5 Interactive Computer Driven Animation of
Sketches

In the previous chapter we saw how to generate geometric objects, such as bars,
boxes or points, using the E-Chalk macro facility. While the annotations have the
look and feel of the blackboard, the geometric objects are too “perfect”. We
would like to preserve the “sketchy” character of the animations drawn on the
blackboard. Sketches have an aesthetic appeal by themselves and properly used,
let an animation look like magic.

The approach taken in this chapter isto let the computer ask the user for the image
of the elements involved in the computation. In a graph algorithm, for example,
the computer prompts the user for the drawings of the nodes and edges of the
graph; then these images are used by the computer to produce its own rendering of
the animation.

5.1 Sketchesare esthetically appealing

Some researchers have explored the use of sketch animation techniques for inno-
vative human computer interfaces. Thomas and Calder, for example, proposed
several ways of handling menus and windows in a graphical user interface adopt-
ing some techniques from cartoon drawing [Thomas 01]. Frequent operations,
such as dragging a window, making it larger, or opening a menu, were animated
in such a way that the virtual objects seemed to oppose change. A window being
dragged, for example, deforms elastically and the point of contact with the mouse
is stretched. A menu which is opened does not appear instantly, but grows from a
small rectangle to alarge rectangle containing the menu options. A window being
enlarged deforms like an object being pumped with air. The idea of the authorsis
that these techniques reinforce in the viewer the illusion of reality of the virtual
objects because they behave like we would expect in reality. Sketches also have
an intrinsic appeal because they lead to a stimulating esthetic experience
[Strothotte 97, Deussen 00].

Thomas and Calder evaluated their new GUI using a form based questionnaire.
Students seemed to enjoy the animations, for its novelty, and eventually used a
setting for a drawing editor in which the animation was included. Although an-

Interactive Computer Driven Animation of Sketches 123

imations should not be abused, the conclusion of this study is that sketch anima-
tion techniques have something to offer for human-computer interaction because
of their esthetic appeal for the user. Also, producing such animations is not very
difficult: sketches can be animated by providing the start and the end view, and
computing the frames in-between [Kort 02].

5.2 Animationswith sketched input

In order to test the above idea, | developed two animations systems: one based on
E-Chalk, the second based on Macromedia Flash. In this section | will first de-
scribe the Flash prototype, because it is simpler and it shows the general technique
used later in the full blown E-Chalk system.

Flash is an animation platform which has been in the software market for many
years. It is a proprietary system from Macromedia, but it is aso a de facto stan-
dard for high-quality animations in the World Wide Web. Animations can be
hand-crafted by using the Flash animation editor, but there is also a script anima-
tion language that allows a user to produce her own programmed animations. The
animation language is called ActionScript. A more detailed description of Flash
and ActionScript will be provided in the next chapter. Here, we only need to know
that Flash is a general purpose programming language with a built-in animation
engine, which can be used to design graphical human-computer interfaces.

We saw in the previous chapter that animations can be synthesized for the E-
Chalk system. A program is instrumented with extra code that produces an anima-
tion script, which in turn can be transformed into an E-Chalk macro. However, the
input to the algorithm is given in numerical form or is fixed in advance. We would
like the user to be able to provide her own input and be able to do this without
leaving the chalkboard metaphor. The lecturer should be able to illustrate algo-
rithms directly in the blackboard, handwriting or sketching the input. No algo-
rithmic animation system provides this capability, only Hundhausen has tested the
use of a graphical editor to sketch the input and then animate the resulting draw-
ings [Hundhausen 00, 01]. However, editor and animator are separate entities and
there is, as said in German, a “Medienbruch”: the lecturer abandons the teaching
media for a moment, to use a secondary tool. This distracts the students.

In order to test the impact of lecturer provided input, in handwritten or sketch
form, | wrote an E-Chalk clone in the Flash ActionScript language which | called
my-E-Chalk. The clone provides the basic functionality of a drawing tool, without
the additional features of E-Chalk (handwriting recognition, Internet calls, auto-
matic transmission and recording of streams, etc.) My E-Chalk clone has the ap-
pearance of a blackboard, with an activation console for the animations. Figure
5.1 shows a screenshot of the my-E-Chalk drawing canvas. Different colors and

124 Interactive Computer Driven Animation of Sketches

line widths can be used to draw on this canvas, the whole screen can be erased,
and strokes can be undone.

Figure5.1 The drawing canvas and console of my-E-Chalk.

Some algorithms were written in the ActionScript language. They can be started
using a menu option. Once started, the input that arrives in the form of strokesis
interpreted by the algorithm as being the animation input. When the input has
been drawn by the user, the animation console alows the lecturer to start the ani-
mation. The console has the buttons shown in Figure 5.2 An animation be started
pushing the “play” button, it can be stopped (“stop”), it can be reversed (“prev”)
or it can be played forward, step by step (“next”).

stop o prav e next e play o

Figure 5.2 The animation console.

