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Zusammenfassung Die vorliegende Arbeit beschäftigt sich mit dem Beweis opti-
maler Fehlerschranken für die Diskretisierung H1-elliptischer Minimisierungsprob-
leme, deren Lösungen Werte in einer Riemannschen Mannigfaltigkeit annehmen.
Die Diskretisierung wird dabei mithilfe Geodätischer Finiter Elemente durchgeführt,
welche eine unter Isometrien invariante Methode beliebiger Ordnung darstellen.
Der Diskretisierungsfehler wird sowohl intrinsisch in einer speziell eingeführten
Sobolev-Distanz als auch extrinsisch betrachtet und es werden optimale Abschät-
zungen vom H1- und L2-Typ hergeleitet, die in vorausgegangenen Arbeiten an-
derer Autoren experimentell beobachtet wurden. Unter Verwendung der Rothe-
Methode bestehend aus einem impliziten Eulerverfahren zur Zeitdiskretisierung und
Geodätischen Finiten Elementen zur Ortsdiskretisierung werden zusätzlich Fehler-
abschätzungen für L2-Gradientenflüsse H1-elliptischer Energien hergeleitet.

Kern der Arbeit bilden die Diskretisierungsfehlerabschätzungen für Minimisie-
rungsprobleme in intrinsischen H1- und L2-Distanzen. Zu deren Herleitung werden
zunächst inverse Abschätzungen sowie Interpolationsfehler für Geodätische Finite
Elemente und deren diskrete Variationen gezeigt. Unter Verwendung eines nichtlin-
earen Céa-Lemmas werden daraus H1-Diskretisierungsfehler für Minimierer H1-
elliptischer Energien hergeleitet. Mit Hilfe einer Verallgemeinerung des Aubin-
Nitsche-Lemmas werden sodann für (im Wesentlichen) semilineare Energien auch
optimale L2-Fehlerschranken gezeigt, wobei aus technischen Gründen die Dimen-
sion des Definitionsgebietes des Minimierers auf d < 4 beschränkt wird. Alle Re-
sultate werden anhand von harmonischen Abbildungen in eine glatte Riemannsche
Mannigfaltigkeit, welche gewisse Krümmungsschranken erfüllt, illustriert.

Die Ideen, welche zu Abschätzungen vom H1-Typ führen, wurden in Teilen schon
im Vorfeld in [GHS14] veröffentlicht.
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Chapter 0
Introduction

The numerical approximation of maps between Riemannian manifolds that min-
imize a certain energy is a developing field. Non-Euclidean domains, e.g., sur-
faces or more generally embedded Riemannian manifolds, which arise from mea-
surements, assumptions, or solutions to geometric PDE-problems, have been stud-
ied quite extensively in [DDE05, DE07, DE12, DE13]. Methods for manifold
codomains which for example arise from physically enforced symmetry, e.g., in
the context of Cosserat materials or liquid chrystals, are often ad hoc contruc-
tions specific to an individual energy and manifold [BP07, Bar05, WG93, Mün07,
MWN09, MNW11, SVQ86, SFR90]. Recently, geodesic finite elements have been
developed and experimentally studied to address this shortcoming of other meth-
ods by providing an objective, i.e., isometry-invariant method of arbitrary order
[San10, San12, San13, SNB14]. With the exception of [BP07, Bar05], approxima-
tion error estimates for methods used for manifold codomains are rarely addressed
in the literature, even for simple energies. In this work, we aim to generalize some
results from the basic theory of finite element methods for the minimization of W 1,2-
elliptic energies to functions with Riemannian manifold codomains, in particular
concentrating on geodesic finite elements for the discretization. First results in this
direction have already been published in [GHS14]. We do not aim for completeness
but for a basis on which more advanced theory can be built.

We consider minimization problems of the form

u : Ω →M, u = argmin
w∈H

J(w), (0.1)

where Ω ⊂ Rd , M is a smooth Riemannian manifold, and J : H → R a nonlinear
functional. The domain H of J is a set of functions Ω → M of W 1,2 smoothness,
which we discuss in detail in Chapter 1.

As the codomain M is a Riemannian manifold, we discretize (0.1) by geodesic
finite elements (GFEs), which are an adaption of Lagrangian finite elements of arbi-
trary order. Based on the Riemannian center of mass, they do not rely on an embed-
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10 0 Introduction

ding of M into Euclidean space and in particular are equivariant under isometries of
M, which leads to the desirable property of objectivity.

The Riemannian center of mass has already been used for interpolation of values
on a manifold in [BF01, Moa02, PFA06]. In [Gro13b], interpolation errors have
been estimated in the L∞ norm.

By construction, GFEs form a conforming discretization, i.e., the set Sh of GFE
functions for a given grid is a subset of H (see [San13, Thm. 5.1]). Restricting the
minimization problem (0.1) to Sh then yields the discrete problem

uh = argmin
wh∈Sh

J(wh). (0.2)

Details for a numerical solver for (0.2) have been described in [San12].
Besides the static solutions to (0.1) we will also consider corresponding L2-

gradient flows

〈u′(t),V 〉L2(Ω ,u(t)−1T M) =−
d
ds |s=0

J(expu(t)(sV )) ∀V ∈ Tu(t)H, (0.3)

and their discretization by a method of time layers consisting of an implicit Euler
scheme for the time discretization and geodesic finite elements for the space dis-
cretization.

While it is well-known that solutions to (0.3) may develop singularities in finite
time even for smooth initial conditions (see, e.g., [HW08, CG89, CDY92, Gro93]),
we will only do an a priori error analysis for smooth solutions. In [Bar05] harmonic
maps into spheres S2 ∈ R3 are approximated using first order finite elements while
constraining the vertex values to S2. It is shown that even for non-regular solutions,
there exists a subsequence of discrete solutions converging weakly to a harmonic
map. Similar results for geodesic finite elements would be intriguing but beyond the
scope of this work.

Note that the domain Ω in (0.1) and (0.3) is always a subset of Rd . For
the discretization of non-Euclidean domains there exist well-developed techniques
[DDE05, DE07, DE12, DE13]. In [vD13], the Riemannian center of mass is investi-
gated in the context of the discretization of non-Euclidean domains. A combination
of either of these methods with our techniques for manifold codomains is planned.

We want to point out that only smooth Riemannian manifolds are considered
as codomains in this work, although the construction of geodesic finite elements is
meaningful and natural even in a metric space setting, in particular in the context of
CAT (0)-spaces. At several instances the more general metric space view point will
be depicted. A full generalization, however, is not studied here.

We begin this work by introducing Sobolev spaces for manifold codomains. We
provide several different plausible definitions that we show to be equivalent for a nu-
merically relevant subset H of continuous W 1,2-functions. In particular, we measure
the regularity by a smoothness descriptor for manifold-valued functions introduced
in [GHS14] for this purpose. In order to measure errors, we introduce an intrinsic
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Sobolev distance which is equivalent to the error measured in an embedding for the
functions of interest.

In the second chapter we recall the definition of geodesic finite elements from
[San12, San13, Gro13b, GHS14]. In particular, we reprove well-posedness of the
defining minimization problems by a simpler argument than the one given in
[San13]. As a tool for further analysis of geodesic finite elements, we will dis-
cuss inverse estimates that turn out to be more subtle than in the Euclidean case
as sufficiently high derivatives of geodesic finite elements do not vanish as those
of polynomials do. We then recall the interpolation error estimates published in
[GHS14] with some minor changes to the proof. Geodesic interpolation of vector
fields corresponds to variations in the set of geodesic finite elements. We will amend
the techniques of [GHS14] to obtain associated vector field interpolation error esti-
mates needed in Chapter 3 for the proof of optimal L2-error estimates.

The third chapter is dedicated to discretization error estimates. Using a nonlinear
version of Céa’s Lemma combined with the interpolation error estimates of Chap-
ter 2, we obtain for elliptic energies a W 1,2-discretization error estimate for a solu-
tion restricted in a W 1,q-ball, as already described in [GHS14]. We then show that
this restricted solution indeed correlates to a local solution. This improves on the re-
sult in [GHS14], where additional regularity of the continuous solution is required
for a corresponding result. For dimensions d < 4, we then continue with an analy-
sis of the L2-error for (morally) semi-linear energies. Using a generalization of the
Aubin–Nitsche lemma, we obtain optimal error estimates. Note that the results in
this chapter are not restricted to geodesic finite elements but can be applied to other
discretization methods as long as interpolation error estimates comparable to the
ones in Chapter 2 can be derived.

In the fourth chapter we discuss the discretization of the gradient flow (0.3) by
the method of time layers employing an implicit Euler scheme for the time- and first
order GFEs for the space-discretization. Using error estimates from [AGS06] for
the time discretization, we prove W 1,2- and L2-error estimates for the fully discrete
scheme.

We illustrate the discretization error estimates of Chapters 3 and 4 in the fifth
chapter using the harmonic energy as an example. Under certain bounds on the
curvature of M, we obtain the optimal error bounds for the static problem, which
have been experimentally observed in [San12, San13]. The results for the harmonic
map heat flow are of a more speculative nature.

I thank my advisors Klaus Ecker and Ralf Kornhuber for their support, Oliver
Sander for suggesting the topic and day to day mentoring, Philipp Grohs and Oliver
Sander for the collaboration on [GHS14], and my family for everything else.





Chapter 1
Sobolev Spaces with Riemannian Manifold
Targets

In the context of finite elements for the approximation of elliptic and parabolic par-
tial differential equations, the concept of weak solutions and Sobolev spaces arises
naturally. In the course of this work we will discuss mainly partial differential equa-
tions whose solutions are mappings from some open subset Ω ∈ Rd with piecewise
Lipschitz boundary ∂Ω into a smooth Riemannian manifold (M,g) without bound-
ary.

In order to gain a deeper insight into the topic, we will also consider map-
pings into a metric space (X ,d) without boundary and only later confine ourselves
to the special case of Riemannian manifolds. We will always assume that (X ,d)
is a complete (or strictly intrinsic) length space, i.e., that for each pair of points
p,q ∈ X there exists a connecting, length realizing rectifiable curve. We call these
curves geodesics. Note that completeness in the metric sense, i.e., the fact that ev-
ery Cauchy sequence has a limit, is related to the completeness of a length space.
Specifically, a complete metric space is a complete length space if and only if for
each ε > 0 and two points p,q ∈ X there exists a finite sequence p = x1, . . . ,xk = q
such that d(xi,xi+1)≤ ε and ∑

k−1
i=1 d(xi,xi+1)< d(q, p)+ ε (see Corollary 2.4.17 in

[BBI01]).
We can define curvature in a length space in several equivalent ways. Here, we

will use local convexity and concavity of the distance d (cf. [BBI01, KS93]):

Definition 1.1. Let (X ,d) be a complete length space. We say that X has nonpositive
curvature if for any three points p,q,r ∈ X and a constant speed geodesic γq,r :
[0,1]→ X connecting q to r, i.e.,

d(q,γq,r(t)) = t d(q,r), d(r,γq,r(t)) = (1− t) d(q,r) ∀t ∈ [0,1],

the squared distance with reference point p, d2(p, ·), is 2-convex along γq,r, i.e.,

d2(p,γq,r(t))≤ (1− t)d2(q, p)+ td2(r, p)− t(1− t)d2(q,r) ∀t ∈ [0,1]. (1.1)

If the inverse inequality in (1.1) holds, we say X has nonnegative curvature.

13



14 1 Sobolev Spaces with Riemannian Manifold Targets

Further, we say that X has curvature bounded from above, if there exists a 0 ≤
K ∈ R such that

d2(p,γq,r(t))≤ (1− t)d2(q, p)+ td2(r, p)− C(K)

2
t(1− t)d2(q,r) ∀t ∈ [0,1]

(1.2)

holds locally in X , where C(K) is the convexity constant of the distance function on
the constant curvature space with curvature K.

X has curvature bounded from below, if there exists a 0≥ k ∈ R such that

d2(p,γq,r(t))≥ (1− t)d2(q, p)+ td2(r, p)− C(k)
2

t(1− t)d2(q,r) ∀t ∈ [0,1]

(1.3)

holds locally in X, where C(k) is the concavity constant of the distance function on
the constant curvature space with curvature k.

In the following we will restrict ourselves to the special case of (X ,d) being a
complete length space with curvature bounded from above and below. Note that
in this case (X ,d) indeed is a manifold (M,g) possessing a C3-atlas such that in
its charts the metric d can be defined by the metric tensor g whose coefficients
are in class W 2,p for every p > 1 (see [BBI01]). This allows the formal definition
of Christoffel symbols, curvature tensor, and parallel transport having geometric
meaning (for almost all paths).

There are several different possibilities to define Sobolev spaces of functions
f : Ω → (M,g) in this context. Some of these definitions are even valid for complete
length spaces with non-positive curvature (NPC-spaces). In the following we will
discuss some of these definitions and their relations to each other. As our goal is
an a priori error analysis for the numerical approximation of solutions of PDEs, we
will then discuss the concept of distances implied by the Sobolev structure. We will
introduce an approximate distance yielding a notion of W 1,2-error. We will see that
although it is not a distance in the strict sense, we recover several properties useful
for assessing the quality of numerical approximation.

1.1 Different Definitions

Recall the standard definition of Sobolev spaces, taking values in Rn.

Definition 1.2. For k ∈ N and 1 ≤ p ≤ +∞, the Sobolev space W k,p(Ω) is the set
of all functions f : Ω → R such that for every multi-index ~α with |~α| ≤ k the weak
partial derivative D~α f is locally integrable and in Lp(Ω), i.e.,

W k,p(Ω) :=
{

u ∈ Lp(Ω) : D~α u ∈ Lp(Ω) ∀|~α| ≤ k
}
.
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The Sobolev norm is defined by

‖ f‖W k,p(Ω) :=


(

∑|~α|≤k

∥∥∥D~α u
∥∥∥p

Lp(Ω)

) 1
p

, 1≤ p <+∞;

max|~α|≤k

∥∥∥D~α u
∥∥∥

L∞(Ω)
, p =+∞.

Further, the Sobolev space W k,p(Ω ,Rn) is defined by

W k,p(Ω ,Rn) :=
{

u = (u1, . . . ,un) : ui ∈W k,p(Ω ,R) ∀i = 1, . . . ,n
}
.

The corresponding Sobolev norm is defined by the usual combination of the com-
ponents ui, i.e.,

‖u‖W k,p(Ω ,Rn) :=

(
n

∑
i=1
‖ui‖p

W k,p(Ω)

) 1
p

.

For the case p = 2, we write Hk(Ω ,Rn) and note that we have a scalar product

〈u,v〉Hk(Ω ,Rn) :=
n

∑
i=1

∑
|~α|≤k
〈D~α ui,D

~α vi〉L2 .

The definition of Lp-functions can be generalized in a straightforward fashion to
functions taking their values in a complete length space (X ,d) (see, e.g., [KS93]).

Definition 1.3. Let (X ,d) be a complete length space and 1≤ p < ∞. We define

Lp(Ω ,X) :=
{

u : Ω → X | u measurable, u(Ω) separable ,∫
Ω

dp(u(x),Q) dx < ∞ for some Q ∈ X
}
.

We further define a distance function dLp on Lp(Ω ,X) by

dp
Lp(u,v) :=

∫
Ω

dp(u(x),v(x)) dx.

Remark 1.4. It is easy to see that dLp is indeed well defined for u,v ∈ Lp(Ω ,X),
as x 7→ (u(x),v(x)) is a measurable function to X ×X . Further, the definition of a
function u ∈ Lp(Ω ,X) is independent of the point Q ∈ X in the definition, as the
triangle inequalities for d and the real-valued Lp-distance imply for any other P ∈ X
that (∫

Ω

dp(u(x),P) dx
) 1

p

≤
(∫

Ω

(d(u(x),Q)+d(Q,P))p dx
) 1

p
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≤
(∫

Ω

dp(u(x),Q) dx
) 1

p

+ |Ω |
1
p d(Q,P)

< ∞.

The same argument also shows that dLp is finite for u,v ∈ Lp(Ω ,X), and that it
fulfills a triangle inequality.

Remark 1.5. Obviously, (Lp(Ω ,X),dLp) is a complete metric space, if (X ,d) is com-
plete. Note furthermore that Definition 1.3 also generalizes from subsets Ω ⊂Rd to
any connected Riemannian manifold (Ω d ,gΩ ).

While the definition of Lp(Ω ,X) is thus immediate, this is not true for W k,p(Ω ,X).
In the following we will introduce an approach by Korevaar and Schoen [KS93] that
works for X being a complete metric space. We will then discuss three other ways
conceivable for Riemannian manifolds and compare them.

1.1.1 Sobolev Spaces with Metric Space Targets

For the general setting of functions taking their values in a complete metric space
(X ,d) a direct intrinsic definition of W 1,p(Ω ,X) was introduced in [KS93]. We will
recapitulate this definition in the following. Note that a similar approach was taken
independently by Jost [Jos94]. In [Chi07] it was proven that both approaches are
indeed equivalent.

Let (X ,d) be a complete metric space and u∈ Lp(Ω ,X) for some 1≤ p < ∞. Let
further V : Ω → Rd denote a smooth vectorfield on Ω , and set for ε > 0

Ωε := {x ∈Ω | d(x,∂Ω)> ε} ,
Ω

V
ε

:= {x ∈Ω | d(x,∂Ω)> ε|V |∞} .

Note that the map x 7→ u(x+ εV (x)) is in Lp(ΩV
ε ,X) as∫

ΩV
ε

dp(u(x+ εV (x)),P) dx =
∫

y(ΩV
ε )

dp(u(y),P)|detDy−1(y(x))| dy

< ∞,

where y : x 7→ x+ εV (x) and P ∈ X , and thus

detDy−1(y(x)) = (I + εDV (x))−1 =
(
1+ ε trDV (x)+O(ε2)

)−1
.

This also implies ∫
ΩV

ε

dp(u(x),u(x+ εV (x))) dx≤C,

independently of ε .
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Definition 1.6. The spherically averaged ε-approximate energy density function is
defined on Ω by

eε(x) :=

{∫
∂B1(0)

dp(u(x),u(x+εω))
ε p dσ(ω) for x ∈Ωε ,

0 else,

where dσ denotes the (d− 1)-dimensional surface measure on ∂B1(0). Let ν be a
Borel measure on the interval (0,2) with

ν ≥ 0, ν((0,2)) = 1,
∫ 2

0
λ
−pdν(λ )< ∞.

Then the ν ,ε-approximate energy density function is given by

ν eε(x) :=

{∫ 2
0 eλε(x) dν(λ ) for x ∈Ω2ε ,

0 else.

Remark 1.7. By Tonelli’s and Fubini’s theorem, ν eε is a real-valued L1-function
with ∫

Ωε

ν eε(x) dx≤Cε
−p.

Indeed, in [KS93] the more general case of Ω being a Riemannian domain is dis-
cussed where the proof of the corresponding equation uses an orthonormal frame
and a partition of unity argument to simplify to the situation we reviewed here.

Remark 1.8. In [KS93] it is mentioned that for smooth u : Ω →R the energy density
corresponds to |Du|p in the following sense

lim
ε→0

ν eε(x) =C(d, p)|Du(x)|p,

C(d, p) =
∫

∂B1(0)
|ω1|p dσ(ω),

where ω =
(
ω1, . . . ,ωd−1

)
∈ ∂B1(0), and dσ denotes the (d−1)-dimensional sur-

face measure on ∂B1(0). In particular, C(d,2) = ωd , where ωd is the volume of the
unit d-ball.
For p = 2 this formula also holds for smooth Riemannian manifold targets. For
p 6= 2 however, this is not generally true.

Using the approximate energy density, one can define an energy, and conse-
quently the set W 1,p(Ω ,X).

Definition 1.9. Let 1 ≤ p < ∞, u ∈ Lp(Ω ,X), and ν as above. For ε > 0 and f ∈
CC(Ω ,R) := { f̃ ∈C(Ω ,R) : supp f̃ b Ω} define

ν Eε( f ) :=
∫

Ω

f (x)ν eε(x) dx.
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The energy of u is then defined by

ν E(u) := sup
f∈CC(Ω)

0≤ f≤1

(
limsup

ε→0
ν Eε( f )

)
,

and we set

W 1,p(Ω ,X) := {u ∈ Lp(Ω ,X) | ν E(u)< ∞ for some ν} .

Remark 1.10. It is proven in [KS93] that the above definition is independent of the
choice of the measure ν . Furthermore, each measure ν eε dx converges weakly to the
same “energy density” measure de.

1.1.2 Sobolev Spaces with Riemannian Manifold Targets

We later concern ourselves mainly with metric spaces allowing a Riemannian man-
ifold structure. For such spaces M other constructions of W 1,p(Ω ,M) are possible.

The most common definition for Sobolev spaces with Riemannian manifold tar-
gets uses the Nash embedding theorem.

Theorem 1.11 (Nash Embedding Theorem). Let (M,g) be an n-dimensional Rie-
mannian manifold of class Ck. Then there exists a Ck isometric embedding ι : M→
RN for some m = N(n).

For a proof see [Nas56].
Many authors (see e.g. [HW08, Haj09, Hél02, Str85]) use the Nash embedding

theorem to give the following definition of manifold valued Sobolev functions.

Definition 1.12. Let (M,g) be a n-dimensional Riemannian manifold of class Ck.
Let ι : M→ RN be an isometric embedding into Euclidean space. We then define

W k,p
ι (Ω ,M) := {v ∈W k,p(Ω ,RN) | v(x) ∈ ι(M) a.e.}.

Remark 1.13. If Ω and M are compact, then W k,p
ι (Ω ,M) is independent of ι (see,

e.g., [HW08]). Thus, Definition 1.12 is mostly used in this setting. Properties are
discussed in some detail in [HW08] and [Haj09].

Under the same assumption Definition 1.12 is equivalent to Definition 1.9 (see
[KS93, Jos08, Haj09]).

An important question is whether Sobolev functions can be approximated by
smooth functions. For p > d, the result indeed follows by the Sobolev embedding
theorem (see, e.g., [Eva98]).

Theorem 1.14 (Sobolev Embedding Theorem). Assume u ∈W k,p(Ω ,R).
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1. If kp < d, then u ∈ Lq(Ω ,R), q = d p
d−kp and there exists a constant C1 =

C1(k,d, p,Ω) such that

‖u‖Lq(Ω ,R) ≤C1‖u‖W k,p(Ω ,R).

2. If kp > d, then u is indeed in the Hölder space Ck−
⌊

d
p

⌋
− d

p ,ϑ (Ω ,R), where

ϑ :=

{⌊
d
p

⌋
+1− d

p , if d
p is not an integer,

any number in (0,1), if d
p is an integer.

There exists a constant C1 =C1(k,d, p,Ω) such that

‖u‖
Ck−b d

pc− d
p ,ϑ

(Ω ,R)
≤C1‖u‖W k,p(Ω ,R).

For k = 1, p = d the answer is due to Schoen and Uhlenbeck [SU83].

Theorem 1.15. If p≥ d, then C1(Ω ,M)∩W 1,p
ι (Ω ,M) is dense in W 1,p

ι (Ω ,M).

If p < d, the corresponding result is no longer true in general. For a survey of
known results see [HW08].

For smooth functions u : Ω →M the definition of W k,p(Ω ,R) directly transfers
to sections u−1T M, i.e., to vector fields V : Ω → T M such that V (x) ∈ Tu(x)M for
almost every x ∈Ω (cf. [Jos08]).

Definition 1.16. Let (M,g) be an n-dimensional Riemannian manifold, u∈C∞(Ω ,M),
and V ∈ Lp(Ω ,u−1T M), i.e., V : Ω → T M with V (x) ∈ Tu(x)M almost everywhere
in Ω , and ∫

Ω

|V (x)|pg(u(x)) dx < ∞.

Let η ∈C∞
C (Ω ,u−1T M). Then for α = 1, . . . ,d the covariant derivative of η along

u is a vector field along u defined by

∇duα η(x) := lim
h→0

1
h

(
π

t 7→u(x+heα )
u(x) (η(x+heα))−η(x)

)
,

where eα ∈ Rd denotes the α-th Euclidean unit vector, and π
t 7→u(x+heα )
u(x) is the par-

allel transport along the curve defined by t 7→ u(x+ heα). In coordinates we can
write

(∇duη)k
α

:=
∂

∂xα
η

k(x)+Γ
k

i j (u(x))dui
α(x)η

j(x),

where greek indices range from 1 to d, latin indices range from 1 to n, and we sum
over repeated indices.
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We say that V is in W 1,p(Ω ,u−1T M), if the partial derivatives in the definition
of (∇duV )k

α
exist in a weak sense and are in Lp(Ω ,u−1T M). We denote ∇αV :=

(∇duV )
α

.

Remark 1.17. If u is smooth enough, the Sobolev embedding theorem for vector
fields V ∈W k,p(Ω ,u−1T M) follows from the Euclidean case. Indeed, for k = 1 we
consider f (x) := |V (x)|. Then f ∈ Lp(Ω ,R), and we can estimate

Dα f (x) =
〈∇αV (x),V (x)〉
|V (x)|

≤ |∇αV (x)|

almost everywhere. The Sobolev embedding theorem for V is then induced by the
one for f . For higher k, the theorem can then be proven analogously to the Euclidean
case (see, e.g., [Eva98]).

Remark 1.18. If p > d every map in W 1,p(Ω ,M) can be described as a pointwise
small deformation of a smooth function. Thus, W 1,p(Ω ,M) can be locally modelled
as a Banach manifold over the space of W 1,p-deformations, i.e., W 1,p(Ω ,u−1T M).
More on this construction can be found in [Pal68].

Remark 1.19. If p > d, we have equivalence of the characterization of W 1,p(Ω ,M)

described in Remark 1.18 to Definition 1.12 and Defintion 1.9. Indeed, u∈W 1,p
ι (Ω ,M)

with p > d implies that u is continuous and hence the image of Ω is contained in a
compact ball BR in M. By Remark 1.13, the definition of W 1,p

ι (Ω ,BR) is indepen-
dent of ι . Note however that the radius R depends on u.

Although W 1,2(Ω ,M) is only a manifold for d = 1, we can nevertheless consider
the W 1,2-norm for vector fields along functions in W 1,q(Ω ,M) if q > max{2,d} as
those functions are continuous and thus local charts can be used to define covari-
ant derivatives. For this norm we can show the following version of the Poincaré
inequality.

Lemma 1.20 (Poincaré Inequality). Let u ∈W 1,q(Ω ,M) with q > max{2,d}, and
assume that W : Ω → u−1T M with W |∂Ω = 0. Then we have

|W |2L2(Ω ,u−1T M) ≤C2(Ω)
d

∑
α=1

∫
Ω

|∇αW (x)|2g(u(x)) dx,

with C2(Ω) the Poincaré constant of the domain Ω .

Proof. By the Poincaré inequality for f : x 7→ |W (x)|g(u(x)) ∈ R we get

|W |2L2(Ω ,u−1T M) =
∫

Ω

|W (x)|2g(u(x)) dx = ‖ f‖2
L2 ≤C2(Ω)

d

∑
α=1

∥∥∥∥ d f
dxα

∥∥∥∥2

L2
.

Using the Cauchy inequality for g we may then calculate
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dxα

(x)
∣∣∣∣= 〈W (x),∇αW 〉g(u(x))

|W (x)|g(u(x))
≤ |∇αW (x)|g(u(x)) ,

and the assertion follows.

1.1.3 Traces of Sobolev Maps

In the following we will mostly concern ourselves with functions u : Ω→M that are
continuous. Thus, we do not really need to concern ourselves with traces of Sobolev
maps. For completeness we nevertheless repeat a short overview given in [HW08].

Recall that

W 1− 1
p ,p(∂Ω ,RN) :={

g ∈ Lp(∂Ω ,RN) : ‖g‖Lp(∂Ω)+

(∫
∂Ω

∫
∂Ω

|g(x)−g(y)|p

|x− y|p+m−2 dx dy
) 1

p

< ∞

}
.

(1.4)

The trace operator tr : C1(Ω ,RN)→C1(∂Ω ,RN) be extended to a continuous and

surjective operator tr : W 1,p(Ω ,RN)→W 1− 1
p ,p(∂Ω ,RN) (see, e.g., [Eva98]).

