzen- und 

Pilzgemeinschaften sowie das Zusammenspiel der beiden Organismengruppen in einem hochdiversen 

Ökosystem in den "Oderhängen Mallnow" untersucht, welches eine große Diversität von Pflanzen 

sowie steile Gradienten in Umweltfaktoren des Bodens in geringer räumlicher Ausbreitung bietet. 

Zwei Probennahmen im Feld wurden durchgeführt, wobei die erste einen einzelnen Macroplot von 

15x15 Metern untersuchte und dabei die Zusammensetzung der AM-Pilzgemeinschaften in den 

Wurzeln und dem umgebenden Boden der Fokalart des beprobten Feldes Festuca brevipila 

analysierte. Die zweite Probenahme wurde 6 Monate später auf drei Macroplots der Maße 15x15m, 

12x12m und 12x12m durchgeführt und konzentrierte sich auf die AM-Pilzgemeinschaften in Wurzeln 

und umgebendem Boden von Festuca brevipila und zusätzlich die Zusammensetzung der umgebenden 

Pflanzengemeinschaften. 

In Kapitel II wurden die Zusammensetzungsmuster der Pflanzengemeinschaften studiert. Im Ergebnis 

war die wichtige Rolle der Umweltfaktoren, die auf größeren Skalen vorherrscht, auch hier zu finden. 

Zusätzlich stellten biotische Interaktionen, die zur Abspaltung von Arten führten, sowie räumlich 

strukturierte Umweltfaktoren einen wichtigen Einfluss auf die Zusammensetzung der 

Pflanzengemeinschaften dar. 
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In Kapitel III wurden die AM-Pilzgemeinschaften der ersten Probennahme und ihre jeweiligen 

Zusammensetzungsmuster untersucht. Die Resultate weisen darauf hin dass Einflüsse von 

Umweltfaktoren vernachlässigbar waren, stattdessen dominieren räumliche und phylogenetische 

Muster die Zusammensetzung der Gemeinschaften. Phylogenetische Aggregation wurde nicht nur bei 

den dominierenden, sondern ebenfalls in den seltenen Arten beobachtet, was darauf hinweist dass die 

Konservierung von Eigenschaften und die daraus resultierenden Selektionsprinzipien einer der 

Hauptwege für die Zusammensetzung von AM-Pilzgemeinschaften darstellen. Daneben wirken die 

Begrenzung der Ausbreitung und zufällige Positionierungsereignisse an der Zusammensetzung einer 

AM-Pilzgemeinschaft an einer bestimmten Stelle mit, wie sich durch die geringen Mobilität der AM-

Pilze im Boden zeigt. Diese Muster könnten durch direkte oder indirekte positive Interaktionen der 

Pilze mit ihrer lebenden Umgebung verursacht werden. 

In Kapitel IV wurden die Interaktionen der AM-Pilz- und Pflanzengemeinschaften der zweiten 

Probennahme im Rahmen des Fahrer-und-Beifahrer Systems analysiert. AM-Pilze folgen ihren Muster 

der ausgeprägten räumlichen Struktur und phylogenetischer Sortierung, gleichwohl konnte die 

phylogenetische Aggregation in dieser Probennahme nicht beobachtet werden, was auf einen 

möglichen saisonalen Einfluss hindeutet. Sie haben nur einen insignifikanten Einfluss auf die 

Zusammensetzung der sie jeweils umgebenden Pflanzengemeinschaften, was zur Ablehnung der 

Fahrerhypothese führt. Die Umweltfaktoren haben nur geringen Einfluss auf die Zusammensetzung 

der AM-Pilzgemeinschaften, was die Ergebnisse aus Kapitel III bestätigt. Die Pflanzen folgen mehr 

oder weniger denselben Mustern wie in Kapitel II, auch wenn man die AM-Pilzgemeinschaften als 

erklärenden Variablen der Gleichung hinzufügt. Sie haben jedoch einen signifikanten Einfluss auf die 

Zusammensetzung der Pilzgemeinschaften im Kontext des generalisierten Linearmodells, was auf 

einen Beweis für die Beifahrer-Hypothese hindeutet. 

Zusammenfassend ist zu bemerken, dass Pflanzen und AM-Pilze eine enge mutualistische Beziehung 

teilen, die Regeln, nach denen ihre Diversität und die Zusammensetzung ihrer jeweiligen 

Gemeinschaften erfolgt, jedoch unabhängig voneinander zu sein scheinen. Während Pflanzen der 

klassischen Systematik der Nischenaufteilung folgen, liegt der Fokus bei AM-Pilzen stärker auf 

biotischen Mustern, sei es innerhalb ihrer Artengruppe durch phylogenetische Sortierung, oder 
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außerhalb beispielsweise durch den Einfluss der Pflanzen. Ihre geringe Mobilität und die begrenzte 

Ausbreitungsfähigkeit fügt eine zusätzliche Schicht zufälliger Positionsereignisse hinzu, was zu der 

Schlussfolgerung führt, dass es keine einzelne Erwerbsregel bezüglich der AM-Pilzgemeinschaften 

und ihrer Diversität in einem Ökosystem gibt. 
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Table S1: Plant species presence / absence list, part 1.  

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Achillea millefolium agg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agrostis capillaris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Alyssum alyssoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anthericum ramosum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Arenaria serpyllifolia 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Armeria elongata 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Arrhenatherum elatius 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 

Artemisia campestris 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 

Bromus inermis 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bromus sterilis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Carex humilis 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 

Centaurea stoebe 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cerastium semidecandrum 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 

Chenopodium strictum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Corynephorus canescens 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dactylis glomerata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dianthus carthusianorum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Echium vulgare 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Elytrigia repens 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Erigeron canadensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Erodium cicutarium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Euphorbia cyparissias 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Festuca brevipila 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 

Festuca psammophila 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Galium verum 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Helicotrichon pratensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 

Hieracium pilosella 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hieracium umbellatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hypochaeris radicata 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Koeleria macrantha 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 

Medicago minima 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Myosotis stricta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Petrorhagia prolifera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Peucedanum oreoselinum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phleum phleoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Potentilla incana 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 

Rumex acetosella 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 

Salvia pratensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sedum sexangulare 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 

Silene conica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Silene otitis 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Stipa capillata 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Thymus serpyllum 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Trifolium arvense 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Veronica arvensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Veronica spicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Veronica verna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
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Table S1: Plant species presence / absence list, part 2 

# 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

Achillea millefolium agg 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Agrostis capillaris 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Alyssum alyssoides 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anthericum ramosum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

