
Chapter 2

Theoretical concepts

2.1 Overview of the employed computational

methods

All research carried out throughout this work is based on quantum mechanics and quan-
tum dynamics. This chapter will introduce the reader to the most important theoretical
concepts needed to understand how the results were obtained. Section 2.2 describes the
theoretical background on which quantum chemical program packages as Gaussian 98
[66] are based1. Such computational packages are used to calculate the potential energy
surfaces and the (transition) dipole moments of a molecular model system. The section
covers the so-called ab initio methods, based on the Hartree-Fock theory, as well as meth-
ods based on a functional of the charge density, i.e. the density functional theory. In
section 2.3 the concepts of quantum dynamics are presented. In particular, the numerical
methods needed for quantum dynamical simulations are introduced and discussed in some
detail. The chapter finishes with an overview of several approaches to molecular control
using laser fields.

1More detailed discussions on this topic can be found in refs. [67, 68, 69, 70].
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2.2 Quantum Chemistry

2.2.1 Born-Oppenheimer approximation

In order to perform quantum dynamical simulations an energetical description of the
molecular system in terms of its eigenstates is needed. The solution of the time indepen-
dent Schrödinger equation (TISE) gives the total energy Etot of the molecule at a given
time:

Ĥmol |Ψ〉 = Etot |Ψ〉 . (2.1)

Here the molecular Hamilton operator Ĥmol describes all interactions among the electrons
and nuclei of the system. For a molecule, however, there is no analytical solution of
the TISE and different numerical approaches based on the so-called Born-Oppenheimer
approximation [71] have been developed. The Born-Oppenheimer approximation, which
allows to separate the motion of the heavy nuclei from that of the light electrons, is the
first step to solve equation 2.1 and it will be explained in the following.

Consider a molecule composed of Nnuc nuclei with masses Mn, momenta ~Pn and nu-
clear charges Zn at Cartesian coordinates ~Rn surrounded by Nel electrons with mass me,
momenta ~pj and charge e at coordinates ~rj. Then, the complete molecular Hamiltonian

Ĥmol = T̂el + V̂el,nuc + V̂el,el + T̂nuc + V̂nuc,nuc (2.2)

consists of terms for the kinetic energy of the electrons

T̂el =

Nel∑

j=1

~p 2j
2me

, (2.3)

for the kinetic energy of the nuclei

T̂nuc =
Nnuc∑

n=1

~P 2n
2Mn

, (2.4)

and of potential energy terms, including the Coulomb pair interaction between electrons

V̂el,el =

Nel∑

i<j

e2

|~ri − ~rj|
, (2.5)

between nuclei

V̂nuc,nuc =
Nnuc∑

m<n

ZmZne
2

|~Rm − ~Rn|
, (2.6)
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and between electrons and nuclei

V̂el,nuc = −
Nnuc∑

n=1

Nel∑

j=1

Zne
2

|~rj − ~Rn|
. (2.7)

Since the mass of a nucleus is much larger than the mass of an electron, nuclear motion is
usually much slower compared to the motion of the electrons. Thus, the electrons respond
almost instantaneously to any change of the nuclear geometry. Based on this fact the
Born-Oppenheimer approximation assumes that the electrons move in an electrostatic
field generated by the “fixed” geometry of the nuclei. Therefore, it is possible to separate
electronic and nuclear motions. This separation simplifies the TISE because the total
wave function |Ψ〉 can be written as a product of a nuclear wave function |Ψnuc〉 and an
electronic wave function |Ψel〉:

|Ψ〉 =
∣∣∣Ψ(~R1, ~R2, ..., ~RNnuc , ~r1, ~r2, ..., ~rNel)

〉

≈
∣∣∣Ψnuc(~R1, ~R2, ..., ~RNnuc)

〉
×
∣∣∣Ψel(~r1, ~r2, ..., ~rNel ; {~R1, ~R2, ..., ~RNnuc})

〉
. (2.8)

Here the nuclear wave function |Ψnuc〉 depends only on the nuclear coordinates ~Rn; in
contrast, the electronic wave function |Ψel〉 depends on the coordinates of the electrons

~rj as well as parametrically on the nuclear coordinates ~Rn. Since only those terms of
the molecular Hamiltonian depending on the electronic coordinates act on the electronic
wave function it is possible to write an electronic Schrödinger equation for a stationary
molecular geometry:

Ĥel |Ψel〉 = (T̂el + V̂el,el + V̂el,nuc) |Ψel〉 = Eel |Ψel〉 (2.9)

The solution of this equation provides the electronic energy Eel and wave function |Ψel〉
for a given nuclear geometry. The electronic energy together with the nuclear repulsion
term V̂nuc,nuc forms the potential energy hypersurface (PES) of the molecule along the

nuclear coordinates ~Rn:

V̂
PES

(~R1, ~R2, ..., ~RNnuc) = Eel(~R1, ~R2, ..., ~RNnuc) + V̂nuc,nuc(~R1, ~R2, ..., ~RNnu). (2.10)

Because of the separation ansatz (2.8) V̂nuc,nuc is constant with respect to the electronic
coordinates.

The electron-nuclear interactions V̂el,nuc in the electronic Schrödinger equation (2.9)

depend only parametrically on the nuclear coordinates ~Rn, i.e. no transitions between
different stationary electronic states occur. Therefore, potential energy surfaces of elec-
tronic states which are energetically well separated are well described within the Born-
Oppenheimer approximation (eqn. (2.10)). In this work, only processes on these so-called
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adiabatic PESs are considered, for each electronic state i a different V̂
PES

i is used. Then,
the nuclear Schrödinger equation

Ĥnuc

∣∣Ψi
nuc

〉
= (T̂nuc + V̂

PES

i )
∣∣Ψi

nuc

〉
= Ei

nuc

∣∣Ψi
nuc

〉
(2.11)

describes the geometry of the nuclei in the average field generated by the fast moving
electrons for a given electronic state i. Changes in the molecular geometry induced by
laser fields are specified by the time-dependent nuclear Schrödinger equation which will
be introduced in section 2.3. The solution of the time-independent nuclear Schrödinger
equation (2.11) will be discussed in section 2.2.8.

2.2.2 Hartree-Fock method

Since the electronic Schrödinger equation (2.9) presents a multi-particle problem approx-
imations have to be considered for its solution. In the Hartree-Fock theory [72] the Nel

particle wave function |Ψel〉 is described as an anti-symmetric product ofNel single particle
functions χi(~xi), the so-called Slater determinant:

|Ψel〉 =
1√
Nel!

∣∣∣∣∣∣∣∣

χ1(~x1) χ2(~x1) . . . χNel(~x1)
χ1(~x2) χ2(~x2) . . . χNel(~x2)
. . . . . . . . . . . .