Definition (1.4) can be extended to manifolds analogously to Definition 1.12 by
setting

W 1− 1
p ,p(∂Ω ,M) :=

{
g ∈W 1− 1

p ,p(∂Ω ,RN) : g(x) ∈M for a.e. x ∈ ∂Ω

}
. (1.5)

Then the trace of a map u∈W 1,p(Ω ,M) is always contained in W 1− 1
p ,p(∂Ω ,M) but

the map tr : W 1,p(Ω ,M)→W 1− 1
p ,p(∂Ω ,M) is in general not onto. This is also the

case for continuous maps, and the question if tr is onto for given manifold and p is
largely open. In [HW08] an overview of known results is given.

Given boundary and homotopy data φ : Ω →M, we set W k,p
φ

(Ω ,M) to be those
functions v ∈W k,p(Ω ,M) such that tr(v) = tr(φ) and v and φ are of the same homo-
topy class, i.e., there exists a continuous homotopy connecting v and φ .

1.1.4 Smoothness Descriptors

We want to characterize Sobolev functions by having finite energy. If the function
we study is continuous, we can make sense of weak covariant derivatives by using
local charts on the target manifold (M,g). This restriction to continuous functions is
the reason why Definition 1.12 uses the Nash Embedding Theorem rather than local
charts. In the case where weak covariant derivatives can be defined, any given char-
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acterization should be equivalent to the Sobolev norm in the defining embedding.
This makes it necessary to track more terms than the usual Sobolev energy con-
sists of in the Euclidean setting. To this purpose we define the so-called smoothness
descriptor (cf. [GHS14]).

For covariant differentiation we cannot use the usual multi-index notation as co-
variant derivatives do not commute. In the following we use for multiple covariant
derivatives the multi-index notation

∇
~β u := ∇duβk

. . .∇duβ2
duβ1 ,

~β ∈ {1, . . . ,d}k, k ∈ N0, (1.6)

where duβ = du( ∂

∂xβ
), and ∇du denotes the covariant derivative along u as defined

in Definition 1.16.
For a shorter notation we set |~β |= dim~β and

[d] := {1, . . . ,d}.

Additionally, we set ∇
~β u := 1 ∈ R if |~β | = 0. For a subfamily ~α = (β j) j∈J of a

multi-index ~β = (βi)i∈I we use the notation ~α ⊂ ~β . We set ~β\~α = (βi)i∈I\J .
Analogously to the Euclidean setting, we set for k ≥ 1

‖∇ku‖Lp :=

 ∑
|~β |=k

∫
Ω

|∇~β u(x)|p dx

 1
p

. (1.7)

This term is an obvious candidate for a Sobolev half-norm. However, recalling Def-
inition 1.12 we see that in light of the chain rule the correct notion of Sobolev half-
norm has to include lower order terms in order to be equivalent to |ι ◦u|W k,p(Ω ,RN).
This motivates the following definition.

Definition 1.21 (Smoothness Descriptor). Let k≥ 1, p ∈ [1,∞]. The homogeneous
k-th order smoothness descriptor of a function u∈C(Ω ,M)∩W k,p(Ω ,M) is defined
by

θ̇k,p,Ω (u) :=

 ∑
~β j∈[d]

m j , j=1,...,l

∑
l
j=1 m j=k

∫
Ω

l

∏
j=1

∣∣∣∇~β j u(x)
∣∣∣p
g(u(x))

dx


1/p

,

with the usual modifications for p=∞. For k = 0, and a fixed reference point Q∈M,
we set

θ̇0,p,Ω ;Q(u) :=
(∫

Ω

dp(u(x),Q) dx
)1/p

.

Further, we set
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θ̇0,p,Ω (u) := min
Q∈M

θ̇0,p,Ω ;Q(u).

The corresponding inhomogeneous smoothness descriptor is defined by

θk,p,Ω (u) :=

(
k

∑
i=0

θ̇
p
i,p,Ω (u)

) 1
p

.

In Definition 1.21, the condition u ∈ C(Ω ,M)∩W k,p(Ω ,M) can be interpreted
in terms of weak derivatives in coordinates (cf. [Jos08]). We will see in Propo-
sition 1.24 that for continuous functions finiteness of the smoothness descriptor
(when defined) is indeed equivalent to finiteness of the Sobolev norm in an iso-
metric embedding, and thus there is no ambiguity in the definition of W k,p(Ω ,M)
(if kp > d). In fact, the definition itself of the smoothness descriptor is motivated by
Proposition 1.24 which follows from the chain rule. Technically, the first order and
kth order terms are enough to characterize the smoothness descriptor. Indeed, these
terms bound all all other terms of the smoothness descriptor as well as terms that
scale similarly.

Proposition 1.22. Let u ∈C(Ω ,M)∩W k,p(Ω ,M), and let ~α be a multi-index in the
sense of (1.6) with |~α|= l +1, 0≤ l ≤ k−1. Then(∫

Ω

|∇~α u|
kp

l+1 dx
) 1

p

≤C
(∫

Ω

|∇ku|p dx+
∫

Ω

|du|kp dx
) 1

p

,

where ∫
Ω

|∇ku|p dx = ∑
|~β |=k

∫
Ω

∣∣∣∇~β u(x)
∣∣∣p
g(u(x))

dx

∫
Ω

|du|kp dx = ∑
~β j∈[d], j=1,...,k

∫
Ω

k

∏
j=1

∣∣∣d~β j u(x)
∣∣∣p
g(u(x))

dx.

In particular this implies(∫
Ω

|∇ku|p dx+
∫

Ω

|du|kp dx
) 1

p

≤ θ̇k,p,Ω (u)≤C
(∫

Ω

|∇ku|p dx+
∫

Ω

|du|kp dx
) 1

p

.

Proof. Set W := dα1u ∈W k−1,p(T,u−1T M). By the Gagliardo–Nirenberg interpo-
lation inequality, we can estimate for |~β |= l

‖∇~βW‖
L

kp
l+1
≤C

(
‖∇k−1W‖

l
k−1
Lp ‖W‖

k−1−l
k−1

Lkp +‖W‖
L

kp
l+1

)
.

Using Young’s inequality with kl
(k−1)(l+1) +

k−1−l
(k−1)(l+1) = 1 and Hölder’s inequality,

we can estimate
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‖∇~βW‖
L

kp
l+1
≤C

(
‖∇k−1W‖

l+1
k

Lp +‖W‖l+1
Lkp

)
+‖W‖

L
kp

l+1

≤C
(
‖∇k−1W‖

l+1
k

Lp +‖W‖l+1
Lkp

)
.

Thus, we have indeed shown

‖∇~α u‖
L

kp
l+1
≤C

(
‖∇ku‖

l+1
k

Lp +‖du‖l+1
Lkp

)
≤C θ̇

l+1
k

k,p,T .

This implies the assertion.

In the Euclidean setting, i.e., M = Rn, the smoothness descriptor does not coin-
cide with the Sobolev norm, as already shown in [GHS14]. Instead, they relate in
the following way.

Proposition 1.23. Let u ∈W k,p(Ω ,Rn), k ≥ 1. Then

|u|k,p,Ω ≤ θ̇k,p,Ω (u)≤C
(
|u|k,p,Ω +‖du‖k

0,kp,Ω

)
≤C‖u‖k

k,p,Ω .

Proof. The proof follows by Proposition 1.22 and the Sobolev embedding theorem.

We can compare the smoothness descriptor of a function u∈C(Ω ,M)∩W k,p
ι (Ω ,M)

to the smoothness descriptor of the embedded function ι ◦u ∈W k,p(Ω ,RN).

Proposition 1.24. Let (M,g) be compact and of class Ck, and ι : M→RN an isomet-
ric embedding of class Ck such that 0 ∈ ι(M). Then for k ≥ 1 there exist constants
C3,C4 depending on ‖ι‖Ck such that

C3 θ̇k,p,Ω (ι ◦u)≤ θ̇k,p,Ω (u)≤C4θ̇k,p,Ω (ι ◦u) (1.8)

holds for all u ∈W k,p(Ω ,M)∩C(Ω ,M). For kp > d we have

W k,p
ι (Ω ,M) =

{
v ∈C(Ω ,M) : θk,p,Ω (v) is well-defined and < ∞

}
, (1.9)

which is independent of ι .

Proof. First note that as ι is assumed to be isometric, we have

θ̇1,o,Ω (ι ◦u) = θ̇1,o,Ω (u)

for all o∈N such that the terms are finite for u∈W k,p(Ω ,M). The chain rule directly
implies

∇
k(ι ◦u) = ∑

~β j∈[d]
m j , j=1,...,l

∑
l
j=1 m j=k

((
∇

l
ι

)
◦u
) l

∏
j=1

∇
~β j u(x),
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and thus

|ι ◦u|k,p,Ω ≤C ‖ι‖Ck θ̇k,p,Ω (u).

Note that indeed all terms of the smoothness descriptor appear on the right hand
side when applying the chain rule. Applying Proposition 1.22 then yields the upper
estimate in (1.8).

The lower estimate follows by the same argument applied to ι−1, where ‖ι−1‖Ck

can be estimated using the implicit function theorem, since ‖ι−1‖C1 = 1.
In order to show (1.9), we still need to estimate the terms of order k = 0.

θ̇
p
0,p,Ω (ι ◦u)≤

∫
Ω

‖ι(u(x))− ι(Q)‖p dx

≤
∫

Ω

dp(u(x),Q) dx

for all Q ∈M. This implies

θ̇0,p,Ω (ι ◦u)≤ θ̇0,p,Ω (u).

Furthermore, if M is compact, we have

‖ι ◦u‖Lp(Ω ,RN) ≤ θ̇0,p,Ω (ι ◦u)+C(M).

As M is compact, the distance on M is Lipschitz continuous with respect to the
embedded distance, i.e., there exists a constant C such that

d(p,q)≤C |i(p)− i(q)|RN ∀p,q ∈M.

Indeed, if this did not hold, there would exist sequences p j and q j with

d(p j,q j)

|i(p j)− i(q j)|RN
→ ∞.

As ι is an embedding, this can only happen if d(p j,q j)→ 0, and as M is compact
this implies p j,q j→ P ∈M. Locally near P, we can find a map ψ : Br(ι(P))→ RN

with

ψ(x) = (y1, . . . ,yn,0, . . . ,0) ⇔ x ∈ Br(ι(P))∩ ι(M).

This defines a smooth local projection map

πψ(y1, . . . ,yn,yn+1, . . . ,yN) = ψ
−1(y1, . . . ,yn,0, . . . ,0).

Given p and q, we can define a connecting path by

α(t) := (ι−1 ◦πψ)((1− t)ι(p)+ t(ι(q))), (1.10)
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and obtain

d(p,q)≤
∫ 1

0
|α̇(t)| dt ≤

∫ 1

0
|D(ι−1 ◦πψ)| |ι(q)− ι(p)| dt ≤C |ι(q)− ι(p)|.

Hence, we can estimate

θ̇0,p,Ω (u)≤
(∫

Ω

dp(u(x), ι−1(0)) dx
) 1

p

≤C‖ι ◦u‖Lp(Ω ,RN).

The identity (1.9) now follows from Proposition 1.23 as we obtain the estimates

θk,p,Ω (u)≤C(‖ι‖Ck)θk,p,Ω (ι ◦u)≤C(‖ι‖Ck)‖ι ◦u‖k
k,p,Ω ,

and

‖ι ◦u‖k,p,Ω ≤C(ι ,M)θ̇k,p,Ω (u).

For vector fields a similar construction can be introduced. Note that, while vector
fields are a linear concept in the sense that u−1T M is a vector space for each u, we
can also view them as functions in the tangent bundle. Thus, they are dependent on
their base functions and do not form a vector space.

Definition 1.25. Let u ∈W k,b(Ω ,M)∩C(Ω ,M), and V ∈W k,p(Ω ,u−1T M), where

b :=


p for kp > d
p+1 for kp = d
d
k for kp < d.

We define a k-th order homogenous smoothness descriptor for vector fields by

Θ̇k,p,Ω (V ) := ‖V‖La(Ω ,M)θ̇k,b,Ω (u)

+

 ∑
0≤o≤k, ~β j∈[d]

m j

∑
o
j=0 m j=k

∫
Ω

|∇~β0V (x)|pg(u(x))
o

∏
j=1
|∇~β j u(x)|pg(u(x)) dx


1/p

,

where

1
a
=

1
p
− 1

b
.
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1.2 Distances

Core to this work are error estimates and thus distances. Closely related to the con-
cept of distance is the concept of geodesic. As it is essential for our work we will
specify what we mean by a geodesic in the following although it is a well-known
concept and a working definition has already been given in Definition 1.1.

Definition 1.26. Let (X ,d) be a metric space, and let γ : I → X be an absolutely
continuous curve, i.e., γ ∈ AC(I,X). We set

|γ ′|(t) := lim
s→t

d(γ(s),γ(t))
|s− t|

.

Note that this limit exists for L1-a.e. t ∈ I, and t 7→ |γ ′|(t) belongs to L1(I,R) (see,
e.g., [AGS06]). The length of γ is then defined as

L(γ) :=
∫

I
|γ ′|(t) dt.

We call γ ∈ AC(I,X) a length minimizing geodesic connecting p ∈ X to q ∈ X if

γ ∈ argmin
α∈AC(I,X)

α(0)=p,α(1)=q

L(α).

We call γ ∈ AC(I,X) a geodesic if γ|[t,s] is a length minimizing geodesic for small
enough intervals [t,s] ⊂ I. We say that γ ∈ AC(I,X) is a constant speed geodesic
connecting p ∈ X to q ∈ X , if

d(γ(s),γ(t))≡ |s− t|d(p,q)

L1-a.e. in I.

Remark 1.27. In a Riemannian manifold a first variation shows that constant speed
geodesics γ correspond to solutions of the geodesic equation, in coordinates

(
∇γ̇ γ̇

)k :=
d2γk

dt2 +Γ
k

i j ◦ γ
dγ i

dt
dγ j

dt
≡ 0.

1.2.1 Lp-Distances for Manifold Targets

We have already defined the Lp-distance for metric space targets, and thus for Rie-
mannian manifolds, in Definition 1.3. We want to compare geodesics on M with
geodesics in Lp(Ω ,M). For this purpose we need the concept of geodesic homo-
topy.
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Definition 1.28. Let u,v ∈ C(Ω ,M). We call a continuous map Γ : Ω × I → M a
geodesic homotopy connecting u to v if for every x ∈ Ω the track curve γx defined
by γx(t) := Γ (x, t) is a constant speed geodesic connecting u(x) to v(x).

For u,v ∈ Lp(Ω ,M) a geodesic homotopy is defined by requiring the above for
almost every x ∈Ω .

We can identify Lp-geodesics with geodesic homotopies in the following way.

Lemma 1.29. Let u,v ∈ Lp(Ω ,M)∩C(Ω ,M) and Γ be a geodesic homotopy con-
necting u to v. Then Γ (t, ·)∈ Lp(Ω ,M) for every t ∈ I and Γ̂ : I→ Lp(Ω ,M) defined
by Γ̂ (t) := Γ (t, ·) is a constant speed geodesic with respect to the Lp-distance.

Proof. Let u,v ∈ Lp(Ω ,M)∩C(Ω ,M). Let Γ be a geodesic homotopy connecting
u to v, and let Q ∈M. To see that Γ (t, ·) ∈ Lp(Ω ,M) for every t ∈ I, we estimate∫

Ω

dp(Γ (t,x),Q) dx≤
∫

Ω

(d(γx(t),u(x))+d(u(x),Q))p dx

≤
∫

Ω

(d(v(x),u(x))+d(u(x),Q))p dx

< ∞.

Thus Γ (t, ·) ∈ Lp(Ω ,M) for every t ∈ I.
Set Γ̂ (t) := Γ (t, ·). To show that Γ̂ is a constant speed geodesic with respect to

the Lp-distance, we calculate for 0 < s≤ t < 1

dLp(Γ̂ (s),Γ̂ (t)) =
(∫

Ω

dp(Γ (s,x),Γ (t,x)) dx
) 1

p

=

(∫
Ω

(t− s)pdp(u(x),v(x)) dx
) 1

p

= (t− s)dLp(u,v).

Thus Γ̂ is indeed a constant speed geodesic in Lp(Ω ,M).

1.2.2 Metrics on the Tangent Bundle T M

The difference of two (close enough) points on a manifold is characterized by the
vector (p, logp q)∈ T M, where logp : Binj(p)→ TpM denotes the inverse of the expo-
nential map expp : TpM→M, and inj(p) stands for the injectivity radius at p ∈M.

The difference of two functions u,v∈C(Ω ,M) is then characterized by the point-
wise difference (u(x), logu(x) v(x)) ∈ T M. In order to characterize the distance be-
tween the differentials of two functions u,v∈C1(Ω ,M), i.e., (u(x),dα u(x)),(v(x),dα v(x))∈
T M, we consider the tangent bundle itself as a manifold.

There are several natural metrics on the tangent bundle. A complete classification
has been provided in [KS97]. We will only introduce two classical constructions,
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namely the Sasaki metric, which is a Riemannian metric on T M, and the horizontal
(or complete) lift, which is a pseudo-Riemannian metric on T M.

Let τ : T M → M denote the canonical projection. Denote by (TU,ξ k,ξ k̄) the
natural tangent chart, i.e., unbarred indices k = 1, . . . ,n correspond to indices in the
base M, barred indices k̄ = 1, . . . ,n correspond to indices in the fibers of T M.

The tangent bundle of T M at any point (p,V ) splits into the horizontal and the
vertical subspace with respect to ∇

T(p,V )T M = H(p,V )⊕V(p,V ),

where the vertical subspace is defined as the kernel of dτ(p,V ).
For any vector W ∈ TpM there exists a unique vector W h(p,V )∈H(p,V ) such that

dτ(W h) = W . This vector W h is called the horizontal lift. In local coordinates, W h

can be expressed as

W h = ξ
kWk−V i

Γ
k̄

i j ξ
jWk̄.

The vertical lift of W is the vector W v(p,V ) ∈V(p,V ) such that W v(d f ) =W f for all
functions on M. In local coordinates

W v = ξ
k̄Wk̄.

Note that the horizontal and vertical lifts define isomorphisms between the vector
spaces TpM and H(p,V ), and TpM and V(p,V ) repectively.

1.2.2.1 The Sasaki metric

The Sasaki metric gS on T M is derived from the metric g by

gS
(p,V )(X

h,Y h) = gp(X ,Y ),

gS
(p,V )(X

v,Y h) = 0,

gS
(p,V )(X

v,Y v) = gp(X ,Y ).

It is a Riemannian metric on T M. In local coordinates it is defined by

gS
(p,V ) =

(
V aV bΓ k

aiΓ
l

b jgkl +gi j V aΓ k
aigk j

V aΓ k
a jgki gi j

)
.

Remark 1.30. As a Riemannian metric the Sasaki metric induces the distance

SD2((p,Vp),(q,Vq)) = inf
γ

(
L2(γ)+‖πγ

q7→pVq−Vp‖2
g(p)

)
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for (q,Vq),(p,Vp) ∈ T M, where the infimum is taken over all smooth curves con-
necting p and q in M, and π

γ
p7→q : TpM→ TqM denotes the parallel transport along γ .

Remark 1.31. Geodesics of gS are in general complicated objects. Especially the
projections onto the manifold are in general not geodesics in M. This property of
geodesics in the tangent bundle projecting to M-geodesics is desirable for a host of
reasons, among them a natural splitting of distances into a part on M and a vector
part.

Remark 1.32. A restriction to manifolds, where gS-geodesics project onto g-geodesics
is not reasonable. In [BBNV03] in fact a classification of all such manifolds is given.
To do this, the authors consider curves in the unit tangent bundle T M1 correspond-
ing to a base curve γ in M and a unit vector field Γ along the curve. The geodesic
equation of gS reads

γ̈ =−R(V,V̇ )γ̇

V̈ =−‖V̇‖2V,

where ‖V̇‖2 is constant. Given (p,Vp) ∈ (T M1,gS), and (W1,W2) ∈ T(p,Vp)T M ∼=
(TpM)2, gS-geodesics starting in (p,Vp) in direction (W1,W2) arise in three different
types, namely

1. If W1 = 0, then (γ,Γ ) is a so-called vertical geodesic, and γ(t) ≡ p and Γ is a
great circle in TpM1.

2. If W2 = 0, then (γ,Γ ) is a so-called horizontal geodesic, and γ(t) is a geodesic in
M and Γ (t) a parallel vector field along γ .

3. If W1 6= 0 and W2 6= 0, then (γ,Γ ) is a so-called oblique geodesic.

In [BBNV03], the authors have shown that all gS-geodesics project to a geodesic or
a great circle if and only if the manifold M is either flat or a two-dimensional space
of constant curvature.

1.2.2.2 The horizonal lift

The horizontal lift gh on T M is derived from the metric g by

gh
(p,V )(X

h,Y h) = 0,

gh
(p,V )(X

v,Y h) = gp(X ,Y ),

gh
(p,V )(X

v,Y v) = 0.

It is a (non-degenerate) pseudo-Riemannian metric on T M of signature (n,n). In
local coordinates it is defined by

gh
(p,V ) =

(
V aΓ k

aigk j +V aΓ k
a jgki gi j

gi j 0

)
.
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Note that the horizontal lift of a Riemannian metric coincides with the so called
complete lift [KS97, CF97].

Lemma 1.33. Let (p,Vp) ∈ (T M,gh). Geodesics of gh correspond to Jacobi fields
along geodesics in M. The exponential map on T M is defined by

h exp(p,V )(W1,W2) =
(
expp(W1),d expp(W1)(W2)+d2 expp(W1)(V )

)
for (W1,W2) ∈ T(p,Vp)T M ∼= (TpM)2. Its inverse is defined by

h log(p,Vp)(q,Vq) =
(
logp q,d logp q(Vq)+ d2 logp q(Vp)

)
for (q,Vq) ∈ T M such that d(p,q)≤ injM(p).

Proof. It is known that geodesics in T M with respect to gh project over geodesics
in M and define Jacobi fields along them (see, e.g., [CF97]).
Consider then the family of geodesics

c(t,s) := expexpp(sVp)(t(W1 + sW2)).

Set γ(t) = c(t,0), and

J(t) :=
∂

∂ s |s=0
c(t,s) = d expp(tW1)(tW2)+d2 expp(tW1)(V ).

Then (γ,J) is a gh-geodesic, and

(γ,J)(0) = (p,Vp)

(γ̇, J̇)(0) = (W1,W2).

The definition of exp follows. As the chain rule implies

(d expp(logp q))−1 = d logp q,

d2 expp logp q =−d expp(logp q) d2 logp q,

we can directly calculate the logarithm as the inverse of the exponential map.

Remark 1.34. The horizontal lift arises naturally when we consider the change of
the distance between two curves γ and µ in M as we can calculate

d
dt |t=0

∣∣∣logγ(t) µ(t)
∣∣∣2
g
=
∣∣∣ h log(γ(0),γ̇(0)) (µ(0), µ̇(0))

∣∣∣2
hg
.

As gh is only a pseudo-Riemannian metric, it is not meaningful to consider
lengths with respect to gh. We can however consider the gS-length of gh-geodesics
and - as an approximation - of the gh-logarithm.

Lemma 1.35. Let (p,Vp),(q,Vq) ∈ T M, such that d(p,q)< injM(p), and
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‖Vq‖2
g +‖Vp‖2

g ≤
1

|Rm |2∞d2(p,q)
,

where Rm denote the Riemannian curvature tensor. Let (γ,J) : I→ T M be the gh-
geodesic connecting (p,Vp) to (q,Vq). Set

hD̃2((p,Vp),(q,Vq)) := SE(γ,J),

where SE(γ,J) denotes the energy

SE(γ,J) :=
∫

I

Sg
(

d
dt
(γ,J),

d
dt
(γ,J)

)
dt,

and

hD2((p,Vp),(q,Vq)) := ‖h log(p,Vp)(q,Vq)‖2
gS(p,Vp)

.

Then there exists a constant C5 depending on the curvature of M such that

1
C5

hD2((p,Vp),(q,Vq))≤ hD̃2((p,Vp),(q,Vq))≤C5
hD2((p,Vp),(q,Vq)). (1.11)

Further, we can estimate

1
2

SD2((p,Vp),(q,Vq))≤ hD2((p,Vp),(q,Vq))≤ 4 SD2((p,Vp),(q,Vq)). (1.12)

Proof. First note that the base curve γ of the gh-geodesic (γ,J) is a g-geodesic, and
that J is a Jacobi field along γ . We can write

hD̃2((p,Vp),(q,Vq)) =
SE(γ,J) =

∫ 1

0
‖γ̇(t)‖2

g +‖J̇(t)‖2
g dt,

and

hD2((p,Vp),(q,Vq)) = ‖h log(p,Vp)(q,Vq)‖2
gS(p,Vp)

= ‖γ̇(0)‖2
g +‖J̇(0)‖2

g.

Note that ‖γ̇(t)‖ is constant in t. We consider

d
dt
‖J̇(t)‖= 〈J̈(t), J̇(t)〉

‖J̇(t)‖

=−〈R(J(t), γ̇(t))γ̇(t), J̇(t)〉
‖J̇(t)‖

.

As J is a Jacobi field, and ‖J(0)‖2 +‖J(1)‖2 ≤ 1
|Rm |2∞d2(p,q) , by Rauch comparison

(see, e.g., [Jos08, Chapter 5.5]) there exists a constant C(M) such that
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‖J(t)‖ ≤ C(M)

|Rm |∞d(p,q)
∀t ∈ I.

Thus, we can estimate for any t,s ∈ I

‖J̇(t)‖= ‖J̇(s)‖+
∫ t

s

d
dτ
‖J̇(τ)‖ dτ

≤ ‖J̇(s)‖+
∫ t

s
|Rm |∞ ‖J(τ)‖ ‖γ̇(τ)‖2 dτ

≤ ‖J̇(s)‖+C(M)d(p,q)|t− s|.

Using Young’s inequality, we can estimate

hD̃2((p,Vp),(q,Vq)) = d2(p,q)+
∫ 1

0
‖J̇(t)‖2 dt

≤

(
1+

√
3

6
C(M)

)
d2(p,q)+

√
3

6
C(M)‖J̇(0)‖2

≤

(
1+

√
3

6
C(M)

)
hD2((p,Vp),(q,Vq)).

Analogously, we can estimate

hD2((p,Vp),(q,Vq)) = d2(p,q)+
∫ 1

0
‖J̇(0)‖2

≤

(
1+

√
3

6
C(M)

)
d2(p,q)+

√
3

6
C(M)

∫ 1

0
‖J̇(t)‖2 dt

≤

(
1+

√
3

6
C(M)

)
hD̃2((p,Vp),(q,Vq)).

This concludes the proof of (1.11).
To see (1.12), note that we can write

hD2((p,Vp),(q,Vq)) = ‖h log(p,Vp)(q,Vq)‖2
gS(p,Vp)

= ‖ logp q‖2
g(p)+‖d logp q(Vq)+ d2 logp q(Vp)‖2

g(p)

= ‖ logp q‖2
g(p)

+‖πq7→pVq−Vp +(d logp q−πq7→p)(Vq)+(Id + d2 logp q)(Vp)‖2
g(p),

where πq7→p denotes the parallel transport along the geodesic connecting p and q.
To obtain the estimate from below, we observe using Proposition A.1

hD2((p,Vp),(q,Vq))≥ ‖ logp q‖2 +
1
2
‖πq7→pVq−Vp‖2
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−2
(
‖d logp q−πq7→p‖2‖Vq‖2 +‖Id + d2 logp q‖2‖Vp‖2)

≥ ‖ logp q‖2 +
1
2
‖πq7→pVq−Vp‖2

− 1
2
|Rm |2∞‖ logp q‖4 (‖Vq‖2 +‖Vp‖2)

≥ 1
2
(
‖ logp q‖2 +‖πq 7→pVq−Vp‖2)

≥ 1
2

SD2((p,Vp),(q,Vq)).

Analogously, we can estimate from above

hD2((p,Vp),(q,Vq))≤ ‖ logp q‖2 +2‖πq7→pVq−Vp‖2

+4
(
‖d logp q−πq7→p‖2‖Vq‖2 +‖Id + d2 logp q‖2‖Vp)‖2)

≤ ‖ logp q‖2 +2‖πq7→pVq−Vp‖2

+ |Rm |∞‖ logp q‖4 (‖Vq‖2 +‖Vp‖2)
≤ 2

(
‖ logp q‖2 +‖πq 7→pVq−Vp‖2) .

For any smooth curve γ connecting p and q the change of the parallel transport
along the closed curve consisting of the geodesic between p and q and the curve γ

can be estimated by the curvature and the area enclosed (see, e.g., [MTW73, Chapter
11.4]), i.e.,

‖Vq−πp7→qπ
γ
q7→pVq‖ ≤ ‖Rm‖∞d(p,q)L(γ)‖Vq‖ ≤ L(γ).

