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Abstract

Time-dependent density functional theory (TDDFT) provides a successful approach to cal-
culate excitation energies of atomic and molecular systems. In part I of this work we present
a double-pole approximation (DPA) to the response equations of TDDFT. The double-pole
approximation provides an exact description of systems with two strongly coupled exci-
tations which are isolated from the rest of the spectrum. In contrast to the traditional
single-pole approximation of TDDFT the DPA also yields corrections to the Kohn-Sham
oscillator strengths. Several critical pole separations can be identified, e.g. we find that
the pole coupling can cause transitions to vanish entirely from the optical spectrum. We
also demonstrate how to invert the double-pole solution which allows us to predict matrix
elements of the exchange-correlation kernel fxc from experimental input. This can serve as
benchmark for the construction of future approximations for the kernel fxc.
Reduced density matrix functional theory (RDMFT) has emerged recently as promising
candidate to treat strongly correlated electronic many-body systems beyond traditional
density functional theory (DFT). The research within RDMFT was so far focussed on the
static theory. In this work we attempt some first steps towards a time-dependent gen-
eralization of RDMFT. In part II we derive equations of motion for natural orbitals and
occupation numbers. Using the equation of motion for the occupation numbers we show
that an adiabatic extension of presently known ground-state functionals of static RDMFT

always leads to occupation numbers which are constant in time. From the stationary con-
ditions of the equations of motion for the N -body correlations (correlated parts of the
N -body matrices) we derive a new class of ground-state functionals which can be used in
static RDMFT. Applications are presented for a one-dimensional model system where the
time-dependent many-body Schrödinger equation can be propagated numerically. We use
optimal control theory to find optimized laser pulses for transitions in a model for atomic
Helium. From the numerically exact correlated wavefunction we extract the exact time
evolution of natural orbitals and occupation numbers for (i) laser-driven Helium and (ii)
electron-ion scattering.
Part III of this work considers time-dependent quantum transport within TDDFT. We
present an algorithm for the calculation of extended eigenstates of single-particle Hamil-
tonians which is especially tailored to a finite-difference discretization of the Schrödinger
equation. We consider the propagation of finite mesoscopic systems and demonstrate the
limitations of such an approach. To overcome the shortcomings of a description of quantum
transport in terms of finite systems we develop a time-propagation scheme for extended
states which utilizes a mixed basis representation. Our discretization scheme allows to treat
central device and lead regions on the same footing thus preventing artificial reflections at
grid boundaries.
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1 Introduction

More than eight decades have passed, since E. Schrödinger published in 1926 his seminal
paper which marked the beginning of wave mechanics [Sch26]. It was only shortly after
Schrödinger’s equation for the electronic wavefunction Ψ had been spectacularly validated
for small systems like He and H2 when Dirac remarked

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which can
lead to an explanation of the main features of complex atomic systems without too
much computation.

— P. A. M. Dirac [Dir29].

Despite the tremendous progress which has been made since the discovery of Schrödingers
equation, the theoretical description of many-particle systems is still a vivid and broad field
of research in modern physics and chemistry. Present day computing facilities alleviate the
calculation of properties of many-particle systems, but even with the fastest computers
available today an exact numerical treatment of the basic laws of quantum mechanics is
only feasible for very small atomic and molecular systems. If chemical accuracy is required,
wavefunction methods face an exponential wall in computational effort when an increasing
number of atoms is considered.
An alternative to the description of many-particle systems in terms of the wavefunction is
provided by density-functional theory (DFT). DFT aims at describing an interacting many-
electron system exclusively in terms of the electronic particle density. The theory relies on
two basic theorems: (i) In principle, every quantum mechanical observable can be calcu-
lated solely from the knowledge of the electronic density. In other words, every observable
can be written as functional of the density. (ii) The electronic density of a given interacting
system can be calculated from the density of an auxiliary system of non-interacting elec-
trons moving in an effective local potential, the so-called Kohn-Sham potential. Rather
soon after the proof of the basic theorems by Hohenberg and Kohn [HK64] and Kohn
and Sham [KS65], the method gained widespread use within solid-state physics. With the
advent of more accurate functionals, in particular the so-called generalized gradient ap-
proximations (GGAs), DFT also started to conquer quantum chemistry which culminated
1998 in the award of the Nobel price to Walter Kohn ”for his development of the density-
functional theory” [KP98]. The original Hohenberg-Kohn-Sham formulation of DFT covers
ground-state densities. An extension of DFT to the treatment of time-dependent quantum
systems was established in 1984 when Runge and Gross proved a Hohenberg-Kohn-type
theorem for time-dependent densities and potentials [RG84]. This opened the possibility
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to treat electronic systems out of equilibrium, e.g., as encountered for atoms and molecules
in strong laser fields, or for electronic transport.
Along these lines we devote the present work to the description of time-dependent quan-
tum many-particle systems in terms of time-dependent DFT (TDDFT) and time-dependent
reduced density matrix functional theory (TDRDMFT). We investigate the linear response
regime of atomic and molecular systems, atoms in strong laser fields, electron-ion scat-
tering, and electronic transport. By their very nature the different topics of the present
work deserve their own introduction which we provide at the beginning of the respective
chapters. We therefore restrict ourselves here to a brief overview of the structure of the
thesis. We have divided the thesis into three parts:
In Part I we consider the calculation of excitation energies and oscillator strengths of
atomic and molecular systems within TDDFT. This part contains a general introduction
to time-dependent DFT and reviews the TDDFT linear-response formalism which became
very popular for the calculation of excitation energies. Although the calculation of re-
sponse properties within TDDFT is in widespread use, the development of new functionals
and the understanding for the reliability and the accuracy of employed approximations is
still limited. To gain more understanding for the TDDFT response formalism we develop
in Chapter 3 a double-pole approximation to the TDDFT response equations. In contrast
to the traditional single-pole approximation of TDDFT the double-pole approximation pro-
vides corrections to the Kohn-Sham oscillator strengths and gives insight in the corrections
to the Kohn-Sham excitation energies when strong coupling between poles is present. The
inversion of the double-pole solution allows us to compute matrix elements of the exchange-
correlation kernel fxc from experimental input which serves as benchmark for the future
development of exchange-correlation kernels.
Part II is concerned with time-dependent reduced density matrices and their eigenvectors
and eigenvalues which are termed natural orbitals and occupation numbers, respectively.
We begin, in Chapter 4, with a brief review of static reduced density matrix functional
theory (RDMFT) to introduce basic concepts and the used nomenclature. Due to the recent
success of ground-state RDMFT it is desirable to extend the theory to the time-dependent
domain. However, at the present stage not much is known about the time-dependence of
natural orbitals and occupation numbers. We therefore attempt in the present work some
preliminary steps towards a time-dependent extension of RDMFT. In Chapter 5 we introduce
the BBGKY (Bogoliubov, Born, Green, Kirkwood, and Yvon) hierarchy of reduced density
matrices which provides a set of coupled first order partial differential equations in time
for the evolution of the reduced density matrices. Using this hierarchy we derive equations
of motion for the natural orbitals and occupation numbers. We discuss some properties
of these equations and show that an adiabatic extension of presently known ground-state
functionals in RDMFT always leads to occupation numbers which are independent of time.
By imposing stationary conditions on the equations of motion for the N -body correlations
(correlated parts of the N -body matrices) we derive a new class of functionals which can be
used for ground-state calculations in static RDMFT. The remainder of Chapter 5 is devoted
to applications. We introduce the notion of a time-dependent correlation entropy and dis-
cuss briefly optimal control theory which we use to determine optimal pulse shapes for
atomic transitions. From the fully correlated time-dependent many-body wavefunction of
a one-dimensional model system we extract the exact time-dependence of natural orbitals
and occupation numbers. This serves as exact reference for the construction of functionals
in TDRDMFT.
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In Part III we turn our attention to a description of molecular electronics within TDDFT.
The basic difficulty of treating electronic transport within TDDFT lies in the fact that
the time-dependent Kohn-Sham equations have to be solved, in principle, on an infinite
domain. This raises several technical issues which have to be addressed before molecular
electronics calculations can be performed in practice. The focus of part III lies therefore on
the development of algorithms tailored to a real-space representation of the time-dependent
Kohn-Sham equations. In Chapter 6 we present a numerical scheme to calculate extended
eigenstates of single-particle Hamiltonians. To assess the possibility of using finite systems
for a description of electronic transport we perform in Chapter 7 time propagations of finite
model systems. This reveals several shortcomings which are due to the finite size of the em-
ployed charge reservoirs and artificial reflections at the boundaries of the finite simulation
area. To overcome these limitations we develop a numerical scheme for the propagation
of extended states. We perform first numerical tests and show that transparent boundary
conditions can be achieved with the proposed method.

If not specified otherwise, atomic units (e = m = ~ = 1) are used throughout this work.
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Part I

Double-Pole Approximation in
Time-Dependent Density Functional

Theory





2 Foundations of Time-Dependent Density
Functional Theory

I learned very early the difference between knowing
the name of something and knowing something.

— R. P. Feynman, (1918-1988).

The basic idea of time-dependent density functional theory (TDDFT) is to describe the
time evolution of an electronic quantum many-particle system solely in terms of the time-
dependent particle density. The theory is founded on two basic theorems: (i) for a given
and fixed initial state there exists a one-to-one mapping between time-dependent densi-
ties and local potentials. Every quantum mechanical observable can therefore be written
as functional of the time-dependent density and the chosen initial state. (ii) the time-
dependent density of a system of interacting electrons can be obtained from an auxiliary
system of non-interacting electrons which move in an effective local multiplicative single-
particle potential. In analogy to ground-state DFT this potential is termed time-dependent
Kohn-Sham potential.
Historically, the first applications of time-dependent DFT were performed by Ando [And77a,
And77b], who considered the optical absorption of semiconductor surfaces and Zangwill and
Soven [ZS80], who investigated the photoabsorption in rare gases. The first steps towards
a rigorous foundation of TDDFT were taken by Deb and Ghosh [DG82, GD82, GD83a,
GD83b], who explored potentials that are periodic in time and by Bartolotti [Bar81], who
investigated adiabatic processes. The breakthrough for modern TDDFT was achieved in
1984 when Runge and Gross [RG84] proved the uniqueness of the mapping between time-
dependent densities and potentials. However, to establish a time-dependent Kohn-Sham
scheme they had to postulate non-interacting v-representability1. It was shown later by van
Leeuwen [vL99] that under mild restrictions on the initial states and boundary conditions
it is always possible to find an effective single-particle potential which yields a given density
of an interacting many-particle system. This solved the long standing v-representability
problem of TDDFT and provided the full legitimation for the TDDFT approach.
In this chapter we give a short outline of the basic foundations of time-dependent DFT. This
serves as base for all following chapters in this work and allows us to compare the results
and extensions of this thesis to the traditional formulation and previous results in TDDFT.
We begin in section 2.1 with a summary of the Runge-Gross theorem which provides a
rigorous legitimation for a description of a time-dependent many-electron system in terms
of the time-dependent electron density. We focus on the prerequisites for the validity of the
theorem which are of special interest for the treatment of electronic transport considered
in part III of this work. We continue in section 2.2 by introducing the time-dependent

1 A given electronic density is termed non-interacting v-representable, if there exists a single-particle
potential v which yields this density.
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Kohn-Sham (TDKS) equations. They provide a practical scheme for the calculation of time-
dependent densities and currents of an electronic many-body system. The linearization of
the time-dependent Kohn-Sham equations is briefly reviewed in 2.3, where we discuss the
linear-response formulation of TDDFT. The central result of the linear-response theory is a
Dyson-type equation which connects the Kohn-Sham density-density response function to
the response function of the corresponding interacting system.

2.1 Runge-Gross Theorem

The time-dependent extension of the Hohenberg-Kohn theorem of static DFT is directly
based on the many-body Schrödinger equation

i
∂

∂t
Ψ(t) = Ĥ(t)Ψ(t) (2.1)

with arbitrary but fixed initial condition Ψ(t0) = Ψ0. The many-body Hamiltonian has the
form

Ĥ(t) = T̂ + Ŵee + V̂ (t), (2.2)

where

T̂ =
N∑

j=1

(
−
∇2

j

2

)
, (2.3)

describes the kinetic energy of the electrons and Ŵee denotes their mutual Coulomb repul-
sion

Ŵee =
1
2

N∑
i,j=1
i6=j

1
|ri − rj |

. (2.4)

In the following we consider time-dependent potentials of the form

V̂ (t) =
N∑

i=1

v(ri, t) , (2.5)

which are assumed to be Taylor expandable around the initial time t0. Under these rather
general prerequisites the following Hohenberg-Kohn-type theorem can be proven [RG84]:

Two solutions Ψ(t) and Ψ′(t) of the Schrödinger equation (2.1) which evolve from a fixed
common initial state Ψ0 under the influence of the potentials v(r, t) and v′(r, t), respectively,
always lead to different electron densities ρ(r, t) and ρ′(r, t), provided the two potentials
v(r, t) and v′(r, t) differ by more than a purely time-dependent function

v′(r, t) 6= v(r, t) + c(t). (2.6)

The condition (2.6) assures that there exists an integer k ≥ 0, such that the Taylor co-
efficients vk(r, t0) = ∂kv(r, t)/∂tk|t0 and v′k(r, t0) = ∂kv′(r, t)/∂tk|t0 differ by more than a
constant, or equivalently, that the wavefunctions Ψ(t) and Ψ′(t) differ by more than just
a purely time-dependent phase factor. The proof of the theorem employs the continuity
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equation and the equation of motion for the paramagnetic current density to establish the
following relation between the densities and the Taylor coefficients of the potentials [RG84](

∂

∂t

)k+2 (
ρ(r, t)− ρ′(r, t)

) ∣∣∣∣
t=t0

= ∇ ·
(
ρ(r, t0)∇(vk(r, t0)− v′k(r, t0))

)
. (2.7)

Assuming that the quantity ρ(r, t)|∇v2(r, t)| decays faster than 1/r2 for large r for both
the primed and unprimed system it can be shown that the right hand side of Eq. (2.7)
cannot vanish identically. Consequently, the densities ρ(r, t) and ρ′(r, t) become different
infinitesimally later than t0. In other words, the time-dependent density ρ(r, t) uniquely
determines the time-dependent potential v(r, t) up to a purely time-dependent function
c(t). Once the potential is obtained, the Schrödinger equation can be solved and the
wavefunction is known (up to a purely time-dependent phase α(t)). In this sense, the
wavefunction can be regarded as functional of the time-dependent density

Ψ(t) = e−iα(t)Ψ̃[ρ](t). (2.8)

When constructing expectation values

O[ρ](t) = 〈Ψ̃[ρ](t)|Ô(t)|Ψ̃[ρ](t)〉 (2.9)

the ambiguity in the phase cancels so that the expectation value of any quantum mechanical
operator2 Ô(t) is a unique functional of the density.
It is important to notice, that the right hand side of Eq. (2.7) is linear in the difference
of the potentials vk(r, t0) − v′k(r, t0). This implies that the difference between the two
densities ρ(r, t) and ρ′(r, t) is non-vanishing already in first order of vk(r, t0) − v′k(r, t0),
which ensures the invertibility of linear-response operators.
From the above discussion we can infer that the Runge-Gross theorem does not hold for
extended systems for which the quantity ρ(r, t)|∇v2(r, t)| is not decaying. The original
proof of Runge and Gross therefore provides no legitimation for the treatment of time-
dependent electronic transport in extended systems within TDDFT. To cover such systems
we have to resort to time-dependent current density functional theory (TDCDFT), where
the time-dependent current density is regarded as basic variable. A Hohenberg-Kohn-type
theorem for TDCDFT has originally been proven by Ghosh and Dhara [GD88] and more
recently a generalization has been been reported by Vignale [Vig04]. Under the assumption
that the vector potential can be analytically continued along the real time-axis a proof for
the one-to-one correspondence of current densities and vector potentials can be given (up
to gauge transformations). Vignale’s proof has the distinct advantage that no assumptions
have to be made for the decay of charge and current densities at infinity. The proof also
covers the Runge-Gross scenario, since any scalar potential can be gauge transformed to
a longitudinal vector potential. Since no surface condition needs to be imposed on the
charge densities, Vignale’s proof can be regarded as an extension of the result of Runge
and Gross. Therefore the proof provides a solid legitimation for the treatment of electronic
transport within both TDDFT and TDCDFT.

2 We emphasize that time-derivatives are not considered as being quantum-mechanical operators. Unlike
operators which provide mappings between state vectors in Hilbert spaces, time-derivatives provide
mappings of complete paths.



10 Chapter 2: Foundations of Time-Dependent Density Functional Theory

2.2 Time-Dependent Kohn-Sham Scheme

By virtue of the Runge-Gross theorem the one-to-one correspondence between time-
dependent potentials and time-dependent densities can be established for an arbitrary
particle interaction Ŵ . In particular, we are free to choose a vanishing interaction Ŵ ≡ 0,
which corresponds to non-interacting particles. This fact allows us to relate interacting
and non-interacting systems with equal time-dependent densities. Suppose we are inter-
ested in an interacting system with a given time-dependent density ρ(r, t). The one-to-one
mapping between densities and potentials then guarantees the uniqueness of a (local) effec-
tive potential vKS[ρ](r, t) for non-interacting particles which reproduces the density ρ(r, t)
of the interacting system. In the original work of Runge and Gross non-interacting v-
representability was postulated, i.e. the existence of such a potential was assumed. Van
Leeuwen [vL99] demonstrated later, by explicit construction, that under mild restrictions
on the initial states and boundary conditions such a potential vKS[ρ](r, t) can always be
found. Since uniqueness and existence of an effective single-particle potential vKS[ρ](r, t)
are guaranteed we can therefore introduce an auxiliary system of non-interacting Kohn-
Sham particles which move in the external potential vKS(r, t)

i
∂

∂t
ψj(r, t) =

(
−∇

2

2
+ vKS[ρ](r, t)

)
ψj(r, t), j = 1 . . . N. (2.10)

By construction, the density

ρ(r, t) =
N∑

j=1

|ψj(r, t)|2 (2.11)

of the non-interacting Kohn-Sham system corresponds to the interacting density ρ(r, t).
In analogy to ground-state DFT, the effective single-particle potential vKS(r, t) is written
according to

vKS[ρ](r, t) = vext[ρ](r, t) + vH[ρ](r, t) + vxc[ρ](r, t), (2.12)

where

vH[ρ](r, t) =
∫

ρ(r′, t)
|r− r′|

d3r′ (2.13)

denotes the time-dependent Hartree potential. The only unknown piece is the exchange-
correlation potential vxc[ρ](r, t) which has to be approximated in practice. We emphasize
that (2.12) is the defining equation for the time-dependent exchange-correlation potential.
The effective single-particle potential vKS[ρ](r, t) in the Kohn-Sham equations (2.10) is a
local multiplicative operator in real-space which is a major computational advantage over
approaches like time-dependent Hartree-Fock or time-dependent configuration interaction.
To conclude the section we list some properties of the time-dependent Kohn-Sham scheme:

• It is important to recall that the one-to-one mapping between densities and potentials
can only be established for fixed initial states. Therefore, the effective Kohn-Sham
potential vKS[ρ,Ψ0,Φ0](r, t) also carries a dependence on the initial many-body wave-
function Ψ0 and the initial Kohn-Sham Slater determinant Φ0. Compared to ground-
state DFT, this is a serious complication, since a new density functional vKS[ρ](r, t) is
required for every possible initial wavefunction. Fortunately, the initial-state depen-
dence of the time-dependent Kohn-Sham potential drops out if we start from a non-
degenerate ground state. In this case the initial wavefunction is a functional of the
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ground-state density according to the Hohenberg-Kohn theorem of static DFT [HK64]
and hence the time-dependent Kohn-Sham potential becomes a functional of the time-
dependent density alone. Most practical calculations are covered by this case but the
initial-state dependence has to be faced when time propagations are not started from
the ground state. To date, only very little is known about the initial-state dependence
of the time-dependent Kohn-Sham potential [MB01].

• The time-dependent Kohn-Sham scheme does not follow from a variational princi-
ple. Instead, only the one-to-one mapping provided by the Runge-Gross theorem
and van Leeuwen’s theorem for the non-interacting v-representability are required as
ingredients.

• In perturbation theory one frequently utilizes an adiabatic switching procedure. We
emphasize that time-dependent potentials which contain an adiabatic switching of
the form exp(−ε|t|) with ε → 0+ for t → ±∞ are not covered by the Kohn-Sham
scheme. Such potentials possess an essential singularity at the initial time and hence
violate the prerequisite of Taylor expandability in the Runge-Gross theorem.

• The traditional Kohn-Sham scheme does not allow for magnetic fields or vector po-
tentials. Only time-dependent external fields that can be transformed to a pure scalar
potential, using a gauge transformation, are considered. Under these restrictions it is
currently not clear if the paramagnetic current densities of the auxiliary Kohn-Sham
system and the interacting system are identical. Relating the interacting current and
the current of the Kohn-Sham system with j(r, t) = jKS(r, t) + jxc(r, t) and using the
continuity equation one arrives at

∇ · jxc(r, t) = ∇ · j(r, t)−∇ · jKS(r, t) = 0. (2.14)

In other words, the exchange-correlation current density jxc(r, t) is a purely transver-
sal vector field which can be written as jxc(r, t) = ∇ × K(r, t) with some K(r, t).
Therefore, an equivalence can only be drawn between the longitudinal parts of the
interacting current density and the Kohn-Sham current density. It seems unlikely,
from the present point of view, that the transversal parts of the two currents densities
are in general identical when only scalar external potentials are allowed [MBA+02].
This circumstance has to be taken into account for the description of electronic trans-
port within TDDFT and is considered more in detail in part III of this work.
If we relax the possible set of external potentials and allow for vector potentials with
transverse components then a time-dependent current density functional theory (TD-

CDFT) can be established, where the electronic current density becomes the basic
variable. In this theory the Kohn-Sham system recovers by construction the full
many-body current [GD88, Vig04].
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2.3 Linear-Response Formulation of TDDFT

Despite the local nature of the effective single-particle potential vKS, the full solution of
the time-dependent Kohn-Sham equations can be quite demanding for very large systems.
On the other hand, the calculation of physical observables like excitation energies or po-
larizabilities of atomic and molecular systems requires only the knowledge of the linear
density response of the system. A much simpler perturbative solution of the TDKS equa-
tions therefore seems desirable.
Following Ref. [GDM96], let us consider a small perturbation v1(r, t) which is applied at
time t0 to a many-electron system in its ground state

vext(r, t) =

 v0(r) t ≤ t0,

v0(r) + v1(r, t) t > t0.
(2.15)

The system reacts to this perturbation with a time-dependent density response which can
be written as a functional Taylor series

ρ(r, t)− ρ0(r) = ρ1(r, t) + ρ2(r, t) + ρ3(r, t) + . . . . (2.16)

Here, ρ0(r) denotes the ground-state density of the unperturbed system at t ≤ t0 and we
use a lower index to indicate the order in the external perturbation v1. The exact first oder
density response ρ1(r, t) can be expressed according to

ρ1(r, t) =
∫ ∫

χ(r, t, r′, t′) v1(r′, t′) d3r′ dt′, (2.17)

where χ denotes the density-density response function of the interacting system

χ(r, t, r′, t′) =
δρ[vext](r, t)
δvext(r′, t′)

∣∣∣∣
v0

. (2.18)

Making use of the functional chain rule the interacting response function can also be written
as

χ(r, t, r′, t′) =
∫ ∫

δρ(r, t)
δvKS(y, τ)

δvKS(y, τ)
δvext(r′, t′)

∣∣∣∣
v0

d3y dτ. (2.19)

Next, we take the functional derivative of Eq. (2.12) with respect to the external potential

δvKS(r, t)
δvext(r′, t′)

= δ(r− r′) δ(t− t′)

+
∫ ∫ (

δ(t− τ)
|r− y|

+
δvxc(r, t)
δρ(y, τ)

)
δρ(y, τ)
δvext(r′, t′)

d3y dτ.

(2.20)

Inserting Eq. (2.20) into Eq. (2.19) we arrive at

χ(r, t, r′, t′) = χKS(r, t, r′, t′) +
∫
d3y

∫
dτ

∫
d3y′

∫
dτ ′ χKS(r, t,y, τ)

×
(
δ(τ − τ ′)
|y − y′|

+ fxc[ρ0](y, τ,y′, τ ′)
)
χ(y′, τ ′, r′, t′) ,

(2.21)
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where we have introduced the Kohn-Sham response function

χKS(r, t, r′, t′) :=
δρ[vKS](r, t)
δvKS(r′, t′)

∣∣∣∣
vKS[ρ0]

(2.22)

and the so-called exchange-correlation kernel

fxc[ρ0](r, t, r′, t′) :=
δvxc[ρ](r, t)
δρ(r′, t′)

∣∣∣∣
ρ0

. (2.23)

Equation (2.21) is the central result of the TDDFT response formalism. It is a Dyson-type
equation which relates the interacting and the Kohn-Sham response functions. Inserting
the response equation (2.21) back into (2.17) leads to the time-dependent Kohn-Sham
equation for the linear density response

ρ1(r, t) =
∫ ∫

χKS(r, t, r′, t′) vKS,1(r′, t′) d3r′ dt′ . (2.24)

The effective potential

vKS,1(r, t) = v1(r, t) +
∫
ρ1(r′, t)
|r− r′|

d3r′ +
∫ ∫

fxc[ρ0](r, t, r′, t′) ρ1(r′, t′) d3r′ dt′ (2.25)

contains the external perturbation v1, as well as the Hartree- and exchange-correlation
contributions up to first order in the perturbing potential v1. The result in Eqs. (2.24),
(2.25) shows, that the exact linear density response ρ1(r, t) of an interacting system can be
written as the linear density response of a non-interacting system to the effective pertur-
bation vKS,1(r, t).
For the treatment of excitation energies and polarizabilities it is useful to consider the lin-
earized Kohn-Sham equation (2.24) in frequency space. Inserting Eq. (2.25) in Eq. (2.24)
and performing a Fourier transform, the frequency-dependent linear density response can
be written as

ρ1(r, ω) =
∫
χKS(r,y;ω)v1(y, ω) d3y (2.26)

+
∫ ∫

χKS(r,y;ω)
(

1
|y − y′|

+ fxc[ρ0](y,y′;ω)
)
ρ1(y′, ω) d3y d3y′ .

The Kohn-Sham response function χKS can be directly expressed in terms of the static
unperturbed Kohn-Sham orbitals ψk(r) = ψk(r, t0), their occupation numbers fk (with
values 0 or 1), and their orbital energies εk

χKS(r, r′;ω) =
∑
j,k

(fk − fj)
ψj(r)ψ∗k(r)ψ

∗
j (r

′)ψk(r′)
ω − (εj − εk) + iη

. (2.27)

The summation extends over both occupied and unoccupied orbitals and includes also
the continuum states. We emphasize that some functional derivatives that have been
considered in the present section rely on the inverse mappings

vext(r, t) = vext[ρ](r, t), vKS(r, t) = vKS[ρ](r, t) . (2.28)
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The existence and uniqueness of these mappings are guaranteed by the Runge-Gross proof
and van Leeuwen’s theorem so that all functional derivatives are well defined (up to purely
time-dependent functions in the potentials which cause non-vanishing null-spaces for the
response operators).
From the defining relation (2.23) it can be seen that approximations for the exchange-
correlation kernel fxc can be obtained by evaluating the functional derivative of approxi-
mate time-dependent Kohn-Sham potentials with respect to the density. The most com-
monly used approximations for the kernel fxc include the adiabatic LDA (ALDA) and the
so-called PGG (Petersilka, Gossmann, Gross) kernel. The ALDA is based on the functional
form of the static LDA and given by

fALDA
xc [ρ0](r, r′;ω) = δ(r− r′)

d2

dρ2

(
ρεhom

xc (ρ)
)∣∣∣

ρ=ρ0(r)
, (2.29)

where εhom
xc (ρ) is the energy density of the homogeneous electron gas with density ρ. The

PGG kernel reads

fPGG
xc [ρ0](r, r′;ω) = −

2 |
∑

k fkψk(r)ψ∗k(r
′)|2

|r− r′| ρ0(r) ρ0(r′)
(2.30)

and is derived from the x-only limit of the time-dependent Kohn-Sham potential within
the optimized effective potential (OEP) theory of TDDFT [GDM96]. Both approximations
are frequency independent which has implications for the calculation of excitation energies
within TDDFT (cf. chapter 3 and appendix A).
Important applications of the TDDFT response formalism include

• The calculation of excitation energies, as detailed in the next chapter.

• Optical absorption spectra of atoms and molecules which are accessible from the
frequency-dependent polarizability

αij(ω) = − 2
E

∫
ρ
(i)
1 (r, ω) rj d3r, i, j = x, y, z (2.31)

that emerges as response to a monochromatic perturbing potential v(i)
1 = E ri cos(ωt).

In general, the photoabsorption cross section tensor σij(ω) is related to the tensor of
the frequency-dependent polarizability according to

σij(ω) =
4πω
c
=αij(ω). (2.32)

• The calculation of van der Waals C6 dispersion coefficients between two linear molecules
A and B, which can be computed using the Casimir-Polder formula

C6(A,B) =
3
π

∫ ∞

0
αA(iω)αB(iω) dω. (2.33)

To conclude, we stress that all response properties of a system can also be calculated from a
direct propagation of the full TDKS equations in real-time with a weak perturbing potential.
A key property of the present TDDFT response formalism is that all involved quantities are
solely functionals of the ground-state density so that only a much cheaper KS ground-state
calculation has to be performed to compute the density response ρ1(r, ω).



3 Excitation Energies in Time-Dependent
Density Functional Theory

It is a capital mistake to theorise before one has data.
Insensibly one begins to twist facts to suit theories

instead of theories to suit facts.

– Sherlock Holmes, the fictional creation
of Arthur Conan Doyle, (1859-1930).

The treatment of excited-state energies within static DFT is a notoriously difficult subject.
Several attempts appeared in the literature to tackle the calculation of excitation energies.
The perhaps oldest approach, known as ∆SCF , is based on the Rayleigh-Ritz principle
for the lowest eigenstate of each symmetry class [GL76, ZRB77, vB79]. Excited-state
energies can formally also be expressed exactly in terms of ensemble density functional
theory [The79, Koh86, GOK88a, GOK88b, OGK88]. However, both approaches share the
problem that very little is known about the specialized energy functionals which have
to be employed for the respective technique. Due to lack of approximations, in practice
these functionals are often simply replaced by LDA, GGA or other commonly used ground-
state energy functionals [BPL95]. Another frequently utilized approach, e.g., as employed
for the band structure of solids, is to consider the Kohn-Sham eigenvalues as excited-state
energies [AM76]. However, this has no formal justification since the Kohn-Sham eigenvalues
are merely a mathematical construct and cannot simply be interpreted as excited-state
energies.

A breakthrough for the treatment of excited-state energies was achieved by employing
time-dependent DFT. The basic idea of this approach relies on the fact that the frequency-
dependent linear density response of a finite system has discrete poles at the true excitation
energies of the unperturbed system. The Dyson-type equation (2.21) can be used to relate
the poles of the Kohn-Sham response function (located at the Kohn-Sham excitation en-
ergies, cf. (2.27)) to the poles of the interacting response function. The perhaps simplest
approximation along these lines is the single-pole approximation (SPA) [PGG96] which we
briefly review in the next section. In the remainder of this chapter we introduce a double-
pole approximation (DPA) to the TDDFT response equations which allows to treat strongly
coupled poles and provides, in contrast to the SPA, corrections to the Kohn-Sham oscillator
strengths. In other words the DPA accounts for changes in the position and the intensity
of a transition.
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3.1 Single-Pole Approximation

In order to relate the poles of the interacting response function to the poles of the Kohn-
Sham response function we rewrite Eq. (2.26) in the form∫ (

δ(r− y′)−
∫
χKS(r,y;ω)

( 1
|y − y′|

+ fxc(y,y′;ω)
)
d3y

)
ρ1(y′, ω) d3y′

=
∫

χKS(r,y;ω)v1(y, ω) d3y .