Arenaria serpyllifolia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 

Armeria elongata 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Arrhenatherum elatius 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 

Artemisia campestris 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

Bromus inermis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Bromus sterilis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 

Carex humilis 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Centaurea stoebe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cerastium semidecandrum 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

Chenopodium strictum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Corynephorus canescens 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dactylis glomerata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Dianthus carthusianorum 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Echium vulgare 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Elytrigia repens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Erigeron canadensis 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 

Erodium cicutarium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Euphorbia cyparissias 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Festuca brevipila 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 

Festuca psammophila 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 

Galium verum 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Helicotrichon pratensis 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hieracium pilosella 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hieracium umbellatum 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hypochaeris radicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Koeleria macrantha 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 

Medicago minima 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Myosotis stricta 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Petrorhagia prolifera 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Peucedanum oreoselinum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Phleum phleoides 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 

Potentilla incana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rumex acetosella 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Salvia pratensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Sedum sexangulare 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 

Silene conica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Silene otitis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Stipa capillata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thymus serpyllum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trifolium arvense 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Veronica arvensis 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Veronica spicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Veronica verna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S2: Environmental parameters measured from the soil cores 

# MP Plot H2O (%) pH C N C/N P (mg/kg) Dehyd.  # MP Plot H2O (%) pH C N C/N P (mg/kg) Dehyd. 

1 1 1 0.42 4.97 0.76 0.06 13.16 28.12 1.46  31 2 7 n.p. n.p. n.p. n.p. n.p. n.p. n.p. 

2 1 1 3.06 4.33 1.13 0.09 12.11 35.22 1.15  32 2 7 5.98 4.04 1.34 0.12 11.16 16.75 2.08 

3 1 1 4.59 4.52 0.54 0.05 11.92 27.55 1.12  33 2 7 7.73 3.91 1.60 0.14 11.08 17.55 0.98 

4 1 1 2.48 4.62 0.68 0.06 12.28 36.27 1.70  34 2 7 5.70 3.96 2.07 0.18 11.76 23.54 1.39 

5 1 1 3.59 4.51 0.64 0.05 13.33 35.69 3.11  35 2 7 4.74 4.00 1.94 0.16 11.83 22.30 1.80 

6 1 2 3.15 5.09 0.45 0.03 13.17 24.12 2.12  36 2 8 7.46 3.87 0.78 0.07 11.61 10.30 2.07 

7 1 2 4.23 5.24 0.36 0.03 13.55 21.92 1.29  37 2 8 9.33 3.80 0.62 0.05 12.07 25.70 1.39 

8 1 2 2.93 5.06 0.61 0.04 14.10 23.34 1.50  38 2 8 7.53 3.73 0.99 0.08 12.15 11.71 2.18 

9 1 2 5.00 5.17 0.69 0.05 13.09 23.63 1.70  39 2 8 8.59 3.89 1.42 0.12 11.57 15.06 1.40 

10 1 2 2.36 4.98 0.68 0.05 12.81 20.53 2.22  40 2 8 8.52 3.84 0.82 0.07 12.67 15.60 0.60 

11 1 3 4.61 5.48 0.69 0.06 12.37 12.32 7.03  41 3 9 3.43 7.05 0.84 0.06 13.96 19.23 19.85 

12 1 3 4.19 5.35 1.25 0.10 12.25 11.08 2.53  42 3 9 3.38 7.46 0.85 0.05 17.85 19.11 10.48 

13 1 3 4.61 5.31 1.75 0.15 11.94 9.72 2.52  43 3 9 2.66 7.59 0.79 0.04 20.22 15.99 6.51 

14 1 3 6.35 5.47 1.73 0.15 11.70 8.74 10.67  44 3 9 4.66 7.53 1.21 0.09 13.95 18.61 10.44 

15 1 3 6.11 5.51 0.96 0.08 12.16 9.37 7.69  45 3 9 4.18 7.40 0.87 0.06 14.35 18.31 6.27 

16 1 4 3.95 7.57 1.05 0.06 23.20 20.22 5.91  46 3 10 4.51 7.22 1.05 0.09 11.91 14.95 11.95 

17 1 4 3.64 7.61 1.14 0.07 16.55 28.20 5.41  47 3 10 8.34 7.10 0.96 0.09 11.09 12.92 15.39 

18 1 4 4.82 7.61 0.99 0.06 18.19 19.35 8.28  48 3 10 4.91 6.74 1.05 0.08 13.30 24.21 14.18 

19 1 4 4.29 7.27 1.58 0.12 12.83 30.27 14.25  49 3 10 4.43 6.93 1.30 0.11 12.20 12.91 11.44 

20 1 4 6.78 6.73 1.11 0.08 14.61 22.55 13.33  50 3 10 2.96 7.12 1.34 0.11 12.00 17.85 9.64 

21 2 5 3.62 3.95 0.63 0.05 12.78 24.29 0.67  51 3 11 8.47 7.59 1.73 0.11 16.51 33.38 16.32 

22 2 5 4.51 6.55 1.32 0.10 12.72 25.44 8.26  52 3 11 9.78 7.53 2.58 0.18 14.47 26.38 24.10 

23 2 5 3.38 4.74 1.01 0.08 12.50 23.24 1.92  53 3 11 11.90 7.51 3.22 0.22 14.89 37.53 32.83 

24 2 5 4.87 6.87 1.17 0.09 13.60 19.03 11.84  54 3 11 9.87 7.56 3.41 0.21 15.98 42.19 18.94 

25 2 5 4.83 4.17 1.18 0.09 12.82 16.53 0.67  55 3 11 10.01 7.43 2.54 0.21 12.22 30.02 23.69 

26 2 6 3.90 3.97 0.94 0.07 12.90 14.78 0.95  56 3 12 5.55 7.24 1.26 0.10 13.21 15.59 11.99 

27 2 6 3.38 4.27 0.76 0.06 13.15 18.33 0.43  57 3 12 5.89 7.41 1.39 0.08 17.66 14.91 10.05 

28 2 6 7.04 4.01 0.53 0.04 13.79 17.07 0.53  58 3 12 4.45 7.07 1.76 0.14 12.97 19.05 11.44 

29 2 6 2.68 3.97 0.61 0.05 12.14 13.05 0.77  59 3 12 5.38 7.51 1.21 0.07 18.62 14.49 13.08 

30 2 6 0.01 4.00 0.50 0.04 13.68 10.40 0.57  60 3 12 6.04 7.34 1.60 0.12 13.72 17.06 17.66 
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Table S3: P-values from the analysis of variance of the environmental data used in the null model subsets. MP1 

= macroplot 1; MP2 = macroplot 2; MP3 = macroplot 3; top = top plots; bottom = bottom plots; left = left plots; 

right = right plots; diag w/G = diagonal plots along the gradient; diag wo/G = diagonal plots orthogonal to the 

gradient. P-values are depicted as stars: *** = P<0.001; ** = P<0.01; * = P<0.05; NS = P>0.05.  