Thus, we can estimate

‖πq7→pVq−Vp‖ ≤ ‖πq7→pVq−π
γ
q7→pVq‖ ≤ L(γ)+‖πγ

q7→pVq−Vp‖.

This implies the estimate from above in (1.11).

Obviously, hD̃ and hD are not distances but are compatible with one. We define
the following notion of approximate distance.

Definition 1.36. Let S be a set and D : S× S→ R be a positive definite mapping.
We say that D is an inframetric on S, if D is symmetric and there exists a constant
C6 > 1, such that D fulfills a C6-relaxed triangle inequality

D(x,y)≤C6 (D(x,z)+D(z,y)) ∀x,y,z ∈ S.

If D is only symmetric up to a constant C7, i.e.,

D(x,y)≤C7D(y,x) ∀x,y ∈ S,

we call D a quasi-inframetric.
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Remark 1.37. Lemma 1.35 implies that although hD̃ and hD are not distances,
they form (quasi)-inframetrics on those subsets U of T M, where for any pair
(p,Vp),(q,Vq), we have d(p,q) < injM(p), and ‖Vq‖2

g + ‖Vp‖2
g ≤ 1

|Rm |2∞d2(p,q) . In

particular, positive definiteness follows by estimating from below by SD. More-
over, hD̃ is symmetric, and hD is symmetric on U up to the constant 2

√
2. Further,

hD fulfills a relaxed triangle inequality on U with respect to the constant 2
√

2, which
also implies a (2

√
2C2

5)-relaxed triangle inequality for hD̃.

The length of gh-geodesics is of particular interest, as the derivatives of geodesic
homotopies are gh-geodesic homotopies in the following sense.

Lemma 1.38. Let u,v ∈C1(Ω ,M) such that dL∞(u,v) ≤ injM(p) for all points p ∈
u(Ω)∪ v(Ω)⊂M. Let Γ : I×Ω →M be the geodesic homotopy connecting u to v.
Then Γ (t, ·) ∈C1(Ω ,M), and for any α ∈ {1, . . . ,d} the curve dαΓ (·,x) : I→ T M
describes a gh-geodesic in T M connecting dα u(x) to dα v(x).

Proof. The geodesic homotopy Γ is defined by Γ (t,x) = expu(x)(t logu(x) v(x)). As
we stay within the injectivity radius, exp is a diffeomorphism. Thus, by the chain
rule, Γ (t, ·) ∈ C1(Ω ,M) and dαΓ (·,x) : I → T M is well defined. Obviously, the
vector field J := dαΓ (·,x) connects dα u(x) to dα v(x) along γ := Γ (·,x). We need
to show, that J is a Jacobi field. We calculate

J̈ = ∇ d
dt

∇ d
dt

∇ d
dxα

γ

= ∇ d
dt

∇ d
dxα

∇ d
dt

γ

= ∇ d
dxα

∇ d
dt

∇ d
dt

γ−R(∇ d
dxα

γ,∇ d
dt

γ)∇ d
dt

γ

=−R(J, γ̇)γ̇.

Remark 1.39. Geodesic homotopies also inherit the weak differentiability of their
endpoint functions. Indeed, if exp and log are in Ck in their arguments and M
admits a Ck-embedding into Euclidean space, u,v ∈W k,p(Ω ,M)∩C(Ω ,M), and
dL∞(u,v)≤ injM(p) for all p ∈ u(Ω)∪v(Ω)⊂M, then the geodesic homotopy con-
necting u to v lies in W k,p(Ω ,M)∩C(Ω ,M). This follows by the chain rule.

1.2.3 Sobolev Distances for Manifold Targets

Definition 1.12 implies a notion of Sobolev distance implied by an embedding ι :
M→ RN

dW 1,p
ι (Ω ,M)

(u,v) := ‖ι ◦u− ι ◦ v‖W 1,p(Ω ,RN). (1.13)

Geodesics for this distance depend on the embedding. Our goal is to introduce an
equivalent concept which is intrinsic. In particular we like to keep one class of dis-
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tance realizing curves for all W k,p-distances. We start by considering smooth func-
tions.

Definition 1.40. Let u,v ∈ C1(Ω ,M), and consider dα u, dα v for α = 1, . . . ,d as
vector fields along u and v, respectively. Then we set

SDp
1,p(u,v) :=

d

∑
α=1

∫
Ω

SDp((u(x),dα u(x)),(v(x),dα v(x))) dx

hD̃p
1,p(u,v) :=

d

∑
α=1

∫
Ω

hD̃p((u(x),dα u(x)),(v(x),dα v(x))) dx

hDp
1,p(u,v) :=

d

∑
α=1

∫
Ω

hDp((u(x),dα u(x)),(v(x),dα v(x))) dx.

Proposition 1.41. Let q > max{2,d}, and let K and L be two constants such that
L≤ inj(M) and KL≤ 1

|Rm |∞ . We set

W 1,q
K :=

{
v ∈W 1,q(Ω ,M) : θ1,q,Ω (v)≤ K

}
, (1.14)

and denote by H1,2,q
K,L a L-ball w.r.t. Ls in W 1,q

K , i.e., for all pairs u,v ∈ H1,2,q
K,L holds

dLs(Ω ,M)(u,v)≤ L, where

s :=


2q

q−2 for d = 1
4q

q−2 for d = 2
dq

q−d for d > 2.

Then SD1,2(u,v), hD̃1,2(u,v), and hD1,2(u,v) as defined in Definition 1.40 are
equivalent on H1,2,q

K,L . In particular, hD1,2 defines a quasi-inframetric on H1,2,q
K,L (cf.

Definition 1.36).

Proof. The proof follows along the same argumentation as that of Lemma 1.35.
Hölder’s inequality is used to replace the W 1,∞-bounds by the weaker ones that
functions in H1,2,q

K,L fulfill. More specifically, we estimate terms of the form

‖Rm‖∞

(∫
Ω

| logu(x) v(x)|4|dα u|2 dx
) 1

2
≤ |Rm |∞dLs(u,v) dLr(u,v) ‖dα u‖Lq

≤ dLr(u,v),

where

1
r

:=
1
2
− 1

q
− 1

s
,

and thus



1.2 Distances 37

r =


∞ for d = 1

4q
q−2 for d = 2
2d

d−2 for d > 2.

Note that s is defined in such a way that we can estimate

dLr(u,v)≤C hD1,2(u,v).

by the Sobolev embedding theorem.

Proposition 1.41 essentially states that hD1,2 inherits on H1,2,q
K,L the properties hD

has on a suitable ball in T M. As hD̃2
1,2(u,v) is realized by geodesic homotopies, i.e.,

hD̃2
1,2(u,v) =

∫ 1

0
‖Γ̇ (·, t)‖2

W 1,2(Ω ,Γ (·,t)−1T M) dt,

where Γ is the geodesic homotopy connecting u and v in H1,2,q
K,L , Proposition 1.41

includes an estimate along geodesic homotopies of the form

max
t∈[0,1]

‖Γ̇ (·, t)‖W 1,2(Ω ,Γ (·,t)−1T M) ≤C min
t∈[0,1]

‖Γ̇ (·, t)‖W 1,2(Ω ,Γ (·,t)−1T M) dx,

where the constant depends on the curvature of M. In particular, we obtain a similar
result for parallel vector fields along Γ .

Lemma 1.42. Let u,v ∈ H1,2,q
K,L as defined in Proposition 1.41, and let Γ be the

geodesic homotopy connecting u to v. Consider a parallel vector field V ∈ W 1,2(Ω×
I,Γ−1T M)∩C(Ω× I,Γ−1T M) along Γ . Then there exists a constant C8 depending
on the curvature of M, the Sobolev constant, and d such that

1
1+C8t

‖V (·,0)‖W 1,2(Ω ,Γ (·,t)−1T M) ≤ ‖V (·, t)‖W 1,2(Ω ,Γ (·,t)−1T M)

≤ (1+C8t)‖V (·,0)‖W 1,2(Ω ,Γ (·,t)−1T M)

holds for all t ∈ I.

Proof. As V is parallel, ‖V (·, t)‖L2(Ω ,Γ (·,t)−1T M) is constant. Thus, we just need to
consider

U2(t) :=
d

∑
α=1
‖∇dαΓ V (·, t)‖2

L2(Ω ,Γ (·,t)−1T M).

We calculate
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d
dt

U2(t) = 2
d

∑
α=1

∫
Ω

〈∇dαΓ V,∇
Γ̇

∇dαΓ V 〉 dx

= 2
d

∑
α=1

∫
Ω

〈∇dαΓ V,R(Γ̇ ,dα
Γ )V 〉 dx

≤ 2
d

∑
α=1
|Rm |∞

∫
Ω

‖∇dαΓ V‖ ‖Γ̇ ‖ ‖dα
Γ ‖ ‖V‖ dx.

Using Hölder’s inequality, we can estimate

d
dt

U2(t)≤ 2
√

d|Rm |∞‖dα
Γ ‖Lq‖Γ̇ ‖Ls‖V‖LrU(t),

where

1
r
=

1
2
− 1

q
− 1

s

as in the proof of Proposition 1.41. We can rewrite this to

d
dt

U(t)≤
√

d|Rm |∞C(M)KL‖V‖Lr

≤
√

dC(M)‖V‖Lr .

Note that the right hand side is constant in t, as V is parallel. Thus we can estimate
for any t,s ∈ I using the Sobolev embedding theorem

‖V (t)‖L2 +U(t)≤ ‖V (s)‖L2 +U(s)+
√

dC(M)‖V (s)‖Lr |t− s|

≤ (1+
√

dC(M)C1)(U(s)+‖V (s)‖L2) .

This implies the assertion.

It follows that hD̃1,2, and thus hD1,2, is equivalent to the norm implied by an
embedding ι on the restricted ball H1,2,q

K,L .

Proposition 1.43. Let u,v ∈ H1,2,q
K,L as defined in Proposition 1.41, and let ι : M→

RN be a smooth isometric embedding. Then there exists a constant C9 depending on
the curvature of M, ‖ι‖C2 , and K, such that

‖ι ◦u− ι ◦ v‖W 1,2(Ω ,RN) ≤C9
hD̃1,2(u,v).

If additionally dL∞(u,v)≤ injM , there exists a constant C10 such that

hD̃1,2(u,v)≤C10‖ι ◦u− ι ◦ v‖W 1,2(Ω ,RN).

Proof. To see the first estimate, we set



1.2 Distances 39

β (x, t) := ι(Γ (x, t)),

where Γ denotes the geodesic homotopy connecting u to v. Then

‖ι ◦u− ι ◦ v‖2
W 1,2(Ω ,RN) ≤

∫ 1

0

∫
Ω

‖β̇‖2 +‖Dxβ̇‖2 dx dt

≤
∫ 1

0

∫
Ω

‖Γ̇ ‖2 +2‖∇xΓ̇ ‖2 +2|d2
ι |2∞‖Γ̇ ‖2‖∇xΓ ‖2 dx dt

≤
∫ 1

0

∫
Ω

‖Γ̇ ‖2 +2‖∇xΓ̇ ‖2 dx dt

+2|d2
ι |2∞
∫ 1

0

(∫
Ω

‖∇xΓ ‖q dx
) 2

q (
‖Γ̇ ‖

q
q−2 dx

) 2q−4
q

dt

≤ 2(1+C |d2
ι |2∞K2)

∫ 1

0

∫
Ω

‖Γ̇ ‖2 +‖∇xΓ̇ ‖2 dx dt.

For the second estimate, note that Proposition 1.41 implies for any homotopy γ

connecting u to v

hD̃2
1,2(u,v)≤C

∫ 1

0

∫
Ω

‖γ̇‖2 +‖∇xγ̇‖2 dx dt.

As u and v are close, we can connect them pointwise by curves defined by (1.10)
using a local projection map π . Then chain rule implies∫ 1

0

∫
Ω

‖α̇‖2 +‖∇xα̇‖2 dx dt ≤C (1+‖D2(ι−1 ◦π)‖2
∞K2)‖ι ◦u− ι ◦ v‖W 1,2(Ω ,RN),

which concludes the proof.

Remark 1.44. In this section we have defined hD1,2(u,v) as the W 1,2-length of the
direction of a geodesic homotopy connecting u to v at 0. Geodesic homotopies are
families of geodesics in M. Thus, hD1,2(u,v) is a simple intrinsic concept.

We have also shown that hD1,2(u,v) is equivalent to the Sobolev distance for
W 1,p

ι (Ω ,M) on a restricted ball H1,2,q
K,L . In the following chapters we will always con-

sider functions in such balls. We will omit the superscript h from now on and write
D1,2 instead of hD1,2. In view of the equivalence statements in Propositions 1.41
and 1.43 this is justifiable.

As a quasi-inframetric D1,2 fulfills a relaxed triangle inequality, i.e., there exists
a constant such that

D1,2(u,v)≤C(D1,2(u,w)+D1,2(w,v))

holds for any three functions u,v,w ∈ H1,2,q
K,L (cf. Proposition 1.41).

Additionally we will need the following triangle inequality with respect to the
smoothness descriptor.
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Proposition 1.45. Let u,v ∈ H1,2,q
K,L as defined in Proposition 1.41. Then there exists

a constant C such that

θ̇1,2,Ω (v)≤ θ̇1,2,Ω (u)+C D1,2(u,v). (1.15)

Proof. Let u,v∈H1,2,q
K,L , and let Γ be the geodesic homotopy connecting u to v. Then

θ̇1,2,Ω (v)− θ̇1,2,Ω (u) =
∫ 1

0

d
dt

θ̇1,2,Ω (Γ (t)) dt

≤C hD̃1,2(u,v)

≤C D1,2(u,v).

Remark 1.46. All proofs in this section can be done for general p instead of p = 2
as well. In particular, we have to choose q > max{p,d},

s :=


pq

q−p for d < p1
2pq
q−p for d = p
dq

q−d for d > p,

and

1
r

:=
1
p
− 1

q
− 1

s
.

For the case p = q > d, we can set r = s = ∞ and still obtain the same results.

1.3 Scaling Properties

In the classical error analysis of numerical discretization schemes, the homogeneity
of the Sobolev half-norms with respect to scaling of the domain Ω ∈ Rd is utilized.
In [GHS14] a similar behavior of the smoothness descriptor and the Sobolev infra-
metric D1,p is shown, which we repeat here for completeness.

Definition 1.47. Let T1,T2 be two domains in Rd , and F : T1→T2 a C∞-diffeomorphism.
For l ∈ N0 we say that F scales with h of order l if we have

sup
x∈T2

∣∣∣∂~β F−1(x)
∣∣∣≤C hk for all ~β ∈ [d]k, k = 0, . . . , l,

|det(DF(x))| ∼ h−d for all x ∈ T1 (where DF is the Jacobian of F),

sup
x∈T1

∣∣∣∣ ∂

∂xα
F(x)

∣∣∣∣≤C h−1 for all α = 1, . . . ,d.

Note that as derivatives commute the multi-indices defined by (1.6) can be equiva-
lently replaced by ordinary multi-indices for Rd .
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Such F arise as transformations of an element of a discretization of Ω to a refer-
ence element and back. The smoothness descriptor scales in the following manner.

Lemma 1.48. Let T1,T2 be two domains in Rd , and F : T1 → T2 a map that scales
with h of order l. Consider u ∈W k,p(T1,M) with 1≤ k ≤ l and p ∈ [1,∞]. Then

θ̇k,p,T2(u◦F−1)≤C hk− d
p

(
k

∑
l=1

θ̇
p
l,p,T1

(u)

) 1
p

≤C hk− d
p θk,p,T1(u).

Proof. The proof follows directly by chain rule and the transformation of the inte-
grals. The details can be found in [GHS14].

The smoothness descriptor for vector fields scales similarly.

Lemma 1.49. Let T1,T2 be two domains in Rd , and F : T1 → T2 a map that scales
with h of order l. Consider u ∈W k,p(T1,M) with 1 ≤ k ≤ l and p ∈ [1,∞], and
V ∈W k,p(T1,u−1T M). Then

Θ̇k,p,T2(V ◦F−1)≤C hk− d
p

(
k

∑
l=1

Θ̇
p
l,p,T1

(V )

) 1
p

≤C hk− d
p Θk,p,T1(V ).

Proof. Again, the proof follows directly by chain rule and the transformation of the
integrals.

Remark 1.50. In Lemmas 1.48 and 1.49 the homogenous smoothness descriptor is
bounded by the inhomogenous one.

The third assumption of Definition 1.47 is not needed for the proof of Lem-
mas 1.48 and 1.49. It is needed for the following ‘inverse’ estimate for the Sobolev
error measure D1,p.

Lemma 1.51. Let T1,T2 be two domains in Rd , and F : T1 → T2 a map that scales
with h of order l. Consider u,v ∈W 1,p(T1,M)∩C(T1,M) with p ∈ [1,∞]. Then

dLp(u,v)≤C h
d
p dLp(u◦F−1,v◦F−1)

D1,p(u,v)≤C h
d
p−1D1,p(u◦F−1,v◦F−1).

Proof. The proof follows directly follows from Definition 1.47, the chain rule, and
integral transformation.

The same argument also provides the following inverse estimates for the smooth-
ness descriptor.
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Lemma 1.52. Let T1,T2 be two domains in Rd , and F : T1 → T2 a map that scales
with h of order l. Consider u ∈W 1,p(T1,M) with p ∈ [1,∞]. Then

θ̇1,p,T1(u)≤C h−1+ d
p θ̇1,p,T2(u◦F−1).



Chapter 2
Geodesic Finite Elements and Approximation
Error Estimates

Geodesic finite elements have been introduced as a means to interpolate data in a
Riemannian manifold [Gro13b], and approximate solutions of minimization prob-
lems over functions with Riemannian manifold targets [San12, San13]. An analysis
of the interpolation error has been given in [GHS14].

In the following we will recall the definition of geodesic finite elements and
some of their properties. The structure of standard finite elements usually allows
a class of inverse estimates. Their translations to geodesic finite elements will be
discussed in Section 2.1.1. We will then recall the interpolation error estimates pub-
lished in [GHS14] with some minor changes, leading to a Bramble–Hilbert Lemma
for geodesic finite elements. Lastly, we will consider discrete variations of geodesic
finite elements which induce geodesic vector field interpolation. Corresponding in-
terpolation error estimates will be derived.

Note that all estimates will be in terms of the smoothness descriptors as intro-
duced in Section 1.1.4 and the Sobolev distance D1,p motivated in Section 1.2.3.

If not stated otherwise, Ω will denote a bounded domain in Rd with Lipschitz
boundary, and (M,g) will denote a (smooth) Riemannian manifold with curvature
bounded from above and below.

We will need some estimates on the derivatives of the exponential map expp :
TpM→M and its inverse logp : Binj(p)→ TpM. The notation used and the estimates
themselves can be found in Appendix A.

2.1 Definition and General Properties

Let T ⊂ Rd be a reference element, e.g., the reference simplex

T :=

{
x = (x1, . . .xd) ∈ Rd : xα ≥ 0,

d

∑
α=1

xα ≤ 1

}
.

43
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Definition 2.1. We say that a conforming grid G for the domain Ω ⊂Rd is of width
h and order m, if for each element Th of G there exists a map FTh : Th→ T that scales
with h of order m.

For a given order parameter m, let ai ∈ T , i = 1, . . . , l denote a set of Lagrangian
nodes, and let λi : T → R denote Lagrangian polynomials of order m such that

λi(a j) = δi j ∀1≤ i, j,≤ l,

and

l

∑
i=1

λi(x) = 1 ∀x ∈ T.

The following generalization of geodesic interpolation was given and motivated
in [San13].

Definition 2.2. Let {λi, i = 1, . . . , l} be a set of m-th order scalar Lagrangian shape
functions, and let vi ∈M, i= 1, . . . , l be values at the corresponding Lagrange nodes.
We call

ϒ : Ml×T →M

ϒ (v1, . . . ,vl ;x) = argmin
q∈M

l

∑
i=1

λi(x)d(vi,q)2 (2.1)

m-th order geodesic interpolation on M.
The set of all such functions will be denoted by Pm(T,M).

It is easy to verify that this definition reduces to m-th order Lagrangian interpo-
lation if M = Rn and d(·, ·) denotes the standard distance.

For manifolds with either negative sectional curvature or certain restrictions on
the curvature and the vi, well-posedness of the definition for m = 1 is a classic result
by Karcher [Kar77]. For m≥ 2, where the λi can become negative, well-posedness
has been proven in [San13]. We will do a simpler proof of well-posedness here as
it will include a bound on the diameter of interpolating functions, which will be
needed later.

Lemma 2.3. For i = 1, . . . , l let vi ∈ M with d(vi,v1) ≤ ρ for all i = 1, . . . , l. Then
there exists a solution ϒ (v1, . . . ,vm;x) to the minimization problem (2.1) for all x,
and there exists a constant C11 ≤ 6l maxi ‖λi‖∞ depending on the shape functions λi
such that for each x ∈ T all solutions ϒ (v1, . . . ,vm;x) lie in BC11ρ(v1).

If ρ is small enough depending on the curvature, the solution vI(x) :=ϒ (v1, . . . ,vl ;x)
is unique and vI : T →M is smooth.

Proof. We denote by Fi : M→ R the squared distance function to vi, i.e., Fi(q) :=
d2(vi,q). Further we set F : T ×M→ R
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F(x,q) :=
l

∑
i=1

λi(x)Fi(q).

Let Cm ≥ 1 be a bound for the shape functions of order m, i.e., |λi(x)| ≤Cm for all
i = 1, . . . , l and all x ∈ T . Then

F(x,v1) =
l

∑
i=1

λi(x)d2(v1,vi)≤Cmlρ2.

Let q ∈M with d(q,v1)> 6Cmlρ . Then for this q we have

1− 1
6Cml

≤ 1− ρ

d(q,v1)
≤ d(q,vi)

d(q,v1)
≤ 1+

ρ

d(q,v1)
≤ 1+

1
6Cml

,

and thus ∣∣∣∣1− d2(q,vi)

d2(q,v1)

∣∣∣∣≤ 1
6Cml

(
2+

1
6Cml

)
≤ 1

2Cml
.

Therefore, we have for such q

F(x,q) =
l

∑
i=1

λi(x)d2(q,vi)

=
l

∑
i=1

λi(x)d2(q,v1)

(
1−
(

1− d2(q,vi)

d2(q,v1)

))

= d2(q,v1)

(
1−

l

∑
i=1

λi(x)
(

1− d2(q,vi)

d2(q,v1)

))

≥ 1
2

d2(q,v1)

≥ 18C2
ml2

ρ
2

> F(x,v1).

Note further, that for p with d(p,v1)≤ 6Cmlρ , we have

F(x, p) =
l

∑
i=1

λi(x)d2(p,vi)≥−2Cml(1+6Cml)2
ρ

2.

As M is complete, B := B6Cmlρ(v1) is compact. Thus, there exists at least one mini-
mizer of F(x, ·) in B, and all minimizers are in B.

In general this minimizer is not unique. If we assume that (1+6Cml)ρ ≤ inj(vi)
for each i, then the functions Fi are smooth, and

dFi(q)(V ) = 2〈logvi
q,d logvi

q(V )〉
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d2Fi(q)(V,W ) = 2
(
〈d logvi

q(V ),d logvi
q(W )〉+ 〈logvi

q,d2 logvi
q(V,W )〉

)
.

Thus, at q = vi, we have d2Fi(vi) = 2gvi , where gvi denotes the metric of M at vi. By
continuity, there exists a constant 0 < δ ≤ inj(vi) such that

‖d2Fi(q)−2gq‖ ≤
1

2Cml
∀q ∈ Bδ (vi).

If we assume (1+6Cml)ρ ≤ δ , this implies for all q ∈ B strict convexity of F(x, ·)
at q, i.e. for V ∈ TqM

d2F(x,q)(V,V ) =
l

∑
i=1

λi(x)d2Fi(q)(V,V )

= 2|V |2−
l

∑
i=1

λi(x)(2gq−d2Fi(q))(V,V )

≥ 2|V |2−Cml‖d2Fi(q)−2gq‖ |V |2

≥ 3
2
|V |2.

The strict convexity then implies uniqueness of the minimizer. As F is smooth in B,
and d2F is invertible as a small perturbance of the metric (in particular ‖d2F(q)−
2gq‖ ≤ 1

2 ), smoothness of vI follows by the implicit function theorem.

Since the values of ϒ are defined as solutions of a minimization problem, we can
also characterize them by the corresponding first-order optimality condition (see,
for instance, [Kar77]).

Lemma 2.4. The minimizer q∗ := ϒ (v1, . . . ,vm;x) is (locally uniquely) character-
ized by the first-order condition

l

∑
i=1

λi(x) logq∗ vi = 0 ∈ Tq∗M. (2.2)

Proof. Let q∗ :=ϒ (v1, . . . ,vm;x), V ∈ Tq∗M, and γV (t) = expq∗(tV ). Then

0 =
d
dt |t=0

∑
i

λi(x)d2(vi,γV (t))

= 2∑
i

λi(x)〈logvi
q∗,d logvi

q∗(V )〉

= 2∑
i

λi(x)〈logvi
q∗,
(
d expvi

(logvi
q∗)
)−1

(V )〉

= 2∑
i

λi(x)〈d expvi
(logvi

q∗)(logvi
q∗),V 〉

=−2∑
i

λi(x)〈logq∗ vi,V 〉,



2.1 Definition and General Properties 47

where we have used d logp q =
(
d expp(logp q)

)−1, the Gauss Lemma

〈V,W 〉= 〈d expp(V )(V ),d expp(V )(W )〉 ∀V,W ∈ TpM,

and

d expp(logp q)(logp q) =
d
dt |t=1

expp(t logp q) =− logq p.

Thus (2.2) corresponds indeed to the variational formulation of (2.1).

As in the linear setting, we define global finite elements as continuous functions
that are interpolants on each grid element.

Definition 2.5 (Geodesic finite elements). Let M be a Riemannian manifold and G
a grid for a d-dimensional domain Ω , d ≥ 1. A geodesic finite element function is a
continuous function vh : Ω→M such that for each element T of G, vh|T ∈Pm(T,M).
The space of all such functions will be called Sm

h .

Remark 2.6. Geodesic finite elements can be used to interpolate continuous function
v∈C(Ω ,M). Indeed, if Gh is a grid for Ω of width h and order m (cf. Definition 2.1),
by continuity of v there exists an h0 such that for all h≤ h0 the interpolation nodes
for each element are contained in a ball of radius ρ , and thus interpolation vI ∈ Sm

h
is well-defined.

Note furthermore that we can always control the diameter diam(vI(Th)) of the
image of an element Th of Gh und vI by choosing h0 small enough.

Already in [San12] it was observed, that geodesic finite elements are conforming
and objective. We state the result here for completeness.

Lemma 2.7 (Properties of geodesic finite elements). Geodesic finite elements are

1. locally smooth on each triangle

Pm(T,M)⊂C∞(T,M).

2. conforming

Sm
h ⊂W 1,∞(Ω ,M)⊂W 1,2(Ω ,M)∩C(Ω ,M),

where W 1,p(Ω ,M) is defined in Definition 1.12.
3. objective, i.e., if φ : M→M is an isometry, then for vh(x) =ϒ (v1, . . . ,vm;x)

φ(vh(x)) =ϒ (φ(v1), . . . ,φ(vm);x).

Proof. 1. The local smoothness of geodesic interpolants is already discussed in
Lemma 2.3.
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2. A function vh ∈ Sm
h is piecewise smooth and globally continuous. Let ι : M→RN

be a smooth embedding. Then ι ◦ vh is a piecewise smooth and globally contin-
uous function from Ω ⊂ Rd to RN . This implies ι ◦ vh ∈W 1,∞(Ω ,RN), and thus
vh ∈W 1,∞(Ω ,M).

3. Objectivity follows directly by the invariance of the distance d under isometries.

2.1.1 Inverse Estimates

We want to use the structure of geodesic finite elements to investigate so-called
inverse estimates. By this term we mean estimates of higher order derivatives by
lower order ones.

Throughout this section, let Ω ⊂ Rd be a domain, G a grid of width h and order
m on Ω (cf. Definition 2.1), Th ∈G an element of the grid, and T ⊂Rd the reference
element. Moreover let ρ > 0 be small enough such that geodesic interpolation is
well-defined and unique for values on M that lie within a ball of radius ρ on M (cf.
Lemma 2.3).

