
Approximate string matching
for high-throughput sequencing

Dissertation zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von

Enrico Siragusa

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

Berlin 2015

Datum des Disputation: 08.07.2015
Gutachter:
Prof. Dr. Knut Reinert, Freie Universität Berlin, Deutschland
Prof. Dr. Raffaele Giancarlo, Università degli Studi di Palermo, Italien

v

Abstract

Over thepast years, high-throughput sequencing (HTS)hasbecomean invaluablemethod
of investigation in molecular and medical biology. HTS technologies allow to sequence
cheaply and rapidly an individual’s DNA sample under the form of billions of short DNA
reads. The ability to assess the content of a DNA sample at base-level resolution opens
the way to a myriad of applications, including individual genotyping and assessment of
large structural variations, measurement of gene expression levels and characterization
of epigenetic features. Nonetheless, the quantity and quality of data produced by HTS
instruments call for computationally efϐicient and accurate analysis methods.

In this thesis, I present novel methods for the mapping of high-throughput sequenc-
ing DNA reads, based on state of the art approximate string matching algorithms and
data structures. Read mapping is a fundamental step of any HTS data analysis pipeline
in resequencing projects, where DNA reads are reassembled by aligning them back to
a previously known reference genome. The ingenuity of approximate string matching
methods is crucial to design efϐicient and accurate read mapping tools.

In the ϐirst part of this thesis, I cover practical indexing and ϐiltering methods for ex-
act and approximate stringmatching. I present state of the art algorithms and data struc-
tures, give their pseudocode and discuss their implementation. Furthermore, I provide
all implementationswithin SeqAn, the generic C++ template library for sequence analysis,
which is freely available under http://www.seqan.de/. Subsequently, I experimentally
evaluate all implemented methods, with the aim of guiding the engineering of new se-
quence alignment software. To the best of my knowledge, this is the ϐirst study providing
a comprehensive exposition, implementation and evaluation of such methods.

In the second part of this thesis, I turn to the engineering and evaluation of readmap-
ping tools. First, I present a novel method to ϐind all mapping locations per read within
a user-deϐined error rate; this method is published in the peer-reviewed journal Nucleic
Acids Research and packaged in a open source tool nicknamedMasai. Afterwards, I gen-
eralize this method to quickly report all co-optimal or suboptimal mapping locations per
read within a user-deϐined error rate; this method, packaged in a tool called Yara, pro-
vides amore practical, yet sound solution to the readmapping problem. Extensive evalu-
ations, both on simulated and real datasets, show that Yara has better speed and accuracy
than de-facto standard read mapping tools.

http://www.seqan.de/

vi

Zusammenfassung

In den letzten Jahren wurde die Hochdurchsatz-Sequenzierung (HTS) zu einem unver-
zichtbaren Bestandteil der molekularmedizinischen Forschung. HTS Technologien er-
möglichen es DNS-Proben von Individuuen schnell und günstig in Form von Milliarden
kurzerDNS-Reads zu sequenzieren.Die Fähigkeit, dieBasenpaarabfolge einerDNS-Probe
zu bestimmen, eröffnet viele neue Anwendungsgebiete, wie zum Beispiel die Genotypi-
sierung, die Beurteilung von strukturellen Variationen, dieMessung der Genexpressions-
level oder die Etablierung von epigenetischen Faktoren. Jedoch setzen sowohl Quantität
als auch die Qualität der von HTS-Technologien produzierten Daten rechenefϐiziente und
akkurate Analysemethoden voraus um als Standardverfahren im biomedizinischen Be-
reich eingesetzt werden zu können.

In dieser Arbeit stelle ich neueMethoden für das sogenannte ReadMapping von HTS
Daten vor. ReadMapping ist ein essentielles Verfahren, bei dem aus den Produkten einer
HTS Applikation mit Hilfe eines bereits bekannten Referenzgenoms die ursprüngliche
DNS-Reads assembliert wird. Die Entwicklung von speziellen und neuartigen Algorith-
men für die approximative Stringsuche spielt dabei eine entscheidende Rolle, um akku-
rate und efϐiziente Read Mapping Programme zu entwicklen.

Im ersten Teil dieser Arbeit beschreibe ich praktische Index-Datenstrukturen sowie
Filtermethoden, die bei der approximativen Stringsuche angewendet werden. Ich stel-
le die Algorithmen im Pseudocode dar und bespreche deren Funktionsweise und Im-
plementierung im Detail. Sämtliche Algorithmen und Datenstrukturen, die ich in dieser
Arbeit vorstelle, wurden in SeqAn - einer generischen C++ Template-Bibliothek für Se-
quenzanalyse - implementiert und sind darüber verfügbar (siehe http://www.seqan.
de/). Anschließend analysiere und vergleiche ich die vorgestelltenMethoden in verschie-
denen Experimenten ausführlich miteinander, mit dem Ziel neue verbesserte Alignmen-
talgorithmen entwerfen zu können. Nach meinem besten Wissen und Gewissen, ist dies
die erste Arbeit, die die genannten Methoden umfassend in ihrer Implementierung und
Funktionsweise diskutiert und bewertet.

Im zweiten Teil dieser Arbeit beschreibe und diskutiere ich zwei neue ReadMapping
Programme und vergleiche diese mit bisherigen Anwendungen. Dabei stelle ich zuerst
eine neue Methode vor, welche alle potentiellen genomischen Urpsprungspositionen für
jeden DNS-Read mit einer speziϐizierten Fehleranzahl lokalisiert. Die beschriebene Me-
thode wurde im Open Source Programm Masai implementiert und wurde in der Zeit-
schriftNucleic Acids Research publiziert. Anschließend generalisiere ich dieMethode und
zeigewie alle co-optimalen oder suboptimalen Positionen, gegeben einer vomNutzer de-
ϐinierten Fehlerrate, efϐizient gefundenwerden können. DasOpen Source ProgrammYara
implementiert dieses Verfahren und bietet somit eine wesentlich praktischere und noch
dazu solide Lösung für das Read Mapping Problem. Eine umfassende Analyse auf simu-
lierten und realen Daten ergab, dass Yara schneller und genauer als De-facto-Standard
Read Mapping Programme ist.

http://www.seqan.de/
http://www.seqan.de/

vii

Acknowledgments

The warmest thanks for this dissertation go to my advisor, Knut Reinert. He constantly
showed his interest, motivated and guidedme gently during these years. Now I consider
myself lucky and honored to have been working with him.

Special thanks go to Raffaele Giancarlo, ϐirst for having introduced me to the ϐield of
Bioinformatics, then for having recommended me to the International Max Planck Re-
search School (IMPRS), and ϐinally for having accepted to review this thesis. I am also
grateful to my IMPRS advisors Martin Vingron and Peter N. Robinson, as well as to the
IMPRS coordinator Kirsten Kelleher—mywork has been possible thanks to the ϐinancial
support of the IMPRS.

Huge thanks go to David Weese for constantly collaborating and teaching me his art
of computer programming — without his help I would not have gone far. My gratitude
goes also to Jochen Singer for jointly working on the FM-index and to Manuel Holtgrewe
for working together on the evaluations of RazerS 3 and Masai. And thanks to Jacopo
Pantaleoni, Jonathan Cohen and Mark Berger for the great experience at NVIDIA!

Thanks— for toomany reasons— to the IMPRSers: Akdes, Alessandro, Anne-Katrin,
Arthur, Birte, Chris, Leon, Matt, Mike, Sabrina, Sandro, Stephan, Temesgen, Victor, Xiao,
and to the people at the Free University: Anja, Christian, Edzard, Hannes, Julianus, Jialu,
Katrin, René.

Grazie inϐinite per il loro supporto incondizionato ai miei genitori Anna e Giovanni, i
miei fratelli Alessandro e Daniele, e la dolce Vija.

CONTENTS

1. Introduction . 1
1.1 High-throughput sequencing . 1
1.2 Outline . 2

1.2.1 Approximate string matching . 2
1.2.2 Read mapping . 3

Part I Approximate string matching 5

2. Preliminaries . 7
2.1 Deϐinitions . 7
2.2 Transcripts, alignments and distances . 8
2.3 Edit distance computation . 9
2.4 String matching . 11

2.4.1 Online methods . 12
2.4.2 Indexing methods . 13
2.4.3 Filtering methods . 14

3. Indexing methods . 19
3.1 Classic full-text indices . 20

3.1.1 Sufϐix array . 20
3.1.2 Sufϐix tree realizations . 23
3.1.3 𝑞-Gram index . 24
3.1.4 Trie and radix tree realizations . 26

3.2 Succinct full-text indices . 26
3.2.1 Burrows-Wheeler transform . 27
3.2.2 Rank dictionaries . 29
3.2.3 FM-index . 33

3.3 Algorithms . 35
3.3.1 Construction . 35
3.3.2 Depth-ϐirst traversal bounded by depth . 36
3.3.3 Exact string matching . 37
3.3.4 Backtracking 𝑘-mismatches . 38
3.3.5 Multiple exact string matching . 40
3.3.6 Multiple 𝑘-mismatches . 41

x

4. Filtering methods . 45
4.1 Exact seeds . 46

4.1.1 Principle . 46
4.1.2 Efϐiciency . 46

4.2 Approximate seeds . 47
4.2.1 Principle . 47
4.2.2 Filtration schemes . 48

4.3 Contiguous 𝑞-grams . 49
4.3.1 Principle . 49
4.3.2 Filtration schemes . 49
4.3.3 Bucketing . 50

4.4 Gapped 𝑞-grams . 50
4.4.1 Principle . 51
4.4.2 Filtration schemes . 52
4.4.3 Full sensitivity . 53
4.4.4 Optimal threshold . 54
4.4.5 Speciϐicity . 56
4.4.6 Families . 59

4.5 Evaluation . 60
4.5.1 Runtime . 61
4.5.2 Veriϐication versus ϐiltration time . 61
4.5.3 Positive predictive value . 61

Part II Read mapping 65

5. Background . 67
5.1 High-throughput sequencing data . 67

5.1.1 Read sequences . 67
5.1.2 Phred base quality scores . 68

5.2 High-throughput sequencing data analysis . 69
5.2.1 Data analysis pipelines . 69
5.2.2 Secondary analysis paradigms . 70
5.2.3 Best-mapping . 72
5.2.4 All-mapping . 73

5.3 Limits of high-throughput sequencing . 74
5.3.1 Genome mappability . 74
5.3.2 Genome mappability score . 75

5.4 Popular read mappers . 76
5.4.1 Bowtie and Bowtie 2 . 77
5.4.2 BWA . 78
5.4.3 Soap . 78
5.4.4 SHRiMP 2 . 78
5.4.5 RazerS and RazerS 3 . 78
5.4.6 mrFast and mrsFast . 79
5.4.7 Hobbes 2 . 79
5.4.8 GEM . 79

xi

6. Masai . 81
6.1 Engineering . 81

6.1.1 Filtration . 82
6.1.2 Indexing . 83
6.1.3 Veriϐication . 85

6.2 Evaluation . 85
6.2.1 Rabema benchmark on simulated data . 85
6.2.2 Variant detection on simulated data . 87
6.2.3 Performance on real data . 88
6.2.4 Performance with different indices . 89
6.2.5 Filtration efϐiciency . 89

6.3 Discussion . 91

7. Yara . 93
7.1 Engineering . 93

7.1.1 Stratiϐied mapping . 93
7.1.2 Adaptive ϐiltration . 95
7.1.3 Indexing . 95
7.1.4 Paired-end and mate-pair protocols . 96
7.1.5 Mapping qualities . 96

7.2 Evaluation . 98
7.2.1 Experimental setup . 98
7.2.2 Rabema benchmark on real data . 99
7.2.3 Accuracy on simulated data . 100
7.2.4 Variant calling on real data . 102

7.3 Discussion . 104

8. Conclusion . 107

A. Read mappers parameterization . 109
A.1 Masai evaluation . 109
A.2 Yara evaluation . 110

B. Curriculum Vitæ . 111

C. Declaration . 115

Bibliography . 117

CčĆĕęĊė

1 Introduction

The sequencing of thewhole human genomehas been one of themajor scientiϐic achieve-
ments of the last decades. In February 2001, the three billion dollars publicly funded
Human Genome Project (HGP) published a ϐirst draft covering more than 96 % of the eu-
chromatic part of the human genome [Consortium, 2001]. Concurrently, the privately
funded company Celera Genomics published a 2.91 billion base pair consensus sequence
of the euchromatic portion of the human genome [Venter et al., 2001]. The application of
efϐicient computational methods was crucial to the success of these projects.

These sequencing projects used the Sanger sequencingmethod [Sanger et al., 1977]
with capillary electrophoresis, a technology producing high ϐidelity DNA reads with an
average length of 700 bp, at a throughput of about 150 kilo base pairs per hour (Kbp/h).
Because of such technological limitation, the sequencing of a whole genome had to be
coupled with the shotgun approach, which consists of chopping long DNA fragments up
into smaller segments and then generating reads of these short nucleotide sequences.
Thewhole human genome ϐinally had to be reassembled from its sequencing reads using
computational methods.

1.1 High-throughput sequencing

The success of these projects did not mark the end of the sequencing era, but rather its
beginning. Since then, sequencing technology steadily improved and evolved into what
is now called high-throughput sequencing (HTS) or next-generation sequencing (NGS). In
2004, 454 Life Science commercialized the Genome Sequencer FLX, an instrument based
on large-scale parallel pyrosequencing, capable of sequencing DNA in form of 400 bp
reads at a throughput of about 20 Mbp/h. High-throughput sequencing was born.

In 2006, Solexa released its 1G Genetic Analyzer, based on a massively parallel tech-
nique of reversible terminator-based sequencing. The instrument produced reads as short
as 30 bp with lower accuracy than Sanger sequencing but at very high-throughput: it al-
lowed resequencing a whole human genome in three months for about $100,000. Suc-
cessively, Solexa was acquired by Illumina, which is nowadays the market leader. At the
beginning of 2014, Illumina announced the HiSeq X Ten, allowing in less than three days
the sequencing of many whole human genomes at $1,000 each.

Following these technological advancements, in the past few years HTS has become
an invaluable method of investigation for computational molecular biologists [Mardis,

2

2011]. Whole genome sequencing (WGS) allows discovery of genetic variations across the
whole genome; these variations may be in the form of single nucleotide variants (SNVs),
small insertions or deletions (INDELs), or large structural variants such as transversions,
trans-locations, and copy number variants (CNVs). Whole exome sequencing (WES) is a
cost-effective, yet powerful alternative to WGS, consisting in the targeted sequencing of
the exome, i.e., the protein coding subset of a genome;WES has recently begun to be used
for clinical diagnostics, e.g. for the interpretation of tumor samples or for the character-
ization of mendelian disorders. In summary, abundant and cost-effective production of
sequencing data, followed by its efϐicient and accurate computational analysis, permits
viewing DNA at single-base resolution.

1.2 Outline

This thesis presentsnovelmethods for the efϔicient andaccuratemappingof high-through-
put sequencing DNA reads, based on state of the art approximate string matching algo-
rithms and data structures. Read mapping is a non-trivial, ubiquitous task in all rese-
quencing applications, e.g. WGS or WES. Efϐiciency is mandatory to keep the pace of se-
quencing technologies, exponentially increasing in throughput. Accuracy is required to
enable downstream data analysis at single-base resolution. The ingenuity of state of the
art approximate string matching methods is crucial for the design and implementation
of efϐicient and accurate read mapping programs.

This thesis contributes to two currently active areas of research: experimental algo-
rithmics of stringmatchingmethods and algorithmic engineering of readmappingmeth-
ods. Therefore, I subdivide this thesis in two parts. Part I covers practical approximate
string matching methods, whose interest is beyond HTS applications. Part II describes
the application of suchmethods to engineer two HTS readmapping programs developed
by myself. In the two following sections, I describe the contents of part I and II.

1.2.1 Approximate string matching

In chapter 2, I introduce basic stringology concepts. I give an overview of basic online,
indexing and ϐiltering methods for exact and approximate string matching. In particular,
in section 2.4.2, I introduce the concept of full-text index and deϐine a set of generic top-
down traversal operations.

In chapter 3, I cover indexing methods for exact and approximate string matching.
First, I describe some classic full-text indices (sufϐix arrays and 𝑞-gram indices) and suc-
cinct full-text indices (uncompressed variants of the FM-index). Then, I introduce string
matching algorithms generic to all these data structures and provide their experimen-
tal evaluation. My implementation of all these algorithms and data structures is publicly
available in source form within the C++ library SeqAn [Döring et al., 2008]. This survey
is being published as a book chapter [Weese and Siragusa, 2015].

In chapter 4, I cover ϔiltering methods for approximate string matching. I consider
two classes of full-sensitive ϐiltering methods: those based on seeds and those based on

3

𝑞-grams. From the former class, I cover exact seeds [Baeza-Yates and Perleberg, 1992]
and approximate seeds [Myers, 1994; Navarro and Baeza-Yates, 2000]. From the latter
one contiguous 𝑞-grams [Jokinen and Ukkonen, 1991], gapped 𝑞-grams [Burkhardt and
Kärkkäinen, 2001] andmultiple gapped 𝑞-grams (also called 𝑞-gram families) [Kucherov
et al., 2005]. To the best of my knowledge, this is the ϐirst study providing a comprehen-
sive exposition of these methods together with their experimental evaluation. In addi-
tion, I introduce a formal framework for (multiple) gapped 𝑞-grams which leads to the
formulation of novel methods addressing some combinatorially hard ϐilter design ques-
tions.

1.2.2 Read mapping

In chapter 5, I give background informationonHTS readmapping. I start by giving aquick
overview of market-leading HTS technologies. Subsequently, I introduce two de facto
standard paradigms for HTS data analysis: best-mapping and all-mapping. By reviewing
some recent studies [Derrien et al., 2012; Lee and Schatz, 2012], I try to delineate the
limits of HTS. Finally, I give an overview of the most popular read mappers. In the last
two chapters, I evaluate such popular programs against my own tools: Masai [Siragusa
et al., 2013a] and Yara.

In chapter 6, I present the engineering and evaluation of a read mapping tool for the
all-mapping paradigm. My method is packaged in a C++ tool nicknamed Masai, which
stands for multiple backtracking of approximate seeds on a sufϐix array index. Masai
is part of the SeqAn library [Döring et al., 2008], it is distributed under the BSD license
and canbedownloaded fromhttp://www.seqan.de/projects/masai. The result of this
study has been published in the peer-reviewed journal Nucleic Acids Research [Siragusa
et al., 2013a].

In chapter 7, I present Yara, a non-heuristic best-mapper capable of quickly report-
ing all co-optimal or suboptimal mapping locations within a given error rate. The tool
works with Illumina or Ion Torrent reads, supports paired-end and mate-pair protocols,
computes accurate mapping qualities, offers parallelization via multi-threading, has a
low memory footprint thanks to the FM-index, and does not require ad-hoc parameter-
ization. Yara is part of the SeqAn library [Döring et al., 2008], it is distributed under
the BSD license and can be downloaded from http://www.seqan.de/projects/yara. A
manuscript is in preparation and will be submitted to a peer-reviewed journal.

http://www.seqan.de/projects/masai
http://www.seqan.de/projects/yara

Part I

APPROXIMATE STRINGMATCHING

CčĆĕęĊė

2 Preliminaries

In this chapter, I introduce fundamental deϐinitions and problems of stringology. The
reader familiar with basic stringology can skip this chapter and proceed to chapter 3.

2.1 Deϐinitions

An alphabet Σ = {𝑎଴, … , 𝑎ఙିଵ} is a ϐinite ordered set of characters (or symbols) 𝑎௜ . A
string (or word) 𝑆 = 𝑠଴…𝑠௡ିଵ over Σ is a ϐinite sequence of symbols 𝑠௜ ∈ Σ. I denote with
𝑆௜…௝ the sequence of symbols 𝑠௜ …𝑠௝ିଵ (excluding 𝑗) for any 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, where 𝑛 = |𝑆|
is the length of 𝑆. The set Σ଴ = {𝜖} contains only the empty string s.t. |𝜖| = 0, Σ௡ contains
all strings of length 𝑛 over Σ, and Σ∗ = ∪ஶ

௡ୀ଴Σ௡ all strings over Σ.
In this manuscript, I use numerical intervals, arrays andmatrices. A numerical inter-

val is a sequence over ℕ଴, i.e., [𝑖, 𝑗] = {𝑖, 𝑖 + 1,… , 𝑗} and [𝑖, 𝑗) = [𝑖, 𝑗 − 1]. An array (or
table, or vector) 𝐴 = 𝑎଴…𝑎௡ିଵ is a ϐinite sequence of numbers 𝑎௜ ∈ ℕ଴. I denote by 𝐴 [𝑖]
the subscript element 𝑎௜ . Amatrix 𝑋 is a rectangular array of numbers 𝑥௜,௝ ∈ ℕ଴ arranged
s.t.

𝑋 = ൮
𝑥଴,଴ ⋯ 𝑥଴,௡ିଵ
⋮ ⋱ ⋮

𝑥௠ିଵ,଴ ⋯ 𝑥௠ିଵ,௡ିଵ

൲

I denote by 𝑋 [𝑖, 𝑗] the subscript element 𝑥௜,௝ .

Deϐinition 2.1 (Substring). A string𝑋 is a preϔix of another string 𝑌 iff𝑋 = 𝑌଴…௜ for some
0 < 𝑖 ≤ |𝑌|, a sufϔix iff 𝑋 = 𝑌௜…௡ for some 0 < 𝑖 ≤ |𝑌|, and a substring iff 𝑋 = 𝑌௜…௝ for
some 0 < 𝑖 < 𝑗 ≤ |𝑌|. For convenience, I denote the sufϐix of 𝑌 beginning at position
𝑖 simply by 𝑌௜ . Moreover, I denote the concatenation of two strings 𝑋 and 𝑌 by 𝑋 ⋅ 𝑌 or
simply 𝑋𝑌.

Deϐinition2.2 (String collection). A string collection is anorderedmultiset𝕊 = {𝑆଴, … , 𝑆௖ିଵ}
of strings over a common alphabet Σ. I denote by ‖𝕊‖ = ∑௖ିଵ

௜ୀ଴ |𝑆௜| the total length of the
string collection. The above deϐinitions of preϐix, sufϐix and substring generalize to mul-
tisets, e.g. 𝕊(ௗ,௜)…(ௗ,௝) denotes the substring 𝑆ௗ௜…௝ .

Deϐinition 2.3 (String iterator). Given a string 𝑆, I denote with 𝑠 its iterator starting at
position 𝑖 = 0 and providing the following operations

• ČĔNĊĝę(𝑠) moves to position 𝑖 + 1;

8

• ČĔPėĊěĎĔĚĘ(𝑠) moves to position 𝑖 − 1;
• ĆęEēĉ(𝑠) returns 𝑡𝑟𝑢𝑒 iff 𝑖 = |𝑆|;
• ěĆđĚĊ(𝑠) returns 𝑠௜ .

Deϐinition 2.4 (Occurrence). A string 𝑋 of length 𝑛 occurs in a longer string 𝑌 iff 𝑋 is
a substring of 𝑌. Given 𝑋 = 𝑌௜…௜ା௡, the occurrence of 𝑋 starts at position 𝑖 and ends at
position 𝑖 + 𝑛 − 1 in 𝑌.

Deϐinition 2.5. Given an alphabet Σ, I deϐine the function 𝛿 ∶ Σ×Σ → {0, 1} s.t. 𝛿(𝑎, 𝑏) = 1
for any distinct 𝑎, 𝑏 ∈ Σ and 0 otherwise.

Deϐinition 2.6 (Lexicographic rank). Given an alphabet Σ of size 𝜎, I denote the lexico-
graphic rank of any alphabet symbol by the function rank ∶ Σ → [0, 𝜎), s.t. rank(𝑎) <
rank(𝑏) ⟺ 𝑎 < 𝑏 for any distinct 𝑎, 𝑏 ∈ Σ. In addition, I denote by min௟௘௫Σ the lexico-
graphically smallest symbol 𝑎 ∈ Σ s.t. rank(𝑎) = 0, and by next௟௘௫𝑎 the lexicographical
successor 𝑏 of 𝑎 in Σ s.t. rank(𝑏) = rank(𝑎) + 1.

Deϐinition2.7 (Lexicographical order). The lexicographical order<௟௘௫ between twonon-
empty strings 𝑋, 𝑌 is deϐined as 𝑋 <௟௘௫ 𝑌 ⟺ 𝑥଴ < 𝑦଴, or 𝑥଴ = 𝑦଴ and 𝑋ଵ <௟௘௫ 𝑌ଵ.

Towell-deϐine full-text indices, I use the deϐinitions of padded string (2.8) andpadded
string collection (2.9). To this end, I introduce special terminator symbols $ ∉ Σ.

Deϐinition 2.8 (Padded string). Given a string 𝑆 over Σ, I call padded string the string 𝑆$
over Σ$, where Σ$ = Σ ∪ {$} and rank($) < rank(𝑎) for any 𝑎 ∈ Σ.

Deϐinition 2.9 (Padded string collection). Given a string collection 𝕊 = {𝑆଴, … , 𝑆௖ିଵ}
over Σ, I call padded string collection the collection {𝑆଴$଴, … , 𝑆௖ିଵ$௖ିଵ} over Σ$, where
Σ$ = Σ ∪ {$଴, … , $௖ିଵ} and rank($௜) < rank($௝) ⟺ 𝑖 < 𝑗.

Deϐinition 2.10 (Reverse string). Given a string 𝑆, 𝑆̄ denotes its reversal, i.e., 𝑠̄௜ = 𝑠௡ିଵି௜
for any 0 ≤ 𝑖 < 𝑛.

Deϐinition 2.11 (Reverse string collection). Given a string collection 𝕊 = {𝑆଴, … , 𝑆௖ିଵ},
𝕊̄ denotes the reversed collection {𝑆̄଴, … , 𝑆̄௖ିଵ}.

2.2 Transcripts, alignments and distances

I now deϐine the basic edit operations to transform one string into another. Given two
strings 𝑋, 𝑌 of equal length 𝑛, the string 𝑋 is easily transformed into the string 𝑌 by sub-
stituting (or replacing) all symbols 𝑥௜ s.t. 𝑥௜ ≠ 𝑦௜ into 𝑦௜ , for 0 ≤ 𝑖 < 𝑛. However, if the
two strings have different lengths, some symbolsmust be necessarily inserted or deleted
from𝑋 in order to obtain 𝑌. This fact motivates the following deϐinition of edit transcript.

Deϐinition 2.12 (Edit transcript). An edit transcript for any two given strings 𝑋, 𝑌 is a
ϐinite sequence of substitutions, insertions and deletions transforming𝑋 into𝑌 [Gusϐield,
1997].

9

Figure 2.1: Example of edit transcript and alignment. The string 𝑋 is transformed into 𝑌.
The transcript character M indicates a match, R a replacement, I an insertion,
and D a deletion.

.. G.

G

.
M

. C.

C

.
M

. T.

T

.
M

. N.

A

.
R

. T.

T

.
M

. G.

G

.
M

. G.

−

.
D

. G.

G

.
M

. C.

C

.
M

. A.

A

.
M

. T.

T

.
M

. T.

T

.
M

. A.

G

.
R

. T.

T

.
M

. G.

G

.
M

. G.

G

.
M

. C.

C

.
M

. −.

C

.
I

. C.

C

.
M

. A.

A

.
M

. T.

T

.
M

. T.

T

.
M

. T.

T

.
M

. T.

A

.
R

. T.

T

.
M

...𝑋 .

𝑌

An alignment is an alternative way of visualizing a transformation between strings.
While an edit transcript is an explicit sequence of edit operations that transform one
string into another, an alignment is an explicit relationship between pairs of symbols
from the two strings. Nonetheless, when some symbols are inserted or removed, some
symbols in one string are not related to any symbol in the other string. For this reason, it
is necessary to introduce anadditional gap symbol−, not beingpart of the string alphabet
Σ. The deϐinition of alignment follows. Figure 2.1 shows an example of edit transcript
with its associated alignment.
Deϐinition 2.13 (Alignment). An alignment of two strings of length𝑚, 𝑛 over Σ is a string
of length between min{𝑚, 𝑛} and 𝑚 + 𝑛 over the pair alphabet (Σ ∪ {−}) × (Σ ∪ {−}) ⧵
{(−,−)}.

Hamming and edit distance are two fundamental distance functions on strings.
Deϐinition2.14 (Hammingdistance). TheHammingdistance𝑑ு ∶ Σ௡×Σ௡ → ℕ଴ between
two strings 𝑋, 𝑌 ∈ Σ௡ counts the number of substitutions necessary to transform 𝑋 into
𝑌 [Hamming, 1950].
Deϐinition 2.15 (Edit distance). The Levenshtein or edit distance 𝑑ா ∶ Σ∗ × Σ∗ → ℕ଴
between two strings 𝑋, 𝑌 ∈ Σ∗ counts theminimum number of edit operations necessary
to transform 𝑋 into 𝑌 [Levenshtein, 1966].

The problem of ϐinding an optimal alignment between two strings is equivalent to
the problem of ϐinding their minimum distance [Gusϐield, 1997]. While the Hamming
distance between any two strings of length 𝑛 is easily computed in time𝒪(𝑛), computing
the edit distance involves solving a non-trivial optimization problem.

2.3 Edit distance computation

The edit distance between two strings is efϐiciently computed via dynamic programming
(DP) [Needleman and Wunsch, 1970]. Let 𝑋, 𝑌 be two strings of length 𝑛 ≥ 𝑚. The edit
distance 𝑑ா(𝑋଴…௜ , 𝑌଴…௝) between any of their preϐixes𝑋଴…௜ and𝑌଴…௝ is deϐined recursively.
The base conditions of the recurrence relation are:

𝑑ா(𝜖, 𝜖) = 0 (2.1)
𝑑ா(𝑋଴…௜ , 𝜖) = 𝑖 for all 1 < 𝑖 ≤ 𝑛 (2.2)
𝑑ா(𝜖, 𝑌଴…௝) = 𝑗 for all 1 < 𝑗 ≤ 𝑚 (2.3)

10

and the recursive case for all 1 < 𝑖 ≤ 𝑛 and 1 < 𝑗 ≤ 𝑚 is as follows:

𝑑ா(𝑋଴…௜ , 𝑌଴…௝) = min൞
𝑑ா(𝑋଴…௜ିଵ, 𝑌଴…௝) + 1
𝑑ா(𝑋଴…௜ , 𝑌଴…௝ିଵ) + 1
𝑑ா(𝑋଴…௜ିଵ, 𝑌଴…௝ିଵ) + 𝛿(𝑥௜ , 𝑦௝)

(2.4)

where the function 𝛿 indicates whether the characters 𝑥௜ , 𝑦௝ match or mismatch (see
deϐinition 2.5).

Algorithm 2.1 computes the above recurrence relation in time 𝒪(𝑛𝑚) using a dy-
namic programming table𝐷 of (𝑛+1)× (𝑚+1) cells, where cell𝐷 [𝑖, 𝑗] stores the value
of 𝑑ா(𝑋଴…௜ , 𝑌଴…௝). The sole edit distancewithout any alignment can be computed in space
𝒪(𝑚); indeed, column 𝑗−1 alone is sufϐicient to compute column 𝑗. An optimal alignment
can be computed in time 𝒪(𝑛 + 𝑚) via traceback on the table 𝐷; the traceback starts in
the cell 𝐷 [𝑚, 𝑛] and goes backwards (either left, up-left, or up) to the previous cell by
deciding which condition of equation 2.4 yielded the value of 𝐷[𝑚, 𝑛].

Further, if no alignment at all is needed, there is a more efϐicient solution to the edit
distance problem. Myers’ algorithm [Myers, 1999], instead of computing the DP cells
one after another, encodes one whole DP column in two bit-vectors and computes the
adjacent column in a constant number of 12 logical and 3 arithmetical operations. The
time complexity of Myers’ algorithm is 𝒪(𝑛𝑚/𝑏), where 𝑏 is the processor’s bit-width,
e.g. 64 on modern processors.

Finally, if the edit distance problem is relaxed to simply checking if 𝑑ா(𝑋, 𝑌) ≤ 𝑘,
with 𝑘 ∈ ℕ଴, an answer is given in time 𝒪(𝑛𝑘). Indeed, the DP matrix 𝐷 needs not to be
ϐilled entirely, as the cells outside a band of width 𝑘 + 1 around the 0-th diagonal are not
coaccessible from the sink cell 𝐷 [𝑚, 𝑛]. The reader is referred to [Siragusa et al., 2013b]

Algorithm 2.1 EĉĎęDĎĘęĆēĈĊ(𝑋, 𝑌)
Input 𝑋 : string of length 𝑛

𝑌 : string of length𝑚
Output the edit distance 𝑑ா(𝑋, 𝑌) between 𝑋 and 𝑌
1: 𝐷 [0, 0] ← 0
2: for 𝑗 ← 1 to𝑚 do
3: 𝐷 [𝑗, 0] ← 𝐷 [𝑗 − 1, 0] + 1
4: for 𝑖 ← 1 to 𝑛 do
5: 𝐷 [0, 𝑖] ← 𝐷 [0, 𝑖 − 1] + 1
6: for 𝑗 ← 1 to𝑚 do

7: 𝐷 [𝑖, 𝑗] ← min ൞
𝐷 [𝑖 − 1, 𝑗] + 1,
𝐷 [𝑖, 𝑗 − 1] + 1,
𝐷 [𝑖 − 1, 𝑗 − 1] + 𝛿(𝑥௜ , 𝑦௝)

8: return 𝐷 [𝑚, 𝑛]

11

for a proof and to [Weese et al., 2012] for a banded version of Myers’ algorithm running
in time 𝒪(𝑛𝑘/𝑏).

2.4 String matching

Deϐinition 2.16 (Exact stringmatching). Given a string 𝑃 of length𝑚, called the pattern,
and a string 𝑇 of length 𝑛, called the text, the exact string matching problem is to ϐind all
occurrences of 𝑃 into 𝑇 [Gusϐield, 1997].

Exact string matching is one of the most fundamental problems in stringology. This
problem has been extensively studied from the theoretical standpoint and is well solved
in practice [Faro and Lecroq, 2013]. Nonetheless, the deϐinition of distance functions
between strings lends to a more challenging problem: approximate string matching.

Deϐinition 2.17 (Approximate string matching). Given a text 𝑇, a pattern 𝑃, and a dis-
tance threshold 𝑘 ∈ ℕ, the approximate stringmatching problem is to ϐind all occurrences
of 𝑃 into 𝑇 within distance 𝑘 [Galil and Giancarlo, 1988].

The approximate stringmatching problemunder theHamming distance is commonly
called the 𝑘-mismatches problem, while under the edit distance is called the 𝑘-differences
problem. Figure2.2 showsanexample of occurrence for𝑘-differences. For𝑘-mismatches
and 𝑘-differences, it must hold 𝑘 > 0 as the case 𝑘 = 0 corresponds to exact string
matching, and 𝑘 < 𝑚 as a pattern trivially occurs at any position in the text if all its 𝑚
characters are substituted. Frequently, the problem’s input respects the condition 𝑘 ≪
𝑚 ≪ 𝑛.

Deϐinition 2.18 (Error rate). Under the edit or Hamming distance, the error rate is de-
ϐined as 𝜖 = 𝑘/𝑚, with 0 < 𝜖 < 1 given the above conditions.

String matching problems are subdivided in two categories, online and ofϔline, de-
pending onwhich string, the pattern or the text, is given ϐirst. Algorithms for online string
matching work by preprocessing the pattern and scanning the text from left to right (or
right to left). Algorithms for ofϐline stringmatching are instead allowed to preprocess the
text, hence they build an index of the text beforehand to speed up subsequent searches.
In practice, if the text is long, static and searched frequently, ofϐline methods outperform
online methods in terms of runtime, provided the necessary amount of memory for text
indexing.

It goes without saying that ofϐline string matching algorithms are tightly bound to
text indexing data structures. Almost all of these algorithms require a full-text index, i.e.,
a data structure representing all substrings of the text. Very often, such full-text index is
realized as the sufϔix tree [Weiner, 1973; McCreight, 1976; Gusϐield, 1997], a fundamen-
tal data structure in stringology. Among its virtues [Apostolico, 1985], the sufϐix tree
natively provides exact string matching in optimal time and approximate string match-
ing via backtracking [Ukkonen, 1993]. Often, the sufϐix tree ϐinds its use within hybrid
ϔiltering methods rather than on its own.

12

Figure 2.2: Example of occurrence for 𝑘-differences. Pattern 𝑃 occurs in text 𝑇 at edit dis-
tance 3, i.e., with a 19%error rate. The alignment between𝑃 and any substring
of 𝑇 is called semi-global, as opposed to the global alignment of two complete
strings.

...

G

..

C

..

T

..

A

. T.

T

.
M

. G.

G

.
M

. G.

−

.
D

. G.

G

.
M

. C.

C

.
M

. A.

A

.
M

. T.

T

.
M

. T.

T

.
M

. A.

G

.
R

. T.

T

.
M

. G.

G

.
M

. G.

G

.
M

. C.

C

.
M

. −.

C

.
I

. C.

C

.
M

. A.

A

.
M

. T.

T

.
M

..

T

..

T

..

A

..

T

..𝑃 .

𝑇

Filtering methods ϐirst discard uninteresting portions of the text and subsequently
verify only narrower areas. Thesemethods work either online or ofϐline. Online ϐiltering
methods try to jump over the text while scanning it; instead, ofϐline ϐiltering methods
use an index to place anchors in the text. Both classes of ϐiltering methods then require
a native online method to verify the anchors.

In this manuscript, I often consider multiple string matching problems, i.e., variants
in which many patterns are given at once, instead of single problems where patterns are
given one by one in an online fashion. Obviously, anymethod for the single case can solve
the multiple case and vice versa. However, it is clear that methods for multiple string
matching have advantages over methods for single string matching. For instance, online
methods for multiple string matching are allowed to preprocess all patterns and then
scan the text only once, while online methods for single string matching have to scan the
text every time a pattern is given. Thus, in general, methods for multiple string matching
are more appealing than methods for single string matching.

In the remainderof this section, I give aquickoverviewof the fundamental algorithms
and data structures adopted by classic stringmatchingmethods. This overview serves as
an introduction to the indexing and ϐilteringmethods presented in the next two chapters.
For an extensive treatment of this subject, the reader is referred to complete surveys on
online [Navarro, 2001] and indexing [Navarro et al., 2001] approximate string matching
methods.

2.4.1 Online methods

The DP algorithm 2.1 to compute the edit distance between two strings is easily turned
into an online algorithm for 𝑘-differences. Since an approximate occurrence of the pat-
tern can start (and end) anywhere in the text, the problem essentially involves comput-
ing the edit distance between the pattern and any substring of the text. The key idea is to
compute the edit distance between the pattern and the text without penalizing leading
and trailing deletions in the text.

Consider the recurrence relation described by equations 2.1–2.4 and pose𝑋 = 𝑇 and
𝑌 = 𝑃. Because an occurrence of the pattern can start anywhere in the text, the base
condition 2.2 of the edit distance recurrence relation becomes

𝑑(𝑋଴…௜ , 𝜖) = 0 for all 1 < 𝑖 ≤ 𝑛, (2.5)

13

thus algorithm 2.1 (line 5) must be adapted to initialize the top row of the DP matrix 𝐷
accordingly. Then, as an occurrence of the pattern can end anywhere in the text, algo-
rithm 2.1 (line 8) must be changed to check any cell in the bottom row for the condition
𝐷 [𝑖,𝑚] ≤ 𝑘.

2.4.2 Indexing methods

I now introduce sufϔix tries, idealized data structures to index full texts. I deϐine a set
of generic operations to traverse them in a top-down fashion. In chapter 3, I introduce
various data structures replacing sufϐix tries in practical implementations. Thanks to
these generic traversal operations, I later formulate generic string matching algorithms
that are independent of the practical sufϐix trie implementations.

Consider a padded string collection 𝕊 (deϐinition 2.9) consisting of 𝑐 strings. Note
that padding is necessary to ensure that no string 𝑆௜ ∈ 𝕊 is a preϐix of another string
𝑆௝ ∈ 𝕊.
Deϐinition 2.19 (Trie). The trie𝑅𝑇(𝕊) of 𝕊 is a lexicographically ordered tree data struc-
ture having one node designated as the root and 𝑐 leaves, denoted as 0,… , 𝑐 − 1, where
leaf 𝑖 points to string 𝑆௜ . In addition,

1. the incoming edge of any inner node of 𝑅𝑇(𝕊) is labeled with a symbol in Σ;
2. the incoming edge of any leaf of 𝑅𝑇(𝕊) is labeled with a terminator symbol;
3. the path from the root to leaf 𝑖 spells the string 𝑆௜$௜ .

