Abbildungsverzeichnis

Abb. 2-1:	Unterlauf des Wisconsin River mit verzweigtem Flussschlauch als Beispiel für einen nicht mittelwasserregulierten Fluss (Emily Stanley 2000)	6
Abb. 2-2:	Mit Buhnen regulierte untere Mittelelbe bei Bälow, El-km 440, mit singulärem Flussschlauch und erheblich veränderter Morphologie (Ilona Leyer 1998)	6
Abb. 2-3:	Inklinante Buhnen (Ausrichtung stromauf)	7
Abb. 2-4:	Deklinante Buhnen (Ausrichtung stromab)	7
Abb. 2-5:	Knickbuhnen als Kombination aus inklinanten und deklinanten Buhnen	7
Abb. 2-6:	Absenkungsbuhnen bzw. durchrissene Buhnen mit Durchrissströmung in Ufernähe	7
Abb. 2-7:	Schematische Übersicht über das Modulare Habitatmodell (MHM) zur Analyse der Habitatverfügbarkeit für Fische in den Uferstrukturen der Mittelelbe	. 22
Abb. 3-1:	Politische Gliederung des Elbeeinzugsgebietes und Lage der Untersuchungsgebiete (Karte aus SIMON 2000, verändert)	. 27
Abb. 3-2:	Vergleich mittlerer Jahresganglinien der Abflüsse (m ³ * s ⁻¹) an den Pegeln Neu-Darchau und Dresden (BFG 2002)	. 31
Abb. 3-3:	Tagesabflusswerte von 1977 bis 2000 am Pegel Neu- Darchau (m ³ ·s ⁻¹), El-km 536,4	. 32
Abb. 3-4:	Mittlere Fließgeschwindigkeiten im Flusshauptschlauch bei unterschiedlichen Abflüssen, El-km 145 - 171, Bereich Torgau, Erosionsstrecke (Grafik aus ElbeInKa)	. 35
Abb. 3-5:	Mittlere Schubspannungen im Flussmittenbereich bei unterschiedlichen Abflüssen, El-km 145 - 171, Bereich Torgau, Erosionsstrecke (Grafik aus ElbeInKa)	. 35
Abb. 3-6:	Summenkurven ausgesuchter über den gesamten deutschen Abschnitt verteilter Kornfraktionen der Elbesohle bei El-km 135,0; 145,0; 230,0 und 260,0 (Grafik aus ElbeInKa)	. 36
Abb. 3-7:	Mittlere Korngrößen (dm) der Sohle des deutschen Abschnitts der Elbe bis Geesthacht (Daten BFG 1994), berechnet nach Meyer-Peter/Müller	. 37
Abb. 3-8:	Mittlere Fließgeschwindigkeiten im Flusshauptschlauch bei unterschiedlichen Abflüssen, El-km 438 – 464, Bereich Gnevsdorf – Wittenberge (Grafik aus ElbelnKa)	. 38

Abb. 3-9:	Mittlere Schubspannungen im Flussmittenbereich bei unterschiedlichen Abflüssen, El-km 438-464, Bereich Gnevsdorf – Wittenberge (Grafik aus ElbelnKa)	38
Abb. 3-10:	Summenkurven ausgesuchter über den gesamten deutschen Abschnitt verteilter Kornfraktionen der Elbesohle, Staatsgrenze bei El-km 0,0; Magdeburger Stadtstrecke bei El-km 329,0; oberhalb der Havelmündung bei El-km 425,0; an Havelmündung bei El-km 438,0; oberhalb von Geesthacht bei El-km 580,0 (Grafik aus ElbelnKa)	39
Abb. 3-11:	Hydraulisch wirksame Wasserspiegelbreite für den deutschen Abschnitt der Elbe bei Hochwasserständen	40
Abb. 3-12:	Wasserspiegelhöhe bezogen auf Niedrigwasser für den deutschen Abschnitt der Elbe	40
Abb. 3-13:	Linienführung der Elbe bei Sandfurth (El-km 360 – 370) ca. 1777 bis 1994 (Rommel 2000)	46
Abb. 3-14:	Schema der Strömungsverhältnisse sowie von Erosion und Sedimentation in einem Buhnenfeld bei nicht überströmten Buhnen	55
Abb. 4-1:	Lage der untersuchten Flussabschnitte (Ausschnitt aus Topografischer Karte 1:50000 Sachsen-Anhalt, Koordinatensystem: Gauß-Krüger, Bessel-Ellipsoid; Einheit der Achsen: m)	60
Abb. 4-2:	Strömungsmessungen mittels eines am Bugausleger befestigten ADCP und eines mitloggenden DGPS während des Sommerhochwassers am 20. August 2002 unterhalb der Eisenbahnbrücke bei Wittenberge (El-km 453,9), (Damia Vericat)	67
Abb. 4-3:	Oberflächennahe Strömungsverhältnisse (Messtiefe 10 cm) bei niedrigem Mittelwasser in einem Buhnenfeld mit durchrissener Buhne bei El-km 421,8, links	69
Abb. 4-4:	Interpolierte Strömungsvektoren (Messtiefe 10 cm) für niedriges Mittelwasser in einem Buhnenfeld mit durchrissener Buhne bei El-km 421,8, links	70