The function call was: aov(environmental.factor~plot.subset) 

 

 

  MP1 MP2 MP3 top bottom left right 
diag 
w/G 

diag 
wo/G 

C ** *** *** *** *** *** *** *** *** 

N ** *** *** *** *** *** *** *** *** 

C/N *** *** * *** ** *** *** ** *** 

P *** NS *** *** *** *** ** *** *** 

pH *** * ** *** *** *** *** *** *** 

micro *** NS ** *** *** *** *** *** *** 

 

 

 

Table S4: Variance partitioning results before and after the natural log-transformation of the environmental data 

 

 
untransformed log-transformed 

   environment 17.9 % 17.2 % 

env + space 4.7 % 4.1 % 

space 14.5 % 15.1 % 

unexplained 62.9 % 63.6 % 
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Source code of the statistical analysis in R 

 

# PCNM analysis and variance partitioning of mallnow plant and soil data 

# read in the source data and create some variables from it 

slist<-read.table("mps.txt", header=TRUE) # species list 

env<-read.table("mallnow.env.txt", header=TRUE)   # environment data 

coords<-data.frame(easting=slist$easting,northing=slist$northing) 

 

species<-slist[,4:dim(slist)[2]] # stripping first 3 colums for species only 

xyir<-as.matrix(coords) # make a matrix from coordinates 

 

library(vegan) 

species <- decostand(species,method="hellinger") 

detach("package:vegan") 

 

library(spdep) 

library(tripack) 

 

nbtri <- tri2nb(xyir) 

nbgab <- graph2nb(gabrielneigh(xyir), sym = TRUE) 

nbrel <- graph2nb(relativeneigh(xyir), sym = TRUE) 

nbsoi <- graph2nb(soi.graph(nbtri, xyir), sym = TRUE) 

 

library(vegan) 

d<-dist(coords,method="euclidean") #euclidiean distance map 

detach("package:vegan") 

library(ade4) 

nbmst<-neig2nb(mstree(d, ngmax = 1)) # create minimum spanning tree 

detach("package:ade4") 

 

par(mfrow = c(2, 2)) 

plot(nbtri, xyir, col = "red", pch = 20, cex = 0.2) 

title(main = "Delaunay triangulation") 

plot(nbgab, xyir, col = "red", pch = 20, cex = 0.2) 

title(main = "Gabriel Graph") 

plot(nbrel, xyir, col = "red", pch = 20, cex = 0.2) 

title(main = "Relative Neighbor Graph")# 

plot(nbmst, xyir, col = "red", pch = 20, cex = 0.2) 

title(main = "Minimum Spanning tree") 

par(mfrow = c(1, 1)) 

 

# First, we de-trend community structure with respect to N and E 

library(vegan) 

ccaTrend<-cca(species~easting+northing,data=coords) 

resCom<-residuals(ccaTrend) 

detach("package:vegan") 

 

library(spacemakeR) # PCNM library 

# test.W is a function to compute and test eigenvectors of spatial weighting matrices 

## Binary ## 

tri.top<-test.W(resCom, nbtri) 
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gab.top <- test.W(resCom, nbgab) 

rel.top<-test.W(resCom, nbrel) 

mst.top<-test.W(resCom,nbmst) 

## 

## Binary + weighting function 2 (concave down) ## 

f2 <- function(x, dmax, y) {1 - (x^y)/(dmax)^y} # a weighting distance function 

maxi <- max(unlist(nbdists(nbgab, xyir))) 

# maximum of a flattened spatial distance list of the gabriel graph aka maximum spatial 

distance 

tri.f2 <- test.W(resCom, nbtri, f = f2, y = 1:10, dmax = maxi, xy = xyir) 

gab.f2 <- test.W(resCom, nbgab, f = f2, y = 1:10, dmax = maxi, xy = xyir) 

rel.f2 <- test.W(resCom, nbrel, f = f2, y = 1:10, dmax = maxi, xy = xyir) 

mst.f2 <- test.W(resCom, nbmst, f = f2, y = 1:10, dmax = maxi, xy = xyir) 

## 

## Binary + weighting function 3 (concave up) ## 

f3 <- function(x, b) {1/(x)^b} 

tri.f3 <- test.W(resCom, nbtri, f = f3, b = 1:10,xy = xyir) 

gab.f3 <- test.W(resCom, nbgab, f = f3, b = 1:10, xy = xyir) 

rel.f3 <- test.W(resCom, nbrel, f = f3, b = 1:10, xy = xyir) 

mst.f3 <- test.W(resCom, nbmst, f = f3, b = 1:10, xy = xyir) 

## 

## Neighborhood approach 

dxy <- seq(give.thresh(dist(coords)), 15, le =100) 

nbdnnlist <- lapply(dxy, dnearneigh, x = as.matrix(coords), d1 = 0) 

dnn.bin <- lapply(nbdnnlist, test.W, Y = resCom) 

minAIC <- sapply(dnn.bin, function(x) min(x$best$AICc,na.rm = T)) 

dnn.bin[[which.min(minAIC)]]$all[1] 

## 

## Neighborhood approach with weighting function 2 ## 

dnn.f2 <- lapply(nbdnnlist, function(x) test.W(x, Y = resCom,f = f2, y = 2:10, dmax = 

max(unlist(nbdists(x, as.matrix(coords)))),xy = as.matrix(coords))) 

minAIC <- sapply(dnn.f2, function(x) min(x$best$AICc,na.rm = T)) 

min(dnn.f2[[which.min(minAIC)]]$all[3]) 

## 

## Neighborhood approach with weighting function 3 ## 

dnn.f3 <- lapply(nbdnnlist, function(x) test.W(x, Y = resCom,f = f3, b = 1:10,xy = 

as.matrix(coords))) 

minAIC <- sapply(dnn.f3, function(x) min(x$best$AICc,na.rm = T)) 

min(dnn.f3[[which.min(minAIC)]]$all[2]) 

## 

## PCNM approach ## 

pcnm_M<-pcnm(dist(coords),give.thresh(dist(coords))) 

