Strukturelle und elektrochemische Charakterisierung der katalytischen Zentren in edelmetallfreien Katalysatoren für die Sauerstoffreduktion

Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Gerrit Schmithals

Juni 2005

- 1. Gutachter: Prof. Dr. Helmut Tributsch
- 2. Gutachter: Prof. Dr. Klaus Christmann

Disputation am: 25. Oktober 2005

Zusammenfassung

In der vorliegenden Arbeit werden Ergebnisse von Untersuchungen zur Struktur des katalytischen Zentrums und der elektrochemischen Aktivität von Elektrokatalysatoren für die Sauerstoffreduktion im sauren Medium präsentiert. Die Katalysatoren werden durch gezielte thermische Behandlung von Übergangsmetall-Makrozyklen (Eisen- bzw. Cobalt-Porphyrinen) hergestellt. Diese Materialien könnten technische Bedeutung als Elektrokatalysatoren in Polymerelektrolytmembran-Brennstoffzellen im Rahmen einer effizienten und umweltschonenden Energiewandlung erlangen.

Den Schwerpunkt der Arbeit bilden Katalysatoren, deren Präparation ein neuartiger Ansatz zugrunde liegt, der zu einer erhöhten katalytischen Aktivität im Vergleich zu bisherigen Verfahren führt. Die Resultate der strukturaufklärenden Messungen werden daher mit den Arbeiten anderer Autoren an vergleichbar präparierten Katalysatoren verglichen.

Wesentliche Erkenntnisse über die Struktur der katalytischen Zentren werden aus Extended X-ray Absorption Fine Structure (EXAFS-), X-ray Absorption Near Edge Spectroscopy (XANES)-, als auch aus in-situ XAFS-Untersuchungen sowie Mößbauer- und Elektronenresonanz-Spektroskopie (ESR) gewonnen. Die Ergebnisse werden durch elektrochemische Messungen, Röntgendiffraktometrie, Rasterelektronen- und Transmissionselektronenmikroskopie sowie Gassorptionsuntersuchungen ergänzt.

Die Untersuchungen zeigen, dass unter bestimmten Präparationsbedingungen katalytisch inaktive metallhaltige Phasen in hohen Konzentrationen vorliegen und deshalb keine Identifizierung der katalytischen Zentren zulassen. Eine besondere Herausforderung in der Strukturaufklärung besteht daher in der Notwendigkeit, aktive und nichtaktive Spezies zu unterscheiden. Es wird gezeigt werden, dass sich durch geeignete Nachbehandlung der Katalysatoren katalytisch inaktive Phasen entfernen lassen.

Als wesentliches Merkmal für die beobachtete katalytische Aktivität konnte die Koor-

dination der Atome Eisen und Cobalt durch Stickstoff belegt werden, was auf einen Erhalt stickstoffkoordinierter Metallkerne (Me-N₄-Einheiten) aus den vorgelegten Porphyrinkomplexen hindeutet. Weiterhin zeigen die durchgeführten Arbeiten an Co/Fe-Katalysatoren, dass Metalle aus Oxalaten, die während der Pyrolyse ein Aufschäumen der durch Polymerisation entstehenden Kohlenstoffmatrix bewirken, möglicherweise am Ende des Pyrolyseprozesses ebenfalls in stickstoffkoordinierten Zentren präsent sind. Die durchgeführten Messungen tragen ebenfalls zur Aufklärung der Unterschiede in der katalytischen Aktivität bei, die durch Variationen im Präparationsprozess entstehen. Dabei zeigt sich u.a., dass die Zugabe von Schwefel während des Pyrolyseprozesses nicht – wie ursprünglich angenommen – eine Modifizierung des katalytischen Zentrums bewirkt, sondern die dabei beobachtete Steigerung der Aktivität auf morphologische Effekte zurückzuführen ist. Es kann eindeutig nachgewiesen werden, dass sich die untersuchten Katalysatoren durch katalytische Zentren mit molekularer Struktur auszeichnen. Damit unterscheiden sie sich in ihrem Aufbau grundlegend von solchen Katalysatoren, bei denen katalytisch aktive Metallteilchen auf einem hochporösen Kohlenstoffträger abgesetzt sind (z. B. geträgertes Platin). Die Zentren sind integriert in eine leitende graphitartige Kohlenstoffmatrix mit hoher Porosität, die sich während der Pyrolyse aus den Chelatmolekülen bildet.

Die Untersuchungen ergeben weiterhin, dass sich die elektronische Umgebung der katalytisch aktiven Metallatome wesentlich von der in den Porphyrin-Precursoren unterscheidet. Es ist anzunehmen, dass hierauf die erhöhte katalytische Aktivität und Stabilität der Katalysatoren gegenüber den Vorläufersubstanzen zurückzuführen ist. In Übereinstimmung mit einer veränderten elektronischen Umgebung ist die Feststellung, dass die lokale Struktur der das Zentrum umgebenden Kohlenstoffmatrix eine hohe Unregelmäßigkeit aufweist. Die experimentellen Ergebnisse werden kritisch im Hinblick auf die Frage überprüft, ob die Zentren einen 2- oder 4-Elektronentransfer-Mechanismus katalysieren.