Deϐinition 2.20 (Sufϐix trie). Given a padded string 𝑆 (deϐinition 2.8) of length 𝑛, the
sufϐix trie 𝑆𝑇(𝑆) is the trie of all sufϐixes of 𝑆. 𝑆𝑇(𝑆) has 𝑛 leaves, where leaf 𝑖 points to
sufϐix 𝑆௜ .
Deϐinition 2.21 (Generalized sufϐix trie). Given a padded string collection 𝕊 (deϐini-
tion 2.9), its generalized sufϐix tree is the sufϐix tree of all strings in 𝕊. Each of the |𝕊|
leaves is labeled by a pair (𝑖, 𝑗) and points to sufϐix 𝕊(௜,௝).

Note that the (generalized) sufϐix trie here deϐined contains 𝒪(𝑛ଶ) nodes, yet I only
consider the sufϐix trie as an idealized data structure to formulate generic algorithms.
The optimal data structure to represent in linear space all sufϐixes of a given string is
the sufϔix tree [Morrison, 1968]. However, the sufϐix tree comes with the restriction that
internal nodes are branching, i.e., theymust havemore than one child, andwith the prop-
erty that edges can labeled by strings of arbitrary length (see ϐigure 2.3). This latter
property slightly complicates the exposition of string matching algorithms but it does
not affect their runtime complexity nor their result. For this reason, in the remainder of
this manuscript, I consider w.l.o.g. always sufϐix tries instead of sufϐix trees.

Top-down traversal

I deϐine a set of generic operations to traverse tries in a top-down fashion. Note that the
following traversal operations do not walk over edges labeled by terminator symbols, as
these symbols are not necessary in string matching applications. I deϐine the following
operations on the node 𝑣 pointed during the traversal of 𝑆𝑇(𝕊):

14

• ĎĘRĔĔę(𝑣) returns true iff the pointed node is the root;
• ĎĘLĊĆċ(𝑣) returns true iff all outgoing edges are labeled by terminator symbols;
• ĕĆėĊēę(𝑣) returns the parent node of 𝑣;
• đĆćĊđ(𝑣) returns the symbol labeling the edge entering 𝑣;
• ĔĈĈĚėėĊēĈĊĘ(𝑣) returns the list of positions pointed by leaves below 𝑣;
• ĈĔēĈĆę(𝑣) returns the concatenation of edge labels on the path from the root to 𝑣.

Moreover, I deϐine the following operations moving from pointed node 𝑣, and returning
true on success and false otherwise:

• ČĔDĔĜē(𝑣) moves to the lexicographically smallest child of 𝑣;
• ČĔDĔĜē(𝑣, 𝑐) moves to the child of 𝑣 whose entering edge is labeled by 𝑐;
• ČĔRĎČčę(𝑣) moves to the lexicographically next child of 𝑣;
• ČĔUĕ(𝑣) moves to the parent node of 𝑣.

Time complexities of the above operations depend on the data structure implement-
ing the trie. Usually đĆćĊđ is 𝒪(1), both variants of ČĔDĔĜē and ČĔRĎČčę range from
𝒪(1) to 𝒪(log 𝑛), ĔĈĈĚėėĊēĈĊĘ is linear in the number of occurrences, ČĔUĕ is 𝒪(1) but
with an additional 𝒪(𝑛) space complexity to stack all parent nodes. Algorithms 2.2 and
2.3 show how to implement respectively ČĔDĔĜē and ČĔRĎČčę using ČĔDĔĜē a symbol
and ČĔUĕ, although with a worst-case time complexity of 𝒪(𝜎). In chapter 3, I consider
various data structures to implement sufϐix tries, I show how to implement these opera-
tions and give their complexities.

2.4.3 Filtering methods

Filtering methods work in two stages: the ϔiltration stage discards portions of the text
unlikely or unable to contain an occurrence of the pattern; subsequently the veriϔication
stage checks the remaining portions. The ϐiltration stage proceeds online by scanning

Figure 2.3: Sufϔix trie and sufϔix tree of the string 𝑆 = ANANAS$.
...

6

.......

0

..

2

..

4

......

1

..

3

..

5

.
$

.
A

.

N

.

A

.

N

.

A

.

S

.

$

.

S

.

$

.

S

.

$

.
N

.

A

.

N

.

A

.

S

.

$

.

S

.

$

.
S

.

$

...

6

...

0

.

2

.

4

..

1

.

3

.

5

.

$

.

A

.

N

.

A

.

N

.

A

.

S

.

$

.

S

.

$

.

S

.

$

.
N

.

A

.

N

.

A

.

S

.

$

.

S

.

$

.
S

.

$

15

Figure 2.4: Generalized sufϔix trie of the string collection 𝕊 = { ANANAS$଴, CACAO$ଵ }.

...

0, 6

.

1, 5

.....

1, 1

......

0, 0

..

0, 2

..

1, 3

..

0, 4

.......

1, 0

..

1, 2

......

0, 1

..

0, 3

..

1, 4

..

0, 5

.
$଴

.
$ଵ

.
A

.

C

.

A

.

O

.

$ଵ

.

N

.

A

.

N

.

A

.

S

.

$଴

.

S

.

$଴

.

O

.

$ଵ

.

S

.

$଴

.
C

.

A

.

C

.

A

.

O

.

$ଵ

.

O

.

$ଵ

.
N

.

A

.

N

.

A

.

S

.

$଴

.

S

.

$଴

.
O

.

$ଵ

.
S

.

$଴

Algorithm 2.2 ČĔDĔĜē(𝑣)
Input 𝑣 : iterator of 𝑆𝑇(𝑆)
Output boolean indicating success
1: if not ĎĘLĊĆċ(𝑣)
2: 𝑐 ← min௟௘௫Σ
3: do
4: if ČĔDĔĜē(𝑣, 𝑐)
5: return true
6: while 𝑐 ← next௟௘௫𝑐
7: return false

Algorithm 2.3 ČĔRĎČčę(𝑣)
Input 𝑣 : iterator of 𝑆𝑇(𝑆)
Output boolean indicating success
1: if not ĎĘRĔĔę(𝑣)
2: 𝑐 ← đĆćĊđ(𝑣)
3: 𝑤 ← ĕĆėĊēę(𝑣)
4: while 𝑐 ← next௟௘௫𝑐 do
5: if ČĔDĔĜē(𝑤, 𝑐)
6: return true
7: return false

the text or alternatively ofϐline using an index of the text. The veriϐication stage uses a
conventional method, e.g. the online dynamic programmingmethod or some variation of
it. The crux of ϐiltering methods is thus to accurately and efϐiciently classify text portions
as containing or not some occurrence of the pattern.

Speciϐicity and sensitivity

Any ϐiltering method is thus a binary classiϐication method. Any text location is true if it
coincides with the beginning of an occurrence of the pattern and false if it does not. The
outcome of the classiϐication method is positive for text locations ϐiltered in and negative
for locations ϐilteredout. Therefore, as shown in table2.1, any text locationbelongs either
to the set of true positives (TP), false positives (FP), true negatives (TN), or false negatives
(FN). Thus, standard speciϔicity and sensitivitymeasure the accuracy of ϐilteringmethods.

16

The speciϐicity of a ϐilter 𝑓 on a text 𝑇 is deϐined as:
|𝑇𝑁௙(𝑇)|

|𝑇𝑁௙(𝑇)| + |𝐹𝑃௙(𝑇)|
(2.6)

and the sensitivity as:
|𝑇𝑃௙(𝑇)|

|𝑇𝑃௙(𝑇)| + |𝐹𝑁௙(𝑇)|
(2.7)

Deϐinition 2.22. A ϐilter is lossless or full-sensitive if its sensitivity is 1, i.e., it produces no
false negatives, otherwise it is lossy.

Many practical applications, e.g. read mapping, do not require strictly lossless ϐiltra-
tion. Nonetheless, a predictable or controlled lossy ϐilter helps to interpret the results
and ensure their quality. For this reason, I focus on criteria yielding ϐilters which are
lossless or lossy in a predictable fashion.

Efϐiciency

The total runtime of a ϐilteringmethod is given by the sum of the runtimes of its ϐiltration
and veriϐication stages. Filtration speciϐicity determines how much time is spent in the
veriϐication stage. Clearly, to keep veriϐication time small, the number of false positives
must be low. Nonetheless, the ϐiltration stage must also run in a reasonable amount of
time. Hence, the runtime of an efϐicient ϐiltering method is usually balanced between
ϐiltration and veriϐication time. In any way, no ϐiltering method can be efϐicient when the
number of true positive locations approaches the text length.

Filtering methods for string matching work under the assumption that patterns oc-
cur in the text with a low average probability. For 𝑘-differences, the occurrence proba-
bility is a function of the error rate 𝜖 and the alphabet size 𝜎, and can be computed or
estimated under the assumption of the text being generated by a speciϐic random source.
Under the uniformBernoulli model, where each symbol of Σ occurs with probability 1/𝜎,
Navarro [2001] experimentally ϐinds that 𝜖 < 1−1/√𝜎 is a tight upper bound on the er-
ror rate which ensures few occurrences and for which ϐiltering algorithms are effective.
For higher error rates, non-ϐiltering methods, either online or ofϐline, work better.

According to the above considerations, ϐiltration efϐiciency is bound to 50 % error
rate on random DNA. However, practical HTS read mapping applications require much
lower error rates, usually ranging from 3 to 10 %. For this reason, ϐiltering methods are
expected to be very efϐicient in HTS applications.

Table 2.1: Classiϔication of text locations by ϔiltering methods.

Occurrence Filtered in Filtered out

Yes True positive (TP) False negative (FN)
No False positive (FP) True negative (TN)

17

Seeds versus 𝑞-grams

Filtering methods apply combinatorial criteria to determine which portions of the text
might contain some occurrence of the pattern. These criteria are in general valid for
both online and ofϐline variants of the problem. In practice, one speciϐic criterion might
be more convenient for one variant of the problem rather than the other. The combina-
torial criterion underlying a ϐilter is of paramount importance as it provides guarantees
on ϐiltration sensitivity.

In chapter 4, I consider two classes of combinatorial ϐiltering methods: those based
on seeds and those based on 𝑞-grams. Filters in the former class partition the pattern
into non-overlapping factors called seeds; application of the pigeonhole principle yields
full-sensitive partitioning strategies. Instead, ϐilters in the latter class consider all over-
lapping substrings of the pattern having length 𝑞, the so-called 𝑞-grams; simple counting
lemmata give lower bounds on the number of 𝑞-grams that must be present in a narrow
windowof the text, as necessary conditions for an approximate occurrence of the pattern.

CčĆĕęĊė

3 Indexing methods

Sufϐix trees are elegant data structures but they are rarely used in practice. Although
sufϐix trees provide theoretically optimal construction and query time, their high space
consumption prohibits practical indexing of large string collections. A practical study on
sufϐix trees byKurtz [1999] reports that efϐicient implementations achieve sizes between
12𝑛 and 20𝑛 bytes per character. For instance, two years before completing the sequenc-
ing of the human genome, Kurtz conjectured the resources required for computing the
sufϐix tree for the complete human genome (consisting of about 3 ⋅ 10ଽ bp) in 45.31 GB
of memory and nine hours of CPU time, and concluded that “it seems feasible to compute
the sufϔix tree for the entire human genome on some computers”.

One might be tempted to think that such memory requirements are not anymore a
limiting factor as, at the timeof thiswriting, even standardworkstations comewith 32GB
ofmainmemory. Indeed, over the last decades, the semiconductors industry followed the
exponential trends dictated byMoores’ law and yielded not only exponentially faster mi-
croprocessors but also larger memories. Unfortunately, memory latency improvements
have beenmoremodest, leading to the so calledmemorywall effect [Wilkes, 1995]: data
access times are taking an increasingly fraction of total computation times. Thus, if Knuth
[1973]wrote that “space optimization is closely related to time optimization in a diskmem-
ory”, forty years later one can simply say that space optimization is always related to time
optimization.

Over the last years, signiϐicant effort has been devoted to the engineering of more
space-efϐicient data structures to replace the sufϐix tree in practical applications. In par-
ticular, much research has been done into designing succinct (or even compressed) data
structures providing efϐicient query times using space proportional to that of the uncom-
pressed (or compressed) input. Thanks to these advances, a succinct index of the human
genome consumes as little as 3.5 GB ofmemory and often even improves query time over
classic indices.

In this chapter, I introduce some classic full-text indices (sufϐix arrays and 𝑞-gram
indices) and subsequently succinct full-text indices (uncompressed variants of the FM-
index). Afterwards, I introduce generic string matching algorithms that work on any of
these data structures, and at the same time provide their experimental evaluation. My
implementation of all these algorithms and data structures is publicly available in source
form within the C++ library SeqAn [Döring et al., 2008].

20

3.1 Classic full-text indices

3.1.1 Sufϐix array

The sufϐix array (SA) has been initially proposed byManber andMyers [1990] as a practi-
cal replacement of the sufϐix tree in exact stringmatching. The SA reduces the space com-
plexity of the sufϐix tree by a constant factor at the cost of an increase of the search time
complexity by a logarithmic factor. It achieves that by explicitly representing only the
leaves of the sufϐix trie while omitting its internal nodes and outgoing edges. Figure 3.1
shows an example. The leaves referring to sorted sufϐixes are sufϐicient to emulate suf-
ϐix trie traversals. Any path from the root to some internal node is indeed computed on
the ϐly via binary search over the sorted sufϐixes. Below, I deϐine the (generalized) sufϐix
array and then show how to emulate all top-down traversal operations.

Deϐinition 3.1 (Sufϐix array). The sufϔix array of a padded string 𝑆 of length 𝑛 is an array
𝐴 containing a permutation of the interval [0, 𝑛), s.t. 𝑆஺[௜ିଵ] <௟௘௫ 𝑆஺[௜] for all 1 ≤ 𝑖 < 𝑛.

Deϐinition3.2 (Generalized sufϐix array). The generalized sufϔix array (GSA) of a padded
string collection 𝕊 (deϐinition 2.9), consisting of 𝑐 strings of total length 𝑛, is an array𝐴 of
length 𝑛 containing a permutation of pairs (𝑖, 𝑗) for all 0 ≤ 𝑖 < 𝑐 and 0 ≤ 𝑗 < |𝑆௜|. Pairs
are ordered s.t. 𝕊஺[௜ିଵ] <௟௘௫ 𝕊஺[௜] for all 1 ≤ 𝑖 < 𝑛.

Figure 3.1: Sufϔix array and generalized sufϔix array. (a) Sufϔix array of the string 𝑆 =
ANANAS$. (b) Generalized sufϔix array of the string collection 𝕊 = { ANANAS$଴,
CACAO$ଵ }.

(a) Sufϔix array.

𝑖 𝐴 [𝑖] 𝑆஺[௜]
0 6 $
1 0 ANANAS$
2 2 ANAS$
3 4 AS$
4 1 NANAS$
5 3 NAS$
6 5 S$

(b) Generalized sufϔix array.

𝑖 𝐴 [𝑖] 𝕊஺[௜]
0 (0, 6) $଴
1 (1, 5) $ଵ
2 (1, 1) ACAO$ଵ
3 (0, 0) ANANAS$଴
4 (0, 2) ANAS$଴
5 (1, 3) AO$ଵ
6 (0, 4) AS$଴
7 (1, 0) CACAO$ଵ
8 (1, 2) CAO$ଵ
9 (0, 1) NANAS$଴
10 (0, 3) NAS$଴
11 (1, 4) O$ଵ
12 (0, 5) S$଴

21

The SA is constructed in 𝒪(𝑛) time, for instance using the [Kärkkäinen and Sanders,
2003] algorithm, or using non-optimal but practically faster algorithms, e.g. [Schürmann
and Stoye, 2007]. The space consumption of the SA is Θ(𝑛 log 𝑛) bits. When 𝑛 < 4 𝐺𝐵,
a 32 bit integer is sufϐicient to encode any value in the range [0, 𝑛). Consequently, the
space consumption of sufϐix arrays for strings shorter than 4 GB is 4𝑛 bytes.

Weese [2013] gives a generalization of Kärkkäinen and Sanders algorithm to con-
struct the GSA in 𝒪(𝑛) time. The space consumption of the GSA is Θ(𝑛 log 𝑛∗) bits, where
𝑛∗ = max |𝑆௜|. For instance, a pair of 1 + 4 bytes sufϐices to encode any sufϐix position in
a collection consisting of up to 256 strings, each one shorter than 4 GB.

Top-down traversal

I now concentrate on describing sufϐix trie functionalities, as I implemented themwithin
the SeqAn library. Any sufϐix trie node is univocally identiϐied by an interval of the sufϐix
array 𝐴. For instance, the root node is represented by the interval [0, 𝑛) containing the
whole SA. Thus, while traversing the trie, I remember the interval [𝑙, 𝑟) associated to the
current node. In addition, I also remember the right interval 𝑟௣ of the parent node and
the depth 𝑑 of the current node. The incoming edge label of an internal node at depth 𝑑
is identiϐied by the (𝑑 −1)-th symbol within the corresponding sufϐix 𝑆஺[௜] with 𝑖 ∈ [𝑙, 𝑟).
Any leaf node is deϐined to have all outgoing edges labeled by terminator symbols (see
section 2.4.2). The occurrences below any node correspond by deϐinition to the interval
[𝑙, 𝑟) of 𝐴. Summing up, I represent the current node 𝑣 by the integers {𝑙, 𝑟, 𝑟௣, 𝑑} and
deϐine the following operations on it:

• ČĔRĔĔę(𝑣) initializes 𝑣 to {0, 𝑛, 𝑛, 0};
• ĎĘLĊĆċ(𝑣) returns true iff |𝑆஺[௩.௥ିଵ]| = 𝑣.𝑑 + 1;
• đĆćĊđ(𝑣) returns 𝑠஺[௩.௟]ା௩.ௗ;
• ĔĈĈĚėėĊēĈĊĘ(𝑣) returns 𝐴 [𝑣.𝑙 … 𝑣.𝑟].

Algorithm 3.1 L(𝑣, 𝑐)
Input 𝑣 : SA node iterator

𝑐 : character to query
Output integer denoting the left interval
1: (𝑙ଵ, 𝑙ଶ) ← (𝑣.𝑙, 𝑣.𝑟)
2: while 𝑙ଵ < 𝑙ଶ do
3: 𝑖 ← උ ௟భା௟మଶ ඏ
4: if 𝑠஺[௜]ା௩.ௗ <௟௘௫ 𝑐
5: 𝑙ଵ ← 𝑖 + 1
6: else
7: 𝑙ଶ ← 𝑖
8: return 𝑙ଵ

Algorithm 3.2 R(𝑣, 𝑐)
Input 𝑣 : SA node iterator

𝑐 : character to query
Output integer denoting the right interval
1: (𝑟ଵ, 𝑟ଶ) ← (𝑣.𝑙, 𝑣.𝑟)
2: while 𝑟ଵ < 𝑟ଶ do
3: 𝑖 ← උ ௥భା௥మଶ ඏ
4: if 𝑠஺[௜]ା௩.ௗ ≤௟௘௫ 𝑐
5: 𝑟ଵ ← 𝑖 + 1
6: else
7: 𝑟ଶ ← 𝑖
8: return 𝑟ଵ

22

Algorithm 3.3 ČĔDĔĜē(𝑣)
Input 𝑣 : SA node iterator
Output boolean indicating success
1: if ĎĘLĊĆċ(𝑣)
2: return false
3: 𝑣.𝑙 ← R(𝑣, $)
4: 𝑐௟ ← 𝑠஺[௩.௟]ା௩.ௗ
5: 𝑐௥ ← 𝑠஺[௩.௥ିଵ]ା௩.ௗ
6: 𝑣.𝑟௣ ← 𝑣.𝑟
7: if 𝑐௟ ≠ 𝑐௥
8: 𝑣.𝑟 ← R(𝑣, 𝑐௟)
9: 𝑣.𝑑 ← 𝑣.𝑑 + 1

10: return true

Algorithm 3.4 ČĔRĎČčę(𝑣)
Input 𝑣 : SA node iterator
Output boolean indicating success
1: if 𝑣.𝑟 = 𝑣.𝑟௣
2: return false
3: 𝑣.𝑙 ← 𝑣.𝑟
4: 𝑐௟ ← 𝑠஺[௩.௟]ା௩.ௗ
5: 𝑐௥ ← 𝑠஺[௩.௥ିଵ]ା௩.ௗ
6: 𝑣.𝑟 ← 𝑣.𝑟௣
7: if 𝑐௥ ≠ 𝑐௣
8: 𝑣.𝑟 ← R(𝑣, 𝑐௥)
9: return true

Binary search is the key to implement function ČĔDĔĜē a symbol. Functions L (algo-
rithm 3.1) and R (algorithm 3.2) compute in 𝒪(log 𝑛) binary search steps the position in
𝐴 of the left and right intervals corresponding to the child node that is reached by going
down the edge labeled by a given symbol 𝑐. Algorithms 3.3 and 3.4 show how to im-
plement respectively ČĔDĔĜē and ČĔRĎČčę with a time complexity independent of the
alphabet size 𝜎. As they rely on a single call of R, their time complexity is𝒪(log 𝑛). In this
way, the SA supports exact string matching in 𝒪(𝑚 log 𝑛) time (see algorithm 3.11).

Note that the sufϐix array canbebinary searchedby spelling a full patternwithin a sin-
gle call of L and R: in line 6 of algorithms 3.1–3.2, instead of comparing a single character,
it sufϐices to compare the full pattern to the current sufϐix. Nonetheless, the worst case
runtime of algorithm 3.11 stays 𝒪(𝑚 log 𝑛), as each step of the binary search requires

Algorithm 3.5 ČĔDĔĜē(𝑣, 𝑐)
Input 𝑣 : SA node iterator

𝑐 : character to query
Output boolean indicating success
1: if ĎĘLĊĆċ(𝑣)
2: return false
3: 𝑙 ← L(𝑣, 𝑐)
4: 𝑟 ← R(𝑣, 𝑐)
5: if 𝑙 < 𝑟
6: 𝑣 ← {𝑙, 𝑟, 𝑣.𝑟, 𝑣.𝑑 + 1}
7: return true
8: else
9: return false

23

a full lexicographical comparison between the pattern and any sufϐix of the text, which
takes 𝒪(𝑚) time in the worst case. As shown in [Manber and Myers, 1990], the worst
case runtime can be decreased to 𝒪(𝑚 + log 𝑛) at the expense of additional Θ(𝑛 log 𝑛)
bits, by storing the precomputed longest common preϐixes (LCP) between any two con-
secutive sufϐixes 𝑆஺[௜], 𝑆஺[௜ାଵ] for all 1 ≤ 𝑖 < 𝑛. Alternatively, the average case runtime is
reduced to 𝒪(𝑚 + log 𝑛), without storing any additional information, by using the MLR
heuristic [Manber and Myers, 1990]. In practice, the MLR heuristic outperforms the SA
+ LCP algorithm, due to the higher cost of fetching additional data from the LCP table
[Weese, 2013].

3.1.2 Sufϐix tree realizations

I brieϐly introduce two sufϐix tree realizations from the literature: the enhanced sufϔix
array (ESA) [Abouelhoda et al., 2004] and the lazy sufϔix tree (LST) [Giegerich et al., 2003].
These realizations explicitly implement or implicitly emulate a sufϐix tree rather than
a sufϐix trie. The string matching algorithms of section 3.3 work on tries, yet any tree
can be easily traversed as a trie. The implementation of these data structures within
SeqAn, equally generalized tomultiple sequence, is due toWeese. Hence, for an extensive
illustration, the reader is invited to consult [Weese, 2013].

Enhanced sufϐix array

The enhanced sufϐix array (ESA) [Abouelhoda et al., 2004] supplements the SA and LCP
tables (see section 3.1.1) with another table called child table. Each SA value represents
one leaf of the sufϐix tree, while each LCP value represent the length of one edge of the
sufϐix tree. What is stillmissing, in order to represent a full sufϐix tree, are the SA intervals
of the children of each inner node. These intervals would have to be computed in loga-
rithmic time by ČĔRĎČčę during a top-down SA traversal. As proposed by Abouelhoda
et al. [2004], these intervals are computed in linear time, within one single bottom-up
traversal, and stored in the child table, which consumes additional Θ(𝑛 log 𝑛) bits, thus
4𝑛 bytes for collections smaller than 4 GB.

Lazy sufϐix tree

The lazy sufϐix tree (LST) [Giegerich et al., 1999] variant proposed by [Weese, 2013] is
composed by a partially sorted SA plus a node directory. The SA initially reϐlects the
ordering of the sufϐixes up to depth 1, and the node directory table contains only the root
node. During a top-down traversal, the current node at depth 𝑖 is expanded by means of
the wotd algorithm [Giegerich et al., 1999], which calls one round of radix sort to reϐine
the ordering of the sufϐixes up to depth 𝑖 + 1 and inserts the newly computed children
nodes in the directory. The construction of the full LST takes𝒪(𝑛ଶ+𝜎𝑛) time in theworst
case.

24

3.1.3 𝑞-Gram index

If the traversal of the idealized sufϐix trie is bounded to a maximum depth 𝑞, the loga-
rithmic factor paid by using the SA vanishes. The idea is to supplement the SA with a
so-called 𝑞-gram directory: an additional array𝐷 of 𝜎௤+1 integers that represent the SA
ranges computed by algorithm 3.1 for all possible words of length 𝑞 over Σ.

With the aim of addressing 𝑞-grams in the directory 𝐷, I impose a canonical code on
𝑞-grams through a bijective function ℎ ∶ Σ௤ → [0, 𝜎௤) deϐined as in [Knuth, 1973]:

ℎ(𝑃) =
௤ିଵ

෍
௜ୀ଴

rank(𝑝௜) ⋅ 𝜎௤ି௜ (3.1)

where 𝑃 ∈ Σ௤ is some 𝑞-gram and rank is the lexicographic rank deϐined on Σ (see def-
inition 2.6). The canonical code assigned by ℎ preserves the lexicographical ordering
for all words not longer than 𝑞, i.e., 𝑋 <௟௘௫ 𝑌 iff ℎ(𝑋) < ℎ(𝑌) for all 𝑋, 𝑌 ∈ Σஸ௤ . The
hash function ℎ allows to store in and retrieve from 𝐷 the left SA interval returned by
algorithm 3.1 for each 𝑞-gram, i.e., 𝐷 [ℎ(𝑃)] = L(0,n,P) for all 𝑃 ∈ Σ௤ . Note that the
right interval returned by algorithm 3.2 is equivalent to the left interval of the following
𝑞-gram in lexicographical order and therefore available in 𝐷 [ℎ(𝑃) + 1].

In practice, the 𝑞-gram index is applicable only to relatively small alphabets and tree
depths. For instance, parameters 𝜎 = 4 and 𝑞 = 14 imply a 𝑞-gram directory consisting
of 268 M entries. Using a 32 bits integer encoding, such directory alone consumes 1 GB
of memory.

Figure 3.2: 2-Gram index of the string 𝑆 = ANANAS$ over the alphabet Σ = { A, N, S }. The
example shows the lookup of the 2-gram NA. The hash value ℎ(NA) = 3 ad-
dresses two lookups, respectively in 𝐷 [3] and 𝐷 [4], that in turn provide the
range [4, 6) in 𝐴.

𝑃 ℎ(𝑃) 𝐷 [ℎ(𝑃)] 𝑖 𝐴 [𝑖] 𝑆஺[௜]
AA 0 1 ..0 ..6 ..$
AN 1 1 1 0 ANANAS$
AS 2 3 2 2 ANAS$
..NA ..3 ..4 3 4 AS$

NN ..4 ..6 ..4 ..1 NANAS$
NS 5 6 ..5 ..3 NAS$
SA 6 6 ..6 ..5 ..S$
SN 7 6
SS 8 6

9 6

..

25

Top-down traversal

I now describe how I extended the SA traversal operations of section 3.1.1 to use the 𝑞-
gramdirectory𝐷within the generic text indexing framework of the SeqAn library. Again,
while traversing the trie, I maintain the current range [𝑙, 𝑟) and the current depth 𝑑. In
addition, I maintain the interval [𝑙௛, 𝑟௛) in 𝐷 and the incoming edge label 𝑒 node in or-
der to answer đĆćĊđ(𝑣). Summing up, I represent the current node 𝑣 by the elements
{𝑙, 𝑟, 𝑑, 𝑙௛, 𝑟௛, 𝑒}. I deϐine the basic node operations as follows:

• ČĔRĔĔę(𝑣) initializes 𝑣 to {0, 𝑛, 0, 0, 𝜎௤ , 𝜖};
• ĎĘLĊĆċ(𝑣) returns true iff 𝑣.𝑑 = 𝑞;
• đĆćĊđ(𝑣) returns 𝑣.𝑒;
• ĔĈĈĚėėĊēĈĊĘ(𝑣) returns 𝐴 [𝑣.𝑙 … 𝑣.𝑟].

Algorithms 3.6 and 3.7 show respectively functions L and R using the directory 𝐷
instead of 𝐴. In this way, both variants of ČĔDĔĜē (algorithms 3.5 and 3.3) and ČĔRĎČčę
(algorithm 3.4) take 𝒪(1) time. Conversely, ČĔDĔĜē and ČĔRĎČčę are implemented by
the generic algorithms 2.2 and 2.3 running in time 𝒪(𝜎).

The directory 𝐷 alone is sufϐicient for top-down traversals bounded to a maximum
depth 𝑞; the sufϐix array 𝐴 is accessed only to locate text locations pointed by the leaves.
In this case, the total ordering of the text sufϐixes in the SA can be relaxed to preϐixes of
length 𝑞. This gives a twofold advantage, as one can (i) construct the SA more efϐiciently
using bucket sorting and (ii) maintain leaves in each bucket sorted by their relative text
positions. The latter property allows to compress the SA bucket-wise, e.g. using Elias 𝛿
encoding [Elias, 1975], or to devise cache-oblivious strategies to process the occurrences
[Hach et al., 2010].

The directory 𝐷 is still usable, even if the traversal needs to go below depth 𝑞. An
hybrid traversal can use the directory 𝐷 up to depth 𝑞 and later continue with binary
searches on the sufϐix array 𝐴. This hybrid traversal cuts the most expensive binary
searches and increases memory locality. Furthermore, this traversal becomes useful
whenever the SA is too big to ϐit in main memory and has to reside in external memory.
In section 3.3, I show the experimental evaluation of this hybrid 𝑞-gram index.

Algorithm 3.6 L(𝑣, 𝑐)
Input 𝑣 : 𝑞-gram index iterator

𝑐 : character to query
Output integer denoting the left interval
1: 𝑣.𝑙௛ ← 𝑣.𝑙௛ + rank(𝑐) ⋅ 𝜎௩.ௗ
2: return 𝐷 [𝑣.𝑙௛]

Algorithm 3.7 R(𝑣, 𝑐)
Input 𝑣 : 𝑞-gram index iterator

𝑐 : character to query
Output integer denoting the right interval
1: 𝑣.𝑟௛ ← 𝑣.𝑟௛ − rank(𝑐) ⋅ 𝜎௩.ௗ
2: return 𝐷 [𝑣.𝑟௛]

26

Algorithm 3.8 ČĔDĔĜē(𝑣, 𝑐)
Input 𝑣 : 𝑞-gram index iterator

𝑐 : character to query
Output boolean indicating success
1: if ĎĘLĊĆċ(𝑣)
2: return false
3: 𝑣.𝑑 ← 𝑣.𝑑 + 1
4: 𝑣.𝑒 ← 𝑐
5: 𝑣.𝑙 ← L(𝑣, 𝑣.𝑒)
6: 𝑣.𝑟 ← R(𝑣, 𝑣.𝑒)
7: return 𝑣.𝑙 < 𝑣.𝑟

3.1.4 Trie and radix tree realizations

Before turning to succinct full-text indices, I brieϐly describe how I reused the text-indices
just exposed to implement tries and radix trees in the SeqAn library. A trie is easily em-
ulated bymeans of a partial SA. I index only the ϐirst sufϐix of each string in the collection
and subsequently construct the SA-based trie via quicksort in time𝒪(𝑛 log 𝑛), where 𝑛 is
the total length of the string collection. The top-down traversal based on binary search
still works as described in section 3.1.1. This trie is also extendable by a 𝑞-gramdirectory
as in section 3.1.3. A radix tree is constructed in an analogous way, starting from the LST
of section 3.1.2. I ϐill the LST’s partial SA as described above and subsequently apply the
wotd algorithm [Giegerich et al., 1999] to construct the radix tree in time 𝒪(𝜎𝑛).

3.2 Succinct full-text indices

TheBurrows-Wheeler transform (BWT) [BurrowsandWheeler, 1994] is a transformation
deϐining a permutation of an input string. Such transformation exposes two important
properties: it is reversible and it tends to produce runs of equal characters. The former
property is immediate and allows to recover the original string from its BWTalone, while
the latter property makes the transformed string more amenable to compression [Fer-
ragina et al., 2005]. Because of these two properties, the BWT is a fundamental method
for text compression.

Some years after its introduction, Ferragina and Manzini proposed the BWT for full-
text indexing. They show in [Ferragina and Manzini, 2000] that the BWT allows to per-
form exact string matching and engineer in [Ferragina andManzini, 2001] a compressed
full-text index called FM-index. Over the last years, the FM-index has been widely em-
ployed under different re-implementations by many popular bioinformatics tools, e.g.
Bowtie [Langmead et al., 2009] and BWA [Li and Durbin, 2009], and is now considered a
fundamental method for the indexing of genomic sequences [Vyverman et al., 2012].

In the following, I give the fundamental ideas behind the BWT. Subsequently, I discuss

27

my generalized FM-index implementation covering strings and string collections.

3.2.1 Burrows-Wheeler transform

Let 𝑆 be a padded string (deϐinition 2.8) of length 𝑛 over Σ$. In the following, consider
the string 𝑆 to be cyclic and its subscript 𝑠௜ to bemodular, i.e., 𝑠௜ = 𝑠௜ ୫୭ୢ௡ for any 𝑖 ∈ ℤ.

Deϐinition 3.3 (BWT). Given a string 𝑆 and its SA 𝐴, the BWT 𝐿 of 𝑆 is a string over Σ$
with 𝑙௜ = 𝑠஺[௜]ିଵ.

To visualize the BWT, consider the square matrix consisting of all cyclic shifts of the
string 𝑆 sorted in lexicographical order. Note how the cyclic shifts matrix is related to the
sufϐix array 𝐴 of 𝑆: the 𝑖-th cyclic shift is 𝑆஺[௜]…௡𝑆଴…஺[௜]. The BWT is the string obtained
by concatenating the symbols in the last column of the sorted cyclic shifts matrix of 𝑆.
Figure 3.3 shows an example.

The BWT generalizes to string collections. For a padded string collection 𝕊 (deϐini-
tion 2.9) and its cyclic shifts matrix sorted in lexicographical order, deϐinition 3.3 still
holds. Note that there are different ways of treating this problem (see [Mantaci et al.,
2007]).

The cyclic shifts matrix is conceptual and does not have to be constructed explicitly
to derive the BWT of 𝑆. The BWT can be obtained in linear time by scanning the SA 𝐴 and
assigning the symbol 𝑠஺[௜]ିଵ to the 𝑖-thBWTsymbol. However, constructing theBWT from
the SA is not desirable in practice, especially for strings over small alphabets like DNA, as
the SA consumes Θ(𝑛 log 𝑛) bits in addition to the Θ(𝑛 log 𝜎) bits of the BWT. Therefore,
some direct BWT construction algorithms working within 𝑜(𝑛 log 𝜎) bits plus constant
space have been recently proposed in [Bauer et al., 2013; Crochemore et al., 2013].

Inversion

I nowdescribe how to invert the BWT to reconstruct the original string. For convenience,
I denote the ϐirst column 𝑠஺[௜] by 𝐹 and the last column 𝑠஺[௜]ିଵ by 𝐿. Inverting the BWT
means being able to know where any BWT character occurs in the original text. To this

Figure 3.3: Cyclic shifts matrix of the string 𝑆 = ANANAS$. Column 𝑠஺[௜]ିଵ is the BWT of 𝑆.

𝑖 𝐴 [𝑖] 𝑠஺[௜] … 𝑠஺[௜]ିଵ
0 6 $ ANANA ..S
1 0 A NANAS $
2 2 A NAS$A N
3 4 A S$ANA N
4 1 N ANAS$ A
5 3 N AS$AN A
6 5 S $ANAN ..A

..

28

Figure 3.4: Permutations 𝐿𝐹 and Ψ of the string 𝑆 = ANANAS$. The example shows that
𝐿𝐹 = Ψିଵ, e.g. 𝐿𝐹(Ψ(5)) = 5 and Ψ(𝐿𝐹(3)) = 3. Moreover, the example
shows that the relative order of characters between 𝐿 and 𝐹 is preserved, e.g.
the ϔirst occurrence of 𝑁 in 𝐿 corresponds to the ϔirst occurrence in 𝐹.

𝑖 Ψ(𝑖) 𝐿𝐹(𝑖) 𝑠஺[௜] … 𝑠஺[௜]ିଵ
0 1 6 $ ANANA S
1 4 0 A NANAS $
2 5 ..4 A NAS$A ..N
3 6 5 A S$ANA N
4 ..2 1 ..N ANAS$ A
5 3 2 N AS$AN A
6 0 3 S $ANAN A

..

intent, I deϐine two permutations 𝐿𝐹 ∶ [0, 𝑛) → [0, 𝑛) and Ψ ∶ [0, 𝑛) → [0, 𝑛), with
𝐿𝐹 = Ψିଵ, where the value of 𝐿𝐹(𝑖) gives the position 𝑗 in 𝐹 where character 𝑙௜ occurs
and the valueΨ(𝑗) gives back the position 𝑖 in 𝐿 where 𝑓௝ occurs. Figure 3.4 illustrates.

I deϐine the iteratedΨ as

Ψ଴(𝑗) = 𝑗
Ψ௜ାଵ(𝑗) = Ψ(Ψ௜(𝑗)) (3.2)

and the iterated 𝐿𝐹 as

𝐿𝐹଴(𝑗) = 𝑗
𝐿𝐹௜ାଵ(𝑗) = 𝐿𝐹(𝐿𝐹௜(𝑗)). (3.3)

The character 𝑠௜ corresponds to 𝑓ஏ೔శభ(௝), where 𝑗 is the position of $ in 𝐹; analogously, 𝑠̄௜
corresponds to 𝑙௅ி೔శభ(௝), where 𝑗 is the position of $ in 𝐿. Therefore, the full string 𝑆 is
recovered by starting in 𝐹 at the position of $ and following the cycle of length 𝑛 deϐined
by the permutationΨ; analogously, the reverse string 𝑆̄ is recovered by starting in 𝐿 at the
position of $ and following the cycle of length 𝑛 deϐined by the permutation 𝐿𝐹. Figure
3.5 exempliϐies.

Inverting the generalized BWT works in the same way. Indeed, permutations Ψ and
𝐿𝐹 are composed of 𝑐 cycles, where each cycle corresponds to a distinct string 𝑆௜ in the
collection. The string 𝑆௜ is recovered by starting at the position of $௜ and following the
cycle of Ψ (or 𝐿𝐹) associated to 𝑆௜ . See [Mantaci et al., 2007] for further details on the
generalized BWT.

Permutation LF

Permutation 𝐿𝐹 needs not to be stored explicitly. Differently from Ψ, it is possible to
deduce 𝐿𝐹 from the BWT string 𝐿with the help of some additional character counts. The

29

Figure 3.5: Recovering the string 𝑆 = ANANAS$ from permutation Ψ. The example shows
only the ϔirst two steps of the inversion recovering AN.

𝑠஺[௜] 𝑖 Ψ(𝑖)
..$..0 ..1
..A ..1 ..4
..A ..2 ..5
..A ..3 ..6
..N ..4 ..2
..N ..5 ..3
..S ..6 ..0

.

counting argument relies on to two simple observations of Burrows andWheeler [1994]
on the cyclic shifts matrix.
Observation 3.1. For all 𝑖 ∈ [0, 𝑛), the character 𝑙௜ precedes the character 𝑓௜ in 𝑆.
Observation 3.2. For all characters 𝑐 ∈ Σ, the 𝑖-th occurrence of 𝑐 in 𝐹 corresponds to the
𝑖-th occurrence of 𝑐 in 𝐿.