Abb. 4-5:	Interpolierte gemittelte Strömungsgeschwindigkeiten (Messtiefe 10 cm) für niedriges Mittelwasser in einem Buhnenfeld mit durchrissener Buhne bei El-km 421, links	71
Abb. 5-1:	Struktur und Lage der zwischen El-km 418,2 und 425 untersuchten Buhnenfelder im Rahmen des Projektes "Ökologische Zusammenhänge zwischen Fischgemeinschafts- und Lebensraumstrukturen der Elbe – ElFi"	74
Abb. 5-2:	Morphologie des Buhnenfeldes bei EL-km 418,2	75
Abb. 5-3:	Morphologie des Buhnenfeldes bei El-km 421	75
Abb. 5-4:	Morphologie des Buhnenfeldes bei EL-km 421,8	75
Abb. 5-5:	Morphologie des Buhnenfeldes bei EL-km 423,4	75

Abb.	5-6:	Lage und Form der defekten Buhnen und neugebauten Knickbuhnen bei El-km 440,2 bis 440,5; Luftbildaufnahme vom 24.8.1999 (BFG)	. 77
Abb.	5-7:	Morphologie der Knickbuhnenfelder bei El-km 440,2 bis 440,5, Juni 2002	. 78
Abb.	5-8:	Lage und Form der Regelbuhnen bei El-km 440,9 und 441; Luftbildaufnahme vom 24.8.1999 (BFG)	. 79
Abb.	5-9:	Morphologie der Regelbuhnenfelder bei El-km 440,9 und 441, Juni 2002	. 79
Abb.	5-10:	Lage und Form der durchrissenen Buhnen und neugebauten Absenkungsbuhnen bei El-km 443,5 bis 443,6; Luftbildaufnahme vom 24.8.1999 (BFG)	. 80
Abb.	5-11:	Morphologie der Absenkungsbuhnenfelder bei El-km 443,5 bis 443,6, Juni 2002	. 80
Abb.	5-12:	Lage und Form des Regelbuhnenfeldes bei El-km 443,9; Luftbildaufnahme vom 24.8.1999 (BFG-)	. 81
Abb.	5-13:	Morphologie des Regelbuhnenfeldes bei El-km 443,9, Juni 2002	. 81
Abb.	5-14:	Wasserflächen in Buhnenfeldern von El-km 418,2 bis 425 und bei 453 abhängig von Wasserständen	. 83
Abb.	5-15:	Wasserflächen in Buhnenfeldern von El-km 440,2 bis 443,9 abhängig von Wasserständen	. 83
Abb.	5-16:	Verlandungsanteile in Buhnenfeldern von El-km 418,2 bis 425 und bei 453 abhängig von Wasserständen	. 85
Abb.	5-17:	Verlandungsanteile in Buhnenfeldern von El-km 440,2 bis 443,9 abhängig von Wasserständen	. 85
Abb.	5-18:	Durchschnittstiefen in Buhnenfeldern von El-km 418,2 bis 425 und bei 453 abhängig von Wasserständen	. 87
Abb.	5-19:	Durchschnittstiefen in Buhnenfeldern von El-km 440,2 bis 443,9 abhängig von Wasserständen	. 87
Abb.	5-20:	Durchschnittliche Sedimentationsmächtigkeiten der untersuchten Buhnenfelder	. 89
Abb.	5-21:	Uferlinienindex in Buhnenfeldern von El-km 418,2 bis 425 und bei 453 abhängig von Wasserständen	. 91
Abb.	5-22:	Uferlinienindex in Buhnenfeldern von El-km 440,2 bis 443,9 abhängig von Wasserständen	. 91
Abb.	6-1:	Messwerte oberflächennaher Fließgeschwindigkeiten (cm \cdot s ⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,5 während des Winterhoch- wassers 2002, WB = 570 cm	. 95

Abb. 6-2	 Interpolierte oberflächennahe Fließgeschwindigkeiten (cm * s⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,5 des Winterhochwassers 2002, WB = 570 cm 	95
Abb. 6-3	3: Messwerte sohlennaher Fließgeschwindigkeiten (cm * s ⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,5 während des Winterhoch- wassers 2002, WB = 570 cm	96
Abb. 6-4	 Interpolierte sohlennahe Fließgeschwindigkeiten (cm * s⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,5 des Winterhochwassers 2002, WB = 570 cm 	96
Abb. 6-	5: Interpolierte oberflächennahe Fließgeschwindigkeiten (cm ∗ s ⁻¹) der Regelbuhnenfelder El-km 440,9 und 441 des Winterhochwassers 2002, WB = 572 cm	97
Abb. 6-(5: Interpolierte oberflächennahe Fließgeschwindigkeiten (cm ⋅ s ⁻¹) der Absenkungsbuhnenfelder El-km 443,5 und 443,6 des Winterhoch- wassers 2002, WB = 572 cm	97
Abb. 6-	7: Interpolierte oberflächennahe Fließgeschwindigkeiten (cm ∗ s ⁻¹) des Regelbuhnenfeldes El-km 443,9 des Winterhochwassers 2002, WB = 572 cm	97
Abb. 6-8	 Messwerte oberflächennaher Fließgeschwindigkeiten (cm * s⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,5 bei hohem Mittelwasser 2001, WB = 380 cm 	99