Remark 2.8. For finite elements in the Euclidean setting, i.e. piecewise polynomials,
the (m+1)th derivative vanishes on each element, i.e., for v ∈ Pm(T,Rn) we have

Dm+1v(x)≡ 0.

Furthermore, due to the finite dimension of Pm(T,Rn), we have for v ∈ Pm(T,Rn),
0≤ j ≤ k, and p,q ∈ [0,∞]

‖Dkv‖Lp(T,Rn) ≤C ‖D jv‖Lq(T,Rn),

and thus for vh ∈ Pm(Th,Rn) by rescaling

‖Dkvh‖Lp(Th,Rn) ≤C h j−k+d
(

1
p−

1
q

)
‖D jvh‖Lq(Th,Rn).

Globally, we obtain for finite elements ṽh ∈ Sh

‖Dkṽh‖Lp
h (Ω ,Rn) ≤C h j−k+d

(
1
p−

1
q

)
‖D j ṽh‖Lq

h(Ω ,Rn),

where the mesh dependent norm

‖D j ṽh‖Lp
h (Ω ,Rn) :=

(
∑

Th∈G
‖D j ṽh‖p

Lp(Th,Rn)

) 1
p

,

is well-defined for functions in Sh even though they are in general not globally in
W j,p(Ω ,Rn) (see, e.g., [Bra07]).
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We would like to obtain similar estimates for geodesic finite elements.
Functions v ∈ Pm(T,M) are defined as solutions to a minimization problem. In

order to obtain bounds on the derivatives, we will first characterize these derivatives.

Proposition 2.9. Let v ∈ Pm(T,M) and ~α a multi-index in the sense of Section 1.1.4
with |~α|= k, 0≤ k ≤ m+1. Then the ~αth derivative of v can be written as

∇
~α v(x) =

l

∑
i=1

λi(x)(Id +d2 logv(x) vi)(∇
~α v(x)) (2.3)

+ ∑
~β⊂~α

2≤|~β |≤k

l

∑
i=1

D~α\~β
λi(x)

(
∇
~β logv(x) vi−d2 logv(x) vi(∇

~β v(x))
)

+ ∑
~β⊂~α

1≤|~β |≤k−1

l

∑
i=1

D~α\~β
λi(x)(Id +d2 logv(x) vi)(∇

~β v(x))

+
l

∑
i=1

D~α
λi(x) logv(x) vi.

Proof. Consider (2.2) for v

0 =
l

∑
i=1

λi(x) logv(x) vi.

Differentiating yields (2.3), where we used that that ∑
l
i=1 λi(x) ≡ 1, and hence,

∑
l
i=1 D~β λi(x)≡ 0 for all ~β 6= 0.

The shape functions λi : T → R are polynomials. Thus, their (m+ 1)th order
derivatives vanish.

Example 2.10. Let d = 1 and m = 1. We consider v ∈ P1(I,M). Then v is a constant
speed geodesic (see, e.g., [San10]). It is well known, that the second derivatives of
geodesics vanish.

In general, however, we cannot expect the (m+1)th order derivatives of a func-
tion v ∈ Pm(T,M) to vanish. Particularly, if a map v : T →M with a 2-dimensional
image fulfills ∇2v≡ 0 this already implies that the image is flat.

Remark 2.11. It is not meaningful to aim for estimates in terms of Sobolev half-
norms. Consider for d ≥ 2, α,β ∈ [d], v ∈ P1(T,M), and a smooth isometry φ :
M→M the following derivative

∇
β

∇
α(φ ◦ v) = d2

φ

(
∇

α v,∇β v
)
+dφ

(
∇

β
∇

α v
)
.
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For an objective method all estimates should change equivalently under isometries.
Thus, we will phrase estimates in terms of the smoothness descriptor as it is com-
patible with the chain rule by definition (cf. Section 1.1.4). Note that this is even
true, if we just expect the same kind of compatibility with embeddings of M into
Euclidean space instead of isometries on M.

In order to obtain an estimate for the higher order smoothness descriptor of a
geodesic interpolant uI , we cannot simply use the fact that the m+1-th derivatives
of the shape functions λi vanish. Instead, we will need to estimate the smoothness
descriptor of the geodesic interpolant uI by the smoothness descriptor of the contin-
uous function u it interpolates.

Proposition 2.12. Let M possess a Ck-atlas with kp > d, and let m ≥ k− 1. Then
there exists a constant C12 such that for all u ∈W k,p(T,M) with u(T )⊂ Bρ ⊂M

θ̇k,p(uI)≤C12 θ̇k,p(u),

holds for the interpolation uI ∈ Pm(T,M) of u.

Proof. Assume the converse, i.e. for every K > 0 there exists a set of points
{ui(K)} ⊂ Bρ on M and a function vK ∈ W k,p(T,M) with vK(ai) = ui(K) for
i = 1, . . . , l, such that

θ̇k,p(vK)<
1
K

θ̇k,p(vK
I ).

This implies that for each K there are at least two distinct points in {ui(K)}. As
{ui(K)} ⊂ Bρ and Bρ is compact, we can assume w.l.o.g. that the sequences of
points converge

ui(K)→ u?i for K→ ∞

for all i = 1, . . . , l. Let u?I ∈ Pm(T,M) denote the interpolation of {u?i }. As the inter-
polation operator ϒ is C∞ in all its arguments as evident from the implicit function
theorem (cf. [San13]), we can estimate

θ̇k,p(vK
I )≤Cθ̇k,p(u?I )

independently of K. Further, Lemma 2.3 shows that vK
I (T ),u

?
I ⊂BC ρ . Let ξ : BC ρ→

Rn be a local chart for M. As ξ is continuous, we have for ûi(K) := ξ (ui(K)),
ûi(K)→ û?i := ξ (u?i ) in Rn for K → ∞ and all i = 1, . . . , l. The regularity ξ ∈ Ck

implies v̂K := ξ ◦ vK ∈W k,p(T,Rn). The v̂K are a Cauchy sequence in W k,p(T,Rn):

‖v̂K− v̂L‖W k,p(T,Rn) ≤C

(
|v̂K− v̂L|W k,p(T,Rn)+

l

∑
i=1
|(v̂K− v̂L)(ai)|

)

≤C

(
|v̂K |W k,p(T,Rn)+ |v̂

L|W k,p(T,Rn)+
l

∑
i=1
|ûi(K)− ûi(L)|

)
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≤C

(
C
K
+

C
K
+

l

∑
i=1
|ûi(K)− ûi(L)|

)
→ 0, as K,L→ ∞,

where we have used |ξ ◦ v|W k,p(T,Rn) ≤ θ̇k,p,T (ξ ◦ v) ≤ C θ̇k,p,T (v) (see Proposi-
tions 1.23 and 1.24).

Thus, the v̂K converge to a limit v? ∈W k,p(T,Rn). As kp > d, the Sobolev em-
bedding implies that v̂K converges to v? pointwise, and in particular v?(ai) = û?i for
i = 1, . . . , l. Further, θ̇k,p,T (v̂K)→ 0 for K→ ∞ implies that v? is constant. This is a
contradiction.

As the homogeneous smoothness descriptor consists of mixed order derivatives,
inverse estimates are more complicated than those for standard Sobolev half-norms.
An exception are the first order smoothness descriptors. Analogously to the Eu-
clidean case, we have the following first order inverse estimates.

Proposition 2.13. Let v∈Pm(T,M) with v(T )⊂Bρ , ρ small enough (cf. Lemma 2.3),
and in particular ρ ≤ 1√

|R|∞‖∑i |λi|‖∞
. Let p,q∈ [1,∞]. Then there exist constants C13

and C14 such that

θ̇1,p,T (v)≤C13 θ̇0,q,T ;Q(v), (2.4)

θ̇1,p,T (v)≤C14 θ̇1,q,T (v) (2.5)

where Q is the vi such that θ̇0,p,T ;vi(v) is maximal.
Thus, after rescaling we have for vh ∈ Pm(Th,M)

θ̇1,p,Th(vh)≤C h−1+d( 1
p−

1
q ) θ̇0,q,Th;Q(v), (2.6)

θ̇1,p,Th(vh)≤C hd( 1
p−

1
q ) θ̇1,q,Th(vh). (2.7)

Globally, for vh ∈ Sm
h , we can then estimate

θ̇1,p,Ω (vh)≤C h−1+d( 1
p−

1
q ) min

Q∈v(Ω)
θ̇0,q,Ω ;Q(v), (2.8)

θ̇1,p,Ω (vh)≤C hd( 1
p−

1
q ) θ̇1,q,Ω (vh). (2.9)

Proof. As v ∈ Pm(T,M), we can estimate for all p,q ∈ [1,∞] and v j

θ̇0,q,T ;v j(v)≤C max
i

θ0,p,T ;vi(v). (2.10)

Indeed, we have shown in Lemma 2.3, that

θ̇0,∞,T ;v j(v) = max
x∈Ω

d(v(x),v j)≤C max
i

d(v1,vi).

Norm equivalence in Rl yields
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θ̇0,∞,T ;v j(v)≤C
l

∑
i=1

d(v1,vi)≤C
∫

Ω

(d(v1,v(x))+d(v(x),vi)) dx≤C max
i

θ0,1,T ;vi(v).

This implies (2.10).
Consider (2.3) for k = 1

dα v(x) =
l

∑
i=1

λi(x)(Id +d2 logv(x) vi)(dα v(x))+
l

∑
i=1

∂α λi(x) logv(x) vi.

We estimate using (A.1)

|dα v(x)|=
l

∑
i=1
|λi(x)|

1
2
|R|∞d2(v(x),vi)|dα v(x)|+

l

∑
i=1
|∂α λi(x)|d(v(x),vi).

Using d2(v(x),vi)≤ ρ2 ≤ 1
|R|∞‖∑i |λi|‖∞ , we obtain

|dα v(x)| ≤ 2
l

∑
i=1
|∂α λi(x)|d(vi,v(x)).

Integration and (2.10) yield the estimates.
Lemmas 1.48 and 1.52 then imply the rescaled estimates.

Similarly to Proposition 2.13, we can obtain higher order inverse estimates.

Proposition 2.14. Let v∈Pm(T,M) with v(T )⊂Bρ , ρ small enough (cf. Lemma 2.3),
and in particular ρ ≤ 1√

|R|∞‖∑i |λi|‖∞
. Let p,q ∈ [1,∞]. Then there exists a constant

C15 such that

θ̇2,p,T (v)≤ θ̇
2
1,2p,T (v)+C15 θ̇1,q,T (v). (2.11)

If we additionally assume that F−1
h : T → Th scales with order 2, we have after

rescaling for vh ∈ Pm(Th,M)

θ̇2,p,Th(vh)≤C θ̇
2
1,2p,Th

(vh)+C h−1+d( 1
p−

1
q ) θ̇1,q,Th(vh). (2.12)

Proof. Inequality (2.11) follows from (2.3) and (2.10) in the same manner as Propo-
sition 2.13.

To see (2.12), we estimate using Lemma 1.48

θ̇2,p,Th(vh)≤C h−2+ d
q
(
θ̇2,p,T (vh ◦F−1

h )+ θ̇1,p,T (vh ◦F−1
h )
)

≤C h−2+ d
q
(
θ̇

2
1,2p,T (vh ◦F−1

h )+2C14 θ̇1,q,T (vh ◦F−1
h )
)
.

Applying Lemma 1.48 again yields (2.12).
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2.2 Interpolation Error Estimates

In Euclidean theory interpolation error estimates for finite element approximations
of real valued functions on a reference element T are closely related to the Bramble–
Hilbert Lemma. Throughout this section we will assume ρ > 0 to be small enough
such that Lemma 2.3 and Propositions 2.12 and 2.13 hold for the interpolation of
values on a manifold that lie within a ball of radius ρ .

Lemma 2.15 (Classical Interpolation Error Estimate). Let (m + 1)p > d, u ∈
W m+1,p(T,R), and let uI ∈ Pm(T,R) be the nodal interpolation of u. Then there
exists a constant C independent of u, such that

‖u−uI‖W 1,2(T,R) ≤C‖Dm+1u‖L2(T,R).

There are several possible ways to prove Lemma 2.15 (see e.g. [Bra07, Cia78]).
In [Bra07] the equivalence of the norms

‖v‖ := |v|W m+1,p(Ω ,R)+
l

∑
i=1
|v(ai)|

!∼ ‖v‖W m+1,p(Ω ,R)

is shown and employed for the difference v = u− uI . One of the main obstacles to
generalize this method of proof to the manifold setting is the fact that differences
are realized through vector fields, and as such depend on the base function u. A
generalization of the mentioned norm equivalence is possible as u−1T M is a vector
space, but the constants arising implicitely depend on the function u. We, however,
require scalable estimates. Other methods of proof lead to similar difficulties.

To overcome this problem a direct estimate using a Taylor expansion was chosen
in [GHS14] to estimate the L2- and the W 1,2- errors (measured in D1,2; cf. Sec-
tion 1.2.3) of geodesic interpolation in terms of the smoothness operator. The scal-
ing properties described in Section 1.3 then yield estimates of the same order as the
estimates in the Euclidean setting.

We will repeat this approach, and then generalize it to the approximation of vec-
tor fields by vector fields which arise as discrete variations of geodesic finite ele-
ments. This will later enable us to prove optimal L2-error estimates for geodesic
finite element solutions of W 1,2-elliptic minimization problems.

2.2.1 A Bramble-Hilbert Lemma for Geodesic Finite Elements

We will present a generalization of Lemma 2.15 to geodesic finite elements. The
result and the proof presented are very similar to the one in [GHS14], but with a
slightly better control over the nonlinearity in the W 1,p-estimate.

As we will use a Taylor expansion to obtain the interpolation error estimates, we
need the following technical tool in order to estimate the remainder terms. It can
also be found similarly in the appendix of [GHS14].
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Proposition 2.16. Let f ∈ Lp(Ω ,R), ~β a multi-index with |~β |= k > d
p . Then∥∥∥∥∫ 1

0
tk−1| f (tx)|x~β dt

∥∥∥∥
Lp(Ω ,R)

≤C(diam(Ω))‖ f‖Lp(Ω ,R).

Proof. We assume w.l.o.g. that Ω is contained in a ball of radius 1. Using polar
coordinates (ω,r) ∈ Sd−1× (0,1), we write∥∥∥∥∫ 1

0
tk−1| f (tx)|x~β dt

∥∥∥∥p

Lp(Ω ,R)
=
∫ 1

0

∫
Sd−1

(∫ 1

0
rktk−1| f (trω)| dt

)p

dS(ω) dr

=
∫ 1

0

∫
Sd−1

(∫ r

0
τ

k−1| f (τω)| dτ

)p

dS(ω) dr.

Using Hölder’s inequality on the inner integral, we obtain∥∥∥∥∫ 1

0
tk−1| f (tx)|x~β dt

∥∥∥∥p

Lp(Ω ,R)

≤
∫ 1

0

(∫
Sd−1

∫ r

0
τ

d−1| f (τω)|p dτ dS(ω)

)(∫ r

0
τ

kp−d
p−1 dτ

)p−1

dr

≤ ‖ f‖p
Lp(Ω ,R),

as kp > d.

We now prove an interpolation error estimate for geodesic finite elements.

Lemma 2.17. Let kp > d, m≥ k−1, and u ∈W k,p(T,M) with u(T )⊂ Bρ ⊂M. Let
uI ∈ Pm(T,M) denote the geodesic interpolation of u. Then there exists a constant
C16 such that

dLp(T,M)(u,uI)≤C16C1,u(T ) θ̇k,p,T (u) (2.13)

D1,p,T (u,uI)≤C16

(
Cp

1,u(T )+Cp
2,u(T )

) 1
p

θ̇k,p,T (u), (2.14)

where

C1,u(T ) := sup
1≤ j≤k

sup
p∈uI (T )
q∈u(T )

‖d j logp q‖

C2,u(T ) := sup
1≤ j≤k−1

sup
p∈uI (T )
q∈u(T )

‖d2d j logp q‖,

and the constant C16 depends on the shape functions λi, and but is independent of u
and M.

Proof. The proof is based on the first order condition (cf. Lemma 2.4)
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l

∑
i=1

λi(x) loguI(x) u(ai) = 0

for all x ∈ T . We can rewrite this to

loguI(x) u(x) =
l

∑
i=1

λi(x)
(

loguI(x)(u(x))− loguI(x)(u(ai))
)
.

Setting

G(x,y) := loguI(x) u(y),

and performing a Taylor expansion of G in the second argument, we obtain

G(x,ai) = ∑
|~α|<k

(ai− x)~α

~α!
∂
~α
y G(x,x)+Rk(x,x,ai)

almost everywhere in T , where

Rk(x,z,ai) = ∑
|~α|=k

k
~α!

(ai− z)~α
∫ 1

0
(1− t)k−1

∂
~α
y G(x,z+ t(ai− z)) dt.

Thus, we can write

− loguI(x) u(x) =
l

∑
i=1

λi(x)(G(x,ai)−G(x,x))

= ∑
1<|~α|<k

l

∑
i=1

λi(x)
(ai− x)~α

~α!
∂
~α
y G(x,x)+

l

∑
i=1

λi(x)Rk(x,x,ai).

As the shape functions are exact on polynomials of degree less then k−1, we have
for each ~α with |~α| ≤ k−1

l

∑
i=1

λi(x)
(ai− x)~α

~α!
∂
~α
y G(x,x) = 0.

It remains the expression

− loguI(x) u(x) =
l

∑
i=1

λi(x)Rk(x,x,ai). (2.15)

After a suitable translation, we may assume ai = 0, and estimate (almost everywhere
in T )

|Rk(x,x,0)| ≤ ∑
|~α|=k

k
~α!

x~α
∫ 1

0
tk−1

∣∣∣∂~α
y G(x, tx)

∣∣∣ dt
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≤ ∑
|~α|=k

k
~α!

x~α
∫ 1

0
tk−1

∑
1≤o≤k, ~β j∈[d]

m j

∑
o
j=1 m j=k

‖do loguI(x) u(tx)‖
o

∏
j=1
|∇~β j u(tx)| dt

≤C(k)C1,u(T ) ∑
1≤o≤k, ~β j∈[d]

m j

∑
o
j=1 m j=k

∫ 1

0
tk−1

o

∏
j=1
|∇~β j u(tx)|x~β dt. (2.16)

Integration yields

(∫
T
| loguI(x) u(x)|p dx

) 1
p

≤C(λ ,k)C1,u(T ) ∑
1≤o≤k, ~β j∈[d]

m j

∑
o
j=1 m j=k

(∫
T

(∫ 1

0
tk−1

o

∏
j=1
|∇~β j u(tx)|x~β dt

)p

dx

) 1
p

≤C(λ ,k,T )C1,u(T ) ∑
1≤o≤k, ~β j∈[d]

m j

∑
o
j=1 m j=k

(∫
T

o

∏
j=1
|∇~β j u(tx)|p dx

) 1
p

,

where the last estimate follows from Proposition 2.16. Recalling the definition of the
smoothness descriptor (cf. Definition 1.21) this proves (2.13). Let~e be a multi-index
with |~e|= 1. To obtain (2.14), we split ∇~e loguI(x) u(x) in the following way:

∇
~e loguI(x) u(x) = d2 loguI(x) u(x)(∇~euI(x))+d loguI(x) u(x)(∇~eu(x))

=
l

∑
i=1

λi(x)
(

d2 loguI(x) u(x)(∇~euI(x))−d2 loguI(x) u(ai)(∇
~euI(x))

)
+d loguI(x) u(x)(∇~eu(x))−

l

∑
i=1

∂
~e
λi(x) loguI(x) u(ai).

We set

H(x,y) := d2 loguI(x) u(y)(∇~euI(x)),

and write

∇
~e loguI(x) u(x) =

l

∑
i=1

λi(x)(H(x,x)−H(x,ai))+∂
~e
y

(
l

∑
i=1

λi(y)(G(x,y)−G(x,ai))

)
|y=x

.

We can handle the H term as we did the the G term before, using a Taylor expansion
of H up to k−1 to obtain
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l

∑
i=1

λi(x)(H(x,x)−H(x,ai)) =−∑
i=1

λi(x)RH
k−1(x,x,ai),

and

|RH
k−1(x,x,0)|

≤ ∑
|~α|=k−1

k−1
~α!

x~α
∫ 1

0
tk−2

∣∣∣∂~α
y H(x, tx)

∣∣∣ dt

≤ ∑
|~α|=k−1

k−1
~α!

x~α
∫ 1

0
tk−2

∑
1≤o≤k−1, ~β j∈[d]

m j

∑
o
j=1 m j=k−1

‖dod2 loguI(x) u(tx)‖ |∇~euI(x)|
o

∏
j=1
|∇~β j u(tx)| dt

≤C2,u(T ) ∑
|~α|=k−1

k−1
~α!

x~α
∫ 1

0
tk−2

∑
1≤o≤k−1, ~β j∈[d]

m j

∑
o
j=1 m j=k−1

|∇~euI(x)|
o

∏
j=1
|∇~β j u(tx)| dt.

(2.17)

Continuing as before, we need to estimate terms of the form

A :=


∫

Ω

|∇~euI(x)|
∫ 1

0
tk−2x~α ∑

1≤o≤k−1, ~β j∈[d]
m j

∑
o
j=1 m j=k−1

o

∏
j=1
|∇~β j u(tx)| dt


p

dx


1
p

.

Using Hölder’s and Young’s inequality, we obtain

A≤
(∫

Ω

|∇~euI(x)|kp dx
) 1

kp

∥∥∥∥∥∥∥∥∥
∫ 1

0
tk−2x~α ∑

1≤o≤k−1, ~β j∈[d]
m j

∑
o
j=1 m j=k−1

o

∏
j=1
|∇~β j u(tx)| dt

∥∥∥∥∥∥∥∥∥
L

kp
k−1 (Ω ,R)

≤C

θ̇k,p,T (uI)+

∥∥∥∥∥∥∥∥∥
∫ 1

0
tk−2x~α ∑

1≤o≤k−1, ~β j∈[d]
m j

∑
o
j=1 m j=k−1

o

∏
j=1
|∇~β j u(tx)| dt

∥∥∥∥∥∥∥∥∥

k
k−1

L
kp

k−1 (Ω ,R)

 .

We can again use Proposition 2.16 with k̃ = k−1, p̃ = kp
k−1 to estimate
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∫ 1

0
tk−2x~α ∑

1≤o≤k−1, ~β j∈[d]
m j

∑
o
j=1 m j=k−1

o

∏
j=1
|∇~β j u(tx)| dt

∥∥∥∥∥∥∥∥∥

k
k−1

L
kp

k−1 (Ω ,R)

≤C

∥∥∥∥∥∥∥∥∥ ∑
1≤o≤k−1, ~β j∈[d]

m j

∑
o
j=1 m j=k−1

o

∏
j=1
|∇~β j u(x)|

∥∥∥∥∥∥∥∥∥

k
k−1

L
kp

p−1 (T,R)

≤C θ̇k,p,T (u),

where we used Proposition 1.22 for the last estimate.
Proposition 2.12 then implies

‖
l

∑
i=1

λi(x)(H(x,x)−H(x,ai))‖Lp(T,u−1
I T M) ≤C C2,u(T ) θ̇k,p,T (u).

For the remaining terms we can write

∂
~e
y

(
l

∑
i=1

λi(y)(G(x,y)−G(x,ai))

)
|y=x

=−∂
~e
y

(
l

∑
i=1

λi(y)RG
k (x,y,ai)

)
|y=x

=−
l

∑
i=1

∂
~e
λi(x)RG

k (x,x,ai)−

(
l

∑
i=1

λi(y)∂~ey RG
k (x,y,ai)

)
|y=x

.

The first term can be estimated as before. As described in [GHS14] the second term
can be rewritten as

−
l

∑
i=1

λi(y)∂~ey RG
k (x,y,ai) =−

l

∑
i=1

λi(y)∂~ey

(
G(x,ai)− ∑

|~α|<k

(ai− y)~α

~α!
∂
~α
y G(x,y)

)

=
l

∑
i=1

λi(y)∂~ey ∑
|~α|<k

(ai− y)~α

~α!
∂
~α
y G(x,y)

=−
l

∑
i=1

λi(y) ∑
|~α|<k

(ai− y)~α−~e

(~α−~e)!
∂
~α
y G(x,y)

+
l

∑
i=1

λi(y) ∑
|~α|<k

(ai− y)~α

~α!
∂
~α+~e
y G(x,y)
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=
l

∑
i=1

λi(y) ∑
|~α|=k−1

(ai− y)~α

~α!
∂
~α+~e
y G(x,y).

Thus, we obtain

∂
~e
y

(
l

∑
i=1

λi(y)(G(x,y)−G(x,ai))

)
|y=x

=−
l

∑
i=1

∂
~e
λi(x)RG

k (x,x,ai)+
l

∑
i=1

λi(x) ∑
|~α|=k−1

(ai− x)~α

~α!
∂
~α+~e
y G(x,x),

and ∥∥∥∥∥∥∂
~e
y

(
l

∑
i=1

λi(y)(G(x,y)−G(x,ai))

)
|y=x

∥∥∥∥∥∥
Lp(T,u−1

I T M)

≤C C1,u(T ) θ̇k,p,T (u),

which concludes the proof.

Remark 2.18. When estimating the remainder terms of the Taylor expansions in the
above proof, the smoothness descriptor arises naturally when using the chain rule
for derivatives of the auxillary functions G and H in (2.16) and (2.17), respectively.
In the Euclidean setting M =Rn the inverse of the exponential map log corresponds
to simple subtraction, and thus only the first derivative of log contributes to the con-
stants, which implies C1,u(T ) = 1, C2,u(T ) = 0. If we consider this before taking the
supremum in (2.16) and (2.17), we also see that the Sobolev half-norm captures all
derivatives of u on the right hand side. Thus, we retrieve the standard interpolation
error estimate for finite elements (cf. Lemma 2.15).

Remark 2.19. In [GHS14] the constant C2,u(T ) depends on derivatives of log up to
(k + 1)th order, while in Lemma 2.17 only derivatives up to kth order appear. In
particular for k = 2 this yields geometric constants, i.e., using the estimate on the
derivatives of log in Appendix A we can estimate

C1,u(T )≤ sup
p∈uI (T )
q∈u(T )

max
{

1+C(Rm)d2(p,q),C30(Rm)d(p,q)
}
≤ 1+Cρ

2,

C2,u(T )≤ sup
p∈uI (T )
q∈u(T )

C30(Rm)d(p,q)≤Cρ,

if ρ is small enough depending on C30(Rm), the constant in Proposition A.2. This is
consistent with the intuition that in very small neighborhoods the constants behave
like in the flat case.

Furthermore, the proof in [GHS14] uses that uI has uniformly bounded deriva-
tives independent of u and M, which is valid in view of Proposition 2.13 and the
condition on ρ . In the approach presented above, derivatives of uI need only be
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as good as the ones of u (cf. Proposition 2.12). This difference in the approach to
[GHS14] makes generalizations to higher derivatives possible, although we will not
include these estimates in this work.

As in Euclidean theory, Lemma 2.17 lets us state a Bramble–Hilbert Lemma for
geodesic finite element interpolation.

Corollary 2.20. Let kp > d, m≥ k−1, and Y denote a vector space with norm ‖ ·‖.
Let L : W k,p(T,M)→ Y be a map such that Pm(T,M) ⊂ ker L, and assume that
for all u ∈W k,p(T,M) the map L̃u : W 1,p(T,u−1T M)→ Y defined by L̃u(V ) = Lu−
L(expu V ) is bounded, i.e., ‖L̃u(V )‖ ≤ ‖L̃u‖ ‖V‖W 1,p(T,u−1T M). Then

‖Lv‖ ≤C‖L̃v‖ θ̇k,p,T (v)

for all v ∈W k,p(T,M) with v(T )⊂ Bρ .

Proof. Let v ∈W k,p(T,M) with v(T )⊂ Bρ . Then the interpolation vI ∈ Pm(T,M) is
well defined, LvI = 0, and logv vI ∈W 1,p(T,v−1T M). By definition of L̃v, we have

‖Lv‖= ‖Lv−LvI‖= ‖Lv−L(expv logv vI)‖= ‖L̃v(logv vI)‖
≤ ‖L̃v‖ ‖ logv vI‖W 1,p(T,v−1T M).

Lemma 2.17 then yields the assertion.

Remark 2.21. The Euclidean result analogous to Corollary 2.20, namely a bound on
linear functionals, is used in [Cia78] to discuss the effect of numerical integration
in the application of finite element methods to elliptic second order problems. The
question whether Corollary 2.20 can fulfill the same role in the study of geodesic
finite elements will not be answered in the course of this work, but is of interest
in view of so-called variational crimes, in particular quadrature error estimates (cf.
[Str72]).