χ1(~xNel) χ2(~xNel) . . . χNel(~xNel)

∣∣∣∣∣∣∣∣
. (2.12)

Here each electron is described by a spin-orbital χi(~xi) which is a product of a spatial
orbital ψi(~ri) that depends on the position of the electron ~ri and a spin orbital α(ω) or
β(ω) that depends only on its spin coordinate:

χi(~xi) = χi(~ri, ω) = ψi(~ri) ·
{
α(ω)
β(ω)

(2.13)

Assuming the spin-orbitals χi(~xi) form a complete orthonormal basis, they are determined
by variational methods, i.e. the expectation value of the Slater determinant with the
electronic Hamilton operator becomes a minimum:

〈Ψel| Ĥel |Ψel〉 = min. (2.14)

This ansatz leads to the Hartree-Fock (HF) equations which give as solution the orbital
eigenenergies εi and the spin-orbitals χi(~xi) for each electron i:

F̂χi(~xi) = εiχi(~xi), i = 1, ..., Nel. (2.15)
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The Fock operator F̂,

F̂(~ri) = ĥ(~ri) + V̂
HF

= ĥ(~ri) +

Nel∑

j=1

(
Ĵj(~ri)− K̂j(~ri)

)
(2.16)

consists of the single particle operator

ĥ(~ri) =
~p 2i
2me

−
Nnuc∑

n=1

Zne

|~ri − ~Rn|
, (2.17)

which describes the motion of a single electron in the field of the nuclear frame, and the

Hartree-Fock potential V̂
HF

which describes the interaction of each electron with all the

other electrons. In turn, V̂
HF

is composed of the Coulomb operator Ĵj

Ĵjχi(~xi) =

[∫
dxjχ

∗
j(~xj)

1

|~ri − ~rj|
χj(~xj)

]
χi(~xi) (2.18)

and the exchange operator K̂j

K̂jχi(~xi) =

[∫
dxjχ

∗
j(~xj)

1

|~ri − ~rj|
χi(~xj)

]
χj(~xi). (2.19)

The first term of V̂
HF

specifies an electron in the average field created by all other elec-
trons. The second term arises from the anti-symmetric character of the Slater determinant
(2.12) and has no classical analogy.

Since the Fock operator acting on the spin-orbitals χi(~xi) depends itself on these

functions via the Hartree-Fock potential V̂
HF

an iterative method has to be used in order
to solve the Hartree-Fock equations (2.15). First, an initial guess of the spin-orbitals
χi is used to calculate Ĵ and K̂ and, hence, the Fock operator F̂. Then, the Hartree-
Fock equations are solved yielding new χi which are again used to calculate a new Fock
operator. This procedure, known as the self consistent field method, is repeated until
convergence is reached [68].

2.2.3 Basis sets

In practice the spatial part of the spin-orbitals ψi is unknown and it is expanded in a
proper basis set φk(~r). This is called the linear combination of atomic orbitals (LCAO)
approximation:

ψi(~ri) =
M∑

k=1

cikφk(~r). (2.20)
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The coefficients cik are derived variationally (discussed in the following section) until the
lowest electronic energy is obtained (see eqn. 2.14).

The basis functions φk(~r) are usually chosen as Cartesian Gaussian type orbitals
(GTO), also called primitive Gauss-functions:

g(~r) = N · xnx · yny · znz · e−α~r2 (2.21)

with normalization constant N and triple nx, ny, nz set of integers; the sum l = nx+ny+nz
is used to classify the primitive Gauss-functions as s-type (l = 0), p-type (l = 1), d-type
(l = 2), f -type (l = 3) orbitals, etc. The factor α in the exponent determines the decline
of the amplitude of the GTO with increasing radial distance. GTOs with large α are
localized close to the nuclei, while GTOs with small α are rather diffuse.

The GTOs are usually optimized for isolated atoms and, therefore, often do not de-
scribe the nature of chemical bonds sufficiently enough. The best result would be obtained
if each atomic orbital is described by an infinite number of GTOs and all coefficients could
be optimized during a quantum chemical calculation. In practice, this is not possible be-
cause of the computational effort. Thus, linear combinations of primitive Gauss-functions
g(~r), so called contractions φ(~r), are used:

φ(~r) =
∑

p

dpgp(~r). (2.22)

The coefficients dp are chosen such that the contractions describe the electronic orbitals
in the most realistic way.

If only the least number of contracted basis functions φ – constructed of an arbitrary
number of primitive GTOs – per atom is used required to describe the occupied atomic
orbitals of that atom, then a so-called minimal basis set is employed.2 If more than one
contraction is used the basis set is called double zeta, triple-zeta, etc. Their advantage
compared to the minimal basis set is that they allow a better description of the anisotropy
of the electron cloud around the atom by mixing e.g. localized functions with more diffuse
functions. In case of split valence basis sets multiple contractions are only used for the
valence electrons while the core electrons are described by a single contraction.

In order to describe polar bonds polarization functions are added to the basis set.
These functions include higher l- and m− quantum numbers than those used for the
(valence) electrons in a minimal basis set to allow for better localization of the orbitals

2This is not quite accurate, since usually five functions (1s,2s and 2p) are considered to constitute a
minimal basis set for Li and Be, for example, even though the 2p orbital is not occupied in these atoms.
The 2sp (2s and 2p), 3sp,4sp,3d,...,etc. shells are usually considered together.
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along a chemical bond. In case of anions or Rydberg orbitals often diffuse functions are
included in the basis set. A diffuse function is a GTO with a very small α-value. It allows
a more realistic description of weakly bounded electrons with significant probability at
relatively large distances from the nuclei.

In general, the quality of a basis set depends on the numbers of contractions used
per energy level as well as on the number of primitive Gaussian type functions for each
contraction. With increasing number of basis functions the computational effort grows
bigger. Hence, a good choice of a basis set in terms of chemical accuracy and computa-
tional time is important. Usually geometrical optimizations are carried out using small
basis sets, while electronic energies call for larger and more flexible basis sets. For an
extensive overview of the commonly used basis sets in quantum chemistry the reader is
referred to refs. [73, 74, 75, 76, 77, 78].

2.2.4 Roothaan-Hall equations

In order to solve the electronic Schrödinger equation (2.9) the basis set obtained from the
LCAO ansatz (2.20) is inserted into the Hartree-Fock equations (2.15). Using the Ritz
variation method for finding the optimal coefficient cik which minimizes the electronic
energy (2.14), the Roothaan-Hall equations [79] are obtained:

FC = SCε (2.23)

with F being the Fock matrix with elements

F ij = 〈φi(~r)| F̂(~r) |φj(~r)〉 (2.24)

and S the overlap matrix with elements

Sij = 〈φi(~r)| φj(~r)〉 . (2.25)

The matrix C contains the coefficients cik of the basis functions φk(~r). These equations
must be solved iteratively, since the Fock-matrix depends on the coefficients cik. As
described in section 2.2.2 an initial guess for C0 is needed in order to calculate the first
Fock-matrix F 0. Then, the eigenvalue problem is solved by diagonalization of F 0.3As a

3Equation (2.23) must be first orthogonalized using e.g. the transformation matrix S−1/2 to obtain
the form of the usual matrix eigenvalue problem:

S− 1
2FS− 1

2S
1
2C = F ′C′ = C′ε = S

1
2Cε

.
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solution a new coefficient matrix C1 is obtained which is again used to construct a new
Fock matrix F 1 to be again diagonalized. This procedure is repeated until a convergence
criterion is reached. Then, the coefficients cik of equation (2.20) provide for the given basis
set the optimal spin-orbitals χi(~x) and their eigenenergies εi. The total electronic energy
Eel is the expectation value of the electronic Hamilton operator Ĥel using the respective
Slater determinant |Ψel〉 constructed from the obtained spin-orbitals.

2.2.5 Electron correlation methods

Within the limits of the Hartree-Fock method the electron-electron interactions are ap-
proximated by an averaged potential. The difference between the total electronic Hartree-
Fock energy EHF (= Eel) in the limit of a complete basis set and the exact non-relativistic
energy within the Born-Oppenheimer approximation is defined as the correlation energy
[80]:

Ecorr = Eexact − EHF . (2.26)

Physically it corresponds to the motion of the electrons being correlated, on average they
are further apart than described by the HF wave function. Usually two types of correlation
effects are distinguished. The dynamical correlation found in all systems describes the
interaction between two adjacent electrons, e.g. two electrons belonging to the same
spatial MO. The non-dynamical or static correlation is caused by the inter-orbital pair
correlation where two MOs are spatially close. The negligence of the static correlation
can lead to a wrong ground state wave function, e.g. for the dissociation of a molecule.