These observation are evident, indeed 𝐹 = 𝑠஺[௜] and 𝐿 = 𝑠஺[௜]ିଵ (see ϐigure 3.4). Given
the two above observations, Ferragina andManzini [2000] deϐine the permutation 𝐿𝐹 as:

𝐿𝐹(𝑖) = 𝐶(𝑙௜) + 𝑂𝑐𝑐(𝑙௜ , 𝑖) (3.4)

where 𝐶 ∶ Σ → [0, 𝑛) denotes the total number of occurrences in 𝑆 of all characters
alphabetically smaller than 𝑐, and 𝑂𝑐𝑐 ∶ Σ × [0, 𝑛) → [0, 𝑛) the number of occurrences
of character 𝑐 in the preϐix 𝐿଴…௜ . The key problem of encoding the permutation 𝐿𝐹 lies
in representing function 𝑂𝑐𝑐, as function 𝐶 is easily tabulated by a small array of size
Θ(𝜎 log 𝑛) bits. In the next subsection, I address the problem of representing function
𝑂𝑐𝑐 efϐiciently. Subsequently, I explain how to implement generic full-text index traversal
using the permutation 𝐿𝐹.

3.2.2 Rank dictionaries

Function 𝑂𝑐𝑐, answering the question “how many times a given character 𝑐 occurs in the
preϔix 𝐿଴…௜?”, has to be computed efϐiciently, ideally in constant time and succinct space.
The general problem on arbitrary strings has been tackled by several studies on the suc-
cinct representation of data structures [Jacobson, 1989]. This speciϐic question takes the
name of rank query and a data structure answering rank queries is called rank dictionary
(RD).
Deϐinition 3.4 (Rank query). Given a string 𝑆 over an alphabet Σ and a character 𝑐 ∈ Σ,
ėĆēĐ௖(𝑆, 𝑖) returns the number of occurrences of 𝑐 in the preϐix 𝑆଴…௜¹.

¹ Note that symbol 𝑠௜ is excluded from ėĆēĐ௖(𝑆, 𝑖).

30

The key idea of RDs is to maintain a succinct (or even compressed) representation
of the input string and attach a dictionary to it. By doing so, Jacobson [1989] shows
how to answer rank queries in constant time (on the RAMmodel) using 𝑜(𝑛) additional
bits for an input binary string of 𝑛 bits. Here, I cover only the most practical succinct
RDs and discuss some implementation aspects, crucial to obtain practical efϐiciency. I
ϐirst consider the binary alphabet 𝔹 = {0, 1} and subsequently the case of an arbitrary
alphabet.

Binary alphabet

Here, I follow the explanation of [Navarro and Mäkinen, 2007]. Hence, I start by de-
scribing a simple one-level rank dictionary answering rank queries in constant time but
consuming𝒪(𝑛) additional bits. Subsequently, I describe an extended two-levels RD con-
suming only 𝑜(𝑛) additional bits. Finally, I brieϐly discussmy implementation of practical
multi-level RDs.

The one-level binary RD partitions the binary input string 𝑆 ∈ 𝔹∗ in blocks of 𝑏 sym-
bols and complements it with an array 𝑅 of length ⌊𝑛/𝑏⌋ + 1. The 𝑗-th entry of 𝑅 pro-
vides a summary of the number of occurrences of the bit 1 in 𝑆 before position 𝑗𝑏, i.e.,
𝑅 [0] = 0 and 𝑅 [𝑗] = ėĆēĐଵ(𝑆, 𝑗𝑏) for any 𝑗 > 0. Note that 𝑅 summarizes only ėĆēĐଵ, as
ėĆēĐ଴(𝑆, 𝑖) = 𝑖 − ėĆēĐଵ(𝑆, 𝑖). Therefore, the rank query is rewritten as:

ėĆēĐଵ(𝑆, 𝑖) = 𝑅 [⌊𝑖/𝑏⌋] + ĕĔĕĈĔĚēęଵ(𝑆⌊௜/௕⌋⋅௕ , 𝑖mod 𝑏). (3.5)

The query is answered in time 𝒪(𝑏) by (i) fetching the rank summary from 𝑅 in constant
time and (ii) counting the number of occurrences of the bit 1 within a block of 𝒪(𝑏) bits.
Figure 3.6a illustrates. Jacobson poses 𝑏 = ⌈log 𝑛⌉ and answers ĕĔĕĈĔĚēę in time 𝒪(1)
with the four-Russians tabulation technique [Arlazarov et al., 1970]. As the array𝑅 stores
𝒪(⌊𝑛/ log 𝑛⌋) positions and each position in 𝑆 requires ⌈log 𝑛⌉ bits,𝑅 consumes𝒪(𝑛) bits.

A binary two-levels RD squeezes additional space consumption down to 𝑜(𝑛) bits.
The idea is to divide 𝑆 into superblocks of length 𝑏ଶ and add another array 𝑅ଶ to store
the number of occurrences of the bit 1 in 𝑆 before each superblock. The initial array
𝑅 now counts bit 1 only within the overlapping superblock deϐined by 𝑅ଶ. Figure 3.6b
exempliϐies. The rank query becomes:

ėĆēĐଵ(𝑆, 𝑖) = 𝑅ଶ [⌊𝑖/𝑏ଶ⌋] + 𝑅 [⌊𝑖/𝑏⌋] + ĕĔĕĈĔĚēęଵ(𝑆⌊௜/௕⌋⋅௕ , 𝑖mod 𝑏). (3.6)

Eachentryof𝑅 nowrepresents only𝑏ଶ possible values and thus consumesonly𝒪(log 𝑏ଶ)
= 𝒪(log 𝑏) bits. Summing up, 𝑅ଶ adds 𝒪(𝑛 log 𝑛/𝑏ଶ) bits and 𝑅 adds 𝒪(𝑛 log 𝑏/𝑏) bits.
By posing 𝑏 = log 𝑛 as above, it follows 𝒪(𝑛/ log 𝑛) bits for 𝑅ଶ and 𝒪(𝑛 log log 𝑛/ log 𝑛)
bits for 𝑅. Hence, the two-levels binary RD consumes 𝑜(𝑛) additional bits.

I implemented genericmulti-levels RDs, where the block size 𝑏 is a template param-
eter adjustable at compile time. Typically, the input string is smaller than 4 GB, thus I
employ the one-level RD with 𝑏 = 32 bits or the two-level RD with 𝑏 = 16 bits and
𝑏ଶ = 32 bits; otherwise, for longer strings, I employ the two-levels RD with 𝑏 = 32 bits
and 𝑏ଶ = 64 bits, or the three-levels RD with 𝑏 = 16 bits, 𝑏ଶ = 32 bits and 𝑏ଷ = 64 bits.

31

Figure 3.6: Binary rank dictionaries (RDs) of the string 𝑆 = 010101100100. (a) One-level
RD with 𝑏 = 4. In the example, ėĆēĐଵ(𝑆, 6) = 𝑅 [1] + ĕĔĕĈĔĚēęଵ(𝑆ସ, 2) = 3.
(b) Two-levels RD with 𝑏 = 2. In the example, ėĆēĐଵ(𝑆, 6) = 𝑅ଶ [1] + 𝑅 [2] +
ĕĔĕĈĔĚēęଵ(𝑆ସ, 2) = 3. Note that 𝑅 in (a) is different from 𝑅 in (b).

(a) One-level rank dictionary.

𝑖 𝑠௜ 𝑅 [⌊𝑖/4⌋]

0 0 0
1 1
2 0
3 1
4 ..0 ..2
..5 ..1
6 1
7 0
8 0 4
9 1
10 0
11 0

. . .

(b) Two-levels rank dictionary.

𝑖 𝑠௜ 𝑅 [⌊𝑖/2⌋] 𝑅ଶ [⌊𝑖/4⌋]

0 0 0 0
1 1
2 0 1
3 1
4 ..0 ..0 ..2
..5 ..1
6 1 1
7 0
8 0 0 4
9 1
10 0 1
11 0

. . . .

In order to reduce the number of cache misses, the succinct representation of the input
string is interleavedwith the lowest level summaries array 𝑅. Moreover, I use the SSE 4.2
popcnt instruction [Intel, 2011] to count symbols within a block in time 𝒪(𝑏/𝑤), where
𝑤 is the total SSE register width (on modern processors𝑤 = 256 bits).

Small alphabets

The extension of binary RDs to arbitrary alphabets is easy. However, the space consump-
tion of suchRDhas a linear dependency in the alphabet size. This fact renders such exten-
sion appealing only for small alphabets likeDNA.Here, I showhow toextend theone-level
RD.

Consider an input string 𝑆 of length 𝑛 over Σ, thus consisting of Θ(𝑛 log 𝜎) bits. As
in the binary case, this one-level RD partitions 𝑆 in blocks of 𝑏 bits. It complements the
string 𝑆 with a matrix 𝑅ఙ of size ⌊𝑛/𝑏 + 1⌋ × 𝜎, summarizing the number of occurrences
for each symbol in Σ. The rank query is rewritten accordingly:

ėĆēĐ௖(𝑆, 𝑖) = 𝑅ఙ [⌊𝑖/𝑏⌋ , rank(𝑐)] + ĕĔĕĈĔĚēę௖(𝑆⌊௜/௕⌋⋅௕ , 𝑖mod 𝑏). (3.7)

Figure 3.7 shows an example of one-level DNA RD. Answering this query requires count-
ing the number of occurrences of the character 𝑐 inside a block of 𝑏 bits. In order to
answer this query in constant time, I consider blocks of ⌊⌈log 𝑛⌉ / ⌈log 𝜎⌉⌋ symbols, i.e.,
each block consumes not more than ⌈log 𝑛⌉ bits as in the binary RD case. The matrix 𝑅ఙ

32

Figure 3.7: One-level DNA rank dictionary of the string 𝑆 = CTCGCA with 𝑏 = 2. In the
example, ėĆēĐC(𝑆, 4) = 𝑅ఙ [1, 1] + ĕĔĕĈĔĚēęC(𝑆ଶ, 2) = 2.

𝑖 𝑠௜ 𝑅ఙ [⌊𝑖/2⌋][A, C, G, T]

0 C [0, 0, 0, 0]
1 T
2 ..C ..[0, ..1, 0, 1]
..3 ..G
4 C [0, 2, 1, 1]
5 A

.. . . .

has thus 𝜎 rows and 𝒪(𝑛 log 𝜎/ log 𝑛) columns, each one consuming ⌈log 𝑛⌉ bits. Thus,
𝑅ఙ adds 𝒪(𝜎𝑛 log 𝜎) bits to 𝑆.

Wavelet tree

Tomitigate the factor 𝜎 affecting the RD just exposed, Grossi et al. [2003] propose a hier-
archical RD, called the wavelet tree (WT). This tree data structure recursively partitions
the alphabet Σ in balanced subsets and therefore decomposes the input string in sub-
sequences containing symbols from one subset. Any tree node represents one alphabet
partition and its associated subsequence. I ϐirst give the formal deϐinition ofWT and then
discuss how to answer rank queries.
Deϐinition 3.5 (Wavelet tree). The wavelet tree of a string 𝑆 ∈ Σ∗ is a balanced binary
tree of height ⌈log 𝜎⌉. The root represents all symbols in Σ and each leaf exactly one sym-
bol 𝑐 ∈ Σ. Anynon-leaf node𝑣 represents some subset of symbolsΣ௩whose lexicographic
rank is in range [𝑖, 𝑗], i.e., Σ௩ = {𝑐 ∈ Σ ∶ rank(𝑐) ∈ [𝑖, 𝑗)}, its left child 𝑙 represents the
subset Σ௟ of symbols in range ൣ𝑖, ௜ା௝ଶ ൯while its right child 𝑟 represents in Σ௥ those in range
ൣ ௜ା௝ଶ , 𝑗൯. Node 𝑣 implicitly represents the subsequence 𝑆௩ of all symbols of 𝑆 in Σ௩ and
explicitly encodes its decomposition as a binary string 𝐵௩ s.t. 𝑏௩௜ = 0 if 𝑠௩௜ ∈ Σ௟ and 1
otherwise [Grossi et al., 2003; Navarro and Mäkinen, 2007].

Any query ėĆēĐ௖(𝑆, 𝑖) is decomposed as a sequence of 𝒪(log 𝜎) binary rank queries.
The sequence of queries starts in the root node and follows the path to the leaf corre-
sponding to symbol 𝑐. On any non-leaf node 𝑣, the traversal goes left if 𝑐 belongs to Σ௟ ,
otherwise it goes right. Suppose w.l.o.g. that 𝑐 belongs to Σ௟ . The rank of symbol 𝑐 in 𝑆௩
is established as ėĆēĐ଴(𝐵௩ , 𝑗), where 𝑗 is the rank of 𝑐 in the parent node or 𝑖 in the root
node. Figure 3.8 illustrates.

The WT encodes any binary string 𝐵௩ associated to some non-leaf node 𝑣 using a
separate binary RD. The WT contains ⌈log 𝜎 − 1⌉ non-leaf levels and any such level en-
codes 𝑛 bits overall. Using two-levels binary RDs (section 3.2.2), the WT consumes (𝑛 +
𝑜(𝑛)) log 𝜎 bits, i.e., 𝑛 log 𝜎(1 + 𝑜(1)) bits, and answers any rank query in time 𝒪(log 𝜎).
At the same time, the WT does not need to store the original input string 𝑆 of Θ(𝑛 log 𝜎)
bits.

33

3.2.3 FM-index

I now come back to the problem of implementing a full-text index based on the permu-
tation 𝐿𝐹. First, I show how to emulate a top-down traversal of the sufϐix trie, which is
sufϐicient to count the number of occurrences of any substring in the original text. Later,
I focus on how to represent the leaves of the sufϐix trie, which are necessary to locate
occurrences in the original text.

Top-down traversal

The top-down traversal of 𝑆𝑇(𝕊) spells all sufϐixes of 𝕊. Therefore, to emulate the traver-
sal, it is sufϐicient to enumerate all sufϐixes of 𝕊 by inverting the BWT using the counting
argument of permutation LF. This enumeration provides not only all sufϐixes of𝕊, but also
their associated SA intervals, as permutation LF and the SA are closely related. However,
we have seen that permutation LF enumerates sufϐixes of 𝕊̄ in backward direction, while
we would rather need permutation Ψ to enumerate sufϐixes of 𝕊 in forward direction.
Since 𝐿𝐹 = Ψିଵ, we consider the BWT of 𝕊̄, so that its permutation LF enumerates suf-
ϐixes of 𝕊. LF of 𝕊̄ computes intervals on the backward SA 𝐴̄ of 𝕊̄, so ĔĈĈĚėėĊēĈĊĘ has to
reverse the occurrences of 𝐴̄ back to those of 𝐴.

I represent the current node 𝑣 by the elements {𝑙, 𝑟, 𝑒}, where [𝑙, 𝑟) represents the
current SA interval and 𝑒 is the entering edge label. Therefore, I deϐine the following
node operations:

• ČĔRĔĔę(𝑣) initializes 𝑣 to {0, 𝑛, 𝜖};
• ĎĘLĊĆċ(𝑣) returns true iff 𝑂𝑐𝑐($, 𝑣.𝑟) − 𝑂𝑐𝑐($, 𝑣.𝑙) = 𝑣.𝑟 − 𝑣.𝑙.;
• đĆćĊđ(𝑣) returns 𝑣.𝑒;

Figure 3.8: Wavelet tree of the DNA string 𝑆 = CTCGCA. The alphabet {A, C, G, T} is recur-
sively partitioned as {{{A}, {C}}, {{G}, {T}}}. In the example, ėĆēĐC(𝑆, 4) = 2 is
decomposed as ėĆēĐ଴(𝐵, 4) = 2 on the root node and then ėĆēĐଵ(𝐵AC, 2) = 2
on the left inner node.

..
𝑖 0 1 2 ..3 4 5
𝑠௜ C T C G C A
𝑏௜ ..0 1 0 ..1 0 0

.

𝑖 0 ..1 2 3
𝑠஺஼௜ C C C A
𝑏஺஼௜ ..1 ..1 1 0

.

A

.

C

.

0 1 𝑖
T G 𝑠ீ்௜
1 0 𝑏ீ்௜

.

G

.

T

.

0

.

1

.

0

.

1

.

0

.

1

..

34

Algorithm 3.9 ČĔDĔĜē(𝑣, 𝑐)
Input 𝑣 : FM-index iterator

𝑐 : character to query
Output boolean indicating success
1: if ĎĘLĊĆċ(𝑣)
2: return false
3: 𝑣.𝑙 ← 𝐶(𝑐) + 𝑂𝑐𝑐(𝑐, 𝑣.𝑙)
4: 𝑣.𝑟 ← 𝐶(𝑐) + 𝑂𝑐𝑐(𝑐, 𝑣.𝑟)
5: 𝑣.𝑒 ← 𝑐
6: return 𝑣.𝑙 < 𝑣.𝑟

• ĔĈĈĚėėĊēĈĊĘ(𝑣) returns each value (𝑖, 𝑗) of 𝐴̄ [𝑙, 𝑟) as (𝑖, |𝑆௜| − 𝑗 − 𝑣.𝑑).

The traversal easily goes from the root node to a child node following the edge labeled
by character 𝑐, as it sufϐices to determine the interval [𝐶(𝑐), 𝐶(next௟௘௫𝑐)). Now, suppose
the traversal is on an arbitrary sufϐix trie node 𝑣 of known interval [𝑣.𝑙, 𝑣.𝑟) s.t. the path
from the root to 𝑣 spells the substring ĈĔēĈĆę(v). The traversal goes down to a child
node𝑤 of unknown interval [𝑤.𝑙, 𝑤.𝑟) s.t. the path from the root to𝑤 spells ĈĔēĈĆę(v) ⋅ 𝑐
for some 𝑐 ∈ Σ. Thus, the known interval [𝑣.𝑙, 𝑣.𝑟) contains all sufϐixes of 𝕊 starting
with ĈĔēĈĆę(v), i.e., all preϐixes of 𝕊̄ ending with ĈĔēĈĆę(v), while the unknown interval
[𝑤.𝑙, 𝑤.𝑟) contains all sufϐixes of 𝕊 starting with ĈĔēĈĆę(v) ⋅ 𝑐, i.e., all preϐixes of 𝕊̄ ending
with 𝑐 ⋅ ĈĔēĈĆę(v). All these characters 𝑐 are in 𝐿௪.௟…௪.௥ , since 𝑙௜ is the character 𝕤஺[௜]ିଵ
preceding the sufϐix pointed by 𝐴 [𝑖]. Moreover, these characters 𝑐 are contiguous and in
relative order in 𝐹 (see observations 3.1–3.2). If 𝑖, … , 𝑗 are all positions in 𝐿 s.t. 𝑙௜ = 𝑐 and
𝑣.𝑙 ≤ 𝑖 < … < 𝑗 < 𝑣.𝑟, then𝑤.𝑙 = 𝐿𝐹(𝑖) and𝑤.𝑟 = 𝐿𝐹(𝑗) + 1. Therefore,𝑤.𝑙 becomes:

𝐿𝐹(𝑖) = 𝐶(𝑙௜) + 𝑂𝑐𝑐(𝑙௜ , 𝑖)
= 𝐶(𝑐) + 𝑂𝑐𝑐(𝑐, 𝑖)
= 𝐶(𝑐) + 𝑂𝑐𝑐(𝑐, 𝑣.𝑙)

(3.8)

and analogously 𝑤.𝑟 becomes:

𝐿𝐹(𝑗) + 1 = 𝐶(𝑙௝) + 𝑂𝑐𝑐(𝑙௝ , 𝑗) + 1
= 𝐶(𝑐) + 𝑂𝑐𝑐(𝑐, 𝑗) + 1
= 𝐶(𝑐) + 𝑂𝑐𝑐(𝑐, 𝑣.𝑟)

(3.9)

Algorithm 3.9 uses the above equations for the operation ČĔDĔĜē a symbol. Con-
versely, ČĔDĔĜē and ČĔRĎČčę are provided by the generic algorithms 2.2 and 2.3 which
enumerate all symbols in Σ. Thus, ČĔDĔĜē a symbol runs in time 𝒪(1), while ČĔDĔĜē
and ČĔRĎČčę run in time 𝒪(𝜎).

35

Sparse sufϐix array

The sufϐix array𝐴 is required to implement functionĔĈĈĚėėĊēĈĊĘ, however thewhole SA
would take𝑛 log 𝑛 bits of space. As proposedbyFerragina andManzini [2000], Imaintain
a sparse sufϐix array 𝐴ఢ containing positions sampled at regular intervals from the input
string. In order to determine if and where I sampled any 𝐴 [𝑖] in 𝐴ఢ , I employ a binary
rank dictionary 𝐼 of length 𝑛 s.t. 𝐼 [𝑖] = 1 iff 𝐴 [𝑖] is in 𝐴ఢ [ėĆēĐଵ(𝐼, 𝑖)]. I obtain any 𝐴 [𝑖]
by ϐinding the smallest 𝑗 ≥ 0 such that 𝐿𝐹௝(𝑖) is in 𝐴ఢ , and then 𝐴 [𝑖] = 𝐴 ൣ𝐿𝐹௝(𝑖)൧ + 𝑗.

By sampling one text position out of logଵାఢ 𝑛, for some 𝜖 > 0, then 𝐴ఢ consumes
𝒪(𝑛/ logఢ 𝑛) space and ĔĈĈĚėėĊēĈĊĘ(𝑣) returns all occurrences in 𝒪(𝑜 ⋅ logଵାఢ 𝑛) time
[Ferragina and Manzini, 2000]. In practice, I sample text positions at rates between 2ିଷ
and 2ିହ. The rank dictionary 𝐼 consumes 𝑛 + 𝑜(𝑛) extra space, independently of the
sampling rate.

3.3 Algorithms

In this section, I give string matching algorithms that use the generic sufϐix trie traversal
operations deϐined in section 2.4.2. Thus the following algorithms can be applied to all
of the sufϐix trie implementations presented so far. I ϐirst consider a simple algorithm
performing a top-down traversal bounded by depth. Then, I present algorithms for ex-
act string matching and 𝑘-mismatches. I ϐinally give, for the ϐirst time to the best of my
knowledge, algorithms solving multiple variants of indexing exact string matching and
𝑘-mismatches. At the same time, I show the results of an experimental evaluation of all
of these algorithms on various sufϐix trie implementations.

Asdata structures, I consider the fully-constructed lazy sufϐix tree (LST), the enhanced
sufϐix array (ESA), the sufϐix array (SA), the 𝑞-gram index for 𝑞 = 12 (q-Gram), the
FM-index with a two-levels DNA rank dictionary (FM-TL), the FM-index with a wavelet
tree composed of two-levels binary rank dictionaries (FM-WT). As text, I take the C. el-
egans reference genome (WormBase WS195), i.e., a collection of 6 DNA strings of about
100 Mbp total length. As patterns, I use sequences extrapolated from an Illumina se-
quencing run (SRA/ENA id: SRR065390).

All experiments run on a desktop computer running Linux 3.10.11, equipped with
one Intel® Core i7-4770K CPU @ 3.50GHz, 32GB RAM and a 2TB HDD @ 7200RPM.
The plots show always average runtimes per pattern, both in single and multiple string
matching variants. Moreover, they consider only traversal times, while they exclude the
time to locate the patterns in the text by following leaf pointers, e.g. uncompressing SA
values.

3.3.1 Construction

Table 3.1 shows construction times and memory consumption for all indices. The con-
struction of the LST uses the quadratic-time in-memorywotd algorithm [Giegerich et al.,
1999],while the constructionof all other indices relies on the linear-timeexternal-memory

36

Table 3.1: Index construction times and memory footprints.

LST ESA SA 𝑞-Gram FM-WT FM-TL

Time [s] 53.94 68.66 50.58 52.17 59.48 58.26
Memory [MB] 1404.02 1272.94 489.59 555.13 122.43 122.42

DC7 sufϐix array construction algorithm [Dementiev et al., 2008]. In addition, the con-
struction of the ESA uses the linear-time algorithms in [Kasai et al., 2001; Abouelhoda
et al., 2004], while the FM-WT construction follows the linear-time algorithm proposed
in [Grossi et al., 2003]. For additional information on the SA and ESA construction algo-
rithms and their runtimes, refer to [Weese, 2013].

On the chosen text, the practical runtime of the wotd algorithm (LST) is in line with
that one of the DC7 algorithm (SA). The construction of the 𝑞-gram index directory adds
only 3% runtime over the plain SA construction, the FM-indices adds a 15–18% addi-
tional runtime, while the more involved ESA’s LCP and child tables add 36% overhead.
As expected, the FM-TL and FM-WT are the most compact data structures, while the LST
followed by the ESA are the most space inefϐicient ones.

3.3.2 Depth-ϐirst traversal bounded by depth

Before turning to proper string matching algorithms, I present a simple algorithm that
helps to comprehend subsequent backtracking algorithms. Algorithm 3.10 performs the
top-down traversal of a sufϐix trie in depth-ϐirst order. The traversal is bounded, i.e., after
reaching the nodes at depth 𝑑 it stops going down and goes right instead.

The experimental evaluation shown in ϐigure 3.9 provides a ϐirst glimpse onwhat are
the practical performances of various sufϐix trie implementations. As expected, the WT
FM-index is always slower than the TL FM-index. The 𝑞-gram index is never slower than
the SA alone, however the contribution of the 𝑞-gram directory becomes insigniϐicant for
deep traversals.

Algorithm 3.10 DċĘ(𝑣, 𝑑)
Input 𝑣 : iterator of 𝑆𝑇(𝑆)

𝑑 : integer bounding the traversal depth
1: if 𝑑 > 0
2: if ČĔDĔĜē(𝑣)
3: repeat
4: DċĘ(𝑣, 𝑑 − 1)
5: until ČĔRĎČčę(𝑣)

37

Figure 3.9: Runtime of the bounded depth-ϔirst traversal of various sufϔix trie implementa-
tions.

10 m

1

6 8 10 12 14 16
Depth

T
im
e
[s
]

Index

LST

ESA

SA

q-Gram

FM-WT

FM-TL

Depth 12 marks the turning point, as the indices become sparse. The TL FM-index
is the fastest index up to depth 10, while the 𝑞-gram index and the LST are the fastest
at depths 10–12. Below depth 12, the tree indices (ESA and LST) become signiϐicantly
faster than the trie indices (SA, 𝑞-gram and FM-indices). In particular, the FM-indices,
which are based on backward search, becomemore than one order of magnitude slower
than tree indices.

3.3.3 Exact string matching

I now give a simple algorithm performing exact string matching on a generic sufϐix trie.
In the following, I assume the text𝑇 to be indexing by its sufϐix trie 𝑆𝑇(𝑇). Algorithm3.11
searches the pattern 𝑃 by starting on the root node of 𝑆𝑇(𝑇) and following the path
spelling the pattern. If the search ends up in a node 𝑣, then each leaf 𝑖 below 𝑣 points
to a distinct sufϐix 𝑇௜ such that 𝑇௜…௜ା௠ equals 𝑃. If ČĔDĔĜē is implemented in constant
time and ĔĈĈĚėėĊēĈĊĘ in linear time, all occurrences of 𝑃 into 𝑇 are found in optimal
time 𝒪(𝑚 + 𝑜), where𝑚 is the length of 𝑃 and 𝑜 its number of occurrences in 𝑇.

Figure 3.10 shows the results of the experimental evaluation of algorithm 3.11. On
forward indices (LST, ESA, SA and 𝑞-gram index) the search time becomes practically
constant for patterns of length above 15, i.e., when the tree becomes sparse. Conversely,
on backward (FM) indices the practical search time stays linear in the pattern length.

The ESA and LST are never faster than the 𝑞-gram index despite their highermemory
consumption. The SA alone is at least 20% slower than the 𝑞-gram index, hence never
competitive. In particular, the SA shows a runtime peak for patterns of length 10, due to
the fact that binary search algorithms 3.1–3.2 convergemore slowly for shorter patterns.

Concerning FM-indices, the WT variant is almost twice as slow as the TL variant, as

38

Algorithm 3.11 EĝĆĈęSĊĆėĈč(𝑡, 𝑝)
Input 𝑡 : iterator of 𝑆𝑇(𝑇)

𝑝 : iterator of 𝑃
Output list of all occurrences of 𝑃 in 𝑇
1: if ĆęEēĉ(𝑝)
2: report ĔĈĈĚėėĊēĈĊĘ(𝑡)
3: else if ČĔDĔĜē(𝑡, ěĆđĚĊ(𝑝))
4: ČĔNĊĝę(𝑝)
5: EĝĆĈęSĊĆėĈč(𝑡, 𝑝)

the WT-based rank dictionary performs twice the number of random memory accesses
than the levels rankdictionary. Summingup, theTLFM-index is the fastest index tomatch
exact patterns within length 30, while the 𝑞-gram index is the fastest for patterns above
length 30.

3.3.4 Backtracking 𝑘-mismatches

I now give an algorithm that solves 𝑘-mismatches by backtracking a generic sufϐix trie.
The idea of backtracking a sufϐix tree has been ϐirst proposed in [Ukkonen, 1993]. Re-
cently, various popular bioinformatics tools, e.g. Bowtie [Langmead et al., 2009] and
BWA [Li and Durbin, 2009], adopted variations of this method in conjunction with an
FM-index. Yet, the idea dates back to more than twenty years ago.

Algorithm 3.12 performs a top-down traversal on the sufϐix trie 𝑆𝑇(𝑇), spelling in-

Figure 3.10: Runtime of exact string matching on various sufϔix trie implementations.

0 u

1 u

2 u

3 u

10 20 30 40 50
Pattern length

T
im
e
[s
]

Index

LST

ESA

SA

q-Gram

FM-WT

FM-TL

39

Algorithm 3.12 KMĎĘĒĆęĈčĊĘ(𝑡, 𝑝, 𝑘)
Input 𝑡 : iterator of 𝑆𝑇(𝑇)

𝑝 : iterator of 𝑃
𝑘 : integer bounding the number of mismatches

Output list of all occurrences of 𝑃 in 𝑇
1: if 𝑘 = 0
2: EĝĆĈęSĊĆėĈč(𝑡, 𝑝)
3: else
4: if ĆęEēĉ(𝑝)
5: report ĔĈĈĚėėĊēĈĊĘ(𝑡)
6: else if ČĔDĔĜē(𝑡)
7: repeat
8: 𝑑 ← 𝛿(đĆćĊđ(𝑡), ěĆđĚĊ(𝑝))
9: ČĔNĊĝę(𝑝)

10: KMĎĘĒĆęĈčĊĘ(𝑡, 𝑝, 𝑘 − 𝑑)
11: ČĔPėĊěĎĔĚĘ(𝑝)
12: until ČĔRĎČčę(𝑡)

crementally all distinct substrings of 𝑇. While traversing each branch of the trie, this al-
gorithm incrementally computes the distance between the query and the spelled string.
If the computed distance exceeds 𝑘, the traversal backtracks and proceeds on the next
branch. Conversely, if the pattern 𝑃 is completely spelled and the traversal ends up in a
node 𝑣, each leaf 𝑖 below 𝑣 points to a distinct sufϐix 𝑇௜ such that 𝑑ு(𝑇௜…௜ା௠, 𝑃) ≤ 𝑘.

Figure 3.11: Runtime of 1-mismatch search on various sufϔix trie implementations.

0 u

20 u

40 u

60 u

10 20 30 40 50
Pattern length

T
im
e
[s
]

Index

LST

ESA

SA

q-Gram

FM-WT

FM-TL

40

Figure 3.11 shows the results of the experimental evaluation of algorithm 3.12 for
𝑘 = 1. The TL FM-index is always faster than any other index: for instance, on patterns
of length 30, the SA is 3 times slower; even the 𝑞-gram index is 50% slower than the TL
FM-index. Despite their tree structure, ESA and LST are always slower than 𝑞-gram and
FM-indices.

On the TL FM-index, 1-approximate matching of patterns of length 30 is 16 times
slower than exact matching: on average, 1-approximate matching spends 21 microsec-
onds (𝜇𝑠), while exactmatching takes 1.3 𝜇𝑠. On the ESA, 1-approximatematching shows
a slow-downof24 times: 1-approximatematching spends40.8 𝜇𝑠, compared to the1.7 𝜇𝑠
for exact matching.

3.3.5 Multiple exact string matching

Before turning to multiple 𝑘-mismatches, I describe a simpler algorithm for multiple ex-
act string matching. In addition to the text 𝑇, multiple exact string matching provides
a collection of patterns ℙ. Hence, in addition to the sufϐix trie 𝑆𝑇(𝑇), algorithm 3.13
considers the trie 𝑅𝑇(ℙ). Algorithm 3.13 matches simultaneously in 𝑆𝑇(𝑇) all patterns
indexing in 𝑅𝑇(ℙ). The traversal performed by algorithm 3.13 visits pairs of nodes in
𝑆𝑇(𝑇) × 𝑅𝑇(ℙ) whose entering edges have the same label. Such traversal implicitly in-
tersects the two tries. However, algorithm 3.13 is not symmetric: 𝑆𝑇(𝑇) and 𝑅𝑇(ℙ) can-
not be interchanged. The traversal stops whenever it reaches a leaf node in 𝑅𝑇(ℙ) and
reports the occurrences pointed by all the leaves beneath the current node in 𝑆𝑇(𝑇).

The experimental evaluation compares algorithm3.13 (Multiple)with algorithm3.11
processing patterns in random order (Single) and in lexicographic order (Sorted). Fig-
ure 3.12 shows the results. These three methods ran on 10M patterns of length 30: run-
times shown in ϐigure 3.12 (histogram Single) correspond to runtimes shown in ϐigure
3.10 (plots at pattern length 15).

Algorithm 3.13MĚđęĎĕđĊEĝĆĈęSĊĆėĈč(𝑡, 𝑝)
Input 𝑡 : iterator of 𝑆𝑇(𝑇)

𝑝 : iterator of 𝑅𝑇(ℙ)
Output list of all occurrences of ℙ in 𝑇
1: if ĎĘLĊĆċ(𝑝)
2: report ĔĈĈĚėėĊēĈĊĘ(𝑡) × ĔĈĈĚėėĊēĈĊĘ(𝑝)
3: else
4: ČĔDĔĜē(𝑝)
5: repeat
6: if ČĔDĔĜē(𝑡, đĆćĊđ(𝑝))
7: MĚđęĎĕđĊEĝĆĈęSĊĆėĈč(𝑡, 𝑝)
8: ČĔUĕ(𝑡)
9: until ČĔRĎČčę(𝑝)

41

Figure3.12 shows that a simple lexicographical sort of thepatterns (histogramSorted)
speeds up algorithm3.11 on the SA andESAby a factor of 2. The same trick does not yield
a signiϐicant speed-up on FM-indices nor on the 𝑞-gram index, as the 𝑞-gram directory
already provides a cache local access pattern.

Algorithm3.13 (histogramMultiple) further reduces the traversal time. Nonetheless,
its runtime is dominated by the additional preprocessing time paid to construct the trie
of the patterns. This algorithm becomes more useful as a primitive within the multiple
𝑘-mismatches algorithm, presented in the following section.

3.3.6 Multiple 𝑘-mismatches

Algorithm 3.14 is the straightforward generalization of algorithm 3.13 to 𝑘-mismatches.
The algorithm receives a collection of patterns ℙ and performs backtracking on 𝕋 as in
algorithm 3.12, this time using the associated trie ℙ.

The experimental evaluation compares algorithm3.14 (Multiple)with algorithm3.12
processing patterns in random order (Single) and in lexicographic order (Sorted). All
threemethods ran on 10Mpatterns of length 30, with 𝑘 ϐixed to 1. Thus, runtimes shown
in ϐigure 3.13 (histogram Single) correspond to runtimes shown in ϐigure 3.11 (plots at
pattern length 30).

Algorithm 3.12 on lexicographically sorted patterns (histogram Sorted) is faster by
a factor of 2 or more, on all indices. The time to sort the patterns becomes insigniϐicant

Algorithm 3.14MĚđęĎĕđĊKMĎĘĒĆęĈčĊĘ(𝑡, 𝑝, 𝑘)
Input 𝑡 : iterator of 𝑆𝑇(𝑇)

𝑝 : iterator of 𝑅𝑇(ℙ)
𝑘 : integer bounding the number of mismatches

Output list of all occurrences of ℙ in 𝑇
1: if 𝑘 = 0
2: MĚđęĎĕđĊEĝĆĈęSĊĆėĈč(𝑡, 𝑝)
3: else
4: if ĎĘLĊĆċ(𝑝)
5: report ĔĈĈĚėėĊēĈĊĘ(𝑡) × ĔĈĈĚėėĊēĈĊĘ(𝑝)
6: else if ČĔDĔĜē(𝑡)
7: repeat
8: ČĔDĔĜē(𝑝)
9: repeat

10: 𝑑 ← 𝛿(đĆćĊđ(𝑡), đĆćĊđ(𝑝))
11: MĚđęĎĕđĊKMĎĘĒĆęĈčĊĘ(𝑡, 𝑝, 𝑘 − 𝑑)
12: until ČĔRĎČčę(𝑝)
13: ČĔUĕ(𝑝)
14: until ČĔRĎČčę(𝑡)

42

Figure 3.12: Runtime of multiple exact string matching on various sufϔix trie implementa-
tions. Pattern length is ϔixed to 15. Preprocessing times are shown in black.

0 u

0.5 u

1 u

1.5 u

Single Sorted Multiple
Algorithm

A
ve
ra
ge
 ti
m
e
pe
r
pa
tt
er
n
[s
]

Index

LST

ESA

SA

q-Gram

FM-WT

FM-TL

compared to the traversal time. Algorithm 3.13 (histogram Multiple) reduces traversal
time by a factor of 4–5 on LST, ESA, and SA. Thus, the time to construct the trie of the
patterns is easily justiϐied. In practice, algorithm 3.13 ϐills the gap between the runtime
of the SA and the 𝑞-gram index. Surprisingly, algorithm 3.13 increases traversal time on
FM-indices.

Figure 3.13: Runtime of multiple 1-mismatch on various sufϔix trie implementations. Pat-
tern length is ϔixed to 30. Preprocessing times are shown in black.

0 u

20 u

40 u

60 u

Single Sorted Multiple
Algorithm

A
ve
ra
ge
 ti
m
e
pe
r
pa
tt
er
n
[s
]

Index

LST

ESA

SA

q-Gram

FM-WT

FM-TL

43

Figure 3.14: Speed-up of multiple 1-mismatch by number of patterns on the SA. Pattern
length is ϔixed to 30. Traversal times without preprocessing are shown by
dashed lines.

20 u

40 u

60 u

10k 100k 1M 10M
Patterns

A
ve
ra
ge
 ti
m
e
pe
r
pa
tt
er
n
[s
]

Algorithm

Single

Sorted

Multiple

This algorithms works according to a cache-friendly memory access pattern, which
holds for forward searchbut not for backward search. Using forward search, the traversal
of a sufϐix trie becomes less expensive as it proceeds towards bottom nodes. Indeed,

Figure 3.15: Speed-up of multiple 1-mismatch by number of patterns on the TL FM-Index.
Pattern length is ϔixed to 30. Traversal timeswithout preprocessing are shown
by dashed lines.

15 u

20 u

25 u

10k 100k 1M 10M
Patterns

A
ve
ra
ge
 ti
m
e
pe
r
pa
tt
er
n
[s
]

Algorithm

Single

Sorted

Multiple

44

traversal towards a child node involves the computation of a subinterval of the current
sufϐix array interval; such computation accesses memory locations within the current
interval, having good chances to be in the cache. Conversely, using backward search, the
traversal becomesmore expensive as it proceeds deeper in the trie; traversal downwards
involves the computation of intervals outside of the current one, unlikely to be in the
cache as they are accessed less often than top intervals. Multiple backtracking factorizes
the traversal of top nodes, thus it pays off with forward search rather thanwith backward
search.

Figure 3.14 shows the average runtime of the three approaches on the SA by varying
the number of patterns. While the average runtime of the singlemethod is constant, both
multiple methods clearly beneϐit from receiving a higher number of patterns. In particu-
lar, methodMultiple is constantly faster than Sorted, and the runtime gap increases with
the number of patterns. The speed-up of multiple methods slowly decreases, though
there is still some space of improvement with more than 10 M patterns.

