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Chapter 1

Introduction

The observation of quantum mechanical effects in controllable devices and under manip-
ulable experimental conditions has been one of the most appealing fields of activity in
physics over the last century. The progress in experimental techniques made it possible
to scale down the parameters of macroscopic systems to mesoscopic scales where systems
start to reveal quantum mechanical properties, while keeping control over the properties
of the systems under consideration. Early examples of the observation of such quantum
mechanical effects are superconductivity and the quantum Hall effect - two of the most
important subareas in modern-day physics. The field of mesoscopic physics in general
deals with objects on those mesoscopic scales, which are defined as the scales where a
system starts to exhibit the first quantum mechanical effects. The boundaries between
a macroscopic and a mesoscopic object are hereby not sharp, but rather depend on the
specific system under consideration. A lower lengthscale can be definded as the size of an
individual atom, where the system exhibits purely quantum mechanical properties.

Possible mechanisms leading to manifestations of quantum mechanics in mesoscopic
devices can be categorized into effects of interference, charging and quantum confinement.
Effects arising from interference of the electronic wave function can lead to reproducible
fluctuations in physical quantities, e.g. universal fluctuations of the conductance (cf. [1, 2]).
These interferences are possible if the electrons do not lose their phase coherence due
to inelastic scattering events. The thus defined dephasing length, which will crucially
depend on the frequency of occurrence of inelastic scattering events and thus also on the
temperature of the system, serves as a definition of the lengthscale below which which a
system can be called mesoscopic. A common example for the manifestation of quantum
mechanics due to charging effects are quantum dots, i.e. systems which are so small
that charging with one additional charge quantum becomes visible. Finally, quantum
confinement describes the discretization of the energy levels when the lengthscales of a
system become of the order of the wavelength of the electrons’ wave function.

While most of the systems considered above are well understood in thermal equilibrium,
in general out-of-equilibrium situations new effects can arise. Driving a mesoscopic system
out of equilibrium by means of an additional perturbation is thus a suitable method to
achieve access to new mesoscopic phenomena. While basic physical effects as the linear
conductance arise from first order perturbation theory, in this thesis we will treat systems
perturbed in a way that one has to go explicitly beyond the first order to describe their
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essential properties.
In this thesis we study two distinct mesoscopic systems which are driven out of equilib-

rium by different mechanisms. We begin with the examination of mesoscopic normal (i.e.
non-superconducting) metal rings. These rings are known to exhibit a so-called persistent
current, i.e. a perpetual current flowing around the ring even without applied voltage.
This is possible when time reversal symmetry is broken by a magnetic flux piercing the
ring [3, 4, 5]. Remarkably, this persistent current exists even in the absence of an ap-
plied voltage and is thus an equilibrium property of the system. We analyze a generalized
situation where the system is driven out of equilibrium artificially by applying an addi-
tional microwave field perpendicular to the ring. This investigation is motivated by several
previous findings of the influence of microwave fields on mesoscopic systems such as a pho-
tovoltaic effect in mesoscopic junctions [6] or the microwave-induced magneto-oscillations
in the photoconductivity of a two-dimensional electron gas [7, 8].

While persistent currents are an effect arising from the coherence of the electronic wave
function in the rings, in the second system under consideration quantum mechanical prop-
erties are caused by charging and quantum confinement effects. We analyze consequences
of coupling quantum dots, i.e. nanometer-sized confinements, to a vibrational mode. To
leading order in this vibrational perturbation one commonly assumes that the vibrational
energy is harmonic and the mode is coupled linearly to the electronic degrees of freedom.
While the considered system is already widely studied in the literature, we specialize on a
particularly interesting regime where the coupling between the vibrational mode and the
electronic degrees of freedom is so strong that the system becomes unstable within these
common assumptions. More precisely the coupling between electronic degrees of freedom
and a vibrational mode causes a renormalization of the charging energy, which is the energy
needed to add another electron to the quantum dot. Recent investigations on vibrational
modes of carbon nanotubes [9] suggest that it might be possible to reach regimes where
the coupling is so strong that the charging energy becomes not only negative, but even
overcomes the finite level spacing which regularized the instability in previous considera-
tions [10]. We show that in this case the instability can be regularized by the anharmonic
contribution to the vibron energy. The resulting effective charging energy as a function of
the electron number has a double-well structure causing a variety of novel features in the
Coulomb-blockade properties of the system.
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Part I

Persistent current under microwave

irradiation
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The perpetual current flowing in small non superconducting rings without applied
voltage under breaking of time reversal symmetry has been of great interest in theoretical
and experimental physics over the last three decades. Since the effect crucially depends on
the coherence of the electron wave function over the whole ring it is a manifestation of a
quantum mechanical effect in a mesoscopic system.

The basic effect which can cause a persistent current in a resistive metal ring is phys-
ically closely related to the perpetual motion of an electron around the nucleus. Thus its
existence was already stated in 1938 by Hund [3] and calculated for the case of a clean
system by Bloch [11] and Kulik [12]. However, the observation of the effect of a perpetual
current flowing in a realistic normal metal ring containing elastic disorder stayed somewhat
counterintuitive until Büttiker et. al [4] proposed in 1983 the existence of the effect even
in those realistic mesoscopic systems.

Figure 1.1: Sketch of an electron circu-
lating in a mesoscopic ring threaded by
a magnetic flux scattered from static im-
purities. (Figure taken from [13])

Experimentally the observation of persistent
currents has been a huge challenge for several
reasons. The currents are extremely small1 and
applying e.g. an ammeter would cause the elec-
trons to lose phase coherence and destroy the
effect. Therefore one has to measure the small
change in the magnetic moment produced by
the currents instead. In addition, the rings have
to be mesoscopically small, which means that
the time it takes an electron to move around
the ring - the so called diffusion time τD - has
to be smaller than the inelastic scattering time
τin. And third, the effect is rapidly destroyed if
the temperature goes up, which means that ex-
periments have to be performed at one Kelvin
and below. For these reasons, in the first exper-
iments in the field [15, 16, 17] one was not able
to see persistent currents of the order theory
predicted. However, in two recent experiments
Bluhm et al. [18] and Bleszynski-Jayich et al. [14], using different experimental approaches,
where able to measure persistent current in great precision and in good accordance to the
theoretical prediction, which revitalized the field.

In the first part of the thesis we want to study the influence of an additional microwave
electric field on the persistent current in a normal metal ring pierced by a magnetic flux.
In the Section 2, we give an introduction to the problem by deriving basic properties. We
begin with a clean, one dimensional sample and introducing piecewise the effects of higher
dimensionality, disorder, finite temperature and electron electron interactions. After this,
we describe the recent experiments in the field in the Section 3. Section 4 is dedicated to
the calculation of the influence of a microwave field on the persistent current. Since the
persistent current itself is an equilibrium property and the microwave field will drive the

1A ring with a micrometer-diameter supports persistent currents of i ∼ 1nA at temperatures T . 1K
[14].
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system out of equilibrium, we have to introduce the so-called Keldysh formalism [19, 20]
to attack the problem. We summarize the results and conclude in Section 5.
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Chapter 2

Introduction to the field

We start the presentation of our work on persistent currents by introducing basic concepts
and considerations in the unperturbed system, i.e. the system without applied additional
microwave field. The approach we choose is logical in the sense that we start by presenting
basic calculations leading to persistent currents in a clean one dimensional system (Section
2.1) and introduce, in a piecewise manner, more realistic properties, but by chance also
approximately reproduces the historical progress of the theoretical treatment of the field.

The section develops as follows. We start - as mentioned - with the most abstract case
of a one dimensional clean system in the absence of interactions, as it was already examined
by Hund [3] in 1938. The enhancement of the calculation to two or more dimensions in
Section 2.2 is straightforward, but gives already valuable insights in the characteristics of
physical properties such as the average current introduced in Section 2.3. However the
system is assumed to be clean and at zero temperature at this point. This assumption is
dropped in Section 2.4, first by looking at the effect of finite temperatures (Section 2.4.1)
and then by allowing for an elastic disorder potential in the rings (Section 2.4.2). An
even more realistic picture is provided by assuming diffusive motion of the electrons in the
ring in Section 2.4.3. Finally we discuss the effect of electron-electron interactions on the
physical quantities in Section 2.5.