In order to include correlation effects into the calculation “post” Hartree-Fock methods
are used. Besides methods based on perturbation theory (discussed in the following
section) there exist methods using more than one electronic configuration to solve the
electronic Schrödinger equation, like configurational interaction (CI) or complete active
space self consistent field (CASSCF) (especially used for electronic excited states).

In the CI method the wave function of the Nel-electron system is set up as a linear
combination of appropriate Nel-particle wave functions (Slater determinants); the coef-
ficients of this superposition are derived variationally. This superposition is constructed
using the Slater determinant for the electronic ground state (Hartree-Fock determinant)
plus determinants for a single excitation of an electron (CIS), determinants for a double
excitation of two electrons (CID), or both (CISD), and so on. If all excitations are in-
cluded the full CI limit is reached. If additionally an infinite number of basis functions is
included the exact non-relativistic solution of the electronic Schrödinger equation within
the Born-Oppenheimer approximation is obtained. In practice, a full CI is beyond cur-
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rent computational power and even for a finite basis set CI based methods are usually
truncated at 3rd or 4th order.

Often the determinants used for truncated CI do not describe properly the orbitals
needed in the electronic excited states. A possible improvement relies on using multi-
configurational methods, where not only the coefficients of the CI expansion but also the
coefficients for constructing the MOs in the given basis are optimized simultaneously. In
the multi-configurational method CASSCF the molecular orbitals are split in active and
inactive orbitals. Within the active space a full CI is performed while the inactive space
is left in a fixed configuration. A possible disadvantage of the CASSCF method is that
it requires a good choice of the active space for which it is necessary to carry out several
test calculations.

2.2.6 Møller-Plesset perturbation method

The standard way to include dynamical correlation effects is the Møller-Plesset (MP)
method. This method is based on perturbation theory and, hence, the Hamilton operator

is split into an unperturbed part Ĥ
(0)
, whose solution is known, and a perturbation V̂:

Ĥ = Ĥ
(0)

+ λV̂. (2.27)

For small perturbations (λ¿ 1) the eigenfunctions and eigenenergies of the total Hamil-
ton operator Ĥ are expanded in a series:

E = E(0) + λE(1) + λ2E(2) + . . . (2.28)

|Ψ〉 =
∣∣Ψ(0)

〉
+ λ

∣∣Ψ(1)
〉
+ λ2

∣∣Ψ(2)
〉
+ . . . . (2.29)

By inserting this ansatz into the Schrödinger equation, the following expressions for the
energy corrections are obtained4:

E(1) =
〈
Ψ(0)

∣∣ V̂
∣∣Ψ(0)

〉
(2.30)

E(2) =
〈
Ψ(0)

∣∣ V̂
∣∣Ψ(1)

〉
(2.31)

... .

Using the Hartree-Fock method as a basis, the Fock operator F̂ is chosen as the unper-
turbed operator. Therefore, the perturbation is equal to the difference between the exact

4Note that for the calculation of the nth-order energy the (n-1)th-order wave function is required.
However, the knowledge of the nth-order wave function allows a calculation of the (2n+1)th-oder energy,
see e.g. [81].
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Hamiltonian and the Fock operator:

V̂(~ri) = Ĥ(~ri)− F̂(~ri) =
N∑

i<j

1

r̂ij
−

N∑

i

(
Ĵi − K̂i

)
. (2.32)

Thus, the first correction term for the energy E(1) is already included in the Hartree-
Fock energy EHF . Often the expansion is stopped after the second order term, in the
so-called MP2. Higher orders may further improve the total energy, but demand more
computational time. It is important to note that the perturbation method may give
energies which are below the exact non-relativistic energy, since it does not rely on the
variational principle.

2.2.7 Time-dependent density functional theory

The density functional theory (DFT)5 is based on a completely different approach com-
pared to the so far discussed methods for calculating electronic energies. As found by
Hohenberg and Kohn the charge density ρ(r) provides enough information to calculate
molecular energies [70]. The first Hohenberg-Kohn theorem (HK-I) states that the com-
plete molecular potential V is a functional of the charge density ρ(r) and since, in turn,
the molecular potential is described completely by the Hamilton operator Ĥ, the full many
particle ground state of the molecule Ψ is also a functional of ρ(r) [84]:

ρ(r)↔ V ↔ Ψ. (2.33)

Therefore, it is possible to calculate the total electronic energy of the system Eel by
minimizing the charge density functional

Eel[ρel] = 〈Ψel[ρel]| Ĥ |Ψel[ρel]〉 = min, (2.34)

which depends on the electron density

ρel(r) =

Nel∑

i

|ψi(r)|2, (2.35)

where ψi is the spatial part of the single particle functions for the electron i. In analogy
to the HF equation (2.15), a set of single particle equations, the so-called Kohn-Sham

equations, are solved iteratively. The Hartree-Fock potential V̂
HF

is replaced by the DFT
potential defined as:

V̂
DFT

(r) =

∫
ρ(r′)

|r − r′|dr
′ + V̂XC . (2.36)

5For a detailed discussion see refs. [82, 81, 83].
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The first term describes the Coulomb electron-electron interaction similar to the exchange
integral Ĵ in HF theory. V̂XC is the potential due to the non-classical exchange-correlation
energy EXC . V̂XC is defined as:

V̂XC =
δEXC

δρ
. (2.37)

The energy for the non-classical electron correlation EXC covers all kind of electronic
interactions which cannot be described exactly. Only if the correlation energy EXC were
known exactly the solution of the Kohn-Sham equations would give the correct energy of
the exact Hamiltonian of the electronic Schrödinger equation. Since this is not the case
the energy obtained from a trial charge density ρ represents an upper limit to the exact
ground state energy Eexact

0 , provided that the exact functional is used:

EDFT [ρ] ≥ Eexact
0 . (2.38)

This is equivalent to the variational principle discussed in section 2.2.2 and it is known
as the second Hohenberg-Kohn theorem (HK-II).

The energy calculated by DFT depending on the density ρ is a sum of energy func-
tionals constructed from the kinetic energy of the non-interacting electrons T [ρ], their
interaction with the nuclei V [ρ], the electron-electron repulsion U [ρ] and the exchange
correlation energy for the electron correlation EXC :

EDFT [ρ] = T [ρ] + V [ρ] + U [ρ] + EXC [ρ]. (2.39)

The quality of the DFT approach, therefore, depends on the functionals used for the
exchange correlation energy. The Becke3LYP (B3LYP) hybrid functional which is a mix-
ture of Hartree-Fock exchange with DFT exchange-correlation functional is commonly
used. In particular the DFT exchange-correlation functional consists of the Becke’s 1988
exchange functional (B88 or B) [85] and the Lee-Yang-Parr (LYP) correlation functional
[86]. All functionals are combined by three parameters indicated by the number 3 in
B3LYP. The parameters are derived by fitting the results of DFT calculations for test
systems to experimental data.

It is obvious that the major disadvantage of the DFT method is the choice of the
functionals for the exchange correlation energy since they will not give reliable results for
all kind of molecular systems. The advantage of the DFT method is that the correla-
tion energy is already included in the calculation. Methods based on HF theory require
additional calculation for correlation energy via perturbation theory or variational meth-
ods. Thus, the computational effort for DFT calculations is usually smaller than for
calculations based on HF.