Figure 3.15 presents the same evaluation of ϐigure 3.14, but for the TL FM-index. Mul-
tiple methods exhibit again decreasing average runtimes by number of patterns. How-
ever, here method Sorted is constantly faster than Multiple, but the runtime gap de-
creases with the number of patterns. Moreover, the speed-up of both multiple methods
slowly increases with the number of patterns instead of decreasing.

CčĆĕęĊė

4 Filtering methods

In this chapter, I present various ϐiltering methods for approximate string matching. I
consider two classes of ϐiltering methods: those based on seeds and those based on 𝑞-
grams. Filters of the former class partition the pattern into non-overlapping factors called
seeds, while ϐilters of the latter class consider all overlapping substrings of the pattern
having length 𝑞, the so-called 𝑞-grams. Both classes include various combinatorial ϐil-
tering methods of increasing speciϐicity and complexity; all methods provide ϐiltration
schemes with guarantees on ϐiltration sensitivity.

I present two seed ϐiltering methods: exact seeds [Baeza-Yates and Perleberg, 1992]
and approximate seeds [Myers, 1994; Navarro and Baeza-Yates, 2000]. Exact seeds par-
tition the pattern in 𝑘 + 1 non-overlapping seeds to be searched exactly in the text. Ap-
proximate seeds increase ϐiltration speciϐicity by factorizing the pattern in less than 𝑘+1
non-overlapping seeds to be searched within a distance threshold smaller than 𝑘.

I present the following 𝑞-gram ϐiltering methods: contiguous 𝑞-grams [Jokinen and
Ukkonen, 1991], gapped𝑞-grams [Burkhardt andKärkkäinen, 2001] andmultiple gapped
𝑞-grams (also called 𝑞-gram families) [Kucherov et al., 2005]. Contiguous 𝑞-grams rely
on counting arguments to ϐilter out text regions containing less than a given threshold
of 𝑞-gram occurrences. Gapped 𝑞-grams introduce don’t care positions to lower the cor-
relation between occurrences of consecutive 𝑞-grams. Multiple gapped 𝑞-grams adopt
multiple patterns of don’t care positions to further increase ϐiltration speciϐicity.

It will become clear through this chapter that seed ϐilters are more practical, ϐlexible,
straightforward to design and implement than 𝑞-gram ϐilters. All seed ϐilters provide
full-sensitive ϐiltration schemes for the 𝑘-differences problem, while (multiple) gapped
𝑞-grams only for 𝑘-mismatches. The design of highly speciϐic yet full-sensitive ϐiltration
schemes for 𝑞-gram ϐilters is combinatorially hard, while it is quite straightforward for
seed ϐilters. Also implementation-wise, 𝑞-gram ϐilters aremore involved than seeds ϐilter.
In fact, seed ϐilters lend themselveswell to bothonline andofϐline variants of theproblem,
while 𝑞-gram ϐilters are better suited for the online variant. Finally, the experimental
evaluation shows that seed ϐilters outperform 𝑞-gram ϐilters for most practical inputs.
For these reasons, I design the applications of chapters 6 and 7 around seed ϐiltering
methods.

46

4.1 Exact seeds

Filtration with exact seeds is one of the naïvest ϐiltering methods for approximate string
matching. I ϐirst explain the underlying combinatorial principle, then I discuss imple-
mentation details and lastly give some insights on the efϐiciency of this method.

4.1.1 Principle

I consider the case of two arbitrary strings𝑋, 𝑌within edit distance 𝑘. The generalization
to 𝑘-differences is straightforward.

Lemma 4.1 (Exact seeds). Let 𝑋, 𝑌 be two strings s.t. 𝑑ா(𝑋, 𝑌) = 𝑘. If 𝑌 is partitioned
w.l.o.g. into 𝑘 + 1 non-overlapping seeds, then at least one seed occurs as a factor of 𝑋
[Baeza-Yates and Perleberg, 1992].

It is immediate to see that any edit distance error can cover at most one seed. There-
fore, at least one seed of 𝑌 will not be covered by any seed and hence occur as a factor of
𝑋. Figure 4.1 shows an example.

This ϐiltering method reduces the approximate search into multiple smaller exact
searches. It solves 𝑘-differences by partitioning the pattern into 𝑘 + 1 seeds, search-
ing all seeds in the text, and verifying a text window around each occurrence of any seed
in the text. As lemma 4.1 is valid for any substring of the text within distance 𝑘 from the
pattern, this method ϐinds all approximate occurrences of the pattern in the text.

4.1.2 Efϐiciency

Theefϐiciencyof thismethod stronglydependson thenumberof veriϐications. It is straight-
forward to derive the expected number of veriϐications under the assumption of the text
being generated according to the uniform Bernoulli model. I introduce the random vari-
able 𝐶, counting the number of occurrences of a word in a text. The emission probability
of any symbol in Σ is 𝑝 = 1/𝜎 and under i.i.d. assumptions the emission (and occurrence)
probability of any word of length 𝑞 is simply

Pr[𝐶 > 0] = 1
𝜎௤ (4.1)

Figure 4.1: Filtration with 6 exact seeds solves 5-differences. In the illustration, pattern 𝑃
occurs in text 𝑇 at edit distance 5. The seed in grey is not covered by any error
and thus preserved.

.. G.

G

.
M

. C.

C

.
M

. T.

T

.
M

. N.

A

.
R

. T.

T

.
M

. G.

G

.
M

. G.

−

.
D

. G.

G

.
M

. C.

C

.
M

. A.

A

.
M

. T.

T

.
M

. T.

T

.
M

. A.

G

.
R

. T.

T

.
M

. G.

G

.
M

. G.

G

.
M

. C.

C

.
M

.
−

.

C

.
I

. C.

C

.
M

. A.

A

.
M

. T.

T

.
M

. T.

T

.
M

. T.

T

.
M

. T.

A

.
R

. T.

T

.
M

..𝑃 .

𝑇

..............................

47

thus the expected number of occurrences of a seed of length 𝑞 in a text of length 𝑛 is

𝐸[𝐶] =
௡ି௤

෍
௜ୀ଴

Pr[𝐶 > 0] = 𝑛 − 𝑞 + 1
𝜎௤ ≤ 𝑛

𝜎௤ . (4.2)

Lemma4.1 requires to partition the pattern into 𝑘+1 seeds but leaves the freedom to
choose their length. This leads to the problem of ϐinding an optimal pattern partitioning
that minimizes the expected number of veriϐications. I ϐix¹ the length of all seeds to be

𝑞 = ඌ 𝑚
𝑘 + 1ඐ (4.3)

to minimize the expected number of occurrences of any seed. Under these conditions,
the expected number of veriϐications produced by ϐiltration with exact seeds is

𝐸[𝑉] = 𝐸[𝐶] ⋅ (𝑘 + 1) < 𝑛(𝑘 + 1)
𝜎௤ . (4.4)

Nonetheless, inputs of practical interest like genomes and natural texts do not ϐit well the
uniform Bernoulli model. On those texts, uniform seed length often leads to suboptimal
ϐiltration.

4.2 Approximate seeds

The simple analysis of section 4.1.2 shows that ϐiltration speciϐicity is strongly correlated
to the seed length. Therefore, the crux of designing a stronger ϐilter lies into increasing
the seed length while respecting full-sensitivity constraints. Myers [1994], subsequently
followed by Navarro and Baeza-Yates [2000], proposed approximate seeds as a practical
and effective generalization of exact seeds that yield stronger ϐilters for 𝑘-differences.
The key idea of ϐiltration with approximate seeds is to reduce the approximate search
into smaller approximate searches, as opposed to ϐiltrationwith exact seeds that reduces
the approximate search into smaller exact searches.

4.2.1 Principle

Again, I start by considering two arbitrary strings 𝑋, 𝑌 within edit distance 𝑘. The result
then holds for any substring of the text within distance 𝑘 from the pattern.

Lemma 4.2 (Approximate seeds). Let 𝑋, 𝑌 be two strings s.t. 𝑑ா(𝑋, 𝑌) = 𝑘. If 𝑌 is parti-
tioned w.l.o.g. into 𝑠 non-overlapping seeds s.t. 1 ≤ 𝑠 ≤ 𝑘+1, then at least one seed occurs
as a factor of 𝑋 within distance ⌊𝑘/𝑠⌋ [Myers, 1994; Navarro and Baeza-Yates, 2000].

To prove full-sensitivity it sufϐices to see that, if none of the seeds occurs within its
assigned distance, the total distance must be greater than 𝑠 ⋅ ⌊𝑘/𝑠⌋ = 𝑘. Figure 4.2 illus-
trates.

¹ For simplicity I ignore that some seed could have length ඃ ௠
௞ାଵ ඇ.

48

Figure 4.2: Filtration with approximate seeds. A ϔiltration scheme with thresholds 𝑇 =
(1, 1, 1) solves 5-difference. In the illustration, pattern 𝑃 occurs in text 𝑇 at edit
distance 5. The seed in grey is covered only by one error and thus preserved.

.. G.

G

.
M

. C.

C

.
M

. T.

T

.
M

. N.

A

.
R

. T.

T

.
M

. G.

G

.
M

. G.

−

.
D

. G.

G

.
M

. C.

C

.
M

. A.

A

.
M

. T.

T

.
M

. T.

T

.
M

. A.

G

.
R

. T.

T

.
M

. G.

G

.
M

. G.

G

.
M

. C.

C

.
M

.
−

.

C

.
I

. C.

C

.
M

. A.

A

.
M

. T.

T

.
M

. T.

T

.
M

. T.

T

.
M

. T.

A

.
R

. T.

T

.
M

..𝑃 .

𝑇

...........................

4.2.2 Filtration schemes

Approximate seeds provide ϐiltration schemes of variable speciϐicity. The fastest but
weakest ϐiltration scheme is given by 𝑠 = 𝑘 + 1, while the most speciϐic ϐiltration is
obtained for 𝑠 = 1, i.e., perfect ϐiltration scheme without any veriϐication step. Alterna-
tively, ϐiltration speciϐicity is controlled by acting on the minimum seed length 𝑞. Fixing
𝑞 yields 𝑠 = ⌊𝑚/𝑞⌋, or vice versa, ϐixing the number of seeds 𝑠 gives 𝑞 = ⌊𝑚/𝑠⌋. Filtration
speciϐicity is expected to increase with seed length.

Lemma 4.2 assigns the same distance threshold to all seeds, yet this is not obligatory.
Hence, I give a more general deϐinition of ϔiltration scheme for approximate seeds.

Deϐinition 4.1 (Filtration scheme). A seeds ϐiltration scheme is an integer vector 𝑇 =
(𝑡଴, … , 𝑡௦ିଵ), where integer 𝑡௜ ∈ ℕ଴ represents the threshold assigned to the 𝑖-th seed.

Lemma 4.3. Any ϔiltration scheme 𝑇 = (𝑡଴, … , 𝑡௦ିଵ) s.t.

𝑠 +
௦ିଵ

෍
௜ୀ଴

𝑡௜ > 𝑘 (4.5)

is full-sensitive for 𝑘-differences (and 𝑘-mismatches).

Example 4.1. The ϐiltration schemes (0, 0, 0, 0, 0), (1, 1, 0), (2, 1), (4) are full-sensitive for
4-differences. For instance, given a pattern of length𝑚 = 100, according to equation 4.3,
𝑞 is respectively 20, 33, 50, 100.

How to choose a good ϐiltration scheme in practice? Both Myers [1994] and Navarro
and Baeza-Yates [2000] carried out involved analysis to estimate the optimal parameter-
ization. Navarro and Baeza-Yates ϐind out that a number of seeds 𝑠 = Θ(𝑚/ logఙ 𝑛) yields
an overall time complexity sublinear for an error rate 𝜖 < 1 − 𝑒/√𝜎. Myers reports an
analogous sublinear time when 𝑞 = Θ(logఙ 𝑛) is the seed length. Yet, these results do
not necessarily translate into optimal ϐiltration schemes in practice. The parameteriza-
tion depends on the full-text index, the veriϐication algorithm, the statistical properties
of the text. Missing the optimal number of seeds by one often results in a runtime penalty
of an order of magnitude.

49

Having established the number of seeds, or their length, thresholds have to be as-
signed. Lemma 4.3 allows to assign arbitrary distance thresholds. In practice, it is conve-
nient to distribute distance thresholds evenly, as seeds with the highest threshold dom-
inate the overall ϐiltration time. The most strict threshold assignment is to give distance
⌊𝑘/𝑠⌋ to (𝑘 mod 𝑠) + 1 seeds and distance ⌊𝑘/𝑠⌋ − 1 to the remaining seeds [Siragusa
et al., 2013a].

4.3 Contiguous 𝑞-grams

𝑞-Gram ϐilters rely on counting arguments to ϐilter out text regions containing less than a
given threshold of 𝑞-gram occurrences. The ϐirst 𝑞-gram counting ϐilter for approximate
stringmatching has been proposed in [Jokinen andUkkonen, 1991]. Filters formore gen-
eral alignment problems have been proposed and implemented in QUASAR [Burkhardt
et al., 1999], SWIFT [Rasmussen et al., 2006] and STELLAR [Kehr et al., 2011].

4.3.1 Principle

The counting argument of contiguous 𝑞-gram ϐilters is based on 𝑞-gram similarity: the
number of substrings of length 𝑞 common to two given strings. The following lemma re-
lates 𝑞-gram similarity to edit distance, by giving a lower bound on the 𝑞-gram similarity
of any two strings 𝑋, 𝑌 within edit distance 𝑘. As for seed ϐilters, this result then easily
translates to 𝑘-differences.
Lemma 4.4 (The 𝑞-gram lemma). Let 𝑋, 𝑌 be two strings s.t. 𝑑ா(𝑋, 𝑌) = 𝑘 and assume
w.l.o.g. |𝑋| ≤ |𝑌| and |𝑋| = 𝑚. Then 𝑋 and 𝑌 have 𝑞-gram similarity 𝜏௤(𝑚, 𝑘) ≥ 𝑚 − 𝑞 +
1 − 𝑘𝑞 [Jokinen and Ukkonen, 1991].

The ϐirst part of the threshold function 𝜏௤ counts the number of 𝑞-grams of 𝑋 (i.e.,
𝑚− 𝑞 + 1), while the second part counts howmany 𝑞-grams can be covered by 𝑘 errors
(i.e., at most 𝑞 per error, hence 𝑘𝑞 in total). The position of errors in the transcript solely
determineswhich𝑞-gramoccurrences are affectedorpreserved. The𝑞-gram lemmacon-
siders one worst case positioning of the errors that minimizes the threshold. Figure 4.3
exempliϐies.

4.3.2 Filtration schemes

I denote by a pair (𝑞, 𝑡) the ϐiltration scheme counting 𝑞-gramswith threshold 𝑡. Accord-
ing to lemma 4.4, if 𝑡 = 𝜏௤(𝑚, 𝑘) ≥ 1, then (𝑞, 𝑡) is full-sensitive for any 𝑘-differences
instance where |𝑃| = 𝑚. In this case, I say that (𝑞, 𝑡) solves instance (𝑚, 𝑘).

The following question arises: which is the longest 𝑞-gram solving instance (𝑚, 𝑘)?
In order to satisfy lemma 4.4, the 𝑞-gram thresholdmust be greater than zero, i.e., it must
hold 𝜏௤(𝑚, 𝑘) ≥ 1. Thus, by substituting 𝜏௤(𝑚, 𝑘), it follows that the 𝑞-gram length must
be 𝑞 ≤ උ ௠

௞ାଵ ඏ, analogously to seed ϐilters (see equation 4.3).
However, the longest𝑞-gramdoesnot yield always themost speciϐic ϐiltration scheme.

For instance, a threshold of 1 completely discards the counting argument of lemma 4.4

50

Figure 4.3: Filtration with contiguous 𝑞-grams. A ϔiltration scheme (𝑞, 𝑡) = (4, 2) solves
the instance (25, 5). In the illustration, pattern 𝑃 of length 25 occurs in text
𝑇 at edit distance 5. In this worst-case positioning of the errors, the two grey
𝑞-grams are preserved.

..

G

.

G

.
M

.

C

.

C

.
M

.

T

.

T

.
M

.

N

.

A

.
R

.

T

.

T

.
M

.

G

.

G

.
M

.

G

.

G

.
M

.

G

.

−

.
D

.

C

.

C

.
M

.

A

.

A

.
M

.

T

.

T

.
M

.

A

.

G

.
R

.

T

.

T

.
M

.

T

.

T

.
M

.

G

.

G

.
M

.

A

.

G

.
R

.

G

.

C

.
M

.

C

.

C

.
M

.

C

.

C

.
M

.

G

.

A

.
R

.

T

.

T

.
M

.

T

.

T

.
M

.

T

.

T

.
M

.

A

.

A

.
M

.

T

.

T

.
M

..

𝑃

.

𝑇

..

and makes ϐiltration very unspeciϐic in practice. Hence, on certain (𝑚, 𝑘) instances, ϐil-
tration schemes with non-optimal 𝑞-gram length yield more speciϐic ϐiltration. Example
4.2 shows alternative ϐiltration schemes solving a given (𝑚, 𝑘) instance.

Example 4.2. The following (𝑞, 𝑡) ϐiltration schemes solve (100, 4)-differences: (20, 1),
(19, 6), (18, 11).

4.3.3 Bucketing

Filtration with 𝑞-grams requires bucketing the text in windows, in order to apply the
counting argument of lemma 4.4. Buckets are obtained by subdividing the implicit DP
matrix in parallelograms and projecting them on the text. Figure 4.4 illustrates this con-
cept: any approximate occurrence of the pattern in the text spans atmost𝑘 diagonals and
is thus enclosed inside a parallelogramofwidth 𝑘+1 [Rasmussen et al., 2006]. Hence the
projection of any text bucket has length 2𝑘 + 1 and any occurrence has length between
𝑚−𝑘 and𝑚+𝑘. The implementations described in [Rasmussen et al., 2006; Kehr et al.,
2011;Weese et al., 2009] usemore efϐicient bucketing strategieswith larger, overlapping
parallelograms.

This method lends itself to work in a multiple online fashion rather than ofϐline. The
ϐiltration stage scans the text and counts howmany 𝑞-grams of each pattern fall into each
parallelogram bucket. As long as the ϐilter scans the text, it remembers only the buckets
that span the patterns’ lengths. The veriϐication stage then veriϐies only those parallelo-
grams exceeding threshold 𝑡. Conversely, the program QUASAR [Burkhardt et al., 1999]
uses a 𝑞-gram index of the text to speed up the ϐiltration phase. Such implementation
requires morememory, as it must bucket the whole text and keep the text index in mem-
ory.

4.4 Gapped 𝑞-grams

Califano and Rigoutsos [1993] ϐirst introduced gapped 𝑞-grams in sequence analysis.
Since then, a surprisingly high number of research papers have been published on this

51

Figure 4.4: Parallelogram buckets. Picture from [Weese et al., 2009].

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

6 8 43

T

p

t
A ACAT TGACCGACAGT T TG C

C
A
G
T
C
C
G
A
C
A
A
G
T
T
T

A

AA C TGA T

M

M

M I I

M

R

M

M

M

M

M

M

D

M

M

M

M

ACA

counters

M

M

M

M

M

M

M

M

M

M

M

M

M
M

M

M

M

M

M

M

topic (see [Brown, 2008] for a survey). Almost all of them focus on lossy ϐiltration for
homology search, rather than full-sensitive ϐiltration for approximate string matching.
Here, I consider gapped 𝑞-grams only in the context of full-sensitive ϐiltration for 𝑘-mis-
matches. This case has been ϐirst considered by Burkhardt and Kärkkäinen [2001].

4.4.1 Principle

Gapped 𝑞-grams introduce ϐixed don’t care positions where text and pattern characters
are ignored. A comparison between ϐigures 4.3 and 4.5 illustrates the advantage of such
don’t care positions. While in ϐigure 4.3 an error in a transcript affects (at most) a clus-
ter of 𝑞 consecutive 𝑞-gram occurrences, in ϐigure 4.5 a mismatch does not affect those
gapped 𝑞-gram occurrences that ignore its position. This fact relaxes the full-sensitivity
threshold and opens the door to more speciϐic ϐiltration schemes for 𝑘-mismatches.

The counting argumentof gapped𝑞-gramsgeneralizes𝑞-gramsimilarity (section4.3)
from substrings to subsequences, i.e., from contiguous to non-contiguous sequences of
symbols. Filtration with gapped 𝑞-grams indeed counts the number of subsequences of
length 𝑞 common to two strings. An additional set𝑄 determineswhich symbols are taken
in the subsequences. The formal deϐinition of gapped 𝑞-gram follows.

Deϐinition 4.2 (𝑄-gram). A gapped 𝑞-gram (abbreviated as 𝑄-gram) is a ϐinite sequence
𝑄 of natural numbers starting with the unit element, i.e., 𝑄 ⊂ ℕ଴ and 0 ∈ 𝑄. The length
|𝑄| is called the weight of 𝑄 and denoted as 𝑤(𝑄). The value 1 + max𝑄 is named span
and it is indicated by 𝑠(𝑄).

52

Figure 4.5: Filtration with gapped 𝑞-grams. A ϔiltration scheme (𝑄, 𝑡) = ({0, 2, 3, 4}, 3)
solves instance (25, 5). In the illustration, pattern 𝑃 of length 25 occurs in text
𝑇 at edit distance 5. The three𝑞-grams in grey are not covered by anymismatch.

..

G

.

G

.
1

.

C

.

C

.
1

.

T

.

T

.
1

.

T

.

T

.
1

.

N

.

A

.
0

.

G

.

G

.
1

.

T

.

T

.
1

.

G

.

G

.
1

.

C

.

C

.
1

.

G

.

A

.
0

.

T

.

T

.
1

.

A

.

A

.
1

.

T

.

T

.
1

.

T

.

T

.
1

.

A

.

G

.
0

.

A

.

A

.
1

.

G

.

C

.
1

.

C

.

C

.
1

.

C

.

C

.
1

.

G

.

A

.
0

.

T

.

T

.
1

.

T

.

T

.
1

.

A

.

T

.
0

.

A

.

A

.
1

.

T

.

T

.
1

..

𝑃

.

𝑇

...

Figure 4.5 shows an example of 𝑄-gram. As in lemma 4.4, the threshold for 𝑄-grams
still depends on the worst-case positioning of the errors in the transcript, which in turn
depends on parameters (𝑚, 𝑘). Thus, I still consider ϐiltration schemes (𝑄, 𝑡) solving a
(𝑚, 𝑘) instance. However, contrary to contiguous 𝑞-grams, function 𝜏ொ now gives only a
lower bound to the full-sensitivity threshold.

4.4.2 Filtration schemes

Which is the most speciϐic ϐiltration scheme (𝑄, 𝑡) solving a given instance (𝑚, 𝑘)? This
question turns out to be surprisingly hard to answer. As discussed in section 4.3.2, the
most speciϐic ϐiltration schemes for contiguous 𝑞-grams are easily found. The choice falls
on a few values of 𝑞 that are close to the maximum and do not yield a threshold too close
to 1. Conversely, such a choice is non-trivial for 𝑄-grams, as the search space of 𝑄 is
exponentially large in the span 𝑠(𝑄) and a full-sensitivity threshold for arbitrary𝑄-grams
is hard to compute. In addition, it is not easy to determine which ϐiltration scheme is the
most speciϐic one in a set of full-sensitive candidates.

Given a 𝑄-gram, I consider the following problems:

FĚđđ SĊēĘĎęĎěĎęĞ Does ϐiltration scheme (𝑄, 1) solve instance (𝑚, 𝑘)?
OĕęĎĒĆđ TčėĊĘčĔđĉ Which is the optimal threshold 𝑡∗ s.t. (𝑄, 𝑡∗) solves (𝑚, 𝑘)?

SĕĊĈĎċĎĈĎęĞ Which is the expected speciϐicity of scheme (𝑄, 𝑡)?

Nicolas and Rivals [2005] considered the decision problem FĚđđ SĊēĘĎęĎěĎęĞ associ-
ated toOĕęĎĒĆđTčėĊĘčĔđĉ. FĚđđ SĊēĘĎęĎěĎęĞ is easy for contiguous𝑞-grams, i.e., the an-
swer is no iff 𝜏௤(𝑚, 𝑘) = 0. Nicolas and Rivals show, by performing an indirect reduction
fromEĝĆĈę CĔěĊė ćĞ 3-SĊęĘ, that FĚđđ SĊēĘĎęĎěĎęĞ is stronglyNP-complete for arbitrary
𝑄-grams. Strong NP-completeness implies that no fully polynomial-time approximation
scheme (FPTAS) nor any pseudo-polynomial algorithm for FĚđđ SĊēĘĎęĎěĎęĞ exist, under
the assumption that 𝑃 ≠ 𝑁𝑃.

Burkhardt and Kärkkäinen [2001] ϐirst considered the optimization problem OĕęĎ-
ĒĆđ TčėĊĘčĔđĉ. They give a DP algorithm solving OĕęĎĒĆđ TčėĊĘčĔđĉ in time 𝒪(𝑚 ⋅ 𝑘 ⋅

53

2௦(ொ)) for any 𝑄-gram. Subsequently, they use their DP algorithm to explore the search
space of full-sensitive 𝑄-grams for some speciϐic instances of (𝑚, 𝑘). They reduce the
search space using a branch-and-bound algorithm based on the observation that:

𝑄ଵ ⊆ 𝑄ଶ ⟺ 𝜏ொభ(𝑚, 𝑘) ≥ 𝜏ொమ(𝑚, 𝑘). (4.6)
Finally, Burkhardt and Kärkkäinen guess the most speciϐic ϐiltration scheme (𝑄, 𝑡) by
computing, again via branch-and-bound, the minimum number of characters covered by
𝑡 distinct 𝑄-gram occurrences (MĎēĎĒĚĒ CĔěĊėĆČĊ criterion).

I propose alternative algorithms for the design of𝑄-gram ϐiltration schemes. I give an
integer linear program (ILP) that solves exactly OĕęĎĒĆđ TčėĊĘčĔđĉ and it is orders of
magnitude quicker than the DP algorithm from [Burkhardt and Kärkkäinen, 2001] (see
table 4.2). Afterwards, I give a simple polynomial time approximation algorithm for Oĕ-
ęĎĒĆđ TčėĊĘčĔđĉ usable as an additional search space ϐilter to quickly discard lossy 𝑄-
grams and eventually providing good ILP starting points. Finally, I propose a randomized
algorithm to estimate in polynomial time the speciϐicity of a ϐiltration scheme, instead of
using the MĎēĎĒĚĒ CĔěĊėĆČĊ criterion.

Having said that, I havenopractical interest intodesigning𝑄-gram ϐiltration schemes.
On the one hand, almost all HTS applications require methods that solve 𝑘-differences in
order to detect indels. On the other hand, the experimental evaluation of section 4.5
shows that 𝑄-gram ϐilters are not better than approximate seeds ϐilters. Therefore, I do
not need these algorithms in the applications presented in chapters 6 and 7.

4.4.3 Full sensitivity

I start by modeling the decision problem FĚđđ SĊēĘĎęĎěĎęĞ before turning to the opti-
mization problem OĕęĎĒĆđ TčėĊĘčĔđĉ. I consider any Hamming distance transcript
over {R, M} as an 𝑚-dimensional vector 𝑋 = (𝑥଴, … 𝑥௠ିଵ) over 𝔹 = {0, 1}. I denote by
𝔹௠
௞ ⊂ 𝔹௠ the set containing all transcripts 𝑋 of length𝑚 whose Hamming distance is 𝑘.

Deϐinition 4.3. A 𝑄-gram occurs at position 𝑖 in transcript 𝑋 iff ∀𝑗 ∈ 𝑄 𝑥௜ା௝ = 1.
Deϐinition 4.4. A ϐiltration scheme (𝑄, 𝑡) detects transcript 𝑋 iff the 𝑄-gram occurs at
least 𝑡 times in 𝑋.

I introduce a boolean function to characterize the set of transcripts detected by a ϐil-
tration schemeof the form (𝑄, 1). Let𝑇௠ொ ∶ 𝔹௠ → 𝔹denote theboolean function such that
𝑇௠ொ (𝑋) is true iff the 𝑄-gram occurs in a transcript 𝑋 of length 𝑚. I deϐine such boolean
function as the disjunction

𝑇௠ொ (𝑋) =
௠ି௦(ொ)

ሧ
௜ୀ଴

ሥ
௝∈ொ

𝑥௜ା௝ (4.7)

where each clause of 𝑇௠ொ represents a single possible occurrence of 𝑄 in 𝑋. According to
deϐinition 4.4, ϐiltration scheme (𝑄, 𝑡) detects 𝑋 iff 𝑋 satisϐies at least 𝑡 clauses of 𝑇௠ொ .
Problem 4.1 (FĚđđ SĊēĘĎęĎěĎęĞ)
Instance A 𝑄-gram, an (𝑚, 𝑘) instance.
Question ∃𝑋 ∈ 𝔹௠

௞ s.t. 𝑇௠ொ (𝑋) = 0?

54

4.4.4 Optimal threshold

I now consider the pseudo-boolean function, counterpart of function 4.7, that associates a
ϐiltration threshold to any transcript. Let the function 𝑡௠ொ ∶ 𝔹௠ → ℕ଴ be the boolean func-
tion𝑇௠ொ acting onℕ଴. Here, 𝑡௠ொ (𝑋) counts howmany times a𝑄-gramoccurs in a transcript
𝑋 of length𝑚. I deϐine such pseudo-boolean function as

𝑡௠ொ (𝑋) =
௠ି௦(ொ)

෍
௜ୀ଴

ෑ
௝∈ொ

𝑥௜ା௝ (4.8)

The formal deϐinition of OĕęĎĒĆđ TčėĊĘčĔđĉ follows.
Problem 4.2 (OĕęĎĒĆđ TčėĊĘčĔđĉ)
Instance A 𝑄-gram, an (𝑚, 𝑘) instance.
Solution min 𝑡௠ொ (𝑋) subject to 𝑋 ∈ 𝔹௠

௞

Exact solution

The key to formulate problem 4.2 as an ILP is to rewrite function 𝑡௠ொ as a linear combi-
nation of boolean variables. I start by representing function 𝑡௠ொ using a boolean vector
𝑇 of size𝑚 − 𝑠(𝑄) + 1, where each 𝑡௜ indicates the truthfulness of the 𝑖-th clause (con-
straint 4.10). In addition, I represent any Hamming transcript by a boolean vector 𝑋:
each 𝑥௝ is subject to an integer linear constraint s.t. the Hamming distance of 𝑋 is within
𝑘 (constraint 4.11). This leads to the following non-linear formulation

min෍𝑡௜ (4.9)

subject to 𝑇 ∈ 𝔹௠ି௦(ொ)ାଵ (4.10)
𝑋 ∈ 𝔹௠

௞ (4.11)

𝑡௜ ≥ෑ
௝∈ொ

𝑥௜ା௝ ∀0 ≤ 𝑖 ≤ 𝑚 − 𝑠(𝑄) (4.12)

Using de Morgan’s law, I rewrite inequality 4.12 as

𝑡௜ ≤෍
௝∈ொ

𝑥௜ା௝ . (4.13)

Thus, for convenience, I consider vectors 𝑇 and 𝑋 in negated form; this involves negating
boolean constraints 4.11–4.10 and maximizing objective function 4.9.

The following ILP solves OĕęĎĒĆđ TčėĊĘčĔđĉ:

max෍𝑡௜ (4.14)

subject to 𝑇 ∈ 𝔹௠ି௦(ொ)ାଵ (4.15)
𝑋 ∈ 𝔹௠

௠ି௞ (4.16)

𝑡௜ ≤෍
௝∈ொ

𝑥௜ା௝ ∀0 ≤ 𝑖 ≤ 𝑚 − 𝑠(𝑄) (4.17)

55

The solution 𝑇∗ to the above ILP provides the optimal threshold ∑ 𝑡∗௜ for a 𝑄-gram on
instance (𝑚, 𝑘). Table 4.2 shows the performance of ILP 4.14 on selected problem in-
stances.

Table 4.1: Best𝑄-grams found by Burkhardt and Kärkkäinen [2001] to solve instanceswith
𝑚 = 50 and 𝑘 ∈ [4, 5]. 𝑄-grams are visualized as strings over { #,- }, e.g.
𝑄 = {0, 2, 3, 4} = #-###. In the experimental evaluation of section 4.5, 𝑄-gram
(iii) is the best one for𝑚 = 100 and 𝑘 ∈ [8, 10].

Weight Span 𝑄-gram

(i) 13 14 #########-####
(ii) 11 30 ###-#--#------#------#-#-#--##
(iii) 12 37 #-#-#---#-----#-#-#---#-----#-#-#---#

Table 4.2: Optimal threshold computation for the 𝑄-grams in table 4.1 with𝑚 = 100 and
𝑘 ∈ [8, 10]. Threshold column shows the lower bound given the 𝑞-gram lemma
(LEMMA), the optimal threshold (EXACT) and the upper bound given by algo-
rithm 4.1 (APX). Runtime column shows the runtime in seconds of the DP algo-
rithm by Burkhardt and Kärkkäinen [2001] and the ILP program 4.14 solved
with IBM CPLEX 12.2; algorithm DP on 𝑄-gram (iii) required 44 GB of RAM and
could not complete within one hour; algorithm APX always completed within 6
milliseconds (data not shown).

Input Threshold RunƟme [s]

𝑄 𝑘 LEMMA EXACT APX ILP DP

(i) 8 0 3 4 0.30 0.03
(i) 9 0 2 3 1.24 0.05
(i) 10 0 0 2 0.02 0.07

(ii) 8 0 7 9 0.20 31.60
(ii) 9 0 5 6 0.39 93.77
(ii) 10 0 1 3 0.32 244.83

(iii) 8 0 4 6 0.06 223.52
(iii) 9 0 3 4 0.08 885.37
(iii) 10 0 2 2 0.11 –

Approximate solution

Pseudo-boolean function 𝑡௠ொ has two important properties: it ismonotonenon-decreasing
and supermodular. In particular, supermodularity is the discrete analog of concavity.

56

These properties allow to compute approximate solutions to constrained optimization
problems in polynomial time. A pseudo-boolean function 𝑓 ∶ 𝔹௠ → ℤ is monotone non-
decreasing iff

𝑓(𝑌) ≤ 𝑓(𝑌 ∨ 𝑍) ∀𝑌, 𝑍 ∈ 𝔹௠ (4.18)
and it is supermodular iff

𝑓(𝑌) + 𝑓(𝑍) ≤ 𝑓(𝑌 ∨ 𝑍) + 𝑓(𝑌 ∧ 𝑍) ∀𝑌, 𝑍 ∈ 𝔹௠. (4.19)
It is immediate to see that function 𝑡௠ொ satisϐies all the above inequalities, as it does not
contain any term in negative form by deϐinition (see equation 4.8). OĕęĎĒĆđ TčėĊĘčĔđĉ
thus involves the minimization of a monotone supermodular function subject to linear
constraints.

There is a well-known gradient ascent algorithm for the maximization of a mono-
tone submodular function subject to linear constraints with an APX-ratio of 1 − 1/𝑒
[Nemhauser et al., 1978], i.e., the ratio between the value of the greedy approximation
and the value of the optimal solution is within 0.632. Algorithm 4.1 computes an ap-
proximate solution to OĕęĎĒĆđ TčėĊĘčĔđĉ using the same principle. Nonetheless, its
solution is not guaranteed to be within a constant ratio from the optimal one. Indeed,
algorithm 4.1 minimizes function 𝑡௠ொ which is monotone non-decreasing supermodular
and has its unconstrained minimum at 0.

Algorithm 4.1 AĕĕėĔĝĎĒĆęĊTčėĊĘčĔđĉ(𝑄,𝑚, 𝑘)
Input 𝑄 : 𝑄-gram

𝑚 : integer denoting the pattern length
𝑘 : integer bounding the number of mismatches

Output integer indicating the optimal threshold
1: 𝑋 ← 𝟏௠
2: while 𝑘 > 0 do
3: i ←argmax௠௝ୀଵ

డ௧೘ೂ (௑)
డ௫ೕ

4: 𝑥௜ ← 0
5: 𝑘 ← 𝑘 − 1
6: return 𝑡௠ொ (𝑋)

In practice, the threshold found by algorithm 4.1 turns out to be a tight upper bound
for OĕęĎĒĆđ TčėĊĘčĔđĉ (see table 4.2). Such threshold cannot be used in a ϐiltration
scheme guaranteed to be full-sensitive: if the threshold is non-optimal, the ϐiltration
scheme is lossy. Instead, algorithm 4.1 might ϐind its use in the design of 𝑄-grams, as
a search space ϐilter to quickly discard lossy 𝑄-grams.

4.4.5 Speciϐicity

Assuming the text tobegeneratedaccording to theuniformBernoullimodel, the expected
speciϐicity of any ϐiltration scheme is proportional to the number of transcripts detected.

57

Thus, among multiple full-sensitive ϐiltration schemes, one clearly prefers the one that
minimizes the number of transcripts detected.

Problem 4.3 (SĕĊĈĎċĎĈĎęĞ)
Instance A ϐiltration scheme (𝑄, 𝑡), an (𝑚, 𝑘) instance.
Solution |{𝑋 ∈ 𝔹௠ ∶ 𝑡௠ொ (𝑋) ≥ 𝑡}|

Approximate solution

I propose a randomized algorithm to estimate the number of transcripts detected by a
ϐiltration scheme of the type (𝑄, 1). Such number coincides with the number of true
assignments to the boolean function 𝑇௠ொ , which is in disjunctive normal form (DNF) by
deϐinition (see equation 4.7). Counting the number of true assignments to an arbitrary
boolean function in DNF is a classic #P-complete counting problem that however allows
approximability to any degree [Karp et al., 1989], i.e., it allows a fully polynomial-time
randomized approximation scheme (FPRAS) [Vazirani, 2001]. Algorithm 4.2 shows the
algorithm by Karp et al. for boolean function 𝑇௠ொ . Here, I follow the proof given by [Vazi-
rani, 2001, chapter 28].