Fig. 5.3 shows an example for the classical bubble sort algorithm. The algorithm
draws aline for the array, and sets two pointers to the beginning of the array. The
input is entered in the form of vertical lines. The magnitude of the numbersin the
array is proportional to the length of the lines. This is a very common visual
metaphor for sorting algorithms. Figure 5.3 is a composite of four screenshots.
The animation starts with the input in the upper left screenschot, continues to the
right, and then on the next line. The animation is finished in the lower right.

Interactive Computer Driven Animation of Sketches 125

T = BlIF (e

Figure 5.3 Animation of the bubble sort algorithm with user provided sketched input

Figure 5.3 also shows how highlighting was implemented: when two numbers are
compared, they are moved upwards a few pixels, and then placed in position
again. The indices move from left to right and show which elements are being
processed.

The beauty of this scheme is that many different kinds of sketch inputs can be
handled with the same code. Figure 5.4 shows an example where the input has
been entered as wiggled lines.

Figure5.4 Wiggled lines asinput to the animation.

126 Interactive Computer Driven Animation of Sketches

Figure 5.5 shows an example where the drawing has a semantic corresponding to
the sorting problem: the letters have been drawn with a height proportional to
their position in the alphabet. When the animation runs the size perception isrein-
forced by our unconscious reading capability.

Figure 5.5 Sorting lettersin my-E-Chalk.

Figure 5.6 shows an animation tested during a course for high-schools students at
the FU Berlin. The animation engaged the students because of its esthetic appeal .
Capturing students interest is the most important aspect of algorithmic animation,
as has been shown by educational tests [Grissom 03].

Figure 5.6 Animation of bubble sort produced in alecture.

Interactive Computer Driven Animation of Sketches 127

Finally, the last example shows again the reinforcement of the visual size impres-
sion with an input consisting of handwritten numbers. The animation, when it
runs, is meaningful and the sorting method is easy to understand at every step.

Figure5.7 Sorting handwritten numbersin my-E-Chalk.

What these examples show, is that an animation which is started from the chalk-
board, with user sketched input, can more easily attract the attention of students
during a class. The chalkboard seems to be “intelligent”; it interprets the user in-
put and handles the data immediately. There is no need to open another window
or to start another tool.

The next step is to transport this technique to the E-Chalk system, where we can
also make use of the handwriting recognition features already integrated into the
system. Using handwriting recognition, sorting of letters or numbers can be done
without having to encode the letter or number order in the size of the input. But
before considering the way animations with user sketched input were imple-
mented in E-Chalk, let us consider the problem of coding on the blackboard in the
next section.

128 Interactive Computer Driven Animation of Sketches

5.3 Executing a programming language in E-Chalk

In this section | describe a further educational innovation implemented for the E-
Chalk system as part of this thesis. | wrote a simple interpreter for the program-
ming language BASIC, and the interpreter was coupled with the handwriting rec-
ognition machinery of E-Chalk. The lecturer can now write a BASIC program on
the chalkboard and request its immediate execution. The electronic chalkboard
complies. This implementation provides a glimpse of what will become possible
in the future.

5.3.1 Motivation for handwriting-programming

The authors of the E-Chalk system have written that their main motivation in de-
veloping an electronic blackboard was to provide an adequate teaching medium
for disciplines such as mathematics or physics, which make heavy use of the tradi-
tional blackboard. Computer science could also profit if it could be possible to
write a program on the electronic board and let it execute. This would allow the
teacher to provide the students an immediate example of some algorithms.

A handwriting recognizer is needed, if code written on the electronic blackboard
is to be executed. The E-Chalk handwriting recognizer is a pattern recognition
system developed by Ernesto Tapia at the FU Berlin [Tapia 02].

Symbols are recognized by processing line strokes and extracting relevant fea-
tures. Such features are, for example, the length of the line stroke, its centroid (in
a unitary square), the distance between the first and the last point of the stroke,
divided by the total length. Also, the coordinates of a few points along the stroke
can be added to the feature vector. The most relevant points for the shape are se-
lected using a shape simplification algorithm. Once a symbol has been trans-
formed into a feature vector, it is given to a neural network or support vector ma-
chine, which has been trained previously to recognize this symbol. The recogni-
tion itself is user independent, but this depends on the quality of the database used
for training the models.

5.3.2 Tiniest BASIC

As a proof of concept for a programming system based on handwriting recogni-
tion, | defined a minimum subset of BASIC, which is nevertheless general pur-
pose and universal. BASIC has always been a popular language for education in
schools (this was the whole purpose of the language when it was defined by Ke-
meny and Kurtz) and Tiny BASIC variations were written for the first microcom-

Interactive Computer Driven Animation of Sketches 129

puter systems which appeared in the 1970s. My own version of BASIC is called
Tiniest BASC and consists of only two interpreter commands and six types of
instructions. A definition of the language follows.