For calculations of the electronic excited states the time-dependent density functional
theory (TD-DFT) is applied [87]. If the molecular system is excited by a time-dependent
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perturbation, e.g. a time-dependent electric field, then the polarizability shows discrete
poles at the excitation energies of the unperturbed system [83]. The frequency dependent
polarizability α(ω) is related to the oscillator strength fi and the electronic excitation
energies ωi = Ei − E0 by the following expression:

α(ω) =
∑

i

fi
ω2i − ω2

. (2.40)

For the electronic excitation energy ω = ωi the polarizability α(ω) has poles. In the
Kohn-Sham equations the orbital energies of the electronic ground state are shifted by a
change in the perturbation frequency ω until a pole of the polarizability function, i.e. an
exact excitation energy, is reached. Since the excitation energies in TD-DFT are derived
in terms of the electronic ground state orbitals, sometimes they may not describe correctly
the excited states of the molecule. In this case CASSCF or rather CASPT2 6 are more
reliable, but they also demand high computational effort.

2.2.8 Fourier-Grid-Hamiltonian method

Once the electronic Schrödinger equation is solved for different molecular geometries
and, hence, the potential energy surfaces are obtained, the time independent nuclear
Schrödinger equation (2.11) has to be solved for each electronic potential state i. In gen-
eral, the nuclear Schrödinger equation describes all degrees of freedom of the molecule, as
there are translations, rotations and vibrations. By changing the coordinate system from
laboratory fixed coordinates to center of mass fixed coordinates the translational motion
may be separated from the other degrees of freedom:

∣∣Ψi
nuc

〉
=
∣∣Ψi

trans

〉
×
∣∣Φi

v

〉
. (2.41)

Then, the solution of the nuclear Schrödinger equations in terms of internal coordinates7

Ĥ
∣∣Φi

v

〉
= (T̂ + V̂i)

∣∣Φi
v

〉
= Ei

v

∣∣Φi
v

〉
(2.42)

gives rotational-vibrational (rovibrational) eigenfunctions |Φi
v〉 and eigenenergies Ei

v of the
nuclear framework. A rovibrational eigenfunction of the molecular system can be used as
an initial state for a quantum dynamical calculation solving the time-dependent nuclear
Schrödinger equation (discussed in the following section).

In order to solve the Schrödinger equation of nuclear motion (2.42) a numerical method
called Fourier Grid Hamiltonian method (FGH) [88, 89] has been applied throughout

6CASPT2 also includes dynamical correlation via perturbation theory.
7For simplicity the indices nuc and PES of the operators are omitted, cf. eqn. (2.11).
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this work. This method uses the fact that the kinetic energy operator T̂ is diagonal in
momentum space while the potential energy operator V̂ is diagonal in position space.
The Fourier transformation is used to transform the wave function from position space
to momentum space and vice versa.

The method is explained in more detail using as an example the one-dimensional
motion of a single particle. The Hamiltonian Ĥ of a single particle of mass m and the
momentum p̂ within a potential V (x̂) is given by:

Ĥ = T̂ + V (x̂) =
p̂2

2m
+ V (x̂). (2.43)

Two basis sets are chosen in which the Hamilton operator can be represented to span a
subspace of the Hilbert space. In position space the basis vectors are the eigenvectors of
the position operator x̂:

x̂ |x〉 = x |x〉 . (2.44)

Here, the eigenvectors form an orthonormal basis, i.e. they satisfy:

〈x| x′〉 = δ(x− x′), (2.45)

Îx =

∫ ∞

−∞

dx |x〉 〈x| . (2.46)

Therefore, the potential V is diagonal in position space:

〈x′|V (x̂) |x〉 = V (x)δ(x− x′). (2.47)

In momentum space the basis vectors are the eigenvectors of the momentum operator p̂,

p̂ |k〉 = k~ |k〉 , (2.48)

which also form a complete orthonormal basis set:

〈k| k′〉 = δ(k − k′), (2.49)

Îk =

∫ ∞

−∞

dk |k〉 〈k| . (2.50)

In momentum space the kinetic energy operator T̂ is diagonal:

〈k′| T̂ |k〉 = Tkδ(k − k′) =
~2k2

2m
δ(k − k′). (2.51)

The basis vectors of position space and of momentum space are related to each other by
the following expression:

〈k| x〉 = 1√
2π
e−ikx. (2.52)
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Using this transformation and the completeness (2.50) of the basis vectors of the momen-
tum space an expression for a matrix element of the Hamilton operator in position space
is derived:

〈x| Ĥ |x′〉 = 〈x| T̂ |x′〉+ V (x)δ(x− x′)

= 〈x|
{∫ ∞

−∞

|k′〉 〈k′| dk′
}

T̂

{∫ ∞

−∞

|k〉 〈k| dk
}
|x′〉+ V (x)δ(x− x′)

=

∫ ∞

−∞

〈x| k〉Tk 〈k| x′〉 dk + V (x)δ(x− x′)

=
1

2π

∫ ∞

−∞

eik(x−x
′)Tkdk + V (x)δ(x− x′). (2.53)

Then, the continuous function x is replaced by a set of discrete grid points xi. For a grid
with N grid points, spaced by a fixed interval ∆x, any grid point xi is found by:

xi = i∆x, i = 1, ..., N. (2.54)

The eigenvectors of the discrete basis satisfy

∆x 〈xi| xj〉 = δij, (2.55)

Îx =
N∑

i=1

|xi〉∆x 〈xi| . (2.56)

Using this discrete basis in position space the matrix elements 〈xi| Ĥ |xj〉 are given by:

Hij =
1

∆x





N/2∑

l=−N/2

eil2π(i−j)/N

N
· Tl + V (xi)δij



 (2.57)

with

Tl =
~2

2m
· (l∆k)2, ∆k =

2π

N∆x
. (2.58)

Any arbitray state function |Φ〉 can be expressed as a linear combinations of the basis
functions |xi〉 which may loosely thought of as unit Dirac delta functions distributed on
the grid points:

|Φ〉 =
∑

i

|xi〉∆xΦ(xi) =
∑

i

|xi〉∆xΦi, (2.59)

with the Φi corresponding to the value of the wave function at the grid points. Then, the
expectation value of the energy to the state function |Φ〉 is

E =
〈Φ| Ĥ |Φ〉
〈Φ| Φ〉 =

∑
ij Φ

∗
i∆xHij∆xΦj

∆x
∑

i |Φi|2
. (2.60)
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Minimizing this energy with respect to variation of the coefficients Φi yields the standard
set of secular equations. Finding the roots of the secular determinant is a computation-
ally inefficient procedure, but there exist numerous, efficient algorithms for diagonalizing
Hermitian matrices. Diagonalization of the complete Hamiltonian matrix Hij provides
the eigenfunctions and eigenvalues of the Hamilton operator, i.e. |Φi

v〉 and Ei
v in case of

eqn. (2.42), on a given grid. The eigenfunctions obtained by this method are the exact
solutions of the Hamilton operator Ĥ for the given discrete subspace of the complete
Hilbert space.

The major disadvantage of the method is its grid size dependency. The size of the grid
representation of the Hamilton matrix which has to be diagonalized for a system with N
grid points is N 2. For the one and two-dimensional problems discussed in this work up
to about 4096 grid points were used, which is about the maximum standard computers
can handle nowadays. If more grid points are needed for e.g. increasing the number of
dimensions, the most important technical limitation is the amount of memory where the
complete matrix has to be kept during the calculation. An advantage of the FGH method
is that the discretisation used for position space is also used for the posterior quantum
dynamical calculations (see section 2.3.1). Therefore, the numerical error caused by the
transformation from one finite, reduced basis to another does not exist.

One possible solution to the problem of fast growing matrix sizes using the FGH
method is to use an alternative technique, called discrete variable representation method
(DVR) [90]. It uses, instead of a regular grid, a set of basis functions specially tailored
to the problem. This usually reduces significantly the number of required grid points
and, hence, the computational effort. Still, depending on the chosen basis functions,
e.g. an irregular grid, the dynamical calculations may become more difficult if no basis
transformation – which again may cause numerical errors – is performed.