I denote with𝔻 the set of transcripts detected by 𝑇௠ொ

𝔻 = ൛𝑋 ∈ 𝔹௠ ∶ 𝑇௠ொ (𝑋)ൟ (4.20)

and with 𝔻௜ , for 0 ≤ 𝑖 ≤ 𝑚 − 𝑠(𝑄), the set of transcripts detected by the 𝑖-th clause of
𝑇௠ொ , i.e., by the 𝑄-gram starting at position 𝑖,

𝔻௜ = ቐ𝑋 ∈ 𝔹௠ ∶ ሥ
௝∈ொ

𝑥௜ା௝ቑ (4.21)

whose cardinality is

|𝔻௜| = 2௠ି௪(ொ) (4.22)

as a 0 at any 𝑥௜ା௝ would invalidate the𝑄-gram starting at position 𝑖. Problem SĕĊĈĎċĎĈĎęĞ
for (𝑄, 1) involves computing

|𝔻| = ቮ
௠ିଵ

ራ
௜ୀ଴

𝔻௜ቮ (4.23)

which is less than the sum of all |𝔻௜| and hard to compute in general.
Onemight thinkof a randomized algorithm that estimates |𝔻|by repeatedly sampling

𝑋 ∈ 𝔹௠ and counting whether 𝑋 ∈ 𝔻 too. However, it is immediate to see that such an
algorithm cannot estimate |𝔻| precisely and in polynomial time when 𝔻 is very small.
The idea of algorithm 4.2 is thus to boost this estimate by sampling transcripts that are
surely in𝔻 and subsequently adjusting the counts. Algorithm 4.2 guarantees that

Pr [|CĔĚēęTėĆēĘĈėĎĕęĘ(𝑄,𝑚, 𝜖)− |𝔻|| ≥ 𝜖 |𝔻|] ≤ 1
4 ∀ 𝜖 > 0. (4.24)

58

Recall that 𝑡௠ொ (𝑋) indicates the number of clauses of 𝑇௠ொ which are satisϐied by 𝑋. I
denote by𝕄 the multi-set

𝕄 = ൛൫𝑋, 𝑡௠ொ (𝑋)൯ ∶ 𝑋 ∈ 𝔻௜ for 0 ≤ 𝑖 ≤ 𝑚 − 𝑠(𝑄)ൟ (4.25)

whose cardinality is easily computed (line 2) as

|𝕄| =
௠ି௦(ொ)

෍
௜ୀ଴

|𝔻௜| = (𝑚 − 𝑠(𝑄) + 1) ⋅ 2௠ି௪(ொ). (4.26)

Algorithm 4.2 ϐirst (line 6) picks a𝔻௜ with probability

|𝔻௜|
|𝕄| =

1
𝑚 − 𝑠(𝑄) + 1 (4.27)

and then (lines 7–9) picks an 𝑋 ∈ 𝔻௜ uniformly

1
|𝔻௜|

= 1
2௠ି௪(ொ) (4.28)

which results in picking an 𝑋 ∈ 𝕄with probability

෍
௑∈𝔹೘∶்೘ೂ (௑)

|𝔻௜|
|𝕄| ⋅

1
|𝔻௜|

= ෍
௑∈𝔹೘∶்೘ೂ (௑)

1
|𝕄| =

𝑡௠ொ (𝑋)
|𝕄| . (4.29)

Algorithm 4.2 counts 𝑋 (line 10) with weight

𝑇 =
|𝕄|
𝑡௠ொ (𝑋)

(4.30)

so that the expected value of 𝑇 is

𝐸[𝑇] = ෍
௑∈𝔹೘∶்೘ೂ (௑)

𝑡௠ொ (𝑋)
|𝕄| ⋅

|𝕄|
𝑡௠ொ (𝑋)

= ห൛𝑋 ∈ 𝔹௠ ∶ 𝑇௠ொ (𝑋)ൟห = |𝔻| . (4.31)

The standard deviation of 𝑇 is bound w.r.t. the expected value (see [Vazirani, 2001,
chapter 28]) as

𝜎(𝑇)
𝐸[𝑇] ≤ 𝑚 − 𝑠(𝑄), (4.32)

hence the number of times 𝑁 (line 3) that algorithm 4.2 has to sample 𝑇 (line 10) in or-
der to guarantee the bound claimed in equation 4.24 is derived by applying Chebyshev’s
inequality

Pr ൣห𝑇 − 𝜖𝐸[𝑇]ห ≥ 𝜖𝐸[𝑇]൧ ≤ ቆ 1
𝜖√𝑁

⋅ 𝜎(𝑇)𝐸[𝑇]ቇ
ଶ

≤ 1
4 (4.33)

59

Algorithm 4.2 CĔĚēęTėĆēĘĈėĎĕęĘ(𝑄,𝑚, 𝜖)
Input 𝑄 : 𝑄-gram

𝑚 : integer denoting the pattern length
𝜖 : real ∈ [0, 1] denoting the approximation factor

Output integer indicating the number of transcripts detected
1: 𝐶 ← 𝑚 − 𝑠(𝑄) + 1
2: 𝑀 ← 𝐶 ⋅ 2௠ି௪(ொ)

3: 𝑁 ← 4 ⋅ (𝐶 − 1)ଶ/𝜖ଶ
4: 𝑇 ← 0
5: repeat
6: 𝑖 ← ėĆēĉĔĒ([0, 𝐶))
7: 𝑋 ← ėĆēĉĔĒ({0, 1}௠)
8: for all 𝑗 ∈ 𝑄 do
9: 𝑥௜ା௝ ← 1

10: 𝑇 ← 𝑇 + 𝑡௠ொ (𝑋)
11: 𝑁 times
12: return 𝑁 ⋅ 𝑀/𝑇

and solving it for𝑁, which gives

𝑁 ≥ 4 ⋅ 𝑚 − 𝑠(𝑄)
𝜖ଶ . (4.34)

A straightforward generalization of algorithm4.2 for any ϐiltration scheme (𝑄, 𝑡) con-
sists into expanding boolean function 𝑇௠ொ to have (௠ି௦(ொ)ାଵ

௧) clauses, each one accounting
for the joint occurrence of 𝑡 𝑄-grams. Whether the exponential dependency on 𝑡 can be
removed is an open question. In practice, algorithm4.2would be used in𝑄-grams design
to choose the most speciϐic 𝑄-gram among a set of full-sensitive candidates. However, as
my choice for the applications of chapters 6-7 felt upon the more practical seeds ϐilters, I
did not have to perform 𝑄-grams design.

4.4.6 Families

To obtain even more speciϐic ϐiltration, Kucherov et al. [2005] propose 𝑞-gram families
(also known as multiple gapped 𝑞-grams). Filtration with a 𝑞-gram family adopts dis-
junctively a set of multiple distinct gapped 𝑞-grams. The generalized counting argument
now adds all occurrences of all gapped 𝑞-gram in the set. Figure 4.6 illustrates.

Deϐinition 4.5 (𝔽-gram). A 𝑞-gram family (abbreviated as 𝔽-gram) is a ϐinite set 𝔽 =
{𝑄଴, … , 𝑄௙ିଵ} of 𝑄-grams. Its counting threshold 𝜏𝔽 is deϐined as:

𝜏𝔽(𝑚, 𝑘) = ෍
ொ೔∈𝔽

𝜏ொ೔(𝑚, 𝑘) (4.35)

60

Figure 4.6: Filtration with multiple gapped 𝑞-grams. A ϔiltration scheme (𝔽, 𝑡) =
({{0, 2, 3, 4}, {0, 1, 2, 4}}, 7) solves instance (25, 5). In the illustration, pattern
𝑃 of length 25 occurs in text 𝑇 at edit distance 5. The seven 𝑞-grams in grey are
not covered by any mismatch.

..

G

.

G

.
1

.

C

.

C

.
1

.

T

.

T

.
1

.

T

.

T

.
1

.

N

.

A

.
0

.

G

.

G

.
1

.

T

.

T

.
1

.

G

.

G

.
1

.

C

.

C

.
1

.

G

.

A

.
0

.

T

.

T

.
1

.

A

.

A

.
1

.

T

.

T

.
1

.

T

.

T

.
1

.

A

.

G

.
0

.

A

.

A

.
1

.

G

.

C

.
1

.

C

.

C

.
1

.

C

.

C

.
1

.

G

.

A

.
0

.

T

.

T

.
1

.

T

.

T

.
1

.

A

.

T

.
0

.

A

.

A

.
1

.

T

.

T

.
1

..

𝑃

.

𝑇

...

All design problems introduced in section 4.4.2 apply also to 𝔽-grams. The methods
presented in section 4.4.4 and 4.4.5 naturally generalize to 𝑞-gram families. To this ex-
tent, it is sufϐicient to deϐine the boolean function for an 𝔽-gram as the disjunction

𝑇௠𝔽 (𝑋) = ሧ
ொ೔∈𝔽

𝑇௠ொ೔ (𝑋) (4.36)

and its pseudo-boolean function as the sum

𝑡௠𝔽 (𝑋) = ෍
ொ೔∈𝔽

𝑡௠ொ೔(𝑋). (4.37)

Function 𝑡௠𝔽 is still supermodular, because all supermodular functions are closed under
non-negative linear combination. Said that, I do not use 𝔽-grams in practice.

4.5 Evaluation

In this section, I show the results of an experimental evaluation of the ϐiltration methods
exposed so far. I consider seed ϐiltration schemes with exact, 1 and 2-approximate seeds
(Exact, 1-Apx and 2-Apx seeds), contiguous 𝑞-grams ϐiltration schemes using the maxi-
mum lossless value of 𝑞 for a threshold of 1 (𝑞-Grams, 𝑡 ≥ 1) and 4 (𝑞-Grams, 𝑡 ≥ 4), and
the gapped 𝑞-gram (iii) from table 4.1 with the optimal thresholds indicated in table 4.2
(𝑄-Grams).

For ofϐline ϐilters, I use the 𝑞-gram index with 𝑞 = 10 (see 3.1.3). To perform edit
distance veriϐications, I use a banded version of the Myers’ algorithm [Myers, 1999] by
[Weese et al., 2012]. As text, I take the C. elegans reference genome (WormBaseWS195),
i.e., a collection of 6 DNA strings of 100 Mbp total length. As patterns, I extrapolated

61

200𝑘 DNA sequences of length 100 bp from an Illumina sequencing run (Sequence Read
Archive ID SRR065390).

All experiments run on a desktop computer running Linux 3.10.11, equipped with
one Intel® Core i7-4770K CPU @ 3.50GHz, 32GB RAM and a 2TB HDD @ 7200RPM.
I repeated the experiments for 𝑘-mismatches and 𝑘-differences, varying 𝑘 in the range
[1, 10]. I measured the runtime of the ϐiltration phase only, and then of the ϐiltration plus
veriϐication phase. The plots show always average runtimes (or values) per pattern.

4.5.1 Runtime

Figure 4.7 shows the results for 𝑘-mismatches. Exact seeds are the best ϐiltrationmethod
for 𝑘 ≤ 7, mainly due to their superior ϐiltration speed, while 1-approximate seeds are
better for 𝑘 ≥ 8. 2-Approximate seeds start to dominate exact seeds only for 𝑘 ≥ 10, i.e.,
they provide too strong ϐiltration on this text. Both contiguous 𝑞-gram ϐiltration schemes
are always slower than1-approximate seeds; it can be seen that enforcing 𝑡 ≥ 4 improves
the total runtime for those instances where 𝑡 ≥ 1 renders the ϐilter too weak. Gapped
𝑞-grams are on pair with 1-approximate seeds, slightly better only for 𝑘 = 10.

Figure 4.8 shows the results for 𝑘-differences. Themore involved edit distance veriϐi-
cation slightly ϐills the gap between exact seeds and contiguous 𝑞-grams, yet exact seeds
continue to be always the fastest alternative.

4.5.2 Veriϐication versus ϐiltration time

Figure 4.9 shows the ratios between the runtimes of the veriϐication and ϐiltration phases
of each ϐiltration scheme. For 𝑘 ≤ 6, all schemes spend more time on ϐiltration rather
than veriϐication. Theweakest scheme, ϐiltrationwith exact seeds, shows the closest ratio
to 1. As shown in the runtime plots (ϐigures 4.7-4.8), quick ϐiltration pays off for low
error rates. Here, a quicker full-text index would be beneϐicial. For 𝑘 ≥ 7, contiguous
𝑞-grams with 𝑡 ≥ 1 show the closest ratio to 1, nonetheless the fastest alternative is
provided by ϐiltrationwith 1-approximate seeds, forwhich only 10%of the runtime goes
in veriϐications. Here, a judicious mix of exact and 1-approximate seeds could improve
the total runtime. The ratios for 𝑘-difference show analogous patterns (data not shown).

4.5.3 Positive predictive value

Instead of measuring ϐiltration speciϐicity, as introduced in section 2.4.3, I measure the
positive predictive value (PPV). As shown in table 4.3, I deϐine true positives (TP), false pos-
itives (FP), true negatives (TN), or false negatives (FN) in terms of the number of veriϐica-
tions 𝑉௙(𝑇) produced in the ϐiltration phase and the number of approximate occurrences
𝐶(𝑇) of the pattern in the text. Therefore, I deϐine the PPV as:

|𝑇𝑃௙(𝑇)|
|𝑇𝑃௙(𝑇)| + |𝐹𝑃௙(𝑇)|

= 𝐶(𝑇)
𝑉௙(𝑇)

(4.38)

62

Table 4.3: Measurement of ϔiltering methods efϔiciency. 𝑉௙(𝑇) counts the number of veriϔi-
cations, 𝐶(𝑇) the number of approximate occurrences, and |𝑇| the text length.
Since all considered ϔiltering methods are full-sensitive, the number of false neg-
atives is always 0.

Positive Negative

True 𝐶(𝑇) |𝑇| − 𝐶(𝑇)
False 𝑉௙(𝑇) − 𝐶(𝑇) 0

Figure 4.10 shows the results for 𝑘-mismatches. As expected, 2-approximate seeds
have always the highest PPV, followed by 1-approximate seeds. The PPV of gapped 𝑞-
grams is comparable to that of 2-approximate seeds, while that of contiguous 𝑞-grams
with 𝑡 ≥ 1 oscillates around that one of exact seeds. In particular, when 𝑡 approaches
1, e.g. for 𝑘 = 9, the PPV of contiguous 𝑞-grams stays below that one of exact seeds.
Enforcing 𝑡 ≥ 4boosts thePPVof contiguous𝑞-grams to that oneof 1-approximate seeds.
The PPVs for 𝑘-difference show analogous patterns (data not shown).

63

Figure 4.7: Filters runtime on𝑘-mismatches. Pattern lengths are ϔixed to 100 bp. Solid lines
represent total runtimes, while dashed lines represent ϔiltration times only.

10 m

1 m

100 u

10 u

2 4 6 8 10
Mismatches

A
ve
ra
ge
 ti
m
e
pe
r
pa
tt
er
n
[s
]

Filter

Exact seeds

1-Apx seeds

2-Apx seeds

q-Grams, t ≥ 1

q-Grams, t ≥ 4

Q-Grams

Figure 4.8: Filters runtime on 𝑘-differences. Pattern lengths are ϔixed to 100 bp. Solid lines
represent total runtimes, while dashed lines represent ϔiltration times only.

10 m

1 m

100 u

10 u

2 4 6 8 10
Differences

A
ve
ra
ge
 ti
m
e
pe
r
pa
tt
er
n
[s
]

Filter

Exact seeds

q-Grams, t ≥ 1

q-Grams, t ≥ 4

64

Figure 4.9: Filtration versus veriϔication time on 𝑘-mismatches. Pattern lengths are ϔixed
to 100 bp.

1/1000

1/10

10

2 4 6 8 10
Mismatches

V
er
ifi
ca
ti
on
/f
ilt
ra
ti
on
 ti
m
e Filter

Exact seeds

1-Apx seeds

2-Apx seeds

q-Grams, t ≥ 1

q-Grams, t ≥ 4

Q-Grams

Figure 4.10: Filters speciϔicity on 𝑘-mismatches. Pattern lengths are ϔixed to 100 bp.

1/10

1/100

1/1000

2 4 6 8 10
Mismatches

PP
V
 [m

at
ch
es
/v
er
ifi
ca
ti
on
s] Filter

Exact seeds

1-Apx seeds

2-Apx seeds

q-Grams, t ≥ 1

q-Grams, t ≥ 4

Q-Grams

Part II

READMAPPING

CčĆĕęĊė

5 Background

In this chapter, I provide the reader with background knowledge in the fast-moving ϐield
of high-throughput sequencing (HTS). It goes without saying that the reader familiar
with HTS can skip this chapter. In section 5.1, I brieϐly introduce the two most promi-
nent HTS technologies and the kind of sequencing data they produce. Afterwards, in
section 5.2, I explain how standard HTS data analysis pipelines are structured; in partic-
ular, in section 5.2.2, I present two popular paradigms for reference-guided assembly:
best-mapping and all-mapping. In section 5.3, I review two studies on the limits of HTS
data analysis. Finally, in section 5.4, I give an overview of themost popular readmapping
tools.

5.1 High-throughput sequencing data

Asanticipated in section1.1, actualHTS technologiesproduceDNAreadswhichare shorter
than Sanger sequencing andmore likely to contain systematic sequencing artefacts. HTS
data do not consist of read sequences only, but include also base quality scores annotat-
ing the quality of the sequencing process.

5.1.1 Read sequences

I consider only sequencing data produced by the most prominent HTS instruments. Il-
lumina is the actual market leader for HTS instruments, followed by Life Technologies’s
Ion Torrent. Some instruments, e.g. the GS by 454 Life Sciences or the SOLiD by Applied
Biosystems, became popular around 2006–2010, but are now discontinued. Other third-
generation instruments, like the single-molecule real-time sequencing (SMRT) RS II by
Paciϔic Biosciences, have great potential but still low impact on the HTS market.

Illumina

All Illumina instruments use the sequencing by synthesis (SBS) technology [Bentley et al.,
2008] developed by Solexa. In the library preparation phase, the DNA sample is sheared
into smaller fragments. During the sequencing phase, single-stranded DNA fragments
are attached on a slide called ϔlow cell and ampliϐied in situ using a variant of polymerase
chain reaction (PCR) called bridge ampliϔication. Clusters of ampliϐied fragments are then

68

used as templates for multiple cycles of synthetic sequencing with four differentially la-
beled ϐluorescent reversible terminator deoxyribonucleotide triphosphates (dNTPs). In
each sequencing cycle, dNTPs are incorporated into the fragments in each cluster, their
corresponding ϐluorescent reversible terminators are imaged by a high-resolution cam-
era, and then dNTPs are cleaved to allow incorporation of the next base.

After the sequencingphase, a base calling software converts all images corresponding
to one cluster into one read. The software measures the intensities of the four colors
imaged during the 𝑖-th cycle, calls the 𝑖-th read base, and assigns a base quality score.
Eventual replication errors, made byDNApolymerase during bridge ampliϐication, result
in mixed signal intensities within a cluster, and hence to base calls of lower conϐidence.

Illumina’s SBS technology further allows the sequencing of both ends of each DNA
fragment. Two kind of libraries are available: paired-end libraries, consisting of reads
from short-insert 300–600 bp fragments, andmate pair libraries, consisting of reads sep-
arated by several kilobases. The former libraries are adopted for high-resolution genome
resequencing, while the latter ones provide accurate de novo sequence assembly or de-
tection of large-scale structural variation.

Ion Torrent

Life Technologies’s IonTorrent instruments use a semiconductor-based technology [Rusk,
2010]. During library preparation, the sheared single-stranded template DNA is embed-
ded into microwells on a semiconductor chip with DNA polymerase. Microwells are se-
quentially ϐlooded with unmodiϐied A, C, G or T dNTP. The DNA polymerase incorporates
the introduced dNTP into the growing strand only if this is complementary to the lead-
ing templatenucleotide. Suchpolymerization reaction releases anhydrogen ion,which in
turn changes the pHof the solution. A ion-sensitive ϔield-effect transistor (ISFET) in the se-
quencing instrumentmeasures this pH change. Any homopolymer in the template causes
multiple dNTP to be incorporated in a single cycle and results in a higher pH change,
which is not precisely measured by the instrument and thus causes systematic sequenc-
ing errors.

5.1.2 Phred base quality scores

Base quality scores have been introduced by the base calling tool Phred [Ewing et al.,
1998; Ewing and Green, 1998] to assess sequencing quality of single bases in capillary
reads. Instead of discarding low-quality regions present in capillary reads, Phred output
each base and annotates it with the probability that it has been wrongly called. The tool
encodes the probability 𝜖௜ of miscalling the 𝑖-th base in a read under the form of a base
quality 𝑄௜ in logarithmic space:

𝑄௜ = −10 logଵ଴ 𝜖௜ . (5.1)

This method has been unanimously accepted. All sequencing technologies complement
DNA reads with base quality scores, encoded in Phred-scale or similar.

69

5.2 High-throughput sequencing data analysis

5.2.1 Data analysis pipelines

The analysis of HTS data consists of numerous steps, ranging from the initial instrument-
speciϐic data processing to the ϐinal application-speciϐic interpretation of the results. It is
conventional wisdom to subdivide such data analysis pipelines in three stages. The pri-
mary stage of analysis consists of instrument speciϐic steps for the generation, collection,
and processing of raw sequencing signals. The secondary stage applies sequence analy-
sis methods to the raw sequencing data in order to reconstruct the original sequence of
the donor genome. The tertiary stage characterizes application-speciϐic features of the
donor genome and then provides interpretations, e.g. in whole exome sequencing (WES)
it consists of calling genetic variations and predicting their phatogenicity. Below, I de-
scribe these three stages of analysis.

Primary analysis

Primary analysis consists of instrument speciϐic steps to call base pairs and compute
quality metrics. The base calling software converts raw sequencing signals into bases,
i.e., A, C, G, T, or N if the signal is unclear. The software assigns a quality value to each
called base, estimating the probability of a base calling error. On early generation in-
struments, users could provide their own base calling tool. Now this process happens
automatically on special hardware (e.g. FPGAs or GPUs) bundled within the instrument.
The result of primary analysis is a standard FASTQ ϐile containing DNA read sequences
and their associated quality scores in Phred format (see section 5.1.2).

Secondary analysis

Secondary analysis aims at reconstructing the original sequence of the donor genome
from its HTS reads. There are two main plans to reassemble the original genome: (A) de
novo assembly, and (B) reference-guided assembly (commonly called read mapping). De
novo assembly is very involved as it essentially requires ϐinding a shortest common su-
perstring (SCS) of the reads, which is a NP-complete problem [Maier and Storer, 1977;
Gallant et al., 1980; Turner, 1989]. Computational methods in plan A ϐirst scaffold the
reads by performing overlap alignments [Myers, 2005] or equivalently by constructing
de Bruijn graphs [Pevzner et al., 2001]. The knowledge of a reference genome, highly sim-
ilar to the donor, simpliϐies the problem and opens the door to plan B. The reads are
simply aligned to the reference, tolerating a few base pair errors. It is worth mentioning
that plans A and B can be combined, e.g. as proposed by Li [2012].

Plan B is always preferred in resequencing projects, as it is computationally more
viable thanplanAanddirectly provides away to assess genetic variationw.r.t. a reference
genome. In thismanuscript, I consider only planB andpresentmethods thatworkwithin
this speciϐic plan. Nonetheless, many of the algorithmic components that I introduced in
the ϐirst part of this manuscript are ubiquitous in bioinformatics, thus applicable, if not

70

already applied, to plan A. According to plan B, the secondary analysis stage consists of
three steps: quality control, read mapping, and consensus alignment.

In the quality control (Q/C) step, the quality of raw reads is checked. Reads pro-
duced by current HTS technologies contain sequencing artefacts in form of single bases
or stretches of miscalled oligonucleotides. In order to circumvent this problem, various
techniques have been developed, ranging from the simple trimming of low quality read
stretches to sophisticated methods of read error correction [Weese et al., 2013]. Some-
times, Q/C is simply omitted.

In the read mapping step, the reads are aligned to the reference genome. Read map-
ping tools adopt state of the art approximate string matchingmethods to efϐiciently ana-
lyze the deluge of data produced by HTS instruments. Approximate matching accounts
for two kinds of errors: residual sequencing artefacts not removed by Q/C and small
genetic variations in the donor genome. Consequently, a read mapper must take into
account these errors when aligning the reads.

Mapped reads, often stored in de-facto standardBAM ϐiles [Li et al., 2009a], are sorted
by genomic coordinate and eventually multiply aligned in order to construct a consensus
sequence of the donor genome. The height of the pileup denotes the sequencing depth or
coverage at each locus in the donor genome; higher coverage implies more conϐidence
in the consensus sequence of the donor genome and thus more accuracy in the tertiary
analysis stage.

Tertiary analysis

Tertiary analysis aims at interpreting the information provided by the secondary analysis
stage. This pipeline stage groups a wide range of analyses speciϐic to the sequencing ap-
plication. In some pipelines, downstream analysis aggregates data coming frommultiple
samples.

WithinDNAresequencing, genotyping consists of determining thevariationsbetween
the donor and the reference genome. The result of variant calling is a set of variations
characterizing the donor genome, usually stored in de-facto standard VCF ϐiles. Subse-
quently, genome-wide association studies (GWAS) associate genetic variants with phe-
notypic traits by examining single-nucleotide polymorphisms (SNPs), variants relatively
common among individuals of the same population.

In RNA-seq, tertiary analysis consists of computing transcripts abundance by mea-
suring reads per kilobase per million mapped reads (RPKM) [Mortazavi et al., 2008]; sub-
sequently, relative gene expression is determined by comparing multiple RNA samples.
In ChIP-seq, this stage consists of calling peaks in correspondence of mapped reads, de-
termining which peaks identify feasible transcription factor binding sites, then interest-
ing sites affecting gene regulation.

5.2.2 Secondary analysis paradigms

Thegoal of secondary analysis is to reconstruct theoriginal sequenceof thedonor genome.
The reference-guided assembly plan assumes prior knowledge of a reference genome

71

which is close the donor genome. Reads are thus mapped (i.e., aligned) to the reference
genome w.r.t. a given scoring scheme and threshold. The scoring scheme accounts for
eventual genomic variation, aswell as for any sequencing artefacts. Under these assump-
tions, an alignment of optimal score for a read implies its original location on the refer-
ence genome. Conversely, no alignment within the score threshold implies too many se-
quencing errors, too much genetic variation, or sample contamination. A problem arises
in presence of co-optimal to close suboptimal alignments: the read cannot be mapped
conϐidently to one single location.

The problem of conϐidently mapping high-throughput sequencing reads comes from
the non-random nature of genomic sequences. Genomes evolved throughmultiple types
of duplication events, including whole-genome duplications [Wolfe and Shields, 1997;
Dehal and Boore, 2005] or large-scale segmental duplications in chromosomes [Bailey
et al., 2001; Samonte andEichler, 2002], transpositionof repetitive elements as short tan-
dem repeats (microsatellites) [Wang et al., 1994; Wooster et al., 1994] and interspersed
nuclear elements (LINE, SINE) [Smit, 1996], proliferation of repetitive structural ele-
ments suchas telomeres and centromeres [Meyne et al., 1990]. As a result of these events,
for instance, about 50 % of the human genome is composed of repeats.

Repeats present in general technical challenges for alldenovo assembly and sequence
alignment programs [Treangen and Salzberg, 2011]. Due to repetitive elements, a non-
ignorable fraction of high-throughput sequencing reads cannot be mapped conϐidently.
In general, the shorter the reads, the higher the challenges due to repeats. I quantify this
phenomenon more precisely in section 5.3. Here I focus on analysis strategies to deal
withmulti-reads, i.e., reads that cannot be mapped conϐidently as they align equally well
to multiple locations.

It is not evident how to treatmulti-reads. According to Treangen and Salzberg [2011],
common strategies to deal with multi-reads are (i) to discard them all, (ii) to randomly
pick one best mapping location, (iii) to consider all or up to 𝑘 best mapping locations
within a given distance threshold. A de facto standard strategy, combining strategies (i)
and (ii), emerged over the last years. The readmapper randomly picks one bestmapping
location and complements it with itsmapping quality, i.e., the probability of themapping
location being correct (see section 5.2.3). Subsequently, downstream analysis tools ei-
ther (a) apply amapping quality score cutoff to discard reads notmapping conϐidently to
any location, or (b) annotate in turn their results with quality scores. The other popular
strategy adopted by analysis tools is to consider all mapping locations within an edit dis-
tance threshold. In this case, it is not clear whether downstream analysis tools consider
all mapping locations equal regardless of their distance.

In the light of these facts, I deϐine two broad paradigms for the secondary and ter-
tiary analysis of HTS data: best-mapping and all-mapping. The best-mapping paradigm
considers a single mapping location per read along with its conϐidence, while the all-
mapping paradigm considers a comprehensive set of mapping locations per read. It goes
without saying that read mapper and downstream analysis tools must agree on a com-
mon paradigm. Thus these paradigms are valid not only for read mappers but also for
any downstream analysis tool, e.g. variant callers. Read mapping and variant calling are
indeed tightly coupled steps within reference-based HTS pipelines.

72

5.2.3 Best-mapping

As said, best-mapping methods rely on a single mapping location per read. In order
to maximize recall, best-mappers often adopt complex scoring schemes taking into ac-
count gaps andbase quality values, and at the same time implement sophisticatedheuris-
tics to speed up the search. Best-mappers annotate any mapping location with its map-
ping quality. Subsequently, in order to maximize precision, variant calling tools decide
whether to consider or discard reads not mapping conϐidently to any location. The GATK
[DePristo et al., 2011] and Samtools [Li et al., 2009a] are popular best-mapping tools
to call small variants. In section 5.3, I discuss how this paradigm systematically fails on
reads belonging some critical genomic regions, thus is limited to the analysis of highmap-
pability regions.

Mapping quality score

Mapping quality has been introduced in the tool MAQ [Li et al., 2008]. The study consid-
ers short 30–40 bp reads, produced by early Illumina and ABI/SOLiD sequencing tech-
nologies, whose sequencing error rateswere quite high. Given the short lengths and high
error rates, a signiϐicant fraction of such reads can be aligned to multiple mapping loca-
tions, even considering only co-optimal Hamming distance locations. Since base callers
output base call probabilities in Phred-scale alongwith the reads, Li et al. propose a novel
probabilistic scoring scheme calledmapping quality, encoding the probability that a read
aligns correctly at a mapping location in the reference genome.

Mapping quality scores offer a way to prioritize the results produced in downstream
data analyses. Li et al. [2008] write that “it is possible to act conservatively by discarding
reads that map ambiguously at some level, but this leaves no information in the repeti-
tive regions and it also discards data, reducing coverage in an uneven fashion, which may
complicate the calculation of coverage.” For instance, the GATKHaplotypeCaller [DePristo
et al., 2011] annotates its variant calls with qualities whose value depends on mapping
qualities, rather than removing data by applying a hard mapping quality cutoff. Below, I
deϐine the mapping quality score as done in [Li et al., 2008].

Fix the alphabet Σ = {A,C,G,T}. Consider a knowndonor genome𝐺 over Σ and a read𝑅
sequenced at location 𝑙 from the template𝐺௟…௟ା|ோ|. The base calling error 𝜖௜ fromequation
5.1 represents the probability 𝜖௜ ofmiscalling a base 𝑟௜ instead of calling its corresponding
base 𝑔௟ା௜ in the donor genome. The probability Pr[𝑟௜|𝑔௟ା௜] of observing the base 𝑟௜ given
the donor genome base 𝑔௟ା௜ , is:

Pr[𝑟௜|𝑔௟ା௜] = ൝ 1 − 𝜖௜ if 𝑔௟ା௜ = 𝑟௜
ఢ೔

|ஊ|ିଵ if 𝑔௟ା௜ ∈ Σ ⧵ {𝑟௜}
(5.2)

and assuming i.i.d. base calling errors, it follows that the probability Pr[𝑅|𝐺, 𝑙] of observ-
ing the read 𝑅, given the donor genome template 𝐺௟…௟ା|ோ|, is:

Pr[𝑅|𝐺, 𝑙] =
|ோ|ିଵ

ෑ
௜ୀ଴

Pr[𝑟௜|𝑔௟ା௜]. (5.3)

73

ByapplyingBayes’ theorem, Li et al. [2008]derive theposteriorprobabilityPr[𝑙|𝐺, 𝑅],
that location 𝑙 in the reference genome 𝐺 is the correct mapping location of read 𝑅. As-
suming uniform coverage, each location 𝑙 ∈ [0, |𝐺| − |𝑅|] has equal probability of being
the origin of a read in the donor genome, thus the prior probability Pr[𝑙] is simply:

Pr[𝑙] = 1
|𝐺| − |𝑅| + 1 (5.4)

Therefore, recallingPr[𝑅|𝐺, 𝑙] fromequation5.3, theposteriorprobabilityPr[𝑙|𝐺, 𝑅] equals
the probability of the read 𝑅 originating at location 𝑙, normalized over all possible loca-
tions in the reference genome:

Pr[𝑙|𝐺, 𝑅] = Pr[𝑅|𝐺, 𝑙]
∑|ீ|ି|ோ|
௜ୀ଴ Pr[𝑅|𝐺, 𝑖]

(5.5)

which in Phred-scale becomes:

𝑄[𝑙|𝐺, 𝑅] = −10 logଵ଴(1 − Pr[𝑙|𝐺, 𝑅]). (5.6)

Computing the exact mapping quality as in equation 5.6 requires aligning each read
to all positions in the reference genome. On the one hand, this computation is practi-
cally infeasible. On the other hand, suboptimal locations not close to the optimum one
contribute very little to the sum in equation 5.5. Therefore, read mapping programs ap-
proximate equation 5.5 using only the mapping locations they repute relevant.

Some objections can be raised against the above deϐinition ofmapping quality scores.
First, the score is derived under the unlikely assumption of the reference genome being
equal to the donor genome. In other words, equation 5.2 considers only errors due to
base miscalls and disregards genetic variation; thus the risk is to prefer mapping loca-
tions supported by known low base qualities rather than by true but unknown SNVs.
Second, mapping quality is nonetheless strongly correlated to mapping uniqueness, as
discussed in section 5.3; it is easy to see that the probability of any location in equa-
tion 5.5 dilutes in presence of a large number of co-optimal or close suboptimal mapping
locations. Therefore, in chapter 7, I give an alternative deϐinition of mapping quality.

5.2.4 All-mapping

All-mapping analysis methods consider a comprehensive set of locations per read. Al-
most all read mappers in this category adopt edit distance and report all mapping loca-
tions within an error threshold, absolute or relative w.r.t. to the length of the reads. Vari-
ant calling algorithmsbasedonall-mappinghave thepotential to detect awider spectrum
of genomic variation events than their best-mapping counterparts. For instance, variant
callers based on the all-mapping paradigm detect CNVs [Alkan et al., 2009], and SNVs in
homologous regions [Simola and Kim, 2011].

74

5.3 Limits of high-throughput sequencing

A fraction of high-throughput sequencing reads cannot be mapped conϐidently due to
repetitive elements. Which regionsof amodel organism’s genomecannotbe resequenced
conϐidently by a high-throughput sequencing technology? And how accurate is down-
stream analysis on these low conϐidence regions? Two recent studies [Derrien et al.,
2012; Lee and Schatz, 2012] answer these questions. Below, I report their key ideas and
most relevant ϐindings.

5.3.1 Genomemappability

Derrien et al. [2012] deϐine genome mappability as a function of a genome for a ϐixed 𝑞-
gram length, distancemeasure, i.e., theHamming or edit distance, and distance threshold
𝑘. Given a genomic sequence 𝐺, they deϐine the (𝑞, 𝑘)-frequency 𝐹௤

௞ (𝑙) of the 𝑞-gram
𝐺௟…௟ା௤ at location 𝑙 in 𝐺 as the number of occurrences of the 𝑞-gram in 𝐺 and its reverse
complement 𝐺̄. The (𝑞, 𝑘)-mappability𝑀௤

௞(𝑙) is the inverse (𝑞, 𝑘)-frequency, i.e.,𝑀௤
௞(𝑙) =

1/𝐹௤
௞ (𝑙)with𝑀௤

௞ ∶ ℕ →]0, 1]. Note that𝑀௤
௞(𝑙) canbe seen as the prior probability that any

read of length 𝑞 originating at location 𝑙 will be mapped correctly. The values of (𝑞, 𝑘)-
frequency and mappability obviously vary with the distance threshold 𝑘. Nonetheless,
under any distancemeasure, it holds that the 𝑞-gramat location 𝑙 is unique up to distance
𝑘 iff𝑀௤

௞(𝑙) = 1 and repeated otherwise.
Unique mappability determines which fraction of a genome can be analyzed accord-

ing to strategy (i) of Treangen and Salzberg [2011] (i.e., discarding non-unique reads, see
section 5.2.2). Derrien et al. quantify the unique mappability of whole human, mouse, ϐly,
and worm genomes. Mimicking typical Illumina read mapping setups, they consider 𝑞-
grams of length 36, 50 and 75 bp, and Hamming distance 2. They ϐind out that about
30 % of the whole human genome is not unique w.r.t. (36, 2)-mappability. At (75, 2)-
mappability, 17 % of the human genome is not yet unique. This last result is slightly op-
timistic, as typical mapping setups call for up to 3–4 edit distance errors in order to map
a signiϐicant fraction of the reads. Table 5.1 shows some results obtained from [Derrien
et al., 2012].

To estimate single-base resequencing accuracy, Derrien et al. consider the mappa-

Table 5.1: Mappability of model genomes. Data obtained from [Derrien et al., 2012].

H.sapiens M.musculus D.mel
(hg19) (mm9) (dm3)

Repeats content [%] 45.25 42.33 26.50

Uniqueome (36 bp, 2 msm) [%] 69.99 72.07 68.09
Uniqueome (50 bp, 2 msm) [%] 76.59 77.06 69.44
Uniqueome (75 bp, 2 msm) [%] 83.09 81.65 71.00

75

bility of all possible 𝑞-grams spanning any single genomic location. They deϐine pileup
mappability 𝑃௤௞ at position 𝑙 as the average mappability of all 𝑞-grams spanning position
𝑖:

𝑃௤௞ (𝑙) = 1/𝑞
௟ା௤

෍
௜ୀ௟ି௤

𝑀௤
௞(𝑖). (5.7)

Derrien et al. [2012] ϐindout in their ownresequencing studies that “lowpileup-mappability
regions aremore prone to show a high value of heterozygosity than thosewith highmappa-
bility”. Ideally, variant calling tools call a locus as heterozygous whenever the consensus
alignment column at that locus contains two distinct bases. This situation tends to arise
more frequentlywhenever the consensus alignment contains reads originating fromsim-
ilar yet distinct regions.

5.3.2 Genomemappability score

Genome mappability score (GMS) [Lee and Schatz, 2012], analogously to pileup mappa-
bility, estimates single-locus resequencing accuracy for a speciϐic sequencing technology.
Instead of considering the inverse 𝑞-gram frequency, Lee and Schatz usemapping quality
(see section 5.2.3) to estimate the probability that a read originating at a given position
can be mapped correctly. Subsequently, they derive the average mapping probability of
all reads (inℝ௟) spanning a location 𝑙 of the reference genome 𝐺 as:

Pr[𝑙|𝐺] = ෍
ோ∈ℝ೗

Pr[𝑙|𝐺, 𝑅]
|ℝ௟|

(5.8)

which in Phred-scale becomes:

𝑄[𝑙|𝐺] = ෍
ோ∈ℝ೗

1 − 10ିொ[௟|ீ,ோ]/ଵ଴
|ℝ௟|

. (5.9)

Thus, ϐixed a genomic sequence 𝐺, they deϐine the genome mappability score GMS(𝑙) in
percentual value:

GMS(𝑙) = 100 ⋅ 𝑄[𝑙|𝐺] (5.10)

Lee and Schatz proceed as follow to compute GMS. They ϐirst simulate reads from all
genomic locations, having length and error proϐiles similar to those issued by actual se-
quencing technologies. Subsequently, they compute mapping quality scores by mapping
all simulated reads with the best-mapper BWA [Li and Durbin, 2009]. Then, as just ex-
plained, they compute GMS at any location by averaging the quality scores. Finally, they
deϐine low GMS regions as those locations for which GMS(𝑙) ≤ 10 and high GMS other-
wise. Table 5.2 shows the performance of various sequencing technologies on the whole
human genome (data obtained from [Lee and Schatz, 2012]).

76

Table 5.2: Human genome mappability score of various sequencing technologies. Data ob-
tained from [Lee and Schatz, 2012].

Sequencing Read length Error rate Low GMS High GMS
technology [bp] [%] (msm, ins, del) [%] [%]

Illumina-like 100 (0.10, 0.00, 0.00) 10.51 89.49
Ion Torrent-like 200 (0.04, 0.01, 0.95) 9.35 90.65
Roche/454-like 800 (0.18, 0.54, 0.36) 8.91 91.09
PacBio EC-like 2000 (0.33, 0.33, 0.33) 8.61 91.39

Lee and Schatzmeasure variant calling accuracy by GMS for the popular combination
of best-mapping tools BWA and SAMtools [Li et al., 2009a]. They simulate an Illumina-
like resequencing study and feed it to such analysis pipeline. They ϐind out that, at 30×
sequencing coverage, accuracy approaches 100% in high GMS regions, while it levels off
to 25% in lowGMS regions. Their analysis “shows thatmost SNP detection errors are false
negatives, and most of the missing variations are in regions with low GMS scores” [Lee and
Schatz, 2012]. These are the limits of the analysis of high-throughput sequencing data.

5.4 Popular read mappers

Following the boom of NGS technologies, recent bioinformatics research has produced
dozens of tools to perform read mapping. Two surveys [Li and Homer, 2010; Fonseca
et al., 2012] try to help bioinformaticians ϐinding the way. The survey by Li and Homer
ϐirst classiϐies read mapping algorithms by data structure: those based on hash tables
and those based on sufϐix/preϐix trees. However, the adopted data structure is often
an implementation detail, indeed most algorithms covered in their survey could ϐit into
both classes. The survey primarily considers the application of SNP calling; in the con-
sidered setup, tools enumerating a comprehensive set of locations always lag behind
those designed to report only one location per read. The survey by Fonseca et al. in-
stead catalogs read mappers by the features exposed to the user. It considers supported
input–output formats, rate of errors and variation, number and type (i.e., local or semi-
global read alignments) of mapping locations reported. After this exhaustive catalog, the
survey concludes that the choice of a read mapper “involves application-speciϔic require-
ments such as how well it works in conjunction with downstream analysis tools (i.e., vari-
ant callers)”. Read mapping and variant calling are indeed tightly coupled steps within
reference-based HTS analysis pipelines.

