Abbildungsverzeichnis

1.1	Femtochemie an Metalloberflächen	3
1.2	Prinzip der zeitaufgelösten Spektroskopie an Oberflächen	4
2.1	Mechanismen der Femtochemie an Metalloberflächen	12
2.2	Drei-Niveau-System zur Beschreibung des SFG-Prozesses	14
2.3	Schematische Darstellung des Austauschmodells	19
2.4	Morse-Potential der C-O-Streckschwingung auf Ru(001)	20
2.5	Schwingungsmoden von $CO/Ru(001)$ und gasförmigem CO	21
3.1	Optisch parametrische Erzeugung von fs-IR-Pulsen (TOPAS)	27
3.2	Pulsformer zur Erzeugung der Aufkonversions-Pulse	28
3.3	Intensitäts-Autokorrelation und Spektrum der verstärkten fs-Pulse	29
3.4	Kreuzkorrelation und Spektrum der fs-IR-Pulse	30
3.5	Spektrum und Kreuzkorrelation typischer Aufkonversions-Pulse	31
3.6	Schematische Darstellung des Photoreaktions-Experiments	32
3.7	Schematische Darstellung des SFG-Experiments	36
3.8	IR-Absorptionsspektrum von $W(CO)_6$ in CCl_4	39
3.9	Prinzip der IR-Frequenz-Eichung	39
3.10	Gitter: Frequenzänderung vs. Pixelzahländerung	40
3.11	Die drei Ebenen der UHV-Apparatur	41
	Thermische Desorptionsspektren von CO auf $Ru(001)$	43
	Thermische Desorptionsspektren von CO auf $O/Ru(001)$	45
3.14	Thermische Desorptionsspektren von H_2 und D_2 auf $Ru(001)$	47
4.1	Prinzip der Breitband-IR-Summenfrequenz-Erzeugung	53
4.2	SFG-Spektren der C-O-Streckschwingung, Bedeckungsabhängigkeit	55
4.3	Bestimmung der CO-Bedeckung	57
4.4	Temperaturabhängigkeit der C–O-Streckschwingung	58
4.5	Temperaturabhängigkeit der Resonanzfrequenz	59
4.6	Relative Frequenzänderung in Abhängigkeit von der Temperatur .	60
4.7	Besetzung der frustrierten Translation von CO/Ru(001)	60
4.8	Bedeckungsabhängigkeit C-O-Streckschwingung	61
4.9	SFG-Spektren in Abhängigkeit von der Bedeckung	63
4.10	Bedeckungsabhängigkeit der Resonanzfrequenz und Linienbreite .	63

4.11	Integrierte SFG-Intensität in Abhängigkeit von der Bedeckung	65
5.1	$v=1\rightarrow 2$ -Anregung der C-O-Streckschwingung	69
5.2	$v=0\rightarrow 1$ -Anregung der C-O-Streckschwingung	71
5.3	$v=1\rightarrow 2$ -Anregung in Abhängigkeit von der Temperatur	72
5.4	$v=1\rightarrow 2$ -Anregung in Abhängigkeit von der chemischen Umgebung	75
5.5	$v=1\rightarrow 2$ -Anregung in Abhängigkeit von dem CO-Isotop	78
6.1	Zwei-Phononen-Zustände in Abhängigkeit von der Dispersion	82
6.2	SFG-Spektren in Abhängigkeit von der Bedeckung (95 K)	84
6.3	$v=1\rightarrow 2$ -Anregung: Abhängigkeit von der IR-Intensität/Bedeckung	85
6.4	$v=1$ $\rightarrow 2$ -Anregung: Abhängigkeit von der Bedeckung, Modellierung	87
6.5	Mittlerer CO-Abstand in Abhängigkeit von der Bedeckung	89
6.6	$v=1\rightarrow 2$ -Anregung in Abhängigkeit von der Umgebung	91
6.7	$v=1 \rightarrow 2$ -Anregung: Abhängigkeit von der Bedeckung (400 K)	92
6.8	TPBS-Verschiebung in Abhängigkeit von der Bedeckung	94
6.9	$v=0\rightarrow 1$ -Anregung: Abhängigkeit von der IR-Intensität/Bedeckung	96
0.0	to o 11 Timesuns. Tibitansisker von der 110 Intonistaat/ Bedockuns	00
7.1	Bedeckungsabhängigkeit der Resonanzfrequenz/Linienbreite	101
7.2	SFG-Spektrum der C-O-Streckschwingung bei 340 K	101
7.3	Freier Induktionszerfall bei 95 K	102
7.4	Freier Induktionszerfall bei 340 K	104
7.5	Kreuzkorrelation der 800 nm-Pump- und IR-Probepulse	105
7.6	Reibungsmodell: Zeitverlauf der Adsorbattemperatur	106
7.7	Transiente SFG-Spektren nach Anregung mit $19 \text{ J/m}^2 \dots$	107
7.8	CO-Ausbeute in Abhängigkeit von der Laserschußzahl	108
7.9	CO-Flugzeitspektrum von CO/Ru(001) bei 340 K	109
7.10	Transiente SFG-Spektren nach Anregung mit $55 \text{ J/m}^2 \dots \dots$	109
7.11	Transiente SFG-Spektren von CO/Ru(001), Details	111
	Austauschmodell: C–O-Streckschwingung auf Ru(001)	114
	Zeitverlauf der Phononen-Temperatur und C-O-Streckschwingung	115
7.14	Besetzung der Schwingungsmoden von CO/Ru(001)	116
8.1	Vergleich von IV-SFG- und IIV-SFG-Spektren	122
8.2	Energiediagramme möglicher IIV-SFG-Prozesse	123
8.3	IIV-Spektren in Abhängigkeit von der IR-Zentralfrequenz	125
8.4	Spektren der verwendeten IR-Pulse	125
8.5	IIV-Spektren in Abhängigkeit von der Temperatur	127
8.6	Temperaturabhängigkeit der Resonanzfrequenz und Linienbreite .	127
8.7	Vergleich der Bedeckungsabhängigkeit von IV- und IIV-SFG	128
9.1	CO/CO ₂ -Flugzeitspektren von CO/O/Ru(001)	132
9.2	CO ₂ -Ausbeute in Abhängigkeit von der CO-Dosis	133
9.3	Zwei-Temperatur-Modell: Elektronen- und Phononentemperatur .	134

9.4	CO/CO ₂ -Zwei-Puls-Korrelationen von CO/O/Ru(001)	135
9.5	DFT: Änderung der Zustandsdichte von Ru(001) bei O-Adsorption	138
9.6	CO/CO ₂ -Zwei-Puls-Korrelationen (3 ps-Pulse)	139
9.7	Mechanismus der CO ₂ -Bildung nach fs-Laseranregung	141
9.8	H_2O -Flugzeitspektrum von $H/^{18}O/Ru(001)$	143
10.1	H_2/D_2 -Flugzeitspektren von $H(D)/Ru(001)$	146
10.2	Fluenzabhängigkeit der H ₂ -Bildung	147
10.3	H_2 -Zwei-Puls-Korrelation von $H/Ru(001)$	148
10.4	H_2 - und D_2 -Bildung, Modellierung	149
10.5	Bedeckungsabhängigkeit der H ₂ -Ausbeute	151