Variables are denoted in Tiniest BASIC by asingle letter (A, B, C, etc.) and are of
floating point type. A Tiniest BASIC code line begins with a line number and
contains one of six possible instructions. The instructions (and examples) are the
following:

LETI

Command used to set a variable to a constant value.
Example: 10 LETIA=1

LET

With this command, an addition, subtraction, multiplication, or division of
two variables can be performed. Only one operation per lineis possible.
Example 20 LETB=A+C

PRINT

Print the value of agiven variable.
Example: 30 PRINT A

GOTO n

Transfers execution to linen.
Example: 50 GOTO 10

IF <var>n

Transfers control to line n, if the variable <var> is greater or equal to zero.
Example: 80 IF A 30

STOP
Stops execution of the program

As an example, the program below adds the two numbers 3 and 5 and prints the
result, before stopping.

10 LETI A=3

20 LETI B=5
30LET C=A+B
40 PRINT C

50 STOP

130 Interactive Computer Driven Animation of Sketches

When the interpreter is started, any line beginning with a number is treated as
code. If aline has the same number as one previously entered, the new line super-
sedes the old one.

The two instructions “RUN” and “LIST” can also be entered. RUN starts the pro-
gram at the first line of code. LIST provides a listing of the current code lines.
Non-trivial programs can be written with this language.

Tiniest BASIC was implemented in Java. The goal was to have a nontrivial pro-
gramming language, with a simple syntax and easy to edit using the electronic
chalkboard. The instructions are entered using handwriting recognition and the
program can then be started. The result of a program run is given back as an
ASCII string. There is a timeout for the maximum execution time. A program
which does not terminate in the allotted time returns the ASCII string “timeout”.
This avoids having to wait for a program which gets trapped in an infinite loop.

5.3.3 Tiniest BASIC execution

Figure 5.8 is a screenshot of the Tiniest BASIC interpreter running in E-Chalk.
The program given above was entered by hand and then the command RUN was
written. The handwriting recognizer was set to work with the lower-case equiva
lents of the different commands.

10 QE{L o= 3
20 Letl b-=s
30 let c-a+b

40 PrmJE C
50 SJ[OP 4

8

Figure 5.8 Screenshot of handwritten code which has been executed.

As can be seen from the screenshot, a line with an angle closes the handwritten
input. The lines are recognized, and they are passed to the Tiniest BASIC inter-

Interactive Computer Driven Animation of Sketches

131

preter. This executes and provides a string as result, which is passed to E-Chalk

for display using typewritten output.

Figure 5.9 shows JIMATH, the program developed by Ernesto Tapia to train the
character recognizer [Tapia 03b]. A Tiniest Basic program has been entered. Each
character is surrounded by a box and an identifier of the character which has been
recognized. After writing the “LIST” command, the user closes the input by press-
ing on the B button (BASIC). The window to the lower left shows the output of

my Tiniest BASIC interpreter.

B It it

Pl Bl View Troe Processing oo
L EIE] [€] # %] Alpagerare

LETI A= 3
LETI C=§
3. LET D=A+C
o PRINT D

Figure 5.9 Screenshot of IMATH, the editor and training program for formula recognition devel-

oped by E. Tapia.
& Jumathtotes Al
File Edt View Ireo Processing U Recogmfion o Help _ _
[=le| [l Ao [~] [a]eluls]x Hofclel [B]x+ol+=[e] 1]
I Belr -8 ‘
ety & =8 |
B e A==mEE
b tprakd 8

Figure 5.10 Screenshot the Tiniest BASIC program after it has been executed.

132 Interactive Computer Driven Animation of Sketches

Figure 5.10 shows the same program, but now the command “RUN” has been
entered. The output of the program is visible in the lower left window, it is the
constant 8.

Ideally, many of the options of the IMATH editor will be available in future re-
leases of E-Chalk. Symbols can be erased, for example, by scribbling rapidly on
them. Symbols can be moved from their position. If a gap is needed between two
lines, the symbols below the first line are selected and moved down. This gesture
recognition could alow editing and annotating programs written in more complex
programming languages, as explored in the next section.

5.3.4 Animated pseudocode

The significance of the Tiniest BASIC exercise is that it shows what could be
done in the future. It would be possible to directly execute handwritten code writ-
ten in compact languages such as Perl, Lambda Calculus, or Haskell.

Cormen et a. [90] use a very powerful pseudocode to define algorithms. The
algorithm’s code is compact and easy to read. As we saw in section 4.10, Python
isagood match for this kind of pseudocode. It would be possible to write a parser
and interpreter for the handwritten version of the pseudocode (extending the Py-
thon interpreter). The user would then handwrite a program and the electronic
chalkboard could immediately execute it.

@: [10,9,8,7,6,5,4,3,2,1]

for j in range(1,10):
ol 1.

j-1

while(i>=0) and (A[i]>key):
Ali+1] = A[i]
i=i-1

Ali+1] = key

Figure5.11 A vision of the future. Pseudocode has been handwritten. The user signalsto the
system that the array A and the index i are to be visualized (by encircling them). The system re-
sponds by automatically producing the animation shown to the right.