Abb. 6-	9: Interpolierte oberflächennahe Fließgeschwindigkeiten (cm ∗ s ⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,5 bei hohem Mittelwasser 2001, WB = 380 cm	99
Abb. 6-	 Messwerte sohlennaher Fließgeschwindigkeiten (cm * s⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,5 bei hohem Mittelwasser 2001, WB = 380 cm 	99
Abb. 6-	 Interpolierte sohlennahe Fließgeschwindigkeiten (cm * s⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,5 bei hohem Mittelwasser 2001, WB = 380 cm 	100
Abb. 6-	 Interpolierte oberflächennahe Fließgeschwindigkeiten (cm * s⁻¹) der Regelbuhnenfelder El-km 440,9 und 441 bei hohem Mittelwasser 2001, WB = 380 cm 	100
Abb. 6-	13: Interpolierte oberflächennahe Fließgeschwindigkeiten (cm * s ⁻¹) der Absenkungsbuhnenfelder El-km 443,5 und 443,6 bei hohem Mittelwasser 2001, WB = 372 cm	101
Abb. 6-	 14: Interpolierte oberflächennahe Fließgeschwindigkeiten (cm ⋅ s⁻¹) des Regelbuhnenfeldes El-km 443,9 bei hohem Mittelwasser 2001, WB = 372 cm 	101
Abb. 6-	 15: Messwerte oberflächennaher Fließgeschwindigkeiten (cm - s⁻¹) des Buhnenfeldes El-km 418,2 bei niedrigem Mittelwasser 1997, HB = 230 cm 	102

Abb. 6-16:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm * s ⁻¹) des Buhnenfeldes El-km 418,2 bei niedrigem Mittelwasser 1997, HB = 230 cm	103
Abb. 6-17:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm ⋅ s ⁻¹) des Buhnenfeldes El-km 418,2 bei Niedrigwasser 1998, HB = 180 cm	103
Abb. 6-18:	Messwerte oberflächennaher Fließgeschwindigkeiten (cm * s ⁻¹) des Buhnenfeldes El-km 421 bei niedrigem Mittelwasser 1999, HB = 250 cm	104
Abb. 6-19:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm ∗ s ⁻¹) des Buhnenfeldes El-km 421 bei niedrigem Mittelwasser 1999, HB = 250 cm	104
Abb. 6-20:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm - s ⁻¹) des Buhnenfeldes El-km 421 bei Niedrigwasser 1998, HB = 160 cm	104
Abb. 6-21:	Messwerte oberflächennaher Fließgeschwindigkeiten (cm - s ⁻¹) des Buhnenfeldes El-km 421,8 bei niedrigem Mittelwasser 1999, HB = 250 cm	105
Abb. 6-22:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm - s ⁻¹) des Buhnenfeldes El-km 421,8 bei niedrigem Mittelwasser 1999, HB = 250 cm	106
Abb. 6-23:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm * s ⁻¹) des Buhnenfeldes El-km 421,8 bei Niedrigwasser 1998, HB = 160 cm	106
Abb. 6-24:	Messwerte oberflächennaher Fließgeschwindigkeiten (cm - s ⁻¹) des Buhnenfeldes El-km 423,4 bei Mittelwasser 1998, HB = 308 cm	107
Abb. 6-25:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm * s ⁻¹) des Buhnenfeldes El-km 423,4 bei Mittelwasser 1998, HB = 308 cm	107
Abb. 6-26:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm - s ⁻¹) des Buhnenfeldes El-km 423,4 bei Niedrigwasser 1998, HB = 180 cm	107
Abb. 6-27:	Messwerte oberflächennaher Fließgeschwindigkeiten (cm - s ⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,5 bei niedrigem Mittelwasser 2001, WB = 215 cm	108
Abb. 6-28:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm * s ⁻¹) der Knickbuhnenfelder El-km 440,2 bis 440,9 bei niedrigem Mittelwasser 2001, WB = 215 cm	108
Abb. 6-29:	Messwerte oberflächennaher Fließgeschwindigkeiten (cm - s ⁻¹) der Regelbuhnenfelder El-km 440,9 und 441 bei niedrigem Mittelwasser 2001, WB = 213 cm	109
Abb. 6-30:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm - s ⁻¹) der Regelbuhnenfelder El-km 440,9 und 441 bei niedrigem Mittelwasser 2001, WB = 213 cm	109
Abb. 6-31:	Messwerte oberflächennaher Fließgeschwindigkeiten (cm - s ⁻¹) der Absenkungsbuhnenfelder El-km 443,5 und 443,6 bei niedrigem Mittelwasser 2001, WB = 287 cm	110

Abb. 6-32:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm - s ⁻¹) der Absenkungsbuhnenfelder El-km 443,5 und 443,6 bei niedrigem Mittelwasser 2001, WB = 287 cm	. 110