2.1 Clean one dimensional system

We start by calculating the persistent current in a clean ring of circumference L. As a first
step we consider a purely one dimensional system. We assume, that the ring is threaded
by a magnetic flux φ = ϕh/e ≡ ϕφ0, where φ0 = h/e is the flux quantum, as it can be
seen in Figure 2.1. This flux can be represented by a vector potential A = φ/L êx, where
êx denotes the unit vector in the longitudinal direction. We can assume the ring to be a
current-carrying loop of area S = πR2, R the radius of the ring, and define the persistent
current of the ring as as its magnetization per unit area [2, 5, 11, 21]. Assuming a constant
chemical potential µ we get

I(φ) = − 1

S

(
∂Φ

∂B

)

µ,T

= −
(
∂Φ

∂φ

)

µ,T

, (2.1)
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Figure 2.1: One dimensional ring threaded by a magnetic flux φ

where φ = S B is the flux through the ring and Φ(T, µ,B) = −kBT lnZg the thermody-
namic grand potential

Φ(T,B) = −2kBT
∑

n

ln
(

1 + eβ(ǫF−ǫn)
)

. (2.2)

Introducing the density of states ν(ǫ,B) =
∑

n δ(ǫ− ǫn(B)) we obtain after integrating by
parts twice

Φ(T,B) = −2kBT

∫ ∞

0
dǫ ν(ǫ,B) ln

(

1 + eβ(ǫF−ǫ)
)

= 2

∫ ∞

0
dǫ

(∫ ǫ

dǫ′N(ǫ′, B)

)

︸ ︷︷ ︸

N (ǫ,B)

∂f

∂ǫ
, (2.3)

where we introduced the counting function N(ǫ,B) (which is nothing but the integrated

density of states) and the Fermi function f(ǫ) =
(
1 + eβ(ǫ−ǫF )

)−1
. Inserting this in the

expression for the persistent current (2.1) we obtain

I(φ) = 2
∂

∂φ

∫ ∞

0
dǫN (ǫ, φ)

(

−∂f
∂ǫ

)

, (2.4)

including a factor of two accounting for spin degeneracy. At zero temperature, the negative
derivative of the Fermi function is a delta function and we get

IT=0 = 2
∂N (ǫF , φ)

∂φ
. (2.5)

Thus we are left with calculating the eigenenergies of the system. The time-independent
Schrödinger equation for the ring takes the form

− 1

2m
(∂x + 2πiφ/L)2 ψn(x) = En ψn(x) , (2.6)

where ψn(x) fulfills the boundary condition ψn(x) = ψn(x + L). Further we assume that
the curvature of the ring does not affect the spectrum. A gauge transformation [21]

ψ′
n(x) = ψn(x)e

−ie
∫ x
0 Adl = ψn(x)e

−2πiϕx/L (2.7)
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transforms the Schrödinger equation into

− 1

2m

∂2

∂2x
ψ′
n(x) = ǫnψ

′
n(x) (2.8)

and pushes the flux dependence into the boundary conditions

ψ′
n(x+ L) = ψ′

n(x) e
−2πiφ . (2.9)

Thus the eigenenergies turn out to be

ǫn =
1

2m

(
2π

L

)2

(n− φ)2 , (2.10)

and the density of states thus looks like1

ν(ǫ, φ) =
∑

n

δ(ǫ − ǫn) =
∑

n

δ

[

ǫ− 1

2m

(
2π

L

)2

(n− φ)2

]

=

∞∑

p=−∞
e2πipφ

∫

dn e2πipnδ

[

ǫ− 1

2m

(
2π

L

)2

n2

]

k= 2πn
L=

∞∑

p=−∞
cos (2πpφ)

∫

dk eiLpk δ(ǫ− ǫ(k)) , (2.11)

where ǫ(k) = k2

2m . The counting function can be expressed as

N(ǫ, φ) =
L
√
2mǫ

π
+

2

π

∞∑

p=1

sin
(
pL

√
2mǫ

)

p
cos (2πpφ) . (2.12)

We obtain the persistent current at zero temperature by inserting this into Eq. (2.5)

I(φ) = −2
∂

∂φ

∫ ǫF

0
dǫ′N(ǫ′, φ)

=
2

π

evF
L

∞∑

p=1

[
cos (pkFL)

p
− sin (pkFL)

p2kFL

]

sin (2πpφ) , (2.13)

1Here we use for the first time an equality called Poisson Summation

∑
n

f(n+ φ) =
∑
k

e2πikφ

∫
dn f(n) e2πikn , or, if f(n) = f(−n)

=

∫
dn f(n) + 2

∞∑
k=1

cos (2πkφ)

∫
dn f(n) e2πikn

which can be easily proven by Fourier transformation.
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Figure 2.2: Persistent current in a clean ring at T = 0 for an even (red) and odd (blue)
number of electrons.

where kF is the Fermi momentum and vF = kF /m the Fermi velocity. In a realistic sample
the number of electrons will be large, which means that kFL≫ 1, leading to

I(φ) =
2

π

evF
L

∞∑

p=1

cos (pkFL)

p
sin (2πpφ) . (2.14)

If we assume, that not the chemical potential, but the number of electrons in the ring is
fixed, which means that the Fermi momentum becomes kF = Nπ/L, we obtain

I(φ) =
2

π

evF
L

∞∑

p=1

(−1)pN

p
sin (2πpφ) . (2.15)

This function can be seen in Figure 2.2. We see, that the sign of the persistent current at
fixed flux depends on the parity of the number of electrons, and that the persistent current
is periodic in the flux with period φ0.

2.2 Two or more dimensions

The next step is to turn to a somehow more realistic description and allow for electronic dis-
persion in the transverse direction, i.e. we look at an effectively two dimensional cylinder.
The eigenenergies turn into

ǫn =
1

2m

(
2π

L

)2

(n− φ)2 +
k2z
2m

, (2.16)

where kz = mπ/Lz, m an integer. Assuming that the electrons contributing to the current
are at the Fermi surface, i.e. k2F = k2 + q2, where k and q are the longitudinal and
transverse components, the quantization of the transverse components depends on the
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typical lengthscale of the cross-sectional area (here: Lz), and the number of transverse
channels [22] is

M =
2kF

2π/Lz
=
kFLz

π
. (2.17)

Since the eigenenergies are the sum of the longitudinal and the transverse energies, the
total current which we obtain following the steps leading to Eq. (2.14) is the sum over the
contributions from the transverse channels contributing to the current. With k2x = k2F −k2z
we get

I(φ) =
2

π

evF
L

M∑

m=1

∞∑

p=1

kx
kF

cos (pkxL)

p
sin (2πpφ) . (2.18)

2.3 Average current

As we will illustrate later (chapter 3), in many experiments the effect is measured for a large
number of rings instead of a single ring. Thus it is important to calculate characteristics of
the persistent current averaged over a large number of samples. We can define the average
current by dividing the total magnetization of an ensemble of many rings by the total
number of rings. Since we do not take disorder effects into account yet, this means that
we have to average Eq. (2.15) over the number of electrons N .

Splitting the sum in Eq. (2.15) into contributions from even and odd p, we see, that
the odd part vanishes, since it changes sign depending on N , while the even part is N -
independent. So we are left with

I(φ) =
1

π

evF
L

∞∑

p=1

1

p
sin (4πpφ) . (2.19)

Thus the average current seems to be φ/2-periodic. However, if we turn towards the more
realistic description of a two-dimensional sample, Eq. (2.18), we can see that the average
current vanishes as expected, since for Lz ≪ L the cosine varies rapidly as a function of
kz.

2.4 Temperature and disorder effects

Before allowing for disorder and turning towards describing the diffusive motion of electrons
in the ring [4], we calculate the effect of finite temperatures and elastic disorder on the
undisturbed model.

2.4.1 Finite temperature

Finite temperature is included by dropping the assumption of a step like Fermi distribution
and use the expression for the current in Eq. (2.4). Linearizing the dispersion relation
around the Fermi energy,

ǫ = ǫF + vF (k − kF ) , (2.20)
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we get, including the expression (2.12) for the integrated density of states,

I(φ, T ) = 2
∂

∂φ

∫ ∞

0
dǫ

(

−∂f
∂ǫ

)∫ ǫ

dǫ′N(ǫ′, B)

= 2
∂

∂φ

∫ ∞

0
dǫ

(

−∂f
∂ǫ

)∫ ǫ

dǫ′




L

π
k(ǫ′) +

2

π

∞∑

p=1

sin (pL k(ǫ′))
p

cos(2πpφ)





= 2
∂

∂φ

∫ ∞

0
dǫ

(

−∂f
∂ǫ

)[
L

π

ǫ(ǫ− 2ǫF + 2kF vF )

2vF

+
2

π

∞∑

p=1

cos
(

pL (ǫ−ǫF )
vF

)

p
cos(2πpφ)



 . (2.21)

Since the derivative of the Fermi function is peaked at ǫ = ǫF we can shift the lower bound
of integration to minus infinity. Using the result

∫ ∞

−∞
dǫ

(

−∂f
∂ǫ

)

cos(pkL) =
πpL

βvF

1

sinh
(
πpL
βvF

) cos(pkFL) (2.22)

we get

I(φ, T ) =
2

π

evF
L

∞∑

p=1

Ip(T ) sin(2πpφ) , (2.23)

where Ip(T ) are the harmonics of the current,

Ip(T ) = R(T/Tp) cos(pkFL) , (2.24)

which are damped by the function

R(T/Tp) =
πpL

βvF

1

sinh
(
πpL
βvF

) =
T/Tp

sinh(T/Tp)
, (2.25)

where we introduced the characteristic temperature Tp = vF /Lpπ. Since the temperature
Tp is proportional to the mean level spacing ∆ = πvF /L, we can conclude, that the
persistent current in clean tings is exponentially damped once the temperature becomes of
the order of ∆. In the diffusive regime it turns out, that the characteristic temperature is
of order of the Thouless energy [5, 14].