Interactive Computer Driven Animation of Sketches 133

It would be very interesting to provide automatic animation of pseudocode opera-
tions. From Chapter 2, we know that declarative algorithmic animation is difficult
and that not many systems have been developed. Nevertheless, it would be possi-
ble to annotate handwritten pseudocode in such a way that some portions of it
would be animated.

An agorithm handling an array (for example a sorting algorithm) could produce
an animation of the array, so that when the code is executed step by step (and this
would be shown on the screen) the contents of the array are made visible. The
selection of the variables to be visualized could be simply done by underlining or
circling their names in the handwritten version of the code. The screen-shot in
Figure 5.11 is arendering of thisidea, which falls outside the scope of this thesis,
but which is worth pursuing in the future. In the figure, the lecturer has handwrit-
ten the Python code for insertion sort, which is applied to an array A. The name of
the array and of the variable i have been encircled, to tell the system that we want
to follow all changes to them. The default view of the array is a bar graph. The
computer knows that i is an index to the array A and draws it as an arrow. The
algorithm is executed and the result is visible to the right. Of course, we assume
that the lecturer is collaborating with the system and that she is taking care of
carefully handwriting the code. We aso assume that the interpreter is able to
make some deductions about the kind of variables being used.

54 Animated algorithmsin E-Chalk with sketched input

The genera technique described in the previous section was ported to E-Chalk
using the handwriting recognition interface. In E-Chalk, there is a special color
which can be set at the beginning of a session. Strokes drawn with this color are
processed by the handwriting recognizer engine. The engine receives al the
strokes (as sequences of lines), processes them, and gives the result of the recog-
nition to another application (in the case of mathematical formulas, to Mathe-
matica from Wolfram Research). The application processes the input and gives
back an ASCII string to E-Chalk or a picturein GIF or JPEG format. This applica-
tion output (a number, a graph, adrawing, etc.) is pasted to the blackboard.

For our purposes this is not enough. An animation produces multiple frames,
which have to be pasted at the same position. If only the history of an agorithmis
being drawn, then the handwriting interface is all that is needed, but the output
can only be a static image. | talked to the developers of E-Chalk and the handwrit-
ing recognition interface was modified to provide an API for third-party applica-
tions, such as my animations. The API should allow applications to write directly
on the board, giving them control over the rendering of parts of the blackboard.
The API for the E-Chalk system was developed so that my animations could be

134 Interactive Computer Driven Animation of Sketches

interfaced to the system. As a workaround while the APl was being written, E-
Chalk macros were used.

The workaround is the following: stroke input drawn with a selected color is
passed to the shape recognition engine. The shape recognition engine groups
strokes according to proximity or overlap (some digits, for example, consist of
more than one stroke) and recognizes the shape among a library of symbols. This
information is passed to my own application, not to Mathematica. My application
is an animation engine for E-Chalk, which has loaded an algorithm written in
Java. The Java algorithm receives the input from the shape recognition engine,
runs the algorithm, and produces a Flashdance animation script. The animation
script is processed as a stream by the animation script interpreter, which in turn
produces the code for a macro. After entering the input, the user can then go to the
macro menu and start the new macro, which will be played as directed by the
animated algorithm [Esponda 04b]. The diagram below shows schematically the
information flow in the E-Chalk system. All steps are transparent for the user,
who only has to call the appropriate macro at the end. Once the E-Chak API is
finished, the macro call will be performed automatically by the system.

Hand-d Shape recog- Algorithmin
nition engine Java
> input ane —
Obijectslibrary
Macro file Macro gen- Flashdance
i erator <+ script

Figure5.12 Information flow for the animation of sketched input.

The shape recognition engine generates an object library. This is needed, because
if we want to reuse the shapes entered by the user, the shapes must be stored by
the recognition engine. They are assigned an object number, which can then be
used by the animation algorithm generating the script.

5.5 Extractingtheinput from a macro

As a proof of concept, a smpler experiment was performed before the E-Chalk-
APl was complete, in order to allow the user to enter sketched input before start-

Interactive Computer Driven Animation of Sketches 135

ing an algorithm. The user writes her input in a macro which produces a file con-
taining the line strokes drawn by the user. A program is used to read this macro,
extract the line strokes, and use this line strokes as the objects in the animation
library. The coordinates of the line strokes are recomputed so that the lower left
point isthe origin of coordinates for each object.

The extractor program receives as input the file with the line strokes drawn by the
user. A simple heuristic is used to group strokes, computing the spatial and time
distance between groups of strokes. The extractor can be used to filter out from
the user diagram any kind of shapes. A graph, for example, can be filtered and the
nodes can be separated from the edges, based on the shape of the line stroke. Fig.
5.13 shows an example, where the user has entered the alphabet and ten digits.
The extractor transforms every shape into alibrary object, which can then be used
again, for example to write a synthesized text in the handwriting of the user. In
Figure 5.13 the user input is colored green, the computer output, that is, the words
“it worksfine”, in yellow.