Abb. 6-33:	Messwerte oberflächennaher Fließgeschwindigkeiten (cm - s ⁻¹) des Regelbuhnenfeldes El-km 443,9 bei niedrigem Mittelwasser 2001, WB = 286 cm	. 111
Abb. 6-34:	Interpolierte oberflächennahe Fließgeschwindigkeiten (cm - s ⁻¹) des Regelbuhnenfeldes 443,9 bei niedrigem Mittelwasser 2001, WB = 286 cm	. 111
Abb. 6-35:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 418,2; Pegelstände Havelberg: Niedrigwasser (180 cm) und niedriges Mittelwasser (230 cm)	. 113
Abb. 6-36:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 421; Pegelstände Havelberg: Niedrigwasser (160 cm) und niedriges Mittelwasser (250 cm)	. 113
Abb. 6-37:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 421,8; Pegelstände Havelberg: Niedrigwasser (160 cm) und niedriges Mittelwasser (250 cm)	. 114
Abb. 6-38:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 423,4; Pegelstände Havelberg: Niedrigwasser (180 cm) und Mittelwasser (330 cm)	. 114
Abb. 6-39:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 440,2, WB: niedriges Mittelwasser (215 cm), hohes Mittelwasser (380 cm), Hochwasser (570 cm)	. 116
Abb. 6-40:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 440,3, WB: niedriges Mittelwasser (215 cm), hohes Mittelwasser (380 cm), Hochwasser (570 cm)	. 116
Abb.6-41:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 440,4, WB: niedriges Mittelwasser (215 cm), hohes Mittelwasser (380 cm), Hochwasser (570 cm)	. 117
Abb. 6-42:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 440,5, WB: niedriges Mittelwasser (215 cm), hohes Mittelwasser (380 cm), Hochwasser (570 cm)	. 117
Abb. 6-43:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 440,9, WB: niedriges Mittelwasser (213 cm), hohes Mittelwasser (372 cm), Hochwasser (572 cm)	. 118
Abb. 6-44:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 441, WB: niedriges Mittelwasser (213 cm), hohes Mittelwasser (372 cm), Hochwasser (572 cm)	. 118
Abb. 6-45:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El_km 443,5, WB: niedriges Mittelwasser (287 cm), hohes Mittelwasser (372 cm), Hochwasser (572 cm)	. 119

Abb. 6-46:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 443,6, WB: niedriges Mittelwasser (287 cm), hohes Mittelwasser (372 cm), Hochwasser (572 cm)	. 119
Abb. 6-47:	Häufigkeitsverteilung oberflächennaher Fließgeschwindigkeiten in Buhnenfeld El-km 443,9, WB: niedriges Mittelwasser (286 cm), hohes Mittelwasser (372 cm), Hochwasser (572 cm)	. 120
Abb. 6-48:	Perzentilwerte und Spannweite der Minima und Maxima der Fließgeschwindigkeiten der Buhnenfelder bei El-km 440,2 bis 443,9 bei unterschiedlichen Abflüssen	. 121
Abb. 6-49:	In die Fläche interpolierte Richtungsänderungen von Strömungen in Messintervallen von ca. 5 Minuten in Buhnenfeld 421, links	. 125
Abb. 6-50:	In die Fläche interpolierte Richtungsänderungen von Strömungen in Messintervallen von ca. 5 Minuten in Buhnenfeld 421,8, links	. 125
Abb. 6-51:	In die Fläche interpolierte Varianzen von Strömungs- geschwindigkeiten in Messintervallen von ca. 5 Minuten in Buhnenfeld 421, links	. 126
Abb. 6-52:	In die Fläche interpolierte Varianzen von Strömungs- geschwindigkeiten in Messintervallen von ca. 5 Minuten in Buhnenfeld 421,8, links	. 126
Abb. 6-53:	Versuchsanordnung in Buhnenfeld bei El-km 421,8, links, am 30.05.2000 bei niedrigem Mittelwasser	. 128
Abb. 6-54:	Darstellung von Strömungsgeschwindigkeiten an den einzelnen Messtationen des ersten Versuches bei Mittelwasser in Buhnenfeld 421,8, links	. 129
Abb. 6-55:	Darstellung von Strömungsrichtungen an den einzelnen Messtationen des ersten Versuches bei Mittelwasser in Buhnenfeld 421,8, links	. 129