(3.1)

We can now make use of the fact that in general the Kohn-Sham excitation energies ωp =
εj−εk are not identical with the interacting excitation energies Ωq. Hence, if the frequency
ω on the right hand side of Eq. (3.1) approaches one of the true excitation energies, i.e. ω →
Ωq, the integral remains finite. On the other hand, the exact density response ρ1(r, ω) on
the left hand side has poles at the true excitation energies Ωq. In order to preserve equality
of both sides the integral operator acting on ρ1(r, ω) on the left-hand side of Eq. (3.1)
cannot be invertible for ω → Ωq, which leads to the condition∫ ∫

χKS(r,y;ω)
(

1
|y − y′|

+ fxc(y,y′;ω)
)
d3y ζ(y′, ω) d3y′ = λ(ω)ζ(r, ω). (3.2)

At the exact excitation energies Ωq the function λ(ω) satisfies

λ(Ωq) = 1 . (3.3)

So far no approximations have been made. For the exact Kohn-Sham response function
and the exact exchange-correlation kernel, the relations (3.2) and (3.3) determine the exact
excitation spectrum of the interacting system. To investigate the pole structure of the
eigenvalue problem (3.2) more closely we perform a Laurent expansion around a given
Kohn-Sham excitation energy ωp

ζp(r, ω) = ζp(r, ωp) +
dζp(r, ω)
dω

∣∣∣∣
ωp

(ω − ωp) + . . . , (3.4)

λ(ω) =
A(ωp)
ω − ωp

+B(ωp),+ . . . . (3.5)

Next, let us consider a scenario where a single pole ωp of the excitation spectrum is well
separated from the remaining poles of the response function. In addition we can expect
that the corresponding interacting excitation energy Ωq is located in the vicinity of the
Kohn-Sham excitation ωp. In this limit only the leading term of the Laurent series (3.5) is
dominating and we can truncate the expansion according to

λ(ω) ≈ A(ωp)
ω − ωp

. (3.6)

Using the the condition (3.3) and its complex conjugate λ∗(Ωq) = 1 together with Eq. (3.6)
we arrive at the so-called single-pole approximation (SPA)

Ωq = ωp + <A(ωp), (3.7)
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where the Laurent coefficient A(ωp) is found to be [PGG96]

A(ωp) = 2
∫ ∫

ψ∗k(r)ψj(r)
(

1
|r− r′|

+ fxc(r, r′;ωp)
)
ψk(r′)ψ∗j (r

′) d3r d3r′. (3.8)

The result in Eq. (3.7) shows that in the SPA the true excitation energies Ωq are obtained
from the Kohn-Sham excitations ωp by simple additive shifts. In general, the Laurent
coefficients A(ωp) carry a dependence on the index p, so that a single Kohn-Sham excitation
can lead to several interacting excitation energies. Of course, the above assumption of well
separated poles is not always justified, e.g. for the dense excitation spectrum of Rydberg
states. However, the simple additive structure of Eq. (3.7) allows to separately investigate
the effects that are caused by approximate ground-state potentials and exchange-correlation
kernels, i.e. the quality of the bare Kohn-Sham excitations versus the quality of the additive
shifts. The SPA therefore became a useful tool for the analysis of excitation spectra in the
TDDFT response formalism.
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3.2 Double-Pole Approximation

The solution to the TDDFT response equations has been implemented in several quan-
tum chemical software packages. Nowadays excitation spectra of molecules are calcu-
lated routinely and have been reported in numerous papers (see e.g. the references in
[MBA+02, FR05]). Provided accurate Kohn-Sham ground-state potentials are used, the
obtained transition frequencies are typically within about 0.2 eV of experiment. Due to
the combination of accuracy with low computational cost TDDFT has seen its greatest use
in the calculation of low-lying photo-excitations of molecules. Configuration interaction
singles is the only alternative which is comparable in numerical effort for this purpose.
Methods, such as more complete configuration-interaction, Bethe-Salpeter, or quantum
Monte Carlo calculations, are more accurate, but also more expensive in practice which
limits their usage to much smaller systems.
Although the TDDFT response methodology is in widespread use, the reliability and the
accuracy of the underlying approximations in TDDFT are much less well understood than
they are in ground-state DFT. Performing systematic calculations for many systems with
various approximations for the involved functionals (i.e. vxc and fxc) is merely empirical
and does not give much insight why the approximations are not reliable in some cases.
Also, these calculations help little to improve existing functionals. It can be much more
effective to develop simple approximations to the response equations to gain understanding
for the reliability of the TDDFT response formalism [AGB03].
Along these lines we introduce a double-pole approximation (DPA) to the TDDFT response
equation in this section. This extends the previously discussed single-pole approximation
to the case of two strongly interacting poles. In contrast to the SPA the DPA provides a
correction of the Kohn-Sham oscillator strengths and gives insight in the XC corrections
to the Kohn-Sham excitations when strong coupling between poles is present. Inverting
the DPA solution allows us to compute matrix elements of the exchange-correlation kernel
fxc from experimental input. This serves as benchmark for the future development of XC

kernels.

3.2.1 Exact Solution of Casida’s Equations

In the following we consider a three level system with energies Ej , states | j 〉, (j = 1, 2, 3),
excitations Ω1 = E3 − E2, Ω2 = E3 − E1, and oscillator strengths f1, f2, as illustrated
in Fig. 3.1. The transition 2 → 1 is assumed to be dipole forbidden. Furthermore, we
denote with εj , | j 〉KS , (j = 1, 2, 3), ω1 = ε3 − ε2, ω2 = ε3 − ε1 and fKS

1 , fKS
2 the

corresponding Kohn-Sham energies, states, excitations, and oscillator strengths. With
x1 = KS〈 3 |x | 2 〉KS and x2 = KS〈 3 |x | 1 〉KS we abbreviate the Kohn-Sham dipole ma-
trix elements. In the matrix formulation of the TDDFT response equation for the spin-singlet
case the exact eigenvalues and oscillator strengths of an interacting many-particle system
can be obtained from the solution of the following eigenvalue problem [Cas95], (a derivation
is given in appendix A): ∑

q′

Wqq′(Ωj) Fq′,j = Ω2
j Fq,j , (3.9)

where the matrix Wqq′ is given by

Wqq′(Ω) = ω2
q δqq′ + 4

√
ωq ωq′ Mqq′(Ω) (3.10)
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Figure 3.1: Schematic illustration of a 3-level model as considered in the double-pole approximation.
Left panel: Level positions εj , excitation energies ωj , and oscillator strengths f

KS

j of the Kohn-Sham
system. Right panel: Level positions Ej , excitation energies Ωj , and oscillator strengths fj of the
corresponding interacting system.

with
Mqq′(Ω) := 〈q|K(Ω)|q′〉 =

∫ ∫
Φ∗q(r)K(r, r′,Ω) Φq′(r′) d3r d3r′. (3.11)

The kernel K(r, r′, ω) consists of the bare Coulomb interaction and some approximate XC

kernel fxc(r, r′, ω)

K(r, r′, ω) =
e2

|r− r′|
+ fxc(r, r′, ω). (3.12)

With q we denote a single-particle transition, q ≡ k → j, and we have introduced the
shorthand Φq(r) := ψk(r)ψ∗j (r) to abbreviate the product of Kohn-Sham orbitals which
are involved in the transition. In the case of a three level system the eigenvalue problem
(3.9) reduces to the following 2× 2-system ω2

1 + 4ω2
1 M11 4

√
ω1M12

√
ω2

4
√
ω2M21

√
ω1 ω2

2 + 4ω2
2 M22

Fj = Ω2
j Fj j = 1, 2. (3.13)

To simplify the discussion, we assume real orbitals and a real, frequency-independent kernel
K, i.e. Mqq′ = Mq′q. Casida’s matrix elements Wqq′ are then related to the matrix elements
Mqq′ of the kernel according to

W11 := ω2
1+4ω1M11, W22 := ω2

2 + 4ω2M22,

W12 = W21 := 4
√
ω1ω2M12.

(3.14)

For the further discussion we introduce the average and the difference of the diagonal
elements

∆ :=
1
2
(W11 +W22), δ := W22 −W11, (3.15)

and define a mixing angle θ by

tan θ =
2W12

W22 −W11
. (3.16)
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With these shorthands we obtain for the eigenvalues of Eq. (3.13)

Ω2
1 = ∆− 1

2
δ

cos θ
=

1
2

(W11 +W22)−
1
2

√
(W22 −W11)2 + 4W 2

12,

Ω2
2 = ∆ +

1
2

δ

cos θ
=

1
2

(W11 +W22) +
1
2

√
(W22 −W11)2 + 4W 2

12,

(3.17)

which allows to express the excitation energies Ωj directly in terms of Kohn-Sham excitation
energies and matrix elements of the kernel fxc. Besides the excitation energies also the
normalized eigenvectors of the matrix Wqq′ can be expressed in closed form as

F1 =

 − cos θ
2

sin θ
2

 , F2 =

 sin θ
2

cos θ
2

 . (3.18)

The eigenvectors carry information about the physical oscillator strengths which can be
obtained from [Cas95]

fj =
2
3
|xT S−

1
2 Fj |2, (3.19)

where

S−
1
2 :=

 √
ω1 0

0
√
ω2

 , x :=

 x1

x2

 =

 KS〈 3 |x | 2 〉KS

KS〈 3 |x | 1 〉KS

 . (3.20)

Evaluating Eq. (3.19) with our result (3.18), we find for the oscillator strengths

f1 =
2
3

(
ω1 x

2
1 cos2

θ

2
+ ω2 x

2
2 sin2 θ

2
−
√
ω1ω2 x1 x2 sin θ

)
=

(√
fKS
1 cos

θ

2
−
√
fKS
2 sin

θ

2

)2

, (3.21)

f2 =
2
3

(
ω1 x

2
1 sin2 θ

2
+ ω2 x

2
2 cos2

θ

2
+
√
ω1ω2 x1 x2 sin θ

)
=

(√
fKS
1 sin

θ

2
+
√
fKS
2 cos

θ

2

)2

. (3.22)

Obviously, this solution to the TDDFT response equation obeys the Thomas-Reiche-Kuhn
sum rule

2∑
j=1

fj = f1 + f2 =
2
3
(ω1 x

2
1 + ω2 x

2
2) = fKS

1 + fKS
2 = 1, (3.23)

where we have normalized the sum without loss of generality. Since we have by definition
fj ≥ 0, we can introduce two angles αKS and α by

fKS
1 = sin2 αKS, fKS

2 = cos2 αKS, (3.24)



3.2 Double-Pole Approximation 21

and
f1 = sin2 α, f2 = cos2 α, (3.25)

which gives the oscillator strengths a geometrical meaning. Using trigonometric identities,
we find from Eqs. (3.21), (3.22)

f1 = sin2 α =
{

1
2
(
sin(αKS − θ/2) + sin(αKS + θ/2)

)
−1

2
(
sin(θ/2− αKS) + sin(θ/2 + αKS)

)}2

= sin2(αKS − θ/2) (3.26)

f2 = cos2 α =
{

1
2
(
cos(αKS − θ/2)− cos(αKS + θ/2)

)
−1

2
(
cos(αKS − θ/2) + cos(αKS + θ/2)

)}2

= cos2(αKS − θ/2), (3.27)

or, equivalently,
α = αKS − θ/2. (3.28)

Together with Eq. (3.17) this is the central result of the present section. The expression
shows that the oscillator strengths are represented by a unit vector in 2D space. The
coupling merely rotates this vector. We note in passing that the single-pole approximation
of TDDFT can be recovered from these results by setting θ = 0. From this point of view it
is also obvious that the SPA predicts no variation in the interacting oscillator strengths.

3.2.2 Model Illustrations

To illustrate the DPA solution of the previous section, consider a weak lower-frequency
transition (ω1 = 9 eV, fKS

1 = 1/10) and a strong higher-frequency transition (ω2 = 12 eV,
fKS
2 = 9/10). Imagine both transitions have significant diagonal kernel matrix elements
M11 = 3 eV, M22 = 2 eV, but are not strongly coupled to one another, M12 = 0.2 eV.
We model the corresponding spectra in the following illustrations by using Lorentzians of
width 0.2.
The left panel of Fig. 3.2 shows the interacting and Kohn-Sham spectra for this model. Due
to the weak coupling, the single-pole approximation is excellent, and accurately predicts the
large shifts in positions. However, SPA wrongly predicts no variation in oscillator strength.
On the other hand, one can see from the DPA solution in the figure that the first peak
has actually lost intensity relative to its Kohn-Sham value, whereas the second peak has
gained intensity. Note that the total intensity of the spectrum is preserved, since the DPA

solution obeys the TRK sum rule (cf. Eq. (3.23)). Next, we consider the same parameters
as before, but imagine increasing ω1. In the right panel of Fig. 3.2 we display the mixing
angle θ as function of ω1. For an excitation energy ωc = 2 (−3 +

√
69) ≈ 10.61 eV the

matrix elements W11 and W22 become identical and ∆W vanishes. In this case the angle θ
takes a value of θ = π/2 and the excitations of the interacting system are a 50:50 mixture
of the two Kohn-Sham excitations.
In the left panel of Fig. 3.3 we plot Kohn-Sham and interacting excitation energies as



22 Chapter 3: Excitation Energies in Time-Dependent Density Functional Theory

10.0 12.0 14.0 16.0 18.0 20.0
0.0

0.5

1.0

ω [ eV ]

I(ω)

KS
Interacting

(a)

8.0 10.0 12.0 14.0
0.0

0.5

1.0

ω1 [ eV ]

θ/π

(b)

ωc

Figure 3.2: (a) Interacting and Kohn-Sham spectra as function of frequency (ω1 = 9 eV, M12 =
0.2 eV). (b) The scaled coupling angle θ/π as function of the position of the lower transition.
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Figure 3.3: (a) Interacting and Kohn-Sham excitation energies as function of ω1. (b) Oscillator
strengths as function of ω1.

functions of ω1. The two poles undergo an avoided crossing at ωc (c for crossing). Note
that straight lines, extrapolated from the limits ω1 � ωc and ω1 � ωc, yield extremely
accurate results almost everywhere which corresponds to the SPA result.

In the right panel of Fig. 3.3 we display the associated oscillator strengths. The effect
of the coupling is dramatic. Note first that, for ω1 below the strong coupling region, the
bigger peak is enhanced above its Kohn-Sham value, and the smaller one reduced. This
is pole repulsion, and it is felt even very far from the strong coupling region. This effect
is entirely missing in the SPA (recall, that the oscillator strengths in the SPA correspond
merely to the unaltered Kohn-Sham oscillator strengths which are indicated with dashed
lines). Increasing ω1 further, we see that there is a critical value ωd (d for dark) at which the
smaller oscillator strength vanishes exactly, i.e. f1 = 0. This illustrates that the interaction
can cause a peak to vanish entirely from the optical spectrum of the system. If we rise ω1

further, the intensities of the two excitations cross at ωe (e for equal) and finally reverse in
magnitude.
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Figure 3.4: (a) Interacting and Kohn-Sham spectra at the critical value ω1 = ωd ≈ 9.90 eV. All
intensity is in the upper transition. (b) Interacting and Kohn-Sham spectra for ω1 = ωc ≈ 10.61 eV.

3.2.3 Magic Positions in the Spectra

We have seen so far that the oscillator strengths exhibit several special features as function
of the pole separation. Three critical pole separations have been identified. These magic
positions are present in every interacting spectrum when two poles are coupled and sepa-
rated from the rest of the spectrum. In this section we summarize the relations which can
be used to calculate these magic pole separations.

ωd - Dark point

The first interesting separation of excitation energies causes one of the peaks to vanish. As
observed above, there exists a critical value ωd for the first Kohn-Sham excitation energy
ω1 for which we have exactly

f1 =
(√

fKS
1 cos

θ

2
−
√
fKS
2 sin

θ

2

)2

= 0, (3.29)

i.e.

tan
θ

2
=

√
fKS
1√
fKS
2

. (3.30)

Inserting Eq. (3.30) in Eq. (3.16) it is straight forward to see, that this position can be
obtained from the roots of the following equation in ωd

tan

2 arctan

√
fKS
1√

1− fKS
1

− 2W12(ωd)
∆W (ωd)

= 0. (3.31)

The spectrum for this case is displayed in Fig. 3.4 (a), which shows clearly that the smaller
peak has vanished and all intensity has been shifted to the larger peak.
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Figure 3.5: (a) Interacting and Kohn-Sham spectra for ω1 = ωe ≈ 11.02 eV, producing equal
interacting oscillator strengths. (b) Interacting and Kohn-Sham spectra for ω1 = 13 eV.

ωc - Position of the Avoided Crossing

The avoided crossing of the interacting excitation energies appears exactly at θ = π/2,
i.e. for

∆W (ωc) = 0 ⇒ ω2
c + 4M11 ωc − (ω2

2 + 4ω2M22) = 0, (3.32)

with solutions

ω±c = −2M11 ±
√

4M2
11 + ω2

2 + 4ω2M22. (3.33)

For the parameters of the model ω+
c = −6+2

√
9 + 36 + 24 eV = 2 (−3+

√
69) ≈ 10.61 eV.

For the oscillator strengths Eqs. (3.21), (3.22) yield in this case

f1,2 =
1
2
±
√
fKS
1 fKS

2 . (3.34)

In our case, this results in f1 = 0.2 and f2 = 0.8, respectively, giving the lower peak double
its Kohn-Sham weight. In Fig. 3.4 (b), we show the spectrum for ω1 = ωc, and observe
how much it differs from the Kohn-Sham spectrum. There appears to be only one peak,
but in fact there are still two, although the broadening obscures the second peak.

ωe - Equal Interacting Oscillator Strengths

The final interesting point is ωe (e for equal), where the interacting oscillator strengths
equal, i.e., both are 1/2. At the equality point, α = π/4, and hence θ = π/2− 2αKS.
By equating Eqs. (3.21) and (3.22), the position of ωe can be obtained from the roots of
the following equation

tan

2 arctan

√
fKS
1 −

√
1− fKS

1√
fKS
1 +

√
1− fKS

1

− 2W12(ωe)
∆W (ωe)

= 0. (3.35)

This situation is shown in Fig. 3.5 (a) where we illustrate the corresponding Kohn-Sham
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Figure 3.6: Same as Fig. 3.3, but for the caseM12 = 1.0 eV (left panel) and for the caseM12 = 2.5 eV
(right panel).

and interacting spectra.

To conclude this section we display in Fig. 3.5 (b) a frequency of ω1 = 13 eV for the first
Kohn-Sham excitation energy, so that ω1 > ω2. For this value of ω1 the oscillator strengths
have returned (almost) to their Kohn-Sham values, cf. Fig. 3.3. However, the interacting
intensities are reversed in magnitude compared to Fig. 3.2, where ω1 < ω2.

3.2.4 Strength of the Interaction

In Fig. 3.7, we demonstrate the dependence of the coupling angle θ on the strength of the
coupling M12 relative to the diagonal elements. So far we have presented only the case
M12 << Mii. Increasing M12 does not change the shape of the curves (around the turnover
point), but only changes the scale on which the action takes place. Therefore, the scale to
compare the off-diagonal matrix element to is not the absolute magnitude of the diagonal
matrix elements but the splitting of the excitation energies. The corresponding oscillator
strengths as functions of pole separation are illustrated in Fig. 3.6. Compared to Fig. 3.3
the overall shape stays the same for stronger pole coupling, only a broader interaction area
is observed which is expected from the spreading of the mixing angle in Fig. 3.7.
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Figure 3.7: The scaled coupling angle θ/π as
function of ω1. The plot compares three different
regimes for the off-diagonal matrix element M12.
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Figure 3.8: Left panel: Linear frequency dependence of Kohn-Sham oscillator strengths for the case
M12 = 0.2 eV. Right panel: Same as the left panel, but for a stronger coupling of the poles with
M12 = 1.0 eV.

3.2.5 Frequency-Dependent Kohn-Sham Oscillator Strengths

So far, we have only considered frequency-independent Kohn-Sham oscillator strengths.
However, already from their definition

fKS
q =

2
3
ωq |〈xq 〉KS|

2, (3.36)

we observe an inherent frequency dependence - even for frequency-independent dipole ma-
trix elements. We therefore investigate a linear frequency dependence for fKS

1 in Fig. 3.8.
The second oscillator strength is adjusted such as to satisfy the TRK sum rule. From the
figures it is apparent that the interacting oscillator strengths asymptotically follow their
Kohn-Sham counterparts. Deviations occur only in the interaction region around the posi-
tion of the avoided crossing and around the crossing of the Kohn-Sham oscillator strengths.
This feature remains even for frequency-dependent dipole matrix elements 〈xq 〉KS, i.e. no
matter how strong the frequency dependence of the Kohn-Sham oscillator strengths will
be, the interacting oscillator strengths will follow their Kohn-Sham counterparts far away
from the crossing points. Depending on the magnitude of M12 there can be two intersection
points (left panel of Fig. 3.8), or no intersection point (right panel of Fig. 3.8). The order
in the asymptotic region is not reversed in both cases.

3.2.6 Inversion of the Double-Pole Solution

The above sections present the TDDFT response equations in the usual manner. First one
solves the ground-state Kohn-Sham problem, finding occupied and unoccupied levels, then
one calculates the matrix elements of the kernel (with some functional approximation),
and calculates the true transitions and oscillator strengths of the system. However, we are
motivated to gain insight into the excitations, and so we ask the reverse question [SGA+05]:
Given the experimental spectrum, what can we learn about the kernel? Inverting Eq. (3.28)
to solve for θ yields

θ = 2 (α− αKS). (3.37)
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Thus, knowledge of the Kohn-Sham oscillator strengths, combined only with the experi-
mental oscillator strengths, yields the angle θ, which measures how strongly the transitions
are mixed. No knowledge of the positions of the transitions is needed.
Solving for the diagonal matrix elements we arrive at

W11 = Ω2 −∆Ω2 cos θ/2,
W22 = Ω2 + ∆Ω2 cos θ/2, (3.38)

where Ω2 is the average and ∆Ω2 is the difference of the squared excitation energies, while
the off-diagonal matrix element is

W12 = ∆Ω2 sin θ/2. (3.39)

Again, the experimental positions combined with the mixing angle are sufficient to deter-
mine the elements of the matrix Wqq′ . The kernel matrix elements themselves are then
found simply, by using the Kohn-Sham transition frequencies, i.e.

Mqq =
Wqq

4ωq
− ωq

4
, q = 1, 2 (3.40)

and

M12 =
∆Ω2 sin θ
8
√
ω1ω2

. (3.41)

These equations provide an exact way to recover the matrix elements Wqq′ of the Casida
matrix and therefore the matrix elements Mqq′ of the kernel K(r, r′, ω) solely from the
knowledge of the Kohn-Sham eigenvalues and the angle θ.

3.3 Summary and Outlook

Time-dependent density functional theory has become a popular method to calculate the
neutral photo-excitations of atomic and molecular systems. Especially the low computa-
tional cost is an attractive feature which has established the TDDFT approach as method
of choice for many applications in physics and quantum chemistry. Although the TDDFT

methodology is in widespread use, there is still a lack of understanding in the approxi-
mations which are involved in the calculations. Simple approximations of the response
equations, like the SPA, turn out to be useful in practice to gain insight into the effects
which are caused by different approximate functionals.
In this work we have presented a double-pole approximation to the TDDFT response equa-
tions. The DPA extends the treatment of the traditional SPA to the case of two strongly
coupled poles. In contrast to the SPA, the DPA yields a correction of the Kohn-Sham os-
cillator strengths. Our analysis reveals that interacting oscillator strengths can deviate
significantly from their Kohn-Sham values, even when the coupling between poles is very
weak. With help of the DPA we have shown that interacting spectra exhibit several critical
pole separations. As example, the coupling of two excitations can cause a dark point where
the weaker pole completely vanishes in the interacting spectrum. Also, the corrections to
the Kohn-Sham excitations can be studied. We found that the positions of the interacting
excitation energies undergo an avoided crossing as a function of the pole separation. In
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the present analysis we have also shown how to construct an inversion of the DPA solution
to predict matrix elements of the exchange-correlation kernel fxc from experimental input.
This can be utilized in the future as reference for the construction of functionals for the
kernel fxc. Besides providing such a reference, the exact analytical solution of the DPA can
also serve as a useful tool for the investigation of scenarios where strongly coupled poles
are present. A prominent example are conical intersections of molecular potential energy
surfaces. Since the DPA stays valid for arbitrary coupling strength the change of oscillator
strengths and excitation energies in the vicinity of a conical intersection can be explored
in that case and the effect of different approximations for vxc and fxc can be studied.
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4 Static Reduced Density Matrix Functional
Theory

It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.

— R. P. Feynman, (1918-1988).

Consider a non-relativistic quantum many-body system with N electrons. The stationary
properties of such a system are described by the many-body wavefunction |Ψ 〉 which obeys
the time-independent many-body Schrödinger equation(

Ĥ − E
)
|Ψ(1, ..., N) 〉 = 0. (4.1)

Although the ground-state properties of such a system are completely determined by
Eq. (4.1), the solution of the Schrödinger equation is not desirable in practice. Even if
it were possible to solve for the wavefunction of a large system which is of chemical, biolog-
ical or technological interest, the result is usually too complicated to provide an intuitive
physical picture of the system. Instead, it is physically more appealing to work with inte-
grated quantities like currents or densities which provide direct insight into the properties
of the system. One approach along these lines is density-functional theory (DFT). Although
DFT has been very successful in the last decades, the theory fails to describe strongly cor-
related systems. Another shortcoming lies in the development of functionals. Despite the
fact, that in DFT every observable is guaranteed to be a functional of the electron density,
the theory provides no guidance on how to construct the functional for a given observable
of interest. For some system properties, like the ground-state energy, very good approx-
imations are available, while for others, especially excited state properties, only little is
known.
In recent years a renewed interest in reduced density matrices has emerged. Similar to DFT,
reduced density matrix functional theory (RDMFT) aims at reformulating the many-body
Schrödinger equation in terms of physically more intuitive quantities. The central variable
in RDMFT is the reduced one-body density matrix, a density distribution derived directly
from the many-body wavefunction. RDMFT is a promising candidate to treat correlated
electronic systems beyond DFT. In this chapter we briefly review the basic ingredients of
the static theory to introduce some nomenclature and to set the stage for an extension to
the time-dependent case which we consider in the next chapter.
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In the following we consider electronic many-body Hamiltonians for Eq. (4.1) with the form

Ĥ = T̂ + V̂ext + Ŵee, (4.2)

where the operators for the kinetic energy and the external potential are given by

T̂ =
N∑

j=1

(
−
∇2

j

2

)
, V̂ext =

N∑
j=1

v̂ext(j), (4.3)

and the particle-particle interaction has the form

Ŵee =
1
2

N∑
i,j=1
i6=j

v̂ee(i, j). (4.4)

For notational convenience we frequently abbreviate spatial and spin coordinates with a
common index j ≡ (rj , σj). A combined summation over spin degrees of freedom and
integration over spatial coordinates is abbreviated as∫

... d1 :=
∑

σ1=↑,↓
σ1

∫
... d3r1. (4.5)

In the case of Coulombic systems the particle-particle interaction in Eq. (4.4) is given by

vee(i, j) =
1

|ri − rj |
(4.6)

and we allow, in general, for non-local external operators v̂ext(j) whose action is defined
by

v̂ext(j) Ψ(1..j..N) =
∫
vext(j, j′)Ψ(1..j′..N) dj′. (4.7)

For the particular case of spin independent local external potentials vext(r) we have

vext(1, 1′) = δ(1− 1′)vext(r1), (4.8)

so that Eq. (4.7) reduces again to the usual case of a local multiplicative potential.

4.1 Reduced Density Matrices

Suppose the solution of the many-body Schrödinger equation (4.1) is known for a given
system of interest. In terms of the many-body eigenfunctions Ψk, the reduced density
matrices of q-th order for pure states can then be introduced as

γ(k)
q (1, ..., q; 1′, ..., q′) := (4.9) N

q

∫ Ψk(1, ..., q, q + 1, ..., N)Ψ∗
k(1

′, ..., q′, (q + 1), ..., N) d3(q + 1)...d3N.
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We use an upper index (k) to denote the eigenstate from which the reduced q-body density
matrices have been contracted. If we omit the index, then the ground state is implied,
i.e. γq := γ

(0)
q .

By further contracting the reduced density matrix of order q, a relation to the matrix of
order q − 1 can be established

γ
(k)
q−1(1, ..., q − 1; 1′, ..., q′ − 1) =

q

N − q + 1

∫
γ(k)

q (1, ..., q; 1′, ..., q′)dq, (4.10)

which can be directly seen from the definition of the matrices in Eq. (4.9). The contraction
for k = 0 establishes a map Ψ(0) → γq → γq−1 and by recursively applying the contraction
(4.10) the maps

G : Ψ(0) → γ1, (4.11)
R : Ψ(0) → γ2 (4.12)

can be obtained. It is interesting to observe that both maps can be inverted for systems
with non-degenerate ground states1. This is ensured by the following two theorems:

Gilbert’s theorem

The inverse of map G is guaranteed by Gilbert’s theorem [Gil75] which states, that for
systems with non-degenerate ground states and a Hamiltonian with fixed interaction and a
possibly non-local external potential, the ground-state wavefunction is uniquely determined
by the reduced one-body matrix.

Rosina’s theorem

Similarly, it was shown in a theorem by Rosina [Ros68], that provided a q-th order re-
duced density matrix originates from a non-degenerate ground state of a Hamiltonian with
q-particle interaction, the q-th order reduced density matrix is sufficient to determine the
ground-state wavefunction uniquely. No reference to the particular form of the particle
interaction enters in Rosina’s case. Merely the order of the particle interaction needs to be
known. For q = 2, i.e. the case of binary interactions, this allows to invert the map R.

Due to Gilbert’s and Rosina’s theorems all ground-state expectation values 〈A〉 of an
interacting many-particle system can be written as functionals of the ground-state reduced
one-body matrix, or alternatively as functionals of the ground-state reduced two-body
matrix

〈A〉 → 〈A〉[γ1], (4.13)
〈A〉 → 〈A〉[γ2]. (4.14)

From the above discussion it is evident that the most important matrices for binary particle
interactions are the reduced one-body matrix γ1 and the reduced two-body matrix γ2. All

1 Note that the restriction to non-degenerate ground states is rather severe. This excludes most atoms
and all paramagnetic, ferromagnetic and anti-ferromagnetic materials.
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properties of these matrices which directly follow from their definition can be summarized
as follows

(a) Symmetry property of γ2

γ2(12; 1′2′) = ±γ2(21; 1′2′) = ±γ2(12; 2′1′), (4.15)

where + holds for bosons and − has to be used for fermions.

(b) Hermiticity

γq(1, . . . , q; 1′, . . . , q′) = γ∗q (1′, . . . , q′; 1, . . . , q). (4.16)

(c) Relation between γ2 and γ1 (cf. (4.10))

γ1(1; 1′) =
2

N − 1

∫
γ2(12; 1′2)d2. (4.17)

(d) Traces

∫
γq(1, . . . , q; 1, . . . , q) d1 . . . dq =

 N

q


in particular ∫

γ1(1; 1) d1 = N,∫
γ2(12; 12) d1d2 =

N(N − 1)
2

. (4.18)

(e) Non-negativity∫
f∗(1, . . . , q)γq(1, . . . , q; 1′, . . . , q′)f(1′, . . . , q′) d1 . . . dq d1′ . . . dq′ ≥ 0 (4.19)

for any f(1, . . . , q).