4

Q

(&)

it works 10 ne

Figure 5.13 Extraction of the individual shapes of the alphabet |etters and synthesis of atext by
the computer (in yellow).

55.1 Bubblesort revisited

After the object library has been defined by the user (by entering her input), the
animation algorithm uses this objects in the animation. In the case of the example
shownin

Figure 5.14, bubble sort was animated by using ten objects, that is, the digits from
zero to nine. The digits were written with a size proportional to their magnitude.
The object number corresponds to the digit which has been drawn.

The instrumented algorithm produces an animation script, which after processing
yields a macro for E-Chalk. The animation runs on the electronic blackboard.

136 Interactive Computer Driven Animation of Sketches

Figure 5.14 shows the start of the animation and the input written by the user (up-
per left picture). The upper right side of

Figure 5.14 shows the progression of the algorithm. The pivot for the comparison
is painted red; the other number being compared is painted pink. After a number
has reached its final position it is painted green, with athicker line.

\,2715% (oo ZZWBM (@o

Bubble Sort Bubble Sort

RIRLE (Do 123 5@(

BUbb/@ QOV‘% Bubb/e gorf

Figure 5.14 The bubble sort algorithm animated with user input

This experiment is also interesting, since multiple visua cues have been used to
reinforce the idea of magnitude. The size of the digits is proportiona to their
value. The value itself is read by the user. Sorted numbers are shown in green, a
color which automatically recalls the association of something being right or cor-
rect. The action is taking place at the place where the pivot is, which is painted red
to signify work. The position of the two numbers being compared is also marked
by two horizontal bars which slide across the array.

The animations produced in this manner can be easily collected as macros and can
be replayed by an instructor during class.

In the example above, the separation of the strokes was made by considering only
connected objects made of one single stroke sweep. This property is easy to test
when given the coordinates of the strokes points.

An interesting aspect of this and all other macro animations mentioned above is
that the animations are automatically reversible. Once a macro has been played,
the user can go backward and again forward, by using the undo and redo buttons
in the E-Chalk menu. All board events occurring after the macro starts are stored

Interactive Computer Driven Animation of Sketches 137

in the undo and redo stacks, and the user can navigate at will, back and forth,
through the animation frames. E-Chalk offers reversibility at no cost for the algo-
rithm animator.

The difficulty of implementing reversible animations in E-Chalk lies in the fact
that all graphic activity is pixel based. When an object is drawn on the screen, in
front of another object, it is necessary to store the background so that it can be
restored in case of an undo. It is not trivial to design an effective and fast data
structure for this task. Fortunately this has been done by L. Knipping and forms
part of the standard distribution of E-Chalk.

55.2 Prim’sAlgorithm for minimum spanning trees

The next algorithm is a more spectacular example of the kind of animations which
become possible once the user is empowered to enter her input using a pen com-
puter. | wrote a program which implements the popular Prim algorithm for the
computation of a minimum spanning tree. A spanning tree is a subset of the
graph’ s edges which touches al nodes of the graph without producing cycles. The
minimum spanning tree has the minimum total weight (each edge has an associ-
ated weight) of all possible spanning trees. Figure 5.15 shows how the user enters
her input: by drawing the nodes and edges of the graph. In this case the extractor
program was coded to expect nodes as white elements, edges as green elements. It
would have been possible to detect automatically which elements are edges and
which circles, but in this case | settled for a smple extractor. The weight of an
edge is its total length. The reader can imagine that these are cities connected by
roads of different length.

Figure5.15 The user entersthe input. Nodes are painted white, edges are green.

138 Interactive Computer Driven Animation of Sketches

Figure5.16 An edge has been added to the spanning tree (yellow edge). The next node to be
visited is painted pink (lower middle).

Figure 5.16 shows the further progress of the animation. Nodes in pink have been
selected and yellow edges already belong to the spanning tree. The next edge se-
lected is the shortest edge touching the pink nodes. Figure 5.17 shows the anima-
tion some frames later. The edge to the middle right is being painted yellow after

’Prirn's AlaoriH'\m

)

Figure5.17 Thelast edgeis being painted yellow.

Figure 5.18 shows the end result. All nodes have been visited and the “road map
Is the shortest possible tree connecting all cities.

Interactive Computer Driven Animation of Sketches 139

’Prim‘s Akaori”\m

Figure 5.18 Final minimum spanning tree.

The more impressive results from the animation are obtained when the user
changes the input and the animation runs automatically.

Figure 5.19 shows four screenshots of the same agorithm running on a new graph
sketched by the user.

Figure5.19 Prim’salgorithm working on another graph (from upper left to lower right).

140 Interactive Computer Driven Animation of Sketches

In the case of this animation the technique of representing the weight of an edge
by its length gives an intuitive feeling for the correctness of the decisions taken at
each step. Some algorithmic animation systems represent the weight of an edge
sometimes by the width of the edge, but this is the first attempt to represent the
weight using awiggled line. It is aso clear why: other algorithmic animation sys-
tems render graphs using lines and circles. It is very difficult to draw esthetically
appealing graphs using this convention (length of edge equals weight), but not
when the user can sketch on a blackboard. Here we find a definitive advantage of
the blackboard compared to simple graph drawing programs. The animation pro-
duced by the Chalk animator |ooks almost like an abstract painting.