As explained above, secondary and tertiary analysis methods are based on one of
the two following paradigms: best-mapping and all-mapping. In the light of the above
consideration, the most important feature of a read mapper is the number of mapping
locations reported, followedby their type,while the other features aremostly of technical
relevance. Most readmappers are speciϐically designed to ϐit one paradigm, while others

77

are versatile enough to work well in both cases.
The rest of this section presents most popular readmapping tools. Table 5.3 gives an

overview of all these tools. Among them, BWA [Li and Durbin, 2009], Bowtie [Langmead
et al., 2009] and Bowtie 2[Langmead and Salzberg, 2012], and Soap [Li et al., 2009b]
are prominent tools designed for best-mapping, while SHRiMP 2 [David et al., 2011],
mr(s)Fast [Alkan et al., 2009; Hach et al., 2010], RazerS [Weese et al., 2009] and RazerS 3
[Weese et al., 2012], and Hobbes 2 [Kim et al., 2014] are designed for all-mapping. Usu-
ally, most prominent best-mappers recursively enumerate substrings on a sufϐix/preϐix
tree of the reference genome via backtracking algorithms. Backtracking alone is im-
practical as its time complexity grows exponentially with the number of errors consid-
ered, hence best-mappers apply heuristics to reduce and prioritize the enumeration.
Conversely, all-mappers are based on ϐiltering algorithms for approximate string match-
ing. They quickly determine, often with the help of an index, locations of the reference
genome candidate to contain approximate occurrences, then verify them with conven-
tional methods. Their efϐiciency is bound to ϐiltration speciϐicity and thus deteriorates
with increasing error rates and genome lengths. GEM [Marco-Sola et al., 2012] tries to ϐit
both best and all-mapping paradigms. It speeds up best-mapping by stratifyingmapping
locations by edit distance and prioritizing ϐiltration accordingly. Finally, Masai [Siragusa
et al., 2013a] and Yara are read mapping programs developed by myself. I present the
engineering and evaluation of these tools in chapters 6 and 7.

5.4.1 Bowtie and Bowtie 2

Bowtie [Langmead et al., 2009] is a mapper designed to have a small memory footprint
and quickly report a few goodmapping locations for early generation short Illumina and
ABI/SOLiD reads. The tool achieves the former goal by indexing the reference genome
with an FM-index and the latter one by performing a greedy backtracking on it. The
greedy top-down traversal visits ϐirst the subtreeyielding the least numberofmismatches
and stops after having found a candidate (not guaranteed to be optimal when 𝑘 > 1). In
addition, Bowtie speeds up backtracking by applying case pruning [Mäkinen et al., 2010],
a simple application of the pigeonhole principle. However, this technique ismostly suited
for 𝑘 = 1 and requires the index of the forward and reverse reference genome. Bowtie
can be conϐigured to search by strata, but the search time increases signiϐicantly while
the traversal still misses a large fraction of the search space due to seeding heuristics.

Bowtie 2 [Langmead and Salzberg, 2012] has been designed to quickly report a cou-
ple of mapping locations for longer Illumina, Ion Torrent and Roche/454 reads, usually
having lengths in the range from 100 bp to 400 bp. This tool uses an heuristic seed-and-
extend approach, collecting seeds of ϐixed length, partially overlapping, and searching
them exactly in the reference genome using an FM-index. Bowtie 2 randomly chooses
candidate locations, to avoid uncompressing large sufϐix array intervals and executing
many DP instances. The tool veriϐies candidate locations using a striped vectorial dy-
namic programming algorithm by Farrar [2007], implemented using SIMD instructions.
Bowtie 2 can be conϐigured to report semi-global or local alignments, scored using a tun-
able afϐine scoring scheme.

78

5.4.2 BWA

BWA [Li andDurbin, 2009] is designed tomap Illumina reads and report a few best semi-
global alignments. The program backtracks the FM-index of the reference genomewith a
greedy breadth-ϔirst search. The tool ranks nodes to be visited by edit distance score: the
best node is popped fromapriority queue and visited, its children are then inserted again
in the queue. The traversal considers indels using a more involved 9-fold recursion. Li
and Durbin speed up backtracking by adopting amore stringent pruning strategy [Mäki-
nen et al., 2010] that nonetheless takes some preprocessing time and requires the index
of the reverse reference genome. BWA performs paired-end alignments by trying to an-
chor both paired-end reads and verifying the corresponding mate, within an estimated
insert size, using the classic DP-based algorithm by Smith andWaterman [1981]. Conse-
quently, the program in paired-endmode aligns reads at a slower rate than in single-end
mode. The program is not fully multi-threaded, therefore it scales poorly on modern
multi-core machines.

5.4.3 Soap

Soap 2 [Li et al., 2009b] has been designed to produce a very quick but shallow map-
ping of short Illumina reads, up to 2 mismatches and without indels. The tool performs
backtrackingusing the so-called bi-directional (or 2-way)BWT [Belazzougui et al., 2013].
Soap2 supports paired-endmapping but at a slower alignment rate, it lacks native output
in the de-facto standard SAM format, and it is not open source.

5.4.4 SHRiMP 2

The SHort Read Mapping Program (SHRiMP 2) [David et al., 2011] is designed to map
short Illumina and ABI/SOLiD reads. The tool achieves high accuracy at the expense of
speed. SHRiMP 2 indices the reference genome usingmultiple gapped 𝑞-grams. At query
time, it projects each read to identify candidate mapping locations, which are veriϐied
with a DP algorithm [Smith and Waterman, 1981]. The SHRiMP 2 project has been re-
cently discontinued.

5.4.5 RazerS and RazerS 3

RazerS [Weese et al., 2009] has been designed to report all mapping locations within a
ϐixed Hamming or edit distance error rate. It is based on a full-sensitive 𝑞-gram counting
ϐiltrationmethod (see section 4.3) combinedwith the edit distance veriϐication algorithm
by Myers [Myers, 1999]. On demand, the tool throttles ϐiltration to be more speciϐic at
the expense of a controlled loss rate. Stronger ϐiltration reduces the number of candidate
locations and improves the overall speed of the program. All in all, the SWIFT ϐilter is very
slow while not highly speciϐic.

RazerS 3 [Weese et al., 2012] is a faster version featuring shared-memory parallelism,
a banded version of Myers’ algorithm, and a quicker ϐiltration method based on exact
seeds (see section 4.1). Such ϐiltration method however turns out to be very weak on

79

mammal genomes. Because of this fact, RazerS 3 is one-two orders of magnitude slower
than Bowtie 2 and BWA on such datasets.

All RazerS versions index the reads and scan the reference genome. One positive as-
pect of this strategy is that no preprocessing of the reference genome is required. How-
ever, other mapping strategies beyond all-mapping, e.g. mapping by strata, cannot be
efϐiciently implemented. Moreover, these programs exhibit an high memory footprint as
they remember themapping locations of all input readsuntil thewhole reference genome
has been scanned.

5.4.6 mrFast and mrsFast

The tools mrsFast [Hach et al., 2010] and mrFast [Ahmadi et al., 2012] are designed to
map Illumina reads. They report all mapping locations within a ϐixed absolute number
errors, respectively under the edit and Hamming distance. Similarly to RazerS 3, these
two programs implement full-sensitive ϐiltration using exact seeds (section 4.1). Their
peculiarity is a cache-oblivious strategy to mitigate the high cost of verifying clusters of
candidate locations. In addition, mrsFast computes the edit distance between one read
and one mapping location in the reference genome with an antidiagonal-wise vectorial
dynamic programming algorithm, implemented using SIMD instructions. These tools
perform only all-mapping, produce ϐiles of impractical size and lackmulti-threading sup-
port.

5.4.7 Hobbes 2

Hobbes 2 [Kim et al., 2014] is designed to identify all read mapping locations within a
ϐixed Hamming or edit distance threshold. In order to improve ϐiltering efϐiciency, the
tool employs a novel technique of so-called preϔix 𝑞-grams that enriches the reference
genome 𝑞-gram index. However, this technique does not guarantee full-sensitivity.

5.4.8 GEM

The GEM mapper [Marco-Sola et al., 2012] is a ϐlexible read aligner for Illumina and Ion
Torrent reads. The tool can be conϐigured either as an all-mapper, as a best/unique-
mapper, or to search by strata; however, it supports the best-mapping paradigm only
to some extent, as it does not annotate mapping locations with qualities.

GEM implements full-sensitive ϐiltration with approximate seeds (see section 4.2).
The program indexes the reference genome with an FM-index, tries to ϐind an optimal
ϐiltration scheme per read, and veriϐies candidate locations using Myers’ algorithm My-
ers [1999]. GEMmaps paired-reads in twoways: either itmaps both ends independently
and then combines them, ormaps one end and then veriϐies the other end using an online
method. Unfortunately, the tool is not open source and provides obscure parameteriza-
tion.

80

Ta
bl
e
5.
3:

Ov
er
vi
ew

of
po

pu
la
rr

ea
d
m
ap

pe
rs
.

Se
qu

en
ce
r

Pa
ra
di
gm

Al
ig
nm

en
t

In
de

x

Ill
um

in
a

Io
n

Be
st

St
ra
ta

Al
l

Ty
pe

O
pƟ

m
al

M
et
ho

d
Ty
pe

Re
fe
re
nc
e

Re
ad

s

Bo
w
Ɵe

sh
or
t

7
3

3
7

m
ism

at
ch
es

7
ba

ck
tr
ac
ki
ng

FM
-in

de
x

3
7

Bo
w
Ɵe

2
3

3
3

7
7

lo
ca
l

7
ex
ac
ts
ee

ds
FM

-in
de

x
3

7

BW
A

3
7

3
7

7
in
de

ls
7

ba
ck
tr
ac
ki
ng

FM
-in

de
x

3
7

So
ap

2
sh
or
t

7
3

7
7

m
ism

at
ch
es

7
ba

ck
tr
ac
ki
ng

FM
-in

de
x

3
7

Ra
ze
rS

3
7

7
3

3
in
de

ls
3

𝑞-
gr
am

s
𝑞-
gr
am

in
de

x
7

3

Ra
ze
rS

3
3

7
7

3
3

in
de

ls
3

ex
ac
ts
ee

ds
𝑞-
gr
am

in
de

x
7

3

SH
Ri
M
P
2

3
3

3
7

3
lo
ca
l

7
𝑞-
gr
am

s
𝑞-
gr
am

in
de

x
3

7

m
rs
Fa
st

sh
or
t

7
7

7
3

m
ism

at
ch
es

3
ex
ac
ts
ee

ds
𝑞-
gr
am

in
de

x
3

3

m
rF
as
t

3
7

7
7

3
in
de

ls
3

ex
ac
ts
ee

ds
𝑞-
gr
am

in
de

x
3

3

Ho
bb

es
2

3
7

7
7

3
in
de

ls
7

pr
efi

x
𝑞-
gr
am

s
𝑞-
gr
am

in
de

x
3

7

GE
M

3
3

3
3

3
in
de

ls
3

ap
x
se
ed

s
FM

-in
de

x
3

7

M
as
ai

3
7

3
7

3
in
de

ls
3

ap
x
se
ed

s
ge
ne

ric
3

3

Ya
ra

3
3

3
3

3
in
de

ls
3

ap
x
se
ed

s
FM

-in
de

x
3

7

CčĆĕęĊė

6 Masai

This chapter presents the engineering and evaluation of an efϐicient all-mapper for Illu-
mina reads. When I started this project, in October 2011, the fastest all-mappers (mr-
Fast and RazerS 3) were two order of magnitude slower than popular best-mappers
(Bowtie and BWA). On the one hand, those all-mappers employed ϐiltration based on ex-
act seeds, which is efϐicient on short reference genomes but becomes too weak on mam-
mal genomes; clearly, a stronger ϐiltration method would had been beneϐicial. On the
other hand, those best-mappers are based onheuristic backtracking, which is inadequate
to map longer Illumina reads.

After a thorough literature review, I came out with a novel read mapping method
combining seed-based ϐiltrationwith backtracking, published in the peer-reviewed jour-
nal Nucleic Acids Research [Siragusa et al., 2013a]. My method is packaged in a C++ tool
nicknamed Masai, which stands for multiple backtracking of approximate seeds on a
sufϐix array index. Masai is part of the SeqAn library, it is distributed under the BSD
license and can be downloaded from http://www.seqan.de/projects/masai.

In the engineering section, I explainMasai’s indexing, ϐiltration andveriϐicationmeth-
ods for all-mapping. In particular, the ϐiltration method is based on approximate seeds:
by employing approximate seeds instead of exact seeds, the tool obtains stronger, non-
heuristic and quasi full-sensitive ϐiltration for mammal reference genomes. Masai ϐind
approximate seeds by backtracking the index of the reference genome. The tool speeds
up the backtracking phase by searching all seeds simultaneously, with the help of an ad-
ditional index and the multiple backtracking algorithm. Lastly, Masai implements also a
quicker best-mapping method, though without mapping qualities.

In the evaluation section, I extensively compare Masai with popular read mappers,
both on simulated and real datasets. Compared to the all-mappers mrFast and RazerS 3,
Masai is an order of magnitude faster and has comparable sensitivity. In addition, Masai
in best-mapping is 2–4 times faster and more accurate than Bowtie 2 [Langmead and
Salzberg, 2012] and BWA [Li and Durbin, 2009]. Finally, I discuss the limitations ofMasai
that led me to engineer yet another read aligner.

6.1 Engineering

I ϐirst give an outline of the readmapping method implemented in Masai. Then, I explain
each step in details, motivating relevant engineering choices that led me to the ϐinal im-
plementation.

http://www.seqan.de/projects/masai

82

Masai requires an index capable of simulating a top-down traversal of the sufϐix trie
of the reference genome. The tool gives to users the possibility to choose among various
indices (see section 6.1.2). Similarly to all read mappers relying on an index of the ref-
erence genome, the tool indexes the reference genome only once, stores it on disk and
reuses it for all subsequent read mapping jobs.

Atmapping time,Masai requires twoparameters to beprovided: amaximumnumber
of errors per read and a minimum seed length. Default parameters work well for actual
Illumina reads, otherwise the user has to adequately parametrize the tool for optimal
performance. Nonetheless, independently of the chosen parameterization, ϐiltration is
guaranteed to be quasi full-sensitive (see section 6.1.1).

Masai partitions all reads (and their reverse complements) intonon-overlapping seeds
and indexes them in a conceptual trie. Using the multiple backtracking algorithm ex-
plained in section 3.3.6, the tool backtracks simultaneously all indexed seeds in the sufϐix
trie of the reference genome. The program veriϐies all candidate locations, reported by
the multiple backtracking algorithm, performing seed extension with a banded version
ofMyers bit-vector algorithm [Myers, 1999] (details in section 6.1.3).

6.1.1 Filtration

Myoriginal intentwas to improve the speed of the all-mapper RazerS [Weese et al., 2009]
while preserving full-sensitivity under the edit distance. RazerS was based on a 𝑞-gram
ϐilter; I was aware that gapped 𝑞-grams could have brought a huge speedup, but I could
not see any straightforward generalization of gapped 𝑞-grams to the edit distance. At the
same time, I experienced that weaker but quicker ϐiltration using exact seeds is more ad-
vantageous than ϐiltration using 𝑞-grams. Indeed, a typical Illumina read mapping setup
requires only moderate error rates, in the range of 4–6%. For instance, RazerS 3 [Weese
et al., 2012] went back to ϐiltration with exact seeds (similarly to mrFast). Nonetheless,
I wanted to improve ϐiltration speciϐicity of exact seeds, as the runtime of RazerS 3 on
mammal genomes became dominated by veriϐications. I knew that to improve ϐiltration
speciϐicity I had to increase the seed length.

While reviewing past literature in the ϐield of approximate string matching, I redis-
covered approximate seeds [Myers, 1994; Navarro and Baeza-Yates, 2000], providing
stronger ϐiltration than exact seeds while preserving full-sensitivity under the edit dis-
tance. Their idea is to partition the pattern into fewer non-overlapping seeds, which ob-
viously can be longer than exact seeds but have to be searched approximately. First, I
slightly improved the ϐiltration lemma of Navarro and Baeza-Yates [2000] to use approx-
imate seeds with variable thresholds (see section 4.2). Then, as discussed in section 4.2,
I chose to parameterize Masai’s ϐilter by the seed length rather than by the number of
seeds. Indeed, theminimum seed length provides a direct estimate of the expected num-
ber of candidate locations to verify and thus of ϐiltration speciϐicity. The resulting ϐilter
is thus ϐlexible: by increasing the seed length, ϐiltration becomes more speciϐic at the
expense of a higher ϐiltration time. In practice, the optimal seed length depends on the
reference genome as well as on read lengths and the absolute number of errors. In sec-
tion6.2.5, I experimentally evaluate ϐiltration schemeswith exact and approximate seeds.

83

When mapping current Illumina reads on short to medium length genomes, exact seeds
are stillmore efϐicient than approximate seeds. Conversely, on larger genomes (e.g.mam-
malian genomes) 1-approximate seeds outperformexact seeds by an order ofmagnitude.

Following Navarro and Baeza-Yates [2000], I decided to ϐind approximate seeds by
backtracking the sufϐix trie of the reference genome. In section 6.1.2, I recall the engi-
neering work I did to implement efϐicient backtracking of approximate seeds. In order
to achieve faster ϐiltration, I opted to ϐind approximate seeds only under the Hamming
distance. For this reason, when resorting to approximate seeds, Masai does not attain
strict full-sensitivity under the edit distance. Nonetheless, such implementation choice
sacriϐices only 0.1% sensitivity (see section 6.2).

Best-mapping

Masai is a tool primarily designed to perform all-mapping rather than best-mapping. In
best-mapping, Masai simply reports the ϐirst optimal mapping location encountered per
read. Clearly, this policy makes sense if the edit distance is effective at identifying the
original mapping locations. The evaluation of section 6.2.1 shows that Masai is com-
petitive in best-mapping with tools using more complex scoring schemes. Nonetheless,
Masai’s best-mapping method is ad-hoc and limited. In best-mapping, the tool does not
compute mapping qualities nor supports the paired-end and mate-pair protocols. The
reader is thus referred to the next chapter (section 7.1) for the complete description of
an efϐicient best-mapping method that, in standard scenarios, is an order of magnitude
faster than all-mapping.

6.1.2 Indexing

Initially, the SeqAn library provided me with only two indices capable of simulating a
top-down sufϐix trie traversal: the enhanced sufϐix array (ESA) [Abouelhoda et al., 2004]
and the lazy sufϐix tree (LST) [Giegerich et al., 1999]. To improve the efϐiciency ofMasai, I
implemented a generic top-down traversal for some additional indices, namely the sufϐix
array (SA) [Manber and Myers, 1990], the 𝑞-gram index, and various specializations of
the full-text minute index (FM-index) [Ferragina andManzini, 2001]. Below I discuss the
performance of these indices within Masai, while I refer the reader to chapter 3 for their
extensive explanation.

Indexing the reference genome

I initially chose the ESA over the LST because of better construction times. Indeed, the
ESA provides a linear time construction algorithm (an adaptation of the DC7 algorithm
[Dementiev et al., 2008] to multiple sequences [Weese, 2013] for the generalized SA, fol-
lowed by the algorithms proposed in [Kasai et al., 2001; Abouelhoda et al., 2004]), while
the LST construction algorithm takes quadratic time (using the radix sort based wotd-
algorithm [Giegerich et al., 1999]). The construction of the ESAof theH. sapiens reference
genome (GRCh37) takes about 1.5 hours and the index consumes 39 GB ofmemory.Apart

84

from that, both ESA and LST implementations require 13 bytes per base pair and exhibit
comparable query speed.

At this point, Masai required high-end hardware to process large reference genomes.
Therefore, thinking about a space-time trade-off, I designeda generic sufϐix trie top-down
traversal for the SA (see section 3.1.1). The SA consumes only 5 bytes per base pair but is
theoretically slower than the ESA, as it adds a logarithmic factor to query times. However,
with surprise, I found out that withinMasai the SA had equal or better performance than
the ESA (see table 6.4). Ultimately, this change brought down the memory footprint of
the index from 39 GB to 15 GB but preserved query speed.

I tried to further improve query speed by removing the logarithmic factor introduced
by the SA. Therefore, to cut the most expensive binary searches, I put a 𝑞-gram index on
top of the SA and extended my generic sufϐix trie top-down traversal accordingly (see
section 3.1.3). Yet, the 𝑞-gram index did not bring signiϐicant speedup to the application;
indeed, the lookup table turned out to be useful when searching patterns one by one, but
not when coupled with the multiple backtracking algorithm.

Finally, I explored additional space-time trade-offs. Starting from the implementation
of [Singer, 2013], I realized a generalized FM-index based on a wavelet tree [Grossi et al.,
2003]. This initial FM-index consumed about 1.5 bytes per base pair with a SA sampling
of 10%. Thus thememory footprint of the indexwent down to 4.5 GB, but Masai became
almost twice as slow (see table 6.4).

To sumup, I preferred the SA as it provides a good compromise between query speed
andmemory consumption. Nevertheless,Masai leaves to theuser thepossibility of choos-
ing among the aforementioned data structures. Table 6.4 summarizes the runtime of the
program with various indices.

Indexing the reads

In order to improve index query speed, I designed and implemented the algorithms pre-
sented in sections 3.3.5 and 3.3.6. These algorithms search simultaneously many exact
or approximate seeds, achieving a speedup of 2–5 times over their conventional coun-
terparts. As this multiple string matching algorithm requires a trie of the seeds, I also
engineered an efϐicient trie implementation. A short explanation can be found in section
3.1.4

Building the SA via quicksort turned out to be faster than building the LST via radix
sort but, within Masai, the more involved LST data structure payed off in terms of query
time (see section 3.3.2). Indeed, the LST stores all trie nodes and thus provides node
traversal in constant time, while the SA explicitly stores only the leaves and then derives
internal nodes via binary search. As the memory footprint of the trie is negligible within
this application, I chose the LST to performmultiple backtracking of approximate seeds.

When performing multiple backtracking of exact seeds, the LST construction time
dominates the overall ϐiltration time (see section 3.3.5). Therefore, I decided to resort to
the 𝑞-gram index to emulate a trie in this case: I build a partial 𝑞-gram index efϐiciently
and in linear time by bucket sort, again considering only the ϐirst sufϐix of each seed in
the collection. Such index represents a trie truncated at depth 𝑞 (which I ϐixed to 12 in

85

Masai). Truncation is only a minor concern: at depth 𝑞 the search continues separately
on each active node using the conventional binary search algorithms (see sections 3.3.3
and 3.3.4).

6.1.3 Veriϐication

Toverify candidate locations reportedby the ϐiltrationalgorithm,Masai employs abanded
version of Myers bit-vector algorithm [Myers, 1999] implemented for the tool RazerS 3
by Weese et al. and available in the SeqAn library. This banded version computes only a
diagonal band of the DP matrix and is thus faster than the original algorithm by Myers.
However, Masai uses this algorithm in a different way than RazerS 3. While RazerS 3
performs one semi-global alignment to verify one parallelogram surrounding any seed
occurrence, Masai performs two global alignments on both ends of any seed occurrence.
Given a seed occurring with 𝑒 errors, Masai ϐirst performs seed extension on the left side
within an error threshold of 𝑘 − 𝑒 errors. Only if the seed extension on the left side suc-
ceeds, the tool performs a seed extension on the right side within the remaining error
threshold. Moreover, the tool ϐirst computes the longest common preϔix on each side of
the seed and lets the global alignment algorithm start from the ϐirst mismatching posi-
tions. This approach is up to two times faster than the one implemented by RazerS 3
(data not shown).

6.2 Evaluation

In order to evaluate Masai, I propose three experiments: (i) the Rabema benchmark on
simulated data, (ii) variant detection on simulated data, and (iii) performance on real
data. This evaluation focuses on the capability of the mappers to retrieve the location of
a single read without the help of its paired-end, which can of course disambiguate some
mapping locations. As references, I use whole genomes of E. coli (NCBI NC_000913.2),
C. elegans (WormBase WS195), D. melanogaster (FlyBase release 5.42), and H. sapiens
(GRCh37.p2).

I compareMasai in all-mapping with RazerS 3, Hobbes, mrFAST and SHRiMP2, while
in best-mapping with Bowtie 2, BWA and Soap 2. Masai, RazerS 3, Hobbes and mrFAST
use edit distance, while Bowtie 2, BWA, Soap 2 and SHRiMP2 rely on scoring schemes
taking into account base quality values. When relevant, I conϐigured some readmappers
with the appropriate absolute number of errors (Masai, mrFAST,Hobbes, Soap 2) or error
rate (RazerS 3). In section A.1, I give the exact parameterization of the read mappers
considered in this evaluation.

6.2.1 Rabema benchmark on simulated data

I ϐirst consider the Rabema benchmark [Holtgrewe et al., 2011] (v1.1) for a thorough
evaluation and comparison of read mapping sensitivity. I consider the benchmark cat-
egories all and best, in addition to precision and recall. In the categories all and best, a

86

read mapper has to ϐind for each read respectively all or one of the best edit distance
mapping locations. The categories precision and recall require a read mapper to ϐind
the original location of each simulated read, which is a measure independent of the used
scoringmodel, e.g. edit distance or quality based. A simulated read ismapped correctly if
the mapper reports its original location, and it is mapped uniquely if the mapper reports
only one location. Rabema deϐines recall to be the fraction of reads which were correctly
mapped and precision the fraction of uniquelymapped reads thatweremapped correctly.

Similarly to [Langmead and Salzberg, 2012], I used the read simulator Mason [Holt-
grewe, 2010] with default proϐile settings to simulate, from each whole genome, 100 k
reads of length 100 bp having sequencing errors distributed like in a typical Illumina run.
I performed the benchmark for an error rate of 5%, which corresponds to edit distance 5
for reads of length 100 bp. Therefore, I built a Rabema gold standard for each dataset by
running RazerS 3 in full-sensitivemode up to edit distance 5. I further classiϐiedmapping
locations in each category by their edit distance.

For a more fair and thorough comparison, I also consider BWA and Bowtie 2 in all-
mapping (Soap 2 cannot be conϐigured accordingly). To this extent, I parametrized these
tools tobehighly sensitive andoutput all foundmapping locations. SinceBWAandBowtie 2
were not designed to be used in this way, they spent much more time than proper all-
mappers, i.e., up to 3 hours in a run compared to several minutes. However, the aim of
this experiment is to investigate read mapping sensitivity, therefore I do not report any
running times. Table 6.1 shows the results on H. sapiens.

All-mapping

As expected, RazerS 3 shows full-sensitivity. In contrast, mrFAST looses a minimal per-
centage of mapping locations. Overall, Masai does not loose more than 0.1% of all map-
ping locations. In particular, Masai is full-sensitive for low-error locations and looses
only a small percentage of high-error locations, i.e., its loss is limited to 0.1% and 1.4%
of mapping locations at edit distance 4 and 5.

Conversely, BWA and Bowtie 2 miss 35% and 45% of all mapping locations at edit
distance 5 and their recall values as all-mappers do not substantially increase. Likewise,
SHRiMP2 is not able to enumerate all mapping locations, although its recall values are
good. Again, Hobbes has the worst performance.

Asmentioned in section6.1.1,Masai is not full-sensitivewhenever approximate seeds
are used, e.g. on H. sapiens. Indeed, Masai loses 0.1% overall sensitivity in respect to
RazerS 3. In general, RazerS 3 should be used when full-sensitivity is required, i.e., in
readmapping benchmarks. However, these results show thatMasai can replace RazerS 3
or mrFAST in practical all-mapping setups.

Best-mapping

Masai shows the best recall values, not loosing more than 2.3% recall on edit distance 5.
Conversely, the recall values of BWA and Bowtie 2 drop signiϐicantly with increasing edit
distance and loose up to 15.4% and 11.5% on edit distance 5. As expected, Soap 2 turns
out to be inadequate for mapping reads of length 100 bp at this error rates. Precision

87

Table 6.1: Rabema benchmark results on 100 k × 100 bp Illumina-like reads. Rabema
scores are given in percent (average fraction of edit distance locations reported
per read). Large numbers show total scores in each Rabema category and small
numbers show the category scores separately for reads with ൫ 0 1 2

3 4 5 ൯ errors.

All locaƟons Best locaƟons Recall Precision

Al
l-m

ap
pi
ng

Masai 99.9 100.0 100.0 100.0
100.0 99.9 98.6 100.0 100.0 100.0 100.0

100.0 99.9 98.7 100.0 100.0 100.0 100.0
100.0 99.9 98.8 100.0 100.0 100.0 100.0

100.0 100.0 100.0

mrFAST 100.0 100.0 100.0 100.0
100.0 100.0 99.5 100.0 100.0 100.0 100.0

100.0 100.0 99.1 100.0 100.0 100.0 100.0
100.0 100.0 99.2 100.0 100.0 100.0 100.0

100.0 100.0 100.0

RazerS 3 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0

100.0 100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0 100.0 100.0 100.0

100.0 100.0 100.0

BowƟe 2 95.7 100.0 99.9 99.4
98.0 90.7 55.1 99.2 100.0 100.0 99.0

98.6 97.9 94.2 98.5 99.7 99.6 98.3
97.6 96.9 94.4 99.8 100.0 99.9 99.9

99.6 99.7 99.3

BWA 95.9 100.0 99.9 99.5
97.1 87.8 64.1 98.8 100.0 100.0 99.8

98.6 94.3 85.4 97.8 99.0 99.0 98.7
97.4 93.4 86.4 98.1 93.2 97.6 98.4

98.5 98.7 99.6

Be
st
-m

ap
pi
ng

Masai 93.3 99.2 98.7 97.9
95.6 85.8 43.6 100.0 100.0 100.0 100.0

100.0 99.9 98.7 97.7 97.9 97.8 97.8
97.7 97.6 96.7 97.8 97.9 97.8 97.8

97.7 97.6 97.9

BowƟe 2 92.0 99.2 98.7 96.8
93.4 81.9 40.2 98.1 100.0 100.0 97.6

96.6 94.9 90.5 95.9 98.0 97.7 95.6
94.2 92.8 89.5 96.6 98.0 97.7 96.0

95.2 95.2 94.4

BWA 92.2 99.2 98.7 97.8
94.2 80.9 37.6 98.8 100.0 100.0 99.8

98.5 94.3 85.4 96.4 97.9 97.7 97.3
95.8 92.0 84.6 97.5 97.9 97.7 97.4

97.1 97.2 97.6

Soap 2 65.9 99.2 95.5 91.3
8.7 0.7 0.0 71.4 100.0 96.8 93.2

9.2 0.8 0.0 69.9 98.1 94.6 91.2
11.9 1.4 0.4 97.7 98.1 97.7 97.7

94.9 84.1 91.7

values have less variance than recall values. Masai shows the best precision values with
97.8%, followed by Soap 2 with 97.7%, and BWA with 97.5%. Interestingly, Bowtie 2
shows the worst precision values, loosing up to 5.6% on edit distance 5.

6.2.2 Variant detection on simulated data

The second experiment analyzes the theoretical performance of Masai and other read
mappers in variant detection pipelines. Similarly to [David et al., 2011], this experiment
considers simulated reads containing sequencing errors, SNPs and indels. Each simu-
lated read has an edit distance of at most 5 to its genomic origin, and it is grouped ac-
cording to the number of contained SNPs and indels, where class (𝑠, 𝑖) consists of all
reads with 𝑠 SNPs and 𝑖 indels. The experiment considers a read to be mapped correctly
if a mapping location is reportedwithin 10 bp of its genomic origin; it considers a read to
map uniquely if only one location is reported by the mapper. For each class, the experi-
ment deϐines recall to be the fraction of readswhichwere correctlymapped and precision
the fraction of uniquely mapped reads that were mapped correctly.

I simulated 5 million Illumina-like reads of length 100 bp from the whole human
genome using Mason. I mapped the reads with each tool and measured its sensitivity
in each class. Table 6.2 shows the results.

All-mapping

Looking at all-mapping results, Masai shows 100% precision and recall in all classes,
except for classes (2,0) and (1,1) where it looses only 0.1% and 0.7% recall. Masai is
therefore roughly comparable to the full-sensitive read mappers RazerS 3 and mrFAST.

88

Table 6.2: Variant detection results on 5M × 100 bp Illumina-like reads. The table shows
percentages of found origins (recall) and fraction of unique reads mapped to
their origin (precision) classed by reads with 𝑠 SNPs and 𝑖 indels (𝑠, 𝑖).

(0,0) (2,0) (4,0) (1,1) (1,2) (0,3)
Prec. Recl. Prec. Recl. Prec. Recl. Prec. Recl. Prec. Recl. Prec. Recl.

Al
l-m

ap
pi
ng

Masai 100.0 100.0 100.0 99.9 100.0 100.0 100.0 99.3 100.0 100.0 100.0 100.0
RazerS 3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Hobbes 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.8 100.0 93.6 99.6 90.5
mrFAST 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SHRiMP 2 100.0 99.4 100.0 99.7 100.0 99.7 100.0 99.5 100.0 99.2 100.0 99.6

Be
st
-m

ap
pi
ng Masai 98.2 98.2 97.6 97.5 96.8 96.8 97.8 97.2 97.9 97.9 97.2 97.2

BowƟe 2 97.6 97.3 94.6 92.0 92.6 82.5 95.3 93.3 93.5 92.3 96.1 95.4
BWA 98.2 97.9 97.6 95.3 94.9 85.1 97.4 90.9 97.1 80.3 96.3 66.5
Soap 2 98.1 82.9 97.4 31.0 0.0 0.0 90.6 6.2 0.0 0.0 0.0 0.0

SHRiMP2 shows 100%precision in all classes but looses between 0.3% and 0.8% recall
in each class. Hobbes has the lowest performance among all-mappers: it appears to have
problems with indels, indeed it looses 9.5% recall in class (0,3).

Best-mapping

Masai shows the highest precision and recall in all best-mapping classes. In particular,
Masai does not loose more than 3.2% recall in class (4,0), whether Bowtie 2 and BWA
loose respectively 17.5% and 14.9% and Soap 2 is not able to map any read. The re-
call values of Bowtie 2, BWA and Soap 2 are negatively correlated with the amount of
genomic variation. For instance, in the Rabema benchmark, Bowtie 2 looses respectively
7.2% and 11.5% of mapping locations at distance 4 and 5, but in class (4,0) of this ex-
periment it looses 17.5% recall. A similar trend is observable for BWA and Soap 2. The
low performance of Soap 2 is also due to its limitation to at most 2 mismatches and no
support for indels.

6.2.3 Performance on real data

The last experiment focuses on comparing read mappers performance on real data. I
mapped the ϐirst10M×100 bp reads froman Illumina laneofE. coli (ERR022075, Genome
Analyzer IIx),D.melanogaster (SRR497711, HiSeq2000),C. elegans (SRR065390, Genome
Analyzer II), andH. sapiens (ERR012100, GenomeAnalyzer II).Whenever possible, I con-
ϐigured the tools to map the reads within edit distance 5. I measuredmapping times on a
cluster of nodes with 72GB RAM and 2 Intel Xeon X5650 processors running Linux 3.2.0.
For an accurate running time comparison, I ran the tools using a single thread and used
local disks for I/O. I measured running times and peak memory consumptions.

89

I cannot measure precision and recall values as real reads have unknown origins.
Therefore, for this evaluation, I count also the Rabema best locations. As explained in
section 6.2.1, the Rabema best category assigns a point for a read if the mapper reports
at least onemapping locationwith the optimal (i.e., best) number of errors; ϐinal Rabema
best scores are normalized by the number of reads. All results are shown in table 6.3.

All-mapping

On the H. sapiens dataset, Masai is 11.9 times faster than RazerS 3, 14.6 times faster than
mrFAST, and 7.6 times faster than Hobbes. The current version of Hobbes constantly
crashes and maps only half of the reads. SHRiMP2 is not able to map the H. sapiens
dataset within 4 days. On the C. elegans dataset, Masai is 2.0 times faster than RazerS 3,
10.9 times faster than Hobbes, 6.3 times faster than mrFAST and 50.1 times faster than
SHRiMP2. Hobbes constantly crashes andmaps less reads than all othermappers in this
category.

Best-mapping

On the H. sapiens dataset, Masai is 2.6 times faster than Bowtie 2, 3.6 times faster than
BWA but 2.1 times slower than Soap 2. On the C. elegans dataset, Masai is 7.7 times faster
than Bowtie 2, 8.2 times faster than BWA and 1.5 times faster than Soap 2. Soap 2 is
not able to map a consistent fraction of reads because of its limitation to 2 mismatches.
Bowtie 2 misses respectively 22.0% and 20.7% of reads mappable at edit distance 5 on
the C. elegans and H. sapiens datasets.

6.2.4 Performance with different indices

Table 6.4 shows the runtime and memory consumption of Masai using different indices.
As discussed in section 6.1.2, Masai/SA is always faster than Masai/ESA, except for all-
mapping on the H. sapiens dataset. Masai/FM-index shows signiϐicantly lower memory
consumption only on the H. sapiens dataset, but with a consistent runtime penalty.

6.2.5 Filtration efϐiciency

This experiment assesses the contribution of approximate seeds andmultiple backtrack-
ing on runtime results. To this intent, I perform all-mapping with Masai on all dataset of
section 6.2.3, using either exact or approximate seeds in combination with either sin-
gle or multiple backtracking. As this experiment focuses on ϐiltration efϐiciency, I do not
consider the time spent performing seed extensions and I/O, i.e., loading the reference
genome and its index, loading the reads, and writing the results.

Table6.5 shows the results. Column time reports ϐiltration times, i.e., the time spent to
index the seeds (in case of multiple backtracking) and to perform backtracking. Column
candid. reports the number of candidate locations reported by the ϐilter for which seed
extension is subsequently performed. In bold, I report the optimal ϐiltering scheme used
to parameterize Masai in the experiments of section 6.2.3.

90

Table 6.3: Performance on real data using 10M × 100 bp Illumina reads. Rabema best
column: in large are shown the percentage of reads mapped with the mini-
mal number of errors (up to 5%) and in small the percentage of reads that
were mapped with ൫ 0 1% 2%

3% 4% 5% ൯ errors. Remarks: SHRiMP2 is not able to map the
H. sapiens dataset within 4 days; Hobbes systematically crashes in all but the
D. melanogaster dataset.