Having defined the reduced density matrices it is useful for practical considerations to
work with their eigenvalues and eigenvectors. The matrices can be viewed as kernels of
linear integral operators. From properties (b), (d), (e) above it can be seen that for finite
systems these integral operators are non-negative Hermitian operators with finite trace.
Such operators have a purely discrete spectrum and the corresponding eigenfunctions form
a complete set. In the case of the reduced one-body matrix the eigenvalue equation can be
written as ∫

γ1(1; 1′)ϕj(1′) d1′ = nj ϕj(1). (4.20)

The eigenfunctions ϕj(1) are called natural orbitals and the eigenvalues nj are termed
natural occupation numbers. Equivalently, the reduced two-body density matrix can be
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used as kernel of an integral operator. The eigenvalue equation of the operator becomes∫ ∫
γ2(12; 1′2′) gj(1′2′) d1′d2′ = ηj gj(12). (4.21)

Here, the gj(12) are called natural geminals and the ηj are the occupation numbers of
electron pairs in the natural state gj(12). Similar eigenvalue equations can be considered
for density kernels of higher order. For N -particle systems it turns out that the eigenvalues
of different matrices are related. As proven by Carlson and Keller [CK61], the non-zero
eigenvalues of γq and γN−q are identical.

4.2 Direct Minimization of the Total Energy in Terms of γ2

Already during the 1950s Löwdin [Löw55] and Mayer [May55] had independently noticed
that the ground-state energy of a non-relativistic quantum many-body system, as described
by the Hamiltonian (4.2), can be formulated without direct reference to the full many-body
wavefunction. Since electrons interact only pairwise it turned out that the knowledge of
the reduced two-body density matrix is sufficient for the calculation of the ground-state
energy and many other observables of the system. In terms of the two-body matrix the
exact ground-state energy of a many-electron system can be written as

E[γ2] =
∫

lim
1′→1

[
−∇

2
1

2

]
γ1(1; 1′) d1

+
∫ ∫

vext(1, 1′)γ1(1′; 1) d1d1′ +
∫ ∫

γ2(11′; 11′)
|r1 − r′1|

d1d1′.
(4.22)

In other words, the ground-state energy is a linear functional of the reduced two-body
density matrix γ2. The fact, that the ground-state energy is exactly known in terms of the
reduced two-body matrix seems to open the possibility to minimize the energy directly with
respect to γ2, rather than with respect to the wavefunction. However, early variational
calculations demonstrated that a direct minimization of (4.22) with respect to γ2 leads
to energies which are substantially below the exact ground-state energy of the system
[Tre57, Ayr58, MI57, Bop59]. The reason for this lies in the fact, that not all possible two-
electron density distributions γ2 which are encountered in a free variational minimization
of the ground-state energy correspond to a possible many-body wavefunction. It was
soon noticed, that two-body matrices need to be constrained non-trivially, in order to be
representable by an anti-symmetric many-body wavefunction. These constraints are known
as N -representability conditions and a reduced two-body matrix which originates from an
anti-symmetric many-body wavefunction is termed N -representable [Col63, Erd78, Har78].
Although the N -representability conditions for the reduced two-body matrix had been
found very soon [GP64, Kum67], their practical implementation turned out to be rather
cumbersome. Besides this, the limitations in computer resources and the lack of software
adapted to constrained optimization prevented the widespread use of a direct minimization
of the total energy in terms of the reduced two-body matrix.
Interest in a direct minimization of the energy functional (4.22) emerged again in the 1990s
in the context of contracted Schrödinger equations (CSE). The CSE were first introduced
by Cohen and Frishberg [CF76] and Nakatsuji [Nak76]. Matrix formulations and a sec-
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ond quantized form of the CSE have been presented by Harriman [Har79] and Valdemoro
[Val85], respectively. The CSE, also termed density or hierarchy equations, provide direct
Schrödinger like equations for the static reduced density matrices. In the particular case
of the two-body matrix, the corresponding CSE depends also on the three- and four-body
matrices. Therefore, the CSE converts the N -representability problem for the reduced two-
body matrix into a problem involving the reconstruction of the tree-body matrix and the
four-body matrix from the two-body matrix [Maz99].
Schemes based on the particle-hole duality [CPdVV93, CV93], or approaches based on the
theory of cumulants and Grassmann algebras [Maz98b, Maz98a, Maz99] have been proposed
to reconstruct the three and four-body matrices from the two-body matrix. The CSE are
typically solved with a contracted power method. Also, an algorithm was introduced to
purify the reduced two-body density matrix during the power iterations [Maz02a].
Another route towards minimizing the total energy with respect to the reduced two-
body matrix makes use of positivity conditions which particle and hole matrices obey
[Maz02c, Maz02b]. The technique of positive semidefinite programming [VB96] is used
to take the positivity conditions during the minimization approximately into account. A
popular software package for this purpose is SeDuMi [Stu99] which implements a primal-
dual interior-point method for solving positive semidefinite programs. More recently, an
algorithm for first order semidefinite programming has been introduced [Maz04] which cuts
down the number of floating-point operations for the semidefinite program by more than
an order of magnitude. Applications to the potential energy curves of H6 and N2 show
that this approach yields very accurate energies at equilibrium distances, as well as at the
molecular dissociation limit.
We conclude this section by emphasizing that in contrast to traditional variational wave-
function methods which deliver upper bounds to the ground-state energy, the direct mini-
mization of the total energy with respect to the two-body matrix under the consideration
of approximate N -representability conditions yields a lower bound to the total energy.
The combination of traditional approaches and such a two-body minimization is therefore
suitable to narrow down the exact location of the ground-state energy.
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4.3 Direct Minimization of the Total Energy in Terms of γ1

An alternative to the minimization of the total energy with respect to the two-body matrix
is established by Gilbert’s theorem. As briefly mentioned in section 4.1, the theorem guar-
antees for non-degenerate ground states a one-to-one correspondence between the reduced
one-body matrix and the ground-state wavefunction. Hence, the ground-state energy can
also be viewed as a functional of the reduced one-body density matrix.
In contrast to the case of the two-body matrix it is trivial to ensure the N -representability
conditions for reduced one-body matrices. As shown by Coleman [Col63], the necessary
and sufficient conditions for a reduced one-body matrix to be ensemble N -representable
can be summarized by the following conditions for the occupation numbers

Normalization:
∞∑

j=1

nj = N, (4.23)

Bounds: 0 ≤ nj ≤ 1, ∀j. (4.24)

Since the N -representability conditions are trivial for the one-body matrix and can be
easily imposed in practice it seems advantageous to work with the one-body matrix, or
equivalently with natural orbitals and occupation numbers, instead of dealing with the two-
body matrix. This approach has enjoyed renewed popularity in recent years and is termed
reduced-density matrix functional theory (RDMFT)2 in the literature [Mül84, GU98, BB02].
However, there is a price to pay when the one-body matrix is used as basic variable.
Contrary to the case of γ2 the energy is not known exactly in terms of the one-body matrix
γ1. In terms of γ1 the total energy can merely be written in the form

E[γ1] = Ekin[γ1] + Eext[γ1] + EH[γ1] + Ex[γ1] + Ec[γ1], (4.25)

where

Ekin[γ1] =
∫ ∫

δ(1− 1′)
[
−∇

2
1

2

]
γ1(1; 1′) d1d1′ (4.26)

and
Eext[γ1] =

∫ ∫
vext(1, 1′)γ1(1′; 1) d1d1′ (4.27)

denote the kinetic Ekin and external Eext energies, respectively. Also, the Hartree EH and
the exchange Ex energies can be exactly expressed in terms of γ1

EH[γ1] =
1
2

∫ ∫
γ1(1; 1)γ1(1′; 1′)

|r1 − r′1|
d1d1′, (4.28)

Ex[γ1] = −1
2

∫ ∫
γ1(1; 1′)γ1(1′; 1)

|r1 − r′1|
d1d1′. (4.29)

The only unknown piece in Eq. (4.25) is the correlation energy Ec, which has to be approx-
imated in practice. It is important to notice the difference compared to DFT. In DFT the
kinetic energy is computed from the orbitals of the non-interacting Kohn-Sham system.

2 The notion of the acronym RDMFT is a bit misleading at first sight. Due to Rosina’s theorem it is
perfectly eligible to denote also a treatment in terms of γ2 as reduced-density matrix functional theory.
We emphasize that RDMFT refers in the literature exclusively to a description with γ1 as basic variable.
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The difference between the exact kinetic energy of the interacting system, Eq. (4.26), and
the kinetic energy of the Kohn-Sham system is part of the exchange-correlation functional
of DFT. This is also the reason why the behavior of the exchange-correlation functional un-
der uniform coordinate scaling is ”polluted” in DFT. The situation in RDMFT is different.
Here, the kinetic energy can be exactly expressed in terms of γ1. No kinetic contributions
are included in the correlation energy. Furthermore, we emphasize that the exchange en-
ergy in Eq. (4.29) corresponds only to the conventional definition of exchange in quantum
chemistry, if the functional Ex[γ1] is evaluated with the Hartree-Fock one-body density
matrix γHF

1 . If the expression (4.29) is evaluated with the one-body matrix that results
from a direct minimization of Eq. (4.25) with some approximate Ec, then Ex[γ1] already
contains contributions, which are considered as part of the correlation energy in quantum
chemistry.
In analogy to the second part of the Hohenberg-Kohn theorem a variational principle can
be established in RDMFT. It can be shown that the ground-state energy EGS of a system
is a lower bound of the energy functional E[γ1] for all N -representable reduced one-body
density matrices γ1

EGS ≤ E[γ1]. (4.30)

The equality only holds for the ground-state one-body matrix γ1 = γ
(0)
1 . Hence, given an

approximate functional for the correlation-energy Ec in terms of the one-body matrix, a
direct minimization of Eq. (4.25) under the N -representability constraints (4.23), (4.24)
can be performed. In practice, variational calculations are carried out in terms of natural
orbitals and occupation numbers. There are mainly two reasons for this approach:

(i) The N -representability conditions for the one-body matrix affect only the occupation
numbers. To impose N -representability it is advantageous to access the occupation
numbers directly.

(ii) Dealing directly with orbitals and occupation numbers provides much more flexibility
for the construction of functionals. If the one-body matrix is taken as basic variable
for the variational calculation, only functionals with an explicit dependence on γ1

can be utilized. Instead, if natural orbitals and occupation numbers are used as basic
variables, then also implicit functionals

E[{nj}, {ϕj}] = E[γ1] (4.31)

of the one-body matrix can be used.

We emphasize that the last item above relies on the functional dependence

nj = nj [γ1], ∀j,
ϕj(1) = ϕj [γ1](1) ∀j.

(4.32)

These relations only hold true if the one-body matrix does not have degenerate eigenvalues.
Once degenerate eigenvalues are present it is possible to perform unitary transformations in
the respective subspaces that are spanned by all natural orbitals with equivalent occupation
numbers. Such a transformation leaves the density matrix invariant and consequently also
the total energy. The relation for the orbitals in (4.32) is then not unique anymore. In
practice, this only poses a problem for approximate functionals which are not explicit
functionals of γ1.
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Practical Minimization Scheme

In the following we briefly sketch how the minimization of the functional (4.25) is performed
in practice. To impose the normalization condition for the occupation numbers, Eq. (4.23),
a Lagrange multiplier µ is introduced and the direct minimization is performed for the
following functional

F [{nj}, {ϕj}] = E[{nj}, {ϕj}] + µ

 q∑
j=1

nj −N

 . (4.33)

The second N -representability condition, Eq. (4.24), is usually taken into account by writ-
ing nj = sin2 θj and minimizing with respect to θj instead of nj . The minimization is
started with an initial guess for natural orbitals and occupation numbers. In principle,
randomized input data can be used as starting point. However, to achieve faster conver-
gence it is advantageous to start from reasonable initial values. Typically, the orbitals and
occupation numbers (0 or 1) of a Hartree-Fock calculation are used as input for a RDMFT

minimization. The initial chemical potential µ is set to the HF energy eigenvalue of the
HOMO. The minimization then proceeds by freezing the values of the orbitals in the current
iteration step. With frozen orbitals a minimization with respect to the occupation numbers
is performed taking the constraint of a given particle number N into account. Typically
Brent’s root finding algorithm [Bre73] or a simple bisection method are used to find the
chemical potential µ for which M(µ) − N = 0. The occupation numbers are considered
as converged, if the Euclidean norm of the occupation vectors of two successive iterations
k − 1, k falls below a given threshold δ(n)

q∑
j=1

∣∣n(k)
j − n

(k−1)
j

∣∣2 < δ(n). (4.34)

Once optimal occupation numbers have been found for the current iteration step they
are held fixed and the orbitals are released in the next step. The gradients δF/δϕj are
computed and the orbitals are updated according to

ϕj = ϕj + sj δF/δϕj ∀j, (4.35)

where sj denotes an orbital resolved step size that is automatically adjusted during the
minimization in order to lower the energy. This procedure is iterated until the change in
the orbitals lies below a given threshold δ(ϕ). As stopping criteria, e.g. max |sj | < δ(ϕ) can
be used. The overall minimization of orbitals and occupation numbers is iterated until the
change in total energy in two successive iterations is smaller than a prescribed threshold
δ(E). Practical calculations show that for small molecules typically q = 10 − 40 natural
orbitals need to be taken into account to achieve sufficient convergence with the above
scheme.

Applications of RDMFT

A variety of functionals for the application of RDMFT has been proposed in recent years
[Mül84, GU98, CA00, BB02, CGA02, GPB05, LHG07] and the theory has been especially
applied to observables which pose difficulties for DFT based methods. Prominent examples
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include the dissociation limit of diatomic molecules [GPB05] or the calculation of the
fundamental gap of extended systems [HLAG07]. Also, van der Waals interactions have
been investigated recently [GB06].
Finally, we remark that RDMFT has only been used for fermionic systems so far. An exten-
sion of the theory to bosonic systems might prove useful. For bosonic systems there is no
N -representability condition (4.24) and one finds that the formation of a Bose condensate
in an extended system of bosons leaves a direct signature in the reduced one-body density
matrix: In that case one of the occupation numbers tends to infinity.



5 Time-Dependent Reduced Density Matrix
Functional Theory

Insofern sich die Sätze der Mathematik auf die
Wirklichkeit beziehen sind sie nicht sicher, und
insofern sie sicher sind, beziehen sie sich nicht

auf die Wirklichkeit.

— Albert Einstein, (1879-1955).

Due to the success of ground-state RDMFT in areas where the traditional DFT approach is
facing limitations it seems desirable to consider density matrices also in a time-dependent
context in order to go beyond TDDFT. At the present stage such an extension to time-
dependent RDMFT (TDRDMFT) is still in its infancy. Not much has been explored for the
case of time-dependent non-local external potentials. Especially, it is still an open question
whether an extension of Gilbert’s theorem to the case of time-dependent systems can be
achieved. In this chapter we attempt some preliminary steps towards a description of
many-body systems in terms of time-dependent reduced one-body density matrices.
This chapter is organized as follows: In section 5.1 we introduce the BBGKY (Bogoliubov,
Born, Green, Kirkwood, and Yvon) hierarchy of reduced density matrices. This hierarchy
provides a set of coupled first order partial differential equations in time for the evolution
of the reduced density matrices. In its original form, the hierarchy is not well suited for
truncation since mean-field and correlated parts of the matrices enter on the same footing.
We therefore discuss, in section 5.1.2, a cluster expansion which allows us to reformulate the
hierarchy in terms of so-called N -body correlations λn. Since the N -body correlations are
expected to decrease in magnitude for higher orders of n, a truncation of the corresponding
hierarchy is less severe than in the case of the original reduced N -body matrices. Starting
with section 5.2 we present our own work. Using the BBGKY hierarchy we derived equations
of motion for the natural orbitals and occupation numbers which we present in 5.2.1. We
discuss some properties of the equations of motion and show that an adiabatic extension
of present ground-state functionals in RDMFT always leads to occupation numbers which
are constant in time. In section 5.3 we use the stationary limit of the equations of motion
for the N -body correlations to derive a new class of functionals which can be used for
ground-state calculations in static RDMFT. Section 5.4 is devoted to applications. First,
we introduce some tools that we use to investigate the time-dependence of natural orbitals
and occupation numbers. We present in section 5.4.1 a time-dependent correlation entropy
to measure the degree of correlation in the many-body wavefunction. Section 5.4.2 briefly
reviews optimal control theory which we use as technique to find optimal pulse shapes
for laser-induced transitions in atomic Helium. Having introduced all ingredients for the
numerical treatment we turn our attention in section 5.4.3 to the description of a model
system which we employ for the time propagations in this chapter. We characterize the
ground-state properties of the model with special emphasis on one-body density matrices,
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natural orbitals and occupation numbers. In sections 5.4.4 and 5.4.5 we perform numerical
propagations of the full many-body wavefunction for a one-dimensional model system. The
full solution of the TDSE for interacting particles is used to extract the exact time evolution
of the natural orbitals and occupation numbers during (i) laser excitation and (ii) for the
case of electron-ion scattering.

5.1 The BBGKY Hierarchy of Reduced Density Matrices

Due to rapid experimental and technological progress, the description of electronic quan-
tum many-body systems out of equilibrium has become an important research topic in
recent years. Prominent examples for the need of a non-equilibrium description are atoms
and molecules exposed to ultrashort intense laser fields or the microscopic description of
quantum transport as discussed in part III of this work. All applications share common
interest in how many-body systems evolve on transient or non-adiabatic time-scales, how
they thermalize or which kind of behavior under external drivings is to be expected. The
strong nonlinearities, present in many situations, are not accessible by approaches based
on perturbation theory, resulting in a need for non-perturbative methods. A consistent
non-perturbative description of many-body systems is provided by the equations of motion
for the Green’s functions. The non-equilibrium Green’s function equations of motion were
first obtained by Kadanoff and Baym [KB76, Dan84] and have been derived independently
by Keldysh [Kel65] and by Fujita [Fuj64]. Although these equations provide a rigorous
ground to investigate the dynamics of many-body systems out of equilibrium, so far only
ab-initio solutions for the time evolution of very small atomic or molecular systems under
special assumptions have been achieved [DLS06]. A more comprehensive ab-initio treat-
ment of non-equilibrium systems with many degrees of freedom is still beyond the scope of
current computing facilities.
An alternative for the study of non-equilibrium processes in many-body systems is provided
by time-dependent density functional theory (TDDFT) [MUN+06]. TDDFT is currently the
method of choice for electronic systems out of equilibrium because of its combination of
accuracy combined with low computational cost. The theory is in principle exact, in
the sense that the exact time-dependent exchange-correlation functional ensures that the
evolution of the single-particle time-dependent Kohn-Sham equations yields the exact time-
dependent particle density of the many-body system [RG84]. All physical observables are
functionals of the time-dependent density. However, it is sometimes rather cumbersome
to find approximate expressions for observables of interest. Not to mention the exact
expression. A prominent example is above-threshold ionization of atoms and molecules
in strong laser fields, where no density functional for the observables (in that case the
ionization yields) is known. Although the time-dependent Kohn-Sham orbitals have in
principle no direct physical meaning and are only a means to construct the time-dependent
density, they are often (ab)used to compute physical quantities directly.
Time-dependent reduced density matrices bridge the gap between the single determinant
picture of TDDFT and a full-fledged propagation of the Kadanoff-Baym equations for the
Green’s function. The BBGKY hierarchy can be viewed as the equal-time limit of the
Martin-Schwinger hierarchy [MS59] for the Green’s functions. In this sense the double-
time structure which is present in the Green’s functions is avoided in the case of the
density matrices, although some information is lost in this way. Historically, the prop-



5.1 The BBGKY Hierarchy of Reduced Density Matrices 43

agation of reduced density matrices was pioneered in nuclear physics. Early work along
these lines appeared under the term extended time-dependent Hartree-Fock (ETDHF) the-
ory [WT78, WT79]. In this approach a modified TDHF equation is propagated in combi-
nation with time-dependent occupation numbers. The time dependence of the occupation
numbers is determined from a collision integral which is based on the equal-time limit of the
two-body Green’s function. Several other approaches for the collision integral have been
proposed, ranging from statistical considerations [Ayi80, Ayi84] to a description within
a random-matrix model [GWW81]. More recently, the inclusion of memory terms has
been considered in the treatment of one-dimensional model systems [LCA99]. The sec-
ond generation of approaches in nuclear physics is directly based on the BBGKY hierarchy
for the density matrices and is termed time-dependent density matrix theory (TDDMT)
[SJC85, Toh85, Toh87, CNW88]. In this approach a cluster expansion for the reduced
density matrices is utilized to separate mean-field and correlated contributions (N -body
correlations) of the reduced density matrices. In practice, the reduced density matrices
and N -body correlations are expanded in a set of single-particle TDHF-like orbitals. The
expansion matrices are then propagated in combination with a mean-field single-particle
equation for the TDHF-like orbitals.
Quantum kinetic equations which are related to the BBGKY hierarchy are also popular in
plasma physics and semiconductor physics where Wigner and Bloch representations of the
hierarchy are frequently in use [Bon98].
In the following sections we base our own discussion of time-dependent reduced density
matrices on the hierarchy of N -body correlations of Ref. [SJC85]. However, contrary to
the TDDMT approach we represent the reduced density matrices and N -body correlations
directly in terms of natural orbitals and occupation numbers. This results in equations of
motion for the natural orbitals and occupation numbers which we discuss in section 5.2.1.
Before we turn our attention to natural orbitals and occupation numbers, we briefly recall
the BBGKY hierarchy of reduced density matrices and the hierarchy of equations of motion
for the N -body correlations.

5.1.1 Formulation in Terms of N-Body Matrices

The basis for the following discussion is the time-dependent many-body Schrödinger equa-
tion

i∂tΨ(t) = Ĥ(t)Ψ(t), (5.1)

where Ĥ(t) = Ĥ0(t) + Ŵee. Like in the static case we consider binary interactions among
the particles

Ŵee =
1
2

N∑
i,j=1
i6=j

vee(i, j) (5.2)

but we allow for an explicitely time-dependent (local) external potential

Ĥ0(t) =
N∑

j=1

ĥ(j; t), ĥ(j; t) = −
∇2

rj

2
+ vext(rj ; t), (5.3)

where ĥ(j; t) denotes just a bare single-particle Hamiltonian. In the same way as in the
static case, one can introduce time-dependent reduced density matrices in terms of the
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time-evolved many-body state Ψ(t)

γq(1, ..., q, 1′, ..., q′; t) := N

q

∫ Ψ(1, ..., q, q + 1, ..., N ; t)Ψ∗(1′, ..., q′, (q + 1), ..., N ; t) d3(q + 1)...d3N.
(5.4)

Furthermore, we use the following notation

[f(1), g(11′)] ≡ f(1)g(11′)− f(1′)g(11′) (5.5)

and
Tr
(j)

{
. . .
}
≡
∑
σj

∫
. . . d3rj . (5.6)

The BBGKY hierarchy of equations of motion for the reduced density matrices provides a
reformulation of the many-body TDSE (5.1) and can be written in the following compact
form [SJC85]

i∂tγ1 =
[
ĥ, γ1

]
+ Tr

(2)

(
[vee, γ2]

)
,

i∂tγ2 =

[
2∑

i=1

ĥ(i), γ2

]
+ [vee, γ2] + Tr

(3)

([
2∑

i=1

vee(i, 3), γ3

])
, (5.7)

...
...

i∂tγn =

[
n∑

i=1

ĥ(i), γn

]
+

 n−1∑
j>i=1

vee(i, j), γn

+ Tr
(n+1)

([
n∑

i=1

vee(i, n+ 1), γn+1

])
.

As in the case of the Martin-Schwinger hierarchy for the Green’s functions, the BBGKY

hierarchy couples reduced density matrices of order n to the respective matrix of next
higher order. Solving these equations in principle amounts to including all N levels of
the hierarchy. Due to the coupling of the different levels and the fact that at level n the
equations of the hierarchy depend on 2n spatial coordinates this is even more involved
than a direct solution of the many-body TDSE. Therefore, any application in practice aims
at truncating the hierarchy at some level n � N . The most obvious truncation is to
consider only equations of the hierarchy up to level n and to set γq with q ≥ n + 1 equal
to zero. Although straightforward, this provides only a very crude approximation. This
can be attributed to the fact that correlated and uncorrelated terms are mixed in (5.7). In
addition the density matrices γn do not decrease in magnitude with increasing order n, so
that terms of non-negligible size would always be neglected. In the next section we show
that a reformulation of the hierarchy in terms of so-called N -body correlations is more
suitable for truncations.
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5.1.2 Formulation in Terms of N-Body Correlations

As preliminary step we introduce operators Â and Ŝ which are defined by

Ŝ(n) : symmetrizes with respect to all pair indices (i,i’) and (j,j’)

Â(n) : antisymmetrizes with respect to all exchanges between indices i’, j’

The lower index (n) indicates that the symmetrization or anti-symmetrization is carried
out among n particles.
With the help of the operators Â, Ŝ it is then possible to introduce a very compact form
of the antisymmetrized cluster expansion for reduced density matrices [SJC85, Bon98]

γn = ÂŜ
(n)

n∑
p=1

γn−pλp = ÂŜ
(n)

n−1∑
p=1

γn−pλp + λn, (5.8)

where γ0 = 1 and λ1 = γ1. For reasons that become evident later, the λn are called N -body
correlations. In the literature this expansion is also referred to as Ursell-Mayer expansion
[Bon98]1.
To illustrate the effect of the operators Â, Ŝ and to introduce the concept of linked and
unlinked terms consider the following example

vee(12) ÂŜ
(3)

[
γ1(11′)λ2(23, 2′3′)

]
= vee(12) Â

(3)

[
γ1(11′)λ2(23, 2′3′) + γ1(22′)λ2(13, 1′3′) + γ1(33′)λ2(21, 2′1′)

]
= vee(12)

[
γ1(11′)λ2(23, 2′3′) + γ1(22′)λ2(13, 1′3′)

+ γ1(33′)λ2(12, 1′2′)− γ1(12′)λ2(23, 1′3′)

− γ1(21′)λ2(13, 2′3′)− γ1(31′)λ2(12, 3′2′)

− γ1(13′)λ2(23, 2′1′)− γ1(23′)λ2(13, 1′2′)

− γ1(32′)λ2(12, 1′3′)
]
.

(5.9)

The underlined terms in (5.9) are separable with respect to the two-body interaction vee(12)
and are termed unlinked. All other terms cannot be factorized and are called linked.
The properties of γn and λn can be summarized as follows:

a) γn contains all possible correlations among n particles.

b) γn is symmetric with respect to any exchange of pairs (ii’) and (jj’) and antisymmetric
with respect to any exchange of i and j, i.e.

Â
(n)
γn = Ŝ

(n)
γn = ÂŜ

(n)
γn = γn. (5.10)

c) theN -body correlation λn has the same symmetry as γn as well as all terms ÂŜ(n) γn−pλp.

1 The classical cluster or Ursell-Mayer expansion corresponds to the expansion of the pressure ρ and the
density ρ of a classical gas in the grand-canonical ensemble in terms of the fugacity z = eβµ, where µ
is the chemical potential and β = 1/kBT denotes the inverse temperature.
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As explicit example of (5.8) we have for the one-, two- and three-body correlations

γ1(11′; t) = γ1(11′; t),
γ2(12, 1′2′; t) = γ1(11′; t)γ1(22′; t)− γ1(12′; t)γ1(21′; t) + λ2(12, 1′2′; t),

γ3(123, 1′2′3′; t) = γ1(11′; t)γ1(22′; t)γ1(33′; t)− γ1(12′; t)γ1(21′; t′)γ1(33′; t)
− γ1(22′; t)γ1(31′; t)γ1(13′; t) + γ1(13′; t)γ1(21′; t′)γ1(32′; t)
− γ1(11′; t)γ1(32′; t)γ1(23′; t) + γ1(12′; t)γ1(31′; t′)γ1(23′; t)
+ γ1(11′; t)λ2(23, 2′3′; t)− γ1(12′; t)λ2(23, 1′3′; t)
− γ1(13′; t)λ2(23, 2′1′; t) + γ1(22′; t)λ2(13, 1′3′; t)
− γ1(21′; t)λ2(13, 2′3′; t)− γ1(23′; t)λ2(13, 1′2′; t)
+ γ1(33′; t)λ2(12, 1′2′; t)− γ1(31′; t)λ2(12, 3′2′; t)
− γ1(32′; t)λ2(12, 1′3′; t) + λ3(123, 1′2′3′, ; t).

(5.11)

Anti-symmetrized products in Eq. (5.11), which contain only one-body matrices γ1, corre-
spond to the uncorrelated superposition of particles. Hence, the N -body correlations λn

contain only true correlations among n particles, which cannot be factorized into lower
order contributions, and are therefore expected to decrease in magnitude with increasing
order. This is in contrast to the reduced N -body matrices γn which contain simultaneously
uncorrelated superpositions and correlated terms and do not show a decrease in magnitude
with increasing order. Having defined the N -body correlations it is desirable to transform
the original equations of motion for the reduced density matrices into equations of mo-
tion for the N -body correlations. This transformation is rather technical and we refer to
Ref. [SJC85] for further details. Here, we only state the final form for the equations of
motion for the N -body correlations

i∂t λn =

  n∑
i=1

ĥ(i) +
n−1∑

j>i=1

vee(i, j)

 , λn

+ Tr
(n+1)

[
n∑

i=1

vee(i, n+ 1), λn+1

]

+ ÂŜ
(n)

n−1∑
p=1

 n−1∑
j>i=1

vee(i, j), γn−pγp


linked

+
n∑

p=1

Tr
(n+1)

[
n∑

i=1

vee(i, n+ 1), ÂŜ
(n+1)

γn−p+1γp

]
linked

. (5.12)

The set of equations for the N -body correlations still constitutes a coupled hierarchy. How-
ever, since uncorrelated and correlated terms have been separated, this hierarchy is better
suited for truncations with respect to the order of correlations. For n = 1, 2 Eq. (5.12)
reads more explicitly

i∂t γ1 =
[
ĥ, γ1

]
+ Tr

(2)

([
vee(1, 2), Â

(2)
γ1γ1 + λ2

])
, (5.13)
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i∂t λ2 =
[
ĥ(1) + ĥ(2) + vee(1, 2), λ2

]
+ Tr

(3)
[vee(1, 3) + vee(2, 3), λ3] (5.14)

+
[
vee(12), Â

(2)
γ1γ1

]
+ Tr

(3)

[
vee(1, 3) + vee(2, 3), ÂŜ

(2)
(γ1γ1γ1 + γ1λ2)

]
linked

.

Setting three body correlations to zero, i.e. λ3 = 0, the explicit form of the second equation
reads

i∂t λ2(12, 1′2′; t)

=
[
ĥ(1; t) + ĥ(2; t) + vee(12), λ2(12, 1′2′; t)

]
+
[
vee(12), γ1(11′; t)γ1(22′; t)− γ1(12′; t)γ1(21′; t)

]
− Tr

(3)

{
(vee(13)− vee(13′))γ1(11′; t)γ1(23′; t)γ1(32′; t)

− (vee(23)− vee(2′3))γ1(13′; t)γ1(22′; t)γ1(13′; t)
− (vee(23)− vee(1′3))γ1(13′; t)γ1(21′; t)γ1(32′; t)
− (vee(13)− vee(2′3))γ1(12′; t)γ1(23′; t)γ1(31′; t)

− (vee(13)− vee(1′3))
[

γ1(33′; t)λ2(12, 1′2′; t)− γ1(31′; t)λ2(12, 3′2′; t)

− γ1(32′; t)λ2(12, 1′3′; t) + γ1(11′; t)λ2(23, 2′3′; t)

− γ1(13′; t)λ2(23, 2′1′; t)− γ1(23′; t)λ2(13, 1′2′; t)
]

− (vee(23)− vee(2′3))
[

γ1(33′; t)λ2(12, 1′2′; t)− γ1(31′; t)λ2(12, 3′2′; t)

− γ1(32′; t)λ2(12, 1′3′; t) + γ1(22′; t)λ2(13, 1′3′; t)

− γ1(23′; t)λ2(13, 1′2′; t)− γ1(13′; t)λ2(23, 2′1′; t)
]}
.