Once an extractor for graph objects has been written, it can be used to construct
the library for many other graph algorithms.

5.6 TheE-Chalk Interactive Application Interface

After having shown my macro animations to the E-Chalk developer team, it was
decided that computer animation should be directly supported through an Applica-
tion Interface for E-Chalk. Lars Knipping wrote as part of his forthcoming PhD
dissertation a specification for the E-Chalk API that allows developers to seam-
lessly interface their own applications to an electronic whiteboard.

The menu of E-Chalk was expanded with a new button. When the button is se-
lected, alist of applications appears. The user selects an application, dragging and
positioning a frame in the E-Chalk screen. This rectangle is a portion of the elec-
tronic chalkboard reserved for the application. All strokes drawn on this frame are
passed to the application and the application can draw new strokes inside the rec-
tangle. When the user draws a stroke outside the frame, the application is stopped
and does not consume any CPU time. The lecturer can continue with other topics.

In the E-Chalk API, applications “listen” to strokes. Any stroke drawn in the ap-
plication window is pushed into the application, which provides the method for
the push operation. The stroke is passed to the application as a Java E-Chalk ob-
ject. The E-Chalk methods can then be used to process this stroke in any desired
way. An application listening to strokes can recognize the shape of strokes, which
trigger different operations and a so the creation of new strokes to be drawn on the
screen. In the next section, | review the E-Chalk APl in more detail.

5.6.1 Description of the E-Chalk API

An animation which can be plugged to E-Chalk is defined as a subclass of the E-
Chalk “animation” class. When an animation is selected from the menu and is

Interactive Computer Driven Animation of Sketches 141

started it waits for strokes coming from its own region of the chalkboard. The user
animation has to provide two methods: pushStroke and removel astStroke. When
a stroke is drawn in the animation window, E-Chalk calls the pushStroke method
for forwarding the stroke to the animation.

The pushStroke method, written by the user, can analyze the passed Java stroke
object using the stroke handling methods provided by the API. It is possible, for
example, to compute the bounding box of the stroke calling a method, or to obtain
the coordinates of the first pixel in the stroke, etc. The API also provides methods
to get some important parameters from the screen, such as the size of the anima-
tion window and the color of the background. The coordinates of the left upper
corner of the region can be read also, an important step before sending any strokes
to E-Chalk, which must be encoded using absol ute screen coordinates.

The removel astStroke method is activated by E-Chalk anytime the undo function
of E-Chalk is called (pushing on the undo button). E-Chalk deletes the stroke from
the screen, but also informs the animation that a stroke has been deleted. This is
important in order to manage a consistent view of the screen in E-Chalk and in the
user animation.

Animation methods

animation window

Figure 5.20 : Interaction between E-Chalk and a user animation.

The sendStroke method is provided by the API and allows the animation to gener-
ate a stroke by itself and send it to E-Chalk for display on the screen. The API
provides stroke constructor methods. With them it is possible to copy a stroke,
change its parameters, such as color or width, or just build a stroke point by point.
The animation never draws by itself on the screen. All screen updating is made by
E-Chalk itself and the only way to alter the screen appearance is by sending
strokes to E-Chalk.

Figure 5.20 shows a diagram of the interaction between the E-Chalk APl and a
user animation. The pushStroke method is called by E-Chak when a stroke is
drawn. The stroke is passed to the animation as an object. The animation can gen-

142 Interactive Computer Driven Animation of Sketches

erate a stroke and send it to E-Chalk using sendStroke. The method removel ast-
Stroke keeps the animation screen state consistent with the visible screen man-
aged by E-Chalk.

Writing an animation for E-Chalk consists essentialy in providing the pushStroke
method, and in generating strokes using the API stroke constructors. An anima-
tion can only be started by calling pushStroke at least once. The method send-
Stroke can be called repetitively from inside a pushStroke method. When push-
Stroke finishes, the animation can only be restarted by drawing a new stroke on
the animation screen.

5.6.2 Classes and methods of the E-Chalk API

In this section | review the most important methods and classes contained in the
E-Chak API. For more detailed information the reader is referred to the API
documentation written by Lars Knipping and included in release 1.11 of E-Chalk.

Animation

An E-Chalk animation has a StrokeL istener which receives any stroke drawn by
the user inside its animation frame. The animation can request strokes to be
painted via its AnimationContext. An E-Chalk animation should implement the
following three methods from the Strokel istener interface and the Animation in-
terface.

pushStroke This methods is called when a stroke is painted on the anima-
tion area. A new stroke is pushed into an input buffer. It can be
a stroke repainted with the redo button.

removelLastStroke Remove the last stroke which was pushed into the input buffer
(this method is called when the undo button is pressed).

endAnimation Aborts the animation at the request of E-Chalk (when the user
draws a stroke outside the animation frame, for example).