Instead of diagonalizing the complete Hamilton matrix the method called Chebychev
relaxation [91] can be used to obtain the rovibrational eigenfunctions and eigenenergies
of a molecular system. Here a propagation in imaginary time is performed starting from
a guessed initial wave function to relax the system to the energetically lowest eigenstate.
The initial wave function must be chosen such that it is not orthogonal to the desired
eigenfunction, for some systems this may lead to many trial runs. In order to get the next
energetically higher eigenstates the calculated lower eigenfunctions must be projected out
of the space of eigenfunctions in every time step of following relaxations. Since, due to this
procedure the numerical error increases with the number of eigenstates, this method is
restricted to problems where a rather small number of eigenstates and -energies is needed.
In case of the symmetric double well potential, as used in this work, symmetric and anti-
symmetric eigenfunctions have to be calculated separately since the initial guess must be
of the proper symmetry. Still, the major advantage of this method compared to the FGH
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method is the scaling of N · logN , making the Chebychev relaxation computationally
more efficient.

2.3 Quantum dynamics

2.3.1 Time-dependent nuclear Schrödinger equation

The solution of the time-independent nuclear Schrödinger equation yields the rovibra-
tional eigenstates and eigenenergies of the molecular system, as discussed in the previous
section. In order to describe the time-dependent properties of the model system, e.g. its
interaction with a time-dependent laser field, it is necessary to solve the time-dependent
nuclear Schrödinger equation (TDSE). The resulting wave packet dynamics are obtained
by solving the TDSE numerically as it will be discussed in the following sections. At first
a general solution of TDSE using the time-dependent evolution operator is considered.

The dynamics of the nuclear frame of a molecule is described by the time-dependent
nuclear Schrödinger equation:

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 , (2.61)

with

Ĥ(t) = T̂ + V̂ + Ŵ(t). (2.62)

The molecular Hamilton operator Ĥ is given by the kinetic operator T̂ (= T̂nuc), the

potential V̂ (= V̂
PES

) and a time-dependent interaction of the molecule with an electro-
magnetic field, e.g. a laser pulse, Ŵ(t).

In case of more than one electronic state the wave function |Ψ(t)〉 can be written as a
vector and the Hamilton operator as a matrix:

i~
∂

∂t



|Ψ0(t)〉

...
|Ψn(t)〉


 =




Ĥ0,0 . . . Ĥ0,n
...

. . .
...

Ĥn,0 . . . Ĥn,n






|Ψ0(t)〉

...
|Ψn(t)〉


 (2.63)

whereby the indexes 0, 1, . . . , n denote the electronic states. The time evolution of the
i-th electronic states is described by the i-th time-dependent wave function |Ψi(t)〉. The
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matrix elements of the Hamiltonian are then written as8:

Ĥi,j(t) = T̂i,jδi,j + V̂i,jδi,j + Ŵi,j(t). (2.64)

The coupling between different electronic states results through the time-dependent elec-
tromagnetic field Ŵi,j(t) which induces transitions from one electronic state to another.

The diagonal elements of the matrix Ŵ cause transitions within the electronic states, i.e.
excitation from one rovibrational state to another.9

Irrespective of the number of implied electronic states the solution of equation (2.61)
can be expressed in a general form using the time evolution operator Û:

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 . (2.65)

Here the evolution operator Û(t, t0) propagates the wave function |Ψ〉 from time t0 to
time t. Since the TDSE eqn. (2.61) must hold for any initial wave function |Ψ(t0)〉 the
evolution operator must satisfy the same equation. Hence, Û(t, t0) can be rewritten in an
integral form:

Û(t, t0) = 1̂− i

~

∫ t

t0

Ĥ(t′)Û(t′, t0)dt
′. (2.66)

Equation (2.66) can be solved iteratively by plugging it into itself. Then the following
expansion for the time evolution operator is derived10:

Û(t, t0) = 1̂ +
∞∑

n=1

(− i
~
)n
∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1Ĥ(τn)Ĥ(τn−1) . . . Ĥ(τ1). (2.67)

If the Hamilton operator is not explicitly a function of time the previous expression
of the time evolution operator Û simplifies to:

Û(t, t0) = e−
i
~ Ĥ(t−t0) for Ĥ 6= Ĥ(t). (2.68)

In this case the system is conservative, i.e. the total energy of the molecule is constant.

8within the scope of the Born-Oppenheimer approximation, i.e. for adiabatic potentials, and without
kinetic coupling.

9Spin-orbit coupling may cause transitions between electronic states of different spins. Since all
simulations contemplated in this work have been applied only to singlet states these couplings are not
included.

10A more detailed treatment of the time evolution operator can be found in ref. [92].
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Time discretisation

The Hamilton operator is not explicitly time-independent since it includes a time-depen-
dent perturbation Ŵ(t) (see eqn. (2.62)) that covers all interactions of the molecule with
electromagnetic radiation, e.g. laser pulses.

In practice, the time axis is discretised in adequately small segments ∆t in which the
Hamilton operator Ĥ(t) can be considered to be time-independent. Therefore, the solution
of TDSE (2.61) can be written as a product of partial evolution operators Û(ti, ti−1), each
of them propagating the wave function in very small time steps ∆t.

|Ψ(t)〉 = Û(t, tn)Û(tn, tn−1) . . . Û(t1, t0) |Ψ(t0)〉 (2.69)

In accordance with eq. (2.68) each partial evolution operator is given as:

Û(ti, ti−1) = e−
i
~ Ĥ(ti−ti−1) = e−

i
~ Ĥ(ti)∆t (2.70)

with
ti − ti−1 = ∆t. (2.71)

Space discretisation

For the solution of the time-dependent nuclear Schrödinger equation (2.61) numerical
methods based on a grid representation [93, 94, 95] have been used throughout this work.
As described in section 2.2.8 the position space is discretised by exchanging the continuous
position variable r by a grid using N grid points ri with constant spacing ∆r:

|Ψ(r, t)〉 ≈ |Ψ(ri, t)〉 , ri = i∆r, i = 1, ..., N. (2.72)

Since in position space the operator of the potential energy V̂ is diagonal it is possible
to calculate its effect simply by multiplication with the wave function:

V̂ |Ψ(ri, t)〉 = V (ri) |Ψ(ri, t)〉 , i = 1, ..., N. (2.73)

The same is true for the interaction operator Ŵ which is, as discussed in the previous
section, time-independent within each time step ∆t.

By Fourier transformation the wave function is converted from position to momentum
space, in which the kinetic energy operator T̂ is diagonal. Then, the effect of T̂ is again
just a multiplication:

T̂ |Ψ(kj, t)〉 =
~2k2j
2m
|Ψ(kj, t)〉 , j = −N/2, ..., N/2 (2.74)
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with

kj = (j − 1) · 2π

N ·∆r , j = 1, ..., N/2 (2.75)

and

kj+N/2 = (j − 1) · 2π

N ·∆r − kmax, j = 1, . . . , N/2. (2.76)

The maximal momentum kmax that can be represented on the grid is given by:

kmax =
π

∆r
. (2.77)

2.3.2 Split operator

Because the total Hamilton operator is not diagonal in the grid representation, i.e. the
kinetic energy operator T̂ does not commute with the potential energy operator V̂11:

[T̂, V̂] 6= 0. (2.78)

the effect of the evolution operator cannot be directly calculated within this representa-
tion. Hence, the evolution operator Û cannot in general be split in the following way:

e−
i
~ Ĥ∆t = e−

i
~ (T̂+V̂)∆t 6= e−

i
~ T̂∆t · e− i

~ V̂∆t. (2.79)

However, for very small time steps ∆t the following decomposition, in which the kinetic
operator T̂ is split in two parts, is possible [96, 97, 98, 99]:

e−
i
~ (T̂+V̂)∆t ≈ e−

i
~

T̂
2
∆t · e− i

~ V̂∆t · e− i
~

T̂
2
∆t +O(∆t)3. (2.80)

This decomposition of the Hamilton operator is called split operator and involves a nu-
merical error of third order O(∆t)3. If the time intervals ∆t are chosen sufficiently small
the error of the calculation will be comparatively small. Small time steps also result in
an approximately time-independent Hamilton operator because the time-dependent elec-
tromagnetic field Ŵ changes very slowly within a single time interval. The Split operator
is unitary and conserves the norm.

