10 ANHANG

10.1 Datenbasis

Die ausgewählten vier Linien sind in der folgenden Tabelle zusammengestellt. Die "rot" markierten Profilabschnitte betreffen die kombinierte onshore/offshore Messungen. Sie wurden bei der vorliegenden Bearbeitung nicht berücksichtigt.

Profillinie	Erster Record	Letzter Record	Anzahl der	Länge in
			Records	km
SO161-022	1	1077		
-022B	1	57		
-022D	1	1930	3064	159.55
SO161-038	1	1155		
-038A	5001	5009		
-038B	10001	10054		
-038C	12001	12009		
-038D	14001	14209		
-038E	16001	16006		
-038F	18001	18011		
-038G	20001	20009		
-038H	22001	22012		
-038I	24001	24008		
-038J	26001	26209		
-038K	28001	28008		
-038L	30001	31899	3549	189.37
SO161-042	1	2137	2137	104.01
-042	2260	2603		
SO161-046	1	1779	1779	
-046A	2001	2008	8	
-046B	4001	4054	54	
-046C	6001	6010	10	
-046D	8001	8025	25	
-046E	10001	10270	270	
-046F	12001	12009	9	
-046G	14001	15130	1130	122.13

Tabelle 10-1: Ausgewählte Seismische Linien im SPOC Messgebiet , Abschnitt A

10.2 Aufnahmeparameter

Die wesentlichen Aufnahme-Parameter sind in der folgenden Tabelle zusammengestellt:

Bezeichnung	Angaben (Parameter)
Feldtrupp	SONNE/BGR
Aufnahmesystem	Syntron SYNTRAC 480
Schußpunktabstand	50 m (nominell)
Energiequelle	Airgun VLF Prakla-Seismos
Streamerkonfiguration	40 aktive RDS Abschnitte (36 mit 3 Kanälen, 4 mit 6 Kanälen)
Streamerlänge	3000 m
Anzahl der Kanäle	132
Hydrophonabstand	Kanal 1-108: 25 m, Kanal 109-132: 12.5 m
Aufnahmelänge	14332 ms
Sample Intervall	4 ms
Frequenz-Filterstellung	Tiefschnitt: 3 Hz
Feldformat	SEGD 8036, 24 bit demultiplexed
Meßperiode	427. November 2001 (Abschnitt A)

Tabelle 10-2: Aufnahme-Parameter

Als Energiequelle wurde ein airgun array benutzt, dessen Konfiguration in Abb. 10.1 zu sehen ist.

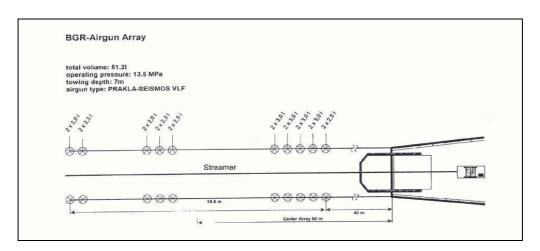


Abb. 10-1: Energiequelle (airgun array) (aus Reichert et al., (1), 2002)

10.3 Processing-Sequenz im Zeitbereich

Umfangreiche Tests zeigten, dass für die Standardbearbeitung der vier Profile und für die pre-stack Migration eine einheitliche Bearbeitungsfolge angewandt werden konnte, die im Folgenden detailliert aufgeführt ist.

10.3.1 Standardbearbeitung

Die Standardbearbeitung umfaßt die vollständige Bearbeitung im Zeitbereich einschließlich der post-stack Migration (die englische Bezeichnung der Bearbeitungsschritte wurde beibehalten).

- Input of seismic data from 8 mm Exabyte in SEG-Y format (-120 ms static shift already applied)
- Geometry set-up from trace headers and QC

• Trace identing and binning CMP spacing: 12.5 m

• Trace editing Chan 1, 16, 34, 52, 67, 83, 88, 100, 101

were not used due to poor quality

• Spherical divergence correction T*V²

• Deconvolution Operator: 200ms, gap: 24ms, prewh.: 1%

• Velocity analyses Location: every 1250 m

• AGC (applied)

• Multiple attenuation Radon filter

• AGC (removed)

• Velocity analyses Location: every 1250 m

• NMO correction

- Muting
- NMO stack
- Input of stacked data
- Frequency filtering
- AGC
- Muting
- Kirchhoff time migration

Ausgabe der seismischen Daten wurden an mehreren Stellen in der Bearbeitungsfolge gemacht, um die Qualitätsverbesserung zu dokumentieren und Ausgangsdaten für die nächsten Schritte zu haben.