Abstract

This thesis presents the results of investigations performed to analyse the structure and electrochemical activity of the catalytic centres of electrocatalysts for oxygen reduction in acidic media. The catalysts have been prepared by pyrolysis of transition-metal macrocycles (iron and cobalt-porphyrins). This type of material could gain technological significance as electrocatalyst in polymer-electrolyte membrane fuel cells which are developed with regard to a future efficient and environmentally sustainable energy supply.

The investigations concentrate on catalysts that are prepared by a novel preparation procedure which leads to a higher catalytic activity than other approaches. Therefore, own structure determining measurements will be compared with work done by other authors reporting on the properties of heat-treated transition metal complexes.

Conclusions about the structure of the catalytic centres have been obtained by Extended X-ray Absorption Fine Structure- (EXAFS), X-ray Absorption Near Edge Spectroscopy- (XA-NES) and in-situ XAFS-measurements as well as Mössbauer- and Electron Spin Resonance-(ESR) spectroscopy. These results are complemented by electrochemical measurements, X-ray diffractometry, scanning electron and transmission electron microscopy as well as gas sorption measurements.

The investigations showed that under certain preparation conditions catalytically inactive metal-containing phases are present in the catalysts making the identification of the catalytic centres difficult or even impossible. It was a particular challenge to distinguish between active and inactive phases. However, it will be shown that these phases can be removed by an appropriate after-treatment.

It has been proven that the catalytic centres are characterised by the coordination of metal atoms of iron and cobalt by nitrogen. This indicates a conservation of the nitrogen-coordinated metal cores (Me $-N_4$ -units) of the original chelate complexes of the porphyrins

during the process of pyrolysis. Moreover, from the measurements of Co/Fe-catalysts it was concluded that also metal atoms that originate from oxalate molecules which had been added as foaming agents might be present in similar nitrogen-coordinated centres after pyrolysis. The measurements performed also clarify the differences in catalytic activity that have been observed varying the preparation process. In this context, it will be shown that the addition of sulfur does not result in a modified catalytic centre as hypothesised initially. The enhanced catalytic activity can rather be attributed to morphological effects.

Unequivocally, it can be shown that the investigated catalysts are characterised by catalytic centres of molecular structure. Hence, their constitution is fundamentally different from catalysts where catalytically active metal particles are deposited on a porous carbon support (e.g. carbon supported platinum). In our case, the centres are embedded in a conductive graphite-like carbon matrix of high porosity that is formed during pyrolysis of the chelate molecules.

Further, the investigations give evidence that the electronic structure of the catalytically active metal atoms differs significantly from that in the porphyrin precursors. It is assumed that this difference is responsible for the increased catalytic activity and chemical stability compared to the precursor materials. The changed electronic environment is in agreement with the observation of high disorder in the local carbon matrix. The experimental results are reviewed with regard to the question whether the centres catalyse via a 2- of 4-electron transfer mechanism.

Inhaltsverzeichnis

1	Ein	leitung		
1.1 Motivation \ldots			ation $\ldots \ldots \ldots$	
		1.1.1	Brennstoffzellensysteme	
		1.1.2	Polymerelektrolytmembran-Brennstoffzelle und Gasdiffusionselektrode 3	
		1.1.3	Elektrokatalysatoren	
	1.2	Pionie	rarbeiten zu pyrolysierten Übergangsmetall-Chelaten6	
	1.3	Zielset	zung der Arbeit	
2	\mathbf{The}	oretise	che Grundlagen 11	
	2.1	Grund	llagen der Elektrochemie	
		2.1.1	Entstehung von Elektrodenpotenzialen	
		2.1.2	Ströme an Elektroden	
		2.1.3	Zyklische Voltametrie (CV)	
		2.1.4	Messverfahren Rotierende Scheibenelektrode (RDE) 15	
		2.1.5	Mechanismus der Sauerstoffreduktion 17	
	2.2	Röntg	enabsorptionsspektroskopie (XAFS) 18	
		2.2.1	Aufbau eines XAFS-Experiments 20	
		2.2.2	Auswertung des Spektrums: XANES und EXAFS	
		2.2.3	Extended X-Ray Absorption Fine Structure - EXAFS	
		2.2.4	X-Ray Absorption Near-Edge Spectroscopy - XANES	
	2.3	Mößba	auer-Spektroskopie	
		2.3.1	Resonante Emission und Absorption von γ -Strahlung	
		2.3.2	Rückstoßfreie Kernresonanzabsorption	
		2.3.3	Hyperfeinwechselwirkungen	
		2.3.4	Mößbauerspektroskopie am 57 Fe	
	2.4	ESR S	Spektroskopie	
		2.4.1	Hyperfeinstruktur	
3	Prä	paratio	on und Analytik 34	
	3.1	- Kataly	vsatorpräparation durch Pyrolyse von Chelaten	
		3.1.1	Präparationsvorschrift	
		3.1.2	Porphyrine	
		3.1.3	Strukturbilder der Precursoren	
	3.2	Analy	tische Techniken	
		$3.2.1^{\circ}$	Thermogravimetrische Untersuchungen	
		3.2.2	Rasterelektronenmikroskopische Aufnahmen und EDX	