2.4.2 Elastic disorder

Realistic mesoscopic samples always contain a certain density of impurities which are es-
sential for the electric attributes of the system. For calculational convenience we assume
a so called Gaussian white noise impurity potential [2]. This means that we assume both,
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the positions and the potentials of the impurities to be random. The total impurity poten-
tial U(r) is assumed to be a random function following a Gaussian distribution with zero
average and a delta-correlated second moment,

〈U(r)〉 = 0
〈
U(r)U(r′)

〉
= γe δ(r − r′) , (2.26)

where we defined γe = 1/(2πντe), ν the density of states per unit volume at the Fermi
level.

We thus introduced a disorder potential which is solely characterized by its elastic mean
free time τe. Disorder averaged retarded and advanced Green functions take the form ([2],
chapter 3)

ḠR/A(k, ǫ) =
1

ǫ− ǫ(k)± ~i
2τe

(2.27)

and the average density of states can be expressed as the trace over the imaginary part of
the retarded Greens function, yielding

ν̄(ǫ) =
1

2π
tr
[
ImGR(k, ǫ)

]
=

1

V

∑

k

1

2πτe

1

(ǫ− ǫk)2 + (~/2τe)2

=
1

2πτe

∫ ∞

0
dǫ′

ν0(ǫ
′)

(ǫ− ǫ′)2 + (~/2τe)2
=

∫ ∞

0
dǫ′g(ǫ− ǫ′) ν0(ǫ′) , (2.28)

where ν0(ǫ) is the density of states without disorder potential introduced in Eq. (2.11),
and we introduced the Lorentzian

g(ǫ) =
1

2πτe

1

ǫ2 + (~/2τe)2
. (2.29)

The expression for the persistent current in a disordered ring can now be calculated in the
same way as above. Linearizing the dispersion relation as in Eq. (2.20) again we get

∫ ∞

−∞
dǫ

cos(pkL)

p
g(ǫ− ǫF ) = e−pL/2le cos(pkFL)

p
, (2.30)

where le is the elastic mean free path, i.e. the length of the path an electron can travel on
average before being scattered by an impurity. Using this yields for the persistent current
in a disordered system

I(φ) =
2

π

evF
L

∞∑

p=1

cos(pkFL)

p
e−pL/2le sin(2πpφ) , or, for fixed N,

I(φ) =
2

π

evF
L

∞∑

p=1

(−1)pN

p
e−pL/2le sin(2πpφ) . (2.31)

We see, that all harmonics of the average current are exponentially damped if the elastic
mean free path becomes small compared to the perimeter of the ring. Since the diffusive
regime discussed in the following chapter assumes that the elastic mean free path and time
are the smallest quantities in the system, we expect the average current to vanish in this
case.
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2.4.3 Diffusive regime

The motion of the electron in the ring is called diffusive if the elastic mean free path is
small compared to the perimeter of the ring, le ≪ L. This means that many scattering
events are assumed when an electron travels once around the ring, and the mean free path
le and time τe are the smallest quantities in the system. In metals the diffusive regime has
been proven and tested on many occasions, which is why we assume to be in this regime
for the remaining part of this chapter.

As we have shown in the previous chapter (Eq. (2.31)), the average current will vanish
exponentially, if the perimeter of the ring is larger than the mean free path. Thus we
will have to go beyond this and will show in a first step, that the variance of the current
distribution will remain finite.

In a second step we will include electron-electron interactions and show, that they will
lead to a finite average current even in the diffusive regime.

Typical current

We define the typical current as the square root of the variance of the current. Since the
variance is δI2 = I2 − I

2
, the typical current is defined as

Ityp ≡ δI2
1/2

. (2.32)

Thus we start by calculating the variance of the current.
We consider an ensemble of mesoscopic rings with a finite cross section which is small

compared to the perimeter of the ring, Ly,z ≪ L. Thus the rings are quasi one-dimensional
in the sense that we can evaluate the disorder average by considering a one-dimensional
electronic motion. Starting from Eq. (2.4) and performing two partial integrations we get
for the current at zero temperature

I(T = 0, φ) = −2

∫ ǫF

0
dǫ

(
∂ν(ǫ, φ)

∂φ

)

(ǫ− ǫF )

= −2

∫ 0

−ǫF

dǫ

(
∂ν(ǫ, φ)

∂φ

)

ǫ . (2.33)

The current-current correlation function becomes

〈
I(φ)I(φ′)

〉
= 4∂φ∂φ′

∫ 0

−ǫF

dǫ′
∫ 0

−ǫF

dǫ
〈
ν(ǫ, φ)ν(ǫ′, φ′)

〉
, (2.34)

while the variance of the current is equal to the current current correlation function at
equal magnetic flux, δI2 = 〈I(φ)I(φ)〉.

Density of states correlation function We can see from Eq. (2.34) that the variance
of the current depends crucially on the density of states-density of states (DOS-DOS)
correlation function 〈ν(ǫ, φ)ν(ǫ′, φ′)〉. Calculating this function is a nontrivial task which
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~r, ǫ ~r′, ǫ′ ~r, ǫ ~r, ǫ ~r, ǫ~r′, ǫ′ ~r′, ǫ′ ~r′, ǫ′

− +−

Figure 2.3: Diagram corresponding to Eq. (2.36). One dashed (solid) line from r to r′

indexed with ǫ stands for the advanced (retarded) Green function GA(R)(r, r′, ǫ). Here the
spatial arguments of the Green functions are identical for which reason the lines become
circles. To read off the diagrams one has to include integrations over all spatial variables,
each coming with a factor 1

2πi .

~r, ǫ
~r′, ǫ′

Figure 2.4: Diagram corresponding to the disorder average of the second term in Eq.
(2.36). The dashed (solid) lines now stand for disorder averaged advanced (retarded)
Green functions, and the dotted lines represent disorder lines

we will reproduce here2, since it is a good framework to introduce several concepts for later
purposes. The starting point is the expression for the density of states without disorder

ν(ǫ, φ) =
1

2π
tr
[
ImGA(ǫ,k)

]
=

1

2πi
tr
[
GA(ǫ,k)−GR(ǫ,k)

]

=
1

2πi

∫

dr
[
GA(r, r, ǫ) −GR(r, r, ǫ)

]
. (2.35)

The disorder averaged DOS-DOS correlation function thus takes the form

〈
ν(ǫ)ν(ǫ′)

〉
=

−1

4π2

∫

dr

∫

dr′
〈
GA(r, r, ǫ)GA(r′, r′, ǫ′)−GA(r, r, ǫ)GR(r′, r′, ǫ′)

−GR(r, r, ǫ)GA(r′, r′, ǫ′) +GR(r, r, ǫ)GR(r′, r′, ǫ′)
〉
. (2.36)

Equations like (2.36) can be conveniently expressed in terms of diagrams. To introduce
this concept, the diagrammatic representation of (2.36) is shown in Figure 2.3.

Performing the disorder average now means that we have to replace the advanced and
retarded Green functions by disorder averaged ones (Eq. (2.27)) and draw disorder lines
between the Green functions in all possible ways as indicated for the second term in Eq.
(2.36) in Figure 2.4.

Two rather standard observations are introduced at this point. First, the largest contri-
butions to disorder averages of two Green functions in the diffusive limit, kF le ≫ 1, come

2We follow roughly the presentations in [2, 5].
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~r, ǫ
~r′, ǫ′

~r1 ~r2

~r3~r4

Figure 2.5: Diagram for the diffusion-like contribution to the density of states correlation
function

~r, ǫ
~r′, ǫ′

~r1 ~r2

~r3~r4

Figure 2.6: Diagram for the cooperon-like contribution to the density of states correlation
function

from diagrams in which the disorder lines are not or maximally crossed (called diffusion
and cooperon contributions). Second, the diagrams where two retarded or two advanced
Green functions are connected are small compared to the mixed ones as well. Thus, using
the fact, that GR is the complex conjugate of GA, Eq. (2.36) simplifies to

〈
ν(ǫ)ν(ǫ′)

〉
=

1

2π2
Re
∫

dr

∫

dr′
〈
GA(r, r, ǫ)GR(r′, r′, ǫ′)

〉
. (2.37)

Figures 2.5 and 2.6 have to be understood in such a way, that they include summation
over all possible numbers of impurity lines. This sums can be merged into the so called
diffuson defined in Figure 2.7. From this equation we can deduce a Dyson-like equation
whose diagrammatic representation is also shown in Figure 2.7. This equation for the

+ + + . . .= += +

= +

D

D

Figure 2.7: Definition of the diffuson as the sum over all impurity-ladder diagrams (first
line) and the corresponding Dyson equation for the diffuson (second line).
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diffuson is solved in Appendix A.1 in momentum and energy space and yields

D(q, ω) =
(2πντ2e )

−1

Dq2 − iω/~
, (2.38)

where we introduced the diffusion constant D = v2F τe/d.
Splitting Eq. (2.37) into the diffuson and cooperon part shown in Figs. 2.5 and 2.6

yields

〈
ν(ǫ)ν(ǫ′)

〉

diff
=

1

2π2
Re
∫

dr

∫

dr′
∫

dr1 . . . dr4

[

GA(r, r1, ǫ)G
A(r2, r3, ǫ)G

A(r4, r, ǫ)

GR(r′, r2, ǫ′)GR(r1, r4, ǫ
′)GR(r3, r

′, ǫ′)D(r1 − r2, ǫ− ǫ′)D(r3 − r4, ǫ− ǫ′)
]

(2.39)

for the diffuson part. The cooperon part looks very similar to this one as can be seen in
Figure 2.6 and will be included later.