In practice, the time propagation of a wave function is done in several steps. First,
the initial wave function on the grid at time t0, e.g. an eigenfunction of the system, is
transformed from position space to momentum space via Fourier transformation. Then,

it is multiplied by e−
i
~

T̂
2
∆t and subsequently transformed back to position space. Next

it is multiplied by e−
i
~ V̂∆t, transformed back to k-space and again multiplied by e−

i
~

T̂
2
∆t.

At the end, the wave function is transformed once again to position space and a wave
function |Ψk(t0 +∆t)〉 propagated by ∆t is obtained. In this manner, the wave function
is propagated step by step until a final time tf .

11Here V̂ includes also the interaction with the laser field Ŵ.
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2.3.3 Second Order Differencing

Another numerical method to solve the time-dependent Schrödinger equation is the so
called n-th order differencing (NOD) method. The time-dependent wave function |Ψ(t)〉
is expanded in the Taylor series [100, 101]:

|Ψ(t+∆t)〉 = |Ψ(t)〉+∆t · ∂
∂t
|Ψ(t)〉+ ∆t2

2!
· ∂

2

∂t2
|Ψ(t)〉+ ∆t3

3!
· ∂

3

∂t3
|Ψ(t)〉 . . . (2.81)

and

|Ψ(t−∆t)〉 = |Ψ(t)〉 −∆t · ∂
∂t
|Ψ(t)〉+ ∆t2

2!
· ∂

2

∂t2
|Ψ(t)〉 − ∆t3

3!
· ∂

3

∂t3
|Ψ(t)〉 . . . . (2.82)

Substracting eqn. (2.82) from eqn. (2.81) results in

|Ψ(t+∆t)〉 − |Ψ(t−∆t)〉 = 2 ·∆t · ∂
∂t
|Ψ(t)〉+ 2 · ∆t

3

3!
· ∂

3

∂t3
|Ψ(t)〉 . . . . (2.83)

The expansion is truncated after the second term, for the so-called second order differ-
encing (SOD), yielding a formula to propagate the wave function from t to ∆t:

|Ψ(t+∆t)〉 = |Ψ(t−∆t)〉+ 2 ·∆t · ∂
∂t
|Ψ(t)〉+O(∆t)3, (2.84)

with an error of third order. An initial wave function |Ψ(t0)〉 as well as the wave function
at the first step |Ψ(t0 +∆t)〉 are required. The initial function is chosen (just as in the
case of the method using the Split operator) defining an initial state of the system, e.g.
the lowest rovibrational eigenfunction of the electronic ground state. The wave function
after the first time step is derived from the Runge-Kutta method using the same accuracy
as in SOD:

|Ψ(t0 +∆t)〉 = |Ψ(t0)〉+∆t · ∂
∂t
|Ψ(t0)〉+

∆t

2!
· ∂

2

∂t2
|Ψ(t0)〉 . (2.85)

Note that the derivations of the wave functions can be expressed in terms of the TDSE
(2.61) as

∂

∂t
|Ψ(t)〉 = − i

~
Ĥ(t) |Ψ(t)〉 (2.86)

∂2

∂t2
|Ψ(t)〉 = − 1

~2
Ĥ(t)Ĥ(t) |Ψ(t)〉 , (2.87)

etc. for higher orders. As discussed in section 2.3.2 the Fourier transformation is used
to transform the wave function from position space to momentum space and vice versa.
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Depending on the representation of the wave function the effect of the kinetic or poten-
tial operator, respectively, is calculated by multiplication with the wave function. More
Fourier transformations are needed if the potential and kinetic operator are coupled. The
advantage of the SOD scheme is that the Hamiltonian can include all kind of couplings.
Propagations using the Split operator do not allow to use a Hamilton operator which
includes coupling terms as x̂ · p̂ while in SOD there are no restrictions to the components
of the Hamilton operator.

A disadvantage of the SOD (or NOD in general) method is the need for very small
time steps to get reliable results. In accordance with the uncertainty principle, the time
step must not exceed a critical time step given by the maximum energy of the system:

∆tcrit =
~

Emax

with

Emax = Tmax + Vmax. (2.88)

The maximum potential energy Vmax is given by the potential energy surface on the
respective grid. For the maximum kinetic energy on the same grid an expression derived
from eqn. (2.77) is used:

Tmax =
~2k2max
2m

. (2.89)

In practice, time steps for SOD are often much smaller than for the split operator method.
In addition, a time step at least five times smaller than the critical one is recommended
[93]. This fact makes SOD time consuming in terms of computational effort. It is also
important to notice that the SOD method is not conserving the norm, in contrast to the
split operator propagation scheme.

2.3.4 Time-dependent laser fields

The operator for the interaction of the molecule with the laser field Ŵ, as used in equa-
tion (2.64), is described by the semi-classical dipole approximation12 in laboratory fixed

coordinates ~R as follows:

Ŵi,j(t) = −~µij · ~E(~R, t), (2.90)

with ~µij being the operator for the electric (transition) dipole moment between electronic

states i and j, and ~E the time-dependent electromagnetic laser field. The time-dependent

12The magnetic dipole and the electric quadrupole are neglected, because they are about two oders of
magnitude smaller than the electric dipole.
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electromagnetic field ~E(~R, t) which is used to control intra-molecular motion is in general
given by the following expression:

~E(~R, t) = ~ε · E0 · s(t) · e
i(~k ~R−ωt) + e−i(

~k ~R−ωt)

2
, (2.91)

where E0 is the amplitude of the field with the carrier frequency ω, ~ε the polarization
vector, ~k the wave vector, and s(t) the shape function which describes the envelope of the

laser pulse. The term ei
~k ~R can be expanded in the Taylor series:

ei
~k ~R ≈ 1 + i~k ~R + . . . . (2.92)

Since all the molecules considered throughout this work are of dimensions no larger than
10 Å whereas the laser pulses cover a range of wavelengths starting from at least 100
Å, the Taylor series can be truncated after the first term. Then, an expression for a
position-independent field is obtained:

~E(t) = ~ε · E0 · s(t)e
iωt + e−iωt

2
. (2.93)

Using the Euler formula and combining the polarization vector with the amplitude this
equation simplifies to:

~E(t) = ~E0 · s(t) cos(ωt). (2.94)

The shape function s(t) used throughout this work is given by:

s(t) = sin2
(
π(t− td)

tp

)
for td ≤ t ≤ td + tp, (2.95)

with tp being the pulse duration and td the starting time, also called delay time, of the
current laser pulse in a laser pulse sequence.

In the following section the reader is introduced to the methods of laser pulse control
applied throughout this work.

2.4 Laser pulse control

2.4.1 Analytical laser pulses

The control of a molecular system by means of an external laser field is one of the main
goals in the field of quantum dynamics [50, 102, 103]. The objective is to drive the system
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from a given initial state to a desired final state. In this section the different strategies are
presented that have been applied in this work to design an appropriate laser pulse sequence
which controls the model system in the desired way. The discussed strategies range from
control methods based on manual optimization of the laser parameters (section 2.4.1 and
2.4.2) to methods based on algorithms acting as a “black-box” generating possible control
pulses (section 2.4.3).