		3.2.3	Transmissionselektronenmikroskopische Aufnahmen (TEM)	41
		3.2.4	Röntgendiffraktometrie	41
		3.2.5	Neutronenaktivierungsanalyse	45
		3.2.6	XPS-Messungen	46
		3.2.7	Gassorptionsmessungen (Porenverteilung und BET)	47
		3.2.8	Auswertung der Elektrochemischen Messungen	48
		3.2.9	Zusammenfassung	52
4	Stru	ukturel	lle Untersuchungen	54
	4.1	Model	le des katalytischen Zentrums	54
		4.1.1	Erhalt der unveränderten Chelat-Zentren	55
		4.1.2	Aktivierter Kohlenstoff als katalytisches Zentrum	55
		4.1.3	Metallische Partikel, umhüllt von Graphitschichten	56
		4.1.4	Oxide und Oxidschichten	57
		4.1.5	Me-N, aber nicht in vierfacher Koordination	58
		4.1.6	Metallion in einem Me $-N_4$ -Chelat	58
		4.1.7	Arbeiten ohne Metall-Chelate als Precursoren	59
	4.2	Auswe	rtung der EXAFS-Messungen	62
		421	XAFS zur Untersuchung pulverförmiger Katalysatoren	62
		422	Vergleich verschiedener Messaufbauten	63
		423	Auswertung der EXAFS-Spektren	67
		424	Diskussion der Parameter zur EXAES-Auswertung	68
		425	Diskussion des Informationsgehalts der EXAFS-Spektren	72
		426	Annassung von EXAES-Spektren über theoretische Standards	74
		4.2.0	EXAFS-Spektren der reinen Phasen an der Eisen K-Kante	79
		428	EXAFS-Spektren der reinen Phasen an der Co-K-Kante	83
		4.2.0	EXAFS-Spektren der reinen Phasen an der Cu K-Kante	87
		4.2.5	Annassungen über theoretische Berechnungen. Fe K.Kante	80
		4.2.10	Anpassungen über theoretische Berechnungen, Te K-Kante	00
		4.2.11	Auswortung der EXAES Spektren der Katalweateren an der Fe K Kant	90 -0 01
		4.2.12	Auswertung der EXAFS-Spektren der Katalysatoren an der Co K Kan	to 108
		4.2.13	Fuseriment Nachbehandlung mit kongentrierter Selpetersäure	191
		4.2.14	Experiment Nucliberandrung mit konzentnerter Salpetersaure	121
	19	4.2.10 VAEC	In Situ Messungen en den K Kenten von Figen und Cohelt	120
	4.3	AAF5 4 2 1	In-Situ Messungen an den K-Kanten von Eisen und Cobait	120
		4.5.1	Konstruktion der m-situ Zene	120
		4.3.2	Elektrochemische Messungen VADC Massen	101
		4.3.3	AAF 5-Messungen	131
	4 4	4.3.4		133
	4.4	Auswe	ertung der AES-Messungen	137
	4.5	Auswe	Prung der AANES-Messungen	140
		4.5.1	Propenpraparation	141
		4.5.2	Diskussion der Messungen	143
	1.0	4.5.3	Zusammentassung	153
	4.6	Unters	suchungen zur elektronischen Umgebung des katalytischen Zentrums	154
		4.6.1	Auswertung der Mößbauer-Messungen	154
		4.6.2	Auswertung der ESR-Messungen	164

5	Thermographie-Untersuchungen 1			169
	5.1 Thermographie-Messungen zur kombinatorischen Materialsynthese			169
		5.1.1	Prinzip kombinatorischer Katalysatorentwicklung	169
		5.1.2	Kombinatorik in der Erforschung von Elektrokatalysatoren	171
		5.1.3	Grundlagen der Infrarot-Thermographie	171
		5.1.4	Konstruktion der in-situ Zelle	173
	5.2	Diskus	sion der Infrarotmessungen	178
	5.3	Zusam	menfassung	179
6	Sch	lussfolg	gerungen und Ausblick	181
	Literaturverzeichnis			189

Abbildungsverzeichnis

1.1	Prinzipschema der Polymer-Elektrolytmembran-Brennstoffzelle	4
2.1	Prinzip der Brennstoffzelle	12
2.2	Butler-Volmer-Gleichung	14
2.3	Schema der elektrochemischen Zelle zur RDE-Messung	16
2.4	Photoeffekt	18
2.5	Absorptionsquerschnitt einiger Elemente	19
2.6	Schematischer Aufbau eines XAFS-Experiments	20
2.7	Unterteilung des Feinstrukturbereichs in XANES und EXAFS	21
2.8	Absorptionsspektrum eines Atoms, isoliert und im Atomverbund	22
2.9	Darstellung der EXAFS-Funktion	23
2.10	Darstellung des Betrags der Fouriertransformierten $FT(\chi(k))$	23
2.11	Darstellung des Realteils der rücktransformierten EXAFS-Funktion	24
2.12	Darstellung des Mößbauer-Effekts	25
2.13	Breit-Wigner-Formel	27
2.14	Zerfallsschema ⁵⁷ Co	30
2.15	Schema der Transmissions-Mößbauer-Spektroskopie	30
3.1	Strukturformel CoTMPP	35
3.2	Strukturformel FeTMPPCl	35
3.3	3D-Darstellung von 5,10,15,20-Tetrakis-(2-methoxy-phenyl)-porphyrin-Co(II)	37
3.4	3D-Darstellung von 5,10,15,20-tetraphenyl-porphyrin-Fe(III) chlorid	37
3.5	Darstellung thermogravimetrischer Messungen	39
3.6	REM-Aufnahme CoTMPP/Fe C_2O_4 /S-Katalysator	39
3.7	REM-Aufnahmen thermisch behandelter CoTMPP/FeC ₂ O ₄ /S-Katalysatoren	40
3.8	TEM-Aufnahme von CoTMPP/Fe C_2O_4/S , geätzt	41
3.9	TEM-Aufnahme Katalysator (metallische Partikel)	42
3.10	Diffraktogramm von CoTMPP/FeC ₂ O ₄ /S, ungeätzt	43
3.11	Diffraktogramm CoTMPP/FeC ₂ O ₄ /S, geätzt bei Raum-/Siedetemperatur \cdot	43
3.12	Diffraktogramm FeTMPPCl/CoC ₂ O ₄ /S, geätzt bei Raum-/Siedetemperatur	44
3.13	Diffraktogramm FeTMPPCl/FeC ₂ O ₄ /S, geätzt bei Raum-/Siedetemperatur	44
3.14	Diffraktogramm von CoTMPP/FeC ₂ O ₄ /S, geätzt bei Raumtemperatur	45
3.15	XPS-Messung am Katalysator $CoTMPP/FeC_2O_4/S$	46
3.16	XPS-Messung an der S L_2/L_3 -Kante, Katalysator CoTMPP/Fe C_2O_4/S	47
3.17	Sorptionsisothermen eines CoTMPP/FeC ₂ O ₄ /S-Katalysators	48
3.18	Porenverteilung, Katalysator CoTMPP/FeC ₂ O ₄ /S nach BJH-Methode	48
3.19	Mikroporenauswertung, t-Methode nach de-Boer	49