10.3.2 Pre-stack Migration im Zeitbereich

Das Ziel dieser Bearbeitung war, mit Hilfe der pre-stack Migration die Auflösung in Bereichen guter Reflexionsqualität (trench) zu steigern und das signal/noise Verhältnis in Bereichen geringerer Qualität zu verbessern.

- Input of unstacked data after multiple attenuation
- Removal of spherical divergence correction
- Pre-stack Kirchhoff time migration using the post-stack migration velocity field
- Velocity analyses location: every 1250 m
- Inverse NMO correction using post-stack migration velocity field
 NMO correction using pre-stack migration velocity field
- Muting
- Stack of migrated data

10.4 Processing Sequenz im Tiefenbereich

Mit Hilfe der pre-stack Tiefenmigration ist es möglich, in geologisch komplexen Gebieten, bei denen die Refraktion der seismischen Signale einen großen Einfluß auf die Qualität des Ergebnisses hat, eine verbesserte Abbildung und Auflösung des Untergrundes zu erzielen. Allerdings hängt dieses Ergebnis ganz entscheidend von der Richtigkeit und Qualität des Geschwindigkeitsmodelles ab.

Die kombinierte Linie SO161-3842 wurde pre-stack tiefenmigriert, um zu prüfen, ob durch den erhöhten Processingaufwand eine Qualitätsverbesserung erreicht werden kann. Folgende Bearbeitungssequenz wurde angewandt:

Create velocity model (start model)

- Input of post-stack migration velocity field (time domain)
- Conversion to an interval velocity field (time domain)
- Smoothing of the interval velocity field
- Conversion of the interval velocity field to the depth domain
- Smoothing of the interval velocity field to the depth domain

Verify velocity model (start model)

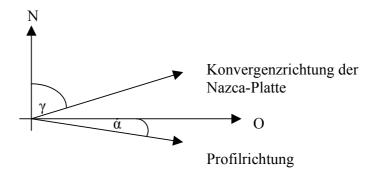
- Input of post-stack seismic data
- Post-stack depth migration (FD migration)

Pre-stack depth migration (using the start model)

- Input of pre-stack seismic data (sorted in common-offset sections)
- AGC (1500 ms)
- Pre-stack depth migration (Kirchhoff)
- Output of migrated common-offset sections

Velocity analyses in depth domain

- Pick horizons (five horizons over the trench area)
- Residual moveout analysis
- Ray tracing
- Tomography inversion
- Stretch velocity field
- Output updated velocity model (model 1)


Pre-stack depth migration (using model 1)

- Input of pre-stack seismic data (sorted in common-offset sections)
- AGC (1500 ms)
- Pre-stack depth migration (Kirchhoff)
- Output of migrated common-offset sections

Da die RMO-Analysen zeigten, dass nur in einem eng begrenzten Teil des Profiles Änderungen des Geschwindigkeitsmodells notwendig waren, wurde nur eine Iteration Analysen mit anschließender pre-stack Tiefenmigration durchgeführt.

10.5 Berechnung der scheinbaren Konvergenzrate

Aus der mittels GPS gemessenen Konvergenzrate der Nazca-Platte wird die scheinbare Konvergenzrate entlang der drei Profile 022, 046 und 3842 berechnet.