Abb. 6-56:	Darstellung von Strömungsrichtungen (ADP) am stromaufgelegen Buhnenkopf während des ersten Versuches bei Mittelwasser in Buhnenfeld 421,8, links	. 131
Abb. 6-57:	Versuchsanordnung in Buhnenfeld bei El-km 421, links am 31.05.2000 bei niedrigem Mittelwasser	. 132
Abb. 6-58:	Darstellung von Strömungsgeschwindigkeiten an den einzelnen Messtationen des ersten Versuches bei niedrigem Mittelwasser in Buhnenfeld 421, links	. 133
Abb. 6-59:	Darstellung von Strömungsrichtungen an den einzelnen Messtationen des ersten Versuches bei niedrigem Mittelwasser in Buhnenfeld 421, links	. 133
Abb. 6-60:	Darstellung von Strömungsrichtungen (ADP) am stromaufgelegen Buhnenkopf während des ersten Versuches bei niedrigem Mittelwasser in Buhnenfeld 421, links	. 134

Abb. 6-61	Erste Sequenz der während des Parallel- und Tracerversuches auf- genommenen Luftbilder in Buhnenfeld 421, links	137
Abb. 6-62:	Zweite Sequenz der während des Parallel- und Tracerversuches auf- genommenen Luftbilder in Buhnenfeld 421, links	138
Abb. 6-63:	Dritte Sequenz der während des Parallel- und Tracerversuches auf- genommenen Luftbilder in Buhnenfeld 421, links	139
Abb. 6-64:	Vierte Sequenz der während des Parallel- und Tracerversuches auf- genommenen Luftbilder in Buhnenfeld 421, links	140
Abb. 6-65:	Räumliche Lage und Flächenquantifizierung der während des Parallel- und Tracerversuches aufgenommenen Luftbilder in Buhnenfeld 421, links	141
Abb. 6-66:	Versuchsanordnung in Buhnenfeld bei El-km 421, links, am 28.09.2000 bei Niedrigwasser	142
Abb. 6-67:	Darstellung von Strömungsgeschwindigkeiten an den einzelnen Messtationen des zweiten Versuches bei Niedrigwasser in Buhnenfeld 421, links	143
Abb. 6-68:	Darstellung von Strömungsrichtungen an den einzelnen Messtationen des zweiten Versuches bei Niedrigwasser in Buhnenfeld 421, links	143
Abb. 6-69:	Darstellung von oberflächennahenStrömungsrichtungen (ADP) am stromaufgelegen Buhnenkopf während des zweiten Versuches bei Niedrigwasser in Buhnenfeld 421, links	144
Abb. 6-70:	Versuchsanordnung in Buhnenfeld bei El-km 421,8, links am 29.09.2000 bei Niedrigwasser	145
Abb. 6-71:	Darstellung von Strömungsgeschwindigkeiten an den einzelnen Messtationen des zweiten Versuches bei Niedrigwasser in Buhnenfeld 421,8 links	145
Abb. 6-72:	Darstellung von Strömungsrichtungen an den einzelnen Messtationen des zweiten Versuches bei Niedrigwasser in Buhnenfeld 421,8 links	146
Abb. 6-73:	Darstellung von oberflächennahen Strömungsrichtungen (ADP) am stromaufgelegen Buhnenkopf während des zweiten Versuches bei Niedrigwasser in Buhnenfeld 421,8, links	146
Abb. 6-74:	Auswirkungen von Schiffsbewegungen eines Güterschiffes in Buhnenfeld 421	151
Abb. 6-75:	Auswirkungen von Schiffsbewegungen eines Passagierschiffes in Buhnenfeld 421	151
Abb. 6-76:	Veränderung der Wasserspiegellage in Buhnenfeld 418,2, rechts bei schiffsinduiziertem Sunk von 30 cm	153
Abb. 7-1:	Korngrößenverteilung in Buhnenfeld El-km 418,2	158

Abb. 7-2:	Korngrößenverteilung in Buhnenfeld El-km 421	158
Abb. 7-3:	Korngrößenverteilung in Buhnenfeld El-km 421,8	159
Abb. 7-4:	Korngrößenverteilung in Buhnenfeld El-km 423,4	159
Abb. 7-5:	Korngrößenverteilung bei El-km 425	160
Abb. 7-6:	Korngrößenverteilung in Knickbuhnenfeldern El-km 440,2 bis 440,5	161
Abb. 7-7:	Korngrößenverteilung in Buhnenfeldern El-km 440,9 und 441	162
Abb. 7-8:	Korngrößenverteilung in Buhnenfeldern El-km 443,5 und 443,6	163
Abb. 7-9:	Korngrößenverteilung in Buhnenfeldern El-km 443,9	163
Abb. 7-10:	Korngrößenverteilungen im Hauptstrom von El-km 418 bis 444 (Daten BFG 1994)	164
Abb. 7-11:	Vertikalprofile der Strömung an ausgesuchten Stellen von Buhnenfeld 423,4 (Prallhang) und 421 (Gleithang) bei Hochwasser vom 11.3.1999, (Pegelstand Havelberg: 615 cm)	165