The diffusons are slowly varying in space compared to the Green functions, and thus
we can replace r2 ≈ r4 ≈ r and r3 ≈ r2 ≈ r′ in the arguments of the diffusions. The
integrals over r1 and r4 thus contain only disorder averaged retarded and advanced Green
functions which just depend on the difference of their spatial arguments. Performing a
Fourier transformation yields
∫

dr1

∫

dr4G
A(r − r1, ǫ)G

R(r1 − r4, ǫ
′)GA(r4 − r, ǫ) =

1

V

∑

k

GA(k, ǫ)GR(k, ǫ′)GA(k, ǫ) .

(2.40)

We can solve this sum ([2], chapter 3) using ǫ− ǫ′ ≪ ~/τe

1

V

∑

k

GR(k, ǫ)
(
GA(k, ǫ)

)2
= ν

∫
dξ

~

(
~

ǫ− ξ + i~/2τe

) (
~

ǫ− ξ − i~/2τe

)2

≈ 2πiντ2e ,

(2.41)

where we integrated around the pole at ξ = ǫ + i~/2τe in the last step. All sums over
advanced and retarded Green functions will be evaluated this way in the remainder of the
thesis. The integrals over r2 and r3 give the same result up to a minus sign, and we get

〈
ν(ǫ)ν(ǫ′)

〉

diff
=

1

2π2
Re (2πντe)

2

∫

dr

∫

dr′D(r − r′, ǫ− ǫ′)D(r′ − r, ǫ− ǫ′)

=
1

2π
Re
∑

q

(
1

Dq2 − i(ǫ− ǫ′)/~

)2

. (2.42)

Up to this point the derivation for the cooperon-part of the correlation function is com-
pletely analogous. The difference occurs when we introduce a vector potential A which
can lead to a flux through the ring and thus break the time reversal invariance. This is
accounted for by replacing Dq2 with the eigenvalues of the operator D(∇/i−A 2e/~), i.e.
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by introducing the magnetic flux. Writing ϕ± = (φ± φ′)/φ0 we get assuming a quasi one
dimensional motion (L≫ Lz,y)

q = qx =
2π

L
(n− ϕ±) (2.43)

where ϕ+ (ϕ−) stands for the cooperon (diffuson) contribution and n is an integer. The
relevant energy scale for the diffusive motion is the Thouless energy EC = 4~π2D/L2 = ~

τD
,

τD the diffusion time which is the time an electron needs to travel around the ring. We
can pull this energy out of the sums making the variables under the integral dimensionless.
Performing a Poisson summation yields with ǫ̃ = (ǫ′ − ǫ)/EC

〈
ν(ǫ)ν(ǫ′)

〉

diff
=

1

π2
Re
∑

k

cos(2πkϕ−)
∫

dn
e2πikn

(ECn2/~− i(ǫ− ǫ′)/~)2

=
−~

2

π2E2
C

∂

∂ǫ̃
Im
∑

k

cos(2πkϕ−)
∫

dn
e2πikn

n2 + iǫ̃
. (2.44)

The n-integral can be solved by means of the residue theorem and we get defining the
branch cut of the complex square root on the negative real axis (i.e.

√
i = eiπ/4 = 1+i√

2
)

〈
ν(ǫ)ν(ǫ′)

〉

diff
=

−1

π2E2
C

∂

∂ǫ̃

∑

k

cos(2πkϕ−) Im
e−2πk

√
iǫ̃

√
iǫ̃

. (2.45)

To get the cooperon contribution we just have to replace varphi− by ϕ+.
Inserting Eq. (2.45) in the expression for the current fluctuations, Eq. (2.34) gives

〈
I(φ)I(φ′)

〉
= 4 ∂φ∂φ′

∫ 0

−ǫF

dǫ′
∫ 0

−ǫF

dǫ ǫ ǫ′
(〈
ν(ǫ, φ)ν(ǫ′, φ′)

〉

diff
+
〈
ν(ǫ, φ)ν(ǫ′, φ′)

〉

coop

)

.

(2.46)

Shifting the lower integration bounds to minus infinity and introducing dimensionless sum-
and difference variables

σ =
1

2

ǫ+ ǫ′

EC
, τ =

ǫ− ǫ′

EC
(2.47)

turns the ǫ and ǫ′ integrals into
∫ 0

−∞
dǫ′
∫ 0

−∞
dǫ ǫ ǫ′

(〈
ν(ǫ, φ)ν(ǫ′, φ′)

〉

diff
+
〈
ν(ǫ, φ)ν(ǫ′, φ′)

〉

coop

)

= −E
2
C

π2

∫ 0

−∞
dσ

∫ 2|σ|

−2|σ|
dτ

(

σ2 − τ2

4

) ∞∑

k=1

[cos(2πkϕ+) + cos(2πkϕ−)] ∂τ Im
e−2πk

√
iτ

√
iτ

(2.48)

This integral can be solved by integrating by parts. We get

〈
I(φ)I(φ′)

〉
= 4∂φ∂φ′

3E2
C

4π6

∞∑

k=1

1

k5
[cos(2πkϕ+) + cos(2πkϕ−)]

= 4
6E2

C

π2φ20

∞∑

k=1

sin (2πkφ/φ0) sin (2πkφ
′/φ0)

k3
. (2.49)
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−~p′ + ~q, ǫ′

~p, ǫ
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~p− ~p′, 0 ~p+ ~p′ − ~q

ǫ− ǫ′

(a) (b)

Figure 2.8: Diagrams for the grand potential corresponding to (a) the Hartree, and (b) the
Fock term. The wavy lines represent Coulomb interactions (the figure resembles Fig. 1 in
[24]).

This result agrees with the one found in Ref. [5]. Noting that EC/φ0 = e/(2πτD) we see
that we expect the typical current to be of order e/τD [5, 14, 23].

2.5 Electron electron interaction

In contradiction to the results of Section 2.3 first experimental results showed a finite
average current. In order to explain this, Ambegaokar and Eckern [24] calculated the
effect of electron-electron interaction on the average current, and found out that indeed a
fluctuation produced by those interactions could trigger the coherent backscattering which
in turn leads to a finite average current. It is important to emphasize, that this effect
differs from the cases where the positive interference of an electron-hole pair at low energies
leads to backscattering (as it is e.g. the case in the calculation of the weak-localization
correction to the conductivity [2]), since the persistent current is an equilibrium property
of the system. In this section we will briefly present the results of Ref. [24], limiting
ourselves to the zero temperature case.

The diagrams for the grand potential in Hartree-Fock approximation are shown in
Figure 2.83. Reading off this diagrams we get for the Hartree term

ΩH =
2

V 3

∑

p,p′,q

∫ 0

−∞

dǫ dǫ′

(2π)2
GR(p, ǫ)GR(p′, ǫ)GA(−p+ q, ǫ′)GA(−p′ + q, ǫ′)

×D(q, ǫ− ǫ′)V (p − p′) , (2.50)

3Since this is the only part of the thesis dealing with interactions, we do not give a detailed introduction
to the theory of interacting electrons, which can be found in [2] and [25].
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while the Fock term reads

ΩF = − 1

V 3

∑

p,p′,q

∫ 0

−∞

dǫ dǫ′

(2π)2
GR(p, ǫ)GR(p′, ǫ)GA(−p+ q, ǫ′)GA(−p′ + q, ǫ′)

×D(q, ǫ− ǫ′)V (p+ p′ − q, ǫ− ǫ′) , (2.51)

where V is the volume of the system. The relative factor of two between the two terms
results from the fact that we have to avoid double counting of the energy in the Fock term.
Since the diffuson emphasizes small q, we can again integrate out the Green functions,
expanding around q ≈ 0 to first nontrivial order. We get4

ΩH +ΩF =
(2πντe)