AIC.pcnm<-ortho.AIC(resCom, pcnm_M$vec, ord.var=T) 

min(AIC.pcnm$AICc) 

## 

## Polynomial for classical trend-surface approach, remember to close ade4! ## 

detach("package:spacemakeR") 

detach("package:ade4") 

library(vegan) 

X2<-(slist$easting)^2 

X3<-(slist$easting)^3 

Y2<-(slist$northing)^2 
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Y3<-(slist$northing)^3 

Y<-(slist$northing) 

X<-(slist$easting) 

rda_Poly<-rda(resCom~X2+X3+Y2+Y3+X+Y) 

#extractAIC.cca(rda_Poly)[2] 

extractAIC(rda_Poly)[2] 

 

AIC_matrix<-

as.matrix(c(tri.top$all[1],min(tri.f2$all[3]),min(tri.f3$all[2]),gab.top$all[1],min(gab.f2$all

[3]),min(gab.f3$all[2]),rel.top$all[1],min(rel.f2$all[3]),min(rel.f3$all[2]),mst.top$all[1],mi

n(mst.f2$all[3]),min(mst.f3$all[2]),dnn.bin[[which.min(minAIC)]]$all[1],min(dnn.f2[[which.min(

minAIC)]]$all[3]),min(dnn.f3[[which.min(minAIC)]]$all[2]),min(AIC.pcnm$AICc),extractAIC(rda_Po

ly)[2])) 

rownames(AIC_matrix)=c("bintri","tri.f2","tri.f3","bingab","gab.f2","gab.f3","binres","res.f2"

,"res.f3","binmst","mst.f2","mst.f3","dnn","dnn.f2","dnn.f3","pcnm","poly") 

AIC_matrix 

 

dnn.f2[which.min(minAIC)] # format for dnn approach 

dnn.f2_model<-dnn.f2[which.min(minAIC)]  

 

# 4, 6, 5, 3, 8 and 57 were the AIC improving MEMs 

MEM_4<-dnn.f2_model[[1]]$best$vectors[,4] 

MEM_6<-dnn.f2_model[[1]]$best$vectors[,6] 

MEM_5<-dnn.f2_model[[1]]$best$vectors[,5] 

MEM_3<-dnn.f2_model[[1]]$best$vectors[,3] 

MEM_8<-dnn.f2_model[[1]]$best$vectors[,8] 

MEM_57<-dnn.f2_model[[1]]$best$vectors[,57] 

r.da.mems.v <- cbind(MEM_4,MEM_6,MEM_5,MEM_3,MEM_8,MEM_57) 

 

library(ade4) 

# First, we run a PCA of Env for visualising main pattern of correlation in Explanatory 

Variables 

Env.set<-

data.frame(C=env$Ko,N=env$Nit,Water=env$water,pH=env$pH,C_N=(env$Ko)/(env$N),P=env$Phos,micro=

env$Dehy) 

# PCA # 

PCA_ENV<-prcomp(log(Env.set+1),scale=TRUE,scores=TRUE) 

summary(PCA_ENV) 

PCA_ENV 

 

#Variance Partitioning# 

MEM<-data.frame(MEM_4=MEM_4,MEM_6=MEM_6,MEM_5=MEM_5,MEM_3=MEM_3,MEM_8=MEM_8,MEM_57=MEM_57) 

Env.sel<-

data.frame(Ko=env$Ko,N=env$Nit,Water=env$water,pH=env$pH,C_N=(env$Ko)/(env$N),P=env$Phos,micro

=env$Dehy) 

mod <- varpart(species,Env.sel,MEM) 

mod 

par(mfrow = c(1, 1)) 

showvarparts(2) 

plot(mod) 

 

# ANOVAs 
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rda.resultENV <- rda(species, Env.set, MEM) 

anova(rda.resultENV, step=200, perm.max=200) 

 

#Testing single variables# 

attach(Env.sel) 

rda.resultENV_term <- rda(species~Ko+N+C_N+P+pH+micro+Water+Condition(r.da.mems.v)) 

ordistep(rda.resultENV_term, scope = formula(rda.resultENV_term), perm.max = 9999) 

detach(Env.sel) 

 

#Testing single variables by ignoring spatial autocorrelation# 

attach(Env.sel) 

rda.resultENV_term_only_env <- rda(species~Ko+N+C_N+P+pH+micro+Water) 

ordistep(rda.resultENV_term_only_env, scope = formula(rda.resultENV_term_only_env), perm.max = 

9999) 

detach(Env.sel) 

 

# Testing spatial variables 

rda.resultMEM <- rda(species, MEM, Env.sel) 

anova(rda.resultMEM, step=200, perm.max=200) 

 

  



122 

 

Appendix B: Supplementary Material for Chapter III 
 

 

Methods 

 

Amplicon pool generation 

We ran two nested PCRs on each sample using AMF specific primers which amplify a ~ 1300 bp 

fragment spanning parts of the SSU, the complete ITS region and a large part of the LSU (Krüger et al 

2009), including the D1, D2 and D3 region (Liu et al 2012). The following PCR conditions were used 

for all PCRs: 95°C for 2 min, following 30 cycles of 94°C for 30 sec, 58°C for 30 sec and 72°C for 40 

sec, following 72°C for 2 min. In order to reduce PCR-related sequence errors, we used the Kappa 

HiFi Enzyme (Kappa Biosystems, Woburn, MA) which possess a proof-reading function for all PCR 

steps. The first PCR was amplified with the SSUmAf and the LSUmAr set. 1µl of a 1:100 dilution of 

the first PCR was used as a template for the second one. The primer set for the second PCR was 

SSUmCf and LSUmBr (Krüger et al 2009). The resulting products were separated on a gel, bands 

excised, cleaned up with a NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, Düren, 

Germany), and tagged with the appropriate 454-adaptors (Roche) and barcoded primers (Hamady et al 

2008) in a third PCR using the general primer set LR3 and LR0R (Hofstetter et al 2002).  

Tagged root and soil PCR products from every soil core were gel-separated, cleaned and their 

concentration determined with a NanoPhotometer® (Implen GmbH, München, Germany). The 

amplicons were pooled by mixing equimolar amounts of each sample. One pool each was created for 

the soil and the root DNA sequences.  