Konvergenzazimut (Angermann et al., 1999) Konvergenzazimut (Angermann et al., 1999) Distanz bei 36° S (Gauß, 1962) Vcr: 65.6 mm/aWinkel γ : 78.3° E
Geographische Breite: $1^{\circ} \equiv 110,953 \text{ m}$ Geographische Länge: $1^{\circ} \equiv 90.168 \text{ m}$

Profil SO161-022 Geographische Koordinaten Start: 36° 13.523' S 72° 59.963' W

Ende: 35° 59.991' S 74° 45.289' W

Difference: 13.532' 105.326' 25,023.60 m 158,283.91 m

 $\tan \alpha = 0.158093$ $\alpha = 8^{\circ} 59^{\circ}$ $\cos (\alpha + (90 - \gamma)) = 0.9336$

Scheinbare Konvergenzrate Vapp = Vcr / 0.9336 = **70.27 mm/a**

Profil SO161-046 Geographische Koordinaten Start: 37° 03.254' S 75° 15.198' W

Ende: 37° 08.989' S 74° 01.760' W

Differenz: 5.735' 73.438'

10,605.26 m 110,362.62 m

$$\tan \alpha = 0.0961$$

$$\alpha = 5^{\circ} 20'$$

$$\cos (\alpha + (90-\gamma)) = 0.9563$$

Scheinbare Konvergenzrate Vapp = Vcr / 0.9563 = 68.60 mm/a

Profil SO161-3842 Geographische Koordinaten Start: 37° 44.987' S 75° 45.559' W

Ende: 38° 00.022' S 73° 34.688' W

Differenz: 15.035' 130.871'

27,814.75 m 191,944.12 m

 $\tan \alpha = 0.14491$

 $\alpha = 8^{\circ} 12'$

 $\cos (\alpha + (90-\gamma)) = 0.9397$

Scheinbare Konvergenzrate Vapp = Vcr / 0.9397 = **69.81 mm/a**

10.6 Archivierung

Folgende Datensätze sind im SEG-Y-Format auf DLT-Datenträger mit einem Sampleintervall von 4 ms und einer Spurlänge von 14.0 secs (im Zeitbereich) bzw. mit einem Sampleintervall von 8 m und einer Spurlänge von 15.0 km (im Tiefenbereich) gespeichert worden. Die Datenträger sind bei der Freien Universität Berlin, Fachbereich für Geowissenschaften, Malteserstraße 74-100, D-12249 Berlin archiviert.

Line	Tape	File	Description	Size in Gb	Range Shot/CMP
SO161-022	DLT 2	1	ffid geom. edit	6.0	1 - 3060
	DLT 1	4	decon_basis	6.0	9871 - 22774
	DLT 2	5	Radon_basis	6.0	9871 - 22774
	DLT 6	1	Radon_stack		9871 - 22774
	DLT 6	2	post_time_migration		9871 - 22774
	DLT 4	3	pre_time_basis	4.7	9871 - 22774
	DLT 6	3	pre_time_migration		9871 - 22774
	DLT 5	2	pre depth basis	6.0	9871 - 22774
	DLT 5	1	post depth stack		9871 - 22774
	DLT 5	3	pre depth stack		9871 - 22774
	DLT 5	4	pre depth conversion		9871 - 22774
SO161-046	DLT 1	7	ffid_geomedit	6.3	1 - 3232
	DLT 1	3	decon_basis	6.3	9871 - 23343
	DLT 2	4	Radon_basis	5.9	9871 - 23343
	DLT 6	4	Radon_stack_we		9871 - 20392
	DLT 6	5	Radon_stack_sn		20278 - 23343
	DLT 6	6	post_time_migration_we		9871 - 20392
	DLT 6	7	post_time_migration_sn		20278 - 23343
	DLT 4	1	pre_time_we	3.9	9871 - 20392
	DLT 6	8	pre_time_migration_we		9871 - 20392
	DLT 4	2	pre_time_sn	1.1	20278 - 23343
	DLT 6	9	pre_time_migration_sn		20278 - 23343
	DLT 5	7	pre_depth_basis_we		9871 - 20392
	DLT 5	8	pre_depth_basis_sn		20278 - 23343
	DLT 5	5	post_depth_stack_we		9871 - 20392
	DLT 5	6	post_depth_stack_sn		20278 - 23343
	DLT 5	9	pre_depth_stack_we		9871 - 20392
	DLT 5	10	pre_depth_stack_sn		20278 - 23343
	DLT 3	8	pre_depth_conversion_we		9871 - 20392
	DLT 3	9	pre_depth_conversion_sn		20278 - 23343