(5.15)

In the above expression the terms proportional to γ1λ2 are called polarization terms and
terms proportional to veeλ2 denote two-particle ladder terms.
It can be shown that the stationary limit i∂t λ2(12, 1′2′; t) = 0 of (5.15) leads to the Bethe-
Goldstone equation, if all terms proportional to veeλ2 are neglected. If all possible types
of four body correlations (terms proportional to λ4, veeγ1γ1λ2, veeγ1λ3, and veeλ2λ2) are
neglected then the Fadeev equations can be recovered from the stationary limit of the
lowest three equations, n < 3, of the hierarchy [SJC85]. In general, four different variants
of approximations are common in the literature [Bon98]:

(i) The second Born approximation consists of neglecting ladder and polarization terms
in (5.15). In this limit the Landau kinetic equation [BBK97] can be derived.

(ii) The ladder approximation also consists of neglecting all polarization terms but keep-
ing terms proportional to γ1λ2. This approximation can be used as a starting point
to derive the non-Markovian Boltzmann equation [KBKS97]. Also, the equivalence
to the T-matrix approximation for the self-energy in Green’s function theory can be
drawn [KKER86].
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(iii) The polarization approximation neglects all ladder terms. This approximation yields
the Balescu-Lenard equation [Bal60, Len60], and an equivalence to the random phase
approximation (RPA) for the self-energy in Green’s function theory can be estab-
lished [KB76].

(iv) Finally, the screened-ladder approximation [KKER86] retains all terms of (5.15).

5.1.3 Orbital Representation

We define the time-dependent natural orbitals and occupation numbers as the instanta-
neous eigenvalues and eigenvectors of the reduced one-body matrix γ1 at each given point
in time. Hence, the time-dependent reduced one-body density matrix has the following
spectral representation

γ1(11′; t) =
∑

k

nk(t)ϕk(1; t)ϕ∗k(1
′; t). (5.16)

Since the eigenvectors ϕj(1; t) form a complete set at each instant in time, we can express
the reduced two-body matrix in the basis of natural orbitals of the reduced one-body matrix

γ2(12, 1′2′; t) =
∑
ijkl

γ2,ijkl(t)ϕi(1; t)ϕj(2; t)ϕ∗k(1
′; t)ϕ∗l (2

′; t). (5.17)

In a similar way we expand higher order reduced density-matrices and N -body correlations
and introduce coefficient matrices γn;i1...iN ;j1...jN (t) and λn;i1...iN ;j1...jN (t) according to

γn(1, . . . , N, 1′, . . . , N ′; t) =∑
i1...iN ;j1...jN

γn;i1...iN ;j1...jN (t)ϕi1(1; t) . . . ϕiN (N ; t)ϕ∗j1(1
′; t) . . . ϕ∗jN

(N ′; t),

λn(1, . . . , N, 1′, . . . , N ′; t) =∑
i1...iN ;j1...jN

λn;i1...iN ;j1...jN (t)ϕi1(1; t) . . . ϕiN (N ; t)ϕ∗j1(1
′; t) . . . ϕ∗jN

(N ′; t).

(5.18)
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5.2 Time-Dependent Natural Spin Orbitals and Occupation
Numbers

The time-dependent reduced one-body matrix is a rather complicated object. It depends on
six spatial coordinates and on one time coordinate. The full-scale propagation of Eq. (5.13)
for realistic systems in three spatial dimensions is beyond the capacity of current computing
facilities. Fortunately, the full treatment of the matrix can be simplified. Instead of
considering the time evolution of the reduced one-body matrix, it is sufficient to consider
only the evolution of its eigenvalues and eigenvectors.

In the present section we show how to achieve this simplification and introduce equations
of motion for the natural spin orbitals and occupation numbers. We also investigate some
properties of the new equations and show that an adiabatic extension of existing ground-
state functionals in RDMFT leads to occupation numbers which are independent of time.

5.2.1 Equations of Motion

For the following discussion it will be useful to introduce matrix elements containing the
time-derivative of natural orbitals. Since the natural spin orbitals form a complete set we
can expand the time derivative of a given orbital in the following form

i∂tϕj(1; t) =
∑

k

αjk(t)ϕk(1; t), (5.19)

where the αjk(t) denote complex valued coefficients. Due to the orthonormality of the
eigenvectors of γ1 this leads to the matrix elements∫

ϕ∗l (1; t) i ∂t ϕj(1; t) d1 =
∑

k

αjk(t)δlk =: αjl(t). (5.20)

By taking the time-derivative of the orthonormality relation

0 = i∂tδlj = i∂t

∫
ϕ∗l (1; t)ϕj(1; t) d1 (5.21)

it follows that αjl(t) is a Hermitian matrix

−α∗lj(t) + αjl(t) = 0 ⇔ αjl(t) = α∗lj(t). (5.22)

Having collected these ingredients we can state the following result:

The time evolution of natural spin orbitals and occupation numbers is governed by the
following coupled set of equations

i∂tna(t) =
∑
ijl

γ2,ijal(t)〈 ij | vee | al 〉(t)− c.c. (5.23)
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and(
i na(t)∂t − na(t)ĥ(1; t)

)
ϕa(1; t)−

∑
ijl

γ2,ijal(t)
∫
vee(12)ϕj(2; t)ϕ∗l (2; t) d2ϕi(1; t)

+
∑

j

(
na(t)(αaj(t)− 〈 j | ĥ | a 〉(t))−

∑
ikl

γ2,ikal(t)〈 ik | vee | jl 〉(t)

)
ϕj(1; t) = 0.

(5.24)

The set of equations comprises ordinary differential equations for the occupation num-
bers (5.23) and partial differential equations for the natural orbitals (5.24). It has to
be accompanied by suitable initial conditions na(t = t0), ∀a for the occupation numbers
and ϕa(1; t = t0), ∀a for the natural orbitals. The most commonly used initial state in
applications is the ground state, e.g., as computed with static RDMFT, but also excited
configurations can be chosen as initial datum. Especially for scattering calculations the
latter choice is more natural.
Note that contrary to the TDHF or TDKS equations not only the lowestN orbitals have to be
propagated. Instead, all occupation numbers and orbitals are included in the propagation.
In practice, it is a priori not obvious how to truncate the infinite set for a given dynamical
situation of interest. Including only orbitals whose ground-state occupation numbers have a
significant magnitude will not always be sufficient because some of the occupation numbers
that were initially, at t = t0, very small might gain relevance at later points in time2.
However, if these orbitals and occupation numbers have not been included from the start,
the truncated propagation will not even approximately resemble the full solution.
To prove that Eqs. (5.23) and (5.24) are equivalent to the first equation of the BBGKY

hierarchy we have to show

(i) (5.13) =⇒ (5.23), (5.24)

(ii) (5.13) ⇐= (5.23), (5.24)

for a given choice of initial conditions. Both directions can be obtained by explicit con-
struction. We start with assertion (i).

Proof of part (i)

Starting point is the equation of motion for the reduced one-body density matrix, cf. (5.13)

i∂tγ1(11′; t) =
(
ĥ(1; t)− ĥ(1′; t)

)
γ1(11′; t)

+
∫ (

vee(12)− vee(1′2)
)
γ2(12, 1′2′; t)|2′=2 d2.

(5.25)

Multiplying Eq. (5.25) with ϕa(1′; t)ϕ∗b(1; t) and integrating over coordinates 1 and 1′ we

2 This circumstance is illustrated in section 5.4 where we show how initially small occupation numbers
can grow over time.
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arrive at

i ∂t na(t)δab +
(
αab(t)− 〈 b | ĥ(t) | a 〉(t)

)
(na(t)− nb(t))

=
∑
ijl

γ2,ijal(t)〈 ij | vee | bl 〉(t)−
∑
jkl

γ2,bjkl(t)〈 aj | vee | kl 〉(t),
(5.26)

where (5.22) and the representations (5.16), (5.17) have been used. Exploiting the sym-
metry properties of the expansion coefficients

γ2,ijkl(t) = γ∗2,klij(t) (5.27)

and matrix elements

〈 ij | vee | kl 〉(t) = 〈 ji | vee | lk 〉(t), 〈 ij | vee | kl 〉∗(t) = 〈 kl | vee | ij 〉(t) (5.28)

the diagonal of Eq. (5.26) can be written in the form

i∂tna(t) =
∑
ijl

γ2,ijal(t)〈 ij | vee | al 〉(t)− c.c. (5.29)

which constitutes the equation of motion for the occupation numbers.
Next, we turn our attention to the natural orbitals. Multiplying Eq. (5.25) with ϕa(1′; t)(t)
and integrating over 1’ we find

ϕa(1; t) i ∂tna(t) + i na(t)∂tϕa(1; t)−
∑

j

nj(t)αaj(t)ϕj(1; t)

= na(t) ĥ(1; t)ϕa(1; t)−
∑

j

nj(t)〈 j | ĥ(t) | a 〉ϕj(1; t)

+
∑
ijl

γ2,ijal(t)
∫
vee(12)ϕi(1; t)ϕj(2; t)ϕ∗l (2; t) d2

−
∑
ijkl

γ2,ijkl(t)〈 aj | vee | kl 〉ϕi(1; t).

(5.30)

Rewriting Eq. (5.26) as

nb(t)αab(t) = na(t)αab(t) + 〈 b | ĥ(t) | a 〉(na(t)− nb(t)) + δab i ∂tna(t)

+
∑
ijl

γ2,ijal(t)〈 ij | vee | bl 〉(t)−
∑
jkl

γ2,bjkl(t)〈 aj | vee | kl 〉(t) (5.31)

and inserting it into Eq. (5.30), we arrive at(
i na(t)∂t − na(t)ĥ(1; t)

)
ϕa(1; t)−

∑
ijl

γ2,ijal(t)
∫
vee(12)ϕj(2; t)ϕ∗l (2; t) d2ϕi(1; t)

+
∑

j

(
na(t)(αaj(t)− 〈 j | ĥ | a 〉(t))−

∑
ikl

γ2,ikal(t)〈 ik | vee | jl 〉(t)

)
ϕj(1; t) = 0.

(5.32)
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This is the desired equation of motion for the natural orbitals and completes together with
(5.29) part (i) of the proof. �

Proof of part (ii)

Having the equations for natural orbitals and occupation numbers at hand it is straight-
forward to show that a solution of these equations is also a solution of the first equation of
the BBGKY hierarchy. Provided the initial values for occupation numbers and orbitals are
compatible with the initial one-body matrix, part (ii) can be verified by direct construction
of the equation of motion for γ1. To that end we introduce an assembly operator Ĉ by the
prescription

g(1, 1′; t) = Ĉfa(1; t) :=
∑

a

ϕ∗a(1
′; t)fa(1; t)−

∑
a

ϕa(1; t)f∗a (1′; t). (5.33)

Acting with Ĉ on the equation of motion for the natural spin orbitals, substituting equation
(5.29) and using the representations in Eqs. (5.16) and (5.17) recovers the first equation of
the BBGKY hierarchy. �

At this point it is important to observe that the equations of motion for the natural orbitals
are not unique. Choosing an arbitrary Hermitian matrix βaj(t) and adding terms of the
form

pa(1; t) =
∑

j

βaj(t)ϕj(1; t) (5.34)

to the right hand side of (5.24), does not alter the first equation of the BBGKY hierarchy
while following the steps of proof (ii). This can be attributed to the differences which are
taken in the application of the assembly operator. Acting with Ĉ on (5.34) shows

Ĉpa(1; t) =
∑
aj

βaj(t)ϕj(1; t)ϕ∗a(1
′; t)−

∑
aj

β∗aj(t)ϕa(1; t)ϕ∗j (1
′; t) = 0. (5.35)

The ambiguity arising from terms like (5.34) is reminiscent of the static case at zero tem-
perature, where the effective non-local Hamiltonian for the natural orbitals is determined
only up to the entries on the diagonal [Per05]. Similarly here, the time-dependent phases
of the orbitals are not determined uniquely since the choice of βaj(t) is arbitrary. Looking
at the spectral representation of the reduced one-body matrix

γ1(11′; t) =
∑

k

nk(t)ϕk(1; t)e−i sk(t)ϕ∗k(1
′; t)ei sk(t). (5.36)

this was expected, since already phases of the general form exp(−i sk(t)) with real valued
sk(t) cancel and leave the density matrix unchanged.
We emphasize that the equations of motion for the natural orbitals in Eq. (5.24) already
have a single-particle form. Given the exact coefficients γ2,ijkl(t) the coupled equations
for occupation numbers and natural orbitals yield the exact reduced one-body matrix of
the interacting system. Contrary to time-dependent DFT it is therefore not necessary
to introduce an auxiliary system of non-interacting particles whose (non-local) external
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potential is designed to recover the one-body matrix of the interacting system.
As illustrated in chapter 2.3, the consideration of neutral excitations in the framework of
linear response in TDDFT allows to correct the Kohn-Sham energy spectrum towards the
excitation energies of the interacting system. Due to the undetermined diagonal elements
of the auxiliary non-local Hamiltonian of static RDMFT and because of the ambiguity which
arises due to terms like (5.34) in the equation of motion for the natural orbitals, a response
formalism in analogy to TDDFT is not possible in TDRDMFT at zero temperature. At the
current stage this seems to require a treatment of TDRDMFT at non-zero temperature.

5.2.2 Cluster Expansion

So far we have written the equations of motion for the occupation numbers in terms of the
expansion coefficients γ2,abcd(t) for the reduced two-body density matrix. In the present
section we show that only the correlated part of the two-body matrix determines the time
evolution of the occupation numbers. Mean-field contributions in form of Hartree or Fock
terms cancel and do not contribute.
For the matrix elements γ2,abcd(t) of the reduced two-body matrix the cluster expansion
introduced in Eq. (5.8) can be written in the following form

γ2,abcd(t) = na(t)nb(t)(δacδbd − δadδbc) + λ2,abcd(t). (5.37)

In the literature the contribution λ2,abcd beyond the mean-field is also referred to as cumu-
lant of the reduced two-body density matrix [KF98, KM99]. Here, we use the termsN -body
correlation and cumulant interchangeably. Note that λ2,abcd(t) = 0 for non-interacting par-
ticles as well as in Hartree-Fock.
Inserting (5.37) into Eq. (5.23) leads to

i∂tnk(t) =
∑
m

nk(t)nm(t)〈 km | vee | km 〉(t)− nm(t)nk(t)〈mk | vee | km 〉(t)

+
∑
m

nk(t)nm(t)〈 km | vee |mk 〉(t)− nk(t)nm(t)〈 km | vee | km 〉(t)

+
∑
ijl

λ2,ijkl(t)〈 ij | vee | kl 〉(t)−
∑
ijl

λ2,klij(t)〈 kl | vee | ij 〉(t).

(5.38)

The first two sums cancel due to (5.28) so that only the cumulant coefficients of the reduced
two-body density matrix remain and the time evolution of the occupation numbers is given
by

i∂tnk(t) =
∑
ijl

λ2,ijkl(t)〈 ij | vee | kl 〉(t)− c.c. (5.39)

Using this result, the equations of motion for the natural spin orbitals can be written in a
more compact form as[

i nj(t)∂t − nj(t)ĥ(1; t) +
∑
abc

λ2,abjc(t)〈 ab | vee | jc 〉(t)

]
ϕj(1; t)

−
∑
abd

γ2,abjd(t)
∫
vee(12)ϕb(2; t)ϕ∗d(2; t) d2ϕa(1; t) = 0.

(5.40)
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Similar to Eq. (5.24) the equations in (5.40) together with (5.39) lead directly to the first
equation of the BBGKY hierarchy. Due to the compact form we use (5.40) for further
considerations in the following sections.

5.2.3 Phase Transformations

The third term in the bracket of Eq. (5.40) is a purely time-dependent function. If we
define

gj(t) :=
∑
abc

λ2,abjc(t)〈 ab | vee | jc 〉(t) (5.41)

we can write

i nj(t) ∂tϕj(1; t) =
[
nj(t)ĥ(1; t)− gj(t)

]
ϕj(1; t)

+
∑
abd

γ2,abjd(t)
∫
vee(12)ϕb(2; t)ϕ∗d(2; t) d2ϕa(1; t). (5.42)

At first sight it appears that the purely time-dependent term can be absorbed in the phase
of the natural orbitals. However, this is only the case for special approximate forms of
γ2,abcd(t). To show this, we consider a phase transformation of the following form

ϕj(1; t) −→ ϕ̃j(1; t) = exp
(
−i
∫ t

fj(τ)dτ
)
ϕj(1; t),

fj(t) =
1

nj(t)
gj(t), nj(t) 6= 0. (5.43)

Taking the time-derivative of ϕ̃j(1; t) and multiplying with nj(t) exp
(
+i
∫ t
fj(τ)dτ

)
we

find

nj(t) exp
(

+i
∫ t

fj(τ)dτ
)
i∂tϕ̃j(1; t) = i nj(t) ∂tϕj(1; t) + gj(t)ϕj(1; t). (5.44)

Hence, if we multiply Eq. (5.42) with exp
(
−i
∫ t
fj(τ)dτ

)
and use Eq. (5.43) to replace ϕj

by ϕ̃j we arrive at

i nj(t) ∂tϕ̃j(1; t) = nj(t)ĥ(1; t)ϕ̃j(1; t) (5.45)

+
∑
abd

γ2,abjd(t)
∫
vee(12)ϕ̃b(2; t)ϕ̃∗d(2; t) d2 ϕ̃a(1; t)

× exp
(
−i
∫ t

fj(τ)− fa(τ)− fb(τ) + fd(τ)dτ
)
.

Note that the phase factor in the last term of Eq. (5.45) does not vanish in general. Only
for particular choices of γ2 this phase reduces to exp(0) = 1. One possible form for γ2,ijkl(t)
is suggested by the structure of many functionals in ground-state RDMFT where γ2,ijkl is
approximated by

γ2,ijkl = zij (δikδjl − δilδjk) (5.46)
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with some matrix zij . Allowing in Eq. (5.46) for time-dependent matrices zij(t) and in-
serting this into Eq. (5.45) we find

i nj(t) ∂tϕ̃j(1; t) = nj(t)ĥ(1; t)ϕ̃j(1; t) (5.47)

+
∑

d

zjd(t)
∫
vee(12)ϕ̃d(2; t)ϕ̃∗d(2; t) d2 ϕ̃j(1; t)

× exp
(
−i
∫ t

fj(τ)− fj(τ)− fd(τ) + fd(τ)dτ
)

−
∑

d

zdj(t)
∫
vee(12)ϕ̃j(2; t)ϕ̃∗d(2; t) d2 ϕ̃d(1; t)

× exp
(
−i
∫ t

fj(τ)− fd(τ)− fj(τ) + fd(τ)dτ
)
.

For this special choice of γ2 the phases cancel and the final equation has a TDHF-like form
with generalized Hartree and exchange terms

i nj(t) ∂tϕ̃j(1; t) = nj(t)ĥ(1; t)ϕ̃j(1; t)

+
∑

d

zjd(t)
∫
vee(12)ϕ̃d(2; t)ϕ̃∗d(2; t) d2 ϕ̃j(1; t)

−
∑

d

zdj(t)
∫
vee(12)ϕ̃j(2; t)ϕ̃∗d(2; t) d2 ϕ̃d(1; t). (5.48)

5.2.4 Time-Dependent Hartree-Fock Limit

The equations of motion for the natural orbitals and occupation numbers reduce as special
case to the TDHF equations, if we consider the following limit

nj(t) ≡ 1, j = 1, . . . , N, nj(t) ≡ 0, ∀j > N, (5.49)

γ2,ijkl(t) = ni(t)nj(t)(δikδjl − δilδjk)

=

 δikδjl − δilδjk, i, j ≤ N

0, else

λ2,ijkl(t) = 0. (5.50)

The equations of motion for the natural spin orbitals then reduce to

i nj(t) ∂tϕj(1; t) = nj(t)ĥ(1; t)ϕj(1; t) (5.51)

−
N∑

d=1

nj(t)nd(t)
∫
vee(12)ϕd(2; t)ϕ∗d(2; t) d2ϕj(1; t)

+
N∑

d=1

nd(t)nj(t)
∫
vee(12)ϕj(2; t)ϕ∗d(2; t) d2ϕd(1; t).
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Using Eq. (5.49) and

ρ(1; t) = γ1(11; t) =
N∑

j=1

nj(t)ϕj(1; t)ϕ∗j (1; t) =
N∑

j=1

|ϕj(1; t)|2 (5.52)

we can write

i ∂tϕj(1; t) = ĥ(1; t)ϕj(1; t) +
∫
vee(12) ρ(2; t) d2ϕj(1; t)

−
N∑

d=1

∫
vee(12)ϕj(2; t)ϕ∗d(2; t) d2ϕd(1; t), (5.53)

which is the single-particle form of the TDHF equation. Note that because of λ2(t) ≡ 0 we
have i∂tnj(t) = 0 in Eq. (5.49), so that the occupation numbers are independent of time,
as expected for TDHF.

5.2.5 Adiabatic Extension of Ground-State Functionals

As in DFT one could think of extending existing ground-state functionals adiabatically to
the time-dependent domain. In TDRDMFT this amounts to replacing static occupation
numbers and natural orbitals with their time-dependent counterparts. Like for the adia-
batic LDA such a replacement is expected to be accurate, if the temporal change in the
system is small. The hope is then that the adiabatic functional also performs well, if larger
temporal changes arise during the evolution of the system. In this section we demonstrate
that this adiabatic procedure applied to presently known functionals in RDMFT always leads
to occupation numbers which are independent of time. In other words, such adiabatic ex-
tensions are not capable to reproduce the time-dependence of the occupation numbers at
all.

The functional form of most commonly used ground-state functionals in RDMFT, written
in the basis of the natural orbitals, can be summarized with the following expression

γ2,ijkl = fijklδikδjl − gijklδilδjk (5.54)

which contains Hartree (δikδjl) and exchange-like (δilδjk) terms. As example, for the Müller
functional [Mül84] we have

fijkl =
1
2
ni nj , gijkl =

1
2
√
ni nj , (5.55)

the self-interaction corrected functional of Goedecker and Umrigar [GU98] reads

fijkl =
1
2
(
ni nj − n2

i δijδikδil
)
,

gijkl =
1
2
(√
ni nj − niδijδikδil

)
,

(5.56)
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and the BBC1 functional of Baerends et al. [GPB05] has the form

fijkl =
1
2
ni nj ,

gijkl =
√
ni nj

(
1
2
− δilδjk(1− δij)Θ(i−N − ε)Θ(j −N − ε)

)
,

(5.57)

where Θ denotes the usual Heaviside step function and 0 < ε < 1. In a similar fashion
the BBC2/BBC3 functionals and the tensor product expansion of Csány and Arias [CA00]
can be written in the form of Eq. (5.54). Note that all functionals have the symmetry
gijkl = gjilk and all matrices fijkl, gijkl are real valued.
By replacing the static occupation numbers which appear in Eq. (5.54) with their time-
dependent counterparts and inserting this approximation for the two-body matrix into the
equation of motion for the occupation numbers (5.23) we arrive at

i ∂tnk(t) =
∑

j

(fkjjk(t)− f∗kjjk(t))〈 kj | vee | kj 〉(t)

+
∑

j

(g∗jkkj(t)− gjkkj(t))〈 jk | vee | kj 〉(t),
(5.58)

which shows that all functionals of the form (5.54) with real valued matrices fijkl, gijkl

cause a zero right-hand-side in (5.58). Hence, if this class of approximations is used for
the time evolution of the one-body matrix γ1, the occupation numbers stay constant in
time. This is a severe shortcoming of an adiabatic extension of present functionals of static
RDMFT which needs to be addressed in the development of future functionals for time-
dependent RDMFT. Possible functional forms that lead to a non-vanishing right hand side
in (5.58) would be

γ2,ijkl(t) = h(σik(t)σjl(t)− σil(t)σjk(t)) (5.59)

or
γ2,ijkl(t) = h((σij(t)− σji(t))(σkl(t)− σlk(t))), (5.60)

where σij is a non-diagonal real-valued matrix and h some Taylor-expandable function.
Alternatively, functionals with complex valued matrices could be employed.
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5.3 Obtaining Static Functionals from TDRDMFT

In static DFT an alternative route to express the ground-state energy of a many-particle
system is provided by the zero-temperature fluctuation-dissipation theorem [PN66]. Com-
bining the fluctuation-dissipation theorem with the linear response equation of TDDFT

[LP75, GL76, LG06] and utilizing a coupling constant integration allows one to express
the ground-state energy in terms of the exchange-correlation kernel fxc. In that way the
ground-state exchange-correlation functional can be expressed in terms of a functional
which has its origin solely in time-dependent DFT. In a similar spirit we use in the follow-
ing the time-dependent variant of RDMFT to construct a new class of functionals that can
be employed for ground-state calculations.
The new class of ground-state functionals is based on the stationary limit

i∂t λn = 0, n = 1, . . . , N (5.61)

of the equations of motion for the N -body correlations, Eq. (5.12). At this point we
emphasize that stationary N -body correlations do not necessarily imply that the ground
state of the system has been reached. The N -body correlations are stationary for an
arbitrary eigenstate of the many-body Hamiltonian that evolves freely in time. Inserting
the time evolution Ψj(t) = Ψj(0) exp(−iEjt) of such a state into the definition of the q-th
order reduced density matrix

γq(1, ..., q; 1′, ..., q′; t) := N

q

∫ Ψ(1, ..., q, q + 1, ..., N ; t)Ψ∗(1′, ..., q′, (q + 1), ..., N ; t) d3(q + 1)...d3N
(5.62)

shows that the energy phases cancel. Hence, all γq are independent of time in that particular
case. The same holds for the N -body correlations which can be seen directly from the
cluster expansion (5.8). Take as example n = 2. Then λ2 has the form

λ2(12, 1′2′; t) = γ2(12, 1′2′; t)− γ1(11′; t)γ1(22′; t) + γ1(12′; t)γ1(21′; t). (5.63)

Since the right hand side consists only of reduced density matrices which are constant in
time, λ2 is independent of time as well. The argument can be continued recursively for
higher order correlations if the cluster expansion in Eq. (5.8) is written in the form

λn = γn − ÂŜ
(n)

n−1∑
p=1

γn−pλp. (5.64)

Although the stationary condition in Eq. (5.61) does not guarantee that the ground state
has been reached, it provides nevertheless a useful condition. To explore this, let us consider
in the following the case n = 2. We truncate the hierarchy for the N -body correlations by
neglecting all terms that contain λn with n ≥ 3. If we furthermore express all remaining
terms of Eq. (5.12) in the basis of the natural orbitals, then the stationary limit in Eq. (5.61)
leads to a linear system of equations for the expansion coefficients λijkl (cf. Eq. (5.18)) of
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the two-body correlations. If we define

Λij := 〈 i | ĥ | j 〉+
∑

k

nk

(
〈 jk | vee | ik 〉 − 〈 kj | vee | ik 〉

)
, (5.65)

this linear system can be written as∑
ijkl

θabcd;ijkl λijkl = ζabcd, (5.66)

where the system matrix θabcd;ijkl has the following sparse form

θabcd;ijkl := Λaiδbjδckδdl + δai Λbjδckδdl − δaiδbj Λ∗ckδdl − δaiδbjδck Λ∗dl

+ δckδdl 〈 ij | vee | ab 〉 − δaiδbj 〈 cd | vee | kl 〉

+na

[
δbiδcl 〈 dj | vee | ka 〉 − δdkδcl 〈 ij | vee | ba 〉

+δbiδdk

(
〈 cj | vee | la 〉 − 〈 cj | vee | al 〉

)]
+nb

[
δaiδdl 〈 cj | vee | kb 〉 − δdkδcl 〈 ij | vee | ba 〉

+δaiδck

(
〈 dj | vee | lb 〉 − 〈 dj | vee | bl 〉

)]
+nc

[
δaiδbj 〈 dc | vee | lk 〉 − δaiδdl 〈 jc | vee | bk 〉

+δbiδdk

(
〈 cj | vee | al 〉 − 〈 jc | vee | al 〉

)]
+nd

[
δaiδbj 〈 cd | vee | kl 〉 − δbiδcl 〈 jd | vee | ak 〉

+δaiδck

(
〈 dj | vee | bl 〉 − 〈 jd | vee | bl 〉

)]
, (5.67)

and the right-hand side is given by

ζabcd :=
(
na nb − nc nd + na nc nd + nb nc nd

− na nb nc − na nb nd

)(
〈 cd | vee | ab 〉 − 〈 cd | vee | ba 〉

)
.

(5.68)

Given a set of natural orbitals and occupation numbers, the system matrix θabcd;ijkl and
the right hand side ζabcd can be constructed. The solution of the linear system then yields
coefficients λijkl for the two-body correlations which correspond to the input orbitals and
occupations. By virtue of condition (5.61) these coefficients correspond only to a stationary
many-body state, not necessarily to the ground state. However, from the coefficients
λijkl the reduced two-body matrix can be constructed and hence the expression for the
ground-state energy can be evaluated. If solving Eq. (5.66) is combined with the direct
minimization of the energy functional, then the stationary two-body correlation with the
lowest total energy can be found. In other words, for the evaluation of the functional one
performs a minimization of the total energy under the subsidiary condition of Eq. (5.66).
Alternatively, this minimization can be formulated in terms of Lagrange multipliers. The
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complete functional for the minimization can then be written in the form

G[{nj}, {ϕj}] = E[{nj}, {ϕj}] + S1[{nj}, {ϕj}] + S2[{nj}, {ϕj}], (5.69)

which includes the N -representability condition of Eq. (4.23)

S1[{nj}, {ϕj}] = µ

∑
j

nj −N

 (5.70)

and the stationary conditions for the two-body correlations

S2[{nj}, {ϕj}] =
∑
abcd

σabcd

∑
ijkl

θabcd;ijkl λijkl − ζabcd

 , (5.71)

where µ and σabcd denote Lagrange multipliers.
So far we have restricted ourselves to n = 2. The above prescription can be extended to
include higher order stationary conditions. In general, the truncation of the hierarchy for
the N -body correlations at order n neglects all terms that contain λp with p ≥ n + 1.
Expressing the remaining terms again in the basis of the natural orbitals and using the
stationary conditions (5.61) leads to a set of coupled equations for higher order N -body
correlations which have to be solved concurrently. As in the case n = 2 above, the solution
then leads to stationary coefficients λijk..xyz which can be used in combination with a direct
minimization of the energy functional to find the lowest energy state of the system.
We note in passing that the size of the system matrices scales as q2n × q2n, where q is the
number of natural orbitals that are used in the direct minimization and n is the order of the
N -body correlations which are used for the functional. For small to medium size molecules
typically q = 10 to q = 40 natural orbitals are sufficient to converge the ground-state
energy of the system in the direct minimization process. Considering the lowest stationary
order, i.e. n = 2, the matrix in (5.67) has a size of 10.000×10.000 to 2.560.000×2.560.000.
Due to the large size and the sparse form of the system matrix θabcd;ijkl it is advantageous
in practice to use iterative schemes to solve Eq. (5.66). This also has the benefit that the
solution from the previous minimization step can be used as starting value for the next
step in the minimization process.
Since all possible index combinations for the Coulomb matrix elements 〈 ij | vee | kl 〉 enter
the description, we expect the presented class of functionals to behave differently compared
to existing functionals in RDMFT which only utilize Hartree or exchange-like combinations
for the indices. On the other hand this feature also increases the computational cost since
more matrix elements need to be evaluated.
As noted in section 5.1.2, if all λn with n ≥ 3 are neglected, the remaining terms in
the equation of motion for the two-body correlations correspond to a screened-ladder ap-
proximation. In a diagrammatic language the approximation contains an infinite ladder
summation (summation of the complete Born series) and in addition considers an infi-
nite bubble summation over all polarization contributions. This level of approximation is
therefore able to describe strongly coupled polarizable systems.
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5.4 Applications

Theory without practice cannot survive
and dies as quickly as it lives.