 

Environmental variables measurement 

Soil water content was measured as the weight difference between fresh and oven-dried soil-core 

subsamples. Samples were taken two days after a substantial raining event so that soil was at water 

holding capacity at the sampling point in time. Soil carbon and nitrogen analysis was performed on a 

EuroEA 3000 Elemental Analyzer (EuroVector, Milano, Italy) with a TDC detector using 25 mg of 
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pulverized soil per core. Soil pH was measured in 10 mM CaCl2 solution (van Lierop and Mackenzie 

1977) using 3 grams of soil per core. Plant available phosphorus was characterized following the 

CAL-method (Sparks 1996) using 1 gram of soil per core. Dehydrogenase assays were conducted 

according to Rossel (Rossel et al 1997), using 1 gram of soil per core. 

 

 

Results 

 

Phylogenetic community structure 

Abundance-weighted IC-MPD principal coordinate analysis (PCoA) of the root data set attributed 

8.3% and 5.9% variation to the first and second ordination axis, respectively. In the soil data set, the 

first axis accounted for 12.5% of total variation, the second axis for 4.5%. Without the abundance 

weighting, the amount of variation explained by each axis was considerably lower (4.5% and 3.1% for 

root, 4.2% and 3.5% for soil). Variation of IC-MPD PCoA ordination axes was comparable among 

Glomus, non-Glomus and all OTU data sets (data not shown). 
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Tables 

 

Table S1: Environmental data used for variance partitioning. Water, carbon and nitrogen content are given in percent; phosphorus is given in mg / kg soil; pH values, C/N 

ratio and coordinates are absolute numbers.  

 

code Plot x y water pH C N C/N P  code Plot x y water pH C N C/N P 

1 1 2.5 0.6 8.725 5.840 0.767 0.035 24.825 31.263  28 5 7.1 7.9 13.281 7.650 1.430 0.080 18.037 37.663 

2 1 0.6 1.5 11.373 5.575 0.947 0.056 17.016 26.003  29 5 7.4 8.7 12.500 7.720 1.396 0.059 23.770 18.275 

3 1 0.3 1.8 12.979 6.120 0.967 0.040 24.046 25.185  30 5 7.3 6.9 12.230 7.545 1.235 0.088 15.460 19.153 

4 1 0.9 2.1 11.037 6.120 1.150 0.070 16.465 30.540  31 6 8.8 13 16.987 7.530 3.480 0.259 13.472 32.653 

5 1 2.2 1.57 8.214 5.840 0.835 0.043 21.053 26.223  32 6 6.6 12.8 14.355 7.765 1.641 0.096 18.667 37.810 

6 1 2.5 0.5 10.159 5.700 0.833 0.047 17.503 25.770  33 6 7.2 13.6 18.153 7.630 2.525 0.162 15.962 30.993 

7 2 1.5 7.5 13.070 6.830 2.529 0.112 23.050 21.893  34 6 8 13.9 15.297 8.015 2.445 0.125 21.220 35.130 

8 2 1.35 7.86 14.029 6.430 2.108 0.102 21.795 23.650  35 6 8.5 13.4 14.851 7.860 2.032 0.127 16.098 28.693 

9 2 0.45 7.9 12.174 6.930 1.510 0.066 23.474 12.898  36 6 8.5 12.6 14.634 8.015 2.206 0.111 20.702 28.928 

10 2 1.6 7.2 12.131 7.100 1.444 0.073 20.357 16.243  37 7 12.6 2.3 10.830 7.405 1.395 0.062 22.540 64.975 

11 2 0.7 8.95 17.692 6.675 2.342 0.106 22.090 19.148  38 7 12.65 1.1 8.772 7.105 1.067 0.067 15.742 40.870 

12 2 2.6 7.65 14.124 6.305 2.448 0.137 18.256 20.900  39 7 12.5 2.9 9.199 7.450 0.866 0.030 34.700 69.223 

13 3 2.4 13.5 17.765 8.320 2.511 0.134 19.082 34.078  40 7 14 1.7 7.967 6.025 0.933 0.022 42.982 34.305 

14 3 0.3 14.4 19.077 7.865 3.632 0.229 15.896 34.655  41 7 14.9 2.1 9.012 6.170 1.166 0.054 21.840 16.718 

15 3 1.2 14.4 21.289 7.425 2.519 0.157 18.335 52.143  42 7 12.2 1.2 7.781 7.065 0.631 0.022 38.266 50.430 

16 3 1.2 13.2 17.964 7.515 2.858 0.181 15.831 25.833  43 8 14.1 6.7 10.095 7.290 1.308 0.087 15.837 10.938 

17 3 2.4 14 23.420 7.850 2.175 0.141 15.415 53.543  44 8 14.8 7.95 9.827 7.450 1.132 0.068 16.485 15.563 

18 3 2.9 12.8 18.681 7.485 3.030 0.170 17.823 29.650  45 8 13.1 8.3 10.027 7.180 0.967 0.062 15.635 34.685 

19 4 7.9 1.2 8.861 7.230 1.488 0.090 15.436 35.615  46 8 12.3 8.4 12.538 7.645 1.353 0.072 18.968 42.353 

20 4 7.4 2.5 9.375 7.125 0.673 0.051 12.847 28.980  47 8 13.6 6.4 13.636 7.380 1.284 0.065 19.749 54.708 

21 4 7.8 1.57 10.714 7.050 1.315 0.042 32.468 85.023  48 8 13.5 7.2 11.644 7.190 0.876 0.044 20.068 25.373 

22 4 6.9 0.3 8.883 6.775 0.981 0.071 13.891 29.210  49 9 14.2 12.8 12.121 8.235 1.327 0.072 19.036 20.905 

23 4 7.1 0.4 9.113 6.385 0.512 0.031 20.742 34.650  50 9 13.3 13.3 15.238 7.795 2.558 0.193 13.187 24.775 

24 4 6.65 0.9 8.971 6.335 1.807 0.086 21.527 56.488  51 9 12.9 12.4 12.814 7.915 2.205 0.147 15.209 27.278 

25 5 7.65 8.15 11.111 7.500 1.194 0.054 22.460 45.100  52 9 12.7 12.6 16.138 7.725 2.752 0.215 12.781 51.545 

26 5 6.3 7.1 12.938 7.545 1.297 0.065 20.065 40.675  53 9 13.5 12.6 15.072 8.070 1.653 0.100 16.956 25.278 

27 5 6.4 7.8 11.172 8.060 1.718 0.058 29.815 42.785  54 9 13 13.5 14.462 7.755 2.193 0.108 19.441 21.293 
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Table S2: Percentage values of variance partitioning used for figure 4 in the manuscript. Significant values (P<0.05) are bold, non-testable values are depicted in italics. 