Abb. 7-12:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 421	167
Abb. 7-13:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 421,8	167
Abb. 7-14:	Kornsummenkurven an Querprofil in Buhnenfeld El-km 418,2	168
Abb. 7-15:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 423,4	169
Abb. 7-16:	Kornsummenkurven an Querprofil in verlandetem Buhnenfeld bei El-km 425	170
Abb. 7-17:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 440,2	171
Abb. 7-18:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 440,3	171
Abb. 7-19:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 440,4	172
Abb. 7-20:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 440,5	172
Abb. 7-21:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 440,9	173
Abb. 7-22:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 441	174
Abb. 7-23:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 443,5	175
Abb. 7-24:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 443, 6	175
Abb. 7-25:	Kornsummenkurven an Querprofil in Buhnenfeld bei El-km 443,9	176
Abb. 7-26:	Korngrößenverteilungen, gemittelt aus allen Proben jedes untersuchten Buhnenfeldes von El-km 418,2 bis 443,9	176
Abb. 8-1:	Hochwassersituation am 20. August 2002 bei Wittenberge (El-km 455)	180

Abb.	8-2:	Messwerte tiefengemittelter Fließgeschwindigkeiten (cm * s ⁻¹) in Regelbuhnenfeldern zwischen El-km 453 und 455 während des Sommerhochwassers 2002	181
Abb.	8-3:	Veränderung der Sohlenhöhen im Hauptstrom vor und nach dem Sommerhochwasser 2002 zwischen El-km 452 und 455	182
Abb.	8-4:	Sohlenmorphologie der Knickbuhnenfelder 440,2 bis 440,5 im Juni 2001	183
Abb.	8-5:	Änderungen der Sohlenhöhen (m) der Buhnenfelder 440,2 bis 440,5 von Juni 2001 bis Januar 2002	184
Abb.	8-6:	Sohlenmorphologie der Knickbuhnenfelder 440,2 bis 440,5 im Januar 2002	184
Abb.	8-7:	Änderungen der Sohlenhöhen (m) der Buhnenfelder 440,2 bis 440,5 von Januar bis Juni 2002	185
Abb.	8-8:	Sohlenmorphologie der Knickbuhnenfelder 440,2 bis 440,5 im Juni 2002	185
Abb.	8-9:	Änderungen der Sohlenhöhen (m) der Buhnenfelder 440,2 bis 440,5 von Juni bis Oktober 2002	186
Abb.	8-10:	Sohlenmorphologie der Knickbuhnenfelder 440,2 bis 440,5 im Oktober 2002	186
Abb.	8-11:	Sohlenmorphologie der Regelbuhnenfelder 440,9 und 441 im Juni 2001	187
Abb.	8-12:	Änderungen der Sohlenhöhen (m) der Buhnenfelder 440,9 und 441 von Juni 2001 bis Januar 2002	187
Abb.	8-13:	Sohlenmorphologie der Regelbuhnenfelder 440,9 und 441 im Januar 2002	188
Abb.	8-14:	Änderungen der Sohlenhöhen (m) der Buhnenfelder 440,9 und 441 von Januar bis Juni 2002	188
Abb.	8-15:	Sohlenmorphologie der Regelbuhnenfelder 440,9 und 441 im Juni 2002	189
Abb.	8-16:	Änderungen der Sohlenhöhen (m) der Buhnenfelder 440,9 und 441 von Juni bis Oktober 2002	190
Abb.	8-17:	Sohlenmorphologie der Regelbuhnenfelder 440,9 und 441 im Oktober 2002	190
Abb.	8-18:	Sohlenmorphologie der durchrissenen Buhnenfelder 443,5 und 443,6 im Juni 2001	191
Abb.	8-19:	Änderungen der Sohlenhöhen (m) der Buhnenfelder 443,5 und 443,6 von Juni 2001 bis Januar 2002	191
Abb.	8-20:	Sohlenmorphologie der Absenkungsbuhnenfelder 443,5 und 443,6 im Januar 2002	192

Abb. 8-21:	Änderungen der Sohlenhöhen (m) der Buhnenfelder 443,5 und 443,6 Januar bis Juni 2002	192
Abb. 8-22:	Sohlenmorphologie der Absenkungsbuhnenfelder 443,5 und 443,6 im Juni 2002	193
Abb. 8-23:	Änderungen der Sohlenhöhen (m) der Buhnenfelder 443,5 und 443,6 von Juni bis Oktober 2002	193
Abb. 8-24:	Sohlenmorphologie der Absenkungsbuhnenfelder 443,5 und 443,6 im Oktober 2002	193
Abb. 8-25:	Sohlenmorphologie des Regelbuhnenfeldes 443,9 im Juni 2001	194
Abb. 8-26:	Änderungen der Sohlenhöhen (m) in Buhnenfeld 443,9 von Juni 2001 bis Januar 2002	194