— Leonardo da Vinci, (1452-1519), cited from [Mor72].

In the following sections we investigate the time-dependence of natural orbitals and occu-
pation numbers for two prototypes of dynamical systems: (i) atoms in strong laser fields
and (ii) electron-ion scattering. Unfortunately, as shown in section 5.2.5, currently all func-
tionals that are available in TDRDMFT cause time-independent occupation numbers. For
this class of approximations the solution of the equations of motion of TDRDMFT therefore
gives no insight in the temporal evolution of the occupation numbers. We therefore take a
different route here. To assess the time evolution of both, the natural orbitals and the oc-
cupation numbers we restrict ourselves to one spatial dimension where the full many-body
Schrödinger equation can be solved numerically for small atomic systems. Having the full
time-dependent many-body wavefunction at hand we then compute the reduced one-body
density matrix via Eq. (5.62). The natural orbitals and occupation numbers are subse-
quently found at every instant in time by direct diagonalization of the one-body matrix.
This procedure allows us to extract - at least numerically - the exact time-dependence of
the occupation numbers and natural orbitals and establishes an exact reference which can
be used in the future for the development of new functionals in TDRDMFT.
This section is organized as follows: First, we introduce in section 5.4.1 the notion of
a time-dependent correlation entropy which is used later in the applications to monitor
the particle correlations during the time evolution of the system. Section 5.4.2 briefly
introduces optimal control theory which is utilized to find optimal laser pulses for the
atomic transitions that are considered in section 5.4.4. In section 5.4.3 we introduce the
one-dimensional model system which serves as an exact reference for the calculation of the
time-dependent natural orbitals and occupation numbers. We investigate some ground-
state properties of the model before we turn our attention in sections 5.4.4 and 5.4.5 to
our actual objective, the time evolution of natural orbitals and occupation numbers.

5.4.1 Correlation Entropy

Terms like weak correlation or strong correlation are used frequently in many-body theory.
In this section we review a quantitative measure to determine the degree of correlation in
many-body states. We extend this correlation measure to the time-dependent case and
also show how a spatially resolved correlation measure can be defined in a time-dependent
context.

If a many-body state is described by a single Slater determinant then the corresponding
reduced one-body density matrix is idempotent

Tr(γ1 − γ2
1) = 0. (5.72)

If many Slater determinants contribute significantly to the state, then the reduced one-
body matrix is not idempotent anymore and the trace in (5.72) starts to differ from zero.
The deviation from exact idempotency can be used to introduce a possible measure of
correlation. However, it seems arbitrary to use the second power of γ1 in Eq. (5.72). Any
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higher power of γ1 would yield a viable measure for the deviation from exact idempotency as
well. In general, one can introduce a q-th order non-idempotency per particle [Zie95, Zie00]
with the following expression

c(q) = 1− 1
N

Tr γq
1 = 1− 1

N

∑
k

(nk)q, q ≥ 0. (5.73)

This function starts at q = 1 with c(1) = 0 and saturates for q →∞ with c(∞) = 1. The
ascent at q = 1 is increasingly steep with enhanced correlation. This fact allows to define
a q-independent correlation measure by considering the derivative of c(q) at q = 1

s :=
d

dq
c(q)

∣∣∣
q=1

= − 1
N

Tr γ1 ln γ1 = − 1
N

∑
k

nk lnnk. (5.74)

The expression in Eq. (5.74) has the form of an entropy and is therefore called correlation
entropy [Col93, Zie95]. Defined in this way, the correlation entropy is a global scalar
quantity that summarizes the overall correlation of the wavefunction. In some applications
it might be of interest in which regions of space the correlations in the system are most
pronounced. Using the natural orbitals ϕk(r), one can define for such purposes a spatially
resolved correlation entropy

s(r) := − 1
N

∑
k

nk lnnk|ϕk(r)|2. (5.75)

The correlation entropy of Eq. (5.74) was so far only considered for static systems [Col93,
Zie95, GJPZ97, Zie00]. For the applications that we present in the following sections we
extend this correlation measure to the realm of time-dependent many-body states. To that
end we replace the ground-state occupation numbers in Eq. (5.74) by their time-dependent
counterparts and define a time-dependent correlation entropy

s(t) := − 1
N

Tr γ1(t) ln γ1(t) = − 1
N

∑
k

nk(t) lnnk(t). (5.76)

For time-dependent processes in many-body systems, like scattering events, chemical re-
actions, or also for systems under the influence of external drivings, this function allows
to monitor the increase or decrease of correlations during the temporal evolution of the
system. Similar to the static case a spatially resolved correlation entropy s(r; t) can be
introduced with help of the time-dependent natural orbitals

s(r; t) := − 1
N

∑
k

nk(t) lnnk(t)|ϕk(r; t)|2. (5.77)

5.4.2 Optimal Control Theory

In this section we give a very brief overview of optimal control theory (OCT), which we use
in section 5.4.4 to study the time-dependence of natural orbitals and occupation numbers
during laser excitation.
The objective of optimal control theory is to find an optimal laser pulse ε(t) which drives
the quantum state |Ψ(t) 〉 of the system in a finite time interval T from a given initial state
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|Φi 〉 to a prescribed target state |Φf 〉. We remark that the pulse shape ε(t) corresponds
to a simple CW laser with frequency ω = (Ef − Ei)/~ if we consider the linear response
regime and take the limit T →∞. However, it differs quite substantially from a CW pulse
if T is finite and of the order of a few femto- or picoseconds (ωT ≈ O(1)). Thinking of
an atomic or molecular system, one typically selects the ground state as initial state and
some excited state of the system as target state. Mathematically, the optimum that can
be achieved within a finite time T corresponds to the maximum of the following overlap
functional

J1[Ψ] = | 〈Ψ(T ) |Φf 〉 |2. (5.78)

To adjust the significance of the laser intensity, the total fluence of the pulse is weighted
with a penalty factor α0 ≥ 0

J2[ε] = −α0

∫ T

0
ε2(t) dt. (5.79)

The larger the intensity of the pulse, the smaller is the sum J1 + J2. Finally, we require
that the system obeys the time-dependent Schrödinger equation, i.e. that the state |Ψ(t) 〉
actually represents a time-evolved quantum state. This can be written as

J3[Ψ, χ, ε] = −2 Im
∫ T

0

〈
χ(t)

∣∣∣(i∂t − Ĥ(t)
)∣∣∣Ψ(t)

〉
dt, (5.80)

where χ(t) plays the role of a Lagrange multiplier. The dependence of J3 on the laser field
ε(t) enters through the Hamiltonian Ĥ of the system.
In summary, the optimal laser pulse ε(t) for the transition i→ f maximizes the functional

J [χ,Ψ, ε] = J1[Ψ] + J2[ε] + J3[χ,Ψ, ε]. (5.81)

The extrema of J can be found by setting the total variation of the functional to zero

δJ = δΨJ + δχJ + δεJ = 0, (5.82)

which is, in this case, equivalent to

δΨJ = 0, δχJ = 0, δεJ = 0, (5.83)

since the variables χ,Ψ, ε can be considered as independent. Evaluating Eq. (5.83) leads
to the following set of coupled differential equations

δΨJ = 0 :
(
i∂t − Ĥ(t)

)
|χ(t) 〉 = i (|χ(t) 〉 − |Φf 〉 〈Φf |Ψ(t) 〉) δ(t− T ),

δχJ = 0 :
(
i∂t − Ĥ(t)

)
|Ψ(t) 〉 = 0, |Ψ(0) 〉 = |Φi 〉 , (5.84)

δεJ = 0 : α0 ε(t) = −Im 〈χ(t)|µ̂|Ψ(t)〉. (5.85)

For solutions |χ(t) 〉 which are continuous at t = T , the first equation is equivalent to(
i∂t − Ĥ(t)

)
|χ(t) 〉 = 0, |χ(T ) 〉 = |Φf 〉 〈Φf |Ψ(T ) 〉 , (5.86)
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which shows that the Lagrange multiplier satisfies the TDSE with an initial condition at
the end of the time interval, i.e. at t = T .
The expressions in (5.84)-(5.86) together with the boundary conditions comprise the control
equations. Their solution corresponds to a stationary point of the control functional J . At
this point we emphasize that solutions of the control equations do not allow for a laser pulse
which results in 100% overlap with a final state |Φf 〉 6= |Φi 〉. This can be proven by contra-
diction. Suppose a pulse ε(t) is known which yields perfect overlap, i.e. 〈Φf |Ψ(T ) 〉 = 1.
Since we excluded the trivial case of no transition, i.e. |Φf 〉 = |Φi 〉, this pulse must have
a finite fluence ∫ T

0
ε2(t) dt > 0. (5.87)

For perfect overlap the initial state for the Lagrange multiplier in (5.86) becomes

|χ(T ) 〉 = |Φf 〉 = |Ψ(T ) 〉 . (5.88)

In addition, the Hamiltonians in (5.84) and (5.86) are identical for the optimal pulse.
Hence, the time-evolution operators for |χ(t) 〉 and |Ψ(t) 〉 are the same and by acting with
Û(t, T ) on (5.88) we arrive at

Û(t, T ) |χ(T ) 〉 = Û(t, T ) |Ψ(T ) 〉 ⇒ |χ(t) 〉 = |Ψ(t) 〉 (5.89)

Inserting this in (5.85) yields

α0 ε(t) = −Im 〈Ψ(t)|µ̂|Ψ(t)〉 = 0, (5.90)

which contradicts our initial assumption of |Φf 〉 6= |Φi 〉.

Experience shows that the overlap (5.78) often exceeds a value of 90%, which is sufficient
for almost all practical applications3.
In section 5.4.2 we solve these equations with an iterative scheme that was proposed in
Ref. [ZBR98]. Using the control equations we compute optimal laser pulses which drive the
system from the ground state to the first excited state. Along the path of this transition
we compute the natural orbitals and the occupation numbers as functions of time.

3 Provided the system is controllable, i.e. that the target state can actually be reached in finite time
T with some time-evolution operator Û(T, 0) that originates from the system Hamiltonian. Not all
systems share this property. For a more detailed discussion of controllability we refer the reader to
Refs. [HTC83, PDR88, RSD+95, SFS01].
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5.4.3 Model System

Time-dependent occupation numbers and natural orbitals are a largely unexplored domain.
Not much is known about the quantitative behavior of the time evolution that occupation
numbers and natural orbitals undergo in various physical processes. It is therefore desirable
to study a reference system which allows - at least numerically - for an exact solution of
the many-body TDSE. This reference can then be used in turn to construct approximate
functionals for TDRDMFT. The aim of the present section is to provide and to characterize
such a reference system. We utilize a model which has been used extensively for the
theoretical description of atoms and molecules in intense laser fields [SE91]. Originally,
the idea for the model was based on the observation that the motion of the electrons in
strong laser fields is mainly directed along the polarization axis of the laser. It therefore
seems appealing to reduce the complexity of a three dimensional treatment by restricting
the motion of the electrons to one spatial dimension. In the model the 3D Coulomb
interactions are replaced by soft Coulomb interactions in 1D according to

1√
x2 + y2 + z2

−→ 1√
x2 + ζ2

. (5.91)

Here, ζ is a constant and plays the role of a softening parameter. It has been shown
that this model reproduces qualitatively non-linear phenomena, such as multi-photon ion-
ization (MPI) [ESJ89, PGB91] above-threshold ionization (ATI) [GE92, GE93, SF94], or
high-harmonic generation (HHG) [LSW+96]. The model has also proven useful to study
correlation effects of atomic systems in strong laser fields [Bau97, LvL98, LGE00]. Despite
the appealing properties of the model, it is important to keep in mind that the reduction to
one spatial dimension also introduces some shortcomings. For example, no angular distri-
butions can be investigated, circular laser polarizations cannot be treated and the energy
spectra of model potentials in 1D are lacking many of the level degeneracies which are
present in three spatial dimensions.

For the time propagations that we present in the following sections we consider a two-
electron system which is described by the Hamiltonian

Ĥλ =
p̂2
1

2
+
p̂2
2

2
− 2√

x̂2
1 + ζ2

− 2√
x̂2

2 + ζ2
(5.92)

+
λ√

(x̂1 − x̂2)2 + ζ2
.

A softening parameter of ζ = 1 is employed. To vary the degree of correlation in the many-
body wavefunction we introduce a coupling constant λ in the Hamiltonian which controls
the strength of the electron-electron interaction.
Before we investigate the time evolution of the natural orbitals and occupation numbers for
this model we first summarize some ground-state properties of the system. This summary
places special emphasis on density matrices, natural orbitals and occupation numbers to
set the stage for the following sections.
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Ground-State Description of the Model System

We have calculated the exact ground state and several of the lowest excited states of the
interacting Hamiltonian (5.92). To that end a nine-point finite-difference discretization of
the kinetic energy has been performed and the real-space representation of the Hamilto-
nian has been diagonalized with a preconditioned Lanczos-scheme [SSC+96]. From the
correlated eigenstates we have computed the reduced one-body density matrix and have
extracted natural orbitals and occupation numbers.

In Table 5.1 we summarize the eigenenergies Ej , correlation entropies sj , and occupation
numbers nk for two different values of the interaction strength λ. All occupation numbers
are spin-degenerate and we only list the values for one of the spin channels. To compare
to the interacting values in the table, let us first recall the non-interacting case, i.e. λ = 0.
The two-electron wavefunction for the ground state and lowest singly-excited states of

Table 5.1: Eigenenergies Ej , correlation entropies sj , and occupation numbers for the correlated
eigenstates of Helium at coupling parameters λ = 1.0 (upper panel) and λ = 1.5 (lower panel of the
table). The symmetry of the eigenstates of the 1D model is alternating with increasing j which we
indicate with S (singlet) and T (triplet).

λ = 1 Eq. (5.74) Occupation Numbers

Eigenstate j Ej sj n1 n2 n3 n4

0 S -2.238258 0.02717 0.99095 0.00830 0.00071 0.00003
1 T -1.816070 0.35507 0.49880 0.49880 0.00118 0.00118
2 S -1.704655 0.35493 0.49882 0.49882 0.00118 0.00118
3 T -1.643550 0.35832 0.49825 0.49825 0.00174 0.00174
4 S -1.628780 0.36570 0.56226 0.42873 0.00851 0.00045
5 T -1.582463 0.35107 0.49943 0.49943 0.00056 0.00056
6 S -1.566512 0.35037 0.49953 0.49953 0.00047 0.00047
7 T -1.549178 0.34946 0.49966 0.49965 0.00034 0.00034
8 S -1.545593 0.35535 0.53001 0.46685 0.00302 0.00009

λ = 1.5

0 S -1.905931 0.06459 0.97411 0.02319 0.00262 0.00006
1 T -1.625570 0.36854 0.49632 0.49632 0.00365 0.00365
2 S -1.545842 0.36457 0.49707 0.49707 0.00293 0.00293
3 T -1.536331 0.35894 0.49813 0.49813 0.00185 0.00185
4 S -1.528424 0.35300 0.56662 0.43000 0.00259 0.00074
5 T -1.515078 0.35156 0.49935 0.49935 0.00064 0.00064
6 S -1.505208 0.35128 0.49939 0.49939 0.00061 0.00061
7 T -1.502949 0.34949 0.49965 0.49965 0.00035 0.00035
8 S -1.501087 0.34881 0.53282 0.46634 0.00068 0.00015
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Parahelium have the form4

Ψ0(1, 2) = ψ0(r1)ψ0(r2)χ(1, 2),

Ψj(1, 2) =
1√
2

(ψ0(r1)ψj(r2) + ψj(r1)ψ0(r2))χ(1, 2), j > 0,

χ(1, 2) =
1√
2

(α(1)β(2)− β(1)α(2)). (5.93)

where α(j), β(j) denote the usual spin functions and we use as cumulative index j ≡ (nml).
With the wavefunctions in (5.93) the reduced one-body matrices for the ground state and
the singly-excited states become simply

γ
(0)
1 (1, 2) = ψ0(r1)ψ∗0(r2) η(1, 2),

γ
(j)
1 (1, 2) =

1
2
(
ψ0(r1)ψ∗0(r2) + ψj(r1)ψ∗j (r2)

)
η(1, 2), j > 0,

η(1, 2) = α(1)α(2) + β(1)β(2). (5.94)

Here, and in the following, we use an upper label (j) to indicate the index of the eigenstate
to which density matrices, occupation numbers and natural orbitals belong. As expected,
the result in (5.94) shows that ground and excited states have the single-particle states
ψj(r1)σ(1), σ = α, β as natural spin orbitals. In the ground state only the lowest occupation
numbers n(0)

1α , n
(0)
1α are non-zero with n

(0)
1α = n

(0)
1β = 1. For all singly-excited states the

occupation numbers are n(j)
1α = n

(j)
1β = 1/2 and n

(j)
kα = n

(j)
kβ = 1/2 δjk,∀k > 1. In other

words, there are always four spin orbitals occupied by 1/2, all others have zero occupation.
The same statements hold for singly-excited Orthohelium, where only the symmetries of
spatial and spin wavefunction are reversed. Let us now consider the interacting case λ = 1.
As can be seen in the table, in the ground state (j = 0) the lowest orbital (k = 1) has
an occupation number of of n(0)

1 = 0.99095, i.e. this orbital is almost fully occupied. All
other orbitals have only very small occupations which decrease rapidly with the order of
the orbital k. This closely resembles the non-interacting picture where the 1s orbital is
doubly occupied and all remaining orbitals have zero occupation. The electron-electron
interaction causes only a slight deviation from this picture. In other words the system has
to be considered as weakly correlated. This can also be seen from the small magnitude of
the correlation entropy s0(λ = 1.0) = 0.02717 which indicates only a slight deviation from
exact idempotency for the reduced one-body matrix of the ground state. Next, consider
the first excited triplet state (j = 1, Orthohelium) and the first excited singlet state (j = 2,
Parahelium). As discussed above, in both cases the lowest two orbitals (1s, 2p) in each spin
channel are half occupied in the non-interacting case. Only the spin symmetry changes
from anti-symmetric (Parahelium) to symmetric (Orthohelium). Here, in the interacting
case the deviation from the non-interacting picture is more pronounced than in the ground
state with occupation numbers of 0.49880 for Orthohelium and 0.49882 for Parahelium. A
similar picture is found for all other excited states with j > 3. Note that the occupation
numbers have been ordered according to magnitude, so that the orbitals which correspond
to k = 1, 2 are not always 1s or 2p orbitals, but can become other orbitals if excited

4 States where both orbitals are excited (doubly-excited states), are located energetically above the He+

threshold in the first continuum of Helium. For brevity these autoionizing levels are not considered for
the present example.
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Figure 5.1: Lowest 6 natural orbitals which correspond to the reduced one-body density matrix
of the ground state Ψ0 and the three lowest excited states Ψj , j = 1, 2, 3 of Helium.
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states with larger j are considered. As can be seen in the table, for the excited states
there are some cases (j = 4, j = 8 and higher excited states), where the interaction causes
the lowest occupation numbers to exceed the non-interacting value of 1/2. In these cases
the second lowest occupation numbers experience a stronger leakage and more weight is
shifted into the third and higher order occupation numbers. We also emphasize that the
correlation entropy for excited states is sizeable compared to the ground state which shows
that all excited states have to be considered as more strongly correlated than the ground
state. The whole picture remains similar for the case λ = 1.5. The eigenenergies Ej of the
two-electron Hamiltonian are all shifted upwards due to the larger (positive) contribution
of the electron-electron interaction. The stronger repulsion among the electrons causes
the occupation numbers to deviate more strongly from the non-interacting case than for
λ = 1.0. However, even for this interaction strength the system still has to be considered
as weakly correlated.
In Fig. 5.1 we plot the natural orbitals for the ground state and a few excited states at
different interaction strengths λ. It is interesting to observe that in the interacting case
the natural orbitals ϕ(j)

k , j > 0 of excited states differ quite substantially from the natural
orbitals ϕ(0)

k of the ground state. Recall from our example above that they are identical
for non-interacting particles. This shows, that excited states cannot be constructed simply
by keeping the natural orbitals of the ground state and modifying the occupation numbers
only. Hence, besides the modification of the occupation numbers, a change in the natural
orbitals is also required to construct excited states in RDMFT. Already at this point we
can therefore conclude that the transition from the ground state of Helium to one of the
excited states involves a change in the occupation numbers as well as a change in the
natural orbitals. From the above discussion, the largest modification is expected for

n
(0)
1 → n

(j)
1 , n

(j)
2 ϕ

(0)
1 → ϕ

(j)
1 , ϕ

(0)
2 → ϕ

(j)
2 j > 0. (5.95)

Transitions among excited states i→ j

n
(i)
1 , n

(i)
2 → n

(j)
1 , n

(j)
2 ϕ

(i)
1 → ϕ

(j)
1 , ϕ

(i)
2 → ϕ

(j)
2 i, j > 0 (5.96)

have a smaller effect on the occupation numbers, while the modifications of the orbitals
are comparable to (5.95). This will become more evident in section 5.4.4 where we follow
the actual time evolution of the orbitals and occupation numbers during the transition.
In Fig. 5.2 we display the reduced one-body matrices for a few of the lowest eigenstates
of our one-dimensional Helium at different interaction strengths λ. In all cases a stronger
coupling of the electrons causes a larger spread of the density matrices. The reduced one-
body matrices of higher excited states show an intriguing nodal structure as can be seen
from the contour lines in the last two rows of the figure.
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Figure 5.2: Real-space representations of reduced one-body density matrices γ(j)
1 (x, y) for a few

of the lowest singlet eigenstates Ψj of correlated Helium at different interaction strengths λ.
The left, center and right column contain the matrices which correspond to λ = 0.5, λ = 1.0
and λ = 1.5. In each row we indicate at the left border which eigenstate Ψj has been used to
compute the one-body matrices in the respective row. The density matrices of the ground state
Ψ0 and the second excited state Ψ2 in the first two rows are shown on a scale from -12.5 a.u. to
+12.5 a.u. The reduced one-body matrices of the 6th and 9th excited state are spatially more
extended and are shown in a range from -100 a.u. to +100 a.u.
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5.4.4 Atoms in Strong Laser Fields

To study laser induced transitions in the Helium atom we add an external dipole laser field
of the form

V̂ (x̂1, x̂2; t) = (x̂1 + x̂2) ε(t) (5.97)

to the Hamiltonian Ĥλ in Eq. (5.92). We use standard optimal control theory as introduced
in section 5.4.2 to find the optimal laser pulse ε(t) which drives the atom in a finite time-
interval [0, T ] from some initial state Ψi(1, 2) to a final state Ψf (1, 2). With this approach
we have the correlated wavefunction for the full temporal path of the atomic transitions at
hand. For a given instant in time we then construct the reduced one-body density matrix
from the wavefunction and diagonalize the matrix to find natural orbitals and occupation
numbers.
As first example we consider the transition from the ground state Ψ0(1, 2) of Helium to
the first excited singlet state Ψ2(1, 2) at an interaction strength λ = 1. In table 5.2 we
summarize the parameters that we employed for the laser pulse optimization with OCT. We
have chosen a time-interval [0, T ], with T = 250 a.u., which corresponds to a propagation
time of 6.025 fs. As initial laser pulse for the OCT iteration we use a CW pulse with an
intensity I0 = ε(0)2 of 1.4 × 1013 W/cm2. To constrain the optimization of the laser we
employ an additional time-dependent penalty factor in Eq. (5.84) with the form

α(t) = α0 e
−(t−T/2)2/σ2

. (5.98)

This Gaussian is centered at the middle of the optimization interval and ensures that the
laser pulses turn on and off smoothly in time. For all pulse optimizations we have performed
12 OCT iterations which have been sufficient to achieve saturation for the absolute value
of the control functional J in Eq. (5.81).
In Fig. 5.3, we display the optimal laser pulse, occupation numbers, and the correlation
entropy for the transition to the first excited singlet state as function of time for the two
different interaction strengths λ = 1.0 and λ = 1.4. For λ = 1.0, the optimal pulse
contains three trains which also become visible in the occupation numbers. The smaller
occupation number (green line) increases every time a pulse train decays from the maximum
of its envelope till the end of the corresponding pulse segment. In other words, there is a
small delay after each pulse surge until internal rearrangements in the wavefunction start
to appear. The largest occupation number (red line) behaves inversely, i.e. the spectral
weight that the second largest occupation number gains during the transition is mainly
taken away from the largest occupation number. At the end of the optimization interval,

Table 5.2: Parameters for the time propagations in the iterative OCT scheme. For all pulse opti-
mizations a total of 12 OCT iterations have been performed.

xmin...xmax ∆x T ∆t I0 α0 σ

(a.u.) (a.u.) (a.u.) (a.u.) W/cm2 (a.u.) (a.u.)

-20 ... 20 0.2 250 0.025 1.4× 1013 2.5 60
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Figure 5.3: Optimal laser pulse ε(t), correlation entropy s(t), and the two largest occupation
numbers nk(t) as function of time during the transition from the ground state to the first excited
state of Helium. In the left panel an interaction strength of λ = 1.0 has been employed and in the
right panel we used λ = 1.4.
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Figure 5.4: Left panel: Same as Fig. 5.3, but here we consider an interaction strength of λ = 0.6.
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the exact occupation numbers of the first excited state (cf. table 5.2) have not been reached
completely. This can be attributed to the fact that not 100% overlap with the target state
has been achieved during the pulse optimization. In table 5.3 we summarize the achieved
wavefunction overlaps for the lowest singlet and triplet transitions at various interaction
strengths λ. We also indicate with the ratio nk(T )/n(f)

k how close the occupation numbers
of the optimized state resemble the occupations of the target state. The sensitive behavior
of the occupation numbers is surprising. From the first row of the table we infer that there
are cases in which the wavefunction overlap exceeds 99%, but the occupation numbers
still differ by more than 16% from the target occupations. From this very susceptible
behavior we conclude that occupation numbers provide a very characteristic fingerprint of
a many-body state. This suggests their use as a complement or even as an alternative to
the wavefunction overlap in the OCT functional J of (5.81) to measure the quality of the
optimized state |Ψ(T ) 〉. This would also provide a starting point for combining TDRDMFT

and OCT.
Next, consider the correlation entropy s(t). As in the ground state at t = 0, the correlation
entropy is mainly dominated by the second largest occupation number n2(t) during the
whole laser excitation. The shape of the entropy closely follows the temporal evolution
of n2(t). During the transition the entropy rises considerably in magnitude which shows
that the reduced one-body matrix of the system is departing more and more from exact
idempotency while the excited state is approached.
The optimal pulses behave qualitatively quite differently for the cases λ = 1.4 and λ = 0.6
which we show in the right panel of Fig. 5.3 and in the left panel of Fig. 5.4, respectively.
In the case λ = 0.6 only two smoothly connected pulse trains are visible while the pulse
for λ = 1.4 shows mainly a single train with a long plateau on the backside. Again,
the pulse structure is directly visible in the occupation numbers. For λ = 0.6 the lower
occupation number rises in two successive steps after about t = 130 a.u. and t = 200 a.u.,
which corresponds to the onset of the two trailing edges of the optimal pulse. Likewise, in

Table 5.3: The table summarizes the reached overlaps of the optimized wavefunctions with the
target state after 12 OCT iterations. We also indicate how much the occupation numbers deviate
from the target occupations at the end of the optimization interval.

λ Transition (i→ f) | 〈Ψ(T ) |Φf 〉 |2 n1(T )/n(f)
1 n2(T )/n(f)

2

(a.u.) % % %

0.5 0 → 2 99.18 116.29 83.53

1 → 3 98.21 108.11 91.56

1.0 0 → 2 98.59 122.58 77.04

1 → 3 97.93 115.52 84.47

1.5 0 → 2 94.30 131.72 68.21

1 → 3 86.67 115.14 84.85
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the case of λ = 1.4, the first larger increment in the second occupation number starts to
appear when the first pulse train decays. Due to the consecutive plateau in the laser pulse
the occupation number continues to increase smoothly. In all cases the largest occupation
number evolves inversely to the second largest occupation number. Other occupation
numbers do not come into play for the present two-electron model. This is expected to be
different when more electrons are involved.
Finally, in the right panel of Fig. 5.4, we consider the transition from the first to the second
excited triplet state. Contrary to the transitions from the ground state, here the largest
occupation number initially gains spectral weight but then returns close to its original value
at the end of the time-interval. This gain is mostly at the expense of the second largest
occupation number which behaves inversely to the first, as in the cases above. From the
correlation entropy s(t), it can be seen that the level of non-idempotency of the one-
body matrix remains approximately the same during the whole transition. This is already
suggested by table 5.2, where all excited states are shown to have a correlation entropy
of similar magnitude. For the transition among excited states of Helium the correlation
entropy is no longer dominated by only a single occupation number. Here the two largest
occupation numbers contribute on an equal footing.
The qualitatively quite different pictures of time-dependent occupation numbers at different
coupling strengths λ show how dominantly the electron-electron interaction influences the
transition to the first excited state. At this point we emphasize that time-dependent
approaches like TDHF, or TDDFT which are based on a single-determinant picture do not
capture the time-dependence of the occupation numbers at all, since by construction the
occupation numbers stay in both theories frozen at their initial values of 0 or 1. It will
be a challenging task in TDRDMFT to develop new functionals which recover the time-
dependence of the occupation numbers at least qualitatively.
To conclude this section, we consider the time evolution of the natural orbitals. In Fig. 5.5
we plot, (a) the diagonal of the reduced one-body matrix ρ(x; t) = γ1(x, x; t) and (b), (c) the
orbital density |ϕj(x; t)|2 for the natural orbitals with the two largest occupation numbers
for two different interaction strengths λ = 1.0 and λ = 1.5. Both natural orbitals show
nicely the electronic quiver motion in the laser field. For λ = 1.0 the quiver amplitude
of the second orbital, Fig. 5.5 (c) is almost twice as large compared to the first orbital,
Fig. 5.5 (b). During the laser cycles charge is shuffled from the left side to the right side
of the atom and vice versa, which can be seen in the alternating maxima that appear left
and right from the nucleus. Initially it is evident that the natural orbital with the largest
occupation number contributes almost exclusively to the total density. But during the
course of time the second occupation number starts to increase (cf. Fig. 5.3) so that the
second natural orbital also starts to contribute to the density. Similar behavior can be
observed for an interaction strength of λ = 1.5 for which we depict the density and the
partial orbital densities in Figs. 5.5 (d)-(f) respectively. In the case of stronger electron-
electron interaction the quiver motion is more enhanced. Since the electrons repel each
other more strongly it is easier for the laser to distribute the charge across the system.
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Figure 5.5: Left column: (a) time evolution of the electron density γ1(x, x; t) and (b), (c) the
orbital density |ϕj(x; t)|2 for the two natural orbitals with the largest occupation numbers for the
case λ = 1.0. Right column: same as the left column, but for λ = 1.5. The natural orbitals show
nicely the quiver motion of the electrons in the strong laser field. A larger quiver amplitude is
observed for the interaction strength λ = 1.5.
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5.4.5 Electron-Ion Scattering

As a second prototypical situation for time propagations, we consider e− – He+ scatter-
ing. In table 5.4 we list the numerical parameters that have been employed for the time
propagations. We investigate two different parameter sets which are indicated in the ta-
ble with case (i) and (ii), respectively. For the initial state of the propagation we use an
antisymmetric spin-singlet product wavefunction formed from a Gaussian wave packet

ψ(x) = exp(−(x− x0)2/σ2) exp(−k0x) (5.99)

which represents the incoming electron and the ground state φ0(x) of the He+-ion. In
case (i) the incoming electron is located closer to the ionic core, has a smaller momentum
k0 and is spatially more delocalized compared to case (ii). Note that we start with an
uncorrelated state (Slater determinant), but evolve this initial state under the interacting
Hamiltonian (5.92). The reduced one-body matrix of the system is therefore idempotent
at t = 0, but becomes non-idempotent during the evolution in time. This is nicely reflected
in the correlation entropy in Fig. 5.6 (a), where we consider case (i). The correlation
entropy starts with s = 0 at t = 0 and increases during time. From Fig. 5.7 we infer that
at approximately t = 30 a.u. the wave packet of the incoming electron has arrived at the
ionic core. While the electron approaches the ion, the occupation numbers start to deviate
from their determinantal values. After the collision transmitted and reflected waves leave
the ionic core (cf. 5.7 (a)) and the occupation numbers return to their original values. At
the same time the correlation entropy drops again to zero. This indicates that in this case
the many-body state after the collision is again well represented by a Slater determinant.
Next, we consider the scattering process for different interaction strengths λ. As expected,
Fig. 5.6 shows that for an interaction strength of λ = 1.5 (green lines) the correlations
are enhanced compared to λ = 1.0 (red lines). However, this trend is not continued if the
interaction is increased further to λ = 2.0. In that case the electron-electron repulsion is
already so strong that the initial wave packet is mostly scattered back, as can be seen from
Fig. 5.7 (b). The initial surge in the entropy and the occupation numbers is larger for
λ = 2.0, but also decays faster due to the strong backscattering.
In Fig. 5.8 we consider the parameter set (ii) from table 5.4. The overall picture remains
similar to the case (i). However, now the occupation numbers do not decay to zero right
after the collision. Instead they saturate at non-zero values. The same behavior is found

Table 5.4: Numerical parameters used in the time propagation of e− – He+ scattering for the two
examples (i) and (ii) as considered in the text. A total of 2,560,000 grid points have been used for
the representation of the wavefunction.