2

2πντ2e

∫ 0

−∞

dǫ dǫ′

(2π)2
〈
2V (p− p′, 0) − V (p+ p′, ǫ− ǫ′)

〉∑

q

1

Dq2 − i(ǫ− ǫ′)
,

(2.52)

where the brackets denote an angular average. In the diffusive regime we can assume
ǫ− ǫ′, ~Dq2 ≪ ~/τe and the interaction V (q, ǫ) can be taken to be the screened Coulomb
potential [25]

V (q, ǫ) =
4πe2

q2
ǫ+Dq2

Dq2TF +Dq2 + ǫ
, (2.53)

where qTF is the Thomas-Fermi wave number, qTF = 8πνe2. The angular average yields a
result which is in this regime independent of ǫ− ǫ′, so that we can replace the average of
the potentials by V̄ = 〈V (p− p′, 0)〉, leading to the expression

ΩH +ΩF = 2πν V̄

∫ 0

−∞

dǫ dǫ′

(2π)2

∑

q

1

Dq2 − i(ǫ− ǫ′)
. (2.54)

The next step is to introduce the magnetic flux ϕ ≡ φ/φ0. We follow the same steps as in
Section 2.4.3, but take into account that we expect the average current to be φ0/2-periodic
as it has been shown in Section 2.35. Further we assume a quasi-one-dimensional motion
again. After performing a Poisson summation we are left with

ΩH +ΩF = 4πν V̄ EC

∫ 0

−∞

dǫ

2π

∫ 0

−∞

dǫ′

2π

∞∑

p=1

cos(4πpϕ)

∫ ∞

−∞
dn

e2πipn

n2 − i(ǫ− ǫ′)
, (2.55)

where the variables which are integrated over are now dimensionless, EC is the Thouless
energy and we already left out the p = 0-term which will vanish when we take the φ-
derivatives in Eq. (2.1), which still defines the average persistent current. The n-integral
can be performed by residue calculus. With

∫ ∞

−∞
dn

e2πipn

n2 − i(ǫ− ǫ′)
= π e2πip

√
i(ǫ−ǫ′)

√

i

ǫ− ǫ′
(2.56)

4We set ~ = 1 in this section
5Note the definition φ0 = h/2e in Ref. [24].
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for p > 0, we are left with

ΩH +ΩF = ν V̄ EC

∫ 0

−∞
dǫ

∫ 0

−∞
dǫ′

∞∑

p=0

cos(4πpϕ)e2πip
√

i(ǫ−ǫ′)

√

i

ǫ− ǫ′
. (2.57)

Introducing sum and difference variables σ = 1
2(ǫ+ ǫ′), τ = ǫ− ǫ′ yields

ΩH +ΩF = ν V̄ EC

∞∑

p=1

cos(4πpϕ)

∫ 0

−∞
dσ

∫ 2|σ|

−2|σ|
dτ e2πip

√
iτ

√

i

τ

= ν V̄ EC

∞∑

p=1

cos(4πpϕ)

∫ ∞

0
dσ

∫ 2σ

0
dτ e2πip

√
iτ

√

i

τ
+ c.c.

= ν V̄ EC

∞∑

p=1

cos(4πpϕ)

∫ ∞

0
dσ

2 e−2πp
√
σ sin(2πp

√
σ)

πp

= 2ν V̄ EC

∞∑

p=1

cos(4πpϕ)

4p3π3
. (2.58)

The average persistent current is still defined by Eq. (2.1), which yields

I = − 1

φ0

∂(ΩH +ΩF )

∂ϕ
=

4ν V̄ EC

φ0

∞∑

p=1

sin(4πpφ/φ0)

2p2π2
, (2.59)

which is equal to the result in [24] at zero temperatures.

2.6 Summary

In this section we introduced the basic physical quantities which are available for an exper-
imental examination of persistent currents in normal metal rings. Since most experiments
examine the effect for a large number of rings, those quantities are essentially the average
current introduced in Section 2.3 and the typical current introduced in Section 2.4.3. We
argue that the diffusive regime at which we looked in Section 2.4.3 exhibits a good descrip-
tion of the metallic systems under consideration in experiments. In the noninteracting
case we expect the average current to vanish, while the typical current is of order e/τD.
We exploit the introduction to the field to introduce some basic concepts of theoretical
condensed matter physics, like the calculation of the correlation function in Section 2.4.3,
which will be required in our analysis.
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Chapter 3

Experiments

As mentioned above, measurements of persistent currents in normal metal rings have been
a challenging task in the past. The main reasons for this are the smallness of the effect1,
and the fact, that the sign of the persistent current varies randomly from ring to ring,
depending on the detailed form of the disorder potential.

Since the magnitude of the effect is proportional to e/τD, where e is the charge of an
electron and τD the diffusion time, i.e. the time it takes an electron to diffuse around the
ring, experimentalists try to keep this time as small as possible e.g. by using rings with
a small diameter. As we have shown above (Section 2.4.1) the persistent current vanishes
exponentially when the temperature is raised. Thus the experiments have to be performed
at low temperatures, too (typically below one Kelvin).

Another important aspect which makes the observation of persistent currents more
complicated is, that since the effect crucially depends on the coherence of the electron
wave function around the ring, the signal is destroyed if a device like an ammeter is put
into the circuit. Thus one has to measure secondary effects of the persistent current, like
the magnetic moment of the ring generated by the current, instead.

Most experiments to date measure the persistent current of a single, few or many rings
via measuring the magnetization of the system using SQUID techniques. This strategy
usually led to problems concerning the background magnetization of the substrate which
possibly could explain why first experiments obtained results which were orders of magni-
tude larger than theoretical predictions2. Bluhm et al. [18] managed finally to get results
in agreement to theory by measuring and subtracting also the background magnetization.
However, recently an experiment by Bleszynski-Jayich et al. [14] used a different approach,
measuring the frequency shift of a cantilever on which the rings are located due to the per-
sistent current through the rings. This technique led to results which are in good agreement
with the theoretical predictions (see also [23]).

In the following we will introduce this two recent experiments, by Bluhm et al. [18]
and by Bleszynski-Jayich et al. [14]. After this we will comment on older experiments to
depict the historical progress.

1We expect e.g. a persistent current of the order I ∼ 1nA for a ring with diameter one micrometer at

T
<
∼ 1K [14]
2Other possible explanations include the role of a small amount of magnetic impurities [26].
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Figure 3.1: Experiment in Ref. [18]. (a) Susceptibility scan of a ring. The + labels the
positions where the ring is located and its susceptibility is measured, while the circles
indicate background measurements around the ring. (b) Scanning electron picture of a
ring which is connected to a heat bath. Picture taken from [18].

3.1 Bluhm et al. – measuring one ring at a time

The first of the two recent experiment on persistent current in normal metal ring was
performed by Bluhm et al. [18] in 2009. The group measured the magnetic response of
gold rings, one at a time, using a scanning SQUID microscope [27]. This enabled them to
perform in situ measurements [28, 29] on the rings. They measured heat isolated rings as
well as heat sunk rings (Figure 3.1 (b)).

Measuring the background magnetization symmetrically close around the ring as it is
shown in Figure 3.1 enabled them to eliminate variations of the sensor background and
thus to deduct the persistent current part of the signal. A careful analysis of the achieved
data lead to results for the current current fluctuations which are close to the theoretical
predictions in magnitude and periodicity (Figure 3.2). They also measured the predicted
temperature dependence.

Another result which will be interesting for our considerations (see Section 4.4.2) is,
that comparing the data obtained for the linear susceptibility of the isolated and heat sunk
rings showed, the electron temperature rather than the phonon temperature in the ring to
be crucial for their measurements.

3.2 Bleszynski-Jayich et al. - rings on a cantilever

This group used a quite different approach to determine the persistent current in mesoscopic
rings. Instead of measuring the magnetization of the rings by means of a SQUID device,
they used a micro-mechanical detector, i.e., they located the rings on a single-crystal Si
cantilever (see Figure 3.3) and measured the shift of the cantilevers resonance frequency
due to the persistent currents in the rings.

A ring with radius R carrying a current I and exhibits a magnetic moment µ = πR2In̂,
where n̂ is the unit vector perpendicular to the ring. In presence of a magnetic field B
the ring causes not only a torque τ = ν ×B on the cantilever, but also a shift δν of its
resonance frequency. The idea of the experiment of Bleszynski-Jayich et al. is to measure
this shift in the resonance frequency and to backtrack it on the persistent current carried
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Figure 3.2: Response of 15 rings after subtracting the linear response components and an
average background attributed to the spin signal. The red sinusoidal fits have a fixed,
while the green ones have a fitted period. Picture taken from [18].

by the rings on the cantilever3.
This technique enabled them to measure the persistent current of an array of many rings

(Figure 3.4) as well as single rings (Figure 3.5) over a large range of magnetic field strength
with much higher sensitivity and lower backaction than in the SQUID-based experiments.
Not only the results on average and typical current, but also the measured temperature
dependencies matched the theoretical predictions for non-interacting diffusive electrons.