ERR012100 SRR065390
H. sapiens C. elegans

Time Memory Best locaƟons Time Memory Best locaƟons
[min:s] [GB] [%] [min:s] [GB] [%]

Al
l-m

ap
pi
ng

Masai 307:16 19.66 100.0 100.0 100.0 100.0
100.0 100.0 99.5 10:49 2.76 100.0 100.0 100.0 100.0

100.0 100.0 100.0

RazerS 3 3653:03 16.89 100.0 100.0 100.0 100.0
100.0 100.0 100.0 21:18 11.22 100.0 100.0 100.0 100.0

100.0 100.0 100.0

Hobbes 2319:27 70.00 59.0 59.2 58.7 57.5
56.9 56.7 56.3 117:46 3.79 89.8 91.0 80.6 86.5

88.3 88.5 85.2

mrFAST 4462:25 0.91 100.0 100.0 100.0 100.0
100.0 100.0 97.5 67:41 0.85 100.0 100.0 100.0 99.9

99.9 99.9 99.5

SHRiMP 2 – – – 541:20 2.67 98.5 99.6 96.8 91.8
87.6 81.9 74.8

Be
st
-m

ap
pi
ng

Masai 22:35 19.25 100.0 100.0 100.0 100.0
99.9 99.9 99.5 3:10 2.87 100.0 100.0 100.0 100.0

100.0 100.0 100.0

BowƟe 2 57:41 3.11 99.4 100.0 99.7 96.0
92.9 87.9 79.3 24:14 0.13 99.2 100.0 99.3 93.4

88.6 84.0 78.0

BWA 80:58 4.37 99.5 100.0 99.5 98.0
93.4 88.9 84.4 25:53 0.32 99.3 100.0 99.1 95.6

89.7 85.9 82.3

Soap 2 11:11 5.23 95.7 100.0 94.9 86.5
0.3 0.2 0.2 4:37 0.73 96.0 100.0 96.6 92.4

0.3 0.04 0.02

SRR497711 ERR022075
D.melanogaster E. coli

Time Memory Best locaƟons Time Memory Best locaƟons
[min:s] [GB] [%] [min:s] [GB] [%]

Al
l-m

ap
pi
ng

Masai 7:34 2.87 100.0 100.0 100.0 100.0
100.0 100.0 100.0 1:33 2.22 100.0 100.0 100.0 100.0

100.0 100.0 100.0

RazerS 3 10:54 7.71 100.0 100.0 100.0 100.0
100.0 100.0 100.0 1:46 5.57 100.0 100.0 100.0 100.0

100.0 100.0 100.0

Hobbes 42:05 2.44 99.9 100.0 100.0 100.0
100.0 99.3 96.6 9:14 0.68 95.1 95.1 95.2 95.1

95.1 95.3 94.8

mrFAST 37:38 0.88 99.9 100.0 100.0 100.0
100.0 100.0 96.9 4:34 0.67 100.0 100.0 100.0 100.0

100.0 100.0 100.0

SHRiMP 2 225:03 3.02 99.7 100.0 100.0 99.7
98.7 96.3 92.6 41:40 0.95 99.8 100.0 99.7 98.7

97.1 94.5 91.2

Be
st
-m

ap
pi
ng

Masai 4:52 2.98 100.0 100.0 100.0 100.0
100.0 100.0 100.0 0:44 2.33 100.0 100.0 100.0 100.0

100.0 100.0 100.0

BowƟe 2 21:11 0.15 99.5 100.0 99.8 99.0
97.6 94.9 89.9 12:11 0.03 99.7 100.0 99.5 97.5

94.4 90.7 85.8

BWA 30:46 0.35 98.5 100.0 99.6 98.4
90.7 82.1 73.5 10:13 0.16 99.7 100.0 99.5 97.5

94.4 91.8 89.5

Soap 2 5:42 0.76 90.3 100.0 96.2 89.4
0.09 0.02 0.02 2:19 0.59 97.6 100.0 99.1 96.8

0.5 0.1 0.08

On E. coli, D. melanogaster and C. elegans, approximate seeds reduce the number of
candidates respectively by 2.1 times, 9.9 times, and 4.3 times. Nevertheless I still pre-
fer exact seeds as ϐiltration dominates the total runtime. Multiple backtracking on exact
seeds compared to single backtracking speeds up ϐiltration by 2.9 times on E. coli, and

91

Table 6.4: Masai performance with different indices. The lowest runtimes are in bold.

ERR022075 SRR497711 SRR065390 ERR012100
E. coli D.melanogaster C. elegans H. sapiens

Time Memory Time Memory Time Memory Time Memory
[min:s] [GB] [min:s] [GB] [min:s] [GB] [min:s] [GB]

Al
l-m

ap
pi
ng SA 1:33 2.22 7:34 2.87 10:49 2.76 307:16 19.66

Esa 1:42 2.26 8:02 3.76 11:13 3.50 297:13 42.18
FM-index 2:38 2.20 17:15 2.44 21:12 2.40 480:23 8.94

Be
st
-m

ap
pi
ng SA 0:44 2.33 4:52 2.98 3:10 2.87 22:35 19.25

Esa 0:46 2.37 5:01 3.88 3:15 3.61 26:24 41.78
FM-index 0:52 2.31 10:17 2.55 5:29 2.51 42:26 8.57

3.8 times on D. melanogaster and C. elegans. Without the contribution of multiple back-
tracking, Masai would not be faster than RazerS 3, the second fastest all-mapper.

Approximate seeds become effective on H. sapiens, where they reduce the number
of candidates by 10.8 times. On H. sapiens, seed extensions largely dominate the total
runtime, therefore I prefer approximate seeds. Multiple backtracking on approximate
seeds provides a speed-up of 3.2 times over single backtracking. The combination of the
two methods makes Masai an order of magnitude faster than any other all-mapper.

6.3 Discussion

Masai consists of two important algorithmic methods: approximate seeds and multi-
ple backtracking. Approximate seeds are of paramount importance to obtain very spe-
ciϐic, yet full-sensitive ϐiltration; their adoption speeds up Masai by one order of mag-
nitude. Multiple backtracking further speeds up the ϐiltration phase by 3–5 times on a

Table 6.5: Masai all-mapping ϔiltration efϔiciency results. Filtering times include seeds in-
dexing times. The best ϔiltering schemes are in bold.

ERR022075 SRR497711 SRR065390 ERR012100
E. coli D.melanogaster C. elegans H. sapiens

Timee Candid. Timee Candid. Timee Candid. Timee Candid.
Seeding Backtracking [min:s] [M] [min:s] [M] [min:s] [M] [min:s] [M]

Exact Single 3:55 69.17 8:15 1020.28 8:25 1065.70 55:54 294943.86
Exact MulƟple 1:20 69.17 2:11 1020.28 2:11 1065.70 41:52 294943.86

1-Apx Single 38:42 33.08 100:18 102.78 102:02 246.65 165:45 27396.01
1-Apx MulƟple 9:00 33.08 20:48 102.78 21:33 246.65 52:15 27396.01

92

(enhanced) sufϐix array index; this technique makes Masai twice as fast. In addition, Ma-
sai implements a best-mapping method that ϐinds one optimal mapping location and is
an order of magnitude faster than all-mapping.

Is the edit distance adequate for best-mapping? Both Rabema benchmark and vari-
ant detection results show that Masai has constantly better accuracy than other best-
mappers relying on more complex scoring schemes. In particular, the Rabema bench-
mark results show that Rabema best values are tightly bound to recall scores. Hence, the
edit distance is a pertinent and adequate scoring scheme for best-mapping. Vice versa,
best-mappers using scoring schemes based on quality values show a generalized and
substantial loss of mapping accuracy. This is likely due to the heuristics on which these
tools rely. To sum up, it is better to stick to edit distance and guarantee full-sensitivity
rather than to adopt an involved scoring scheme and explore the alignment space heuris-
tically, hence partially.

How many mapping locations do heuristic best-mappers miss? By looking at preci-
sion and recall values on simulated data, or at Rabema best values on real data, it can be
deduced that Bowtie 2, BWA and Soap 2 miss up to 20% of reads mappable at 5% error
rate. Yet, it is not evident how these results affects variant calling pipelines.

Summing up, Masai in all-mapping is an order ofmagnitude faster and thus a valid al-
ternative to tools like RazerS 3 and mrFast. Computational requirements of all-mapping
are now close to those of best-mapping. Indeed, Masai in all-mapping is only 4 times
slower thanBWA inbest-mapping, despite reporting twoorders ofmagnitudemoremap-
ping locations. Masai inbest-mapping is 2–4 times faster andmoreaccurate thanBowtie 2
[Langmead and Salzberg, 2012] and BWA [Li and Durbin, 2009]. The achieved speedup
is huge when RazerS 3 is used for best-mapping: in this scenario, Masai is roughly 200
times faster!

Despite these good results, Masai is not being widely used. This is mainly because
the tool lacks somecommonly requested features, including: direct support of thepaired-
end andmate-pair protocols, computation ofmapping qualities, parallelization viamulti-
threading, lowmemory footprint, and automatic parameterization. Because of my initial
inexperience and unclear or wrong design goals, I neglected these features while engi-
neering Masai. The next chapter introduces Yara, a tool implementing these features.

CčĆĕęĊė

7 Yara

Yara is a non-heuristic read mapper capable of quickly reporting all co-optimal or sub-
optimal mapping locations within a given error rate. Yara works with Illumina or Ion
Torrent reads, supports both paired-end and mate-pair protocols, computes accurate
mapping qualities, offers parallelization viamulti-threading, has a lowmemory footprint
thanks to the FM-index, and does not require ad-hoc parameterization.

7.1 Engineering

7.1.1 Stratiϐied mapping

Yara is based on the concept of stratiϔied all-mapping. The all-mapping methods dis-
cussed so far consider a set of relevant mapping locations per read. Yet, this deϐinition
leavesopenwhat relevantmeans. In all-mappingunder the edit distance, theuserdeϐines
relevant mapping locations by imposing a distance threshold. Despite being sound, this
deϐinition does not work well in practice. On the one hand a very low threshold leaves
a consistent fraction of the reads unmapped, on the other hand a moderate threshold
produces a deluge of mapping locations for some reads. In practice, at 5%, error rate,
Illumina reads map on average to hundreds of mapping locations on the human genome.
It is questionable whether all these locations are relevant for the downstream analysis.
Thus, a ϐiner deϐinition of all-mapping relevance is necessary in practice.

Stratiϐication of mapping locations yields an equally sound yet practical deϐinition of
all-mapping under the edit distance. The 𝑒-stratum

𝕊௘ = {(𝑖, 𝑗, 𝑒) ∶ 𝑑ா(𝐺௜…௝ , 𝑅) = 𝑒} (7.1)
denotes the set of all mapping locations of a read 𝑅 at edit distance 𝑒 from the reference
genome 𝐺. According to the above deϐinition, conventional all-mapping under the edit
distance deϐines the set

𝕊 = 𝕊଴ ∪ 𝕊ଵ ∪ … ∪ 𝕊௞ (7.2)
as relevantmapping locationswithin anabsoluteerror threshold𝑘. Stratiϐied all-mapping
reϐines this deϐinition by considering onlymapping locations being co-optimal, or subop-
timal up to a certain degree 𝑠. Formally, if the distance of any optimal mapping location
for read 𝑅 is

𝑜 = min {𝑒 ∈ [0, 𝑘 − 𝑠] ∶ 𝕊௘ ≠ ∅} (7.3)

94

stratiϐied all-mapping considers mapping locations

𝕊 = 𝕊௢ ∪ … ∪ 𝕊௢ା௦ (7.4)

within a relative suboptimality error threshold 𝑠 to be relevant.

Efϐicient ϐiltration by strata

Yara signiϐicantly improves the runtime of stratiϐied all-mapping over conventional all-
mapping. Obviously, themost straightforwardway to achieve stratiϐied all-mapping con-
sists of performing conventional all-mapping and subsequently ϐiltering out any irrel-
evant mapping location. For instance, RazerS 3 implements this method and gets no
speedup. Another naïve method consists of performing up to 𝑘 rounds of conventional
all-mapping, using ϐiltration schemes with thresholds incrementing from 0 to 𝑜 + 𝑠. It
is easy to see that also this method performs redundant computation: the total work for
any read that maps at distance greater than or equal to 𝑘 corresponds to the sum of all 𝑘
ϐiltration schemes.

The following stratiϐied all-mapping method, implemented in Yara, guarantees not
to perform more work than conventional all-mapping. Indeed, the key idea is to simply
reduce any ϐiltration scheme full-sensitive within distance 𝑘 to be full-sensitive within
distance 𝑜 + 𝑠. Given a ϐiltration scheme 𝑇 = (𝑡଴, … , 𝑡௦ିଵ) full-sensitive within distance
𝑘, any subset consisting of 𝑠ᇱ ≤ 𝑠 seeds with thresholds 𝐭ᇱ = (𝑡ᇱ଴, … , 𝑡ᇱ௦ᇲିଵ) is full-sensitive
within distance 𝑜 + 𝑠 if it satisϐies

𝑠ᇱ +
௦ᇲିଵ

෍
௜ୀ଴

𝑡ᇱ௜ > 𝑜 + 𝑠. (7.5)

Example 7.1. Let 𝑘 = 5 be the absolute threshold and 𝑠 = 0 the relative threshold, deϐin-
ing only co-optimal locations to be relevant. A read𝑅maps at distance 1, i.e., |𝕊଴| = 0 and
|𝕊ଵ| > 0, thus 𝑜 = 1. Given the ϐiltration scheme 𝑇 = (1, 1, 1), any subset full-sensitive
up to distance 𝑜 + 𝑠 = 1 ϐinds all relevant mapping locations. All full-sensitive subsets
of 𝑇 are (0, 0, −), (0, −, 0), (−, 0, 0), (1, −,−), (−, 1, −), (−,−, 1), where a − at position
𝑖 indicates that the 𝑖-th seed is unnecessary. Thus, the veriϐication of all candidates, ei-
ther produced by any two exact seeds or by one 1-approximate seed, yields all mapping
locations in the 1-stratum of 𝑅.

Greedy veriϐication strategy

In addition, Yara implements a simple greedy strategy to minimize the number of veriϐi-
cations necessary to ϐind all relevant stratiϐiedmapping locations. As candidate locations
can be veriϐied in any order, Yara chooses an ordering of the seeds that minimizes the ex-
pected number of veriϐications. The tool ϐirst ϐinds all seeds and ranks them by number
of candidate locations produced. Then it processes all candidate locations, from the least
to the most frequent seed, until it explores 𝑠 strata from the ϐirst non-empty one.

95

Best-mapping

Yara performs best-mapping bymeans of stratiϐied ϐiltration. Best-mapping requires one
primary mapping location along with its conϐidence. Under the edit distance, without
any further assumptions, any co-optimal location is equally likely to be correct. Thus,
Yara performs stratiϐied all-mapping with a relative threshold 𝑠 = 0, picks one random
co-optimal location, and subsequently estimates itsmapping quality using all foundmap-
ping locations (see section 7.1.5). Thanks to this method, Yara in best-mapping is an or-
der of magnitude faster than in all-mapping.

7.1.2 Adaptive ϐiltration

Speciϐic yet rapid ϐiltration is fundamental in the design of an efϐicient readmapping tool.
Read mappers like RazerS 3 [Weese et al., 2012] and mrFast [Ahmadi et al., 2012] are
designed around naïve ϐiltration with exact seeds. This ϐiltration method is always very
quick, however it is not speciϐic enough on long, repetitive reference genomes like the hu-
man genome. Masai [Siragusa et al., 2013a] circumvents this problemby enforcing amin-
imum seed length, whose optimal value must be tuned for a speciϐic reference genome,
and eventually by resorting to approximate seeds in order to guarantee full-sensitivity.
This ϐiltration method speeds up Masai by an order of magnitude but has some draw-
backs: it needs external parametrization, lacks ϐlexibility and is suboptimal in practice.

Yara applies an adaptive ϐiltration scheme per read because, under any ϐixed ϐiltra-
tion scheme, the number of veriϐications per read is not uniform: within a typical human
genome resequencing, most reads produce very few veriϐications and are easily map-
pable, while few other reads are problematic and often not even conϐidentlymappable to
one single location. Consequently, any ϐixed ϐiltration scheme turns out to be tooweak for
some reads yet too strong for others, thus suboptimal in practice. An adaptive ϐiltration
scheme per read improves ϐiltration efϐiciency by optimizing the ratio between ϐiltration
speed and speciϐicity. Yara thus automatically chooses an adaptive ϐiltration scheme per
read, without requiring manual parameterization by the user.

Adaptive ϐiltration works as follows. Yara initially applies ϐiltration with exact seeds
to all reads. The tool counts the number of veriϐications to be performed for each read,
thus decides if it isworth proceedingwith the veriϐication phase or alternatively applying
a stronger ϐiltration scheme. This decision depends on ϐine-tuned internal veriϐication
thresholds. Under standard Illumina setups, exact seeds provide efϐicient ϐiltration for
up to 70–80% of the reads; on the remaining reads, a ϐiltration scheme using 1– or 2–
approximate seeds works better. Thus, Yara starts with the quickest ϐiltration scheme
and becomes more speciϐic whenever it pays off to do so.

7.1.3 Indexing

Yara uses an efϐicient FM-index specialization for the DNA alphabet, based on interleaved
rank dictionaries (see section 3.2.2). This FM-index exhibits a fourfold speedup over the
ϐirst FM-index implementation bundled with Masai. Surprisingly, this FM-index is faster
than any other index, both in exact and approximate search (see section 3.3). Moreover,

96

this index consumes only 1.23 bytes per base pair with a SA sampled at 10%, thus its
memory footprint for the human genome is 3.7 GB. Thus, the FM-index always provides
themost convenient sufϐix trie implementation, both in terms of speed andmemory foot-
print.

Yara does not use the multiple search algorithms of section 3.3.6 to search seeds on
the FM-index. As shown in section 3.3, on the FM-index it is always faster to search exact
queries in a naïve way and approximate queries after sorting them in lexicographical
order. This fact considerably simpliϐies the implementation and allows its ϐine-grained
parallelization.

7.1.4 Paired-end andmate-pair protocols

Paired-end and mate-pair protocols are the sequencing protocols of choice of Illumina
instruments. As reads are sequenced in pairs from the two ends of the same DNA frag-
ment, they are expected to map closely in the reference genome. The added information
of an expected DNA insert size allows to disambiguate the original location of read pairs
more conϐidently than in the single-end protocol. Nonetheless, the lack of any proper
pair of mapping locations signals a potential structural variation, e.g. a long indel or an
inversion. Therefore, a read mapper should report equally important unpaired mapping
locations.

In the paired-end ormate-pair workϐlows, Yaramaps paired reads independently, ex-
actly as in the single-end workϐlow, and then reports all relevant mapping locations per
read. However, in addition to the single-end workϐlow, Yara implements a ϐiner strategy
to choose primary mapping locations. For any reads pair, among all pairs of co-optimal
mapping locations, the tool selects the one with minimal deviation from the expected
insert size. Since Yara outputs all relevant mapping locations, the choice of primary lo-
cations can be always corrected a posteriori.

7.1.5 Mapping qualities

Yara computes accuratemapping qualities using the number of foundmapping locations
stratiϐied by error rate. In equation 7.4, I deϐined the set 𝕊 of all relevant mapping loca-
tions as

𝕊 =
௢ା௦

ራ
௘ୀ௢

𝕊௘ . (7.6)

I now denote by 𝑧௘ the number of mapping locations in the stratum 𝕊௘ , i.e., 𝑧௘ = |𝕊௘|; I
associate to 𝕊 a canonical partition function 𝑍

𝑍 =
௢ା௦

෍
௘ୀ௢

𝑧௘𝜃௘ି௢, (7.7)

where the parameter 𝜃௘ି௢ assigns a weight to the (𝑒 − 𝑜)-th suboptimal stratum 𝕊௘ . Pa-
rameters 𝜃 express how well the edit distance correlates to the distance of correct map-

97

ping locations. If all correct mapping locations occur at optimal edit distance 𝑜, then
𝜃଴ = 1 and 𝜃௘ି௢ = 0 for all 𝑒 > 𝑜, i.e., suboptimal mapping locations are irrelevant.

Single-end reads

For a ϐixed single-end read, occurring at optimal edit distance 𝑜, I denotewith𝐶 a random
variable assuming the value of its correct mapping location; I assume that

Pr[𝐶 ∈ 𝕊] = 1. (7.8)

I estimate the probability of 𝐶 being part of the stratum 𝕊௘ as

Pr[𝐶 ∈ 𝕊௘] =
𝑧௘𝜃௘ି௢
𝑍 (7.9)

and the probability of 𝐶 being equal to any found mapping location (𝑖, 𝑗, 𝑒) as

Pr[𝐶 = (𝑖, 𝑗, 𝑒)] = 𝜃௘ି௢
𝑍 . (7.10)

Hence, equation 7.10 gives the probability 𝑝 that a random mapping location drawn
fromany stratum is correct. Such probability 𝑝 is further encoded as themapping quality
𝑄 = −10 logଵ଴(1 − 𝑝).

Paired-end reads

A paired-end read whose mate is unmapped is equivalent to a single-end read, thus the
above probabilities still hold. Given a read end, I denote by 𝕊ᇱ௘ the 𝑒-stratum of its mate,
by 𝑍ᇱ the canonical partition function of its mate as in equation 7.7, by 𝑜ᇱ its optimal
edit distance, and by 𝐶ᇱ its correct mapping location. I partition each stratum 𝕊௘ in two
subsets 𝕊௉௘ and 𝕊ூ௘ , where 𝕊௉௘ contains all mapping locations in 𝕊௘ being properly paired
to some mapping location in 𝕊ᇱ, and 𝕊ூ௘ = 𝕊௉௘ ⧵ 𝕊௘ . I distinguish the cases of a read end
having some properly paired mapping location or not.

If a read end has no properly paired mapping location, 𝕊ூ௘ = 𝕊௘ . I estimate the prob-
ability of 𝐶 being equal to any found mapping location (𝑖, 𝑗, 𝑒) as

Pr[𝐶 = (𝑖, 𝑗, 𝑒)|𝕊௉௘ = ∅] = Pr[𝐶 = (𝑖, 𝑗, 𝑒)] ⋅ Pr[𝐶ᇱ ∉ 𝕊ᇱ௘ᇲ] (7.11)

and since

Pr[𝐶ᇱ ∉ 𝕊ᇱ௘ᇲ] = 1 − 𝑧௘ᇲ𝜃௘ᇲି௢ᇲ
𝑍ᇱ , (7.12)

it follows that

Pr[𝐶 = (𝑖, 𝑗, 𝑒)|𝕊௉௘ = ∅] = 𝜃௘ି௢
𝑍 − 𝑧௘ᇲ𝜃௘ି௢𝜃௘ᇲି௢ᇲ

𝑍𝑍ᇱ . (7.13)

Now I consider the case of a read end having some properly pairedmapping location.
In this case, Yara picks a random location from𝕊௉௘ , under the assumption that any location

98

in 𝕊௉௘ is more likely to be correct than those in 𝕊ூ௘ . Therefore, I assign different weights to
𝕊௉௘ and 𝕊ூ௘ . I assume that

Pr[𝐶 ∈ 𝕊௉] = Pr[𝐶ᇱ ∈ 𝕊௉ᇲ௘ᇲ] = 𝑝ᇱ (7.14)

and

Pr[𝐶 ∈ 𝕊ூ] = 1 − 𝑝ᇱ. (7.15)

Hence the probability of 𝐶 being part of the properly paired locations in stratum 𝕊௘ is

Pr[𝐶 ∈ 𝕊௉௘] =
𝑝ᇱ𝑧௣௘𝜃௘ି௢

𝑝ᇱ𝑍௉ + (1 − 𝑝ᇱ)𝑍ூ (7.16)

and the probability that any of these locations is correct as

Pr[𝐶 = (𝑖, 𝑗, 𝑒) ∈ 𝕊௉௘] =
𝑝ᇱ𝜃௘ି௢

𝑝ᇱ𝑍௉ + (1 − 𝑝ᇱ)𝑍ூ . (7.17)

7.2 Evaluation

The evaluation consists of three experiments, all performed on the human reference
genome (GRCh37). The ϐirst experiment assesses all-mapping sensitivity by applying the
Rabema benchmark on real data. The second experiment evaluates best-mapping accu-
racy on simulated data. The last experiment assesses the performance of best-mappers
within a variant calling pipeline applied to real data.

All experiments consider also readmapping throughputs andmemory consumptions.
Readmapping throughput is measured in giga base pairs per hour (Gbp/h). The Illumina
HiSeq 2500 in a six days run produces¹ up to 800 Gbp as 2 × 100 bp paired-end reads.
Under this measure the maximum throughput of the Illumina HiSeq 2500 is 5.56 Gbp/h.

In addition to Yara, I consider the following state-of-the-art tools: Bowtie 2, BWA,
GEM, RazerS 3, and Hobbes 2. The tools Bowtie 2 and BWA are suited for best-mapping,
while RazerS 3 and Hobbes 2 for all-mapping. GEM, in addition to all-mapping, can be
used for best-mapping only to some extent, as it does not compute mapping qualities.

7.2.1 Experimental setup

Readmappers parametrization

In appendix A.2, I give the exact parametrization of each read mapper considered in the
evaluation. I parameterized Yara in three different ways, denoted as [s=0], [s=1], and
[all]. Yara [s=0] thus reports only the co-optimal stratum as in equations 7.4, Yara [s=1]
up to the ϐirst suboptimal stratum, and Yara [all] all suboptimal strata as in equation 7.2.
Whenever possible, I conϐigured the tools with the appropriate error rate (Yara, GEM,
RazerS 3) or absolute number of errors (Hobbes 2). When processing paired-end reads,
I provided the tools with appropriate insert size information.

¹ According to the speciϐications at http://res.illumina.com/documents/products/datasheets/
datasheet_hiseq2500.pdf for high output run mode with dual ϐlow cell.

http://res.illumina.com/documents/products/datasheets/datasheet_hiseq2500.pdf
http://res.illumina.com/documents/products/datasheets/datasheet_hiseq2500.pdf

99

Infrastructure

All tools run on a desktop computer running Linux 3.10.11, equipped with one Intel®
Core i7-4770K CPU@ 3.50GHz, 32GB RAM and a 2TB HDD@ 7200RPM. For maximum
throughput, all tools run using eight threads. For accurate running time comparisons,
I disabled Intel Turbo Boost; therefore, all measured running times might be slightly
higher than the actual ones.

7.2.2 Rabema benchmark on real data

The ϐirst experiment uses the Rabema benchmark to evaluate all-mappers sensitivity on
real data. The Rabema benchmark [Holtgrewe et al., 2011] (v1.2) measures the sensitiv-
ity of read mappers in ϐinding relevant mapping locations of genomic reads. I subdivide
this experiment in two categories: suboptimal and co-optimal. In the category subopti-
mal, Rabema counts as relevant, for each read, all suboptimal mapping locations within
a maximal edit distance error rate, i.e., all strata; in the category all-best it considers just
co-optimal mapping locations, i.e., only the best stratum. Rabema computes the sensi-
tivity of each tool as the fraction of relevant mapping locations found per read. For a
thorough evaluation, Rabema classes mapping locations by their error rate, then com-
putes sensitivity within each error rate class. The benchmark reports percentual scores
normalized by the number of reads.

The data used in this experiment is a publicly released sequencing run (SRA/ENA id:
ERR161544) performed at the Beijing Genome Institute; the genomic DNA used in this
study came from an anonymous male Han Chinese individual who has no known genetic
diseases. This dataset consists of 2 × 100 bp whole genome sequencing reads produced
by an Illumina HiSeq 2000 instrument. For practical reasons, in the category co-optimal
I consider the ϐirst 10M reads, while in the category suboptimal only the ϐirst 1M reads.

An error rate of 5%, is sufϐicient to map almost all reads in the dataset. Therefore,
I built a Rabema gold standard by running RazerS 3 in full-sensitive mode within 5%
error rate. Subsequently, I provided the reads as unpaired to each tool, as the Rabema
benchmark is not meaningful for paired-end reads.

Co-optimal mapping locations

Results are shown in table 7.1 (left panel). Yara [s=0] is the most sensitive tool in ϐinding
all co-optimal locations; it is full-sensitive up to 3 % error rate. GEM is not full-sensitive
even though it claims to be so; it looses 5.6 % of normalized locations at 5 % error rate.
Bowtie 2 and BWA are not designed for this task; indeed, they loose a signiϐicant number
of co-optimal locations. In addition, Yara [s=0] has the highest throughput, being 1.7
times faster than GEM, 2.3 times faster than Bowtie 2 and 3.2 times faster than BWA.

Suboptimal mapping locations

Results are shown in table 7.1 (right panel). RazerS 3 is the only full-sensitive tool in ϐind-
ing all suboptimal locations. Hobbes 2 looses only a few points at 4-5 % error rate. Yara

100

Table 7.1: Rabema benchmark results on whole human genome 100 bp Illumina HiSeq
2000 reads (SRA/ENA id: ERR161544). The left panel shows the results of ϔind-
ing all co-optimal mapping locations of the ϔirst 10M reads; the right panel
shows the results of ϔinding all suboptimal mapping locations of only the ϔirst
1M reads. Big numbers show total Rabema scores, while small numbers show
marginal scores for the mapping locations at ൫ 0 1 2

3 4 5 ൯% error rate.

Co-opt. locaƟons Throughput Memory
[%] [Gbp/h] [GB]

Yara [s=0] 100.0 100.0 100.0 100.0
100.0 99.8 99.4 13.59 4.88

GEM 99.9 100.0 100.0 99.9
99.7 99.4 94.4 7.90 4.31

BowƟe 2 95.9 97.2 95.0 87.5
81.6 76.3 64.6 5.99 3.25

BWA 96.0 97.2 95.0 89.6
82.1 76.1 64.1 4.24 4.47

Subopt. locaƟons Throughput Memory
[%] [Gbp/h] [GB]

Yara [all] 99.8 100.0 100.0 100.0
100.0 99.7 97.2 1.31 5.44

GEM 95.2 100.0 98.1 92.4
80.5 67.4 48.0 1.82 4.58

Hobbes 2 99.9 100.0 100.0 100.0
100.0 99.9 98.3 0.39 14.59

RazerS 3 100.0 100.0 100.0 100.0
100.0 100.0 100.0 0.06 22.80

[all] is full-sensitive up to 3 % error rate, nonetheless it looses only 2.8 % of normalized
locations at 5% error rate. However, looking at throughputs, Yara [all] is 3.6 times faster
than Hobbes 2 and 21.9 times faster than RazerS 3. In addition, Yara [all] has a signiϐi-
cantly lower memory footprint than its two competitors. GEM is again not full-sensitive;
it looses more than 50 % of normalized locations at 5 % error rate. This could be due to
amisconϐiguration of the tool; nonetheless, I took the same parameterization used in the
supplemental material of [Marco-Sola et al., 2012].

7.2.3 Accuracy on simulated data

The second experiment evaluates the ability of best-mappers to ϐind the original loca-
tion of simulated reads and to estimate their mapping quality. Contrarily to the Rabema
benchmark (section 7.2.2), this experiment relies on simulated data and considers only
one primary mapping location per read. I consider only tools suited for this speciϐic task,
i.e., Bowtie 2 and BWA, in addition to Yara; GEM does not compute mapping qualities,
while RazerS 3 and Hobbes 2 are two orders of magnitude slower than Yara, thus I dis-
card them a priori.

For each tool, the accuracy benchmark counts each read as correctlymapped if its pri-
mary mapping location has been reported within 10 bp of the simulated location, or in-
correctly mapped otherwise. Subsequently, the benchmark stratiϔies (i.e., sorts) primary
mapping locations by mapping quality, s.t. mapping locations estimated to be correct by
the mapper precede those estimated to be incorrect. Finally, the benchmark cumulates
the counts of correctly and incorrectly mapped locations and plots them as receiver op-
erating characteristic (ROC) curves.

The dataset consists of 10M Illumina-like 2 × 100 bp paired-end reads, simulated
from the whole human reference genome using Mason [Holtgrewe, 2010]; the mean in-
sert size isINS = 300 and the standarddeviation isERR = 20. To assess the improvements
due to the knowledge of the insert size, the experiment considers twice the same simu-
lated reads, ϐirst as unpaired and then as paired-end including insert size information.

101

Figure 7.1: Accuracy on 100 bp Illumina-like single-end reads.

9 M

9.25 M

9.5 M

9.75 M

10 M

10 1 k 100 k
Incorrect mappings

Co
rr
ec
t m

ap
pi
ng
s Mapper

Yara [s=0]

Yara [s=1]

Bowtie 2

BWA

Single-end reads

Accuracy results are shown in ϐigure 7.1. The ROC curves show incorrect locations on
a logarithmic scale. Yara [s=1] always dominates BWA, which in turn always dominates
Bowtie 2. It is interesting to see that Yara [s=0] is not able to compute accurate mapping
qualities without the knowledge of mapping locations from suboptimal strata.

Performances are shown in table 7.2. Yara [s=0] is 3.6 times faster than BWA and 4.5
times faster than Bowtie 2. Bowtie 2 uses 1.5 GB less memory than Yara [s=0], probably
thanks to a more compact FM-index implementation; however, memory footprint is not
a limiting factor. Yara [s=1] is 3.0 times slower than Yara [s=0], but still faster than all
other tools.

Paired-end reads

Accuracy results are shown in ϐigure 7.2. Again, the ROC curves show incorrect locations
on a logarithmic scale. Yara [s=1] still dominates BWAon themostmappable reads; how-
ever, compared to single-end reads, BWA on paired-end reads is closer to Yara. Bowtie 2
shows the worst accuracy.

Table 7.2: Performance on 100 bp Illumina-like single-end reads.

Yara [s=0] Yara [s=1] BowƟe 2 BWA

Throughput [Gbp/h] 26.28 8.88 5.84 7.37
Memory [GB] 4.88 4.93 3.25 4.48

102

Figure 7.2: Accuracy on 2 × 100 bp Illumina-like paired-end reads.

9 M

9.25 M

9.5 M

9.75 M

10 M

10 1 k 100 k
Incorrect mappings

Co
rr
ec
t m

ap
pi
ng
s Mapper

Yara [s=0]

Yara [s=1]

Bowtie 2

BWA

Performances are shown in table 7.3. Bowtie 2 on paired-end reads has a higher
throughput than on single-end reads. Conversely, BWA on paired-end reads is consider-
ably slower than on single-end reads. Yara [s=0] is still 3.4 times faster than Bowtie 2
and 4.0 times faster than BWA.

7.2.4 Variant calling on real data

The last experiment uses well-characterized datasets to estimate both true-positive and
false-negative rates induced by various mappers within a best-mapping pipeline calling
variants on real data. Each pipeline consists of one best-mapper, whose output is sorted
by genomic position using Samtools [Li and Durbin, 2009], and subsequently given to the
thewidely used GATKUniϔied Genotyper (UG) [DePristo et al., 2011] to call both SNVs and
INDELs. The evaluation consists of comparing the variants called by each pipeline to a
set of high-conϐidence, single-nucleotide variant (SNV) and INDEL calls provided by the
Genome in a Bottle (GIAB) consortium [Zook et al., 2014].

TheGIABconsortiumprovides a set of calls (NISTv2.18) for thepilot genomeNA12878.
In this experiment, each pipeline has to calls variants from a whole exome sequencing
(WES) run of the same NA12878 individual (SRA/ENA id: SRR1611178). This run, pro-

Table 7.3: Performance on 2 × 100 bp Illumina-like paired-end reads.

Yara [s=0] Yara [s=1] BowƟe 2 BWA

Throughput [Gbp/h] 23.04 8.37 6.78 5.70
Memory [GB] 5.00 5.11 3.29 4.66

103

Figure 7.3: SNVs calling accuracy on a 150× coverage WES run consisting of 2 × 100 bp
Illumina HiSeq 2000 reads (SRA/ENA id: SRR1611178).

0

10000

20000

30000

1 10 100 1000
Incorrect SNVs

Co
rr
ec
t S
N
V
s

Mapper

Yara [s=0]

Yara [s=1]

GEM

Bowtie 2

BWA

duced at the Icahn School of Medicine at Mount Sinai [Linderman et al., 2014], consists
of 2 × 100 bp Illumina HiSeq 2000 reads and has a mean coverage of 150×.

According to the GIAB guidelines, the evaluation ϐirst decomposes complex variants
using the tool vcfallelicprimitives [Danecek et al., 2011] and subsequently compares called
variants to the set of GIAB trusted variants using the toolUSeq VCFComparator [Nix et al.,
2008]. This last tool counts the number of correct and incorrect variants, stratiϐies them
by variant quality, and reports their cumulated counts. The output of the evaluation is
plotted as ROC curves.

SNVs calling

Figure 7.3 shows the SNVs calling accuracy results. The ROC curve show incorrect SNVs
on a logarithmic scale, to highlight high-quality calls. The plot shows that Yara induces a
signiϐicantly higher rate of high-quality calls and up to 3 times less incorrect SNVs than
BWA. There is no appreciable difference between Yara [s=0] and [s=1]. The poor per-
formance of GEM could be partially due to the fact that it does not annotate mapping
locations with qualities.

INDELs calling

Figure 7.4 shows the INDELs calling accuracy results. Again, the ROC curves show in-
correct INDELs on a logarithmic scale. Bowtie 2 dominates both BWA and Yara, possibly
thanks to the fact that it computes local alignments rather than semi-global alignments.
Yara [s=0] and [s=1] produce exactly the same set of calls: they induce a lower rate of
correct INDEL calls and at the same time a higher rate of incorrect calls than Bowtie 2
and BWA. Surprisingly, GEM induces almost only incorrect INDEL calls.

104

Figure 7.4: INDELs calling accuracy on a 150× coverageWES run consisting of 2×100 bp
Illumina HiSeq 2000 reads (SRA/ENA id: SRR1611178).

0

300

600

900

1200

1 10 100
Incorrect INDELs

Co
rr
ec
t I
N
D
EL
s

Mapper

Yara [s=0]

Yara [s=1]

GEM

Bowtie 2

BWA

Performance

Table 7.4 shows tools performances. Yara [s=0] is 2.0 times faster than GEM, 3.2 times
faster than Bowtie 2, and 4.7 times faster than BWA. Compared to simulated WGS data
(section 7.2.3), all tools exhibit a higher throughput on real WES data. This is due to the
fact that themappability of thewhole human exome is higher than the averagemappabil-
ity of the whole human genome. This also explains why Yara [s=1] is now only 1.3 times
slower than Yara [s=0].

7.3 Discussion

Stratiϐied all-mapping is a well-deϐined and practical method for read mapping. The
knowledge of mapping strata allows to accurately compute mapping qualities and pair
read ends. To show the advantages of this method in real applications, I considered the
genotyping of a human individual. Nonetheless, other HTS applications would equally
beneϐit from this method.

Table 7.4: Throughput results on a 150× coverage WES run consisting of 2 × 100 bp Illu-
mina HiSeq 2000 reads (SRA/ENA id: SRR1611178).

Yara [s=0] Yara [s=1] BowƟe 2 BWA GEM

Throughput [Gbp/h] 28.83 22.82 9.03 6.11 14.36
Memory [GB] 5.00 5.00 3.29 4.65 4.33

105

Such an application is metagenomics classiϐication: HTS reads coming from DNA
samples recovered from, e.g. soil or water are screened against a database consisting of
bacterial reference genomes. The presence of several homologous genomes lowers the
mappability of the database and requires the knowledge of multiple mapping locations
per read. Actual read mappers are much slower or not sensitive enough for this task.

Another similar application is the resolution of alternative loci in the new human ref-
erence genome (GRCh38). This task could be simply performed by inferring the most
likely alternative locus, e.g. from the density of mapped reads, and then re-assigning
multi-reads to that locus. With de-facto standard mappers BWA and Bowtie 2, multi-
reads would have to be re-mapped.

The weak spot of Yara is INDELs accuracy. Yara is unable to ϐind medium to long
INDELs (i.e., > 5 bp) because the reads spanning those INDELs remain unmapped. The
edit distance does not support long INDELs over randomerrors, thus increasing the error
rate only increases the rate of incorrect INDELs. However, in the paired-end protocol, the
other end of such unmapped reads is usually mapped. As the insert size is known and
relatively narrow, it is possible to spot these unmapped reads by searching them online
within a neighborhood of their mapped end. This strategy is implemented by the tools
BWA and Bowtie 2.

Performance-wise, Yara can still be improved. The veriϐication time can be drasti-
cally reduced: David Weese and me vectorized the banded Myers’ algorithm such that it
veriϐies multiple patterns simultaneously; a prototypical implementation on a modern
processor (256 bit AVX instructions) shows a speed-up of 4–6 times over the conven-
tional algorithm. The ϐiltration time can be almost halved by indexing both the forward
and reverse complemented strands of the reference genome; this would be paid with a
total memory footprint of about 8GB, which is nonetheless acceptable. Finally, the esti-
mation ofmapping qualities in Yara [s=0] can usematches from suboptimal strata, which
are found but not reported; this could render Yara [s=0] almost as good as Yara [s=1].

Yara is part of the SeqAn library [Döring et al., 2008], it is distributed under the
BSD license and can be downloaded from http://www.seqan.de/projects/yara. A
manuscript for thiswork is in preparation andwill be submitted to a peer-reviewed jour-
nal.

http://www.seqan.de/projects/yara

CčĆĕęĊė

8 Conclusion

In the ϐirst part of this manuscript, I gave an overview of practical indexing and ϐiltering
methods for approximate string matching. Among indexing methods, I considered clas-
sic and succinct full-text indices. Among ϐiltering methods, I considered ϐilters based on
seeds and on 𝑞-grams. I implemented these methods in the generic C++ library SeqAn
[Döring et al., 2008], which is publicly available in source form under the BSD license.
To close the algorithmic engineering cycle, I performed an experimental evaluation of all
these methods.

Concerning indexingmethods, the experimental evaluation onDNAdata (section 3.3)
showed that the FM-index is several times faster than classic full-text indices, despite
being up to an order of magnitude smaller. Moreover, an FM-index using a two-levels
DNA rank dictionary is twice as fast but has the same memory footprint of an FM-index
using a wavelet tree, which is usually regarded as the best FM-index realization [Navarro
and Mäkinen, 2007]. In the spirit of the Pizza & Chili corpus [Ferragina and Navarro,
2007], it would be interesting to extend such experimental evaluation to compressed
full-text indices from other software libraries, as sdsl [Gog et al., 2014] or libcds2. Future
engineering work will go into the realization of an efϐicient bidirectional FM-index [Lam
et al., 2009; Schnattinger et al., 2010].