Case x0 k0 σ xmin...xmax ∆x T ∆t

(a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.)

(i) -15.0 0.3 5.0

(ii) -25.0 0.5 2.0
-240 ... 240 0.3 300 0.01
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Figure 5.6: (a) Correlation entropy of e− – He+ scattering for different interaction strengths λ.
(b), (c) Occupation numbers for the first and third natural orbital, respectively.
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Figure 5.7: Space-time plot of the electron density for e− – He+ scattering. (a) λ = 1.0, (b) λ = 2.0.
In both cases the parameter set of case (i) (cf. table 5.4) has been used.
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Figure 5.8: Correlation entropy and occupation numbers of e− – He+ scattering for different inter-
action strengths λ: Similar to Fig. 5.6, but for the parameters of case (ii).

in the correlation entropy, 5.8 (a). This shows that the many-body state does not return
immediately after the scattering process to a product form, as observed for case (i).
To conclude this section, we show in Figs. 5.9 and 5.10 some snapshots of the time evolution
of the reduced one-body density matrix which illustrate nicely the wave nature of the
matrix. Note that the spatial extend of the matrix grows rapidly with time due to the
wave packet dispersion. After t = 300 a.u. (≈ 7.26 fs) the matrix extends already over the
whole computational grid which spans a spatial region of 12.7 nm × 12.7 nm. In Fig. 5.9
we consider an interaction strength of λ = 1.0. In this case wave amplitude is found both
for transmitted waves (x > 0, x′ > 0) and also for reflected waves (x < 0, x′ < 0). Due
to the strong electron-electron repulsion this picture changes in the case λ = 2.0 which we
consider in Fig. 5.10. There, dominantly reflected amplitudes (x < 0, x′ < 0) are visible in
the reduced one-body matrix5.

5 Movies of all time propagations which have been presented in this chapter can be found on the homepage
of the thesis [App07].
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Figure 5.9: Real-part of the reduced one-body density matrix γ1(x, x′; t) for e− – He+ scattering
at different points in time. Initially a Gaussian wave packet is placed at a distance of 15 a.u. away
from the He+ core at the origin. The packet has a momentum of 0.3 a.u. pointing towards the ion.
Considered is an interaction strength of λ = 1.0.
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Figure 5.10: Same as Fig. 5.9, but for an interaction strength of λ = 2.0. Due to the strong
interaction the incoming electron is mostly scattered back.
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5.5 Summary and Outlook

Reduced density matrix functional theory has recently attracted renewed interest. The
theory is a promising candidate to treat strongly correlated systems which are not easily
accessible to approaches like DFT. Also other quantities like the fundamental gap are more
readily accessible in RDMFT compared to DFT. A number of functionals have been developed
in the last few years and their application to finite and extended systems are currently being
explored.
In this work we have attempted the first steps towards a time-dependent extension of
RDMFT. Using the well-known BBGKY hierarchy for reduced density matrices we have
derived equations of motion for the natural spin-orbitals and occupation numbers. In the
equation of motion for the natural orbitals we found an invariance which is reminiscent of
the undetermined diagonal matrix elements of the effective non-local Hamiltonian of static
RDMFT. Using our equation of motion for the occupation numbers, we have been able to
show that present ground-state functionals of RDMFT, when extended adiabatically to the
time-dependent domain, always yield occupation numbers which are independent of time.
From the stationary limit of the equations of motion for the N -body correlations we have
derived a new class of functionals which can be employed for ground-state calculations in
RDMFT. To asses the exact time-dependence of natural orbitals and occupation numbers we
have performed time propagations of a fully interacting model with reduced dimensionality.
The exact time evolution of orbitals and occupation numbers has been explored for atomic
systems exposed to strong laser pulses and for electron-ion scattering. To our surprise
we found that the occupation numbers provide a very sensitive fingerprint of a correlated
many-body state. This qualifies them as suitable targets for a combination of optimal
control theory and time-dependent RDMFT. Our analysis also revealed that occupation
numbers show a time lag when the system is irradiated with a laser pulse. We found that
an increase or decrease of occupation took primarily place during the decay of the laser
amplitude.
Open questions in TDRDMFT include an extension of Gilbert’s theorem to the case of
time-dependent reduced one-body density matrices. At present it is still not clear if such
an extension can be achieved. This extension is necessary to base the theory on solid
ground. Another challenging and still open issue is the development of new functionals for
TDRDMFT which are able to capture the time-dependence of the occupation numbers - at
least qualitatively - correctly. To study the nuclear motion in molecules also the inclusion
of the nuclear degrees of freedom in the time-dependent density matrices needs to be
investigated. So far the linear-response regime of TDRDMFT has not been explored. At
present it appears that treatment at zero temperature is not sufficient for the description of
optical excitations. Here, the extension of the present formalism of TDRDMFT to the case of
finite electronic temperatures might be the solution to this problem. Finally we remark that
the presence of time-dependent occupation numbers, which deviate from the determinantal
values of 0 or 1, corresponds to true correlations in the many-body wavefunction. TDRDMFT

is therefore a promising candidate for long-standing problems like the ”knee” in Helium
double-ionization.
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6 Ab-Initio Approaches to Electronic
Transport

There is nothing new to be discovered in physics now;
All that remains is more and more precise measurement.

— Lord Kelvin, speaking to the British Association
for the Advancement of Science, 1900.

In his famous lecture ”There’s Plenty of Room at the Bottom” given in 1959 at the an-
nual meeting of the American Physical Society at the California Institute of Technology,
R. P. Feynman surveyed the general possibilities of manipulating matter on the atomic
scale [Fey59]. In his talk he considered chemical synthesis by mechanical manipulation,
denser computer circuitry, storing the ”entire 24 volumes of the Encyclopedia Britannica
on the head of a pin”, electron microscopes with better resolution, or the possibility of
nano-mechanical machines. Almost 50 years after his talk many of his visions for nano-
technology became reality, disproving Lord Kelvin’s cheerless attitude concerning the ad-
vancement of science. Better microscopes have been realized with the development of the
scanning tunneling microscope (STM) or the atomic force microscope (AFM). In 2005 the
Millipede storage technology, developed by IBM, reached a data storage capacity of 800
GB/inch2. This corresponds to pit sizes of approximately 10 nm, or more pictorially to a
data volume of 25 DVDs on the area of a postage stamp1. Over the past decades the fabri-
cation of computer circuits steadily followed Moore’s Law which states that the number of
transistors on a chip doubles about every two years [Moo65, Moo07b]. Keeping the overall
chip size constant this corresponds to an exponential decrease of transistor size. In Fig. 6.1
we illustrate the average complementary metal oxide semiconductor (CMOS) structure size
of modern microprocessors at their market launch as function of time. Starting with Intel’s
80286, which was fabricated with a structure size of 1500 nm at market launch in 1982, we
have seen a reduction of transistor size by more than a factor of 30 in the last 25 years. At
present, 30 million transistors fit on the head of a pin [Moo07a], clearly impressive scientific
and technological achievements when looking back to the days of Feynman.
Even beyond the present 45 nm technology, which Intel will introduce by the end of 2007
for the Penryn microarchitecture, there is plenty of room at the bottom for the fabrication
of electronic circuits. Following naively the extrapolation of the data set in Fig. 6.1, the
average CMOS structure size reaches one nanometer in 2034 and finally the Bohr radius of
atomic hydrogen in 2054. Although Moore’s law will not stay valid indefinitely the extrap-
olation in Fig. 6.1 shows that electronic circuits soon approach molecular length scales.
Hence, provided the miniaturization of transistors continues in the near future with the
same pace as in the last 25 years, the limits of the present silicon based technology will
soon be reached. The industry leader Intel already switched for its current 45 nm Penryn

1 As comparison, modern hard disk drives which employ perpendicular recording reach capacities of 230
GB/inch2.
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Figure 6.1: The graph displays the average CMOS structure size of commercially available micropro-
cessors at their market launch (source: wikipedia.org). Also shown are the numerically reach-
able transversal grid sizes (in nm) for 2D simulations with Octopus (based on simple commodity
hardware accessible to the author in the past years. HPC clusters excluded.). The extrapolation of
both data sets is crossing approximately in the first half of 2012.

microarchitecture to hafnium for metal gate electrodes and utilizes a high-k gate dielec-
tric to reduce leakage currents which are a major obstacle in transistor miniaturization.
According to Intel’s co-founder Gordon Moore this is the most significant change in the
materials used to manufacture silicon chips since the beginning of commercial semicon-
ductor production four decades ago [Moo07a]. Within the next 25 years of microprocessor
fabrication we can expect further drastic changes, both in the employed materials and in
the used fabrication techniques. Several materials have been proposed to replace silicon as
basic ingredient for the production of electronic transistors, ranging from carbon nanotubes
[PTY+01, CAL+06] to graphene [NGM+04, GN07]. Also, the currently used fabrication
techniques start to reach limits, e.g. the next generation in CMOS structure size already
requires lithography in the extreme ultra violet. Several alternatives to the presently used
lithography techniques are investigated, with nano-imprint lithography (NIL) among the
most promising candidates for a replacement of optical lithography. The basic idea of NIL

is to pattern a resist by deforming its shape through embossing (with a mold), rather than
by altering the chemical structures of the resist through radiation [CKG02, CYW+02].
The ultimate limit of electronic circuits will be reached when single atoms and molecules
are used as building blocks. In this regime laws from classical physics, e.g. Ohm’s law,
break down and the functional behavior of device components is dominated by their quan-
tum mechanical nature. A thorough understanding of the underlying physics is therefore
indispensable for the selection and design of new device materials for the future quest of
transistor miniaturization.

wikipedia.org
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Molecular Electronics

Molecular electronics is the name of a possible future technology which uses single molecules
as basic elements of electronic circuits. The first theoretical considerations along these lines
appeared in 1974 when Aviram and Ratner investigated a molecular rectifier [AR74]. The
experimental realization of conductance through single molecules, however, is a demanding
task. It took more than 20 years until Reed and coworkers were able to measure the elec-
tronic characteristics of individual molecules attached to gold electrodes [RZM+97]. Since
then the preparation of molecular junctions has been improved dramatically. Nowadays,
metallic point contacts, atomic wires, or single molecule devices are routinely fabricated
with the help of mechanically controllable break junctions [RZM+97, CRRT99, XT03],
electro-migration [PLA+99], or scanning tunneling microscopes [GBSN00, ROB+02]. Be-
sides the expected break-down of Ohm’s law for molecular devices several other effects have
been found which directly originate from the quantum nature of the devices. Examples
include the violation of Kirchhoff’s law in RC circuits [GFB+06], hysteresis in junction
charge transport [JR05], Coulomb blockade effects [Kor97, PPG+02], negative differential
resistances [CRRT99], asymmetries in the differential conductance [ROB+02], or signatures
of the Kondo effect [PPG+02, LSB+02].

Ab-initio description of Molecular Electronics

Despite the tremendous advances in molecular electronics in the last years, the correspon-
dence between experimental and theoretical studies is currently still limited [NR03]. The-
oretical ab-initio calculations deviate several orders of magnitude from the experimentally
measured current-voltage characteristics in some cases [LA00]. Reasons for this discrepancy
have to be attributed both to experiment and to theory. A major problem of experimental
studies is reproducibility of results. A prominent example which shows the large uncertain-
ties in experiments is the conductance of DNA. In independent studies DNA was either found
to be an insulator [DGSB93], semiconductor [PBdVD00], or conductor [FS99]. Also, the
precise geometry of the contacting region, and in turn the bonding structure between leads
and molecules, is rather difficult to determine experimentally. Similar problems plague
the theoretical side. Molecular junctions are usually prepared in experiments by deposit-
ing dilute solutions on the break-junctions. Due to the complexity of describing solvents,
theoretical calculations are almost exclusively performed without the solvents. Because of
the non-equilibrium character of electronic transport and the large system sizes very crude
and often uncontrolled approximations are utilized and it is not uncommon that theoreti-
cal studies based on different approaches deviate from each other considerably [NR03]. At
present, the most commonly employed theoretical ab-initio methods belong to one of the
following two categories:

(i) Landauer formula combined with transmission functions obtained from the static
Kohn-Sham potential

As noticed originally by Landauer [Lan57] in the context of metallic conduction, even
elastic scattering from localized scattering centers can prevent electrons to traverse
a scattering region. The corresponding conductance G can be expressed in terms of
transmission and reflection coefficients T and R according to

G = G0 T/R, (6.1)
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whereG0 = 2e2/h denotes the conductance quantum. Expressions similar to (6.1) can
be derived for scattering centers which are connected to multiple channels [BILP85,
Dat95, BF04].
To arrive at a practical scheme for the calculation of current-voltage characteristics
Eq. (6.1) is combined with transmission functions for elastic scattering from the
static Kohn-Sham potential, e.g., as computed with a Lippmann-Schwinger equation
[Lan95, LA00, DVPL00].

(ii) Nonequilibrium Green’s function (NEGF) theory combined with static Kohn-Sham
Green’s functions

In this approach the conductance of a molecular junction is expressed in terms of non-
equilibrium (or Keldysh) Green’s functions [MW92]. In practice, the non-equilibrium
Green’s functions in the appearing formulas are replaced by the Green’s function of
the static Kohn-Sham system to resolve the electronic structure of the contacts and
the molecular device [BMO+02, XDR02].

Both approaches are by construction not rigorous in the sense that they cannot yield
the exact current-voltage characteristics of a molecular junction even if the exact static
exchange-correlation potential was available. This is basically due to the fact that they at-
tempt to describe an inherent non-equilibrium problem, which involves particle and energy
exchange with the reservoirs, in terms of the electronic structure of the ground state.
Several aspects are not accounted for in calculations of category (i). The Landauer for-
mula is exclusively based on elastic scattering so that inelastic effects, e.g. due to the
coupling to the nuclei, are not taken into account. If the static Kohn-Sham potential is
used to compute transmission functions then the energies of resonant tunneling are lo-
cated in the wrong places since the static Kohn-Sham potential is only designed to yield
the correct ground-state density, but not the correct excitation energies of the interacting
system (cf. chapter 3). Finally, Landauer’s formula assumes non-interacting particles so
that particle correlations which build up during the scattering processes in the molecular
junction are completely neglected. Transport calculations of category (ii) are more gen-
eral than Landauer-type approaches, e.g. current formulas in terms of Green’s functions
are valid also for interacting particles and inelastic effects due to nuclear coupling can be
taken into account with appropriate self-energies, but also there resonances are located in
energetically wrong positions.
So far, ab-initio calculations in quantum transport were mainly concerned with the com-
putation of current-voltage characteristics for steady-state currents. However, to construct
active electronic components (e.g. transistors) on the molecular scale also switching pro-
cesses need to be considered. Such switching can either be achieved with mechanical forces
or by using static or time-dependent electromagnetic fields to induce transitions or con-
formational changes in the molecular system. Since both, Landauer-type approaches and
NEGF theory, rely on static DFT such dynamical situations are difficult to describe.
Many of the problems encountered in approaches based on ground-state DFT are naturally
taken care of in a time-dependent description. In the present work we therefore aim at
using TDDFT to describe time-dependent transport phenomena. Since TDDFT is designed
to yield the exact time-dependent density of an interacting system, also the exact time-
dependent longitudinal current density can be obtained using the continuity equation. In a
transport calculation one is interested in the total current I through a molecular junction
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which can be computed from a surface integral of the form

I(t) = e

∫
S
jKS(t) · n dS. (6.2)

Note that only the longitudinal current density contributes to the integral if we choose a
plane perpendicular to the longitudinal geometry of the system for the surface S. Hence,
TDDFT has no fundamental limitations and yields, in principle, the correct (time-dependent)
total current in the system. As we have seen in chapter 3, time-dependent DFT is capa-
ble to recover the exact neutral excitation energies of an interacting system. In terms of
molecular transport we can therefore expect that energies for resonant tunneling appear
in the correct positions. Other benefits of a time-dependent approach to transport include
the possibility to study transients in the current during switching processes, external elec-
tromagnetic fields can be incorporated in the description, and the nuclear motion, e.g. in
terms of Ehrenfest dynamics, can be accounted for. Of course, there is a price to pay for
this additional flexibility which materializes in a higher computational cost compared to
existing approaches based on static DFT.
In the following sections we will see that the description of transport within TDDFT requires
so-called transparent, or open boundary conditions: since the time propagation of the, in
principle, infinite system can only be performed on a finite domain, the boundary condi-
tions have to be chosen such that wave packets suffer no artificial reflections when they
enter or leave the simulation area. To date the solution of the time-dependent Kohn-Sham
equations for such open systems in three spatial dimensions has not been accomplished
(normally only zero boundary conditions or periodic boundary conditions are used). There
are many technical issues which still have to be resolved until full-scale time propagations
of the TDKS equations for quantum transport geometries can be performed. The primary
focus of the present work lies therefore on the development of algorithms to implement
TDDFT with open boundary conditions. Since all time propagations start in the ground
state of the unbiased system the need emerges to find the extended eigenstates of the
ground-state Kohn-Sham potential. As first step we therefore introduce, in section 6.1,
an algorithm which we have developed to calculate extended eigenstates of single-particle
Hamiltonians. The scattering states, obtained from this algorithm, can be used to con-
struct the ground state of the system which serves as initial state for time propagations
within TDDFT. In chapter 7 we turn our attention to the description of time-dependent
phenomena in quantum transport. In section 7.1 we compare the assets and drawbacks of
presently employed approaches for the solution of the time-dependent Kohn-Sham equa-
tions. Section 7.2 explores the feasibility of a description of transport in terms of finite
systems. Within certain limits the time propagations of our finite model gives useful in-
sight into the transient dynamics of the system but also reveals the shortcomings of a
treatment in terms of finite systems. To overcome these limitations we develop, in section
7.3, an algorithm for the propagation of extended states. We present first numerical tests
of the method which show that transparent boundary conditions can be achieved within
this approach.
To conclude, we emphasize that to date most of the theoretical descriptions consider leads
with ”infinite” extent in the transversal direction and ”semi-infinite” leads in the longitu-
dinal direction. In our opinion only the latter is justified in light of the steady miniatur-
ization of electronic circuits. In Fig. 6.2 we display an atomic force microscope tomograph
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Figure 6.2: Atomic force microscope tomographs of 34 nm pitch field-programmable nanowire
interconnects (images taken from Ref. [SW07]). Left panel: nearly defect free region. Right panel:
highly defective region.

of a field-programmable nanowire interconnect. The wires in this device have an average
transversal size of 34 nm which corresponds to about 90 metal atoms in a row only. To
describe leakage currents between such wires the model of an infinite solid in transversal
direction is clearly not adequate. We therefore adopt the view of finite transversal system
geometries and regard only the infinite nature in the longitudinal direction as justified. In
Fig. 6.1 we illustrate with green triangles the maximum transversal grid sizes which have
been accessible with the TDDFT package Octopus [MCBR03] for 2D model simulations
in the past years. The extrapolation of both data sets in the graph shows that experi-
mental miniaturization and the gain in computational power causes both curves to cross
approximately in the year 2012. This example shows that a first-principles description of
commercially fabricated devices is soon accessible.
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6.1 Real-Space Algorithm for Scattering States

In this section we develop a numerical algorithm to calculate extended eigenstates of a
single-particle Hamiltonian Ĥ. The approach is tailored to a real-space finite-difference
discretization of the Schrödinger equation for the scattering problem. To illustrate the
method we compute scattering states as well as reflection and transmission coefficients for
model potentials. The extended eigenstates, calculated with the present method, can be
used as initial states for the time propagations considered in the next chapter.
The objective of scattering calculations is to find solutions ψ of the static Schrödinger
equation

(Ĥ − E)ψ = 0 (6.3)

at given energy E accompanied with appropriate boundary conditions. In the following we
are concerned with quantum transport calculations where the overall domain is partitioned
into a central region and left and right leads, respectively. This is illustrated in Fig. 6.3,
where we have schematically placed a benzene ring between two leads with FCC crystal
structure. The central region is enclosed by green lines and contains, apart from the
molecule, also several unit cells of the leads. The grid points of the underlying finite-
difference discretization are indicated with a mesh of grey dots. Referring to Fig. 6.3 we
define the computational domain ΩC and its complement ΩR by

ΩC := {r = (x, y, z) |point r is enclosed by green lines in Fig. 6.3} , (6.4)
ΩR := R

3\ΩC . (6.5)

In an ideal case the computational domain is chosen large enough so that all points inside
ΩR can be considered as asymptotic points. However, in practice, a compromise between
computational cost and system size has to be found. In the asymptotic region (points in
ΩR and area close to the boundary of ΩC but part of ΩC) the scattering states with energy
E are assumed to take the following form

ψ(E; r) =
N∑

j=1

E(kj)=E

Rj(E)uj(r)eikjr. (6.6)

Here, E(k) is the band structure in the respective asymptotic area, j denotes a combined
index, j = (k, n), of k-vector and band index n and we use kj to refer to the k-vector that
is part of the tuple j = (k, n). Note that for fixed expansion coefficients Rj(E) this form
of the scattering state is valid for arbitrary points r in the asymptotic region.
In order to simplify the discussion we restrict ourselves in the following to the case of a sim-
ple cubic lattice for the lead materials. To evaluate the kinetic energy with a finite-difference
stencil, points close to the boundary of ΩC require the knowledge of the wavefunction out-
side of ΩC . This is indicated with a star-like stencil in Fig. 6.3 which is centered inside
ΩC and leaks into domain ΩR. Consider a point rref outside the computational domain
for which the value ψ(E; rref) is required to calculate the kinetic energy for an interior
point (i.e. the point rref is not enclosed by the green lines in Fig. 6.3 but is part of the
stencil). By translating the point rref by multiples of the bulk unit cell size a along a given
Cartesian coordinate axis ei, we can construct a series of N points which are members of
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Figure 6.3: Upper panel: Uniform finite-difference mesh spanning a generic transport geometry with
FCC unit cells for the lead materials. All points enclosed by green lines are part of the computational
domain. Lower panel: Left asymptotic area magnified. The red and blue points left or above the
green line (exterior boundary points) are required for the evaluation of a finite-difference stencil
located close to the boundary. The red and blue arrows indicate a folding of exterior points into the
interior according to the Bloch relation uk,n(r) = uk,n(r + R), where R is a Bravais lattice vector.
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the computational domain ΩC

rq = rref + σ q a ei, q = 1, . . . , N, σ = ±1, (6.7)

where σ and i are chosen such that rq ∈ ΩC (as indicated by the red and blue arrows in
Fig. 6.3). Hence, we have

rref ∈ ΩR, (6.8)
rq ∈ ΩC for q = 1, . . . , N. (6.9)

If the computational domain is chosen large enough then the points rq can be considered to
be still part of the asymptotic region so that Eq. (6.6) remains valid for all rq. Evaluating
Eq. (6.6) at theN points rq gives a set ofN equations which relate the scattering coefficients
Rj(E) to the values ψ(E; rq) of the wavefunction inside the computational domain

ψ(E; r1) =
N∑

j=1

Rj(E)uj(r1)eikjr1 ,

...
...

ψ(E; rN ) =
N∑

j=1

Rj(E)uj(rN )eikjrN . (6.10)

By making use of the Bloch relation

uj(rq) = uj(rref + σ q a ei) = uj(rref), (6.11)

the right-hand side can be written in terms of the reference point rref

ψ(E; r1) =
N∑

j=1

Rj(E)uj(rref) eikjrref

(
eikj σ a ei

)1
,

...
...

ψ(E; rN ) =
N∑

j=1

Rj(E)uj(rref) eikjrref

(
eikj σ a ei

)N
. (6.12)

Provided the ψ(E; rj) are known this can be viewed as a system of linear equations for
the unknown scattering coefficients Rj(E). A closer look reveals that the system can be
written in column-scaled Vandermonde form

α1
1 α1

2 · · · α1
N

α2
1 α2

2 · · · α2
N

...
...

. . .
...

αN
1 αN

2 · · · αN
N




ν1 0 · · · 0

0 ν2 0 · · ·
. . . . . . . . .

0 · · · 0 νN




R1

R2

...

RN

 =


ψ(r1)− u0(r1) eik0r1

ψ(r2)− u0(r2) eik0r2

...

ψ(rN )− u0(rN ) eik0rN

 , (6.13)
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with αj = eikj aei and νj = uj(rref) eikjrref . In short

AD {Rj(E)} = {ψ(E; rj)} − {φ0(E; rj)}, rj ∈ ΩC , (6.14)

where A abbreviates the Vandermonde matrix, D denotes the diagonal Bloch matrix, and
{Rj(E)}, {ψ(E; rj)}, {φ0(E; rj)} are shorthands for the column vectors in Eq. (6.13). Note
that we have moved {φ0(E; rj)} to the right-hand side of the equation since we assume a
unit amplitude, R0 = 1, for the incoming wave.
Initially, we started out to find solutions of the static Schrödinger equation

(Ĥ − E)ψ = 0 (6.15)

for scattering states with given energy E. Therefore, the values ψ(E; rj) are unknown
at this point. In fact, as we can see from (6.14), knowing them amounts to knowing the
solution. Hence, Eq. (6.14) cannot be viewed as system of linear equations, but merely as
a relation between the unknown right hand side and the unknown scattering amplitudes.
However, we can invert the matrices2 in Eq. (6.14) to express the scattering amplitudes in
terms of the (still unknown) wavefunction values ψ(E; rj)

{Rj(E)} = D−1A−1{ψ(E; rj)} −D−1A−1{φ0(E; rj)}, rj ∈ ΩC . (6.16)

Together with Eq. (6.6) this can be used to express exterior points by interior points.
In that way the derivatives at the boundary can be calculated and the solution of the
Schrödinger equation for a given energy E can be found. Note that the second term
in Eq. (6.16) is independent of the solution of the Schrödinger equation and therefore
introduces a constant right hand side in Eq. (6.15). In other words the relation in Eq. (6.16)
leads together with the Schrödinger equation (6.15) to a system of inhomogeneous linear
equations which explicitly includes the boundary condition (6.6).
An implementation of the above scheme requires the inversion of Vandermonde matrices
(cf. Eq. (6.16)). Although the form of the inverse of Vandermonde matrices is known
analytically this is not of much help in practice since a direct evaluation of the analytical
expression is numerically not stable. This is related to the fact that Vandermonde systems
are known to become ill-conditioned with increasing matrix size very quickly. Already for
system sizes of N = 40, condition numbers3 on the order of 1010 appear. This is basically
due to the fact that the matrix has entries spanning several orders of magnitude. Suppose
α = 2 and N = 40, then the smallest entry is α1 = 2 but the largest entry already has a
value of 240 ≈ 1.1 × 1012. The eigenvalues of the matrix span a similar range and hence
the condition number of the matrix is very large. To circumvent these problems we use
the Parker-Traub algorithm for the inversion of the Vandermonde system which provides
a numerically more stable scheme [Par64, Tra66, CH92, CR93, GO97]. In practice, care
must be taken for the choice of reference points rref . In two or three dimensions nodal lines
of the wavefunction need to be avoided since they render the inverse of the diagonal Bloch
matrix invalid.
To illustrate the scheme we construct the explicit form of the linear system for a one-
dimensional three-point finite-difference discretization with incoming boundary condition

2 Provided the entries of the diagonal matrix D are all non-zero it is always possible to invert the product
AD since Vandermonde matrices always have non-vanishing determinants.

3 The condition number of a matrix A which is normal is defined as ratio of largest to smallest eigenvalue.



6.1 Real-Space Algorithm for Scattering States 95

0 10 20 30 40

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

R
e
ψ

(x
)

x [a.u.]

Potential

Eigenstate, E = 0.20

0 10 20 30 40

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

Im
ψ

(x
)

x [a.u.]

Potential

Eigenstate, E = 0.20

Figure 6.4: Left panel: Real part of a scattering state with energy E = 0.2 a.u. for an attractive
potential well computed with the present algorithm. Right panel: Imaginary part.

from the left. Due to relation (6.16) the finite-difference representation of the kinetic energy
is locally modified at the boundary points

T(E) = − 1
2∆x2



−2 + φ
(−)
0 (E)

φ
(−)
1 (E)

1 0 0 0

1 −2 1 0 0
. . . . . . . . .