3.3 Other experiments

For the sake of completeness and to illustrate the historic progress, we will comment on
some older experiments performed on persistent currents in this section.

Lévy et al., 1990 In 1990 Lévy et al. measured the magnetization response of 107

copper rings using a SQUID magnetometer [15]. Although they managed to reproduce the
theoretically predicted period of φ0 for the average current, which was calculated in Section
2.5, the measured amplitude was more than five times larger than theoretical predictions
suggest.

Chandrasekhar et al., 1991 Here, in contrast to Lévy et al., the magnetic response of
a single ring was measured. The group also used a SQUID device and managed to measure
the theoretically predicted period of φ0 [16].

As in the preliminary experiment by Lévy, also here results for the average persistent
current where two orders of magnitude higher than the theoretical predictions.

3The exact correlation between frequency shift and persistent current is calculated in chapter two of
the supporting online material [30]
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Figure 3.3: Experiment of Bleszynski-Jayich et al. [14].(A) Schematic picture of the can-
tilever populated with Al rings and the magnetic field B. The magnetic flux through the
rings is accomplished by the out-of-plane component of B. (B) Scanning electron micro-
graph of several cantilevers. (C) Enhanced view of the red square in (B). Picture taken
from [14].

Mailly et al., 1993 The first measurements of the persistent current in semiconducting
rings was performed by Mailly et al. in 1993 [31]. They used a special technique to measure
the magnetization, where the ring and the SQUID device are located on the same chip.

The results coincided with the theoretical predictions both in magnitude and periodicity
of the persistent currents, but where performed in a regime with weak disorder and a small
number of channels.

Jariwala et al., 2001 The last experiment we want to mention here was performed by
Jariwala et al. in 2001 [17]. They measured the magnetic response of thirty diffusive gold
rings using a SQUID gradiometer design.

The group measured persistent currents with flux periodicities of h/e and h/2e of a
magnitude comparable to the Thouless energy, i.e., orders of magnitudes larger than theo-
retical predictions. They tried to explain their results with an ac noise induced diamagnetic
DC current in the ring [6, 32].
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Figure 3.4: Shift of the resonant frequency in the experiment on 1680 rings with a radius
of 308 nm at T =365 mK. In (A) the raw data and in (B) the data after subtraction of a
smooth background are shown. Picture taken from [14].

Figure 3.5: Shift of the resonant frequency in the experiment by Bleszynski-Jayich et al.
on one ring with radius 418 nm at T =365 mK after subtraction of a smooth background.
Picture taken from [14].
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Chapter 4

Influence of an additional microwave

field on persistent currents

In this third section of the first part of the thesis we will derive the results from our work
on persistent currents under the irradiation of a microwave field. Since the microwave field
will drive the electronic distribution function out of equilibrium we will treat the problem
in the Keldysh formalism [20, 19] which is briefly introduced in Section 4.1.

The detailed formalism which we will use for our calculation is demonstrated with the
help of the derivation of the equilibrium results in the Keldysh formalism in Section 4.2.
After this we turn to the derivation of the central results of the first part of the thesis, i.e.
the persistent current in normal metal rings under the influence of an additional microwave
field, Section 4.3. The validity of the assumptions we made in our calculation as well as
the magnitude of the effect is discussed in Section 4.4, before we show the calculation and
present the results in Section 4.5. We conclude in Section 5.

4.1 Introduction to Keldysh formalism

Since the objective of this chapter is to calculate the consequences of an additional mi-
crowave field on the persistent currents in metal rings, which will drive the electronic
distributions out of their equilibrium form, we have to use a formalism which is able to
treat out-of-equilibrium processes inherently. This is accomplished by the so called Keldysh
formalism [20] which we will introduce in this section.

The Kelsysh formalism uses real-time Green functions to derive transport properties of
metals. An exhaustive introduction can be found in Ref. [19], which we will follow in the
remainder of this section.

Green functions

As we have already seen in the calculations of Section 2, Green functions exhibit a useful
connection between calculable and experimentally relevant quantities in statistical physics.
To put the formalisms used so far on a firm footing we begin this section by introducing
the Green functions which will be utilized in the following calculations. The greater and
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lesser Green functions are defined as

G>(1, 1′) = −i
〈

ψ̂(1)ψ̂†(1′)
〉

G<(1, 1′) = ±i
〈

ψ†(1′)ψ̂(1)
〉

, (4.1)

where ψ̂ and ψ̂† are electronic annihilation and creation operators, the upper sign stands
for fermions and the lower sign for bosons and 1 and 1′ denote appropriate variables,
e.g. 1=̂(x1, t1). In addition the retarded and advanced Green functions are defined as
expectation values of the commutators of annihilation and creation operators,

GR(1, 1′) = −iθ(t1 − t′1)
〈[

ψ̂(1), ψ̂†(1′)
]

±

〉

GA(1, 1′) = iθ(t′1 − t1)

〈[

ψ̂(1), ψ̂†(1′)
]

±

〉

, (4.2)

where θ(t) is the Heaviside function. The connection between retarded, advanced, greater
and lesser Green function can readily be seen,

GR(1, 1′) = θ(t1 − t′1)
[
G>(1, 1′)−G<(1, 1′)

]

GA(1, 1′) = θ(t′1 − t1)
[
G<(1, 1′)−G>(1, 1′)

]
. (4.3)

Finally we also introduce time ordered Green functions

G(1, 1′) = −i
〈

Ttψ̂(1)ψ̂
†(1′)

〉

= −iθ(t1 − t′1)
〈

ψ̂(1)ψ̂†(1′)
〉

± θ(t′1 − t1)
〈

ψ†(1′)ψ̂(1)
〉

= θ(t1 − t′1)G
>(1, 1′) + θ(t′1 − t1)G

<(1, 1′) , (4.4)

where the time ordering operator is implicitly defined in the second line of the equation.
In the same way one can also define a contour ordered Green function, where the operators
are not ordered along the time axis, but by their location on some contour.

Time evolution

In order to deal with a system out of equilibrium we assume that the system is in equilib-
rium prior to some reference time t0, long before the times we are interested in. At time
t0 a known perturbation is switched on slowly. The Hamiltonian of the system takes the
form

Ĥ = Ĥ0 + Û(t) , (4.5)

where Û(t) = 0 for t < t0. To derive an equation for the time evolution of the Green
functions we switch to interaction and Heisenberg pictures. Any observable AH(t) in the
Heisenberg picture satisfies the equation

ÂH(t) = Tc e
− i

~

∫

c dt
′Û(t′)Â(t) , (4.6)
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Figure 4.1: Contour used in equation (4.6). (a) The originally used contour starts at time
t0, goes to time t and back. This contour can be deformed to the so called Keldysh contour
(b), since the additional integration areas simply cancel.

.

Figure 4.2: Contour used in equation (4.7). The contour now goes twice from t0 to t - one
time for each time evolution of ψ and ψ†.

where A(t) is supposed to be in the interaction picture. The contour c used in equation
(4.6) is depicted in Figure 4.1

Using this expression for the time evolution of operators, we can now deduce the time
evolution of the Green functions defined in Section 4.1. The greater Green function takes
the form

G>(1, 1′) = −i
〈

Tc e
− i

~

∫

c dτU(τ)ψ(1)ψ†(1′)
〉

0
, (4.7)

where the integration contour is depicted in Figure 4.2. The main advantage of equation
(4.7) is that the average can be taken at time t0 when the interaction is absent, i.e. the
system can be assumed to be in equilibrium. However the integration contour (Figure 4.2)
becomes quite complicated. Fortunately also this problem is simplified when calculating
the time evolution of a contour ordered Green function. The time evolution still reads

G(1, 1′) = −i
〈

Tc e
− i

~

∫

c dτU(τ)ψ(1)ψ†(1′)
〉

0
, (4.8)

but we can deform the contour in Figure 4.2 to the Keldysh contour in Figure 4.1(b), since
the time that appears on the left in the Green function is always later on the contour
anyway. Using this we can define a two by two matrix Green function

G̃(1, 1′) =
(
G11(1, 1

′) G12(1, 1
′)

G21(1, 1
′) G22(1, 1

′)

)

, (4.9)

where first index of Gij(1, 1
′) indicates if the left time is on the upper (1) or lower (2)

branch of the Keldysh contour and the second index indicates the right time in the same
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way. Exploiting the above definitions of the respective Green functions we see, that this
matrix Green function can be written as

G̃(1, 1′) =




−i
〈

TtψH(1)ψ†
H (1′)

〉

G<(1, 1′)

G>(1, 1′) −i
〈

T̃tψH(1)ψ†
H (1′)

〉



 , (4.10)

where T̃t denotes “anti time ordering”

−i
〈

T̃tψH(1)ψ†
H(1′)

〉

= −iθ(t′1 − t1)
〈

ψH(1)ψ†
H (1′)

〉

± iθ(t1 − t′1)
〈

ψ†
H(1′)ψH(1)

〉

.