4.1	Energiedispersive Messung mit Röntec-Detektor	65
4.2	Vergleich von energiedispersivem Detektor und PIN-Diode	65
4.3	Vergleich der Messdaten von PIN-Diode und Röntec-Detektor	66
4.4	Variation des Parameters $R_{\rm bkg}$	69
4.5	Theoretische Berechnung des Fe ₃ N-EXAFS, $\chi(k)$	77
4.6	Theoretische Berechnung des Fe ₃ N-EXAFS, $FT(\chi(R))$	77
4.7	EXAFS Fe K-Kante: χ -Funktion von metallischem Eisen	80
4.8	EXAFS Fe K-Kante: χ -Funktion von FeTMPPCl \ldots	80
4.9	EXAFS Fe K-Kante: χ -Funktion von FeO, Fe ₂ O ₃ , Fe ₃ O ₄	80
4.10	EXAFS Fe K-Kante: χ -Funktion von FeS, FeS ₂	81
4.11	EXAFS Fe K-Kante: χ -Funktion von Fe ₃ C \ldots \ldots \ldots \ldots \ldots	81
4.12	EXAFS Fe K-Kante: RDF von metallischem Eisen	81
4.13	EXAFS Fe K-Kante: RDF von FeTMPPCl	82
4.14	EXAFS Fe K-Kante: RDF von FeO, Fe_2O_3 , Fe_3O_4	82
4.15	EXAFS Fe K-Kante: RDF von FeS, FeS_2	82
4.16	EXAFS Fe K-Kante: RDF von Fe_3C	83
4.17	EXAFS Co K-Kante: χ -Funktion von Co-Folie	84
4.18	EXAFS Co K-Kante: χ -Funktion von CoTMPP $\ldots \ldots \ldots \ldots \ldots \ldots$	84
4.19	EXAFS Co K-Kante: χ -Funktion der Cobaltoxide	84
4.20	EXAFS Co K-Kante: χ -Funktion von Cobaltsulfat	85
4.21	EXAFS Co K-Kante: χ -Funktion der Cobaltsulfide $\ldots \ldots \ldots \ldots \ldots$	85
4.22	EXAFS Co K-Kante: RDF von Co-Folie	85
4.23	EXAFS Co K-Kante: RDF von CoTMPP	86
4.24	EXAFS Co K-Kante: RDF der Cobaltoxide	86
4.25	EXAFS Co K-Kante: RDF von Cobaltsulfat	86
4.26	EXAFS Co K-Kante: χ -Funktion der Cobaltsulfide $\ldots \ldots \ldots \ldots \ldots \ldots$	87
4.27	EXAFS Cu K-Kante: RDF von Cu-Folie	87
4.28	EXAFS Cu K-Kante: RDF von CuO	88
4.29	EXAFS Cu K-Kante: RDF von CuS	88
4.30	EXAFS Cu K-Kante: RDF von Cu_2S	88
4.31	Simulation der EXAFS-Funktion von Eisenfolie an der Fe K-Kante	89
4.32	Simulation der EXAFS-Funktion von FeTMPPCl an der Fe K-Kante	90
4.33	Simulation der EXAFS-Funktion von Cobaltfolie an der Co K-Kante	91
4.34	Simulation der EXAFS-Funktion von CoTMPP an der Co K-Kante	92
4.35	EXAFS-Spektrum Fe K-Kante, Katalysatoren mit FeTMPPCl-Precursor	93
4.36	EXAFS-Spektrum FeTMPPCl/FeC ₂ O ₄ /S $\dots \dots \dots \dots \dots \dots \dots \dots \dots$	95
4.37	Simulation der EXAFS-Funktion von FeTMPPCl/FeC $_2O_4/S$, Fe K-Kante .	96
4.38	EXAFS-Spektrum Fe K-Kante, CoTMPP/FeC ₂ O ₄ /S, $\chi(k)$	97
4.39	EXAFS-Spektrum Fe K-Kante, CoTMPP/FeC ₂ O ₄ /S, $FT(\chi(R))$	97
4.40	EXAFS Anpassung, $FeTMPPCl/CoC_2O_4/S$	98
4.41	EXAFS-Spektren $FT(\chi(R))$, Darstellung der Variationsbreite	100
4.42	EXAFS-Spektren Fe K-Kante CoTMPP/FeC ₂ O ₄ $(\pm S)$	101
4.43	Anpassung von CoTMPP/FeC ₂ O ₄ (3) durch experimentelle Standards \ldots	101
4.44	An passing von CoTMPP/FeC ₂ O ₄ (4) durch experimentelle Standards \ldots	102
4.45	EXAFS-Spektren Fe K-Kante CoTMPP/FeC ₂ O ₄ (\pm S)	103
4.46	EXAFS-Spektrum FeTMPPCl-Katalysatoren	103
4.47	EXAFS Fe K-Kante $\chi(R)$, CoTMPPCl/FeC ₂ O ₄ /S, unterschiedl. Nachbehandl.	105