2.2.2 Interpolation Error Estimates for Geodesic Finite Elements

Lemma 2.17 bounds the interpolation error on a reference element T . We now derive
estimates for domains in Ω ⊂ Rd discretized by a conforming grid of width h and
order m (cf. Definition 2.1).

By scaling we have the following local estimate.

Theorem 2.22. Let T be a reference element, and Th ∈ Rd be a domain such that
there exists a map Fh : Th→ T that scales with h of order m (cf. Definition 1.47). Let
kp > d, m≥ k−1, and u ∈W k,p(Th,M) with u(Th)⊂ Bρ ⊂M.
Then there exists a constant C17 such that we have for the geodesic interpolation
uI ∈ Pm(Th,M) of u the elementwise estimates
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dLp(u,uI)≤C17 hk C1,u(T ) θk,p,Th(u)

D1,p(u,uI)≤C17 (C1,u(T )+C1,u(T )) hk−1
θk,p,Th(u).

Proof. Set û := u◦F−1
h , and note that the geodesic interpolation of û has the repre-

sentation

ûI = uI ◦F−1
h .

Using the scaling Lemmas 1.51 and 1.48 together with the estimate on the reference
element in Lemma 2.17 yields the assertion, taking into account, that

C1,u(Th) =C1,û(T )

C2,u(Th) =C2,û(T ).

As in standard theory a global estimate follows by summation.

Theorem 2.23. Suppose G is a conforming grid of width h and order m for the
domain Ω ⊂ Rd . Let kp > d, m ≥ k− 1, and uI ∈ Sm

h (Ω ,M) be the geodesic finite
element function interpolating u ∈W k,p(Ω ,M) on G.

If h is small enough depending on M, then

dLp(u,uI)≤C17 CM,G,1(u) hk
θk,p,Ω (u)

D1,p(u,uI)≤C17 hk−1(CM,G,1(u)+CM,G,2(u)) θk,p,Ω (u),

where C17 is the constant in Theorem 2.22,

CM,G,i(u) := sup
Th∈G

C1,u(Th)

for i = 1,2, and

lim
h→0

CM,G,1(u) = sup
1≤ j≤k

sup
q∈u(Ω)

‖d j logq q‖

lim
h→0

CM,G,2(u) = sup
1≤ j≤k−1

sup
q∈u(Ω)

‖d2d j logq q‖.

Proof. As u is continuous, we can choose h small enough depending on the curva-
ture of M such that the restrictions u|Th

on each element Th of G fulfill the assump-
tions of Theorem 2.22. Summation then yields the result. The continuity of u also
implies that the sets u(Th) and uI(Th) converge to single points as h→ 0, which
implies the limit behaviour of the constant.
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2.2.3 Vector Field Approximation

The variation of geodesic interpolants through geodesic interpolants induces a nat-
ural definition of the interpolation of vector fields along a geodesic interpolant.

Definition 2.24. Let v̂ ∈ Pm(T,M), and let V i ∈ Tv̂(ai)M be vectors given at the La-
grange nodes. Set vi(t) := expv̂(ai)

(tV i) for i = 1, . . . , l. The interpolating vector field
VI along v̂ is then defined by

VI(x) :=
d
dt
|t=0ϒ (v1(t), . . . ,vl(t);x).

We denote the space of all interpolating vector fields along v̂ by IV (T, v̂−1T M).

Note that the interpolating vector fields are generalized Jacobi fields in the same
sense as geodesic finite elements are generalized geodesics.

Remark 2.25. The interpolation of vector fields along a discrete function v̂ is well
defined as long as geodesic interpolation of the points expv̂(ai)

(tV i) is well defined
and smooth for small t. Smoothness also follows by smoothness of the geodesic fi-
nite element interpolation. Indeed, we can differentiate (2.2) forϒ (v1(t), . . . ,vl(t);x)
with respect to t and obtain

VI(x) =
l

∑
i=1

λi(x)
(

Id +d2 logv̂(x) v̂i

)
(VI(x))+

l

∑
i=1

λi(x)d logv̂(x) v̂i(Vi) (2.18)

as an implicit formula for VI . For diam(v̂(T ))≤ 1√
|R|∞‖∑i |λi|‖∞

, this yields in partic-

ular

|VI(x)| ≤C max
i
|Vi|. (2.19)

Note further that for a constant function v̂, vector field interpolation corresponds to
polynomial interpolation in Rn.

Remark 2.26. Geodesic vector field interpolation is defined by variation of geodesic
interpolants. However, we can also see it as a variational form of geodesic interpola-
tion on T M with respect to the pseudo-Riemannian metric defined by the horizonal
lift gh (see Section 1.2.2.2). By this we mean that if (ui,V i) denote values in T M, uI
the geodesic interpolation of ui in M, and VI the interpolation of the V i in the sense
of Definition 2.24, we have

l

∑
i=1

λi(x)h log(uI(x),VI(x))(ui,V i)

=
l

∑
i=1

λi(x)
[
loguI(x) ui,d loguI(x) ui(Vi)+ d2 loguI(x) ui(VI(x))

]
= [0,0] ∈ (TuI(x)M)2.
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Note that we do not obtain a minimization formulation of geodesic vector field in-
terpolation as hg is only a pseudo-metric.

Having defined geodesic vector field interpolation, we discuss interpolation error
estimates. In particular, we prove an analogon of Lemma 2.17 for vector fields.

Lemma 2.27. Let kp > d, m≥ k−1, and (u,V ) ∈W k,p(T,T M) with u(T )⊂ Bρ ⊂
M. Let (uI ,VI) denote the geodesic interpolation of (u,V ). Then there exists a con-
stant C18 depending on the shape functions but independent of u and M such that

‖ h log(uI ,VI)
(u,V )‖Lp(T,T M) ≤C18 Cu,k+1(T )

(
θ̇k,p,T (u)+Θ̇k,p,T (V )

)
(2.20)

| h log(uI ,VI)
(u,V )|W 1,p(T,T M) ≤C18 Cu,k+1(T )

(
θ̇k,p,T (u)+Θ̇k,p,T (V )

)
, (2.21)

where Cu,k+1(T ) is the supremum of derivatives up to k+1th order of the log.

Proof. The proof is analogous to the one of Lemma 2.17. We replace the first order
condition by the one derived in Remark 2.26. Instead of the auxillary function G :
T 2→ T M, we obtain G := (G1,G2) where the Gi : T 2→ T M are defined by

G1(x,y) := loguI(x) u(y)

G2(x,y) := d loguI(x) u(y)(V (y))+d2 loguI(x) u(y)(VI(x)).

After a Taylor expansion of G, we need to estimate for |~α|= k

|∂~α
y G(x,y)|gS ≤C

(
|∂~α

y G1(x,y)|g + |∂~α
y G2(x,y)|g

)
.

As G1 is already discussed in Lemma 2.17, we just estimate the corresponding term
for G2:

|∂~α
y G2(x,y)| ≤C ∑

1≤o≤k, ~β j∈[d]
m j

∑
o
j=1 m j=k

‖dod2 loguI(x) u(y)‖ |VI(x)|
o

∏
j=1
|∇~β j u(y)|

+C ∑
1≤o≤k, ~β j∈[d]

m j

∑
o
j=1 m j=k

‖do+1 loguI(x) u(y)‖ |V (y)|
o

∏
j=1
|∇~β j u(y)|

+C ∑
0≤o≤k, ~β j∈[d]

m j

∑
o
j=0 m j=k

‖do+1 loguI(x) u(y)‖ |∇~β0V (y)|
o

∏
j=1
|∇~β j u(y)|

≤C Cu,k+1(T ) ∑
1≤o≤k, ~β j∈[d]

m j

∑
o
j=1 m j=k

|VI(x)|
o

∏
j=1
|∇~β j u(y)|
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+C Cu,k+1(T ) ∑
1≤o≤k, ~β j∈[d]

m j

∑
o
j=1 m j=k

|V (x)|
o

∏
j=1
|∇~β j u(y)|

+C Cu,k+1(T ) ∑
0≤o≤k, ~β j∈[d]

m j

∑
o
j=0 m j=k

|∇~β0V (y)|
o

∏
j=1
|∇~β j u(y)|.

We can estimate ‖VI‖L∞ ≤C‖V‖L∞ in view of (2.19). Doing so, then proceeding as
in the proof of Lemma 2.17, and recalling the definition of Θ̇k,p,T (V ) yields

‖ h log(uI ,VI)
(u,V )‖Lp(T,T M) ≤C Cu,k(T )θ̇k,p,T (u)

+C Cu,k+1(T )
(
‖V‖L∞(T,u−1T M)θ̇k,p,T (u)+Θ̇k,p,T (V )

)
,

and thus (2.20).
To see (2.21), we decompose the second component of ∇~e h log(uI ,VI)

(u,V ) for
|~e|= 1 as follows

∇
~e
(

d loguI(x) u(x)(V (x))+d2 loguI(x) u(x)(VI(x))
)

= ∇
~e

l

∑
i=1

λi(y)(G2(x,y)−G2(x,ai))|y=x

+
l

∑
i=1

λi(H1(x,x)−H1(x,ai)+H2(x,x)−H2(x,ai)+H3(x,x)−H3(x,ai)),

where

H1(x,y) = d2 loguI(x) u(y)(∇~eVI(x))

H2(x,y) = d2
2 loguI(x) u(y)(VI(x),∇~euI(x))

H3(x,y) = d2d loguI(x) u(y)(V (y),∇~euI(x)).

We can estimate

|∇~eVI(x)| ≤C (‖V‖L∞(T,u−1T M)+ |V (x)| |∇~euI(x)|).

Proceeding as in the proof of Lemma 2.17 yields the assertion.

The error ‖ h log(uI ,VI)
(u,V )‖W 1,p(T,T M) can be split into two parts, one consisting

solely of the interpolation error of the function u, and one homogenously depending
on the vector field V . An estimate for the vector field component only should also
be homogenous in V . This amplification of the estimates (2.20) and (2.21) can be
obtained by scaling.
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Corollary 2.28. Let kp> d, m≥ k−1, and (u,V )∈W k,p(T,T M) with u(T )⊂Bρ ⊂
M. Let (uI ,VI) denote the geodesic interpolation of (u,V ). Then there exists a con-
stant C19 such that

‖d loguI(x) u(x)(V (x))+d2 loguI(x) u(x)(VI(x))‖W 1,p(T,u−1
I T M)

≤C19

(
‖V‖L∞(Ω ,u−1T M)θ̇k,p,Ω (u)+Θ̇k,p,Ω (V )

)
(2.22)

Proof. Lemma 2.27 implies

‖d loguI(x) u(x)(V (x))+d2 loguI(x) u(x)(VI(x))‖W 1,p(T,u−1
I T M)

≤C θ̇k,p,T (u)+C
(
‖V‖L∞(Ω ,u−1T M)θ̇k,p,Ω (u)+Θ̇k,p,Ω (V )

)
. (2.23)

In particular, the terms

r1(V ) := ‖d loguI(x) u(x)(V (x))+d2 loguI(x) u(x)(VI(x))‖W 1,p(T,u−1
I T M)

r2(V ) :=
(
‖V‖L∞(Ω ,u−1T M)θ̇k,p,Ω (u)+Θ̇k,p,Ω (V )

)
are homogenous, i.e.,

r1(λV ) = |λ |r1(V )

r2(λV ) = |λ |r2(V )

for λ ∈ R. Setting A :=C θ̇k,p,T (u) we can rewrite (2.23)

r1(V )≤ A+ r2(V ).

Then for λ > 0, we have

λ r1(V ) = r1(λV )≤ A+ r2(λV ) = A+λ r2(V ),

and thus,

r1(V )≤ A
λ
+ r2(V ).

For a fixed V and λ → ∞ this implies the assertion.

As for functions, we obtain local and global estimates for discretized domains
via the scaling properties.

Theorem 2.29. Suppose G is a conforming grid of width h for the domain Ω ⊂ Rd .
Let kp > d, m ≥ k−1, and (u,V ) ∈W k,p(Ω ,T M). If h is small enough depending
on M, for the geodesic interpolation (uI ,VI) of (u,V ) holds
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h‖ h log(uI ,VI)
(u,V )‖Lp(T,T M)+ | h log(uI ,VI)

(u,V )|W 1,p(T,T M) ≤C20hk−1
Θk,p,T (u,V ).

(2.24)



Chapter 3
Discretization Error Bounds for W 1,2-Elliptic
Problems of Second Order

As in Chapter 2, we consider a smooth Riemannian manifold (M,g) with curvature
bounded from above and below, and a bounded domain Ω in Rd with Lipschitz
boundary. For a given order parameter m, let G be a conforming grid of width h with
a reference element T , elements denoted by Th, and the mth order geodesic finite
element space denoted by Sm

h (cf. Definition 2.5). We will often drop the superscript
m in the notation.

We consider the minimization of W 1,2-elliptic energies J in H ⊂W 1,2(Ω ,M)

u ∈ H : J(u)≤ J(v) ∀v ∈ H. (3.1)

Let uh be the corresponding geodesic finite element solution

uh ∈ Sm
h : J(uh)≤ J(vh) ∀vh ∈ Sm

h . (3.2)

Our goal is to show a priori discretization error bounds in this setting. In partic-
ular we show an estimate of the form

h D1,2(u,uh)+dL2(u,uh)≤C hk,

where 2k > d, and the solution u ∈W k,2(Ω ,M). We expect these results due to
numerical tests in [San13].

The first corresponding error estimate for D1,2(u,uh) was given in [GHS14]. In
order to deal with the nonlinearity of M, the error estimate is first shown in a re-
stricted set of functions, namely in a W 1,q-ball for q > max{2,d}. This in particular
leads to the same restriction of the discrete functions. We then show, that we can
choose q and the ball’s radius such that the discrete solution uh lies in the interior
of the ball. This corresponds to an estimate without the additional restriction. While
in [GHS14] additional regularity is needed for a corresponding estimate, we do not
have this restriction here.

We will continue with an analysis of dL2(u,uh). In particular we aim for a gener-
alization of the Aubin–Nitsche lemma to the manifold setting. The Aubin–Nitsche
lemma uses the H2-regularity of the so-called adjoint problem and the interpolation

67
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error estimate for its solution. This imposes a restriction on the dimension to d < 4,
as we only provided interpolation error estimates for this case in Chapter 2. Note
further that the Aubin–Nitsche lemma is only suitable for quadratic energies, and
the manifold introduces a nonlinearity. We will assume that the energy is “predom-
inantly quadratic”, which we define as a bound on the third variation. For d < 4 this
condition can be interpreted as semi-linearity of the corresponding PDE. Under this
condition, we can then indeed generalize the Aubin–Nitsche lemma, and obtain an
estimate in a restricted space.

It might be useful for the reader to keep the harmonic energy in mind while
reading through the assumptions of the theorems. Indeed, we will show in Chapter 5
that the harmonic energy fulfills the assumptions needed.

3.1 W 1,2-Discretization Error Estimates

In order to obtain a bound on D1,2(u,uh), we follow the classical Galerkin approach,
i.e., we consider a generalized version of Céa’s lemma, show that we can apply it
to an elliptic energy, and then combine this with the approximation error estimates
of Chapter 2. This leads to W 1,2-error bounds for discrete functions restricted in a
W 1,q-ball. Note that this result and the procedure have already been described in
[GHS14].

As a priori first derivatives of geodesic finite elements may deteriorate with a
negative power of the mesh size h (as standard finite elements for Euclidean space
do), this restriction is problematic. In order to overcome this, in [GHS14] a depen-
dence of the radius of the W 1,q-ball on the mesh size is allowed, which then yields an
unrestricted result provided that the continuous solution u fulfills stronger regularity
assumptions. We will prove a similar result without these additional assumptions.

In order to formulate Céa’s lemma in a metric space (H,D) we need to specify
the assumptions on the energy functional.

Definition 3.1. Let (H,D) be a metric space, v0,v1 ∈ H, and γ : [0,1]→ H a curve
connecting v0 to v1. We say that an energy functional J : H → R is λ -convex with
respect to D along γ for some λ ∈ R if

J(γ(t))≤ (1− t)J(v0)+ tJ(v1)−
λ

2
t(1− t)D2(v0,v1) ∀t ∈ [0,1]. (3.3)

We call J just λ -convex if for every v0,v1 ∈D(J) = {v∈H : J(v)< ∞} there exists
a curve γ : [0,1] 7→H with γ(0) = v0 and γ(1) = v1 such that J is λ -convex along γ .

Let u ∈ H be a minimizer of an energy functional J and V ⊂ H. If there exists a
Λ > 0 such that

J(v)−J(u)≤ Λ

2
D2(v,u) ∀v ∈V, (3.4)

we call J quadratically bounded in V with respect to D and Λ .
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For convex and quadratically bounded energies with positive constants λ and Λ ,
we can now state the following.

Lemma 3.2 (Céa’s Lemma in Metric Spaces). Let (H,D) be a metric space, and
u ∈ H be a minimizer of the functional J : H → R. Consider a subset V ⊂ H such
that w∈ argminv∈V J(v) exists. We assume that J is quadratically bounded in V ⊂H
around u with respect to D and Λ > 0, and that for any v ∈V there exists a curve γ

in H connecting u to v along which J is λ -convex with respect to D for some λ > 0.
Then we can estimate

D2(w,u)≤ Λ

λ
inf
v∈V

D2(v,u). (3.5)

Proof. Note that (3.3) implies for any ∈ (0,1)

J(u)≤ tJ(v)+(1− t)J(u)− λ

2
t(1− t)D2(v,u)

and thus

J(v)−J(u)≥ λ

2
(1− t)D2(v,u).

Letting t→ 0, we obtain

J(v)−J(u)≥ λ

2
D2(v,u)

for any v ∈V . Using (3.4) we obtain for all v ∈V

λ

2
D2(w,u)≤ J(w)−J(u)≤ J(v)−J(u)≤ Λ

2
D2(v,u)

which concludes the proof.

Remark 3.3. We do not need D to be a metric as we do not use any properties of
metrics in the proof. In particular, we consider the quasi-inframetric D1,2 (cf. Sec-
tion 1.2.3) instead of a metric D, and set

H :=W 1,q
φ

(Ω ,M) (3.6)

for some q > max{2,d}, where φ denotes suitable boundary data (see Section 1.1.3
for the precise definition). Note that H ⊂C(Ω ,M)∩W 1,2(Ω ,M).

To continue, we need to specify what we mean by a W 1,2-elliptic energy func-
tional J : H→ R.

Definition 3.4. We say that J : H → R is W 1,2-elliptic with respect to geodesic
homotopies, if it is twice continuously differentiable along geodesic homotopies,
W 1,2-coercive, i.e., there exists a constant λ > 0 such that for all v ∈ H and
V ∈W 1,2

0 (Ω ,v−1T M) we have
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λ‖V‖2
W 1,2(Ω ,v−1T M) ≤

d2

ds2 |s=0
J(expv(sV )), (3.7)

and W 1,2-bounded, i.e., there exists a constant Λ > 0 such that for all v ∈ H and for
all V,W ∈W 1,2

0 (Ω ,v−1T M) we have∣∣∣∣ d2

dr ds |(r,s)=(0,0)
J(expv(sV + rW ))

∣∣∣∣≤Λ ‖V‖W 1,2(Ω ,v−1T M)‖W‖W 1,2(Ω ,v−1T M).

(3.8)

We now apply the Céa-Lemma to a subset of H1,2,q
K,L as defined in Proposition 1.41

endowed with the quasi-inframetric D1,2. We will see that λ -convexity (3.3) along
geodesic homotopies and quadratic boundedness (3.4) follow from ellipticity.

Lemma 3.5. Let q > max{2,d} and H be defined by (3.6). Assume that u ∈ H is a
minimizer of J : H → R w.r.t. variations along geodesic homotopies in H, and that
J is elliptic along geodesic homotopies starting in u.

For K > θ1,q,Ω (u), L ≤ inj(M), and KL ≤ 1
|Rm |∞ let W 1,q

K and H1,2,q
K,L be defined

as in Proposition 1.41, and set

HK,L := H ∩H1,2,q
K,L .

Consider a subset V ⊂ HK,L such that

w = argmin
v∈V

J(v)

exists.
Then

D1,2(u,w)≤ (1+C8)
2

√
Λ

λ
inf
v∈V

D1,2(u,v) (3.9)

holds, where D1,2 is defined as in Section 1.2.3, and C8 is the constant appearing in
Lemma 1.42.

Proof. In order to apply Lemma 3.2 we need to show that the ellipticity of J starting
in u implies convexity (3.3) with respect to D1,2 along geodesic homotopies as well
as quadratic boundedness in V .

Let v ∈ V , and let Γv denote the geodesic homotopy connecting u to v. As u is a
stationary map for J, we can write

J(v)−J(u) =
∫ 1

0

d
dt
J(Γv(t)) dt

=
∫ 1

0

d
dt
J(Γv(t)) dt−

∫ 1

0

d
dt
J(Γv(0)) dt

=
∫ 1

0

∫ t

0

d2

dt2 J(Γv(s)) ds dt
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=
∫ 1

0
(1− t)

d2

dt2 J(Γv(t)) dt.

Using the ellipticity and Lemma 1.42, we obtain the estimate

J(v)−J(u)≤Λ

∫ 1

0
(1− t)‖Γv(t)‖2

W 1,2(Ω ,Γv(·,t)−1T M) dt

≤Λ

∫ 1

0
(1− t) dt (1+C8)

2D2
1,2(u,v)

=
1
2

Λ(1+C8)
2D2

1,2(u,v),

which shows that J is quadratically bounded with respect to D1,2 and
(
Λ(1+C8)

2
)
.

In order to see the convexity, we set f (s) := J(Γv(s)). Then the ellipticity and
Lemma 1.42 imply f ∈C2([0,1],R) with

f ′′(t)≥ λ
1

(1+C8)2 D2
1,2(u,v).

Hence, we obtain

f (t)≤ (1− t) f (0)+ t f (1)− λ

2(1+C8)2 D2
1,2(u,v)

for all t ∈ [0,1], which means J is
(
λ (1+C8)

−2
)
-convex along geodesic homo-

topies.
The application of Lemma 3.2 then proves (3.9).

We can now combine this version of Céa’s lemma with the approximation error
estimates of Chapter 2 in order to obtain a discretization error bound in the restricted
space Sm

h ∩HK,L.

Theorem 3.6. Let 2k > d, q > max{2,d}, and m ≥ k− 1. Assume that u ∈ H ∩
W k,2(Ω ,M) is a minimizer of J : H→R w.r.t. variations along geodesic homotopies
in H, and that J is elliptic along geodesic homotopies starting in u.

For a conforming grid G of width h and order m (cf. Definition 2.1) set Vh := H∩
Sh. Assume that the boundary data φ is such that Vh is not empty.

Let K be a constant such that

K ≥C12θ1,q,Ω (u), (3.10)

where C12 is the constant of Proposition 2.12, and θ the smoothness descriptor
defined in Definition 1.21. Assume that h is small enough such that uI ∈HK,L, where
HK,L is defined as in Lemma 3.5.

Then the discrete minimizer

uh = argmin
vh∈Vh∩HK,L

J(vh)
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fulfills the a priori error estimate

D1,2(u,uh)≤C21hk−1
θk,2,Ω (u). (3.11)

If the error is measured in an isometric embedding ι : M→ RN , we have

‖ι ◦u− ι ◦uh‖W 1,2(Ω ,RN) ≤C hk−1
θk,2,Ω (ι ◦u)≤C hk−1‖ι ◦u‖k

k,p,Ω . (3.12)

Proof. Assumption (3.10) and h small enough imply that uI ∈ Vh∩HK,L. Thus, we
can apply Lemma 3.5 and Theorem 2.23 to obtain the estimate (3.11).

The bound (3.12) then follows from Propositions 1.43, 1.24, and 1.23.

Remark 3.7. The assumption of Theorem 3.6 that the boundary data φ can be rep-
resented exactly in Sh may be waived and replaced by a standard approximation
argument for uh interpolating smooth boundary data.

Note that Theorem 3.6 just provides a discretization error bound in the restricted
set Vh;K,L. In particular, this includes the a priori assumptions

θ1,q,Ω (uh)≤ K

dLs(u,uh)≤ L

for KL≤ 1
|Rm |∞ , q > max{2,d}, and

s :=


2q

q−2 for d = 1
4q

q−2 for d = 2
dq

q−d for d > 2.

We need to show that we indeed stay away from these a priori bounds to obtain a
true error estimate.

Theorem 3.8. Let 2k > d, k ≥ 2, and m ≥ k− 1. Assume that u ∈ H ∩W k,2(Ω ,M)
is a minimizer of J : H → R w.r.t. variations along geodesic homotopies in H, and
that J is elliptic along geodesic homotopies starting in u.

For a conforming grid G of width h and order m (cf. Definition 2.1) set Vh := H∩
Sh. Assume that the boundary data φ is such that Vh is not empty.

If h is small enough, there exists a q > max{2,d} and constants K and L, such
that the minimizer uh in Vh;K,L as in Theorem 3.6 is indeed a local minimizer in Sh
which fulfills

D1,2(u,uh)≤C22hk−1
θk,2,Ω (u). (3.13)

Measured in an isometric embedding ι : M→ RN , we have

‖ι ◦u− ι ◦uh‖W 1,2(Ω ,RN) ≤C hk−1
θk,2,Ω (ι ◦u)≤C hk−1‖ι ◦u‖k

k,p,Ω . (3.14)
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Proof. We have to show that we can choose q, K, L, and h such that we can apply
Theorem 3.6 and

θ1,q,Ω (uh)< K

dL∞(u,uh)< L

hold for the discrete solution uh.
By Proposition 1.45 and Remark 1.46 we can estimate

θ̇1,q,Ω (uh)≤ θ̇1,q,Ω (u)+C D1,q(u,uh),

dL∞(u,uh)≤C D1,q(u,uh).

Thus, if we can show that there exists a q > max{2,d} such that

D1,q(u,uh)≤C hδ

holds for the solution in the restricted set Vh;K,L for some δ > 0, the assertion fol-
lows.

Let r > max{2,d} be such that W k,2 ⊂W 1,r, i.e.,

r :=


∞ for 2(k−1)> d
4−2ε

ε
for 2(k−1) = d

2d
2−(2k−d) for 2(k−1)< d

for any small ε > 0. Note that indeed r > d in the case 2k > d > 2(k−1).
We have for all max{2,d}< q < r

D1,q(u,uh)≤ hδ−k+1D1,2(u,uh)+h
k−1−δ

µ D1,r(u,uh)

≤C hδ
θk,2,Ω (u)+C h

k−1−δ
µ θ̇k,2,Ω (u)+h

k−1−δ
µ θ̇1,r,Ω (uh),

where

µ =

(
1
2
− 1

q

)(
1
q
− 1

r

)−1

.

We can use the inverse estimate in Proposition 2.13 to get

θ̇1,r,Ω (uh)≤C h−d
(

1
q−

1
r

)
θ̇1,q,Ω (uh)≤C h−d( 1

q−
1
r ).

Thus, we obtain

D1,q(u,uh)≤C (hδ +h
k−1−δ

µ
−d
(

1
q−

1
r

)
).

As for all max{2,d}< q < r we have
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(k−1)
2q

q−2
> d,

there exists a δ > 0 such that

k−1−δ

µ
−d
(

1
q
− 1

r

)
> 0.

The assertion follows by choosing K, L and h such that the assumptions of Theo-
rem 3.6 are fulfilled, and then applying said theorem.

Remark 3.9. Note that while Theorem 3.8 looks like corresponding results for the
Euclidean case (see e.g. [Cia78]), the nonlinearity induced by the manifold is hid-
den in the smallness of the mesh size h. This corresponds to the intuition that a
Riemannian manifold behaves almost like flat space in small neighborhoods.

3.2 L2-Discretization Error Estimates

Our goal in this chapter is to show that for W 1,2-elliptic minimization problems the
L2-discretization error is in O(hk).