AnimationContext

The AnimationContext interface provides a set of methods for obtaining informa-
tion about the animation frame pasted by the user on the board, and methods to
send strokes to be shown in the animation frame. The following methods are de-
fined on thisinterface.

Interactive Computer Driven Animation of Sketches 143

getAnimationArea Returns the parameters of the animation frame rectangle
getBackgroundColor Returns the color of the background in the board.
sleepUntil This method is used to pause when an animation is running

The more important methods in AnimationContext are those used to paint strokes
in the animation frame. These are:

sendStroke Requests E-Chalk to paint a stroke in the animation frame.
A stroke is a Java object constructed using the API con-
structors. It contains information about the points in the
stroke, color and width of the lines, and a time stamp for
drawing segments between points.

sendStrokes Similar to sendStrokes, but an array of strokesis passed to
E-Chalk

getPendingStrokesCount ~ With this method the animation can ask if all strokes
have been painted.

animationEnded This notifies E-Chalk that the animation has ended. E-Chalk
stops sending strokes to the animation.

BoardStroke

The class BoardStroke is used to construct strokes for the board and set their pa-
rameters. The BoardStroke constructor allows the animator to build strokes from
arrays of coordinates, including timestamps, and specifying parameters such as
line width, color, and drawing duration. There are 21 BoardStroke get methods,
which can be used to extract parameters from a stroke. The method getColor, for
example, allows the user to retrieve the color of a stroke passed by E-Chalk. There
are methods to extract the array of point coordinates from a stroke, the bounding
box, the time stamps, etc.

AnimationKit

The animation kit classis the factory kit for producing animations for E-Chalk.
The class contains important methods such as:

getAnimation Provides alink to the user animation
getAnimationName Returns alocalized name for the animation

144 Interactive Computer Driven Animation of Sketches

getMinimumAnimationSze Returns the minimum size of the frame that can be
used by this animation.

In the following sections, | show some examples of the animations produced us-
ing the E-Chalk API. The animations are fully interactive and can operate on
sketched input entered by the user.

5.6.3 Example: bubble sort from sketched input

Our first example is just a reimplementation of the bubble sort animation dis-
cussed at the beginning of this chapter using the my-E-Chalk clone of E-Chalk
programmed in Flash. My-E-Chalk was important for this thesis, historically, be-
cause only after the E-Chalk team saw my animations in this clone of E-Chalk,
they decided to produce the E-Chalk API for interfacing animations to the system.

The two screenshots in Figure 5.21 show the start of the animation. The instructor
is explaining bubble sort and has written the name of the algorithm on the board.
Then the animation frame is pasted to the board. Several strokes are drawn inside
this frame, one after the other. When enough strokes have been drawn, the user
draws a small angled segment on the right upper corner. This is the signal for the
animation to start sorting the strokes, according to their length. The angled stroke
is a gesture which is analyzed and recognized by the pushStroke method, which
then starts the animation. The animation itself consists of many calls to the send-
Stroke method, which erase and repaint strokes at their appropriate positions.

Figure 5.21 : The user enters strokes to be sorted according to their length (right screenshot). An
angled stroke in the upper right corner starts the animation (left screenshot).

Figure 5.22 shows the progress of the animation: several strokes have been sorted.
Two of them are moving to their new positions.

Interactive Computer Driven Animation of Sketches 145

Figure 5.22 Strokes being sorted in the animation window.

Figure 5.23 shows that many kinds of strokes can be drawn, wiggled or not wig-
gled. The bounding box is the parameter used for the sorting. My experience in
the classroom is that students like to experiment with different classes of input
and are attracted to the system due to this flexibility.

Figure 5.23 Other kind of input for the bubble sort algorithm.

5.6.4 Dijkstra’salgorithm

A more involved example of the kind of animations possible with the E-Chalk
APl is shown in the next figures.

Dijkstra’s algorithm is a well-known method for computing the shortest path be-
tween a source node and all other nodes in a graph. In Fig. 5.24 we see how a
graph is entered for processing. In this particular example, nodes are drawn using
green strokes, edges using yellow strokes. The length of an edge is the number of
pixels the stroke contains. Therefore, wiggled edges are longer than straight
edges. The algorithm starts by marking all edges as “unused” (using white) and all

146 Interactive Computer Driven Animation of Sketches

nodes as having an infinite distance to the source node. The source node itself is
marked with a zero (it has zero distance to itself).

Figure 5.24: Dijkstra's algorithm running on a hand-drawn graph. The agorithm starts with the
input shown on the upper left. All nodes are marked with an “infinite” distance (upper right). The
algorithm gradually relaxes the distances. Finaly, the markings on the nodes show the shortest
distance to the start node and the edges selected (colored red, lower right).