 

      environment space phylogeny env + space 
space + 

phylo 
unexplained 

variation 

all OTUs 

Root 
+abu 0 5 16 10 7 62 

-abu 2 8 4 8 3 75 

Soil 
+abu 3 10 16 6 0 65 

-abu 2 9 9 8 0 72 

Glomus OTUs 
only 

Root 
+abu 0 8 23 12 8 49 

-abu 0 11 8 16 5 60 

Soil 
+abu 5 8 20 9 9 49 

-abu 3 13 10 8 4 62 

all OTUs except 
Glomus 

Root 
+abu 8 5 26 6 14 41 

-abu 10 16 6 1 2 65 

Soil 
+abu 0 2 16 7 6 69 

-abu 0 2 3 11 7 77 
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Table S3: P-values of correlations between the environmental variables. The P-values were calculated by 

computing a matrix of Pearson's r correlation coefficients for all possible pairs of columns of the environmental 

matrix, using the rcorr function from the Hmisc package in R. Significant values are bold. 

 

pH <0.001     

carbon <0.001 <0.001    

nitrogen <0.001 <0.001 <0.001   

C/N ratio 0.007 0.101 0.015 <0.001  

phosphorus 0.976 0.315 0.719 0.570 0.010 

  water pH carbon nitrogen C/N ratio 
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Figures 

 

Figure S1: Kriging maps of the sampled plots, visualizing the environmental gradient. 
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Figure S2: Correlation between root colonization (y axis, in percent) and soil texture in our macroplot. 
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Figure S3: Rarefaction curves of soil (a) and root (b) 
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Pipeline for 454 data analysis 

 

### mothur part ### 

 

sffinfo(sff=m.10.root.sff, flow=T) 

sffinfo(sff=m.10.soil.sff, flow=T) 

trim.flows(flow=m.10.root.flow, oligos=mallnow.oligos, minflows=360, 

maxflows=720, processors=4, pdiffs=4, bdiffs=0)  

trim.flows(flow=m.10.soil.flow, oligos=mallnow.oligos, minflows=360, 

maxflows=720, processors=4, pdiffs=4, bdiffs=1)  

shhh.flows(file=m.10.root.flow.files, maxiter=5000, processors=4) 

shhh.flows(file=m.10.soil.flow.files, maxiter=5000, processors=4) 

trim.seqs(fasta=m.10.root.shhh.fasta, oligos=mallnow.oligos, maxhomop=8, 

maxambig=0, processors=4, pdiffs=4, bdiffs=1) 

trim.seqs(fasta=m.10.soil.shhh.fasta, oligos=mallnow.oligos, maxhomop=8, 

maxambig=0, processors=4, pdiffs=4, bdiffs=1) 

 

### run rename script and concatenate root & soil fastas ### 

 

### CROP part ### 

 

crop -i m.10.all.b0.b1.fasta -b 660 -z 400 -e 15000 -o m.10.all.b0.b1.crop 

> crop.all.out & 

 

### run matrix creation script & multivariate statistics ### 
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Appendix C: Supplementary Material for Chapter IV 
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Table S1: AMF OTU table used in the statistical analysis - root samples, part 1  

no name R1 R2 R3 R5 R6 R7 R8 R9 R12 R14 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 

1 G0MV5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 G12HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 G1EXK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

4 G2558 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 G3HXW 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 G3T48 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 G4HCM 0 0 0 0 0 0 0 0 0 0 13 0 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 G4Y4K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 0 0 0 0 

9 G51C9 0 0 41 6 0 0 0 4 6 0 61 123 14 35 48 0 0 4 56 0 0 0 0 0 0 0 7 0 5 0 

10 G6C9I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 

11 G6DWZ 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 137 286 2 0 0 0 0 0 0 0 

12 G96D7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 G9OCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 

14 GSPTD 0 0 0 0 0 0 0 0 14 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 4 85 0 

15 GT4W5 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 GTB2B 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 

17 GTOOJ 0 0 0 0 0 0 0 0 0 0 10 0 13 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 GTQN5 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 GUZCR 0 0 0 0 0 0 4 0 0 0 6 0 30 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 

20 GV420 0 0 43 32 0 0 1 2 11 51 27 16 162 113 60 0 302 113 232 0 0 0 0 0 0 0 0 0 0 0 

21 GW9PY 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 GYAJ1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 GYTF9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 GZQFA 0 0 0 0 0 0 0 0 0 0 25 45 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

25 HA5PN 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

26 HADOB 0 0 0 0 0 0 0 0 98 114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

27 HBFXZ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

28 HBMAS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 HBPSA 0 0 0 0 0 0 0 0 1 0 96 164 11 231 76 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 

30 HCHK0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 HDEXD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

32 HDZFW 3 0 0 5 0 0 0 63 79 4 3 20 21 18 28 0 12 115 5 0 0 0 0 0 0 1 0 0 0 0 

33 HES4H 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

34 HEUKP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35 HFEJR 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 HFVR4 0 0 0 0 0 65 124 0 5 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

37 HG4KO 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S1: AMF OTU table used in the statistical analysis - root samples, part 2  

no name R1 R2 R3 R5 R6 R7 R8 R9 R12 R14 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 

38 HG93S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

39 HGQJX 0 0 0 0 0 0 0 0 0 0 10 4 5 37 0 0 1 0 6 0 0 0 0 0 0 0 0 0 0 0 

40 HHKOP 0 113 101 148 0 0 0 0 7 0 0 0 0 0 0 0 152 0 0 0 0 1 0 0 0 0 0 0 0 0 

41 HJIZE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 

42 HJRQ8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 HLU0S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

44 I27IO 77 21 4 36 60 152 361 197 7 10 87 3 188 2 197 0 32 76 164 0 0 0 0 0 0 0 15 97 0 0 

45 I667J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

46 I6TU4 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

47 I7BQ4 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

48 I7MQL 0 0 0 0 0 0 0 0 0 0 5 0 35 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

49 I7TEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

50 I9LIV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

51 JAZN8 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

52 JB7WR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 

53 JDGMY 3 39 1 3 85 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 

54 JFM03 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

55 JGS10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

56 JH0G0 0 0 0 0 0 0 0 0 135 21 24 61 0 8 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

57 JI4PX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 

58 JIQG7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

59 JJ4FM 316 317 270 268 353 280 0 0 132 248 0 61 2 4 1 397 2 176 3 496 286 208 493 244 498 333 473 290 194 236 

60 JKXSO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

61 JLIGP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

62 JLJMW 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 32 0 104 211 259 

63 JMZEJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

64 JN3XD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

65 JNEC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

66 JOHIR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

67 JS58F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

68 JSBB3 0 0 0 0 0 0 0 82 1 0 5 0 0 15 1 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 

69 JT7KL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

70 JV71D 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

71 JWDCO 102 7 0 1 0 0 0 148 2 0 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

72 JXIZ6 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 94 0 1 0 0 77 0 5 252 0 0 0 0 3 0 

73 JZIXS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S1: AMF OTU table used in the statistical analysis - root samples, part 3  

no name R36 R37 R38 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R55 R56 R57 R58 R59 