We recall the Aubin–Nitsche lemma for the approximation of a quadratic mini-
mization problem in H = H1

0 (Ω ,R) by standard finite elements. This means that we
consider the energy J(v) = 1

2 a(v,v)− ( f ,v), the variational equalities

u ∈ H : a(u,v) = ( f ,v) ∀v ∈ H,

uh ∈ Sh : a(uh,vh) = ( f ,vh) ∀vh ∈ Sh,

and the adjoint problem

w ∈ H : a(v,w) = (g,v) ∀v ∈ H,

where g := u− uh. We assume H2-regularity of the adjoint problem, i.e., |w|H2 ≤
C‖g‖L2 . Using Galerkin orthogonality and the H1-ellipticity of a(·, ·), we can then
estimate

‖u−uh‖2
L2 = (g,u−uh) = a(u−uh,w) = a(u−uh,w−wI)

≤Λ‖u−uh‖H1‖w−wI‖H1

≤Chk−1|u|Hk h |w|H2

≤Chk|u|H2‖u−uh‖L2 .

We want to emulate this proof for the L2-error for geodesic finite elements.
However, this proof of an L2-error estimate only works for quadratic energies

as J above, i.e., for so-called linear PDEs. Since sets of functions into a manifold
do not form a vector space, the entire concept of linear PDEs is meaningless in
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this setting. Euclidean techniques to obtain error estimates for nonlinear energies as
found in [DR80] rely on the deformation to a linear PDE and weighted norms. A
generalization of these to geodesic finite elements is desirable, in particular since
they also provide L∞-error estimates. We, however, follow our general approach to
geometrically generalize the concept of linearity rather than use a linearization. A
combination with a deformation argument in order to obtain error estimates for more
general energies is conceivable, but beyond the scope of this work.

In particular, we will assume that the energy is “predominantly quadratic”. Note
that this is still a restriction on the energy, i.e., the PDE, not on the manifold. We
mean by “predominantly quadratic” the following bound on the third variation of
the energy.

Definition 3.10. Let q > max{d,2} and J : H→R be an energy functional. We say
that J is predominantly quadratic if J is C3 along geodesic homotopies, and for any
v ∈ H ∩W 1,q

K , and vector fields U,V along v

|δ 3J(v)(U,V,V )| ≤C(K,M)‖U‖W 1,p(Ω ,v−1T M)‖V‖
2
W 1,2(Ω ,v−1T M), (3.15)

where p is such that W 2,2 ⊂W 1,p, i.e.

p :=


∞ for d = 1
ε−1 for d = 2

2d
d−2 for d > 2,

with ε > 0 arbitrarily small.

Remark 3.11. In the Euclidean case M = Rn, quadratic energies are obviously pre-
dominantly quadratic, as the third variation vanishes. As long as the coefficient func-
tions of a semi-linear PDE coming from a minimization problem are smooth enough
and bounded, the third variation of the energy will have a bound of the form

|δ 3J(v)(U,V,V )| ≤C
∫

Ω

|U |(|V |+ |∇V |)2 dx.

Thus, for d < 4 a such an energy is also predominantly quadratic.
The leading term of the third variation of the energy for a typical quasi-linear

equation, e.g., the minimal surface energy for graphs J(u) =
∫

Ω

√
1+ |Du|2 dx, has

the form

|δ 3J(v)(U,V,V )| ≤C
∫

Ω

|∇U | |∇V |2 dx.

Thus, for d = 1 such an energy is predominantly quadratic.

For a Riemannian manifold M, the harmonic energy is predominantly quadratic,
if d < 4 (see Chapter 5).

We consider the variational formulation of the problems (3.1) and (3.2)
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u ∈ H :
d
dt |t=0

J(expu(·)(tV (·))) = 0 ∀V ∈W 1,2
0 (Ω ,u−1T M), (3.16)

and

uh ∈ Sh :
d
dt |t=0

J(expuh(·)(tVh(·))) = 0 ∀Vh ∈ IV0(Ω ,u−1
h T M), (3.17)

where IV0(Ω ,u−1
h T M) is the set of all interpolating vector fields along uh as defined

in Definition 2.24 with boundary values 0. The concept of Galerkin orthogonality
can be generalized as follows.

Proposition 3.12. Let u and uh be solutions to (3.16) and (3.17), respectively, and
let Γ be the geodesic homotopy joining u and uh.
Then for the parallel transport Vh(t) along Γ of any discrete vector field Vh,1 ∈
IV (Ω ,u−1

h T M) holds ∫ 1

0
δ

2J(Γ (t))(Vh(t),Γ̇ (t)) dt = 0.

Proof. Indeed, as Vh is parallel along Γ , and u and uh fulfill (3.16) and (3.17), re-
spectively, we have∫ 1

0
δ

2J(Γ (t))(Vh(t),Γ̇ (t)) dt =
∫ 1

0

d
dt

δJ(Γ (t, ·)(Vh(t, ·))−δJ(Γ (t, ·))(∂tVh(t, ·)) dt

= δJ(uh(·))(Vh(1, ·))−δJ(u(·))(Vh(0, ·))
= 0.

We now define a generalization of the adjoint problem in this context. As the
manifold M induces a nonlinearity, we need to linearize the energy in order to obtain
a bilinear form. Let u and uh be the solutions to (3.16) and (3.17), respectively. The
resulting linearized problem is: Find (w,W ) ∈W 1,2(Ω ,T M) such that

δ
2J(w)(W,V1)+δJ(w)(V2) =−(V1, logw uh− logw u)L2(Ω ,w−1T M) (3.18)

holds for all tangent vectors (V1,V2) ∈ T(w,W )T M = (W 1,2(Ω ,w−1T M))2. This bi-
linear form, the second variation of the energy, acts on deformations of functions,
i.e. on vector fields. We therefore call it the deformation problem.

Remark 3.13. One can easily check by inserting test vector fields of the form (V1,0)
that the solution (w,W ) of (3.18) projects over the solution u of (3.1). Thus, (3.18) is
equivalent to the system consisting of (3.1) and finding W ∈W 1,2(Ω ,u−1T M) such
that

δ
2J(u)(W,V ) =−(V, logu uh)L2(Ω ,u−1T M) ∀V ∈W 1,2(Ω ,u−1T M). (3.19)

One major difference to the Euclidean setting is that if we interpolate the solution
(u,W ), we obtain a discrete vector field not along uh but along uI . In order to obtain
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a discrete vector field along uh, and thus a valid test vector field for (3.17), we need
to first transport the W to uh and then interpolate along uh.

In order to preserve bounds through this transport, we will need the following
technical estimate.

Proposition 3.14. Let q > max{d,2}, and a,b be as in Definition 1.25 for k = 2,
p = 2, i.e.,

a :=


∞ for d < 4
6 for d = 4

2d
d−4 for d > 4,

and

1
b
=

1
2
− 1

a
.

Let Γ be a geodesic homotopy such that Γ (s) ∈ H ∩W 2,b(Ω ,M). We set K1 =
maxs θ̇1,q,Ω (Γ (s)), and K2 = maxs θ̇2,b,Ω (Γ (s)).

Then there exists a constant C23 depending on K1, K2, and M such that

Θ2,2,Ω (W (1))+‖W (1)‖La(Ω ,Γ (1)−1T M)θ2,b,Ω (Γ (1))≤C23‖W (0)‖W 2,2(Ω ,Γ (0)−1T M)

(3.20)

holds for any parallel vector field W (s) ∈W 2,2(Ω ,Γ (s)−1T M).

Proof. Note that the choice of q, a, and b, allows for the following estimates

‖V‖L∞ ≤C ‖V‖W 1,q

‖V‖
W

1, 2q
q−2
≤C ‖V‖W 2,2

‖V‖La ≤C ‖V‖W 2,2 .

As W is parallel along Γ , we can use Lemma 1.42 to obtain

Θ1,2,Ω (W (1))+‖W (1)‖La(Ω ,Γ (1)−1T M)θ2,b,Ω (Γ (1))≤C ‖W (0)‖W 2,2(Ω ,Γ (0)−1T M).

We still need to estimate

Θ̇2,2,Ω (W (1)) =

(
d

∑
α=1
‖|∇αW (1)| |dα

Γ (1)|‖2
L2(Ω ,R)+ |W (1)|2W 2,2(Ω ,Γ (1)−1T M)

) 1
2

≤C ‖W (1)‖
W

1, 2q
q−2

θ̇1,q,Ω (Γ (1))+C |W (1)|W 2,2 .

The first term can be estimated using Lemma 1.42 again.
We cannot directly apply Lemma 1.42 to the last term |W (1)|W 2,2(Ω ,Γ (1)−1T M , but

as in the proof of Lemma 1.42 we can differentiate to obtain
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d
dt
|W (t)|W 2,2(Ω ,Γ (t)−1T M

≤C(M)

(
θ̇2,b,Ω (Γ (t))‖Γ̇ (t)‖L∞‖W‖La + θ̇1,q,Ω (Γ (t))‖Γ̇ (t)‖L∞‖W (t)‖

W
1, 2q

q−2

)
.

Using Lemma 1.42 and the estimates on Γ , we obtain

d
dt
|W (t)|W 2,2(Ω ,Γ (t)−1T M ≤C

(
‖W (0)‖La +‖W (0)‖

W
1, 2q

q−2

)
≤C ‖W (0)‖W 2,2 .

We insert this estimate into

|W (1)|W 2,2(Ω ,Γ (t)−1T M) = |W (0)|W 2,2(Ω ,Γ (0)−1T M)+
∫ 1

0

d
dt
|W (t)|W 2,2(Ω ,Γ (t)−1T M) dt

≤C |W (0)|W 2,2(Ω ,Γ (0)−1T M),

which yields the assertion.

We can now prove the L2-error estimate.

Theorem 3.15. Let d < 4 and the assumptions of Theorem 3.8 be fulfilled. Let ad-
ditionally J be predominantly quadratic in the sense of Definition 3.10 with respect
to q chosen as in the proof of Theorem 3.8.

Assume that the discrete solution uh fulfills on each element Th ∈ G

θ2,2,Th(uh)≤ K2 (3.21)

for a constant K2.
Finally, suppose that (3.19) is H2-regular, i.e., that the solution W fulfills

‖W‖W 2,2(Ω ,u−1T M) ≤C ‖ logu uh‖L2(Ω ,u−1T M). (3.22)

Then there exists a constant C24, such that

dL2(u,uh)≤C24 hk
θ

2
k,2,Ω (u).

Proof. We insert V := logu uh into (3.19), and obtain

d2
L2(u,uh) =−δ

2J(u)(W, logu uh),

where W is the solution of (3.19).
Let Γ denote the geodesic homotopy joining u and uh, and W (t) the parallel

transport of W along Γ . Let W (1)I be the interpolation of W (1) along uh, and let
WI(t) denote its parallel transport. Note that WI(0) is not the interpolation of W
along u.

By Proposition 3.12 we have
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d2
L2(u,uh) =−δ

2J(u)(W, logu uh)+
∫ 1

0
δ

2J(Γ (t))(WI(t),Γ̇ (t)) dt

=
∫ 1

0

∫ t

0

d
ds

δ
2J(Γ (s))(

s
t
WI(s)+(1− s

t
)W (s),Γ̇ (s)) ds dt

=
∫ 1

0

∫ t

0
δ

3J(Γ (s))(
s
t
WI(s)+(1− s

t
)W (s),Γ̇ (s),Γ̇ (s)) ds dt

+
∫ 1

0

∫ t

0

1
t

δ
2J(Γ (s))(WI(s)−W (s),Γ̇ (s)) ds dt. (3.23)

We can estimate the second integral in (3.23) using the ellipticity assumption (3.8)

∫ 1

0

∫ t

0

1
t

δ
2J(Γ (s))(WI(s)−W (s),Γ̇ (s)) ds dt

≤Λ

∫ 1

0

∫ t

0

1
t
‖WI(s)−W (s)‖W 1,2(Ω ,Γ (s)−1T M)‖Γ̇ (s)‖W 1,2(Ω ,Γ (s)−1T M) ds dt.

As the vector fields WI , W , Γ̇ are parallel along Γ , we can further estimate using
Lemma 1.42∫ 1

0

∫ t

0

1
t

δ
2J(Γ (s))(Wh(s)−W (s),Γ̇ (s)) ds dt

≤C ‖W (1)I−W (1)‖W 1,2(Ω ,u−1
h T M)‖ logu uh‖W 1,2(Ω ,u−1T M).

Corollary 2.28, Proposition 3.14, and Assumption (3.21) imply on each element
Th ∈ G

‖W (1)I−W (1)‖W 1,2(Th,u
−1
h T M)

≤C h
(

Θ2,2,Th(W (1))+‖W (1)‖L∞(Th,u
−1
h T M)θ2,2,Th(uh)

)
≤C h ‖W‖W 2,2(Th,u−1T M).

Summing over all elements and using the H2-regularity we obtain

‖W (1)I−W (1)‖W 1,2(Ω ,u−1
h T M) ≤C h ‖W‖W 2,2(Ω ,u−1T M) ≤C h dL2(u,uh).

Thus, we obtain using Theorem 3.6∫ 1

0

∫ t

0

1
t

δ
2J(Γ (s))(WI(s)−W (s),Γ̇ (s)) ds dt ≤C hk dL2(u,uh) θk,2,Ω (u).

In order to estimate the first integral term in (3.23) we use that J is predominantly
quadratic. Since p > d in Definition 3.10 we can estimate

‖τWI +(1− τ)W‖W 1,p ≤C ‖W‖W 1,p ≤C Θ2,2,Ω (W ).
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Thus we obtain using the H2-regularity of the deformation problem (3.19)

|δ 3J(Γ (s))(τWI +(1− τ)W,Γ̇ ,Γ̇ )|
≤C(K,M)‖ logu uh‖2

W 1,2 (τ‖WI‖W 1,p +(1− τ)‖W‖W 1,p)

≤C h2k−2
θ

2
k,2,Ω (u)Θ2,2,Ω (W )

≤C h2k−2
θ

2
k,2,Ω (u) dL2(u,uh).

Note that 2k−2≥ k for k ≥ 2. This yields the assertion.

Remark 3.16. Theorem 3.15 assumes (3.21), i.e., a bound on second derivatives of
the discrete solution uh. This is a strong restriction on the set of discrete functions, as
we can in generally not show convergence of the second derivatives. This restriction
can possibly be avoided by using that uh solves (3.2).

Remark 3.17. Theorem 3.15 is restricted to d < 4. This is due to the lack of an
interpolation error estimate for vector fields unless W 2,2 ⊂C0.

Assume for d ≥ 4 that there exist estimates of the form

‖W (1)I−W (1)‖W 1,2(Th,u
−1
h T M)

≤C h
(

Θ2,2,Th(W (1))+‖W (1)‖La(Th,u
−1
h T M)θ2,b,Th(uh)

)
, (3.24)

with a and b defined as in Proposition 3.14, and

‖WI‖1,p ≤C‖W‖1,p (3.25)

for p = 2d
d−2 .

Under these additional assumptions we can replace (3.21) by

θ2,b,Th(uh)≤ K2, (3.26)

and Definition 3.10 by the condition

|δ 3J(v)(U,V,V )| ≤C(K,M)‖U‖W 1,p(Ω ,v−1T M)‖V‖W 1,2(Ω ,v−1T M)‖V‖Lr(Ω ,v−1T M)

(3.27)

for v ∈H∩W 1,q
K , q > max{2,d}, p≤ r ≤ d. Note that (3.27) is again in Rn fulfilled

for semi-linear PDEs.
Using (3.27) and Lp-interpolation with ε = h then yields

|δ 3J(Γ (s))(τWI +(1− τ)W,Γ̇ ,Γ̇ )|

≤C ‖Γ̇ (0)‖W 1,2 (τ‖WI‖W 1,2 +(1− τ)‖W‖W 1,2)
(

h ‖Γ̇ (0)‖L∞ +h1− r
p ‖Γ̇ (0)‖W 1,2

)
≤C h2(k−1)+1− r

p dL2(u,uh).
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As k ≥ d
2 and d ≥ r, we have k− r

p ≥ 1. Thus, we obtain also for d ≥ 4

|δ 3J(Γ (s))(τWI +(1− τ)W,Γ̇ ,Γ̇ )| ≤C hkdL2(u,uh).

In total, if one can show (3.24) and (3.25) for example by adapting techniques from
Clément interpolation to this case, the L2-error estimate follows for arbitrary dimen-
sions. Unfortunately, this is beyond the scope of this work.

Remark 3.18. In [Gro13a, GHS14] it is proposed to replace exp and log by so-called
retraction pairs, that may lead to numerically easier implementation of geodesic fi-
nite elements. Similar to [GHS14, Theorem 5.6.], we believe that our results remain
valid for general retraction pairs as long as they fulfill the estimates on the first and
second derivatives proven in Appendix A for log.





Chapter 4
L2-Gradient Flows for W 1,2-Elliptic Energies

Let J : W 1,2(Ω ,M) 7→ (−∞,∞] be a proper W 1,2-elliptic functional (cf. Defini-
tion 3.4).
We consider the L2-gradient flow

〈u′(t),V 〉L2(Ω ,u(t)−1T M) =−
d
ds |s=0

J(expu(t)(sV )) V ∈W 1,2(Ω ,u(t)−1T M),

(4.1)

with some initial condition u(t) = u0, and Dirichlet boundary conditions on ∂Ω

(note that these single out a homotopy class; see Section 1.1.3). We assume that
there exists a solution u ∈ L2((0,T ),H2,2(Ω ,M))∩W 1,∞((0,T ),L2(Ω ,M)).

We want to approximate a solution to (4.1) by the method of time layers, i.e., we
will discretize time by an implicit Euler scheme and then approximate the resulting
time discrete problems using geodesic finite elements.

We are interested in a priori discretization error estimates in the time step width
τ and the spatial grid parameter h.

The time discretization by the implicit Euler scheme for a given partition {0 =
t0 < t1 < .. . < tM < T} with τi = ti− ti−1 leads to variational equalities of the form〈

1
τi

logU i U i−1,V
〉

L2(Ω ,(U i)−1T M)

=− d
ds |s=0

J(expU i(sV )) (4.2)

for all V ∈W 1,2(Ω ,U i;−1T M). This can be equivalently written as an energy mini-
mization problem

U i ∈W 1,2(Ω ,M) : Jτi,U i−1(V )→min,

where

Jτi,U i−1(V ) :=
1

2τi
d2

L2(V,U i−1)+J(V ). (4.3)

83
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We define the discrete solution uτ(t) by piecewise constant interpolation

uτ(t) =U i ∀t ∈ (ti−1, ti].

We then use geodesic finite elements to approximate uτ by a fully discrete solution
uτ,h.

It is well-known that solutions of (4.1) can blow up in finite or infinite time (see
e.g. [HW08, CG89, CDY92, Gro93] for the harmonic energy). In order to discretize
the problem and show a priori discretization error bounds, however, we will always
assume global existence and smoothness of the continuous solution up to some time
T . A reverse statement, i.e., that we can find such a smooth continuous solution
whenever we have a proper discrete solution, as well as numerical studies of the
behaviour of discrete solutions approaching a singularity, are of great interest but
beyond the scope of this work.

In order to analyze the discretization error of the method of time layers, we
will first look at generalized gradient flows in metric spaces. We will see that
we can use known results from this field to obtain discretization error estimates
for dL2(u(t),uτ(t)) and D1,2(u(t),uτ(t)) for every t. The theory for elliptic prob-
lems as outlined in Chapter 3 will then provide estimates for dL2(u(t),uτ,h(t)) and
D1,2(u(t),uτ,h(t)).

For simplicity we restrict ourselves to first order geodesic finite elements and
hence dimension d < 4.

4.1 Gradient Flow in Metric Spaces

In this section we will consider gradient flows in metric spaces following the expo-
sition in [AGS06]. We will restate and reprove some of the results in [AGS06] as
we need to customize them to our setting later.

Let in the following (S,d) be a complete metric space and J : S 7→ (−∞,+∞] a
proper, coercive, l.s.c. functional, i.e.,

∃v ∈ D(J),r > 0 : m := inf{J(w) : w ∈ S, d(w,v)≤ r}>−∞, (4.4)
d(un,u)→ 0 ⇒ liminf

n→∞
J(un)> J(u), (4.5)

where D(J) := {v ∈ S : J(v)< ∞} denotes the domain of J. Assume furthermore
that Jτ,w is defined by

Jτ,w(v) =
1

2τ
d2(v,w)+J(v) (4.6)

is (λ + τ−1)-convex with respect to d (cf. Definition 3.1) for every τ > 0 such that
λτ >−1.



4.1 Gradient Flow in Metric Spaces 85

Remark 4.1. If J is λ -convex along geodesics, then Jτ,w is (λ + τ−1)-convex along
geodesics if d2(w, ·) is 2-convex along geodesics, i.e., if (S,d) is nonpositively
curved. For the positively curved space of probability measures endowed with the
L2-Wasserstein metric it is shown in [AGS06] that the squared distance is 2-convex
along a class of so-called generalized geodesics that are then used instead of ordi-
nary geodesics.

In order to state the gradient flow problem in this setting we need some basic
tools from the analysis in metric spaces which can be found in [AGS06, Chapter 1]:

1. A metric version of Rademacher’s theorem states, that for any absolutely contin-
uous curve v : (a,b)→ S the limit

|v′|(t) := lim
h→0

d(v(t +h),v(t))
|h|

exists L1-almost everywhere, and

d(v(s),v(t))≤
∫ t

s
|v′|(r) dr.

2. The function g : S→ [0,+∞] is called the strong upper gradient of J if for every
absolutely continuous curve v the function g◦ v is Borel and fulfills

|J(v(t))−J(v(s))| ≤
∫ t

s
g(v(r))|v′|(r) dr.

This implies that if (g◦ v)|v′| ∈ L1(a,b), then J◦ v is absolutely continuous and

|(J◦ v)′|(t)≤ g(v(t))|v′|(t)

almost everywhere.
3. The function g is called a weak upper gradient if only the second inequality holds,

where (J◦v)′ denotes the approximate derivative if J◦v is a function of bounded
variation.

4. A canonical choice of weak upper gradient is the local slope

|∂J|(v) := limsup
w→v

(J(v)−J(w))+

d(v,w)
.

5. For any λ -convex J the local slope is also a strong upper gradient and it is lower
semi-continuous.

Definition 4.2. A curve u is of maximal slope with respect to an upper gradient g if

1
2

∫ t

s
|u′|2(r)+ |g(u(r))|2 dr ≤ J(u(s))−J(u(t))

almost everywhere with s≤ t.
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For a strong upper gradient, a curve of maximal slope fulfills the equality, i.e.,

1
2

∫ t

s
|u′|2(r)+ |∂J|2(u(r)) dr = J(u(s))−J(u(t)).

Existence of curves of maximal slope is proved in [AGS06] by showing the exis-
tence of a continuum limit of an implicit Euler scheme.

Given an initial datum u0 ∈ S, a partition Pτ = {0 = t0 < t1 < .. . < tM < T} with
τn = tn− tn−1, and an approximate initial datum U0

τ , we define recursively

Un ∈ S : Jτn,Un−1(Un)≤ Jτn,Un−1(V ) ∀V ∈ S, (4.7)

where Jτ,W is defined by (4.6). Existence and uniqueness of the Un is discussed and
affirmed if U0 ∈ D(J) and λτ > −1. A discrete solution uτ can then be defined by
piecewise constant interpolation

Uτ(t) =Un ∀t ∈ (tn−1, tn].

In this setting the following theorem was proven in [AGS06].

Theorem 4.3. Let (S,d) be a complete metric space and J : S 7→ (−∞,+∞] a proper,
coercive, l.s.c. functional, such that Jτ,w is λ -convex for some λ ∈R. Then for each
u0 ∈ D(J) there exists a unique limit

u(t) = lim
n→∞

(
Φ t

n

)n
[u0],

where Φτ [v] := argminu∈S Jτ,v(u).
Further, u is locally a Lipschitz curve of maximal slope with u(t) ∈ D(|∂J|) ⊂

D(J) for t > 0 fulfilling for λ ≥ 0 the a priori bounds

J(u(t))≤ J(v)+
1
2t

d2(v,u0) ∀v ∈ D(J)

|∂J|2(u(t))≤ |∂J|2(v)+ 1
t2 d2(v,u0) ∀v ∈ D(|∂J|).

In particular, u is the unique solution of the evolution variational inequality

1
2

d
dt

d2(u(t),v)+
1
2

λd2(u(t),v)+J(u(t))≤ J(v) L1-a.e. t > 0, ∀v ∈ D(J)

(4.8)

among the locally absolutely continuous curves such that limt→0 u(t) = u0. The cor-
responding flow operator generates a λ -contracting semigroup, i.e.,

d(u(t),v(t))≤ e−λ td(u0,v0) ∀u0,v0 ∈ D(J).

In particular, the following theorem on optimal a priori error bounds is proven in
[AGS06]:
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Theorem 4.4. Let (S,d) be a complete metric space and J : S 7→ (−∞,+∞] a proper,
coercive, l.s.c. functional, such that Jτ,w is λ -convex for some λ > 0. Let u denote the
unique solution of (4.8) and let Uτ be a discrete solution associated to a partition
Pτ = {0 = t0 < t1 < .. . < tM < T} with τ := supn τn. Define

λτ :=
log(1+λτ)

τ
.

Let t ∈ (0,T ) and let U0
τ = u0 ∈ D(J), then there exists a constant C25 such that

d2(Uτ(t),u(t))≤C25τ

(
J(u0)− inf

S
J

)
e−2λτ t . (4.9)

If u0 ∈ D(|∂J|) we have

d2(Uτ(t),u(t))≤C26
τ2

2
|∂J|2(u0)e−2λτ t . (4.10)

Note that we restricted ourselves to stating the result for λ > 0. For λ ≤ 0 similar
results can also be found in [AGS06].

The discretization scheme (4.7) is used in [AGS06] to address the existence of
the solution to the continuous problem. As we are mainly interested in error bounds
we will only review the proof of 4.4 here and simplify it by using the results of
Theorem 4.3, while in [AGS06] these actually follow from the convergence of (4.7).
Although still quite voluminous, we recapitulate the proof here in detail instead of
just citing the result, as we need to adapt it later (see Corollary 4.10).

Proof. The proof relies on a Gronwall-type argument.
Note that the Un are defined by a convex minimization problem (4.7). We can

thus estimate for any V

Jτn,Un−1(Un)≤ (1− t)Jτn,Un−1(Un)+ tJτn,Un−1(V )− 1+λτn

2τn
t(1− t)d2(Un,V )

for all t ∈ (0,1). Dividing by t and letting t→ 0 yields the variational inequality

1
2τn

(d2(Un,V )−d2(Un−1,V ))+
1
2

λd2(Un,V )≤ J(V )−Jτn,Un−1(Un). (4.11)

In order to obtain a corresponding variational inequality along the discrete solution
uτ , rather than evaluating functionals along an interpolation of the functions (U i),
the values of the functionals in R are interpolated linearly, i.e., we set

d2
τ (t;V ) :=

tn− t
τn

d2(Un−1,V )+
t− tn−1

τn
d2(Un,V ) t ∈ (tn−1, tn]

Jτ(t) :=
tn− t

τn
J(Un−1)+

t− tn−1

τn
J(Un) t ∈ (tn−1, tn].
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Using this notation, we obtain for all t ∈ (0,T )\Pτ the discrete variational inequali-
ties

1
2

d
dt

d2
τ (t)+

λ

2
d2(Un,V )+Jτ(t)−J(V )

≤ Jτ(t)−Jτn,Un−1(Un) =:
1
2

Rτ(t) ∀V ∈ D(J) (4.12)

by simply rewriting (4.11). Setting δ 2(t,s) := d2
τ (t;u(s)) we obtain from (4.8)

1
2

∂

∂ s
δ

2(t,s)+
λ

2
d2

τ (t;u(s))−Jτ(t)+J(u(s))≤ 0

and from (4.12)

1
2

∂

∂ t
δ

2(t,s)+
λ

2
d2(Un,u(s))+Jτ(t)−J(u(s))≤ 1

2
Rτ(t).

Adding these, we obtain

d
dt

δ
2(t, t)+2λδ

2(t, t)≤ Rτ(t)+λ
(
δ

2(t, t)−d2(Un,u(t))
)
.

Note that for t ∈ (tn−1, tn)

τn
(
δ

2(t, t)−d2(Un,u(t))
)

= (tn− t)
(
d2(Un−1,u(t))−d2(Un,u(t))

)
≤ (tn− t)d(Un−1,Un)

(
d(Un−1,u(t))+d(Un,u(t))

)
≤ (tn− t)d(Un−1,Un)

√
τn

t− tn−1
d(Un−1,u(t))2 +

τn

tn− t
d(Un,u(t))2

= τn

√
tn− t

t− tn−1
d(Un−1,Un)δ (t, t).