4.48	An passung der EXAFS-Funktion von CoTMPP/FeC $_2O_4/S$, Fe K-Kante	106
4.49	EXAFS-Spektren $\mu(E)$, CoTMPP/FeC ₂ O ₄ /S, Variation der Pyrolysetemp.	107
4.50	EXAFS-Spektren $\chi(k)$, CoTMPP/FeC ₂ O ₄ /S, Variation der Pyrolysetemp.	108
4.51	EXAFS-Spektren $FT(\chi(R))$, CoTMPP/FeC ₂ O ₄ /S, Variation der Pyrolysetemp.	108
4.52	EXAFS-Spektrum $FT(\chi(R))$, CoTMPP/MeC ₂ O ₄ \pm Schwefel	110
4.53	EXAFS-Spektrum $\chi(k)$, CoTMPP/MeC ₂ O ₄ \pm Schwefel	110
4.54	Anpassung EXAFS-Spektrum für CoTMPP/FeC ₂ O ₄ /S an der Co K-Kante .	112
4.55	EXAFS-Spektren Co K-Kante; CoTMPP/FeC ₂ O ₄ /S-Katalysatoren \ldots	113
4.56	Anpassung CoTMPP/FeC ₂ O ₄ /S, ungeätzt über exp. Standards $\ldots \ldots \ldots$	114
4.57	EXAFS-Spektrum $FT(\chi(R))$, CoTMPP/FeC ₂ O ₄ /S, Variation des Schwefe-	
	lanteils	115
4.58	Anpassung CoTMPP/FeC ₂ O ₄ /S über experimentelle Standards \ldots	116
4.59	EXAFS-Spektrum $\mu(E)$, CoTMPP/FeC ₂ O ₄ /(+ S), Variation des Schwefelan-	
	teils	117
4.60	EXAFS-Spektren Co K-Kante; CoTMPP/FeC ₂ O ₄ \ldots \ldots \ldots \ldots \ldots	117
4.61	EXAFS-Spektren $FT(\chi(R))$, Co K-Kante, FeTMPPCl/CoC ₂ O ₄	118
4.62	EXAFS Co K-Kante; FeTMPPCl/CoC ₂ O ₄ /S, Anpassung mit exp. Standards	119
4.63	EXAFS Co K-Kante; FeTMPPCl/CoC ₂ O ₄ , Anpassung mit exp. Standards .	119
4.64	EXAFS-Spektren $\mu(E)$ Co K-Kante, Variation der Pyrolysetemp	120
4.65	EXAFS-Spektren, FeTMPPCl/CoC ₂ O ₄ /S, $\chi(k)$, Variation der Pyrolysetemp.	121
4.66	EXAFS-Spektren, FeTMPPCl/CoC ₂ O ₄ /S, $\chi(R)$, Variation der Pyrolysetemp.	122
4.67	EXAFS-Spektrum FeTMPPCl/CoC ₂ O ₄ /S, Co K-Kante, Nachbhndl. in HNO ₃	122
4.68	Schema der Slurry-Elektrode	124
4.69	EXAFS $\mu(E)$ Cu K-Kante, Versuch Cu-Abscheidung	124
4.70	EXAFS $\chi(R)$ Cu K-Kante, Versuch Cu-Abscheidung	125
4.71	Modell des katalytischen Zentrums	126
4.72	XANES In-situ Messungen, Fe K-Kante	129
4.73	CV-Diagramm XAFS in-situ Zelle	131
4.74	Co K-Kante, In-situ XANES an pyrolysiertem CoTMPP/FeC ₂ O ₄ /S	132
4.75	Co K-Kante, In-situ EXAFS an pyrolysiertem CoTMPP/FeC ₂ O ₄ /S	133
4.76	Fe K-Kante, In-situ XANES an pyrolysiertem FeTMPPCl/CoC $_2O_4/S$	133
4.77	Fe K-Kante, In-situ EXAFS an pyrolysiertem FeTMPPCl/CoC $_2O_4/S$	134
4.78	Schemazeichnung in-situ Zelle	135
4.79	Fotografie XANES in-situ Zelle	135
4.80	Fotografie XANES in-situ Zelle	135
4.84	XANES-Spektren N K-Kante, Vergleich von Setup 1 und 2	142
4.85	XANES: Vergleich verschiedener Präparationstechniken	144
4.86	XANES Fe $L_{2,3}$ -Kante: FeTMPPCl und FeS ₂	145
4.87	XANES Fe $L_{2,3}$ -Kante: Referenzen Fe, FeO, Fe ₂ O ₃ und Fe ₃ O ₄	146
4.88	XANES Fe $L_{2,3}$, Katalysator CoTMPP/Fe C_2O_4 und Fit $\ldots \ldots \ldots \ldots$	146
4.89	XANES Fe $L_{2,3}$, Katalysator FeTMPPCl/S/BP und FeTMPPCl	147
4.90	XANES Fe $L_{2,3}$ -Kante, Katalysatoren geätzt bei Siedetemperatur $\ldots \ldots$	148
4.91	XANES Fe $L_{2,3}$, Anpassung von CoTMPP/FeC ₂ O ₄ /S	149
4.92	XANES Fe $L_{2,3}$ -Kante, Anpassung von FeTMPPCl/Co C_2O_4/S	149
4.93	XANES Co ${\rm L}_{2,3}$ -Kante, Katalysatoren und Referenz substanzen $\ \ldots \ \ldots$	150
4.94	XANES Co $\mathrm{L}_{2,3}\text{-}\mathrm{Kante},$ Katalysator CoTMPP/CoC_2O_4/S und CoTMPP	151
4.95	XANES S L_{2,3}-Kante, FeTMPPCl/CoC_2O_4/S und FeTMPPCl/FeC_2O_4/S $\ .$	151
$\begin{array}{c} 4.94 \\ 4.95 \end{array}$	XANES Co L _{2,3} -Kante, Katalysator CoTMPP/CoC ₂ O ₄ /S und CoTMPP XANES S L _{2,3} -Kante, FeTMPPCl/CoC ₂ O ₄ /S und FeTMPPCl/FeC ₂ O ₄ /S	 3.