Abb. 8-27:	Sohlenmorphologie des Regelbuhnenfeldes 443,9 im Januar 2002	195
Abb. 8-28:	Änderungen der Sohlenhöhen (m) in Buhnenfeld 443,9 von Januar 2002 bis Juni 2002	195
Abb. 8-29:	Sohlenmorphologie des Regelbuhnenfeldes 443,9 im Juni 2002	195
Abb. 8-30:	Änderungen der Sohlenhöhen (m) des Buhnenfeldes 443,9 von Juni 2002 bis Oktober 2002	195
Abb. 8-31:	Sohlenmorphologie des Regelbuhnenfeldes 443,9 im Oktober 2002	196
Abb. 8-32:	Sohlhöhenveränderungen nach unterschiedlichen Abflussphasen in Buhnenfeldern zwischen El-km 440,2 und 443,9	198
Abb. 8-33:	Veränderungen der Sohlhöhe nach Hochwasserphasen sowie Mittel- und Niedrigwasserphase in Buhnenfeld El-km 440,2	201
Abb. 8-34:	Veränderungen der Sohlhöhe nach Hochwasserphasen sowie Mittel- und Niedrigwasserphase in Buhnenfeld El-km 440,3	201
Abb. 8-35:	Veränderungen der Sohlhöhe nach Hochwasserphasen sowie Mittel- und Niedrigwasserphase in Buhnenfeld El-km 440,4	202
Abb. 8-36:	Veränderungen der Sohlhöhe nach Hochwasserphasen sowie Mittel- und Niedrigwasserphase in Buhnenfeld El-km 440,5	202
Abb. 8-37:	Veränderungen der Sohlhöhe nach Hochwasserphasen sowie Mittel- und Niedrigwasserphase in Buhnenfeld El-km 440,9	203
Abb. 8-38:	Veränderungen der Sohlhöhe nach Hochwasserphasen sowie Mittel- und Niedrigwasserphase in Buhnenfeld El-km 441	203
Abb. 8-39:	Veränderungen der Sohlhöhe nach Hochwasserphasen in Buhnenfeld El-km 443,5	204
Abb. 8-40:	Veränderungen der Sohlhöhe nach Hochwasserphasen in Buhnenfeld El-km 443,6	204

Abb. 8-47	: Veränderungen der Sohlhöhe nach Hochwasserphasen sowie Mittel- und Niedrigwasserphase in Buhnenfeld El-km 443,9	205
Abb. 8-42	2: Berechnete Sohlschubspannung T_0 (N/m ²) in den Buhnenfeldern 440,2 bis 440,5 für das Winterhochwasser am 6.2.2002	207
Abb. 8-43	3: Berechnete Sohlschubspannung T_0 (N/m ²) in den Buhnenfeldern 440,2 bis 440,5 für das Sommerhochwasser am 20.8.2002	207
Abb. 8-44	: Berechnete Sohlschubspannung T_0 (N/m ²) in den Buhnenfeldern 440,9 und 441 für das Winterhochwasser am 7.2.2002	208
Abb. 8-48	5: Berechnete Sohlschubspannung $ au_0$ (N/m ²) in den Buhnenfeldern 440,9 bis 441 für das Sommerhochwasser am 20.8.2002	208
Abb. 8-46	5: Berechnete Sohlschubspannung T_0 (N/m ²) in den Buhnenfeldern 443,5 und 443,6 für das Winterhochwasser am 7.2.2002	209
Abb. 8-47	7: Berechnete Sohlschubspannung T_0 (N/m ²) in den Buhnenfeldern 443,5 und 443,6 für das Sommerhochwasser am 20.8.2002	209
Abb. 8-48	3: Berechnete Sohlschubspannung T_0 (N/m ²) in Buhnenfeld 443,9 für das Winterhochwasser am 7.2.2002	209
Abb. 8-49): Berechnete Sohlschubspannung T_0 (N/m ²) in Buhnenfeld 443,9 für das Sommerhochwasser am 20.8.2002	209
Abb. 9-1:	Präferenz des Flussbarsch - juvenil B für den Mikrohabitattyp "steile Uferzonen" mit dem Hauptfaktor: Uferneigung. Habitateignung für Buhnenfeld 421 bei niedrigem Mittelwasser (NMWP)	217
Abb. 9-2:	Präferenz des Flussbarsch - juvenil B für den Mikrohabitat-Typ "steile Uferzonen" mit dem Hauptfaktor: Uferneigung. Habitateignung für Buhnenfeld 418,2 bei NMWP	217
Abb. 9-3:	Präferenz des Döbel - präadult für den Mikrohabitattyp "moderate Uferneigung". Hauptfaktoren: Uferneigung u. Wassertiefe. Habitateignung für Buhnenfeld 418,2 bei niedrigem Mittelwasser (NMWP)	219
Abb. 9-4:	Präferenz des Döbel – präadult für den Mikrohabitattyp-"moderate Uferneigung" Hauptfaktoren: Uferneigung u. Wassertiefe. Habitateignung für Buhnenfeld 421 bei NMWP	219
Abb. 9-5:	Präferenz des Gründling – juvenil A für den Mikrohabitattyp "flach auslaufende Uferzonen" Hauptfaktoren: Uferneigung u. Wassertiefe. Habitateignung für Buhnenfeld 423,4 bei niedrigem Mittelwasser	
	(NMWP)	220