Concerning ϐilteringmethods for approximate stringmatching, the experimental eval-
uation of section 4.5 showed that seed ϐilters are more practical than 𝑞-gram ϐilters; 𝑞-
gram ϐilters are harder to design and implement but they do not pay off in practice. Fu-
ture directions include experimentingwith hierarchical seeds (PEX) [Navarro and Baeza-
Yates, 2001] on a bidirectional FM-index [Russo et al., 2009], and generalizing seeds ϐil-
ters to consider semi-global alignments with gaps or local alignments; for the former
case no practical method is known, while for the latter case proposedmethods are based
either on pure backtracking (BWT-SW [Lam et al., 2008]) or on 𝑞-grams (SWIFT [Ras-
mussen et al., 2006]).

In the second part, I presented methods for mapping high-throughput sequencing
reads. I observed two de facto standard paradigms for HTS data analysis, best-mapping
and all-mapping, which implies a straightforward classiϐication of existing readmapping
programs. I ϐirst engineered Masai, an all-mapper being 12 to 15 times faster than all
previous tools in its class. Its speedup comes mainly from approximate seeds, a ϐiltering
method which had been overlooked by precedent read mapping methods. Afterwards,
I turned Masai into a best-mapper nicknamed Yara. Turning an all-mapper into a best-
mapper means: (i) restricting all mapping locations to the relevant ones by means of

108

mapping strata, (ii) estimating the probability of stratiϐiedmapping locations, and there-
fore (iii) picking the most probable (i.e., relevant) mapping location.

Concerning best-mapping, the experimental evaluation of section 7.2 showed that
Yara’s method, which is exact because it uses the edit distance, outperforms all other
methods, which usemore complex scoring schemes but are inexact. Yara’smapping qual-
ities are computed using simplemodel parameters, rather than using base quality values
as proposed by Li and Durbin [2009]. Yara’s read mapping model is exact, simple and
clear, thus fully reproducible and interpretable. These two properties are of paramount
importance, especially in the context of clinical diagnostics. In summary, Yara is currently
the fastest and the most accurate read mapping tool, both on simulated and real data.

Future efforts on best-mapping will be spent on improving INDELs accuracy. Un-
mapped reads would have to be re-mapped considering semi-global alignments with
gaps, rather than local alignments (e.g. as Bowtie 2)which do not account for leading and
trailing errors. Furthermore, calling accuracy for INDELs could be improved by consider-
ing the number of co-optimal or suboptimal alignment traces within a mapping location,
i.e., the cardinality of the equivalency classes deϐined through Rabema intervals [Holt-
grewe et al., 2011]. Finally, Yara’s best-mapping accuracy could be further improved by
the precious feedback of the evaluation on real data (section 7.2.4).

At this point, a consideration on all-mapping tools arises: are they useful at all? Yara
reports only relevant mapping locations annotated by their quality i.e., weighted. Con-
versely, conventional all-mappingmethods report several suboptimalmapping locations
which are all considered to be equally relevant. Thus, conventional all-mappingmethods
are likely to add only noise to downstream analyses. Much research is still going into im-
proving the speed of such all-mapping tools, while an experimental study assessing their
accuracy would be more interesting.

AĕĕĊēĉĎĝ

A Readmappers
parameterization

A.1 Masai evaluation

In the following, I give the exact parameterization of each readmapper considered in the
evaluation of section 6.2.

Masai Version 0.5 was used. In order to use Masai as an all-mapper, I passed the ar-
gument –all, otherwise the argument –any-best is used by default. I set the maximal
edit distance using the parameter -e. I conϐigured the seed length with the parameter –
seed-length; on E. coli, D. melanogaster and C. elegans I chose a seed length of 16, while
on H. sapiens I chose a seed length of 33. I selected the SAM output format with -os and
enabled CIGAR output with -oc.

Bowtie 2 Version 2.0.0-beta6 was used. I used the parameter –end-to-end to enforce
semi-global read alignments. For the Rabema experiment I used the parameter -k 100.

BWA Version 0.6.1-r104was used. For the Rabema experiment I passed the parameter
-N to aln and -n 100 to samse.

Soap2 Version 2.1 was used.

RazerS 3 Version 3.1 was used. I mapped with indels using the pigeonhole ϐilter (de-
fault) and set the error rate through the parameter -i, e.g. -i 95 to map within an error
rate of 5%. I selected the native or SAM output format with -of 0 or -of 4.

Hobbes Version 1.3 was used. I built the index using the recommended 𝑞-gram length
11. Since I focus on edit distance, I used the 16 bit bit-vector version. I enabled indels
with –indels and set maximal edit distance using the parameter -v. For resource mea-
surement I used the output without CIGAR, for analyzing the results I enabled CIGAR
output using –cigar.

mrFAST Version 2.1.0.6 was used. I set maximal edit distance using the parameter -e.

SHRiMP2 Version 2.2.2 was used.

110

A.2 Yara evaluation

In the following, I give the exact parameterization of each readmapper considered in the
evaluation of section 7.2. Below, MIN and MAX are placeholders for minimal and maximal
insert size, while INS is the mean insert size and ERR its allowed deviation, i.e., INS =
(MIN + MAX) / 2, ERR = (MAX - MIN) / 2.

Yara Version 0.9.4 was used. By default, the tool runs as a best-mapper; I set the num-
ber of stratawith the parameter -s. To performall-mapping, I passed the argument –all.
I set the error rate using the parameter -e. In paired-end mode, the parameters used
were –library-length INS –library-error ERR. The number of threads was set with
the parameter -t.

GEM Version 1.376 was used. I set the error rate using the parameters -m and -e, then
I disabled adaptive mapping using the parameter –quality-format ignore. In best-
mapping, to analyze only the best stratum, I passed the argument -s 0; in all-mapping,
to analyze all strata, I passed -d all -D all -s all –max-big-indel-length 0.
In single-end mode, I passed the parameter –expect-single-end-reads; in paired-end
mode, I passed –paired-end-alignment, along with –min-insert-size MIN –max-
insert-size MAX, and –map-both-ends to select the workϐlow mapping both reads in-
dependently. The number of threads was selected using the parameter -t.

Bowtie 2 Version 2.2.1 was used. I used the parameter –end-to-end to enforce semi-
global read alignments. In paired-end mode, I used the parameters –minins MIN –
maxins MAX. The number of threads was selected using the parameter -p.

BWA Version 0.7.7-r441 was used. I used the parameter -t to select the number of
threads in the aln step; the sampe and samse steps were performed using one thread
since BWA does not offer any parallelization here.

Hobbes 2 Version2.0wasused. I built the index using the recommended𝑞-gram length
11. I enabled edit distance with –indels and set the distance threshold using the param-
eter -v. In paired-end mode, I used the parameters –pe –min MIN –max MAX. Multi-
threading was enabled using -p.

RazerS 3 Version 3.3 was used. I set the error rate through the parameter -i, e.g. -i 95
tomapwithin an error rate of 5%. I passed the option -rr 100 to set the recognition rate
to 100% and -m 1000000 to output all mapping locations per read. In paired-end mode,
the parameters used were –library-length INS –library-error ERR. The number of
threads was set with the -tc parameter.

AĕĕĊēĉĎĝ

B Curriculum Vitæ

For reasons of data protection, the curriculum vitæis not included in the online version.

112

For reasons of data protection, the curriculum vitæis not included in the online version.

113

For reasons of data protection, the curriculum vitæis not included in the online version.

AĕĕĊēĉĎĝ

C Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education. In-
formationderived from thepublished andunpublishedworkof others has been acknowl-
edged in the text and a list of references is given.

Enrico Siragusa
July 16, 2015

BIBLIOGRAPHY

Abouelhoda, M., Kurtz, S., and Ohlebusch, E. (2004). Replacing sufϐix treeswith enhanced
sufϐix arrays. Journal of Discrete Algorithms, 2(1), pages 53–86.

Ahmadi, A., Behm, A., Honnalli, N., Li, C., Weng, L., and Xie, X. (2012). Hobbes: optimized
gram-based methods for efϐicient read alignment. Nucleic Acids Res., 40(6), page e41.

Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., Kitzman,
J. O., Baker, C., Malig, M., Mutlu, O., Sahinalp, S. C., Gibbs, R. A., and Eichler, E. E. (2009).
Personalized copy number and segmental duplicationmaps using next-generation se-
quencing. Nat. Genet., 41(10), pages 1061–1067.

Apostolico, A. (1985). The myriad virtues of subword trees. In Combinatorial algorithms
on words, pages 85–96. Springer.

Arlazarov, V., Dinic, E., Kronrod, M., and Faradzev, I. (1970). On economical construction
of the transitive closure of a directed graph. Dokl. Akad. Nauk., 11, page 194.

Baeza-Yates, R. A. and Perleberg, C. H. (1992). Fast and practical approximate string
matching. In Combinatorial Pattern Matching, pages 185–192. Springer.

Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J., and Eichler, E. E. (2001). Segmental
duplications: organization and impact within the current human genome project as-
sembly. Genome research, 11(6), pages 1005–1017.

Bauer, M. J., Cox, A. J., and Rosone, G. (2013). Lightweight algorithms for constructing
and inverting the bwt of string collections. Theoretical Computer Science, 483, pages
134–148.

Belazzougui, D., Cunial, F., Kärkkäinen, J., and Mäkinen, V. (2013). Versatile succinct rep-
resentations of the bidirectional burrows-wheeler transform. InAlgorithms–ESA 2013,
pages 133–144. Springer.

Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G.,
Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., Boutell, J. M., Bryant, J., Carter, R. J.,
Keira Cheetham, R., Cox, A. J., Ellis, D. J., Flatbush, M. R., Gormley, N. A., Humphray, S. J.,
Irving, L. J., Karbelashvili, M. S., Kirk, S. M., Li, H., Liu, X., Maisinger, K. S., Murray, L. J.,
Obradovic, B., Ost, T., Parkinson, M. L., Pratt, M. R., Rasolonjatovo, I. M. J., Reed, M. T.,
Rigatti, R., Rodighiero, C., Ross, M. T., Sabot, A., Sankar, S. V., Scally, A., Schroth, G. P.,
Smith, M. E., Smith, V. P., Spiridou, A., Torrance, P. E., Tzonev, S. S., Vermaas, E. H., Walter,

118

K., Wu, X., Zhang, L., Alam, M. D., Anastasi, C., Aniebo, I. C., Bailey, D. M. D., Bancarz, I. R.,
Banerjee, S., Barbour, S. G., Baybayan, P. A., Benoit, V. A., Benson, K. F., Bevis, C., Black,
P. J., Boodhun, A., Brennan, J. S., Bridgham, J. A., Brown, R. C., Brown, A. A., Buermann,
D. H., Bundu, A. A., Burrows, J. C., Carter, N. P., Castillo, N., Chiara E. Catenazzi, M., Chang,
S., Neil Cooley, R., Crake, N. R., Dada, O. O., Diakoumakos, K. D., Dominguez-Fernandez,
B., Earnshaw, D. J., Egbujor, U. C., Elmore, D. W., Etchin, S. S., Ewan, M. R., Fedurco, M.,
Fraser, L. J., Fuentes Fajardo, K. V., Scott Furey, W., George, D., Gietzen, K. J., Goddard,
C. P., Golda, G. S., Granieri, P. A., Green, D. E., Gustafson, D. L., Hansen, N. F., Harnish,
K., Haudenschild, C. D., Heyer, N. I., Hims, M. M., Ho, J. T., Horgan, A. M., Hoschler, K.,
Hurwitz, S., Ivanov, D. V., Johnson,M. Q., James, T., Huw Jones, T. A., Kang, G.-D., Kerelska,
T. H., Kersey, A. D., Khrebtukova, I., Kindwall, A. P., Kingsbury, Z., Kokko-Gonzales, P. I.,
Kumar, A., Laurent, M. A., Lawley, C. T., Lee, S. E., Lee, X., Liao, A. K., Loch, J. A., Lok, M.,
Luo, S., Mammen, R. M., Martin, J. W., McCauley, P. G., McNitt, P., Mehta, P., Moon, K. W.,
Mullens, J. W., Newington, T., Ning, Z., Ling Ng, B., Novo, S. M., O’Neill, M. J., Osborne,
M. A., Osnowski, A., Ostadan, O., Paraschos, L. L., Pickering, L., Pike, A. C., Pike, A. C.,
Chris Pinkard, D., Pliskin, D. P., Podhasky, J., Quijano, V. J., Raczy, C., Rae, V. H., Rawlings,
S. R., Chiva Rodriguez, A., Roe, P. M., Rogers, J., Rogert Bacigalupo, M. C., Romanov, N.,
Romieu, A., Roth, R. K., Rourke, N. J., Ruediger, S. T., Rusman, E., Sanches-Kuiper, R. M.,
Schenker, M. R., Seoane, J. M., Shaw, R. J., Shiver, M. K., Short, S. W., Sizto, N. L., Sluis, J. P.,
Smith, M. A., Ernest Sohna Sohna, J., Spence, E. J., Stevens, K., Sutton, N., Szajkowski,
L., Tregidgo, C. L., Turcatti, G., Vandevondele, S., Verhovsky, Y., Virk, S. M., Wakelin, S.,
Walcott, G. C., Wang, J., Worsley, G. J., Yan, J., Yau, L., Zuerlein, M., Rogers, J., Mullikin,
J. C., Hurles, M. E., McCooke, N. J., West, J. S., Oaks, F. L., Lundberg, P. L., Klenerman, D.,
Durbin, R., and Smith, A. J. (2008). Accurate whole human genome sequencing using
reversible terminator chemistry. Nature, 456(7218), pages 53–59.

Brown, D. G. (2008). A survey of seeding for sequence alignment. Bioinformatics algo-
rithms: techniques and applications, pages 126–152.

Burkhardt, S. and Kärkkäinen, J. (2001). Better ϐiltering with gapped q-grams. In Proc. of
the 12th Annual Symposium on Combinatorial PatternMatching, CPM ’01, pages 73–85.
Springer.

Burkhardt, S., Crauser, A., Ferragina, P., Lenhof, H.-P., Rivals, E., and Vingron, M. (1999).
q-gram based database searching using a sufϐix array (QUASAR). In Proc. of the 3rd
Annual International Conference on Research in Computational Molecular Biology, RE-
COMB ’99, pages 77–83. ACM Press.

Burrows, M. and Wheeler, D. J. (1994). A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital SRC Research Report.

Califano, A. and Rigoutsos, I. (1993). Flash: A fast look-up algorithm for string homol-
ogy. In Computer Vision and Pattern Recognition, 1993. Proceedings CVPR’93., 1993
IEEE Computer Society Conference on, pages 353–359. IEEE.

Consortium, I. H. G. S. (2001). Initial sequencing and analysis of the human genome.
Nature, 409(6822), pages 860–921.

119

Crochemore, M., Grossi, R., Kärkkäinen, J., and Landau, G. M. (2013). A constant-space
comparison-based algorithm for computing the burrows–wheeler transform. In Com-
binatorial Pattern Matching, pages 74–82. Springer.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo,M. A., Handsaker, R. E.,
Lunter, G., Marth, G. T., Sherry, S. T., et al. (2011). The variant call format and vcftools.
Bioinformatics, 27(15), pages 2156–2158.

David, M., Dzamba, M., Lister, D., Ilie, L., and Brudno, M. (2011). SHRiMP2: sensitive yet
practical short read mapping. Bioinformatics, 27(7), pages 1011–1012.

Dehal, P. andBoore, J. L. (2005). Two rounds ofwhole genomeduplication in the ancestral
vertebrate. PLoS biology, 3(10), page e314.

Dementiev, R., Kärkkäinen, J., Mehnert, J., and Sanders, P. (2008). Better externalmemory
sufϐix array construction. J. Exp. Algorithmics, 12, pages 3.4:1–3.4:24.

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis,
A. A., del Angel, G., Rivas, M. A., Hanna, M., et al. (2011). A framework for variation
discovery and genotyping using next-generation dna sequencing data. Nature genetics,
43(5), pages 491–498.

Derrien, T., Estellé, J., Marco Sola, S., Knowles, D. G., Raineri, E., Guigó, R., and Ribeca, P.
(2012). Fast computation and applications of genome mappability. PLoS ONE, 7(1),
page e30377.

Döring, A., Weese, D., Rausch, T., and Reinert, K. (2008). SeqAn an efϐicient, generic C++
library for sequence analysis. BMC Bioinformatics, 9, page 11.

Elias, P. (1975). Universal codeword sets and representations of the integers. Information
Theory, IEEE Transactions on, 21(2), pages 194–203.

Ewing, B. and Green, P. (1998). Base-calling of automated sequencer traces using phred.
ii. error probabilities. Genome research, 8(3), pages 186–194.

Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998). Base-calling of automated se-
quencer traces using phred. i. accuracy assessment. Genome research, 8(3), pages 175–
185.

Faro, S. and Lecroq, T. (2013). The exact online string matching problem: a review of the
most recent results. ACM Computing Surveys (CSUR), 45(2), page 13.

Farrar, M. (2007). Striped smith–waterman speeds database searches six times over
other simd implementations. Bioinformatics, 23(2), pages 156–161.

Ferragina, P. and Manzini, G. (2000). Opportunistic data structures with applications. In
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages
390–398. IEEE.

120

Ferragina, P. and Manzini, G. (2001). An experimental study of a compressed index. In-
formation Sciences, 135(1), pages 13–28.

Ferragina, P. and Navarro, G. (2007). The pizza & chili corpus.

Ferragina, P., Giancarlo, R., Manzini, G., and Sciortino, M. (2005). Boosting textual com-
pression in optimal linear time. Journal of the ACM (JACM), 52(4), pages 688–713.

Fonseca, N. A., Rung, J., Brazma, A., and Marioni, J. C. (2012). Tools for mapping high-
throughput sequencing data. Bioinformatics, 28(24), pages 3169–3177.

Galil, Z. and Giancarlo, R. (1988). Data structures and algorithms for approximate string
matching. Journal of Complexity, 4(1), pages 33–72.

Gallant, J., Maier, D., and Astorer, J. (1980). On ϐinding minimal length superstrings. Jour-
nal of Computer and System Sciences, 20(1), pages 50–58.

Giancarlo, R., Siragusa, A., Siragusa, E., and Utro, F. (2007). A basic analysis toolkit for
biological sequences. Algorithms for Molecular Biology, 2(1), page 10.

Giegerich, R., Kurtz, S., and Stoye, J. (1999). Efϐicient implementation of lazy sufϐix trees.
In Algorithm Engineering, pages 30–42. Springer.

Giegerich, R., Kurtz, S., and Stoye, J. (2003). Efϐicient implementation of lazy sufϐix trees.
Softw., Pract. Exper., pages 1035–1049.

Gog, S., Beller, T., Moffat, A., and Petri, M. (2014). From theory to practice: Plug and play
with succinct data structures. In Experimental Algorithms, pages 326–337. Springer.

Grossi, R., Gupta, A., and Vitter, J. S. (2003). High-order entropy-compressed text indexes.
In Proc. of the 14th annual ACM-SIAM symposium on Discrete algorithms, SODA ’03,
pages 841–850, Philadelphia, PA, USA. Society for Industrial andAppliedMathematics.

Gusϐield, D. (1997). Algorithms on strings, trees, and sequences: Computer science and
computational biology. Cambridge University Press, New York, NY, USA.

Hach, F., Hormozdiari, F., Alkan, C., Hormozdiari, F., Birol, I., Eichler, E. E., and Sahinalp,
S. C. (2010). mrsFAST: a cache-oblivious algorithm for short-readmapping. Nat. Meth-
ods, 7(8), pages 576–577.

Hamming, R. W. (1950). Error detecting and error correcting codes. Syst. Tech. J., 29,
pages 147–160.

Holtgrewe, M. (2010). Mason – a read simulator for second generation sequencing data.
Technical Report TR-B-10-06, Institut für Mathematik und Informatik, Freie Univer-
sität Berlin.

Holtgrewe, M., Emde, A.-K., Weese, D., and Reinert, K. (2011). A novel and well-deϐined
benchmarking method for second generation read mapping. BMC Bioinformatics, 12,
page 210.

121

Intel (2011). Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel Cor-
poration.

Jacobson, G. (1989). Space-efϐicient static trees and graphs. In Foundations of Computer
Science, 1989., 30th Annual Symposium on, pages 549–554. IEEE.

Jokinen, P. and Ukkonen, E. (1991). Two algorithms for approxmate string matching in
static texts. In Mathematical Foundations of Computer Science 1991, pages 240–248.
Springer.

Kärkkäinen, J. andSanders, P. (2003). Simple linearwork sufϐix array construction. ICALP,
pages 943–955.

Karp, R. M., Luby, M., and Madras, N. (1989). Monte-carlo approximation algorithms for
enumeration problems. Journal of algorithms, 10(3), pages 429–448.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. (2001). Linear-time longest-
common-preϐix computation in sufϐix arrays and its applications. In CPM, pages 181–
192.

Kehr, B., Weese, D., and Reinert, K. (2011). Stellar: fast and exact local alignments. BMC
Bioinf., 12(Suppl 9), page S15.

Kim, J., Li, C., and Xie, X. (2014). Improving read mapping using additional preϐix grams.
BMC bioinformatics, 15(1), page 42.

Knuth, D. (1973). The Art of Computer Programming. Volume 3, Addision-Wesley.

Kucherov, G., Noé, L., and Roytberg, M. (2005). Multiseed lossless ϐiltration. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (TCBB), 2(1), pages 51–61.

Kurtz, S. (1999). Reducing the space requirement of sufϐix trees. Software-Practice and
Experience, 29(13), pages 1149–71.

Lam, T. W., Sung, W. K., Tam, S. L., Wong, C. K., and Yiu, S. M. (2008). Compressed indexing
and local alignment of DNA. Bioinformatics, 24(6), pages 791–797.

Lam, T. W., Li, R., Tam, A., Wong, S., Wu, E., and Yiu, S.-M. (2009). High throughput
short read alignment via bi-directional bwt. In Bioinformatics and Biomedicine, 2009.
BIBM’09. IEEE International Conference on, pages 31–36. IEEE.

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat.
Methods, 9(4), pages 357–359.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-
efϐicient alignment of short DNA sequences to the human genome. GenomeBiol., 10(3),
page R25.

122

Lee, H. and Schatz, M. C. (2012). Genomic dark matter: the reliability of short read map-
ping illustrated by the genomemappability score. Bioinformatics, 28(16), pages 2097–
2105.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics – Doklady, 10, pages 707–710.

Li, H. (2012). Exploring single-sample snp and indel calling with whole-genome de novo
assembly. Bioinformatics, 28(14), pages 1838–1844.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics, 25(14), pages 1754–1760.

Li, H. and Homer, N. (2010). A survey of sequence alignment algorithms for next-
generation sequencing. Brief Bioinform., 11(5), pages 473–483.

Li, H., Ruan, J., and Durbin, R. (2008). Mapping short dna sequencing reads and calling
variants using mapping quality scores. Genome research, 18(11), pages 1851–1858.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis,
G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009a). The se-
quence alignment/map format and SAMtools. Bioinformatics, 25(16), pages 2078–
2079.

Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., and Wang, J. (2009b). SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics, 25(15), pages 1966–
1967.

Linderman, M. D., Brandt, T., Edelmann, L., Jabado, O., Kasai, Y., Kornreich, R., Mahajan, M.,
Shah, H., Kasarskis, A., and Schadt, E. E. (2014). Analytical validation of whole exome
and whole genome sequencing for clinical applications. BMC medical genomics, 7(1),
page 20.

Maier, D. and Storer, J. A. (1977). A note on the complexity of the superstring problem.
Computer Science Laboratory, Report, (233).

Mäkinen, V., Välimäki, N., Laaksonen, A., and Katainen, R. (2010). Uniϐied view of back-
ward backtracking in short read mapping. In T. Elomaa, H. Mannila, and P. Orponen,
editors, Algorithms and Applications, volume 6060 of Lecture Notes in Computer Sci-
ence, pages 182–195. Springer Berlin Heidelberg.

Manber, U. andMyers, G. (1990). Sufϐix arrays: a newmethod for on-line string searches.
In SODA, pages 319–327.

Mantaci, S., Restivo, A., Rosone, G., and Sciortino, M. (2007). An extension of the burrows–
wheeler transform. Theoretical Computer Science, 387(3), pages 298–312.

123

Marco-Sola, S., Sammeth, M., Guigó, R., and Ribeca, P. (2012). The gem mapper: fast,
accurate and versatile alignment by ϐiltration. Nature methods, 9(12), pages 1185–
1188.

Mardis, E. R. (2011). A decade’s perspective on dna sequencing technology. Nature,
470(7333), pages 198–203.

McCreight, E. M. (1976). A space-economical sufϐix tree construction algorithm. J. ACM,
23(2), pages 262–272.

Meyne, J., Baker, R. J., Hobart, H. H., Hsu, T., Ryder, O. A., Ward, O. G., Wiley, J. E., Wurster-
Hill, D. H., Yates, T. L., and Moyzis, R. K. (1990). Distribution of non-telomeric sites of
the (ttaggg) n telomeric sequence in vertebrate chromosomes. Chromosoma, 99(1),
pages 3–10.

Morrison, D. R. (1968). Patricia – practical algorithm to retrieve information coded in
alphanumeric. J. ACM, 15(4), pages 514–534.

Mortazavi, A., Williams, B., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and
quantifying mammalian transcriptomes by RNA-seq. Nat. Methods, 5(7), pages 621–
628.

Myers, E. W. (1994). A sublinear algorithm for approximate keyword searching. Algo-
rithmica, 12(4-5), pages 345–374.

Myers, E. W. (2005). The fragment assembly string graph. Bioinformatics, 21(suppl 2),
pages ii79–ii85.

Myers, G. (1999). A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J. ACM, 46(3), pages 395–415.

Navarro, G. (2001). A guided tour to approximate string matching. ACM Comput. Surv.,
33(1), pages 31–88.

Navarro, G. and Baeza-Yates, R. (2001). Improving an algorithm for approximate pattern
matching. Algorithmica, 30(4), pages 473–502.

Navarro, G. and Baeza-Yates, R. A. (2000). A hybrid indexing method for approximate
string matching. Journal of Discrete Algorithms, 1(1), pages 205–239.

Navarro, G. and Mäkinen, V. (2007). Compressed full-text indexes. ACM Computing Sur-
veys (CSUR), 39(1), page 2.

Navarro, G., Baeza-Yates, R. A., Sutinen, E., and Tarhio, J. (2001). Indexing methods for
approximate string matching. IEEE Data Eng. Bull., 24(4), pages 19–27.

Needleman, S. B. andWunsch, C. D. (1970). A general method applicable to the search for
similarities in the amino acid sequence of twoproteins. J. Mol. Biol., 48, pages 443–453.

124

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations
formaximizing submodular set functions�i.Mathematical Programming, 14(1), pages
265–294.

Nicolas, F. and Rivals, E. (2005). Hardness of optimal spaced seed design. In Combinato-
rial Pattern Matching, pages 144–155. Springer.

Nix, D. A., Courdy, S. J., and Boucher, K. M. (2008). Empirical methods for controlling false
positives and estimating conϐidence in chip-seq peaks. BMC bioinformatics, 9(1), page
523.

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An eulerian path approach to dna
fragment assembly. Proceedings of the National Academy of Sciences, 98(17), pages
9748–9753.

Rasmussen, K. R., Stoye, J., and Myers, E. W. (2006). Efϐicient q-gram ϐilters for ϐinding all
𝜀-matches over a given length. J. Comput. Biol., 13(2), pages 296–308.

Rusk, N. (2010). Torrents of sequence. Nature Methods, 8(1), pages 44–44.

Russo, L. M., Navarro, G., and Oliveira, A. L. (2009). Indexed hierarchical approxi-
mate string matching. In String Processing and Information Retrieval, pages 144–154.
Springer.

Samonte, R. V. and Eichler, E. E. (2002). Segmental duplications and the evolution of the
primate genome. Nature Reviews Genetics, 3(1), pages 65–72.

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating
inhibitors. PNAS, 74(12), pages 5463–5467.

Schnattinger, T., Ohlebusch, E., and Gog, S. (2010). Bidirectional search in a string with
wavelet trees. In Combinatorial Pattern Matching, pages 40–50. Springer.

Schürmann, K.-B. and Stoye, J. (2007). An incomplex algorithm for fast sufϐix array con-
struction. Software: Practice and Experience, 37(3), pages 309–329.

Simola, D. F. and Kim, J. (2011). Sniper: improved snp discovery by multiply mapping
deep sequenced reads. Genome Biol, 12(6), page R55.

Singer, J. (2013). A Wavelet Tree Based FM-Index for Biological Sequences in SeqAn. Mas-
ter’s thesis, Freie Universität Berlin.

Siragusa, E., Weese, D., and Reinert, K. (2013a). Fast and accurate read mapping with
approximate seeds and multiple backtracking. Nucleic Acids Res.

Siragusa, E.,Weese, D., andReinert, K. (2013b). Scalable string similarity search/joinwith
approximate seeds and multiple backtracking. In Proceedings of the Joint EDBT/ICDT
2013 Workshops, pages 370–374. ACM.

125

Smedley, D., Jacobson, J., Jäger, M., Köhler, S., Holtgrewe, M., Schubach, M., Siragusa, E.,
Zemojtel, T., Buske, O., Bone, W., Haendel, M., and Robinson, P. N. (submitted, 2015).
Next-generation diagnostics and disease gene discovery with the exomiser. Nat. Pro-
toc.

Smit, A. F. (1996). The origin of interspersed repeats in the human genome. Current
opinion in genetics & development, 6(6), pages 743–748.

Smith, T. F. and Waterman, M. S. (1981). Identiϐication of Common Molecular Subse-
quences. J. Mol. Biol., 147, pages 195–197.

Treangen, T. J. and Salzberg, S. L. (2011). Repetitive dna and next-generation sequencing:
computational challenges and solutions. Nature Reviews Genetics, 13(1), pages 36–46.

Turner, J. S. (1989). Approximation algorithms for the shortest common superstring
problem. Information and computation, 83(1), pages 1–20.

Ukkonen, E. (1993). Approximate string-matching over sufϐix trees. In CPM, pages 228–
242.

Vazirani, V. V. (2001). Approximation algorithms. springer.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O.,
Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D., Amanatides, P., Ballew, R. M., Hu-
son, D. H., Wortman, J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., Chen, L., Skupski, M.,
Subramanian, G., Thomas, P. D., Zhang, J., Gabor Miklos, G. L., Nelson, C., Broder, S.,
Clark, A. G., Nadeau, J., McKusick, V. A., Zinder, N., Levine, A. J., Roberts, R. J., Simon,
M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan,
M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert,
K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R.,
Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z., Di Francesco,
V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A. E., Gan, W., Ge, W., Gong, F., Gu,
Z., Guan, P., Heiman, T. J., Higgins, M. E., Ji, R. R., Ke, Z., Ketchum, K. A., Lai, Z., Lei, Y.,
Li, Z., Li, J., Liang, Y., Lin, X., Lu, F., Merkulov, G. V., Milshina, N., Moore, H. M., Naik,
A. K., Narayan, V. A., Neelam, B., Nusskern, D., Rusch, D. B., Salzberg, S., Shao, W., Shue,
B., Sun, J., Wang, Z., Wang, A., Wang, X., Wang, J., Wei, M., Wides, R., Xiao, C., Yan, C.,
Yao, A., Ye, J., Zhan, M., Zhang, W., Zhang, H., Zhao, Q., Zheng, L., Zhong, F., Zhong, W.,
Zhu, S., Zhao, S., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage,
T., Ali, F., An, H., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K.,
Busam, D., Carver, A., Center, A., Cheng, M. L., Curry, L., Danaher, S., Davenport, L., De-
silets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B.,
Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam,
C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S.,
McIntosh, T., McMullen, I., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts,
E., Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y. H., Romblad, D., Ruhfel,
B., Scott, R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint,

126

N. N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-
Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J. F., Guigó, R., Campbell, M. J., Sjolander,
K. V., Karlak, B., Kejariwal, A., Mi, H., Lazareva, B., Hatton, T., Narechania, A., Diemer, K.,
Muruganujan, A., Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz,
B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine,
J., Caulk, P., Chiang, Y. H., Coyne, M., Dahlke, C., Mays, A., Dombroski, M., Donnelly, M.,
Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov,
M., Graham, K., Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D.,
Jordan, C., Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X., Lopez,
J., Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N.,
Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simpson, M.,
Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M., Wen, M., Wu, D.,
Wu, M., Xia, A., Zandieh, A., and Zhu, X. (2001). The sequence of the human genome.
Science, 291, pages 1304–1351.

Vyverman, M., De Baets, B., Fack, V., and Dawyndt, P. (2012). Prospects and limitations of
full-text index structures in genome analysis. Nucleic Acids Res., 40(15), pages 6993–
7015.

Wandelt, S., Deng, D., Gerdjikov, S., Mishra, S., Mitankin, P., Patil, M., Siragusa, E., Tiskin, A.,
Wang, W., Wang, J., et al. (2014). State-of-the-art in string similarity search and join.
ACM SIGMOD Record, 43(1), pages 64–76.

Wang, Z., Weber, J. L., Zhong, G., and Tanksley, S. (1994). Survey of plant short tandem
dna repeats. Theoretical and applied genetics, 88(1), pages 1–6.

Weese, D. (2013). Indices and Applications in High-Throughput Sequencing. Ph.D. thesis,
Freie Universität Berlin.

Weese, D. and Siragusa, E. (submitted, 2015). Algorithms for next-generation sequencing
data, chapter Full-Text Indexes for High-Throughput Sequencing. John Wiley & Sons.

Weese, D., Emde, A.-K., Rausch, T., Döring, A., and Reinert, K. (2009). RazerS–fast read
mapping with sensitivity control. Genome Res., 19(9), pages 1646–1654.

Weese, D., Holtgrewe, M., and Reinert, K. (2012). RazerS 3: Faster, fully sensitive read
mapping. Bioinformatics. 10.1093/bioinformatics/bts505.

Weese, D., Schulz, M. H., Holtgrewe, M., and Richard, H. (2013). Fiona: a versatile and
automatic strategy for read error correction. to appear.

Weiner, P. (1973). Linear patternmatching algorithms. In SWAT (FOCS), pages 1–11. IEEE.

Wilkes, M. V. (1995). The memory wall and the cmos end-point. ACM SIGARCH Computer
Architecture News, 23(4), pages 4–6.

Wolfe, K. H. and Shields, D. C. (1997). Molecular evidence for an ancient duplication of
the entire yeast genome. Nature, 387(6634), pages 708–712.

127

Wooster, R., Cleton-Jansen, A.-M., Collins, N., Mangion, J., Cornelis, R., Cooper, C., Guster-
son, B., Ponder, B., Von Deimling, A., Wiestler, O., et al. (1994). Instability of short
tandem repeats (microsatellites) in human cancers. Nature genetics, 6(2), pages 152–
156.

Zook, J. M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W., and Salit, M.
(2014). Integrating human sequence data sets provides a resource of benchmark snp
and indel genotype calls. Nature biotechnology.

LIST OF FIGURES

2.1 Edit transcript and alignment . 9
2.2 𝑘-Differences occurrence . 12
2.3 Sufϐix trie and sufϐix tree . 14
2.4 Generalized sufϐix trie . 15

3.1 Sufϐix array and generalized sufϐix array . 20
3.2 𝑞-Gram index . 24
3.3 Burrows-Wheeler transform . 27
3.4 Permutations 𝐿𝐹 andΨ . 28
3.5 Inversion of the Burrows-Wheeler transform 29
3.6 Binary rank dictionaries . 31
3.7 DNA rank dictionary . 32
3.8 Wavelet tree . 33
3.9 Depth-ϐirst traversal runtime . 37
3.10 Exact string matching runtime . 38
3.11 𝑘-Mismatches runtime . 39
3.12 Multiple exact string matching runtime . 42
3.13 Multiple 𝑘-mismatches runtime . 42
3.14 Multiple 𝑘-mismatches speed-up on SA . 43
3.15 Multiple 𝑘-mismatches speed-up on FM-index 43

4.1 Filtration with exact seeds . 46
4.2 Filtration with approximate seeds . 48
4.3 Filtration with contiguous 𝑞-grams . 50
4.4 Parallelogram buckets . 51
4.5 Filtration with gapped 𝑞-grams . 52
4.6 Filtration with multiple gapped 𝑞-grams . 60
4.7 Filters runtime on 𝑘-mismatches . 63
4.8 Filters runtime on 𝑘-differences . 63
4.9 Filtration versus veriϐication time on 𝑘-mismatches 64
4.10 Filters speciϐicity on 𝑘-mismatches . 64

7.1 Yara accuracy on Illumina-like single-end reads 101
7.2 Yara accuracy on Illumina-like paired-end reads 102
7.3 Yara SNVs calling accuracy . 103
7.4 Yara INDELs calling accuracy . 104

LIST OF TABLES

2.1 Classiϐication of text locations by ϐiltering methods 16

3.1 Index construction times and memory footprints 36

4.1 Best 𝑄-grams found by Burkhardt and Kärkkäinen 55
4.2 Optimal threshold computation results . 55
4.3 Measurement of ϐiltering methods efϐiciency 62

5.1 Mappability of model genomes . 74
5.2 Human genome mappability score . 76
5.3 Overview of popular read mappers . 80

6.1 Masai results in the Rabema benchmark . 87
6.2 Masai variant detection results . 88
6.3 Masai performance on real data . 90
6.4 Masai performance with different indices 91
6.5 Masai ϐiltration efϐiciency results . 91

7.1 Yara results in the Rabema benchmark . 100
7.2 Yara performance on Illumina-like single-end reads 101
7.3 Yara performance on Illumina-like paired-end reads 102
7.4 Yara throughput on whole exome sequencing data – Illumina HiSeq 2000 104

	Introduction
	High-throughput sequencing
	Outline
	Approximate string matching
	Read mapping

	Part I Approximate string matching
	Preliminaries
	Definitions
	Transcripts, alignments and distances
	Edit distance computation
	String matching
	Online methods
	Indexing methods
	Filtering methods

	Indexing methods
	Classic full-text indices
	Suffix array
	Suffix tree realizations
	q-Gram index
	Trie and radix tree realizations

	Succinct full-text indices
	Burrows-Wheeler transform
	Rank dictionaries
	FM-index

	Algorithms
	Construction
	Depth-first traversal bounded by depth
	Exact string matching
	Backtracking k-mismatches
	Multiple exact string matching
	Multiple k-mismatches

	Filtering methods
	Exact seeds
	Principle
	Efficiency

	Approximate seeds
	Principle
	Filtration schemes

	Contiguous q-grams
	Principle
	Filtration schemes
	Bucketing

	Gapped q-grams
	Principle
	Filtration schemes
	Full sensitivity
	Optimal threshold
	Specificity
	Families

	Evaluation
	Runtime
	Verification versus filtration time
	Positive predictive value

	Part II Read mapping
	Background
	High-throughput sequencing data
	Read sequences
	Phred base quality scores

	High-throughput sequencing data analysis
	Data analysis pipelines
	Secondary analysis paradigms
	Best-mapping
	All-mapping

	Limits of high-throughput sequencing
	Genome mappability
	Genome mappability score

	Popular read mappers
	Bowtie and Bowtie 2
	BWA
	Soap
	SHRiMP 2
	RazerS and RazerS 3
	mrFast and mrsFast
	Hobbes 2
	GEM

	Masai
	Engineering
	Filtration
	Indexing
	Verification

	Evaluation
	Rabema benchmark on simulated data
	Variant detection on simulated data
	Performance on real data
	Performance with different indices
	Filtration efficiency

	Discussion

	Yara
	Engineering
	Stratified mapping
	Adaptive filtration
	Indexing
	Paired-end and mate-pair protocols
	Mapping qualities

	Evaluation
	Experimental setup
	Rabema benchmark on real data
	Accuracy on simulated data
	Variant calling on real data

	Discussion

	Conclusion
	Read mappers parameterization
	Masai evaluation
	Yara evaluation

	Curriculum Vitæ
	Declaration
	Bibliography