(4.11)

For calculational purposes one usually chooses a more convenient representation of the
matrix Green function introduced by Larkin and Ovchinnikov [33]. Performing an invertible
transformation in Keldysh space,

G(1, 1′) =
1

2

(
1 1
1 −1

)

G̃(1, 1′)
(

1 1
−1 1

)

, (4.12)

one obtains

G(1, 1′) =
(
GR(1, 1′) GK(1, 1′)

0 GA(1, 1′)

)

, (4.13)

where we defined the Keldysh Green function

GK(1, 1′) = G>(1, 1′) +G<(1, 1′) . (4.14)

In equilibrium the matrix Green function will just depend on the difference of the variables,
G(1, 1′) = G(1 − 1′) and it turns out that the Fourier transform of the Keldysh Green
function satisfies

GK(k, ω) =
(
GR(k, ω)−GA(k, ω)

) eβ~ω − (±1)

eβ~ω + (±1)
=
(
GR(k, ω)−GA(k, ω)

)
(1− 2n(ω)) ,

(4.15)

where n(ω) = 1
eβ~ω±1

is the distribution function.

Perturbation expansion

Aiming at an expression for the current involving the matrix Green function in Eq. (4.13),
we will derive a perturbation expansion for the matrix Green function. We choose an
electric field expressed by a vector potential, A = E

iω e
−iωt as the perturbation, which

contributes a term j · A to the Hamiltonian.The impurity potential can be included in
the unperturbed Hamiltonian H0. Thus we can choose U(t) = j ·A as the perturbation.
The perturbation expansion for the contour ordered Green function can be derived from
equation (4.4) by expanding the exponential and apply Wick’s theorem [34, 35]

〈

Tcψ(1) . . . ψ(n)ψ
†(n′) . . . ψ†(1′)

〉

= in
∑

P
(−1)PG0(1,P(1)) . . . G0(n,P(n)) , (4.16)
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where P denotes a permutation and the sum goes over all possible permutations. The
contour ordered Green function takes to first order in the perturbation the form

G(1)(1, 1′) =
∫

dx2

∫

c
dt2G

(0)(1, 2)U(2)G(0)(2, 1′) , (4.17)

where the time t2 is integrated over the Keldysh contour from Figure 4.1(b) and thus
∫

c dτ . . . =̂
∫∞
−∞ dt [upper branch] −

∫∞
−∞ dt [lower branch]. Using this we can write down a

perturbation expansion of the matrix Green function. Defining Û = Uτ3, where τ3 is the
third Pauli matrix, we get

G
(1)
ij (1, 1′) =

∫

dx2

∫ ∞

−∞
dt2G

(0)
ik (1, 2) Ûkk′(2)G

(0)
k′j(2, 1

′) , (4.18)

where the Einstein sum convention is assumed. Plugging in the chosen form of the pertur-
bation, we get in real space and time

G(1)(1, 1′) =
ie

2m

∫

d2A(2)
[(

∇x2 −∇x′
2

)

G(1, 2′)G(2, 1′)
]

2′=2
, (4.19)

which can serve as a starting point for calculations of the current. We will truncate the
discussion of the Keldysh formalism and derive further expressions like the second correc-
tion to the matrix Green function in the following text where they are needed. Closing this
introductive section we note, that we can deduce from the matrix Green function to the
Green functions directly related to physical properties by multiplying with proper Pauli
matrices and taking the trace. The lesser Green function which we will need to calculate
the current is for example given by

G<(1, 1′) = tr
1

2
(τ1 − τ3) G(1, 1′) , (4.20)

as one can see directly by plugging in the definitions.
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4.2 Derivation of equilibrium persistent current in Keldysh
formalism

In this section we rederive the results from Section 2.4.3 in the Keldysh formalism. The
calculations will be in the end very much the same as before, but we will gain important
insights on how to handle the problem in the presence of an additional microwave field.

We start by deriving an expression for the current in zeroth order in the microwave
field. The current can be expressed as [19]

j(1) = − e~

2m
[∇1 −∇1′ ] G

<(1, 1′)
∣
∣
1=1′

, (4.21)

where 1 (1′) abbreviates x1, t1 (x′
1, t

′
1). Using the definitions from Section 4.1 we can

rewrite the current as

j(1) = − e~

4m
tr (τ1 − τ3) [∇1 −∇1′ ]G(1, 1

′)
∣
∣
1=1′

, (4.22)

where τi are the Pauli matrices. Fourier transforming this expression to (k, ω) space turns
the expression for the current into

j(1) = − e~

4m
tr (τ1 − τ3) [∇1 −∇1′ ]

1

V

∑

k1,k′1

eik1x1 eik
′
1x

′
1 G(k1, t1, k

′
1, t

′
1)

∣
∣
∣
∣
∣
∣
1=1′

= − e~

4m

1

V

∑

k1,k′1

(ik1 + ik′1) tr (τ1 − τ3) e
ik1x1eik

′
1x

′
1

∫
dω

2π
e−iω(t1−t′1)G(k1, k2, ω)

∣
∣
∣
∣
∣
∣
1=1′

= − e~

4m

1

V

∑

k1,k′1

(ik1 + ik′1) tr (τ1 − τ3) e
i(k1−k′1)x1

∫
dω

2π
G(k1, k2, ω) . (4.23)

Averaging over the volume yields

j(1) = − e~

4m

1

V

∑

k

2ik

∫
dω

2π
tr (τ1 − τ3) G(k, ω) . (4.24)

In the presence of an external field we can start to expand the matrix Green function at
this point. Since we assume that there is no additional field yet, we can use the zeroth order
matrix Green function. Inserting the equilibrium form of the Keldysh Green function, Eq.
(4.15), Eq. (4.22) turns into

j(1) = −ie~
m

1

V

∑

k

k

∫
dω

2π
n(ω)

[
GA(k, ω)−GR(k, ω)

]
. (4.25)

This expression is illustrated in Figure 4.3.
In order to calculate current-current fluctuations we have to combine two of the loops

shown in Figure 4.3 in all possible topologically distinct ways. As argued above the dia-
grams where two retarded or two advanced Green functions are combined are small in the
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1′ 1′

− +

Figure 4.3: The equilibrium current in Keldysh formalism. Solid lines stand for retarded
and dashed lines for advanced Green functions. The red dot stands for the distribution
function, and the triangles for current vertices −ie~m k.

diffusive limit. We are left with the diagrams in Figure 4.4 [5]. Reading off the diagrams
in Figure 4.4 gives for the current-current fluctuations in x-direction, i.e. in the direction
along the ring, the expression

〈jxjx〉 =
(

~
2e2

m2V 2

)
∑

k,k′

kα k
′
β

∫
dǫdǫ′

(2π)2
n(ǫ)n(ǫ′)GR(k, ǫ)2GA(k′, ǫ′)2

[

D(k − k′, ǫ− ǫ′) + C(k + k′, ǫ− ǫ′)

+
1

V

∑

p

GR(k − p, ǫ)GA(k′ + p, ǫ′)D(k − k′ − p, ǫ− ǫ′)2

+
1

V

∑

p

GR(k − p, ǫ)GA(k′ − p, ǫ′)C(k + k′ − p, ǫ− ǫ′)2
]

, (4.26)

where we used

D(k − k′, ω) =
γe
V τe

1

D(k − k′)2 − iω/~
, and

C(k + k′, ω) =
γe
V τe

1

D(k + k′)2 − iω/~
. (4.27)

We can eliminate the p-dependence of the cooperons and diffusons by substituting
k′ → k′ ∓ p in the last two lines, leading to

〈jxjx〉 =
(

~
2e2

m2V 2

)
∑

k,k′

kα k
′
β

∫
dǫdǫ′

(2π)2
n(ǫ)n(ǫ′)GR(k, ǫ)2GA(k′, ǫ′)

[

GA(k′, ǫ′)D(k − k′, ǫ− ǫ′) +GA(k′, ǫ′)C(k + k′, ǫ− ǫ′)

+
1

V

∑

p

GR(k − p, ǫ)GA(k′ − p, ǫ′)2D(k − k′, ǫ− ǫ′)2

+
1

V

∑

p

GR(k − p, ǫ)GA(k′ + p, ǫ′)2 C(k + k′, ǫ− ǫ′)2
]

. (4.28)
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Figure 4.4: The diagrams needed for the calculation of the current-current fluctuations.
The triangles stand for current vertices, straight (dashed) lines for retarded (advanced)
Green functions and the red and green dots for distribution functions, where green dots
come with an additional minus sign.