Abb. 9-6:	Präferenz des Gründling - juvenil A für den Mikrohabitattyp-"flach auslaufende Uferzonen". Hauptfaktoren: Uferneigung u. Wassertiefe. Habitateignung für Buhnenfeld 421 bei NMWP	. 220
Abb. 9-7:	Präferenz des Rapfen – larval für den Mikrohabitattyp "flache Stillwasserbereiche" Hauptfaktoren: Uferneigung u. Fließgeschwdgkt. Habitateignung für Buhnenfeld 418,2 bei niedrigem Mittelwasser (NMWP)	. 222
Abb. 9-8:	Präferenz des Rapfen - larval für den Mikrohabitattyp-"flache Stillwasserbereiche". Hauptfaktoren: Uferneigung u. Fließgeschwdgkt. Habitateignung für Buhnenfeld 421,8 bei NMWP	. 222
Abb. 9-9:	Präferenz des Hasel – juvenil für den Mikrohabitattyp "durchströmte Uferzonen" Hauptfaktor: Fließgeschwindigkeit. Habitateignung für Buhnenfeld 418,2 bei niedrigem Mittelwasser (NMWP)	. 223
Abb. 9-10:	Präferenz des Hasel - juvenil für den Mikrohabitattyp-"durchströmte Uferzonen". Hauptfaktoren: Fließgeschwindigkeit. Habitateignung für Buhnenfeld 423,4 bei Niedrigwasser (NWP)	. 223
Abb. 9-11:	Präferenz des Flussbarsch – adult für den Mikrohabitattyp "größere Wassertiefen" Hauptfaktor: Wassertiefe. Habitateignung für Buhnenfeld 421 bei niedrigem Mittelwasser (NMWP)	. 225
Abb. 9-12:	Präferenz des Flussbarsch – adult für den Mikrohabitattyp-"größere Wassertiefen". Hauptfaktor: Wassertiefe. Habitateignung für Buhnenfeld 421,8 bei NMWP	. 225
Abb. 9-13:	Geschwindigkeitsprofil bei hydraulisch rauher Sohle (nach ZANKE 2002, verändert)	. 230
Abb. 9-14:	Sohlnahe Fließgeschwindigkeiten (5 cm oberhalb der Sohle) in cm _* s ⁻¹ in Buhnenfeld 423,4 bei NMWP	. 231
Abb. 9-15:	Kiesanteile (%) in Buhnenfeld 423,4	. 231
Abb. 9-16:	Optimale (22 – 27 cm \cdot s ⁻¹) und geeignete sohlennahe Fließgeschwindigkeiten (11 - 39 cm \cdot s ⁻¹) in Buhnenfeld 423,4 bei NMWP für Rheotanytarsus spec.	. 232
Abb. 9-17:	Bereiche mit präferierten Kiesanteilen für Rheotanytarsus spec. in Buhnenfeld 423,4	. 232
Abb. 9-18:	Verschneidung von optimalen und geeigneten Fließgeschwindigkeiten mit Kiesanteilen für Rheotanytarsus spec. in Buhnenfeld 423,4	. 232
Abb. 9-19:	Geeignete sohlennahe Fließgeschwindigkeiten bei NMW in Buhnenfeld 423,4 für Ostracoda	. 233
Abb. 9-20:	Bereiche mit präferierten Kiesanteilen für Ostracoda in Buhnenfeld 423,4	. 233
Abb. 9-21:	Sohlnahe Fließgeschwindigkeiten (5 cm oberhalb der Sohle) in cm $_{\star}$ s ⁻¹ in Buhnenfeld 421,8 bei NMWP	. 234

Abb. 9-22:	Kiesanteile (%) in Buhnenfeld 421,8	234
Abb. 9-23:	Optimale (22 – 27 cm ∗ s ^{−1}) und geeignete sohlennahe Fließgeschwindigkeiten (11 - 39 cm ∗ s ^{−1}) in Buhnenfeld 421,8 bei NMWP für Rheotanytarsus spec.	235
Abb. 9-24:	Bereiche mit präferierten Kiesanteilen für Rheotanytarsus spec. in Buhnenfeld 421,8	235
Abb. 9-25:	Verschneidung von optimalen und geeigneten Fließgeschwindigkeiten mit Kiesanteilen für Rheotanytarsus spec. in Buhnenfeld 421,8	235
Abb. 9-26:	Geeignete sohlennahe Fließgeschwindigkeiten bei NMWP in Buhnenfeld 421,8 für Ostracoda	236
Abb. 9-27:	Bereiche mit präferierten Kiesanteilen für Ostracoda in Buhnenfeld 421,8	236
Abb. 9-28:	Verteilung turbulenten Fließens in Buhnenfeld 421,8	237
Abb. 9-29:	Verteilung der Sohlschubspannung in Buhnenfeld 421,8	237
Abb. 9-30:	Absinken der Wasserlinien und Zunahme von Untersuchungsflächen während der Beprobungszeiten 2000 und 2001 in den Buhnenfeldern 440,2 bis 440,4	239
Abb. 9-31:	Absinken der Wasserlinien und Zunahme von Untersuchungsflächen während der Beprobungszeiten 2000 und 2001 in Buhnenfeld 441	239
Abb. 9-32:	Absinken der Wasserlinien und Zunahme von Untersuchungsflächen während der Beprobungszeiten 2000 und 2001 in den Buhnenfeldern 443,5 und 443,6	240
Abb. 9-33:	Absinken der Wasserlinien und Zunahme von Untersuchungsflächen während der Beprobungszeiten 2000 und 2001 in Buhnenfeld 443,9	240