A Gronwall-type lemma [AGS06, Lemma 4.1.8] then yields for any t > 0

eλ t
δ (t, t)≤

(
d2(U0,u0)+ sup

s∈[0,t]

∫ s

0
e2λ rRτ(r) dr

) 1
2

+2
∫ t

0
λeλ sDτ(s) ds, (4.13)

where Dτ(t) = 1
2

√
tn−t

t−tn−1
d(Un−1,Un) for t ∈ (tn−1, tn]. We need to estimate the

terms appearing on the right hand sight. Note that since λτ ≤ λ we obtain analo-
gous bounds by replacing λ by λτ .

We assume from now on that U0 = u0. Furthermore, we will make the simplifi-
cation that t = tN . Inequality (4.13) then reads
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eλτ tN d2(UN ,u(tN))≤

(
sup

s∈[0,tN ]

∫ s

0
e2λτ rRτ(r) dr

) 1
2

+2
∫ tN

0
λeλτ sDτ(s) ds, (4.14)

Recalling the definition of Rτ , we can write for t ∈ (tn−1, tn]

Rτ(t) = 2(Jτ(t)−Jτn,Un−1(Un))

= 2
tn− t

τn

(
J(Un−1)−J(Un)− d2(Un,Un−1)

2τn

)
− t− tn−1

τ2
n

d2(Un,Un−1).

As

J(Un−1)−J(Un)− d2(Un,Un−1)

2τn
= Jτ,Un−1(Un−1)−Jτn,Un−1(Un)≥ 0,

we can estimate∫ tn

tn−1
e2λτ rRτ(r) dr ≤ e2λτ tn

∫ tn

tn−1
(Rτ(r))+ dr (4.15)

≤ τne2λτ tn

(
J(Un−1)−J(Un)− d2(Un,Un−1)

2τn

)
.

Note further that since J is l.s.c. and convex, we have for any u,v ∈ S

J(u)−J(v)≤ |∂J|(u)d(u,v)− λ

2
d2(u,v)≤ 1

2λ
|∂J|2(u), (4.16)

and thus

J(u)− inf
v∈S

J(v)≤ 1
2λ
|∂J|2(u).

Since Un minimizes Jτ,Un−1 , we can estimate for any V ∈ S

J(Un)−J(V )≤ 1
2τ

(
d2(V,Un−1)−d2(Un,Un−1)

)
≤ 1

2τ
d(V,Un)

(
d(V,Un−1)+d(Un,Un−1)

)
.

Dividing by d(V,Un) and letting V →Un, we obtain the slope estimate

|∂J|(Un)≤ d(Un,Un−1)

τ
.

Combining this with (4.16) yields

d2(Un,Un−1)

τ2 ≥ |∂J|2(Un)≥ 2λ

(
J(Un)− inf

v∈S
J(v)

)
. (4.17)
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We rescale J to have

inf
v∈S

J(v) = 0.

Inserting (4.17) into (4.15) yields∫ tn

tn−1
e2λτ rRτ(r) dr ≤ τne2λτ tn

(
J(Un−1)− (1+λτn)J(Un)

)
. (4.18)

The convexity of Jtn,Un−1 implies for the minimizer Un that

0≥
(

λ

2
+

1
τ

)
td2(Un,Un−1)+J(Un)−J(Un−1)

for all t ∈ (0,1). Letting t→ 1 yields(
λ

2
+

1
τ

)
d2(Un−1,Un)−J(Un−1)+J(Un)≤ 0. (4.19)

Combining this with (4.17) yields

J(Un−1)−J(Un)

τn
≥
(

1+
λτn

2

)
|∂J|2(Un)≥ 2λ

(
1+

λτn

2

)
J(Un),

and thus

J(Un−1)≥ (1+λτ)2J(Un).

By concavity of the logarithm, we have

1
1+λτn

≤ e−λτ τn . (4.20)

This implies

e2λτ tn
J(Un)≤ e2λτ tn−2λτ τnJ(Un−1) = e2λτ tn−1

J(Un−1).

Using this we estimate

∫ tn

tn−1
e2λτ rRτ(r) dr

≤ τne2λτ tn(1+λτn)

(
λτ

(1+λτn)2 J(U
n−1)+

1
(1+λτn)2 J(U

n−1)−J(Un)

)
≤ τn(1+λτn)

(
λτne2λτ tn−1J(Un−1)+ e2λτ tn−1J(Un−1)− e2λτ tnJ(Un)

)
≤ τn(1+λτn)

(
λτnJ(U0)+ e2λτ tn−1J(Un−1)− e2λτ tnJ(Un)

)
.
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Summing up, we obtain∫ tN

0
e2λτ rRτ(r) dr ≤ τ(1+λτ)

(
(1+λ tN)J(U0)− e2λτ tNJ(UN)

)
≤ τ(1+λτ)(1+λ tN)J(U0). (4.21)

For the second integral term in (4.14) note, that

2
∫ tn

tn−1

eλτ rDτ(r) dr = d(Un−1,Un)
∫ tn

tn−1

eλτ r
√

tn− r
r− tn−1

dr ≤ π

2
eλτ tnτd(Un−1,Un).

Summing up, we obtain

2
∫ tN

0
eλτ rDτ(r) dr ≤ τ

π

2

N

∑
n=1

eλτ tnd(Un−1,Un)

≤ τ
π

2

√
N

(
N

∑
n=1

e2λτ tnd2(Un−1,Un)

) 1
2

.

By (4.19) and (4.17), we can estimate

1+λτn

2τn
d2(Un−1,Un)≤ Jτ,Un−1(Un−1)−Jτ,Un−1(Un)≤ J(Un−1)− (1+λτn)J(Un).

Inserting yields

2
∫ tN

0
eλτ rDτ(r) dr ≤ τ

π

2

(
2N

1+λτ

N

∑
n=1

τne2λτ tn
(
J(Un−1)− (1+λτn)J(Un)

)) 1
2

.

As in (4.21) we can estimate

2
∫ tN

0
eλτ rDτ(r) dr ≤ τ

π

2
(
2tN(1+λ tN)J(U0)

) 1
2 . (4.22)

Combing (4.14) with (4.21) and (4.22) yields (4.9) for t = tN . We omit the proof for
general t ∈ (0,T ), which can also be found in [AGS06].

To obtain (4.10), note that if U0 ∈ D(|∂J|), we can estimate from (4.15) using
(4.17), (4.16), and (4.20)
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tn−1
e2λτ rRτ(r) dr

≤ τne2λτ tn(J(Un−1)−J(Un)− d2(Un,Un−1)

2τn
)

≤ τ2
n

2
e2λτ tn

(
1

λτn
|∂J|2(Un−1)−|∂J|2(Un)

)
≤ τ2

n

2

(
λτe−2λτ tn−1 |∂J|2(Un−1)+ e2λτ tn−1 |∂J|2(Un−1)− e2λτ tn |∂J|2(Un)

)
instead of (4.18). Proceeding as before, we then obtain∫ tN

0
e2λτ rRτ(r) dr ≤ τ2

2
|∂J|2(U0)(1+λ tN) (4.23)

instead of (4.21). Analogously, we obtain

2
∫ tN

0
eλτ rDτ(r) dr ≤ π

2
τ

(
Nτ

2 1+λ tN
1+λτ

|∂J|2(U0)

)
1
2
≤ π

2
tNτ|∂J|(U0).

instead of (4.22) as 1+λ tN
1+λτ

≤ tN
τ

. This concludes the proof of Theorem 4.4.

4.2 Time Discretization

In the context of gradient flows on Riemannian manifolds, i.e., Problem (4.1), we
want to use Theorem 4.3 in order to obtain error estimates for the time discretized
solution.

First, we need to choose the correct metric space to work in.

Proposition 4.5. Let M be complete and q > d. Set H =W 1,q
K;φ (Ω ,M). Then (H,dL2)

is a complete metric space.

Proof. By the Rellich–Kondrachov compactness theorem W 1,q
K;φ (Ω ,RN) with dL2(Ω ,RN)

is a complete metric space. Since M is complete, (H,dL2) inherits this property.

Remark 4.6. We will assume that J is W 1,2-elliptic and bounded from below. Note
that these are stronger assumptions than (4.4) and (4.5). In particular the W 1,2-
ellipticity of J implies strong L2-convexity along geodesics by the Poincaré inequal-
ity, i.e.

J(Γ (t))≤ (1− t)J(Γ (0))+ tJ(Γ (1))− λ

2C2(Ω)
t(1− t)d2

L2(Γ (0),Γ (1)).

The convexity of Jτ,w depends not only the convexity of J but also on the convex-
ity of the distance dL2 . In view of Remark 4.1, dL2 is 2-convex if M has non-positive
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curvature. In this case Jτ,w is (λ̃ + τ−1)-convex along geodesic homotopies with
respect to dL2 , where λ̃ = λ

C2(Ω) .
In general, we can discuss convexity of the energy functionals with respect to

three different notions, namely L2-convexity, W 1,2-convexity and a mixed W 1,2–L2-
convexity.

Definition 4.7. We say that an energy functional J : H → R is (λ1,λ2)-W 1,2–L2-
convex along a curve Γ : [0,1] 7→ H if

J(Γ (t))≤ (1− t)J(Γ (0))+ tJ(Γ (1))

− 1
2

t(1− t)
(
λ1D2

1,2(Γ (0),Γ (1))+λ2d2
L2(Γ (0),Γ (1))

)
∀t ∈ [0,1],

where D1,2 is defined in Section 1.2.3.

Proposition 4.8. Let the sectional curvature of M be bounded from above by k0 <
1

C2
. Set H =W 1,q

K;φ (Ω ,M) and assume that J is W 1,2-elliptic.

Then Jτ,w(v) as defined by (4.3) is (λ , 1−C2k0
C2τ

)-W 1,2–L2-convex along geodesic ho-

motopies. In particular, this implies λ -W 1,2-convexity and λτ+1−C2k0
C2τ

-L2-convexity.

Proof. Let w,v0,v1 ∈ D(J). Let Γ : [0,1] 7→ H denote a constant speed geodesic
homotopy with Γ (0) = v0 and Γ (1) = v1. Let furthermore α(s, ·) be a constant
speed geodesic homotopy with α(s,0) = Γ (s) and α(s,1) = w. Then

d
ds

1
2

d2
L2(Γ (s),w) =

∫
Ω

〈∂tα(s,0),∇s∂tα(s,0)〉 dx,

and

d2

ds2
1
2

d2
L2(Γ (s),w)

=
∫

Ω

|∇s∂tα(s,0)|2 dx−
∫

Ω

Rm(∂tα(s,0),∂sα(s,0),∂sα(s,0),∂tα(s,0)) dx

≥
∫

Ω

|∇s∂tα(s,0)|2 dx− k0

∫
Ω

|∂tα(s,0)| |∂sα(s,0)| dx.

If k0 ≤ 0, then this shows convexity of d2
L2 . If 0 ≤ k0, we estimate for ε > 0 and

r ∈ [0,1]

d2

ds2
1
2

d2(Γ (s),w)≥
(

r− εk0C2

C2

)
‖Γ̇ ‖2

L2 +

(
1− r
C2
− k0

4ε

)
d2

L2(Γ (s),w).

Choosing ε = 1
2 and r = 1− k0C2

2 implies
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r− εk0C2

C2
=

1
C2
− k0 > 0

1− r
C2
− k0

4ε
= 0,

which yields the assertion.

Remark 4.9. Note that the results of [AGS06] as described in Section 4.1 are also
true for convexity along non-geodesic curves. This is even used in [AGS06] for
metric spaces with concave distances. In view of the upper and lower curvature
bounds we already used for the elliptic theory in Chapter 3, we will not generalize
in this direction.

We can now state the following corollary of Theorem 4.3.

Corollary 4.10. Let the sectional curvature of M be bounded from above by k0 <
1

C2
.

Set H =W 1,q
K;φ (Ω ,M) and assume that J is W 1,2-elliptic and bounded from below.

For u0 ∈D(|∂J|), let u∈ L2((0,T ),H)∩W 1,∞((0,T ),L2(Ω ,M)) be a solution (4.1).
For a given partition Pτ = {0 = t0 < t1 < .. . < tM < T} with τ = tn− tn−1 we set
U0 = u0 and define recursively

Un = argmin
V∈H

Jτ,Un−1(V ).

Then there exist constants C27 and C28 such that for tn ∈ Pτ

dL2(u(tn),Un)≤C27 τ, (4.24)

D1,2(u(tn),Un)≤C28
√

τ. (4.25)

Proof. In view of Remark 4.6 and Proposition 4.8 we can apply Theorem 4.4 di-
rectly to obtain (4.24) if M has non-positive curvature.

For positive, bounded curvature, we can repeat the proof for Theorem 4.4 with
the λτ+1−C2k0

C2τ
-L2-convexity of Jτ,w. The constant C27 will then depend on C2

1−k0C2
.

Using W 1,2-ellipticity rather than L2-convexity we can obtain (4.25). For this let
Γ be the geodesic homotopy connecting u(tn) to Un. Then

λD2
1,2(u(tn),U

n)≤
∫ 1

0
δ

2J(Γ (s))(Γ̇ (s),Γ̇ (s)) ds

=
∫ 1

0

d
ds

δJ(Γ (s))(Γ̇ (s)) ds

= δJ(u(tn))(logu(tn)U
n)+δJ(Un)(logUn u(tn))

= (−u′(t), logu(tn)U
n)L2 +(

1
τ

logUn Un−1, logUn u(tn))L2

≤
(
‖u′(t)‖L2 +

1
τ

dL2(Un,Un−1)

)
dL2(u(tn),Un)
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≤
(
‖u′(t)‖L2 +

1
τ
(dL2(u(tn),u(tn−1))+2C27τ))

)
dL2(u(tn),Un).

Using (4.24), we obtain (4.25), where the constant C28 depends on C27 and the
Lipschitz constant of u.

4.3 Space Discretization

Let H =W 1,q
K;φ (Ω ,M) with q and K as in the proof of Theorem 3.8. Let W ∈ H. We

use first order geodesic finite elements as space discretization for the problem

wτ = argmin
v∈H

Jτ,W (v). (4.26)

This leads to the discrete problems

wτ,h = argmin
vh∈V h

Jτ,W (vh), (4.27)

where V h = H ∩Sh.
If we assume that M fulfills curvature bounds, we can show that Jτ,W is elliptic,

i.e., that it fulfills (3.7) and (3.8). We have seen (3.7) already in Proposition 4.8. In
particular, we have observed that a mixed error measure of the form D2

1,2 + τ−1d2
L2

is natural to the energy Jτ,W .

Proposition 4.11. Let k0,k1 ≥ 0 such that the sectional curvature of M is bounded
from above by k0, and from below by −k1. Assume that k0 < 1

C(Ω) , where C(Ω)

denotes the constant in Poincaré’s inequality.
If J is W 1,2-elliptic with constants λ and Λ , then there exist constants C(k0) and

C(k1) such that Jτ,W fulfills

λ‖Γ̇ ‖2
W 1,2 +C(k0)τ

−1‖Γ̇ ‖2
L2 ≤

d2

ds2 Jτ,w(Γ (s))≤Λ‖Γ̇ ‖2
W 1,2 +C(k1)τ

−1‖Γ̇ ‖2
L2 .

(4.28)

Proof. The result follows directly from Definitions 1.1 and 3.4.

We could indeed infer the W 1,2-ellipticity of Jτ,W from Proposition 4.11 by
using Poincaré’s inequality. However, this would lead to an upper ellipticity con-
stant degenerating with smaller τ , while the ellipticity constants min{λ ,C(k0)} and
max{Λ ,C(k1)} for the mixed norm ‖ · ‖2

W 1,2 + τ−1‖ · ‖2
L2 are independent of τ .

We can obtain optimal error estimates under the additional assumption that h2 ≤
κτ for some κ sufficiently small. This essentially uses the fact that we gain an
additional order of h in the L2-error that compensates for the τ−1-weight of this
term.
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Lemma 4.12. Assume that d < 4 and let J : H→R be an W 1,2-elliptic energy func-
tional. Let wτ ∈ H ∩W 2,2(Ω ,M) be a solution to (4.26).

For a conforming grid G of width h and order m = 1 (cf. Definition 2.1), set
Vh := H ∩Sh, and let wτ,h be a solution of (4.27).

Under the assumptions of this section and h2 ≤ κτ , we have

dL2(Wτ ,Wτ,h)≤C
(
τ + h2)

D1,2(Wτ ,Wτ,h)≤C
(√

τ + h
)
.

Proof. We can use the mixed error measure D2
1,2 + τ−1d2

L2 in the Céa lemma. In
particular, for the solutions wτ and wτ,h of (4.26) and (4.27) we obtain the estimate

D2
1,2(wτ ,wτ,h)+ τ

−1d2
L2(wτ ,wτ,h)≤C

(
D2

1,2(wτ ,wτ,I)+ τ
−1d2

L2(wτ ,wτ,I)
)

≤C (h2 + τ
−1h4).

The assertion follows.

4.4 Discretization Error Estimate

We will now discuss the error estimate for the fully discrete time layer scheme
consisting of the implicit Euler method and geodesic finite elements.

The fully discrete scheme is given by

Un
τ,h = argmin

vh∈V h
J

τn,Un−1
τ,h

. (4.29)

Theorem 4.13. Let d < 4, M be complete with bounded curvature, J be W 1,2-
elliptic, and suppose that for any W ∈ H and τ there exist a minimizer of Jτ,W ,
that has a bounded smoothness descriptor θ2,2,Ω independent of τ .

For a conforming grid G of width h and order m = 1, set Vh := H ∩Sh.
Let Pτ = {0 = t0 < t1 < .. . < tM < T} be a uniform partition of (0,T ) with

τ = tn− tn−1 and h2 ≤ κτ .
Given u0 ∈ D(|∂J|), let u ∈ L2((0,T ),H2,2(Ω ,M))∩W 1,∞((0,T ),L2(Ω ,M)) be

a solution (4.1), and let Un
τ,h be defined by (4.29).

Then there exists a constant C29 such that for tn ∈ Pτ

dL2(u(tn),Un
τ,h)≤C29 (τ +h2) (4.30)

D1,2(u(tn),Un
τ,h)≤C29(

√
τ +h). (4.31)

Proof. In order to obtain an error estimate for the fully discrete scheme, we intro-
duce the following two semi-discrete schemes.

Given U0 = u0, we define
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Un
τ = argmin

V∈H
J

τ,Un−1
τ

(V ), (4.32)

and given Un−1
τ,h ∈Vh, we define

V n = argmin
V∈H

J
τ,Un−1

τ,h
(V ).

Lemma 4.12 implies

D2
1,2(V

n,Un
τ,h)+ τ

−1d2
L2(V n,Un

τ,h)≤C (h2 + τ
−1h4),

and using the condition h2 ≤ κτ , we thus obtain consistency

dL2(V n,Un
τ,h)≤C

√
τh, (4.33)

D1,2(V n,Un
τ,h)≤C h. (4.34)

We now compare V n and Un
τ . First note that if W,V ∈ H and Wτ ∈ H denotes the

minimizer of Jτ,W , the W 1,2–L2-convexity shown in Proposition 4.8 yields

Jτ,W (Wτ)≤ (1− t)Jτ,W (Wτ)+ tJτ,W (V )− λ̃

2
t(1− t)

(
D2

1,2(V,Wτ)+ τ
−1d2

L2(V,Wτ)
)
.

Rearranging, dividing by t, and then letting t→ 0 we obtain

λ̃

2
(
D2

1,2(V,Wτ)+ τ
−1d2

L2(V,Wτ)
)
≤ J(V )−J(Wτ)+

1
2τ

(
d2

L2(W,V )−d2
L2(W,Wτ)

)
for all V ∈H. As V n and Un

τ are minimizers of J
τ,Un−1

τ
and J

τ,Un−1
τ,h

, respectively, we

obtain the estimates

λ̃

2
(
D2

1,2(V,V
n)+ τ

−1d2
L2(V,V n)

)
≤ J(V )−J(V n)+

1
2τ

(
d2

L2(Un−1
τ,h ,V )−d2

L2(Un−1
τ,h ,V n)

)
∀V ∈ H,

and

λ̃

2
(
D2

1,2(V,U
n
τ )+ τ

−1d2
L2(V,Un

τ )
)

≤ J(V )−J(Un
τ )+

1
2τ

(
d2

L2(Un−1
τ ,V )−d2

L2(Un−1
τ ,Un

τ )
)

∀V ∈ H.

Inserting V n as test function for Un
τ and vice versa, we obtain
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λ̃
(
D2

1,2(U
n
τ ,V

n)+ τ
−1d2

L2(Un
τ ,V

n)
)

≤ 1
2τ

(
d2

L2(Un−1
τ,h ,Un

τ )−d2
L2(Un−1

τ,h ,V n)+d2
L2(Un−1

τ ,V n)−d2
L2(Un−1

τ ,Un
τ )
)

≤ τ
−1 dL2(Un

τ ,V
n) dL2(Un−1

τ ,V n−1).

Young’s inequality implies

D2
1,2(U

n
τ ,V

n)+ τ
−1d2

L2(Un
τ ,V

n)≤Cτ
−1dL2(Un−1

τ ,Un−1
τ,h ). (4.35)

Combining the (approximate) triangle inequalities for dL2 and D1,2 with (4.33),
(4.34), and (4.35) yields

dL2(Un
τ ,U

n
τ,h)≤ dL2(Un

τ ,V
n)+dL2(V n,Un

τ,h)≤C dL2(Un−1
τ ,Un−1

τ,h )+C
√

τh,

and

D1,2(Un
τ ,U

n
τ,h)≤C D1,2(Un

τ ,V
n)+C D1,2(V n,Un

τ,h)≤C τ
− 1

2 dL2(Un−1
τ ,Un−1

τ,h )+C h.

Assuming that U0
τ,h is the GFE interpolation of U0

τ , we have

dL2(U0
τ ,U

0
τ,h)≤C h2,

and thus, using again h2 ≤ κτ ,

dL2(Un
τ ,U

n
τ,h)≤C h2 +C τ

D1,2(Un
τ ,U

n
τ,h)≤C h+C

√
τ.

Combining these estimates with Corollary 4.10, we obtain

dL2(u(tn),Un
τ,h)≤ dL2(u(tn),Un

τ )+dL2(Un
τ ,U

n
τ,h)≤C (h2 + τ)

D1,2(u(tn),Un
τ,h)≤C

(
D1,2(u(tn),Un

τ )+D1,2(Un
τ ,U

n
τ,h)
)
≤C h+C

√
τ.



Chapter 5
Example: Harmonic Maps

In the study of discretization error bounds for geodesic finite elements in Chapters 3
and 4, we have made some fairly strong assumptions on the problem. In this section
we will illustrate the results of these chapters by applying them to the minimization
of the harmonic energy. In particular, we will show that under certain assumptions
on the manifold, the harmonic energy fulfills the assumptions of Theorems 3.6,
3.15, and 4.13, such that we obtain a priori discretization error bounds.
The study of more general energies is left to future work.

Let Ω ⊂ Rd be a bounded domain with ∂Ω be in C2 and (M,g) a smooth Rie-
mannian manifold. We discretize Ω by a grid G of width h and order m (cf. Def-
inition 2.1). Let φ : ∂Ω → M be continuous. For simplicity we assume that φ can
be attained exactly by mth order geodesic finite elements. This restriction can be
waived by suitable approximation arguments. For q > max(2,d), we set

W 1,q
K;φ :=

{
v ∈W 1,q(Ω ,M) : θ1,q,Ω (v)≤ K, v|∂Ω = φ

}
. (5.1)

We study the harmonic energy J : W 1,2(Ω ,M)→ R defined by

J(v) :=
1
2

∫
Ω

|∇u(x)|2g(u(x)) dx (5.2)

=
1
2

d

∑
α=1

∫
Ω

gi j(u(x))
∂ui

∂xα
(x)

∂u j

∂xα
(x) dx.

The theory of stationary points of this energy, so-called harmonic maps, is well-
developed (see e.g. [EL78, EL88, Jos08]). The corresponding L2-gradient flow has
been studied, e.g., in [Str85, ES64, Har67, CG89, CDY92, Gro93]. A more recently
published survey can be found in [HW08].

The harmonic energy has been studied numerically using geodesic finite ele-
ments in [San12] and [San13]. Other discretization methods have been employed in
[BP07, Bar10, Alo97, LL89].

99
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5.1 W 1,2-Discretization Error Bounds

The harmonic energy can be viewed as the standard example for an elliptic energy.
As such it has also served as an example in [GHS14] and the content of this section
can also be found there.

Lemma 5.1. Let q > max{2,d}, W 1,q
K;φ be defined by (5.1), and J : W 1,2(Ω ,M)→R

be defined by (5.2). Assume that either M has nonpositive sectional curvature, or
that

1−K2‖Rm‖gC1(q,Ω)2 > 0 (5.3)

holds, where C1(q,Ω) denotes the Sobolev constant for the embedding W 1,2(Ω) ⊂
L

2q
q−2 (Ω).

Then J is elliptic in the sense of Definition 3.4 along geodesic homotopies in W 1,q
K;φ .

Proof. The following calculations are standard (see e.g. [EL78, Jos08]).
Let u ∈ W 1,q

K;φ , and let Γ : (−1,1) → W 1,q
K;φ denote a geodesic homotopy with

Γ (0) = u, i.e.,

Γ (t,x) = expu(x)(tV (x)),

where V ∈W 1,q
0 (Ω ,u−1T M).

We calculate the first variation of J along Γ

δJ(u)(V ) =
d
dt

1
2

∫
Ω

|∇Γ (t,x)|2g(Γ (t,x)) dx|t=0

=
∫

Ω

〈∇xu,∇xV 〉g(u(x)) dx.

Let c : [−1,1]2 →W 1,q
K;φ denote a family of curves, such that c(t, ·), and c(s, ·) are

geodesic homotopies for each t and s, and c(0,0) = u, i.e.,

c(t,s) = expu(x)(tV (x)+ sW (x)),

where V,W ∈W 1,q
0 (Ω ,u−1T M). We calculate the second variation of J

δ
2J(u)(V,W )

=
d2

dsdt
1
2

∫
Ω

|∇c(t,s,x)|2g(c(t,s,x)) dx|(t,s)=(0,0)

=
d
ds

∫
Ω

〈∇xc(t,s,x),∇x∇tc(t,s,x)〉g(c(t,s,x)) dx|(t,s)=(0,0)

=
∫

Ω

〈∇x∇sc(t,s,x),∇x∇tc(t,s,x)〉g(c(t,s,x)) dx|(t,s)=(0,0)

−
∫

Ω

〈∇xc(t,s,x),R(∇xc(t,s,x),∇sc(t,s,x))∇tc(t,s,x)〉g(c(t,s,x)) dx|(t,s)=(0,0)
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=
∫

Ω

〈∇xW (x),∇xV (x)〉g(u(x)) dx

−
∫

Ω

〈∇xu(x),R(∇xu(x),W (x))V (x)〉g(u(x)) dx.

Using Hölder’s inequality and the Sobolev embedding theorem, we can easily see
that J fulfills (3.8) with Λ = 1+K2‖Rm‖gC1(q,Ω)2. If M has nonpositive sectional
curvature, the curvature term has a sign, so that we obtain (3.7) with λ depending on
the Poincaré constant C2 of the domain Ω given by λ = 1

C2
2

. Otherwise, we obtain

(3.7) analogously to (3.8) with λ = 1
C2

2

(
1−K2‖Rm‖gC2

2C1(q,Ω)2
)
> 0. Thus, J is

indeed elliptic.

Remark 5.2. Note that under the curvature assumptions on M of Lemma 5.1, sta-
tionary points of J are indeed stable critical points. The assumed upper bound for
positive curvature is fairly strong and may be weakened.

The discretization error bounds presented in Chapter 3 always assume existence
of solutions with a certain regularity. The topic of existence and regularity of har-
monic maps is extensively studied in the literature. For an overview see for example
[EL78, EL88, HW08]. In particular, we have the following.

Lemma 5.3. A harmonic map u : Ω → M with continuous boundary data φ is in
C∞, if either M has nonpositive sectional curvature, or if d ∈ {1,2}, or if the image
of φ is contained in a geodesically convex ball.

We can now prove the following convergence theorem for the discretization of
harmonic maps by geodesic finite elements.

Theorem 5.4. Let u be a local minimizer of the harmonic energy J on W 1,2
φ

(Ω ,M),
where M has either nonpositive sectional curvature, or (5.3) holds. If M does not
have nonpositive sectional curvature, we additionally assume that either d ∈ {1,2},
or that φ(Ω) is contained in a geodesically convex ball.

For m ≥ 1 fulfilling 2(m+ 1) > d let G be a conforming grid of width h and
order m.