SO161-3842	DLT 3	4	ffid_geomedit	6.8	1 - 3834
	DLT 3	5	decon_basis	6.9	9852 - 25142
	DLT 3	6	Radon_basis	6.9	9852 - 25142
	DLT 6	10	Radon_stack		9852 - 25142
	DLT 6	11	post_time_migration		9852 - 25142
	DLT 4	4	pre_time_basis	5.6	9852 - 25142
	DLT 6	12	pre_time_migration		9852 - 25142
	DLT 4	6	pre_depth_basis		9852 - 25142
	DLT 4	5	post_depth_stack		9852 - 25142
	DLT 4	7	pre_depth_stack		9852 - 25142
	DLT 3	7	pre_depth_conversion		9852 - 25142
SO161-038	DLT 1	5	ffid_geomedit	6.9	1 - 3549
	DLT 1	1	decon_basis	6.9	9871 - 25142
	DLT 2	2	Radon_basis	6.9	9871 - 25142
	DLT 2	6	pre_mig_basis	5.8	9871 - 25142
SO161-042	DLT 1	6	ffid_geomedit	4.2	1 - 2137
	DLT 1	2	decon_basis	4.2	9871 - 18503
	DLT 2	3	Radon_basis	4.2	9871 - 18503
	DLT 2	7	pre_mig_basis	3.5	9871 - 18503
Backup	DLT 6		SPOC Project		30 th Sept. 2004

Folgende Datensätze sind im PROMAX-Format auf DLT Datenträger mit einem Sampleintervall von 4 ms und einer Spurlänge von 14.0 secs (im Zeitbereich) gespeichert worden. Die Daten sind in einem file abgespeichert und können über den Parameter iline_no profilweise selektiert und gelesen werden.

Die Datenträger sind bei der Freien Universität Berlin, Fachbereich für Geowissenschaften, Malteserstraße 74-100, D-12249 Berlin archiviert.

Line	Tape	iline_no	Description	Size in Gb	Range Shot/CMP
SO161-022	DLT 7	1	ffid_output	9.5	1 - 3060
SO161-046		2			1 - 3232
SO161-3842		3			1 - 3834

10.7 Curriculum Vitae

Name: Klausheinz RAUCH

Nationalität: Deutsch
Geburtsdatum: 20. März 1940
Familienstand: Verheiratet (1 Sohn)

Ausbildung:	1946-1950	Grundschule
	1951-1957	Gymnasium
	1957-1960	Maschinenschlosserlehre
	1960-1962	Wehrdienst
	1963-1966	Maschinenbaustudium (Ing. Grad), Ingenieurschule Koblenz
	1968-1971	Abendgymnasium (Abitur)
	1971-1977	Studium der Geophysik (Dipl. Geophysiker), FU-Berlin
	2002-2004	Dissertation am Fachbereich Geowissenschaften, FU-Berlin
Berufstätigkeit:	1966-1971	Entwicklungsingenieur/Gruppenleiter bei Rheinmetall
C	1977-2002	Tätigkeiten bei Prakla-Seismos
		(ab 1991 Geco-Prakla, ab 2000 WesternGeco)
	1977-1979	Geophysiker (Hannover)
	1980-1986	Gruppenleiter/Supervisor (Hannover)
	1987-1989	Leiter der Processing-Abteilung (Hannover)
		(180 Mitarbeiter/innen), Handlungsvollmacht
	1990-1993	Leiter der Entwicklungsabteilung (Hannover)
		(60 Mitarbeiter/innen)
	1993-1998	Leiter der Software Support Abteilung (London, UK)
	1998-2002	Leiter des Processing-Bereiches in Kontinental-Europa
		Prokura ab 1998

Qualifikation: Diplom als Maschinenbau-Ingenieur (Ing. Grad), Ingenieurschule Koblenz

Geschäftsführer ab 2001

Diplom als Geophysiker (Dipl.-Geophysiker), Freie Universität Berlin

Promotion (Dr. rer. nat.), Freie Universität Berlin