The conceptually easiest approach is to use analytical laser pulses. These are well
defined laser fields with analytical shape functions such as (2.95) which are functioning
as either a pump pulse to excite population from one energetically low lying state to
another state higher in energy or as a dump pulse causing a stimulated emission back to
an energetically lower state. Pump-dump schemes using analytical laser pulses developed
by Paramonov and coworkers [104] and Tannor and Rice [50, 105] are a common approach
to laser pulse control of a quantum dynamical system.

Before a suitable laser pulse sequence is constructed it is necessary to develop an
efficient reaction mechanism that leads the system selectively from a initial state via one
or more transition states to the final state. The laser pulses should be designed such that
all transitions are selective, i.e. they only transfer population from the initial state to the
desired state without exciting population to other states, and effective, in the sense that
the desired amount of population is excited/deexcited.

An analytical laser pulse is usually of the form defined in eqn. (2.94). For a sequence
of linearly polarized laser pulses with sin2-shape function the following expression is ob-
tained:

Ei(t) = E0i · sin2
(
π(t− tdi)

tpi

)
· cos(ωi(t− tdi) + ηi) for tdi ≤ t ≤ tdi + tpi . (2.96)

Here E0i is the amplitude of the laser field, ηi the time-independent phase, tpi is the pulse
duration, tdi the starting time and ωi the frequency of the pulse i.13

For an initial guess of an appropriate laser pulse it is necessary to know the transition
frequency ωi, i.e. the energy gap between the affected states. Still, the optimal laser
frequency is usually slightly detuned from the exact transition frequency. This is caused

13For a chirped laser pulse the frequency ω becomes time-dependent:

ω(t) = ω0 + λ

(
t− td −

tp
2

)
, (2.97)

where the linear chirp rate λ causes a frequency sweep centered at the resonant frequency ω0 of the
desired transition.
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by the interaction of the electric field with the diagonal elements of the transition dipole
matrix µvv′ (= 〈v| ~µ |v′〉 = 〈Φv| ~µ |Φv′〉). While the off-diagonal terms cause transitions
between different states, the diagonal terms result in a shift of the energy of the levels.
Since in general µvv 6= µv′v′ the energy levels will shift by a different amount causing a
change in the energy difference of states compared with the system without laser field.
Therefore, the optimal laser pulse frequency has to be found by detuning ωi until a
satisfactory result is obtained.

The choice of a suitable time duration of the laser pulse is rather affected by the
uncertainty principle. If the laser pulse is on the one hand too short, then states different
from the desired ones might also be affected. If the laser pulse is on the other hand
relatively long, then competing effects like intra-molecular vibrational redistribution (IVR)
may take place destroying the effectiveness of the laser control.

For a complete transition of the population in a two-level system from state |1〉 to
state |2〉 (population inversion) a so-called π-pulse is most effective [106]. In terms of the
area theorem (see e.g. ref. [107]) population inversion in a two-level system is obtained if
the area A under the pulse envelope, multiplied by the transition dipole matrix element
µ12, and divided by Planck’s constant, becomes equal to an odd multiple of π:

A =

∫ tp

0

Ω(t)dt =
µ12
~

∫ tp

0

E0s(t) dt = (2N + 1) · π with N = 0, 1, . . . , (2.98)

where Ω(t) is the so-called Rabi frequency. Then, the amplitude of the laser pulse E0

depends on its duration and on the transition dipole matrix elements µvv′ . This is an
approximation for a two-level system, but it can be extended to multi-level system using
so-called generalized π-pulses [108]. However, even a simple π-pulse is very suitable for
generating an initial guess for a laser pulse in a multi-level system. For sin2-shaped laser
pulses their amplitude is then approximated by:

E0i ≈
2π · ~
µvv′ · tpi

(2.99)

Eventually the laser pulse parameters must be optimized, manually or by using e.g. ge-
netic algorithms.

A prerequisite for using analytical laser pulses is that a good insight into the quantum
system is required. Transition dipole matrix elements µmn must be analysed to find the
most effective transition and many different laser pulse parameters must be optimized.
Often, it is a great challenge to design a suitable reaction mechanism that eventually yields
full control over the molecular system. However, analysing the system and designing
mechanisms for effective transitions give a very good understanding of how control is
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achieved. The knowledge gained from these studies can be used by e.g. experimentalists
to design a desired laser pulse sequence to reach an objective state.

2.4.2 STIRAP

There are cases where the intermediate state in a reaction mechanism should not be
populated to prevent depopulation e.g. by spontaneous emission to states coupled to this
intermediate state. If, in turn, no direct coupling between initial and target state exists,
but only coupling between each of them and this intermediate state, a method called
stimulated Raman scattering involving adiabatic passage (STIRAP) [109, 110] may be
applied to the system. The method is based on a counter-intuitive sequence of two
laser pulses. The pump pulse (P), which transfers population from the initial state to
the intermediate level, follows the so-called Stoke pulse (S) (which is the dump pulse)
that couples the intermediate state to the final state; both pulses overlap partially. The
coupling scheme for a three-level system, called a Λ-type level-scheme14, is shown in
Figure 2.1. Coherent interaction of the states |1〉 , |2〉 and |3〉 caused by the laser pulses
leads to dressed eigenstates of the coupled system. One of those dressed states contains
only components of the initial state |1〉 and final level |3〉, with no contribution of the
radiatively decaying intermediate level |2〉. With the Stokes laser preceding the pump
pulse, the system is prepared at the beginning of the interaction in this trapped state.
Thus, no population is transferred through the intermediate “dark” state |2〉 and no
losses due to radiative decay occur. The pump pulse transfers selectively all population
from the initial |1〉 to the target state |3〉.

The radiative coupling of the states |1〉 and |2〉, as well as the states |2〉 and |3〉 is
described in terms of their respective Rabi frequencies (cf. eqn. (2.98)):

ΩP (t) =
µ12 · EP (t)

~
, (2.100)

ΩS(t) =
µ23 · ES(t)

~
, (2.101)

where EP (t) and ES(t) are the linearly polarized laser fields of the pump and the Stokes
pulse. Even though the coupling between the pairs of levels is strongest when the pulse
frequencies are tuned to the respective resonance frequencies, it is not necessary for each
transition to be induced resonantly. Only the combination of pump and Stokes frequen-
cies should be resonant with the energy difference between initial and final state. The

14because the transition path portrays the letter Λ
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detunings of the pump and Stokes frequencies are defined as

∆P = ω12 − ωP , (2.102)

∆S = ω23 − ωS, (2.103)

where ω12 and ω23 are the resonant frequencies. The effective Rabi frequencies including
the detuning are then written as

ΩP (∆) =
√

Ω2P (t) + ∆2P , and (2.104)

ΩS(∆) =
√

Ω2S(t) + ∆2S. (2.105)

For ∆P = ∆S = 0 the STIRAP process becomes resonant.

Figure 2.1: Three-level system for STIRAP excitation. The initial state |1〉 and the final
state |3〉 are coupled by pump (P) and Stokes (S) lasers via the intermediate state |2〉.
The state |2〉 may decay by spontaneous emission to other levels. The detuning of the
pump and Stokes laser frequencies from the transition frequency to the intermediate state
are ∆P and ∆S, respectively (adapted from ref. [110]).