0 0 1 −2 1

0 0 0 1 −2 +
φ

(+)
N+1(E)

φ
(+)
N (E)


(6.17)

and a right-hand side of the form

b(E) =
1

2∆x2

(
φ

(+)
0 (E)− φ

(−)
0 (E)

φ
(−)
1 (E)

φ
(+)
1 (E), 0, 0, . . . , 0

)
. (6.18)

is introduced in Eq. (6.15). Note that both, the kinetic energy T(E) and the right-hand
side b(E) are energy dependent and in general complex valued. The potential part remains
unchanged

V = diag
(
V1, V2, . . . , VN

)
, (6.19)

so that the Schrödinger equation can finally be written in the form(
T(E) + V − E

)
ψ(E) = b(E). (6.20)

In the above expressions we denote the grid spacing with ∆x and Vj represents the external
potential at grid point j. The φ(±)

j (E) are numerical plane waves of the form

φ
(±)
j (E) = β±j(E), (6.21)
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Figure 6.5: Left panel: Orbital density |ψ(x)|2 of the scattering state with energy E = 0.2 a.u..
Right panel: Reflection and transmission coefficients as functions of energy.

which are solutions of the discretized free Schrödinger equation

−1
2
φj−1(E)− 2φj(E) + φj+1(E)

∆x2
= E φj(E), (6.22)

with
β1,2(E) = 1− E∆x2 ± i

√
2E∆x2 − E2∆x4. (6.23)

The central result in Eq. (6.20) is a linear system whose solution at a given energy E yields
directly the scattering states with incoming boundary condition. A similar system of linear
equations is obtained for an incoming boundary condition from the right and higher order
finite-difference discretizations of the kinetic energy can be treated along the same lines.
Once the scattering states have been found from the solution of Eq. (6.20) the reflection
and transmission coefficients can be computed from

R(E) =
ψ1(E)− φ

(+)
1 (E)

φ
(−)
1 (E)

, T (E) =
ψN (E)

φ
(+)
N (E)

. (6.24)

In Figs. 6.4 and 6.5 we display eigenstates and reflection and transmission coefficients for
an attractive potential well as computed with the present method. The results match
directly the textbook solutions for this case which demonstrates the validity of the present
approach. We emphasize that our method allows one to compute scattering states without
constructing the Green’s function, or solving the Lippmann-Schwinger equation. Only the
solution of a complex-valued and state-dependent linear system is required to find the
scattering states. In practice, the limiting prerequisite is that all points rq in Eq. (6.7) can
be considered as asymptotic points. This of course matches the desire to include as much
of the contacts in the computational domain ΩC as is computationally feasible.



7 Ab-Initio Methods for Time-Dependent
Electronic Transport

We can only see a short distance ahead, but
we can see plenty there that needs to be done.

— Alan Turing, (1912-1954), cited from his
paper on the Turing test [Tur50].

In this chapter we discuss practical schemes aiming at an ab-initio description of time-
dependent phenomena in quantum transport within TDDFT. We begin in section 7.1 by
listing the assets and drawbacks of presently employed approaches for the solution of the
TDKS equations. In section 7.2 we perform time propagations for finite models of two-
dimensional mesoscopic systems in order to explore the feasibility of using finite systems
for the description of electronic transport. Within certain limits our analysis provides
useful insight into the transient dynamics of the model but in general also reveals several
shortcomings of such an approach which are due to the finite nature of the reservoirs and
the general limitations of absorbing boundary conditions. To overcome these shortcomings
we develop a novel scheme for the time propagation of extended states in section 7.3. Our
approach utilizes a hybrid basis to represent the extended states of the overall system. We
present numerical applications of the method and conclude the chapter with an outlook.

7.1 Comparison of Approaches for the Solution of the TDKS
Equations

The propagation of the time-dependent Kohn-Sham equations for electronic transport ge-
ometries is a rather demanding task. This is mainly due to the fact that the set of equations
has to be solved, in principle, on an infinite domain in real-space. To arrive at computa-
tionally tractable implementations, practical applications have to introduce simplifications
or special assumptions. The approaches generally fall into two distinct classes: the first
class (A) contains methods which replace the initial physical problem, formulated on an
infinite domain, by a simpler finite model problem. Methods which belong to the second
class (B) retain the infinite domain and try to formulate (finite) effective equations for the
central region. So called transparent boundary conditions (TBC’s) have to be imposed to
avoid artificial reflections of wave packets at the boundaries of the central region.
At present the following approaches can be found in the literature:

(i) Type A - Propagation of finite systems

The perhaps simplest ab-initio approach to time-dependent phenomena in quantum
transport relies on a modelling in terms of finite-systems [VT04]. In this scheme the
charge reservoirs, attached leads, and the central device are all contained in the same
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finite simulation volume and Dirichlet boundary conditions are used for the Kohn-
Sham orbitals of the system. As in a classical capacitor one of the reservoirs is charged
and after contacting the central device to the ”capacitor plates”, i.e. the quantum
charge reservoirs, electrons flow across the junction until equilibrium is reached. This
form of modelling has the advantage that all subsystems can be propagated on equal
footing and allows one to use the same time-dependent exchange-correlation potential
for all components of the system. Another advantage lies in the fact that existing
numerical packages for the solution of the TDKS equations are applicable immediately.
As drawback, very large simulation areas need to be considered to encompass central
device and reservoirs of reasonable size. Furthermore, due to the finite character
of the reservoirs there will be only a small time span during which a steady current
through the device can be sustained. Aspects like reservoir depletion, the geometrical
shape of the finite reservoirs, or artificial backscattering from the non-thermalized
finite reservoirs and the simulation boundaries influence the charge flow through the
central device and have to be taken into account when a comparison to experiment
is drawn.
We study these effects more in detail in section 7.2 of the present chapter.

(ii) Type A - Propagation of a closed loop

In this approach the central device together with parts of the lead is repeated period-
ically which corresponds to a ring geometry [GBC06]. The propagation of the TDKS

equations with periodic boundary conditions is straightforward within present real-
space TDDFT codes so that this method has similar benefits as approach (i). However,
replacing the original infinite domain by a ring structure introduces infinitely many
images of the central device. Large lead regions have to be employed to prevent
image interaction and it is difficult to thermalize the electrons in the ”reservoirs” of
the ring. Another problem appears in the description of spatially constant electric
fields E across the molecular junction. Since the position operator r is not periodic, a
length gauge with scalar potentials of the form v(r) = E·r cannot be used for the ring
geometry. To induce charge flow in the ring typically a magnetic flux inside the ring
is utilized. In velocity gauge this corresponds to a time-dependent vector potential
of the form A(t) = αE t, where α denotes a constant and E the electric field strength
in the corresponding length gauge. Due to the linear dependence of the vector po-
tential on time the Hamiltonian of the system carries an explicit time-dependence
and is in addition not bounded anymore. The steady increase of the vector potential
can be compensated with gauge transformations at regular time-intervals during the
simulation [GBC06].

(iii) Type A - Propagation of quantum master equations

For electronic transport calculations several system-bath partitioning schemes are of
interest, e.g. cases where the leads are treated as bath, or cases where the phonons
are treated as bath. By tracing out the bath degrees of freedom in all cases an effec-
tive Liouville equation for the density matrix of the system, i.e. the central device, is
obtained.
Recently, a Runge-Gross type-theorem was proven for quantum master equations
[BCG05]. The theorem states that for fixed electron-electron interaction and super-
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operator C, and for a given initial density matrix S0, two one-body potentials which
differ by more than a purely time-dependent function always lead to different particle
densities. This opens the possibility to describe an interacting system with associ-
ated bath in terms of a Kohn-Sham system of non-interacting particles which evolves
under an effective superoperator CKS. The time-dependent Kohn-Sham potential is,
in this case, a functional of the time-dependent density, the initial density matrix,
and the superoperator C. Although the theorem of Ref. [BCG05] provides a formal
ground for such an approach, currently no functional approximations for the involved
Kohn-Sham potential vKS[ρ, S0, C] are available. Only the usual TDDFT approxima-
tions for vKS could be employed which, of course, do not account for the dependence
on the initial density matrix S0 and the superoperator C. The application of quan-
tum master equations is typically suited best for weak system-bath coupling since
the derivation of the superoperator relies on Fermi’s golden rule, i.e. only first-order
time-dependent perturbation theory.

(iv) Type B - Dirichlet-to-Neumann maps

Dirichlet-to-Neumann maps are a means to transform Dirichlet boundary conditions
which are imposed on the spatial part of a partial differential equation (PDE) at
infinity into Neumann boundary conditions at the surface of a given finite domain.
By construction, the solution of the PDE on the finite domain, as obtained with the
mapped Neumann boundary conditions, exactly matches the solution on the infinite
domain. In the context of parabolic partial differential equations such impedance
boundary conditions were first employed for the wide-angle approximation to the
Helmholtz equation in underwater acoustics [Pap81]. Later applications to the Fres-
nel equation in optics [SD95, YFS01] and the time-dependent Schrödinger equation
in quantum mechanics [BP94, SY97] appeared. The analytic form of the impedance
boundary conditions, which are also termed open, artificial, or transparent bound-
ary conditions, is non-local in time and depends on the wavefunction values at the
boundary of the finite domain at all past times. In one dimension the impedance
boundary condition takes the explicit form [Arn01][

∂ψ(x, t)
∂x

− ∂ψin(x, t)
∂x

]
x=xb

=

√
2

~π
e−i π

4
d

dt

∫ t

0

ψ(xb, τ)− ψin(xb, τ)√
t− τ

dτ, (7.1)

where xb denotes a boundary point and ψin an incoming wave. The convolution term
in Eq. (7.1) can be written as fractional

(
1
2

)
time derivative1

1√
π

d

dt

∫ t

0

ψ(x, τ)√
t− τ

dτ =:

√
d

dt
ψ(x, t), (7.2)

which establishes a direct connection between the impedance boundary condition and
a formal factorization of the Schrödinger equation into left and right travelling waves(

∂

∂x
−
√

2
~
e−i π

4

√
∂

∂t

)(
∂

∂x
+

√
2
~
e−i π

4

√
∂

∂t

)
ψ = 0. (7.3)

1 A comprehensive introduction to fractional derivatives and their discretization can be found in [Lub86].
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At this point we emphasize that transparent boundary conditions for the Dirac equa-
tion involve no convolution terms in the form of Eq. (7.1) since this PDE is first order
in space and time. Fractional derivatives and corresponding impedance terms appear
only for the Schrödinger equation, or similar PDEs, containing space and time deriva-
tives of different orders.
Early attempts to discretize the analytic expression (7.1) for the boundary conditions
of the Schrödinger equation showed artificial reflections at the boundaries of the fi-
nite domain. It was noticed later that the discretization of both, the PDE and the
Dirichlet-to-Neumann map, have to be carried out on equal footing to avoid artificial
reflections [EA01]. To date applications of open-boundary conditions for the TDSE

have been considered in one and two spatial dimensions [AES03, ABM04]. Calcu-
lations aiming at quantum transport [Arn01] or investigating transparent boundary
conditions for nonlinear Schrödinger equations [ABD06] have been performed, so far,
only for single particles in one dimension.

(v) Type B - Propagation of effective equations with source and memory terms

This approach is similar in spirit to the methods in (iv). It allows one to formulate an
effective equation for a finite domain ΩC whose solution is equivalent to the solution
of the whole-space problem inside ΩC . The technique was pioneered by Hellums
et. al. [HF94] and later extended to explicitely time-dependent driving potentials by
Kurth et. al. [KSA+05]. In the latter work, also a practical scheme for the efficient
calculation of the involved source and memory terms was proposed. The basic idea of
the approach is to partition space into three regions, i.e. the left lead ΩL, the central
device ΩC , and the right lead ΩR, so that the time-dependent Kohn-Sham equation
takes the block form

i
∂

∂t


ψL(t)

ψC(t)

ψR(t)

 =


HLL(t) HLC 0

HCL HCC(t) HCR

0 HRC HRR(t)



ψL(t)

ψC(t)

ψR(t)

 . (7.4)

In general, lead-lead interactions (HLR,HRL) are negligible and due to the local
multiplicative nature of the Kohn-Sham potential the block Hamiltonian carries a
time-dependence only on the diagonal. The partitioning of the infinite-dimensional
matrix in Eq. (7.4) is chosen such that ψC(t) covers the region of the molecular system,
the contacts, and ideally also a few unit cells of the left and the right lead regions so
that the separation between center and leads appears deep enough in the leads. This
guarantees that all essential physical scattering processes are contained in region ΩC

and the remaining lead regions can be considered as bulk materials in equilibrium.
The wavefunction ψC(t) of the center and the corresponding Hamiltonian HCC(t) are
by construction finite in dimension, whereas all other quantities have a semi-infinite
character.
Using the lead Green’s function Gα(t, t′) which obeys[

i
∂

∂t
−Hαα(t)

]
Gα(t, t′) = δ(t− t′), α = L,R (7.5)



7.1 Comparison of Approaches for the Solution of the TDKS Equations 101

with boundary conditions Gα(t+, t) = −i and Gα(t, t+) = 0, the solution of Eq. (7.4)
for the lead wavefunctions ψα(t) can be written according to

ψα(t) = iGα(t, 0)ψα(0) +
∫ t

0
HCαGα(t, τ)HαC ψC(τ) dτ, α = L,R. (7.6)

Inserting this result back into the equation for the component ψC(t) of (7.4) one
arrives at the effective equation for the domain ΩC

i∂tψC(t) = HCCψC(t) + ψ(S)(t) + ψ(M)(t), (7.7)

which contains a so-called source term

ψ(S)(t) := i
∑

α=L,R

HCαGα(t, 0)ψα(0) (7.8)

and a memory term

ψ(M)(t) :=
∑

α=L,R

∫ t

0
HCαGα(t, τ)HαC ψC(τ) dτ. (7.9)

The charming feature of the present scheme is that the effective equation (7.7) can be
solved on a finite domain in real-space and its solution exactly matches the solution of
the whole space problem (7.4) in the central region ΩC . In other words, the equation
describes a quantum-mechanical system with open boundary conditions. In this way
infinite reservoirs in thermal equilibrium can be attached to a finite molecular system
and the coherent overall propagation of the system can be followed inside ΩC .
Although the effective equation (7.7) appears appealing it has the drawback that the
propagation in three spatial dimensions becomes prohibitive. This can be attributed
to the memory term ψ(M)(t) which scales quadratically with the maximum propaga-
tion time. In addition, the wavefunction values at the surface of the central region
have to be stored for the evaluation of the term over the entire history of the system.
Experience shows that truncations of the memory integral, which aim at keeping only
the recent past, introduce artificial reflections in practice.

(vi) Type B - Propagation of the overall system in a mixed basis

The time propagation in terms of a hybrid basis is a novel approach that we have
developed in the present work. The motivation for the development was to find a
way to circumvent the memory integral of approach (v) and to compute all required
quantities on the fly. The basic idea of the method is to use a mixed representation
of the overall wavefunction for different regions in space. While wavefunctions are
delocalized in the region of the metallic leads, a more localized structure, especially
in the transversal directions, is expected for atomic or molecular systems in the cen-
tral device. The character of the transport problem therefore suggests an extended,
i.e. delocalized, basis set for the description of the leads and a localized basis, or al-
ternatively, a real-space grid for the representation of the wavefunction in the central
device. The localized description in the center has the additional benefit of provid-
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ing a larger degree of flexibility if additional external electric or magnetic fields are
applied to the system, or if the motion of the ions is taken into account. The details
of the method are introduced in section 7.3 of the present chapter.

In summary, a solution of the TDKS equations for electronic transport geometries in three
spatial dimensions has been achieved so far only for the approaches (i) and (ii). All
other methods have only been investigated for reduced dimensionality and the case of
non-interacting electrons. In the next section, we will see that methods of type (A) are
only of limited use so that approaches of type (B) are the preferred techniques for the
solution of the TDKS equations in quantum transport.
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7.2 Quantum Transport in Finite Systems

To explore the feasibility of a description of transport within finite systems we investigate
the charge flow through mesoscopic systems in two spatial dimensions in this section. Using
the real-space real-time software package Octopus (cf. Ref. [MCBR03] and Appendix B)
we solve the time-dependent Kohn-Sham equations within a finite rectangular simulation
area in the x-y plane. To alleviate the effect of artificial reflections at the grid boundaries
we utilize absorbing boundary conditions as e.g. common for the treatment of atomic or
molecular systems in strong laser fields. In each time step the Kohn-Sham orbitals are
multiplied with a spatial mask function

φj(rx, ry, t) = m(rx)m(ry)φj(rx, ry, t), (7.10)

where

m(rj) =

 1− sin2 π
2

(rj−rj; w)
rj; w

, rj;max − rj; w < |rj | ≤ rj;max

1, |rj | ≤ rj;max − rj; w
, j = x, y (7.11)

and rj; w, rj;max denote the width of the absorbing region and the maximum grid size in
the respective direction. In this way charge is discarded which leaves the simulation area.
However, one has to keep in mind that such absorbing boundaries can never be made
perfect. The different momentum contributions which are contained in the wavefunction
are not absorbed on equal footing [BKV93].
For the external potential of the single-particle Kohn-Sham Hamiltonian we consider the
following building blocks which were inspired by Ref. [IS06]

• Stadium (used as reservoir and as scattering center)

VStadium(x, y) =− VS θ (xs − |x− x0|)θ(ys − |y|)

− VS θ
(
xs −

√
(x− x0)2 + (y − ys)2

)
θ(y − ys)

− VS θ
(
xs −

√
(x− x0)2 + (y + ys)2

)
θ
(
− y − ys

)
,

(7.12)

where θ denotes the usual Heaviside step function.

Table 7.1: Parameters used for the numerical simulation of the 2D model. The time evolution was
computed for Nt = 10000 time steps, leading to a total simulation time of tmax = 50 a.u. The grid
spacings ∆x, ∆y in the longitudinal and transversal directions have been set to 0.1 a.u. so that the
simulation area covers a rectangle of 160 a.u. × 24 a.u. A total of 20,032,050 points have been used
to represent the Kohn-Sham orbitals.

Nx Ny ∆x, ∆y ∆t VD, VR, VS dD, dR, dL R0 xs, ys x0

(a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.) (a.u.)

1600 240 0.1 0.005 50.0 4.0 4.0 4.0, 6.0 -70
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(a) Stadium + Stadium
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(b) Stadium + Ring
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(c) Dot + Ring

Figure 7.1: Top view on the external potentials in the x-y plane. For the ground state we
consider only the reservoir (stadium or dot) centered at x0 = −70 a.u. At times t > 0 we
add conduction channels and a scattering center (stadium or ring located at x0 = 0 a.u.) to
the external potential and evolve the ground state of the reservoir on the shown potential
landscapes.
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Figure 7.2: Example for the definition of integration areas: (a) dot reservoir, (b) left channel,
(c) ring - lower branch, (d) ring - upper branch (e) right channel. Similar integration areas
have been used for the external potentials in Fig. 7.1 (a) and (b). During the time evolution
of the system we integrate the charge density in the shaded areas to determine the number of
electrons in the respective region. Along the stripes (f) and (g) we integrate the longitudinal
component of the paramagnetic current density to determine the charge flow through the
channels.
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• Dot (used as reservoir)

VDot(x, y) =− VD θ(
√

(x− x0)2 + y2 −R0) e−(r−R0)2/d2
D

− VD θ(R0 −
√

(x− x0)2 + y2)
(7.13)

with r2 = (x− x0)2 + y2.

• Ring (used as scattering center)

VRing(r) = −VR e
−(r−R0)2/d2

R . (7.14)

• Finally, the leads are constructed with a confinement of the form

VLead(x, y) = −VL e
−y2/d2

L , (7.15)

where VL and the longitudinal extent of VLead(x, y) are adjusted such that the lead
boundaries smoothly connect to the respective dot, ring or stadium.

In table 7.1 we summarize the corresponding parameters that have been used for the
calculations of the present section.
For the simulations we perform the following steps: first we place either a quantum dot
or a stadium at x0 = −70 a.u. which serves as charge reservoir. We fill the reservoir
with 100 spin-unpolarized electrons and solve the static Kohn-Sham equation to find the
ground state. Next, we attach channels to the reservoir (cf. Fig. 7.2 (b), (e)) and place
an obstacle in the center of the simulation area (cf. Fig. 7.2 (c), (d)) which serves as
scattering center. As scattering centers we utilize quantum rings or stadiums. The ground
state of the unconnected reservoir is then propagated on the connected potential landscapes
of Figs. 7.1 (a)-(c). This strategy is equivalent to the following sudden switching in the
external potential

VTotal(r, t) = VReservoir(r) + θ(t)VChannels+Obstacle(r). (7.16)

Due to the channel which has been attached to the reservoir (cf. Fig. 7.2 (b)) the electrons
can leave the reservoir at times t > 0 freely without overcoming potential barriers. At
this point we emphasize that we are not applying an external bias to the system. The
charge flow through the channels is entirely driven by the electron-electron repulsion and
the wave-packet dispersion in the reservoir. To follow the electronic motion quantitatively
we integrate the charge density in the shaded areas of Fig. 7.2. In addition, we monitor
the current in the channels by integrating the longitudinal component of the paramagnetic
current density along the stripes (f) and (g). We consider three levels of approximations for
the single-particle potential vKS in the Kohn-Sham equations: (i) non-interacting particles
(vKS = vext), (ii) time-dependent Hartree approximation (vKS = vext + vH) and (iii) adia-
batic LDA (vKS = vext +vH +vALDA). We use a direct summation for the Hartree term and
the two-dimensional LDA of Attaccalite et. al. [AMGGB02] for the exchange-correlation
potential.
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(c) t = 17.5 a.u.

Figure 7.3: Electron density for transport through a quantum stadium computed with the
adiabatic LDA. Initially 100 electrons have been placed in the left stadium. Inside the central
stadium a standing wave pattern is formed, before the electrons start to leave to the right.
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(c) t = 17.5 a.u.

Figure 7.4: Same as Fig. 7.3, but shown is the longitudinal component of the Kohn-Sham
current density.
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Figure 7.5: Shown is the reservoir depletion for dot and stadium reservoirs as function of time
within the ALDA and for non-interacting particles.

In Figs. 7.3 and 7.4 we display snapshots of the time-dependent charge and longitudinal
current densities for electron transport through a quantum stadium at different points in
time. Initially, at t = 0, the reservoir exhibits a shell-like arrangement of the electrons,
which becomes also visible shortly after t = 0 in the longitudinal component of the current
density, cf. 7.4 (a). Due to the wave-packet dispersion and the electron-electron repulsion
inside the stadium some charge starts to flow into the left channel. The first electrons reach
the stadium in the center after about t = 12 a.u. and as time passes a standing-wave pat-
tern is formed inside the stadium. In the same time-span the longitudinal current density
in the left stadium, i.e. the ”reservoir”, shows characteristic maxima which are reminiscent
of Heller’s quantum scars [Hel07]. After about t = 15 a.u. some wave amplitude is leaving
the central stadium to the right. Note that the electrons enter the right channel under
an angle, so that scattering at the channel walls is taking place and an oscillatory motion
inside the channel is observed.
In Fig. 7.5 we investigate the reservoir depletion of the employed finite dot and stadium
reservoirs. The graph compares the integrated charge densities for the stadium and the
dot reservoirs (i.e. integration areas of type (a) in Fig. 7.2) for ALDA propagations and
for the case of non-interacting electrons. In general a rather rapid reservoir depletion is
observed within the ALDA, while the charge leakage is less pronounced for non-interacting
electrons due to lacking electron-electron repulsion in the reservoir. Within the ALDA, after
t = 50 a.u., only about 69 electrons are left in the stadium and about 56 electrons in the
dot, which compares to about 93 and 95 electrons, respectively for non-interacting particles.
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(a) t = 11 a.u.
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(b) t = 45 a.u.
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(c) t = 45 a.u.

Figure 7.6: Impurity scattering with non-interacting electrons. (a) Electron density at
t = 11 a.u. (b) Electron density at t = 45 a.u. for the ring potential with a small Gaussian
impurity in the upper branch of the ring. (c) Same as (b), but for the ring potential without
impurity.
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(b) t = 17 a.u.
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(c) t = 17 a.u.

Figure 7.7: Similar to Fig. 7.6, but the electrons have been propagated using the TD-Hartree
approximation. Note that compared to Fig. 7.6 the electrons have a much larger velocity.
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Figure 7.8: Panel (a): Integrated charge densities for impurity scattering within the ALDA. Shown
is the charge in the lower branch of the ring which corresponds to integration area (c) in Fig. 7.2.
Panel (b): corresponding longitudinal current densities which have been integrated along the stripes
(f) and (g) of Fig. 7.2.

In Figs. 7.6 and 7.7 we employ a quantum dot as reservoir. We compute the reservoir ground
state for non-interacting and Hartree-interacting electrons, respectively. In the following
we propagate these ground states on potential landscapes which contain (a), (b) a quantum
ring with a small Gaussian impurity in the upper branch and (c) a defect-free quantum ring.
The corresponding snapshots in time are shown in Fig. 7.6 for non-interacting electrons and
in Fig. 7.7 for Hartree-interacting electrons. In general, we observe in all simulations that
the speed of the wave-packets in the time-dependent Hartree approximation is considerably
higher than for non-interacting electrons which can be attributed to the electron-electron
repulsion. Also the transversal extent of the charge distribution is larger in Fig. 7.7, which
leads together with the large momenta of the Hartree electrons to a completely different
wave pattern compared to Fig. 7.6.
Figure 7.8 shows integrated charge and current densities for impurity scattering within
the ALDA. Here we employ a stadium as reservoir and propagate the ground state of the
reservoir on the potential landscape of Fig. 7.1 (b). As before we consider a defect-free
quantum ring and a quantum ring which contains a small Gaussian impurity in the upper
branch. Panel (a) shows that in the time-span between t = 25 a.u. and t = 35 a.u. about
2 electrons are contained in the lower branch of the ring (integration area (c) in Fig. 7.2).
In the presence of the impurity we observe initially, for t < 20 a.u., slightly more charge



110 Chapter 7: Ab-Initio Methods for Time-Dependent Electronic Transport

in the lower branch, but due to backscattering less electrons pass the scattering region
when the impurity is present. This can also be seen in panel (b), where we display the
integrated current densities along the stripes (f) and (g) of Fig. 7.2. We emphasize that
only a very small plateau in the time span t = 10−14 a.u. is visible in the current at stripe
(f) and that no plateau can be observed in the current at (g). Furthermore, the integrated
currents cannot be fully trusted for times t > 25 a.u., since wave packets arrive at the grid
boundaries and suffer reflections which become visible in the current density. Although
some quantitative information can be extracted from the present model for short time
scales, this example illustrates the general limitation of determining steady-state current-
voltage characteristics from finite models.
Finally, we demonstrate in Figs. 7.9 and 7.10 the artefacts which arise due to the finite
simulation area. As before, the electrons leave the left dot reservoir for t > 0 and enter the
ring in the center after some time (snapshots (a) and (b)). However, if we continue the time
propagation, the wave packets eventually arrive at the right grid boundary at x = +80 a.u..
Although a considerable fraction of the total charge is removed due to the absorbing mask
function (7.10), there are always wave-packets which are scattered back and start to travel
again to the left towards the ring in the center. Since the ring is already filled with charge
at this point in time, the ring potential cannot sufficiently bind the arriving wave packets
in the transversal direction. As result, jets of charge are leaving the ring under an angle of
about 45 degrees which is indicated in Figs. 7.9 (c) and 7.10 (c) with arrows2.
To summarize this section, we have seen that the description of electronic transport in
terms of mesoscopic models with finite extent gives some insight in the transient evolution
of the system on short time scales. However, weak points of this approach include the
finite reservoirs which cannot maintain a steady-state current over long time spans and the
finite simulation area whose boundaries cause reflections. Such reflections are of course
the correct solution for a zero boundary condition but are not adequate for the description
of an infinite system in the longitudinal direction. In this sense we have to view e.g. the
charge jets in Figs. 7.9 (c) and 7.10 (c) as artefacts which are not present when a system
with infinite longitudinal extent is considered.

2 Movies of all time propagations which have been presented in this chapter can be found on the homepage
of the thesis [App07].
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Figure 7.9: Electron density for charge flow through a quantum ring. Due to the finite grid
size in the longitudinal direction, the electrons scatter back from the right border of the
simulation box and enter the ring again from the right side. The large momentum of the
electrons causes charge to leave the ring in jet-like fashion, as indicated with arrows.
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Figure 7.10: Same as Fig. 7.9, but shown is the transversal component of the Kohn-Sham
current density.
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7.3 Propagation with a Hybrid Basis

In the previous section we have demonstrated that time propagations for quantum trans-
port suffer several limitations when they rely on a description in terms of finite systems.
Although larger computational grids will be accessible with increasing computational power
the basic shortcomings of such a description remain. In this section we develop an approach
which tries to overcome these shortcomings and allows to propagate extended systems. The
basic idea of our method rests on a mixed representation of the wavefunction in different
spatial regions. The overall wavefunction is described in terms of delocalized states in the
leads and in terms of a localized basis set, or alternatively in terms of a real-space grid,
in the central device. In the following we show how to construct a propagation scheme for
such a hybrid description.
Starting point is the Bloch representation of the lead orbitals. For the description of the
leads it is natural to think in terms of Bloch orbitals and the corresponding band structure.
In fact, this is the maximum one can get from a ground-state DFT calculation for periodic
systems. The scattering wavefunction deep inside the leads will be a superposition of Bloch
orbitals with certain (time-dependent) reflection and transmission coefficients

ψKS(r, t) =
∑
k,n

Rk,n(t)uk,n(r)eikr. (7.17)

Therefore, it is appealing to work only with time-dependent expansion coefficients and to
use the corresponding Bloch orbitals as (static) basis set.
As before, we divide space into three regions

ΩL := {r = (x, y, z) |x < −q} , (7.18)
ΩC := {r = (x, y, z) | − q ≤ x ≤ q} , (7.19)
ΩR := {r = (x, y, z) | q < x} , (7.20)

where q is assumed to be an integer multiple of the bulk lattice constant a, so that e.g. for
a simple cubic crystal

uk,n(r + q ej) = uk,n(r). (7.21)

Starting with a grid representation, the whole-space Schrödinger equation for a given single-
particle orbital can then be written in partitioned form

i
∂

∂t


ψL(t)

ψC(t)

ψR(t)

 =


HLL(t) HLC 0

HCL HCC(t) HCR

0 HRC HRR(t)



ψL(t)

ψC(t)

ψR(t)

 , (7.22)

where lead-lead interactions (HLR,HRL) have been neglected and due to the grid repre-
sentation only the diagonal elements are time-dependent (local time-dependent potentials).
Without loss of generality, to keep the notation simple we illustrate the use of a mixed basis
in terms of a Crank-Nicholson (CN) propagation scheme for the time-dependent Schrödinger
equation. Any other propagation scheme that requires only powers of H can be used in
exactly the same way as we will see in the following. For the whole-space problem the
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Crank-Nicholson propagator reads

(1 + iδH(n+1/2))ψ(n+1) = (1− iδH(n+1/2))ψ(n), (7.23)

where
H(n+1/2) =

1
2

(H(tn) + H(tn+1)) (7.24)

and
ψ(n) ≈ ψ(tn), tn = n∆t, δ =

∆t
2
. (7.25)

In the next step we construct eigenfunctions of the left and right ground-state lead Hamil-
tonians HLL, HRR. To that end consider shifted whole-space (±) functions of the form

ϕ
(±),±q
k,n (r) = uk,n(r)eikx(x∓q)eikyzryz ± u−k,n(r)e−ik(x∓q)e−ikyzryz , (7.26)

where
kyz = (ky, kz)T , ryz = (y, z)T . (7.27)

By restricting the (-) states to the respective real space regions, we define the following
basis functions

φ
(−q)
k,n (r) :=


ϕ

(−),−q
k,n (r), r ∈ ΩL

0, r ∈ ΩC

0, r ∈ ΩR,

(7.28)

φ
(q)
k,n(r) :=


0, r ∈ ΩL

0, r ∈ ΩC

ϕ
(−),q
k,n (r), r ∈ ΩR.