4.96	XANES S $L_{2,3}$ -Kante, Katalysator CoTMPP/Fe C_2O_4/S , Co S_2	152
4.97	XANES N K-Kante, Katalysatoren und Porphyrin-Vorläufersubstanzen	152
4.100	Mößbauer-Spektrum CoTMPP/Fe C_2O_4/S , geätzt bei RT	160
4.101	Mößbauer-Spektrum FeTMPPCl/FeC ₂ O ₄ /S, geätzt bei RT	161
4.102	Mößbauer-Spektrum FeTMPPCl/Fe C_2O_4/S	161
4.103	Mößbauer-Spektrum FeTMPPCl/Co C_2O_4/S	162
4.104	Mößbauer-Spektrum FeTMPPCl/Co C_2O_4/S	162
4.105	Mößbauer-Spektrum CoTMPPCl/Fe C_2O_4/S	163
4.106	ESR-Spektren der Porphyrin-Precursoren	166
4.107	ESR-Spektren der Katalysatoren (1)	167
4.108	ESR-Spektren der Katalysatoren (2) $\ldots \ldots \ldots$	168
5.1	Spektrale Strahldichte des schwarzen Körpers	172
5.2	Absorption von Infrarotstrahlung durch Surlyn-Folie	175
5.3	Schematischer Aufbau einer elektrochem. Zelle zur Infrarotspektroskopie $\ .$.	176
5.4	CV-Diagramme, Infrarotzelle in 2-Elektroden-Anordnung	177
5.5	Potentiostatische Messung, Infrarot-Zelle	177
5.6	Elektrochemische Zelle zur Infrarot-Thermographie	178
5.7	Infrarotaufnahme, In-situ Zelle in 3D-Darstellung	180

Tabellenverzeichnis

1.1	Klassifizierung von Brennstoffzellen	5
2.1	Parameter des ⁵⁷ Fe-Mößbauerübergangs	30
2.2	Isomerieverschiebung häufiger Referenzsubstanzen	31
4.2	Elektronenbindungsenergien und Fluoreszenzenergien ausgewählter Elemente	64
4.3	Parameter zur Auswertung der EXAFS-Spektren	68
4.4	Pfadparameter zur Simulation in Artemis	75
4.5	RDE-Ergebnisse der Katalysatoren mit Precursor FeTMPPCl	94
4.6	Löslichkeiten von Eisen- und Cobaltverbindungen in Säure	104
4.7	Stromdichten (RDE), Variation der Pyrolysetemperatur	106
4.8	XES-Proben	138
5.2	Durchlässigkeit verschiedener Fenstermaterialien im IR-Bereich	176