STIRAP passages require usually longer laser pulses (up to ns) compared to simple
pump-dump schemes. This can be a disadvantages if e.g. IVR is competing. The advan-
tage is the possibility for population transfer between states that cannot be connected
by a one-photon transition or only via radiatively decaying intermediate states using a
pump-dump scheme.
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2.4.3 Optimal Control theory

The main difference between optimal control and the methods described in the last sec-
tions is that in optimal control it is not necessary to predefine any sort of reaction mech-
anism for the system. Instead, only the initial state |ψi(0)〉 = |Ψi〉 at time t = 0 and
the final state |ψf (T )〉 = |Ψf〉 at time t = T are required for the computer algorithm
of the method. The algorithm uses a variational scheme on an appropriate functional to
generate a laser field which drives the quantum system from the given initial state to the
desired final state. This method, developed by Rabitz and coworkers [111, 112], is based
on the maximization of an objective functional J which consists of the total overlap of the
initial wave function propagated to the final time T with the final state and the calculated

optimal laser field ~E(t):

J(Ψi,Ψf , ~E(t)) = | 〈ψi(T )| Ψf〉 |2 − α
∫ T

0

| ~E(t)|2dt. (2.106)

The parameter α is a penalty factor that controls the optimal laser field. This is done to
avoid very high laser fields which could ionize the molecule. The penalty factor α may be
chosen time-dependent:

α = α(t) =
α0
s(t)

. (2.107)

where α0 is a time-independent parameter allowing to restrict the laser field according to
a desired shape function s(t). If the envelope of the laser pulse goes to zero, α reaches
infinity and, therefore, it ensures that the allowed laser field also goes to zero [113].
Further, an additional term, which ensures that the Schrödinger equation is fulfilled for
|ψi(t)〉 for all times t, is added to the functional:

J(Ψi,Ψf , ~E(t)) =

| 〈ψi(T )| Ψf〉 |2 − α
∫ T

0

| ~E(t)|2dt

−2<
{
〈ψi(T )| Ψf〉

∫ T

0

〈ψf (t)|
i

~
[Ĥ0 − ~µ~E(t)] +

∂

∂t
|ψi(t)〉 dt

}
. (2.108)

The variation of this functional then gives a system of coupled equations for the control
field [114]:

~E(t) = −s(t)
~α0
· ={〈ψi(t)| ψf (t)〉 〈ψf (t)| ~µ |ψi(t)〉} (2.109)

i~
∂

∂t
|ψi(t)〉 = [Ĥ0 − ~µ~E(t)] |ψi(t)〉 ; |ψi(0)〉 = |Ψi〉 (2.110)

i~
∂

∂t
|ψf (t)〉 = [Ĥ0 − ~µ~E(t)] |ψf (t)〉 ; |ψf (T )〉 = |Ψf〉 . (2.111)
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Equation (2.110) describes the propagation of |Ψi〉 forward in time, whereas equation
(2.111) describes the backward propagation of |Ψf〉. Both equations are coupled to the
laser field which is calculated from |ψi(t)〉 and |ψf (t)〉 in equation (2.109) at every time
step. This set of coupled equations is solved iteratively by a self consistent field method.

An advantage of the optimal control method is that no assumptions of the reaction
mechanism are needed. The algorithm searches for any optimal reaction path that brings
the system from its initial state to a desired final state. The disadvantage is that usually
no general mechanism can be derived from the calculated optimal reaction path because
the generated optimal laser field often gives very little information about the transitions
taken place. Also, the computational effort may be very large since the method is not
only iterative but also needs a forward and a backward time propagation for each time
step.15

A modification of optimal control is called the local control method [115, 116, 117].
This method requires a priori knowledge of a path the system should follow from its
initial state to the objective state. This path is specified as a time-dependent path of the

expectation value
〈
Ŵ (t)

〉
≡ 〈ψ(t)| Ŵ |ψ(t)〉 of the target operator Ŵ that specifies the

objective state of a molecule. The target operator is chosen such that its expectation value
has a maximum value when the molecule reaches the objective state at the final controlling
time tf . Hence, the time-derivative of the expectation value of the target operator should
have a positive value at any time to guarantee a monotonic increase and become maximal
at final time. For this path a control field E(t) is sought, which will exactly create the
demanded dynamics of the chosen observable. According to the formulation (2.106) of
the optimal control method the laser pulse leads to an extremal value of the objective
functional J [E(t)] defined by:

J [E(t)] =
〈
Ŵ (tf )

〉
−
∫ tf

t0

dt
1

~A
[E(t)]2 (2.112)

=

∫ tf

t0

dt

[
d

dt

〈
Ŵ (t)

〉
− 1

~A
[E(t)]2

]
+
〈
Ŵ (t0)

〉
, (2.113)

where the second term of eqn. (2.112), controlled parametrically by A, presents the penalty
due to the laser energy. The integrand of eqn. (2.113) is considered a known function of
time

d

dt

〈
Ŵ (t)

〉
− 1

~A
[E(t)]2 = g(t) (2.114)

which determines one of the possible paths in the functional space of the objective

functional. By differentiating
〈
Ŵ (t)

〉
with respect to t obeying the TDSE with Ĥ =

15The backward time propagation is also a problem for non time-reversible systems, e.g. dissipative
systems.
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Ĥ0 − µ̂E(t) one derives16:

d

dt

〈
Ŵ (t)

〉
=

d

dt
(〈ψ(t)| Ŵ |ψ(t)〉) (2.115)

= − i
~
〈ψ(t)| [Ŵ , Ĥ0] |ψ(t)〉+

i

~
〈ψ(t)| [Ŵ , µ̂] |ψ(t)〉E(t) (2.116)

For the special case where the function g(t) is chosen to be zero (g(t) = 0) the value of〈
Ŵ (t)

〉
increases in proportion to the pulse energy, cf. eqn. (2.114). Since the objective

state gives the maximum value to
〈
Ŵ (t)

〉
, the local control pulse always brings the

molecule towards the objective state. The quality of the control pulse depends on the
choice of the target operator Ŵ ; this makes the problem local at any time t. If [Ŵ , Ĥ0] = 0
is required then the expression for the local control pulse is obtained as:

E(t) = −2A · ={〈ψ(t)| Ŵ µ̂ |ψ(t)〉}. (2.117)

As example the population inversion in a three-level system is considered. Then, the
target operator reads [117]:

Ŵ = |1〉w1 〈1|+ |2〉w2 〈2|+ |3〉w3 〈3| , (2.118)

where w1 to w3 are the weights of the respective states, e.g. |1〉 being the initial, |2〉
the intermediate, and |3〉 the target. The choice of these weights determines the reaction
mechanism which the algorithm assumes for calculating an optimal pulse sequence, e.g.
w1 = 0, w2 = 1 and w3 = 2. The transition moment operator µ̂ coupling all states
included in the reaction mechanism is assumed to have a form of:

µ̂ = |3〉µ32 〈2|+ |2〉µ21 〈1|+ h.c. (2.119)

In order to solve the coupled equations of the local control pulse (2.117) and the TDSE
(2.110) no iteration is required. First the control pulse is calculated at t with ψ(t), then
E(t) is substituted into the TDSE and propagated to t+∆t. This procedure is repeated
until the target state is reached.

The major advantage of the local control algorithm is that only a single forward
propagation17 is performed for each time step. This makes the algorithm computationally
less expensive than the optimal control algorithm. The disadvantage is the need of a
rough idea of a reaction mechanism to set up a proper target operator.

16The target operator Ŵ is considered time-independent.
17In case of an target state Ŵ that does not commute with the molecular Hamilton operator ([Ŵ , Ĥ] 6=

0]) a backward propagation scheme using the initial state, e.g. a pure state, as the target state has to be
used. In turn, combining an appropriate choice of the target operator and backwards time-propagation
technique allows to apply the local control method to wave packet shaping [117].