(7.29)

Note that the φ(±q)
k,n (r) functions defined in this way are continuous, since the ϕ(−),±q

k,n (r)

have nodes at ±q, respectively. The φ(±q)
k,n (r) are eigenfunctions of the operators

HL = diag(HLL, 0, 0), (7.30)
HR = diag(0, 0,HRR) (7.31)

and, therefore, form complete sets in the subspaces ΩL, ΩR. Due to the completeness and
orthonormality of the basis functions in Eqs. (7.28), (7.29) we can construct the following
unitary transformation

U :=


0

· · ·φ(−q)
3 φ

(−q)
2 φ

(−q)
1 1CC φ

(q)
1 φ

(q)
2 φ

(q)
3 · · ·

0

 (7.32)

=


ULN 0 0

0 1CC 0

0 0 URN

 ,



114 Chapter 7: Ab-Initio Methods for Time-Dependent Electronic Transport

where the φ(±q)
j appear as column vectors, the common index j = (k, n) has been introduced

for brevity and N denotes the size of the basis3.
Performing a unitary transformation (7.32) of the CN time stepping (7.23), we find

U−1(1 + iδH(n+1/2))UU−1ψ(n+1) = U−1(1− iδH(n+1/2))UU−1ψ(n), (7.33)

or equivalently
(1 + iδH̃(n+1/2))ψ̃(n+1) = (1− iδH̃(n+1/2))ψ̃(n), (7.34)

where
ψ̃(n) = U−1ψ(n) (7.35)

and

H̃(n+1/2) = U−1 H(n+1/2) U (7.36)

=


U−1

LNHLLULN U−1
LNHLC 0

HCLULN HCC HCRURN

0 U−1
RNHRC U−1

RNHRRURN

 . (7.37)

For a three-point finite-difference discretization in one spatial dimension the transformed
Hamiltonian matrix takes the explicit form

H̃(n+1/2) =

26666666666666666666666664

. . .
...

...
... 0 · · ·

. . . EL
1 (k2) 0 φ

(−q)
2 (rL) 0 · · · 0

· · · 0 EL
1 (k1) φ

(−q)
1 (rL) 0 · · ·

· · · φ
∗(−q)
2 (rL) φ

∗(−q)
1 (rL) H11,CC H12,CC H13,CC

...
...

0 0 H21,CC H22,CC H23,CC 0 0

...
... H31,CC H32,CC H33,CC φ

(q)
1 (rR) φ

(q)
2 (rR) · · ·

· · · 0 φ
∗(q)
1 (rR) ER

1 (k1) 0 · · ·

0 · · · 0 φ
∗(q)
2 (rR) 0 ER

1 (k2) · · ·

· · · 0
...

...
...

. . .

37777777777777777777777775

,

where kj are the k-points of the discretization, EL/R
n (k) is the bandstructure of the left and

right lead, and rL, rR denote the first grid point inside the left and right leads, respectively.

The purpose of the unitary transformation is twofold:

(i) to change the representation in the leads (from a real-space representation to the
more natural Bloch basis). This introduces half-infinite basis functions that cover
the complete lead regions.

(ii) to truncate the original Hilbert space. This can be achieved by keeping only a finite
number of basis functions (7.28), (7.29) for the left and right lead.

Higher order propagation schemes can be treated in the same fashion, since only further
3 An exact unitary transformation within the original Hilbert space of H is obtained for N →∞.
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Figure 7.11: Snapshots of the time evolution in the mixed-basis representation. As initial state we
place a Gaussian wave packet without initial momentum at the origin. In the left and right panels
we display the time evolution of left- and right-lead basis coefficients in a double-logarithmic scale.
The panel in the center shows the orbital density of the central device in a real-space representation.
Due to the transparent boundary condition the Gaussian wave packet passes during the propagation
the grid boundaries of the central region at ±10 a.u. seamlessly. No interference or reflections are
observed while the tails of the wave packet pass through the boundaries of the central device.

unit operators in the form UU−1 have to be inserted in higher order products of H.
It is therefore possible to use the standard time-reversal algorithm [FKW78, MCBR03]
employed in Octopus, but also Magnus propagators [HL03] can be used. Only spectral
methods, like the popular split-operator [FFS82] or Suzuki-Trotter [Suz93, SY92] splittings
are excluded, since they rely on an explicit separation of the Hamiltonian into terms which
are either diagonal in position space or diagonal in momentum space. Such a splitting is
not available for the transformed Hamiltonian (7.37).

Numerical applications

To test our method we have implemented the propagation scheme (7.34) for a mixed rep-
resentation in terms of grid points for the central device and a plane wave basis set for
the lead regions. We use a constant potential for the overall space. In Figs. 7.11-7.13 we
present the time evolution for some examples in one spatial dimension. The sequence of
figures is organized as follows: In each figure the left and right panel show the squared
absolute value |dj |2 of the coefficients of the left and right lead basis functions (numerical
plane-waves for the potential free case considered here). The lowest frequency modes of
the lead basis sets are always plotted starting inside, with growing frequencies pointing
outwards. The panel in the center displays the orbital density n(x) = |ψ(x)|2 as a function
of position. Both, the density in the center and the basis coefficients on the left and right
are shown in a logarithmic scale. For all calculations NC = 200 grid points for the central
device and NB = 1000 basis functions for the left and right lead have been used, respec-
tively.
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Figure 7.12: Same as Fig. 7.11, but here the Gaussian wave packet has an initial momentum of
1 a.u. pointing to the right.

In the first example (Fig. 7.11) we consider a Gaussian wave packet which is initially lo-
calized in the central region. As time passes the packet spreads and leaves the grid in the
center. At the same time the expansion coefficients dj of the basis functions in the left
and right lead start to gain amplitude. We emphasize that the wave packet in the central
region is not suffering artificial reflections from the grid boundaries at ±10 a.u.. Instead
the wave passes the boundary seamlessly. This nicely illustrates the transparent boundary
conditions which are ensured by the phases and amplitudes of the expansion coefficients
dj . Their time evolution guarantees that the correct boundary values are provided at the
boundaries of the central region for any given time.
From different calculations with various sizes for the basis sets we found that the propaga-
tion can only be trusted up to a maximum time tmax which is linearly related to the basis
size NB, i.e. tmax = αNB +β. If the propagation is extended beyond tmax the wavefunction
starts to become wiggly and the time evolution is spoiled4. The parameters α and β can
be determined empirically from a simple interpolation by performing two successive time
propagations with different but small basis sizes and finding the corresponding values for
tmax. Once α and β are known for a given situation the minimal basis size for a maximum
propagation time can be estimated.
In Fig. 7.12 we consider the same initial conditions as in Fig. 7.11, except that we give the
Gaussian an initial momentum of 1 a.u. pointing to the right. As before, the amplitude of
the coefficients dj builds up as soon as the wave packet is leaving the central grid. Due to
the right moving wave packet here the coefficients of the right lead grow faster.
Finally, we investigate, in Fig. 7.13, a single lead mode in the left lead as initial state. This
corresponds to an expansion coefficient dj = 1 for one particular basis function j (j = 10
in our example), zero occupation of other basis functions and no initial wave amplitude in
the central device. Since the lead mode is not an eigenstate of the overall system the initial

4 This observation originates from the fact that we propagate, due to the finite size of the basis, within
a truncated Hilbert space.
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Figure 7.13: Same as Fig. 7.11, but here only a single lead mode of the left lead is occupied initially
at t = 0. No wave amplitude is contained in the central device and in the right lead. Due to the
wave-packet dispersion the initial state starts to propagate into the center and the right lead.

state starts to show dispersion for t > 0 and spreads into the central region. After about
t = 3.5 a.u. the right boundary of the central regions is reached and the coefficients of the
right lead start to grow in magnitude. Similar to the previous cases no artificial reflections
are observed at the grid boundaries of the central device5.
In summary, we have presented an approach which is suitable for the description of elec-
tronic transport within TDDFT. Initially we started out to find a scheme which avoids
memory terms like in Eqs. (7.1) and (7.9). This has been accomplished with the present
algorithm. However, the method still shows a quadratic scaling behavior in the maximum
propagation time since more basis coefficients are required for larger propagation inter-
vals. The benefits of the present algorithm lie in its simple structure. The approach is
not limited to a Crank-Nicholson propagation scheme and can be easily implemented in
real-space TDDFT codes like e.g. the Octopus package. In addition, we emphasize that
the idea of a mixed basis is not restricted to transport calculations as considered in the
present chapter. Other physical situations which involve a central scattering region can
be treated in a similar fashion. For example, replacing the Bloch basis with Volkov states
allows to compute photo-electron spectra for atomic and molecular systems directly from
the expansion coefficients dj . Also, superconducting systems can be treated by performing
a unitary transformation of the Bogoliubov-de-Gennes Hamiltonian in analogy to (7.32).

5 Movies of all time propagations which have been presented in this chapter can be found on the homepage
of the thesis [App07].
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7.4 Summary and Outlook

At present, the theoretical ab-initio description of electron transport through single
molecules is still at an early stage. Approaches based on the Landauer formula, or on
non-equilibrium Green’s function theory, combined with electronic structure calculations
within static DFT are often found to deviate from experimental studies by several orders
of magnitude. This discrepancy can be attributed to the low degree of reproducibility in
experiments and to the often uncontrolled approximations in the employed theoretical for-
malisms. Several shortcomings are inherent in a combination of static DFT and Landauer’s
formula. Due to the scattering from the static Kohn-Sham potential resonant tunneling
appears at the wrong energies, even if the exact static exchange-correlation potential was
available. Inelastic effects due to the dynamical coupling to the nuclei as, e.g., current
induced forces or the rearrangement of atoms in the junction, are not accounted for in
approaches based on static DFT. Similar problems plague the combination of static DFT

with non-equilibrium Green’s function theory.
A promising method to overcome these limitations is time-dependent DFT. A time-
dependent description allows naturally for the treatment of non-equilibrium situations.
The influence of time-dependent electromagnetic fields, e.g. laser fields, the motion of the
nuclei, e.g. in form of Ehrenfest dynamics, or time-dependent switching processes in the
applied bias are all naturally incorporated in a TDDFT formalism. In addition, TDDFT

suffers no fundamental limitations like the approaches which (ab)use ground-state DFT for
non-equilibrium situations. Since the exact time-dependent exchange-correlation potential
yields the exact interacting particle density also the exact longitudinal current density, and
hence the correct current-voltage characteristics is recovered. The price to pay for this
flexibility is a higher computational cost for the required time propagations. To date all
TDDFT transport calculations consider either finite systems, periodic boundary conditions,
or the propagation of master equations. We have demonstrated that modelling in terms
of finite systems has to be done with great care to avoid artefacts due to artificial reflec-
tions at the boundaries of the finite system. Even with steadily increasing computational
power these limitations remain so that a need for alternative approaches emerges. Instead
of treating finite models it is more appropriate to describe electronic transport in terms
of extended systems. For time propagations this requires so-called open or transparent
boundary conditions. Recently, some first steps towards the description of open boundary
conditions have been performed for non-interacting particles.
Since many technical issues still have to be solved before a propagation of the TDKS equa-
tions with open boundary conditions in three spatial dimensions can be achieved, we have
focussed mainly on the development of algorithms. We have developed numerical tech-
niques which are particularly tailored to a real-space finite-difference representation of
the time-dependent Kohn-Sham equations as implemented in software packages like Oc-
topus. We have presented an algorithm to calculate extended eigenstates which arise
in the ground-state problem for the unbiased molecular junction. The approach allows
one to compute scattering states without constructing the Green’s function or solving the
Lippmann-Schwinger equation. Only the solution of a complex-valued and state-dependent
linear system is required to find the scattering states.
To overcome the limitations encountered in the propagation of finite systems we have
introduced a propagation scheme which relies on a mixed basis and allows to propagate
the central device region with open boundary conditions. First tests of the technique
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show that wave packets can leave or enter the simulation area without suffering artificial
reflections. Due to the simple structure of the propagation method an extension to three
spatial dimensions is straightforward and will be the next step towards realistic TDDFT

calculations in time-dependent transport.
Looking ahead we agree with Alan Turing, we can see plenty there that needs to be done.
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Part IV

Appendix





A Matrix Formulation of the TDDFT
Response Equations

Science is a way of trying not to fool yourself. The first principle is that
you must not fool yourself, and you are the easiest person to fool.

— R. P. Feynman, (1918-1988).

The aim of this appendix is to provide a short derivation of the matrix formulation of the
TDDFT response equations. These equations became known as Casida’s equations [Cas95]
in the literature.
As detailed in section 2.3, the frequency-dependent density-response ρ1(r, ω) in first order
in the perturbing potential v1(r, ω) can be formulated according to

ρ1(r, ω) =
∫
χKS(r, r′, ω) vKS,1(r′, ω) d3r′ , (A.1)

where vKS,1(r, ω) denotes the effective perturbation

vKS,1(r, ω) = v1(r, ω) +
∫
ρ1(r′, t)
|r− r′|

d3r′ +
∫
fxc[ρ0](r, r′, ω) ρ1(r′, ω) d3r′ . (A.2)

In terms of the static KS orbitals, the Kohn-Sham response function χKS reads

χKS(r, r′, ω) =
∑
j,k

(fk − fj)
ψj(r)ψk(r′)ψ∗k(r)ψ

∗
j (r

′)
ω − (εj − εk)

(A.3)

=
N∑

k=1

∞∑
j=1

ψj(r)ψk(r′)ψ∗k(r)ψ
∗
j (r

′)
ω − (εj − εk)

−
N∑

k=1

∞∑
j=1

ψk(r)ψj(r′)ψ∗j (r)ψ
∗
k(r

′)
ω + (εj − εk)

=
∑
i,a

(
ψa(r)ψi(r′)ψ∗i (r)ψ

∗
a(r

′)
ω − (εa − εi)

− ψi(r)ψa(r′)ψ∗a(r)ψ
∗
i (r

′)
ω + (εa − εi)

)
,

where here and in the following the summations are performed according to
∑

i ≡
∑N

i=1

and
∑

a ≡
∑∞

a=N+1.
If we define

Pai(ω) :=
∫
ψi(r′)ψ∗a(r

′)vKS,1(r′, ω)d3r′

ω − (εa − εi)
(A.4)

and

Pia(ω) :=
∫
ψa(r′)ψ∗i (r

′)vKS,1(r′, ω)d3r′

−(ω + (εa − εi))
, (A.5)
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the linear density response can be written in the form

ρ1(r, ω) =
∑
i,a

ψa(r)ψ∗i (r)Pai(ω) + ψi(r)ψ∗a(r)Pia(ω). (A.6)

Next, we rewrite Eqs. (A.4) and (A.5) as

(ω − (εa − εi))Pai(ω) =
∫
ψi(r)ψ∗a(r)vKS,1(r, ω) d3r, (A.7)

(ω + (εa − εi))Pia(ω) = −
∫
ψa(r)ψ∗i (r)vKS,1(r, ω) d3r, (A.8)

abbreviate the Hartree and exchange-correlation contributions with

fHxc(r, r′, ω) =
1

|r− r′|
+ fxc(r, r′, ω), (A.9)

and define the matrix elements

vai(ω) :=
∫
ψi(r)v1(r, ω)ψ∗a(r) d

3r, (A.10)

Kkl,mn(ω) :=
∫ ∫

ψl(r)ψ∗k(r)fHxc(r, r′, ω)ψm(r′)ψ∗n(r′)d3r d3r′. (A.11)

Together with Eq. (A.6) we then arrive at the matrix form

(ω − (εa − εi))Pai(ω) = vai(ω) +
∑
j,b

(Pbj(ω)Kai,bj(ω) + Pjb(ω)Kai,jb(ω)) , (A.12)

which can be rearranged according to∑
j,b

{
[δijδab(εa − εi − ω) +Kai,bj(ω)]Pbj(ω) +Kai,bj(ω)Pjb(ω)

}
= −vai(ω). (A.13)

Analogous steps lead to∑
j,b

{
[δijδab(εa − εi + ω) +Kai,jb(ω)]Pjb(ω) +Kai,bj(ω)Pbj(ω)

}
= −via(ω). (A.14)

Defining
Xjb(ω) := Pjb(ω), Yjb(ω) := Pbj(ω), (A.15)

Lia,jb(ω) := δijδab(εa − εi) +Kai,jb(ω), (A.16)

Mia,jb(ω) := Kia,bj(ω), Via(ω) = −vai(ω), (A.17)
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allows to cast equations (A.13) and (A.14) in the following matrix form L̂(ω) M̂(ω)

M̂∗(ω) L̂∗(ω)

− ω

 −1 0

0 1

 X(ω)

Y (ω)

 =

 V (ω)

V ∗(ω)

 . (A.18)

At this point we can argue with the same reasoning as in section 2.3: The right hand side
of Eq. (A.18) remains finite if the frequency ω approaches the exact excitation energies
ω → Ωq of the interacting system. On the other hand, the density response on the left
hand side of the equation has poles at the true excitation energies Ωq. Hence, the matrix in
the left square bracket cannot be invertible at ω = Ωq which is equivalent to the condition L̂(Ωq) M̂(Ωq)

M̂∗(Ωq) L̂∗(Ωq)

 X(Ωq)

Y (Ωq)

 = Ωq

 −1 0

0 1

 X(Ωq)

Y (Ωq)

 . (A.19)

For real-valued orbitals and a frequency-independent kernel fxc the condition (A.19) can
be written in the form

(L̂+ M̂)(Y +X)q = Ωq (Y −X)q, (A.20)
(L̂− M̂)(Y −X)q = Ωq (Y +X)q, (A.21)

where we attach q to the brackets to indicate the index of the eigenvectors. Solving
Eq. (A.21) for (Y −X)q

(Y −X)q = Ωq(L̂− M̂)−1(Y +X)q (A.22)

and inserting the result into Eq. (A.20), we arrive at

(L̂− M̂)(L̂+ M̂)(X + Y )q = Ω2
q (X + Y )q. (A.23)

The matrix (L̂ − M̂) is positive definite, since it contains only positive entries on the
diagonal. This allows us to cast (A.23) in the form

(L̂− M̂)1/2(L̂+ M̂)(L̂− M̂)1/2(L̂− M̂)−1/2(X + Y )q = Ω2
q (L̂− M̂)−1/2(X + Y )q (A.24)

which is typically written as
ŴFq = Ω2

q Fq, (A.25)

where
Fq = (L̂− M̂)−1/2(X + Y )q (A.26)

and
Ŵ = (L̂− M̂)1/2(L̂+ M̂)(L̂− M̂)1/2 (A.27)

or more explicitely

Wqq′ = δqq′(εa − εi)2 + 2
√

(εa − εi)Kqq′(Ωq)
√

(εa′ − εi′), q = (a, i). (A.28)

The pseudo-eigenvalue problem in Eq. (A.25) is the final form of the TDDFT matrix equation
and was originally derived by Casida [Cas95]. The result shows, that the eigenvalues of the
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matrix Ŵ are equivalent to the squares of the true excitation energies. It can also be shown
that the interacting oscillator strengths can be obtained directly from the eigenvectors
Fq [Cas95].
At this point we emphasize that Casida, in his original derivation of the pseudo-eigenvalue
problem, used the ALDA as approximation for the exchange-correlation kernel fxc. Within
this approximation the matrix Ŵ is frequency independent so that Eq. (A.25) reduces to
a standard eigenvalue problem. Consequently, only shifts of the Kohn-Sham excitation
energies towards the true excitation energies are possible and the number of reachable true
excitations is equivalent to the number of Kohn-Sham excitations. On the contrary, in
the exact response formalism, the matrix Ŵ carrys a genuine frequency dependence which
enters through the frequency dependence of the exchange-correlation kernel fxc. Hence, the
pseudo-eigenvalue problem has to be regarded as a non-linear equation. Depending on the
form of the matrix Ŵ and the frequency dependence of the kernel the number of solutions
of the non-linear equation can differ from the number of Kohn-Sham excitations. This is
how true excitation energies emerge as solutions even if they have no direct correspondence
in the non-interacting Kohn-Sham system.



B Domain Parallelization

Given enough eyeballs, all bugs are shallow.

— Eric Steven Raymond [Ray99].

The current trend in hardware technology follows a steep increase in the number of pro-
cessors in each computing machine or facility, as opposed to the trend towards an increase
in the clock speed or number of operations that each processing unit may perform per unit
time. To use modern computing facilities efficiently, we have to ensure that our codes are
able to benefit from such parallel-computing architectures.

B.1 Parallelization Strategies

Recently, we have incorporated into Octopus a multiple-way parallelization scheme that
may divide the work among a given number of processors, splitting the tasks either in
k-points, in Kohn-Sham states, in regions of real-space, or in a combination of all of them.
Each single form of the contemplated parallelizations may scale by its very nature only to
a certain maximum number of processors. Only combined schemes allow to overcome such
limitations.

Figure B.1: Parallelization modes for DFT/TDDFT codes.

In Fig. B.1 we have represented the various possible modes for which a task division within
a DFT/TDDFT calculation may be obtained:

• k-points: In a ground-state DFT calculation each processor solves the KS equation

ĤKS
k ϕnk(~r) = εnkϕnk(~r) (B.1)

for a given but fixed k-point. Communication among the nodes is only required for
the calculation of the (common) density or other Brillouin-zone integrations. This is
the parallelization mode that most ground-state solid-state DFT codes offer. The im-
plementation is straightforward and scales very nicely with the number of processors.
However, limitations arise for systems with very large unit cells.
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• spin: The different spin subspaces may be treated by different processors. In practice
this is rather similar to the k-point parallelization, so that both spin and k-points
are represented as common quantum numbers and are treated on the same footing.

Domain A Domain B

Ghost Points of Domain B

Figure B.2: Ghost points in a domain parallelization.

• Kohn-Sham states: For the ground state a parallelization in state indices or bands
is more involved than the k-point parallelization. Essentially, the state indices have
to be divided into different state-groups. The eigenproblem is then solved for each
group and a subsequent orthonormalization of the states is performed among the
states of different groups. Special block-diagonalization algorithms are used for this
task.

On the other hand, in time-dependent DFT the parallelization in state indices is
straightforward. Since the time-dependent Kohn-Sham equations constitute an N-
fold initial value problem, each orbital/state index may be propagated on a different
processor. Communication is only required for the calculation of the density and, in
some cases, for the calculation of the current.

• real-space regions: The real-space mesh is divided into different domains, so that
each processor can treat a different portion of the total mesh. This is illustrated in
the left of Fig. B.2, where we show a six-fold domain decomposition of a benzene
molecule in the x-y plane. Apart from the distribution of the computational burden
over the different nodes, this parallelization strategy has the distinct advantage that
the total memory requirement for the storage of the grid points is distributed over
the nodes. Much larger systems can be treated if domain parallelization is used.

The price one has to pay for this flexibility is the rather involved implementation
which requires non-trivial communication among the nodes. On the right hand side
of Fig. B.2 we show the application of a finite-difference stencil of the Laplacian to
a boundary point of Domain B. Due to the non-local character of the stencil this
requires points of Domain A (grey shaded area) which are held in memory by a
neighboring processor. These points are termed ghost points and need to be commu-
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nicated among neighboring nodes every time the function values on the grid change.
Low-latency high-bandwidth networks are therefore the preferred interconnects for
such an implementation.

• other: electron-hole pairs, scattering states, etc: Depending on the given problem
several other parallelization schemes are possible. For example, the basis set in a
linear response calculation within time-dependent DFT consists of electron-hole pairs:
products of occupied and unoccupied Kohn-Sham states. Typically a large number
of matrix elements is required. Since the different matrix elements are independent
of each other, a parallelization can obtained by simply distributing their calculation
over the different nodes.

Quantum mechanical transport calculations are naturally described in terms of scat-
tering states at given energies. Similar in spirit to the parallel treatment of Kohn-
Sham states, the propagation of these scattering states can be distributed over dif-
ferent nodes.

B.2 Technical Aspects

For the implementation of the multiple-way parallelization in Octopus we have employed
version 1 of the message passing standard MPI [SO+95, GHL+98, GLDS96, Ano94]. The
choice was mainly motivated by the availability of this MPI variant for virtually any com-
puter architecture, and by the fact that MPI is the de facto standard on large-scale parallel
architectures. We did not make use of version 2 or newer developments in the MPI standard
since these features are still not available on many platforms. Parallelization techniques
like OpenMP have been ruled out from the start, since they are limited to shared memory
architectures with many processors in a single machine. The current Top500 list [TOP]
contains only a few machines of this kind.

Within Octopus we allow for various different box shapes like spheres, cylinders or par-
allelepipeds in 3D, or disks and rectangles in 2D. With a recent addition to the code even
arbitrary user-defined shapes can be chosen. To treat the segmentation of the real space
mesh for all possible geometries and spatial dimensions on the same footing, we convert
the sequence of mesh points into a structured graph. The problem of decomposing the
real-space mesh into different domains is then translated into a graph-partitioning prob-
lem. Several graph algorithms are available for such tasks and we have chosen for our
implementation in Octopus a “multilevel k-way partitioning” algorithm as provided by
the Metis library [KK98]. The library functions try to minimize the edge cuts while the
graph partitioning is performed. Translated back to the real-space mesh this means that
the intersection area of neighboring domains is minimized which in turn implies that fewer
ghost points have to be communicated between the different nodes. This effect can be seen
nicely in the example of the benzene molecule (Fig. B.2) where the domain boundaries
computed by Metis always lie between two carbon atoms, the optimal situation in this
case.
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Figure B.3: Measured speedups for a domain-parallel calculation of Cs8@C60.

B.3 Application to Cs8@C60

In Fig. B.3 we show a sample calculation for 8 Cs atoms attached to C60. Due to the size of
the Cs atoms a rather large sphere with 26 Å diameter was used as enclosing computational
domain. By choosing a grid spacing of ∆=0.20Å a total number of 1.177.863 grid points
were contained in the calculation box.
To asses the performance of the domain parallelization we have repeated the ground-state
DFT calculation of this system with a varying number of processors ranging from one to
32. On the right hand side of Fig. B.3 we plot the measured speedup as function of the
number of processors. The circles correspond to the timings obtained for the application of
the Hamiltonian to the wavefunction and the diamonds represent the measured timings for
a full SCF cycle. Both curves follow Amdahl’s law [Amd67]: Suppose that p is the fraction
of a calculation that can be performed in parallel. Then 1 − p is the percentage which is
intrinsically serial. If we define the speedup S(N, p) of a parallel calculation as the ratio
T (1, p)/T (N, p), where T (N, p) is the execution time using N processors, we find

S(N, p) =
1

1− p+ p/N
. (B.2)

Note that the speedup always saturates at 1/(1−p) as function of the number of processors,
if p < 1. In Fig. B.3 we have fitted our measured data to Amdahl’s law (solid lines)
and obtain parallel fractions p = 0.97 for the application of Ĥ to the wavefunction and
p = 0.992 for the execution of a full SCF cycle. Both fractions indicate that a high degree of
parallelization has been achieved for the domain parallelization in Octopus. Nevertheless,
since the saturation is very sensitive to the value of p there is still room for improvement
in the future.
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[BKV93] G. G. Balint-Kurti and Á. Vibók, Complex Absorbing Potentials in Time
Dependent Quantum Dynamics, Numerical Grid Methods and their Applica-
tion to Schrödinger’s Equation (C. Cerjan, ed.), vol. 412, NATO ASI series,
Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers,
1993, p. 195. 103

[BMO+02] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-
functional method for nonequilibrium electron transport, Phys. Rev. B 65,
165401 (2002). 88

[Bon98] M. Bonitz, Quantum kinetic theory, Teubner, Stuttgart, 1998. 43, 45, 47

[Bop59] F. Bopp, Ableitung der Bindungsenergie von N -Teilchen Systemen aus 2-
Teilchen Dichtematrizen, Z. Phys. 156, 348 (1959). 35



Bibliography 133

[BP94] V. A. Baskakov and A. V. Popov, Implementation of transparent boundaries
for numerical solution of the Schrödinger equation, Wave Motion 14, 123
(1994). 99

[BPL95] K. Burke, J. P. Perdew, and M. Levy, Nonlocal density functionals for ex-
change and correlation: Theory and applications, Modern Density Functional
Theory: A Tool for Chemistry (J. M. Seminario and P. Politzer, eds.), Else-
vier, Amsterdam, 1995. 15

[Bre73] R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice Hall,
Englewood Cliffs, NJ, 1973. 39
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Deutsche Kurzfassung

Zeitabhängige Dichtefunktionaltheorie (TDDFT) wird als erfolgreiches Werkzeug zur
Berechnung von Anregungsenergien in atomaren und molekularen Systemen eingesetzt. Im
ersten Teil dieser Arbeit leiten wir eine Doppelpol-Näherung für die TDDFT-Gleichungen
der linearen Antwortfunktion her. Diese Näherung erlaubt die exakte Beschreibung von
Systemen mit zwei stark gekoppelten Anregungsenergien, die vom Rest des Spektrums
klar getrennt sind. Im Gegensatz zur klassischen Einpol-Näherung liefert die Doppelpol-
Näherung Korrekturterme für die Kohn-Sham Oszillator-Stärken. In der vorliegenden Ar-
beit konnten mehrere kritische Polabstände identifiziert werden. Es stellt sich z.B. her-
aus, dass die Kopplung zwischen Anregungsenergien das Verschwinden von Übergängen
im optischen Spektrum bewirken kann. Weiterhin zeigen wir wie sich die Gleichungen der
Doppelpol-Näherung invertieren lassen, was dazu genutzt werden kann, Matrix-Elemente
des Austausch-Korrelations-Kernels fxc mit Hilfe von experimentellen Daten zu bestim-
men. In Zukunft kann dies als Grundlage für die Konstruktion von Funktionalen dienen.
Die Theorie der reduzierten Dichtematrizen (RDMFT) gilt als vielversprechender Zugang,
der eine über DFT hinausgehende Beschreibung von stark korrelierten Vielteilchensyste-
men ermöglicht. Bisherige Forschungsarbeiten auf dem Gebiet der RDMFT beschränken
sich hauptsächlich auf die Beschreibung von stationären Systemen. In der vorliegenden
Arbeit versuchen wir erste Schritte im Hinblick auf eine zeitabhängige Erweiterung von
RDMFT zu unternehmen. Wir leiten Bewegungsgleichungen für die natürlichen Orbitale
und deren Besetzungszahlen ab und zeigen mit Hilfe der Bewegungsgleichung für die Be-
setzungszahlen, dass eine adiabatische Erweiterung bestehender Funktionale der statischen
RDMFT zu zeitlich konstanten Besetzungszahlen führt. Aus den stationären Bedingun-
gen für die Bewegungsgleichungen der N -Teilchen Korrelationen (korrelierte Anteile der
N -Teilchen Dichtematrizen) leiten wir eine Klasse von Grundzustands-Funktionalen ab,
die für Rechnungen innerhalb der statischen RDMFT verwendet werden können. Als An-
wendung betrachen wir Zeitpropagationen der Vielteilchen-Schrödinger Gleichung für ein-
dimensionale Modellsysteme. Mit Hilfe der Theorie der optimalen Kontrolle berechnen wir
optimierte Laserpulse für atomare Übergänge in einem Modell für das Helium-Atom. Wir
ermitteln mit Hilfe der korrelierten und - zumindest numerisch - exakten Wellenfunktion
die exakte Zeitentwicklung der natürlichen Orbitale und Besetzungszahlen für (i) Helium
im starken Laserfeldern und (ii) Elektron-Ionen Streuung.
Teil III der vorliegenden Arbeit beschäftigt sich mit zeitabhängigem elektronischen Trans-
port im Rahmen der TDDFT. Wir stellen einen Algorithmus vor, mit dessen Hilfe sich
ausgedehnte Eigenzustände von Einteilchen-Hamiltonoperatoren berechnen lassen. Die
Methode ist speziell auf eine Finite-Differenzen Diskretisierung der Schrödinger Gleichung
zugeschnitten. Wir untersuchen die Zeitpropagation von mesoskopischen Systemen mit
Hilfe von endlichen Gittern und diskutieren die Einschränkungen eines solchen Zugangs.
Um die Limitierungen von endlichen Simulationsgebieten zu überwinden, entwickeln wir
ein Propagations-Schema welches auf einer Darstellung mit gemischter Basis beruht. In
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unserem Verfahren werden Zuleitungen und zentrales Streugebiet gleichermaßen behandelt,
so dass Artefakte durch Reflexionen an den Gitterrändern vermieden werden.
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