Symbolverzeichnis

Lateinische Buchstaben

A	_	Absorption
A	Bq	Aktivität (radioaktiver Substanzen)
a	_	Aktivität
a	_	Hyperfeinkopplungskonstante
B	Т	Magnetische Flußdichte
B	$\mathrm{Ams^{1/2}mol^{-1}}$	Levich-Konstante
c	$ m molm^{-3}$	Konzentration
C	F	Kapazität
D	$\mathrm{cm}^2\mathrm{s}^{-1}$	Diffusionskoeffizient
E	J	Energie
${m E}$	${ m V}{ m m}^{-1}$	elektrische Feldstärke
E_0	V	elektromotorische Kraft (EMK), Ruheklemmenspannung
$E_{\rm kl}$	V	Klemmenspannung
ΔE_Q	${\rm mms^{-1}}$	Quadrupolaufspaltung
G	J	Freie Enthalpie
g	_	g-Faktor
g	$\rm Jmol^{-1}$	molare Freie Enthalpie
Δg^{\neq}	$\rm Jmol^{-1}$	spezifische Freie Aktivierungsenthalpie
H	J	Enthalpie
H	$\mathrm{A}\mathrm{m}^{-1}$	magnetische Feldstärke
Ι	W	Strahlungsintensität
Ι	А	Stromstärke
j	${ m A}{ m m}^{-2}$	elektrochemische Stromdichte
j_l	${ m A}{ m m}^{-2}$	Diffusionsstromdichte
j_0	$\mathrm{Am^{-2}}$	Austauschstromdichte
j_{00}	$\mathrm{Am^{-2}}$	Standard-Austauschstromdichte
j_D	$\mathrm{Am^{-2}}$	Durchtrittsstromdichte
$j_{ m lim}$	$\mathrm{Am^{-2}}$	Diffusionsgrenzstromdichte
k	$Å^{-1}$	Wellenzahl
L_{λ}	$Wm^{-2}\mu msr^{-1}$	spektrale Dichte der Strahldichte
m	kg	Masse
\tilde{M}	$\rm kgmol^{-1}$	Molmasse
M	_	Magnetisierung
n	mol	Stoffmenge
n_e	-	Elektrodenreaktionswertigkeit

Q	J	Wärme
Q	С	Ladung
R	Ω	Widerstand
r	$\mathrm{mol}\mathrm{m}^{-3}\mathrm{s}^{-1}$	Reaktionsgeschwindigkeit
t	S	Zeit
T	Κ	absolute Temperatur
T	_	Transmission
U	V	Spannung
U	J	Innere Energie
V	m^3	Volumen
\bar{v}	$\mathrm{m}^3\mathrm{mol}^{-1}$	molares Volumen
v	${ m ms^{-1}}$	Geschwindigkeit

Griechische Buchstaben

α	_	Durchtrittsfaktor
χ_{lpha}	V	Oberflächenpotenzial
$\chi_{ m mag}$	_	magnetische Suszeptibilität
χ	_	EXAFS-Funktion
δ_N	m	Nernstsche Diffusionsgrenzschicht
δ	${ m mms^{-1}}$	Isomerieverschiebung
ε	$\rm cm^2 mol^{-1}$	molarer Absorptionskoeffizient (Extinktionskoeffizient)
ε	${ m F}{ m m}^{-1}$	Dielektrizitätskonstante (Permittivität)
ε_r	_	relative Dielektrizitätskonstante
η_c	V	Konzentrationsüberspannung
η_D	V	Durchtrittsüberspannung
η_d	V	Diffusionsüberspannung
ν	Hz	Frequenz
γ_e	_	gyromagnetisches Verhältnis des Elektrons
Γ	${ m mms^{-1}}$	Halbwertsbreite (line width)
Γ	eV	Linienbreite
λ	m	Wellenlänge
μ	_	Absorptionskoeffizient
μ	V	chemisches Potenzial
$ ilde{\mu}$	V	elektrochemisches Potenzial
μ_r	_	relative Permeabilität
u	_	stöchiometrischer Koeffizient
u	$\mathrm{m}^2\mathrm{s}^{-1}$	kinematische Viskosität
ω	s^{-1}	Winkelgeschwindigkeit
φ	V	Elektrodenpotenzial
$arphi_0$	V	Gleichgewichtspotenzial (Ruhepotenzial)
$arphi_{00}$	V	Standard-Elektrodenpotenzial (Normalpotenzial)
ϕ_{lpha}	V	Inneres Potenzial
ψ_{lpha}	V	Äußeres Potenzial
ρ	$\Omega\mathrm{m}^2\mathrm{m}^{-1}$	spezifischer Widerstand

ϱ	${ m kg}{ m m}^{-3}$	Dichte
ϑ	$^{\circ}\mathrm{C}$	Temperatur
\tilde{x}	_	Stoffmengenanteil (Molanteil)
$\dot{\xi}$	$ m mols^{-1}$	Reaktionsgeschwindigkeit

Konstanten

$c = 2,99792458 \cdot 10^8 \mathrm{ms}^{-1}$	Lichtgeschwindigkeit
$e_0 = 1,60218 \cdot 10^{-19}\mathrm{As}$	Elementarladung
$\varepsilon_0 = 8,854 \cdot 10^{-12} \mathrm{F m^{-1}}$	elektrische Feldkonstante
$F = 96485,3\mathrm{Asmol^{-1}}$	Faradaysche Konstante
$g_e = 2,00232$	g-Faktor des Elektrons
$h = 6,62608 \cdot 10^{-34}\mathrm{Js}$	Plancksche Konstante
$\hbar = 1,05457 \cdot 10^{-34}\mathrm{Js}$	Dirac'sche Konstante
$k = 1,38066 \cdot 10^{-23}\mathrm{JK^{-1}}$	Boltzmann-Konstante
$m_e = 9,1095 \cdot 10^{-31} \mathrm{kg}$	Masse des Elektrons
$\mu_B = 9,274 \cdot 10^{-24} \mathrm{J}\mathrm{T}^{-1}$	Bohrsches Magneton
$\mu_0 = 1.26 \cdot 10^{-6} \mathrm{V s A^{-1} m^{-1}}$	absolute Permeabilität
$R = 8,314 \mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$	ideale Gaskonstante
$T = 298,15 \mathrm{K}$	Standardtemperatur