The two lower screenshots in Fig. 5.24 show the further progress of the algorithm.
Starting from the source node, all nodes connected to it are relaxed. This means
that their distance to the source is updated by selecting the minimum of the cur-
rent mark on the node, and zero plus the edge length. Note that the edges are di-
rected, they point from one node to the other. In the next step, the node with the
smallest mark (smallest distance to the source) is expanded by looking at the
neighboring nodes. Expanded nodes are colored blue. The marks in the adjacents
nodes are updated: if the mark on the source node plus the length of the edge to
the neighbor is smaller than the mark on the neighbor node, the mark in the
neighboring node is updated to the new value. The node is marked as non-
expanded. The process is continued by always expanding the node with the small-
est mark, until al nodes have been expanded. This guarantees that all possible
paths through the graph have been considered.

Interactive Computer Driven Animation of Sketches 147

Figure 5.25: A second example of Dijkstra’s agorithm running in E-Chalk.

In this particular example, the recognition of nodes and edges was simplified by
using specific colors for each. This can be configured by the programmer easily.
Also, the marks were generated using stored letters and numbers in the user’s
handwriting. This simple handwriting synthesis is easy to implement and avoids
spoiling the “look and feel” of the sketched input with incongruous characters.

This example concludes our presentation of some classical algorithms pro-
grammed using the E-Chalk Animator. The algorithms, once programmed, are
easy to run and easy to explain in class. The lecturer can run examples with dif-
ferent kinds of graphs and the input time is reduced to a minimum. The students
are also encouraged to experiment with input of their own. E-Chalk Animator is
an animation tool that fosters critical thinking and makes experimentation as natu-
ral as drawing a sketch.

5.7 Summary and Discussion

| can best summarize this chapter by saying that we have boldly gone where com-
puter animators have never gone before: we have considered the interaction of the
user with algorithms and animations directly, using the possibilities of pen com-
puting in the classroom.

148 Interactive Computer Driven Animation of Sketches

This chapter started by stating that sketches are esthetically appealing and can
attract the interest of students. Animations are for learning. An instructor in a
classroom needs a more natural interface with the teaching instrument, i.e. the
blackboard, and this is what we have investigated in this chapter. Although many
sketches are used to illustrate algorithms or books, few experiments have been
conducted towards coupling sketches and algorithmic animations, the exception
being the “low fidelity” algorithms of [Hundhausen 01] and the non-photorealistic
animations described by Strothotte [98].

For my research | first developed a clone of the E-Chalk board using Macrome-
dia-Flash. It was an exercise in fast prototyping, but the graphical result is excel-
lent. The strokes drawn on the electronic board are handled as vector graphics by
Flash and the animation engine helps to produce smooth and very appealing an-
imations. The same algorithm can be run with different inputs from the user, as
shown in Section 5.2. The user interface is very natural: editor and animation me-
dium are not separated — the blackboard provides a unifying metaphor. The an-
imations attracted widespread attention when first shown at the FU Berlin.

Given an electronic blackboard, it is natural to ask if the algorithms could be di-
rectly written on the blackboard and could be interpreted by the computer. | have
called this “handwriting programming”. My experiment with the Tiniest BASIC
interpreter showsthat it isindeed possible to couple a handwriting recognizer with
an interpreter, in order to provide this functionality. | wrote the Tiniest BASIC
interpreter in afew hours. Future work will be oriented towards recognizing pseu-
docode languages, such as Python, which offer a very powerful medium for
handwriting algorithms. It is my belief that the experiments recorded here are
among the first conducted towards developing a handwriting coding and anima-
tion system.

The second half of the chapter deals with E-Chalk and how to implement a two
way communication channel between the user and the algorithm to be animated.
The E-Chalk API was created with this objective, but similar functionality can be
obtained through the use of macros. | showed that a user can enter his or her input
as a macro, which is then analyzed by a symbol recognizer. The symbol recog-
nizer builds a library of symbols. An animation written in my scripting language
can then access these objects and use them during the animation. | showed that
this method can be extended even to the labels of the animation, which can be
produced by text synthesis, that is, by reproducing the handwriting from the algo-
rithm animator. This preserves the sketch form of the diagrams, even when they
contain text.

The release of the E-Chalk API is significant, because it allows developers to in-
terface arbitrary programs to E-Chalk, which can accept sketch or handwritten
input and operate with it. There is no “Medienbruch” and the user interface re-
mains homogeneous. E-Chalk Animator was one of the first programs to take ad-

Interactive Computer Driven Animation of Sketches 149

vantage of the new E-Chalk API and provided some of the pressure from the user
community towards its definition by the E-Chalk programmer team. In the last
sections of this chapter | illustrated the use of the E-Chalk API by animating bub-
ble sort and Dijkstra's algorithm. Now that the E-Chalk API has been released,
some of my animations are being distributed as an extension of E-Chalk in ver-
sion 1.1. The results described in this chapter have been presented at international
conferences [Esponda 04b, 04c].

In the next chapter we will close our investigation by going to the opposite ex-
treme: not sketches but the fine graphical rendering provided by the Flash anima-
tion engine will be the delivery medium for my agorithmic animations.