If h is small enough, there exists a local minimizer uh of J in Sh subject to the
boundary condition fulfilling

D1,2(u,uh)≤C hm
θm+1,2,Ω (u). (5.4)

Measured in an isometric embedding ι : M→ RN , we have

‖ι ◦u− ι ◦uh‖W 1,2(Ω ,RN) ≤C hm
θm+1,2,Ω (ι ◦u)≤C hm‖ι ◦u‖m+1

m+1,p,Ω . (5.5)

Proof. As u is smooth by Lemma 5.3, we can apply Theorem 3.8 with k = m+ 1.

Remark 5.5. In [San12], Theorem 5.4 is numerically confirmed for a test case with
M = S2, d = 3, and m = 1. Note that the assumptions of Lemma 5.3 did not hold
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there. Higher order geodesic finite elements have been studied in [San13]. Theo-
rem 5.4 is numerically confirmed for a test case with M = S2, d = 2, and m ∈ 1,2,3.

5.2 L2-Discretization Error Bounds

The harmonic energy for functions into Rn is the prototypic example of a quadratic
energy and thus of a linear second order PDE. We now want to show that it fulfills
all the assumptions of Theorem 3.15 for a certain class of manifolds M. Note that
Theorem 3.15 is only valid for d < 4. In view of Remark 3.17, we consider the
case d ≥ 4 for the technical prerequisites although they do not lead to an L2-error
estimate as long as there is no suitable interpolation theory for W 2,2-vector fields in
this case.

In Section 3.2, we restricted ourselves to predominantly quadratic energy func-
tionals (cf. Definition 3.10). The harmonic energy belongs to this group.

Lemma 5.6. Let q > max{2,d}, and let W 1,q
K;φ be defined by (5.1). Consider the har-

monic energy J : W 1,2(Ω ,M)→ R defined by (5.2). Assume that Rm and ∇Rm of
M are bounded.

Then, if d < 4, J is predominantly quadratic in the sense of Definition 3.10 on
W 1,q

K;φ . If d ≥ 4, J fulfills (3.27) on W 1,q
K;φ .

Proof. We need to consider third variations of J. Let c : [−1,1]3→W 1,q
K;φ denote a

family of curves defined by

c(t,s,r) = expu(x)(tU(x)+ sV (x)+ rW (x)),

where U,V,W ∈W 1,∞
0 (Ω ,u−1T M). We calculate

δ
3J(u)(U,V,W )

=
d3

drdsdt
1
2

∫
Ω

|∇c(t,s,r,x)|2g(c(t,s,r,x)) dx|(t,s,r)=(0,0,0)

=
∫

Ω

〈∇r∇x∇tc(t,s,r,x),∇x∇sc(t,s,r,x)〉g(c(t,s,r,x)) dx|(t,s,r)=(0,0,0)

+
∫

Ω

〈∇x∇tc(t,s,r,x),∇r∇x∇sc(t,s,r,x)〉g(c(t,s,r,x)) dx|(t,s,r)=(0,0,0)

+
∫

Ω

〈∇s∇x∇tc(t,s,r,x),∇x∇rc(t,s,r,x)〉g(c(t,s,r,x)) dx|(t,s,r)=(0,0,0)

+
∫

Ω

〈∇r∇s∇x∇tc(t,s,r,x),∇xc(t,s,r,x)〉g(c(t,s,r,x)) dx|(t,s,r)=(0,0,0)
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=
∫

Ω

Rm(W,du,U,∇V ) dx+
∫

Ω

Rm(W,du,V,∇U) dx

+
∫

Ω

Rm(V,du,U,∇W ) dx+
∫

Ω

Rm(V,∇W,U,du) dx

−
∫

Ω

∇Rm(du,V,U,du,W ) dx.

For W =V and using the bounds on Rm and ∇Rm, we obtain

|δ 3J(u)(U,V,V )|

≤C
(∫

Ω

|du|2 |U | |V |2 dx+
∫

Ω

|du| |∇U | |V |2 dx+
∫

Ω

|du| |∇V | |U | |V | dx
)
.

Let p be defined as in Definition 3.10. For d < 4, set r = p, for d ≥ 4 set r = d.
Then we can estimate using Hölder’s inequality and the W 1,q-bound on u

|δ 3J(u)(U,V,V )| ≤C‖U‖W 1,p‖V‖W 1,2‖V‖Lr .

This implies the assertion.

We also need to show H2-regularity of the solution W ∈W 1,2
0 (Ω ,u−1T M) of the

deformation problem∫
Ω

〈∇W,∇V 〉 dx =
∫

Ω

Rm(du,W,V,du)−〈V,U〉 dx ∀V ∈W 1,2
0 (Ω ,u−1T M),

(5.6)

where U ∈ L∞(Ω ,u−1T M).

Lemma 5.7. Let q > max{2,d} and W 1,q
K;φ be defined by (5.1). Assume that Rm of M

is bounded, and let u ∈W 1,q
K;φ ∩W 2,2(Ω ,M) be a harmonic map.

Then the deformation problem (5.6) is H2-regular in the sense of (3.22).

The proof is discussed in Appendix B. We need also to show that the discrete
minimizer uh of J in Sh fulfills the a priori bound (3.21). We restrict ourselves to
certain cases that are easy to show.

Proposition 5.8. Let m ≥ 1 and 2(m+ 1) > d. If d = 1, set m = 1. Define b as in
Lemma 3.14 as

b =


2 for d < 4
3 for d = 4
d
2 for d > 4,

and let q > max{2,d} fulfill q≥ 2b.
If d > 1, we pose the additional assumption on the grid G on Ω that F−1

h : T → Th
scales with order 2 for all elements Th.
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For v ∈C∞(Ω ,M), and vh ∈ Sh ∩W 1,q
K with dLs(vh,v) ≤ L, where s is defined as in

Proposition 1.41, we assume the relation

D1,2(v,vh)≤Chm
θm+1,2,Ω (u). (5.7)

Then there exists a constant K2 depending on v and K but independent of h such that

θ2,b,Th(vh)≤ K2

on every element Th ∈ G.

Proof. As b≤ q it is enough to estimate θ̇2,b,Th(vh).
For d = m = 1 the estimate is trivial as θ̇2,2,Th(vh) = θ̇ 2

1,4,Th
(vh)≤ K2 (cf. Exam-

ple 2.10).
For d > 1, we use Proposition 2.14 and 2b≤ q to estimate

θ̇2,b,Th(vh)≤C θ̇
2
1,2b,Th

(vh)+C h−1−d( 1
2−

1
b )θ̇1,2,Th(vh)

≤C K2 +C h−1−d( 1
2−

1
b )θ̇1,2,Th(vh).

We apply Proposition 1.45 to estimate

h−1−d( 1
2−

1
b )θ̇1,2,Th(vh)≤C h−1−d( 1

2−
1
b )θ̇1,2,Th(v)+C h−1−d( 1

2−
1
b )D1,2(v,vh)

≤C h−1−d( 1
2−

1
b )θ̇1,∞,Th(v)|Th|

1
2 +C h−1−d( 1

2−
1
b )D1,2(v,vh).

Note that the elements of the grid scale with |Th| ∼ hd . Using this and assumption
(5.7), we obtain

θ̇2,b,Th(vh)≤C K2 +C h
d
b−1 +C hm− d

2 +
d
b−1.

We have

d
b
−1 =


0 for d = 2
1
2 for d = 3
1
3 for d = 4
1 for d > 4,

and m> d
2 −1. As m≥ 1 is an integer, this is enough to show that m− d

2 +
d
b −1≥ 0.

Thus, the estimate follows.

We can now state the following optimal discretization error bound for harmonic
maps.

Theorem 5.9. Let d < 4, m≥ 1 with 2(m+1)> d, and m = 1 if d = 1. Assume that
G is a conforming grid of width h and order m, such that F−1

h : T → Th scales with
order 2 if d > 1.

Let u be a local minimizer of the harmonic energy J on W 1,2
φ

(Ω ,M), where M has
either nonpositive sectional curvature, or (5.3) holds. If M does not have nonpositive
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sectional curvature, we additionally assume that either d ∈ {1,2}, or that φ(Ω) is
contained in a geodesically convex ball.

If h is small enough, there exists a local minimizer uh in Sh such that

dL2(u,uh)≤C hm+1
θ

2
m+1,2,Ω (u) (5.8)

holds.

Proof. Set k = m+ 1, and choose q ≥ 4 admissible in the proof of Theorem 3.8.
Note that for d = 1,2, this simply implies q < ∞. Only in the case d = 3, m = 1, q
has to fulfill a stronger upper bound, namely q < 6.

Theorem 5.4, Lemmas 5.3, 5.6, 5.7, and Proposition 5.8 then show that we can
apply Theorem 3.15.

Remark 5.10. The numerical experiments in [San13] confirm the result of Theo-
rem 5.9 for a test case with M = S2, d = 2, and m ∈ 1,2,3. In [San12], the result
(5.8) has also been observed for M = S2, d = 3, and m = 1.

5.3 Heat Flow

The L2-gradient flow of the harmonic energy (5.2), also called harmonic map heat
flow

〈u′(t),V 〉L2(Ω ,u(t)−1T M =− d
ds |s=0

J(expu(t)(sV )), (5.9)

has been extensively studied in the literature. It is well-known that for a general
target manifold M and d ≥ 2 solutions to (5.9) may blow up in finite time (see, e.g.,
[CG89, CDY92, Gro93]).

For manifolds of non-positive curvature, however, we have the following result
[Ham75].

Lemma 5.11. Let M have non-positive curvature, φ denote smooth boundary data
on ∂Ω , and let u0 be smooth initial data assuming the boundary data on ∂Ω .
Then there exists a unique smooth solution u∈C∞(Ω×[0,∞),M)∩C(Ω×[0,∞),M)
to (5.9) assuming the boundary and intial data and fulfilling uniform bounds.

We discretize (5.9) by the methods of layers we introduced in Chapter 4.

Remark 5.12. In order to apply Theorem 4.13, we need the existence and the H2-
regularity of minimizers of Jτ,W = J+ 1

2τ
d2

L2(W, ·) J at W ∈ H. Furthermore, the
H2-bound has to be independent of τ .

Typically, standard theory for the harmonic map heat-flow uses heat-kernels in-
stead of the outlined procedure (see, e.g., [Ham75, CS89]). A detailed regularity
analysis for minimizers of Jτ,W is outside of the scope of this work. We are, how-
ever, confident that future work will indeed close this gap.
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We obtain the following discretization error bound.

Theorem 5.13. Assume that M is complete and has nonpositive curvature which is
bounded from below. For d < 4, J defined by (5.2), and u0 ∈ C∞(Ω ,M) let u be a
solution (5.9).

Consider a uniform partition Pτ = {0 = t0 < t1 < .. . < tM < T} of (0,T ) with
τ = tn− tn−1. Assume that for any W ∈ H there exist a minimizer of Jτ,W = J+
1

2τ
d2

L2(W, ·), which is bounded in H2,2(Ω ,M) independent of τ .

Let m = 1, G a conforming grid of width h≤
√

κτ , and set Vh :=W 1,q
K;φ (Ω ,M)∩

Sh, with K and q as in the proof of Theorem 3.8. Consider Un
τ,h defined by (4.29).

If h is small enough, then we have for tn ∈ Pτ

dL2(u(tn),Un
τ,h)≤C29 (τ +h2) (5.10)

D1,2(u(tn),Un
τ,h)≤C29(

√
τ +h). (5.11)

Proof. In view of Lemmas 5.11 and 5.1, we can directly apply Theorem 4.13 to
obtain the assertion.

Remark 5.14. No numerical studies using geodesic finite elements for gradient flows
have been conducted so far. An experimental validation of Theorem 5.13 is planned.
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Appendix A
Estimates for the Exponential Map

In this appendix we will introduce some notation and estimates for the exponential
map that are used throughout the main chapters of this work.

The exponential map is defined by

expp : TpM→M, expp(V ) = γV (1),

where γV is a geodesic with γV (0) = p, γ̇V (0) = V . We denote the inverse of the
exponential map by

log : M2→ T M, log(p,q) = logq p = exp−1
q p.

The differential of the exponential map is defined by

d expp V : TpM→ Texpp V M, d expp V (W ) =
d
dt t=0

expp(V + tW ).

For the differential with respect to the base point of exp we write d2 exp, i.e., for
V,W ∈ TpM

d2 expp V (W ) =
d
dt t=0

expγW (t) π
γW
γW (0)7→γW (t)V,

where πγW denotes the parallel transport along γW .
For the bivariate logarithm log : (p,q) 7→ logq p we denote the covariant deriva-

tive with respect to the first and second component by d1 and d2, respectively.
It is well known (see, e.g., [Jos08]) that

J(s) := d expp(sV )(sW ).

defines for V,W ∈ TpM the Jacobi field along the geodesic γ(s) := expp(sV ) with
J(0) = 0 and J̇(0) =W . Jacobi field theory can be used to compare the derivative of
log to parallel transport along γ and the identity map between tangent spaces. For
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the reader’s convenience we shall here prove these elementary estimates. A similar
proof can be found in the appendix of [Kar77].

Proposition A.1. Let p,q ∈ Bρ ⊂M with ρ small enough. Let Rm denote the Rie-
mannian curvature tensor of M, and assume Rm to be bounded. Then

‖d2 logp q+ Id‖ ≤ 1
2
|R|∞ d2(p,q) (A.1)

‖d logp q−πq 7→p‖ ≤
1
2
|R|∞ d2(p,q), (A.2)

where πq 7→p : TqM→ TpM denotes parallel transport along a geodesic.

Proof. We only prove (A.1) as (A.2) can be proved analogously.
Let W ∈ TpM. Then

W +d2 logp q(W ) = J(1)− J̇(1),

where J is the Jacobi field along the geodesic γ connecting q to p with J(0) = 0 and
J(1) =W . Define f : I→ TpM by f (t) = π

γ
p(J(t)− tJ̇(t)). Then

W +d2 logp q(W ) = f (1)− f (0)

=
∫ 1

0

d
dt

f (t) dt

=
∫ 1

0
π

γ
p(−tJ̈(t)) dt

=
∫ 1

0
tπγ

pR(J(t), γ̇(t))γ̇(t) dt.

Thus, we obtain

|W +d2 logp q(W )| ≤ |R|∞d2(p,q)
∫ 1

0
t|J(t)| dt.

We assume that the sectional curvature of M is bounded by K ≥ 0, and if K > 0, we
further assume d(p,q)≤ π

2K . Set

sK(t) =

{
1√
K

sin(
√

Kt) if K > 0

t if K = 0.

Then sK(t‖γ̇(0)‖) > 0 for all t ∈ (0,1]. Thus by Rauch comparison (see, e.g.,
[Jos08]), we have

|J(t)| ≤ sK(t‖γ̇(0)‖)
sK(‖γ̇(0)‖)

|W | ≤ |W |,

and thus
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|W +d2 logp q(W )| ≤ 1
2
|R|∞d2(p,q)|W |.

Second derivatives of the logarithm fulfill similar bounds.

Proposition A.2. Let p,q ∈ Bρ ⊂M with ρ small enough. Then

‖d2d logp q‖=C30 d(p,q) (A.3)

‖d2
2 logp q‖=C30 d(p,q), (A.4)

where C30 depends on Rm and ∇Rm.

Proof.

(A.3): Let V ∈ TpM and W ∈ TqM, and let γ(t) = expp(t logp q). We consider the family
of curves given by

c(t,s,r) := expexpp(sV )

(
t logexpp(sV ) expq(rW )

)
.

Then c(t,0,0) = γ(t), c is a geodesic in t for all r and s, and the vector fields

Js(t) := ∇sc(t,0,0)
Jr(t) := ∇rc(t,0,0)

are Jacobi fields along γ with

Js(0) =V, Js(1) = 0
Jr(0) = 0, Jr(1) =W.

These Jacobi fields further fulfill

|J̇s(0)|= |d2 logp q(V )| ≤
(

1+
1
2
|R|∞d2(p,q)

)
|V |

|J̇r(1)|= |d2 logq p(W )| ≤
(

1+
1
2
|R|∞d2(p,q)

)
|W |.

Assuming d(p,q)≤ π

2K , we have (as in the proof of (A.1))

|Js(t)| ≤ |V |
|Jr(t)| ≤ |W |,

and hence

|J̇s(t)| ≤ |J̇s(0)|+
∫ t

0
|J̈s(τ)| dτ ≤ 1

2
(
2+(1+2t)|R|∞d2(p,q)

)
|V |

|J̇r(t)| ≤ |J̇r(1)|+
∫ 1

t
|J̈r(τ)| dτ ≤ 1

2
(
2+(1+2(1− t))|R|∞d2(p,q)

)
|W |.
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Set X(t) := ∇s∇rc(t,0,0). Then

d2d logp q(W,V ) = ∇s∇r∇tc(0,0,0)

= ∇t∇s∇rc(0,0,0)+R(∇tc(0,0,0),∇sc(0,0,0))∇rc(0,0,0)
= Ẋ(0)+R(γ̇(0),Js(0))Jr(0)
= Ẋ(0).

Further, X(0) = 0∈ TpM, and X(1) = 0∈ TqM. By deriving the previous equality
by T again, we obtain an ODE for X

Ẍ(t) = ∇t∇t∇s∇rc(t,0,0)

= ∇t∇s∇t∇rc(t,0,0)+∇t(R( ˙γ(t),Js(t))Jr(t))

= ∇s∇t∇t∇rc(t,0,0)+R(Js(t), γ̇(t))J̇r(t)+∇t(R( ˙γ(t),Js(t))Jr(t))

= ∇JsR(γ̇(t),Jr(t)))γ̇(t)+∇γ̇ R( ˙γ(t),Js(t))Jr(t))+2R( ˙γ(t),Js(t))J̇r(t))

+2R( ˙γ(t),Jr(t))J̇s(t))+R(γ̇(t),X(t)))γ̇(t).

Assuming d2(p,q)≤ 1
2|R|∞ , we can estimate

‖Ẍ‖∞ ≤ 2|∇R||γ̇|2|Js||Jr|+2|R||γ̇|
(
|J̇s||Jr|+ |Js||J̇r|

)
+

1
2
|X |

≤ 2|∇R||γ̇|2|Js||Jr|+
1
2
‖Ẍ‖∞,

from which follows

‖Ẍ‖∞ ≤ 4∇R||γ̇|2|Js||Jr|+4|R||γ̇|
(
|J̇s||Jr|+ |Js||J̇r|

)
.

Thus, we obtain

‖Ẍ‖∞ ≤C(|R|, |∇R|)d(p,q) |V | |W |.

Set now f (t) := π
γ
p(X(t)+(1− t)Ẋ(t)). Then

d2d logp q(W,V ) = Ẋ(0) =−( f (1)− f (0)) =−
∫ 1

0
(1− t)πγ

pẌ(t) dt,

and thus

|d2d logp q(W,V )| ≤ 1
2
‖Ẍ‖∞ ≤C(|R|, |∇R|)d(p,q)|V | |W |.

(A.4): The proof is analogous to the previous one: We set for V,W ∈ TpM

c(t,s,r) := expq
(
(1− t) logq expq(sV + rW )

)
.

The Jacobi fields Js and Jr then fulfill
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Js(0) =V, Js(1) = 0
Jr(0) =W, Jr(1) = 0.

Setting X(t) := ∇s∇rc(t,0,0), we obtain the same differential equation for X as
above, and X(0) = d2 expp(0)(W,V ) = 0 and X(1) = 0. Thus, we obtain

‖Ẍ‖∞ ≤C(|R|, |∇R|)d(p,q) |V | |W |,

and hence

‖Ẋ(0)‖ ≤C(|R|, |∇R|)d(p,q) |V | |W |.

We can calculate

d2d logp q(W,V ) = ∇s∇r∇tc(0,0,0)

= Ẋ(0)+R(Js(0), γ̇(0))Jr(0)
= Ẋ(0)+R(V, γ̇(0))W,

which implies (A.4).





Appendix B
A Linear System of Elliptic Equations

Let M be a smooth manifold, Ω ⊂ Rd a domain with smooth boundary. In the con-
text of Section 5.2, we consider problems essentially of the form

W ∈W 1,2
0 (Ω ,u−1T M) :

∫
Ω

〈∇W,∇V 〉 dx=−
∫

Ω

〈V,F〉 dx ∀V ∈W 1,2
0 (Ω ,u−1T M),

(B.1)

where F ∈ L2(Ω ,u−1T M), and u ∈W 1,q
K (Ω ,M) with q > max{2,d}.

This system is closely related to the concept of linear systems of elliptic equations
in divergence form. In particular, one can use coordinates to write the covariant
derivatives in terms of ordinary derivatives and Christoffel symbols and obtain a
linear system of elliptic equations of the form∫

Ω

aαβ

i j ∂αW i
∂βV i + b̃β

ji ∂βV j W i + b̃α
i j ∂αW i V j + bi j W i V j + f jV j dx = 0

with

aαβ

i j = δ
αβ gi j

b̃α
i j = δ

αβ gikΓ
k

m jdα um

bi j = δ
αβ gklΓ

k
imΓ

l
jndα umdβ un

f j = gk jFk,

where greek indices denote coordinates on Ω ⊂Rd , latin indices denote coordinates
on M, and we sum over repeated indices. We can check that if U ∈ L2(Ω ,u−1T M),
and u ∈W 1,q

K with q > max{2,d}, we have for the coefficients

b̃α
i j ∈ Lq

bi j ∈ L
q
2 ,
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f j ∈ L2.

This means that one can apply standard theory for linear systems of elliptic equa-
tions (see, e.g., [LU68]) to obtain an estimate of the form

‖Ŵ‖W 2,2(Ω ,Rn) ≤C‖F‖L2 ,

where Ŵ is the coordinate vector for W . If u∈W 2,b(Ω ,M), with b as in Lemma 3.14,
we can then estimate the covariant norm by the coordinate one and obtain

‖W‖W 2,2(Ω ,u−1T M) ≤C‖F‖L2 .

While this procedure is a straightforward application of standard theory it does not
fit with the general spirit of this work to use intrinsic concepts. Thus we will include
a direct proof for interior H2-regularity for problems of the type (B.1).
We will follow the proof in [Eva98] for linear elliptic equations.

Theorem B.1. Let u ∈W 1,q
K (Ω ,M) with q ≥ 2max{2,d}. Let F ∈ L2(Ω ,u−1T M),

and let W ∈W 1,2(Ω ,u−1T M) solve (B.1). Then for each subset Ω ′ b Ω we have

‖W‖W 2,2(Ω ′,u−1T M) ≤C31

(
‖F‖L2(Ω ,u−1T M)+‖W‖L2(Ω ,u−1T M)

)
,

where C31 depends on M, Ω ′, Ω and K.

Proof. First note that by setting V =W in (B.1), we can directly estimate

‖W‖2
W 1,2(Ω ,u−1T M) ≤ ‖F‖L2(Ω ,u−1T M)‖W‖L2(Ω ,u−1T M),

and thus

‖W‖W 1,2(Ω ′,u−1T M) ≤
1
2

(
‖F‖L2(Ω ,u−1T M)+‖W‖L2(Ω ,u−1T M)

)
. (B.2)

To obtain estimates for the second covariant derivatives, we introduce the covariant
difference quotient for a vector field V along u

Dε
αV (x) =

1
ε

(
π

u
u(x+εeα )7→u(x)V (x+ εeα)−V (x)

)
,

where πu
u(x)7→u(y) denotes the parallel transport along the curve t 7→ u(x+ t(y− x)),

and x and ε are such that x,x+εeα ∈Ω . The expression Dε
α behaves like a difference

quotient in the sense that

lim
ε→0

Dε
αV (x) = ∇αV (x),

if the limit exists.
We can estimate for V ∈W 1,2(Ω ,u−1T M)
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d

∑
α=1

∫
Ω ′
|Dε

αV |2 dx≤C‖∇V‖2
L2(Ω ,u−1T M) (B.3)

for Ω ′ b Ω , and ε < 1
2 dist(Ω ,Ω ′).

Let Ω ′ b Ω ′′ b Ω , and let ξ be a smooth cut-off function with

ξ =

{
1 on Ω ′

0 on Rd\Ω ′′ , 0≤ ξ ≤ 1.

We set

V (x) =−D−ε
α (ξ 2Dε

αW (x)).

Then V ∈W 1,2
0 (Ω ,u−1T M). Inserting V into (B.1), we obtain

−
d

∑
β=1

∫
Ω

〈∇βW (x),∇β D−ε
α (ξ 2Dε

αW (x))〉 dx =
∫

Ω

〈D−ε
α (ξ 2Dε

αW (x)),F(x)〉 dx.

(B.4)

We define an approximate Riemannian curvature tensor by

Rmε(dα u,dβ u,X ,Y ) = 〈Rε(dα u,dβ u)X ,Y 〉= 〈Dε
α ∇β X ,Y 〉−〈∇β Dε

α X ,Y 〉

and remark that ∫
Ω

〈Dε
α X ,Y 〉 dx =−

∫
Ω

〈X ,D−ε
α Y 〉 dx

if either X or Y has compact support.
We can rewrite (B.4) to

−
d

∑
β=1

∫
Ω

〈
∇βW (x),∇β D−ε

α (ξ 2Dε
αW (x))

〉
dx

=
d

∑
β=1

∫
Ω

〈
∇β Dε

αW (x),ξ 2
∇β Dε

αW (x)
〉

dx+
d

∑
β=1

∫
Ω

〈
Dε

α ∇βW (x),2ξ dβ
ξ Dε

αW (x)
〉

dx

+
d

∑
β=1

∫
Ω

Rm−ε(dα u,dβ u,ξ 2Dε
αW (x),∇βW (x)) dx

+
d

∑
β=1

∫
Ω

Rmε(dα u,dβ u,W,ξ 2
∇β Dε

αW ) dx,

and thus obtain
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d

∑
β=1

∫
Ω

〈
∇β Dε

αW (x),ξ 2
∇β Dε

αW (x)
〉

dx

=
∫

Ω

〈
D−ε

α (ξ 2Dε
αW (x)),F(x)

〉
dx−

d

∑
β=1

∫
Ω

〈
∇β Dε

αW (x),2ξ dβ
ξ Dε

αW (x)
〉

dx

−
d

∑
β=1

∫
Ω

Rm−ε(dα u,dβ u,ξ 2Dε
αW (x),∇βW (x)) dx

−
d

∑
β=1

∫
Ω

Rmε(dα u,dβ u,W,ξ 2
∇β Dε

αW ) dx

−
d

∑
β=1

∫
Ω

Rmε(dα u,dβ u,W,2ξ dβ
ξ Dε

αW (x)) dx.

Note that

D−ε
α (ξ 2Y (x)) = ξ

2(x)D−ε
α Y (x)+(ξ (x− εeα)+ξ (x))D−ε

α ξ (x) π
u
u(x−εeα )7→u(x)Y (x).

Hence, we can estimate

d

∑
β=1

∫
Ω

ξ
2‖∇β Dε

αW (x)‖2 dx

≤
∫

Ω

ξ
2‖D−ε

α (Dε
αW (x))‖‖F(x)‖ dx+C

d

∑
β=1

∫
Ω

ξ‖∇β Dε
αW (x)‖ ‖Dε

αW (x)‖ dx

+
d

∑
β=1

∫
Ω

ξ
2‖Rm−ε ‖‖dα u‖ ‖dβ u‖ ‖Dε

αW (x)‖ ‖∇βW (x)‖ dx

+
d

∑
β=1

∫
Ω

ξ
2‖Rmε ‖ ‖dα u‖ ‖dβ u‖ ‖W‖ ‖∇β Dε

αW‖ dx

+
d

∑
β=1

∫
Ω

ξ‖Rmε ‖‖dα u‖ ‖dβ u‖ ‖W‖ ‖Dε
αW (x)‖ dx.

Under the assumptions of the theorem, we can estimate use Hölder’s and Young’s
inequalities to absorb the higher derivatives into the left hand side
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d

∑
β=1

∫
Ω ′
‖∇β Dε

αW (x)‖2 dx

≤C
d

∑
β=1

(
‖F‖2

L2(Ω ,u−1T M)+‖∇W‖2
L2(Ω ,u−1T M)+‖W‖

2

L
2q

q−4 (Ω ,u−1T M)

)

≤C
d

∑
β=1

(
‖F‖2

L2(Ω ,u−1T M)+‖W‖
2
W 1,2(Ω ,u−1T M)

)
.

Summing over α and using the W 1,2-estimate (B.2) for W yields the assertion.
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