Abkürzungen und Akronyme

AFC	Alkalische Brennstoffzelle (Alkaline Fuel Cell)
BET	Methode der Oberflächenanalytik (nach Brunauer, Emmett und Teller)
BHKW	Blockheizkraftwerk
BZ	Brennstoffzelle
DMFC	Direkt-Methanol-Brennstoffzelle (Direct Methanol Fuel Cell)
DSC	Wärmestromkalorimetrie (Differential Scanning Calorimetry)
EDX	Energiedispersive Röntgenspektroskopie (Energy Dispersive
	X-Ray Analysis)
EMK	Elektromotorische Kraft
ESR	Elektronenspinresonanz (Electron Spin Resonance,
	Electron Paramagnetic Resonance (EPR))
EXAFS	Extended X-Ray Absorption Fine Structure
FC	Brennstoffzelle (Fuel Cell)
\mathbf{FT}	Fouriertransformierte
GDE	Gas-Diffusionselektrode (Gas Diffusion Electrode)
GDL	Gas-Diffusionsschicht (Gas Diffusion Layer)
HWB	Halbwertsbreite Γ (Line Width)
IS	Isomerieverschiebung δ (Isomer Shift)
MCFC	Karbonatschmelzen-Brennstoffzelle (Molten Carbonate Fuel Cell)
MEA	Membran-Elektroden-Einheit (Membrane Electrode Assembly)
MS	Massenspektroskopie

MSE	Quecksilbersulfat-Elektrode (Mercury Sulfate Electrode)	
MSP	Mehrfach-Streupfade (Multiple Scattering Paths)	
NEXAFS	Near-Edge X-Ray Absorption Fine Structure	
NHE	Normalwasserstoffelektrode (Normal Hydrogen Electrode)	
RHE	Reversible Wasserstoffelektrode (Reversible Hydrogen Electrode)	
PAFC	Phosphorsäure-Brennstoffzelle (Phosphoric Acid Fuel Cell)	
PEMFC	Polymerelektrolytmembran-Brennstoffzelle (Proton Exchange	
	Membrane Fuel Cell)	
PTFE	Polytetraflouroethylen (Handelsname Teflon [®])	
QS	Quadrupolaufspaltung ΔE_Q (Quadrupole Splitting)	
RDE	Rotierende Scheibenelektrode (Rotating Disk Electrode)	
RDF	Radial Distribution Function (Fouriertransf. der EXAFS-Funktion)	
RRDE	Rotierende Ring-/Scheibenelektrode (Rotating Ring Disk Electrode)	
RT	Raumtemperatur	
SOFC	Oxid-Keramische Brennstoffzelle (Solid Oxide Fuel Cell)	
TG	Thermogravimmetrie	
TOF-SIMS	Flugzeit-Sekundärionen-Massenspektrometrie (Time-of-Flight Secondary	
	Ion Mass Spectrometry)	
T_{S}	Siedetemperatur	
XAFS	X-Ray Absorption Fine Structure	
XANES	X-Ray Absorption Near-Edge Spectroscopy	
XES	Röntgen-Emissionsspektroskopie (X-Ray Emission Spectroscopy)	
XPS	Röntgen-Photoelektronenspektroskopie (X-ray Photoelectron	
	Spectroscopy)	
XRD	Röntgendiffraktometrie (X-Ray Diffractometry)	

Danksagung

Im Rahmen dieser Arbeit habe ich die Unterstützung vieler Betreuer, Kollegen und Freunde erhalten. Unter diesen möchte ich mich besonders bedanken bei:

- Prof. Dr. Helmut Tributsch für die Möglichkeit diese interessante Arbeit in seiner Arbeitsgruppe durchführen zu können, die vielen Hilfestellungen auf dem Weg zu ihrer Fertigstellung und die große Freiheit bei der Planung der Experimente,
- Prof. Dr. Klaus Christmann für die Übernahme des zweiten Gutachtens dieser Arbeit,
- Dr. habil. Sebastian Fiechter für die vielen fachlichen Diskussionen und die Unterstützung bei der Durchführung der experimentellen Arbeiten,
- Dr. Peter Bogdanoff für viele wichtige fachliche Diskussionen und Anregungen,
- der Arbeitsgruppe Elektrochemie des Hahn-Meitner-Instituts Iris Dorbandt, Anne Havemann, Iris Herrmann, Ulrike Koslowski, Christa Krämer und Neli Weiß für die gute und herzliche Zusammenarbeit und die Unterstützung bei der Durchführung meiner Experimente,
- Dr. Rainer Sielemann für die intensive Unterstützung bei den Mößbauer-Messungen,
- Paolo Imperia und Detlef Schmitz für die Betreuung bei der Durchführung der XANES-Messungen,
- Prof. Dr. Alexei Erko für die freundliche Unterstützung bei den EXAFS-Messungen,
- Dr. Klaus Lips für die Hilfe bei der Durchführung der ESR-Messungen,
- Dr. Immo Kötschau und der gesamten CISSY-Gruppe für die Hilfe bei der Durchführung der XES-Messungen,
- meinen Kollegen und Mitdoktoranden Axel Barkschat, Matthias Junghänel, Thomas Moehl, Bernhard Neumann und Markus Thomalla f
 ür das herzliche Verh
 ältnis und viele Anregungen und Tipps,
- Anja Schmidt für die moralische Unterstützung, insbesondere in den letzten Wochen vor der Abgabe.