1 G0MV5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 G12HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

3 G1EXK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 G2558 0 0 0 3 0 1 0 0 0 0 2 0 0 1 0 0 0 0 0 1 0 0 

5 G3HXW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 G3T48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 G4HCM 0 0 0 0 17 2 0 6 0 31 54 11 8 4 0 0 6 10 52 22 13 45 

8 G4Y4K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 G51C9 0 0 0 17 74 2 26 61 1 87 44 128 3 0 39 93 64 54 12 4 10 43 

10 G6C9I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 G6DWZ 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 G96D7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 G9OCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 GSPTD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 GT4W5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 

16 GTB2B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 GTOOJ 0 0 0 6 7 84 0 9 1 9 4 20 0 71 120 0 2 30 3 103 55 8 

18 GTQN5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 GUZCR 0 0 0 12 3 0 19 12 4 8 12 6 30 5 0 3 6 2 28 11 15 3 

20 GV420 2 0 0 233 165 37 87 152 221 91 177 7 8 82 59 76 67 46 80 120 16 82 

21 GW9PY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 GYAJ1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

23 GYTF9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

24 GZQFA 0 0 0 0 0 1 104 4 26 25 18 1 0 6 0 0 2 47 1 3 11 34 

25 HA5PN 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

26 HADOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 

27 HBFXZ 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

28 HBMAS 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 66 0 0 0 0 

29 HBPSA 0 0 0 86 109 195 17 41 4 84 33 113 199 169 253 191 91 185 18 95 120 51 

30 HCHK0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 2 0 0 0 2 0 0 

31 HDEXD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

32 HDZFW 0 0 0 0 54 10 0 1 0 35 10 86 0 1 9 14 16 9 2 4 0 16 

33 HES4H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 

34 HEUKP 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35 HFEJR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

36 HFVR4 0 0 0 0 0 0 0 0 15 0 5 0 0 0 0 0 0 0 0 0 0 0 

37 HG4KO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S1: AMF OTU table used in the statistical analysis - root samples, part 4  

no name R36 R37 R38 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R55 R56 R57 R58 R59 

38 HG93S 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 22 0 

39 HGQJX 0 0 0 4 0 3 37 4 9 45 9 15 0 37 0 4 54 17 1 2 6 29 

40 HHKOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

41 HJIZE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

42 HJRQ8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

43 HLU0S 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

44 I27IO 0 0 0 133 21 9 185 102 61 65 112 78 202 80 5 51 95 20 181 61 218 50 

45 I667J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

46 I6TU4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

47 I7BQ4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 15 1 0 0 

48 I7MQL 0 0 0 1 29 81 18 28 22 0 11 9 1 31 0 8 2 0 81 19 5 8 

49 I7TEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 

50 I9LIV 0 0 0 0 0 0 0 0 121 0 3 0 0 7 0 28 3 0 6 0 1 13 

51 JAZN8 0 0 0 0 3 2 0 0 2 0 0 0 0 0 0 0 0 0 4 1 1 0 

52 JB7WR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

53 JDGMY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

54 JFM03 0 0 0 3 7 11 5 13 4 4 3 0 0 4 0 10 0 0 4 5 3 0 

55 JGS10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 

56 JH0G0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 47 0 2 0 0 30 

57 JI4PX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

58 JIQG7 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 4 12 3 1 0 0 

59 JJ4FM 493 498 444 0 0 1 0 6 4 0 1 0 0 2 2 1 0 0 6 1 1 5 

60 JKXSO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

61 JLIGP 0 0 0 3 0 59 0 36 2 14 0 10 0 0 0 11 25 0 0 8 0 3 

62 JLJMW 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

63 JMZEJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

64 JN3XD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

65 JNEC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

66 JOHIR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

67 JS58F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

68 JSBB3 0 0 0 0 7 0 0 12 0 0 0 13 6 0 6 0 0 0 0 0 0 20 

69 JT7KL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

70 JV71D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

71 JWDCO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 31 0 49 

72 JXIZ6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

73 JZIXS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S1: AMF OTU table used in the statistical analysis - soil samples, part 1  

no name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 

1 G0MV5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 G12HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 G1EXK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 G2558 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 G3HXW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 G3T48 0 0 0 0 10 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 G4HCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 67 0 14 0 0 0 0 0 0 0 0 0 0 0 

8 G4Y4K 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 G51C9 0 0 0 213 0 0 0 0 0 0 119 0 80 136 12 43 117 132 39 121 0 119 3 9 0 0 95 0 0 0 

10 G6C9I 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 G6DWZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 382 245 142 0 0 

12 G96D7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 G9OCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 

14 GSPTD 0 0 0 0 0 0 0 0 0 0 2 0 0 2 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 GT4W5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

16 GTB2B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 GTOOJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 16 0 0 0 0 0 0 0 0 0 0 0 0 

18 GTQN5 6 0 0 0 2 0 0 0 192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 GUZCR 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 

20 GV420 0 0 0 0 12 0 0 0 0 0 1 0 0 2 6 24 2 31 95 25 0 286 320 422 0 0 0 1 0 0 

21 GW9PY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 GYAJ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 GYTF9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 GZQFA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 56 5 0 0 0 0 0 0 0 0 0 0 0 

25 HA5PN 2 1 0 0 0 0 23 0 268 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4 0 

26 HADOB 0 0 0 0 0 0 0 0 0 0 21 0 0 79 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

27 HBFXZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

28 HBMAS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 

29 HBPSA 0 0 0 25 0 0 0 0 0 0 12 0 3 131 0 193 134 160 110 67 0 12 0 2 0 0 10 0 0 0 

30 HCHK0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

31 HDEXD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

32 HDZFW 0 0 0 4 192 0 0 0 0 0 2 76 3 0 21 33 2 4 4 0 2 0 163 0 0 0 0 0 0 0 

33 HES4H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

34 HEUKP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35 HFEJR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 HFVR4 0 0 0 0 1 0 106 175 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

37 HG4KO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S1: AMF OTU table used in the statistical analysis - soil samples, part 2  

no name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 

38 HG93S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

39 HGQJX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65 32 33 104 0 0 51 0 2 0 0 0 0 0 0 

40 HHKOP 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 

41 HJIZE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

42 HJRQ8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 HLU0S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

44 I27IO 0 4 11 2 1 0 21 148 0 0 0 0 0 0 11 4 0 6 9 3 0 2 5 7 0 0 0 0 0 0 

45 I667J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

46 I6TU4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

47 I7BQ4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 2 0 0 0 0 0 0 0 0 0 0 0 

48 I7MQL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 64 47 57 24 0 0 0 0 0 0 0 0 0 0 

49 I7TEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 

50 I9LIV 0 0 0 0 0 0 0 0 0 0 76 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 

51 JAZN8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

52 JB7WR 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 3 1 0 

53 JDGMY 124 200 125 18 39 177 0 175 0 17 0 2 142 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

54 JFM03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 20 7 23 3 0 0 0 0 0 0 0 0 0 0 

55 JGS10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

56 JH0G0 0 0 0 0 0 0 0 0 0 0 124 346 251 149 294 0 23 0 0 39 0 0 0 0 0 0 0 0 0 0 

57 JI4PX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 

58 JIQG7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

59 JJ4FM 364 296 0 236 243 323 349 0 0 482 102 75 0 0 0 2 1 3 12 5 485 0 1 0 496 118 150 353 494 499 

60 JKXSO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

61 JLIGP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

62 JLJMW 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

63 JMZEJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

64 JN3XD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

65 JNEC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

66 JOHIR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

67 JS58F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

68 JSBB3 0 0 0 0 0 0 0 0 0 0 22 0 21 0 0 0 0 0 13 200 0 0 0 48 0 0 0 0 0 0 

69 JT7KL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

70 JV71D 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

71 JWDCO 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

72 JXIZ6 0 0 357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 4 0 0 0 0 1 

73 JZIXS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

  



138 

 

Table S1: AMF OTU table used in the statistical analysis - soil samples, part 3  

no name S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S48 S49 S50 S51 S52 S53 S54 S55 S56 S57 S58 S59 

1 G0MV5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

2 G12HR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 G1EXK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 G2558 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 G3HXW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 G3T48 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 2 0 0 0 

7 G4HCM 0 0 0 0 0 0 0 0 0 5 1 13 31 8 2 0 3 1 0 0 0 0 19 2 45 40 46 117 

8 G4Y4K 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 G51C9 0 0 0 0 0 0 0 0 0 12 192 18 57 35 244 7 154 12 78 59 58 57 82 89 2 20 17 42 

10 G6C9I 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 G6DWZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0 

12 G96D7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 G9OCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 GSPTD 0 0 54 0 0 0 0 0 121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 GT4W5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 GTB2B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

17 GTOOJ 0 0 0 0 0 0 0 0 0 4 3 15 1 0 0 0 0 0 0 115 0 0 1 5 0 0 2 0 

18 GTQN5 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 GUZCR 0 0 0 0 0 0 0 0 0 3 2 3 0 0 0 0 2 2 0 0 0 4 1 2 1 2 0 1 

20 GV420 0 0 0 0 0 0 0 0 1 75 62 77 15 182 68 210 125 113 94 2 45 65 70 16 29 91 3 134 

21 GW9PY 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 

22 GYAJ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 GYTF9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 GZQFA 0 0 0 0 0 0 0 0 0 1 0 2 54 99 86 0 2 2 22 4 2 19 20 63 34 5 24 11 

25 HA5PN 4 16 7 19 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

26 HADOB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

27 HBFXZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

28 HBMAS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 3 12 0 0 0 0 

29 HBPSA 0 0 0 0 0 0 0 0 0 281 42 176 149 48 0 38 89 106 169 252 168 67 71 215 204 183 315 66 

30 HCHK0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 

31 HDEXD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

32 HDZFW 0 0 0 0 0 0 0 0 0 15 53 2 43 21 0 14 23 7 0 0 28 1 0 0 0 6 0 0 

33 HES4H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

34 HEUKP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35 HFEJR 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 HFVR4 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

37 HG4KO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S1: AMF OTU table used in the statistical analysis - soil samples, part 4  

no name S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S48 S49 S50 S51 S52 S53 S54 S55 S56 S57 S58 S59 

38 HG93S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 41 0 

39 HGQJX 0 0 0 0 0 0 0 0 0 5 11 122 44 20 36 51 4 13 50 2 30 91 28 35 37 1 0 23 

40 HHKOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

41 HJIZE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

42 HJRQ8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 HLU0S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

44 I27IO 0 0 0 0 0 0 0 0 0 7 36 28 17 4 3 0 11 25 6 9 3 11 16 34 18 70 5 24 

45 I667J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 

46 I6TU4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

47 I7BQ4 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 1 0 0 0 0 0 0 0 10 3 1 7 

48 I7MQL 0 0 0 0 0 0 0 0 0 60 67 5 47 23 36 89 8 23 24 0 19 0 0 0 86 30 6 0 

49 I7TEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 7 7 

50 I9LIV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 11 0 19 0 0 0 15 0 0 35 

51 JAZN8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 2 0 1 0 0 0 1 1 0 0 

52 JB7WR 5 5 3 16 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

53 JDGMY 0 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

54 JFM03 0 0 0 0 0 0 0 0 0 0 27 2 24 11 5 11 0 6 2 0 7 0 0 0 5 2 7 1 

55 JGS10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72 4 121 0 0 0 0 0 

56 JH0G0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 1 78 36 0 7 0 0 0 

57 JI4PX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

58 JIQG7 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 5 0 0 0 26 0 2 0 2 

59 JJ4FM 482 478 366 120 191 465 332 485 368 3 2 0 1 0 3 4 0 3 2 0 0 0 0 0 3 2 0 1 

60 JKXSO 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

61 JLIGP 0 0 0 0 0 0 0 0 0 3 0 36 5 35 2 65 60 0 0 0 0 102 3 0 0 44 0 1 

62 JLJMW 0 0 57 342 219 34 167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

63 JMZEJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

64 JN3XD 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

65 JNEC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

66 JOHIR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 110 0 0 0 0 0 0 0 0 0 0 

67 JS58F 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

68 JSBB3 0 0 0 0 0 0 0 0 0 0 0 1 1 3 0 6 18 45 0 0 1 0 0 0 0 0 0 25 

69 JT7KL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

70 JV71D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

71 JWDCO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 25 0 

72 JXIZ6 0 0 0 0 89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 29 0 0 0 0 0 

73 JZIXS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
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