Since the cooperons and diffusons can be assumed to be long ranged in real space, we can
expand in small k ∓ k′ in the diffuson/cooperon terms respectively. The so called Hikami
boxes consist of those Greens functions which are short ranged in momentum space and
can be expanded. They are indicated in Figure 4.4 by calligraphic H’s, are the same as
those we need later in presence of an AC field and are calculated in Appendix A.3. Using
the result

H1 = −
(
e~

π

)2 v2F
d
δα,β

2τ2e
γe

,

Ha
3 = i

e~

π

v2F
d

2τ2e
γe

(k − k′) ,

Hb
3 = −i e~

π

v2F
d

2τ2e
γe

(k − k′) (4.29)

for the diffuson Hikami boxes, and

H1 =

(
e~

π

)2 1

V

∑

k

vα vβ G
R(k, ǫ)2GA(k′, ǫ′)2 =

(
e~

π

)2 v2F
d
δα,β

2τ2e
γe

,

Ha
3 = Hb

3 = i
e~

π

v2F
d

2τ2e
γe

(k + k′) (4.30)
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for the cooperon Hikami boxes, we arrive at the expression

〈jxjx〉 = 2

(
e~

πm

)2 1

V 2

∫

dω

∫

dω′ n(ω)n(ω′)DV
2τe
γe

∑

q

{

D(q−, ω − ω′)− C(q+, ω − ω′)

−DV
2τe
γe

[
q2
−D

2(q−, ω − ω′)− q2
+C

2(q+, ω − ω′)
]
}

, (4.31)

where we introduced q± = k±k′. If the ring is essentially one dimensional, i.e. Lx ≫ Ly,z,
we can replace the momentum vectors q± by their x-components, since the zero-modes in
y and z will give the largest contribution when summing over q±.

The magnetic flux through the ring can be introduced as in Section 2.4.3 by shifting

(k)x =
2π

L
n −→ 2π

L
(n− ϕ) ,

(k′)x =
2π

L
n −→ 2π

L
(n− ϕ′) , (4.32)

where n is an integer. We get for diffuson and cooperon

D(q−, ω − ω′) =
γe
V τe

1

D 4π2

L2 (n− ϕ−)
2 − i(ω − ω′)/~

=
γe
V

~

ECτe

1

(n− ϕ−)2 − i(ǫ− ǫ′)
,

C(q+, ω − ω′) =
γe
V τe

1

D 4π2

L2 (n− ϕ+)
2 − i(ω − ω′)/~

=
γe
V

~

ECτe

1

(n− ϕ+)2 − i(ǫ− ǫ′)
,

(4.33)

where EC = ~D 4π2

L2 is the Thouless energy, and we introduced ϕ± = ϕ± ϕ′ as well as the
dimensionless energies ǫ = ω

EC
. Introducing the Area A = L2/4π of the ring, we get for

the current correlation function

〈jxjx〉 =
(
eEC

A~π

)2 ∫

dǫ

∫

dǫ′ n(ǫ)n(ǫ′)
∑

n

{
1

(n− ϕ−)2 − i(ǫ− ǫ′)
− 1

(n− ϕ+)2 − i(ǫ− ǫ′)

− 2

[
(n− ϕ−)2

((n − ϕ−)2 − i(ǫ− ǫ′))2
− (n− ϕ+)

2

((n− ϕ+)2 − i(ǫ− ǫ′))2

]}

(4.34)
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Performing a Poisson summation yields

〈jxjx〉 =
(
eEC

A~π

)2 ∫

dǫ

∫

dǫ′ n(ǫ)n(ǫ′)
∑

p

∫

dx e−2πipx

{
1

x2 − i(ǫ− ǫ′)
− 2x2

(x2 − i(ǫ− ǫ′))2

}
(
e−2πipϕ− − e−2πipϕ+

)

=

(
eEC

A~π

)2 ∫

dǫ

∫

dǫ′ n(ǫ)n(ǫ′)
∑

p

4 sin(2πpϕ) sin(2πpϕ′)

∫

dx e−2πipx ∂x

{
x

x2 − i(ǫ− ǫ′)

}

=

(
2eEC

A~π

)2 ∫

dǫ

∫

dǫ′ n(ǫ)n(ǫ′)
∑

p

2πip sin(2πpϕ) sin(2πpϕ′)

∫

dx e−2πipx x

x2 − i(ǫ− ǫ′)
, (4.35)

where we integrated by parts in the last step. The x integral yields
∫

dx e−2πipx x

x2 − i(ǫ− ǫ′)
= −πi e2πi3/2p

√
ǫ−ǫ′ , (4.36)

leading to

〈jxjx〉 = 8

(
eEC

A~π

)2∑

p

p sin(2πpϕ) sin(2πpϕ′)
∫

dǫ

∫

dǫ′ n(ǫ)n(ǫ′) e2πi
3/2p

√
ǫ−ǫ′ . (4.37)

For zero temperature, we can assume the distribution functions to be step-like, n(ω, T =
0) = Θ(−ω), where Θ(ω) is the Heaviside function. This turns the expression for the
current correlator into

〈jxjx〉 = 8

(
eEC

A~π

)2∑

p

p sin(2πpϕ) sin(2πpϕ′)
∫ 0

−∞
dǫ

∫ 0

−∞
dǫ′ e2πi

3/2p
√
ǫ−ǫ′ . (4.38)

Since we have to deal with many integrals of this kind, the integrations over x and the
energies are performed in Appendix A.2. Inserting the result given there, we get

〈jxjx〉 =
6E2

Ce
2

~2π6A2

∑

p>0

sin(2πpϕ) sin(2πpϕ′)
p3

= 4
6E2

C

π4φ20A
2

∑

p>0

sin(2πpϕ) sin(2πpϕ′)
p3

, (4.39)

where we introduced the flux quantum. So far we calculated the current density fluctu-
ations. To get the current fluctuations we have to multiply with the area squared. We
get

〈IxIx〉 = 4
6E2

C

π4φ20

∑

p>0

sin(2πpϕ) sin(2πpϕ′)
p3

. (4.40)

This result coincides with the one calculated in Section 2.4.3 and reference [5].
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4.3 Current fluctuations in fourth order in the field

In this section we want to calculate the current-current correlation function to lowest
order in the field. It turns out that under the assumption that the microwave field stands
perpendicular to the ring, the lowest order corrections to the equilibrium persistent current
correlation function will be of fourth order in the field. Anticipating this result we will
begin with the derivation of the current in second order in the field in Section 4.3.1 which
provides the lowest order correction to the DC current and derive expressions for the
fourth-order corrections to the correlation function in Section 4.3.2. The extinction of the
second order terms as well as other possible contributions like the diamagnetic term (cf.
[35]) will be discussed in Section 4.3.3.

Throughout this section we will assume the system to be in the diffusive limit, which
means that we assume the mean free path and time to be the smallest quantities in the
system, implying ντe ≪ 1, ν the frequency of the microwave field. Further we assume that
an electron interacts at most once with the field between two scattering events. This can
be accounted for by assuming the the classical potential drop eEle between two scattering
centers is much smaller than the energy ~ν transferred by a quantum mechanical electron-
field interaction.

4.3.1 Current in second order in the field

The current in second order in the field can be written in real space as [19]

j2(1) = − e~

2m
(∇1 −∇1′)G

<
2 (1, 1

′)
∣
∣
1=1′

, (4.41)

where the variable 1 stands for (r1, t1), and G<
2 is the lesser Green function expanded to

second order in the field. Again we can write the lesser Green function as a trace over the
matrix Green function

G =

(
GR GK

0 GA

)

. (4.42)

We get by expanding Eq. (4.19) one order further

G<
2 (1, 1

′) =
(
ie

2m

)2

tr

{

(τ1 − τ3)

∫

d2A(2) · (∇2 −∇2′)

∫

d3A(3) · (∇3 −∇3′)

G0(1, 2
′)G0(2, 3

′)G0(3, 1
′)

∣
∣
∣
∣
2=2′,3=3′

}

, (4.43)

which turns the current into

j2(1) =
e3~

8m3
(∇1 −∇1′)tr

{

(τ1 − τ3)

∫

d2A(2) · (∇2 −∇2′)

∫

d3A(3) · (∇3 −∇3′)

G0(1, 2
′)G0(2, 3

′)G0(3, 1
′)

∣
∣
∣
∣
2=2′,3=3′

}∣
∣
∣
∣
1=1′

. (4.44)

39



Before performing the trace, we Fourier transform to (k, ω)-space. We assume the
vector potential to have the form

A(t) = A(eiνt + e−iνt) , (4.45)

where A is a constant vector perpendicular to the ring, i.e. A = A êz. We get for the
current in second order in the field

j2(1) =
e3~

8m3
(∇1 −∇1′)tr

{

(τ1 − τ3)

∫

dx2dt2 A(eiνt2 + e−iνt2) · (∇x2 −∇x′
2
)

∫

dx3dt3 A(eiνt3 + e−iνt3) · (∇x3 −∇x′
3
)

1

V 3

∑

ki,k′i

ei(k1x1−k′2x
′
2+k2x2−k′3x

′
3+k3x3−k′1x

′
1)

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
e−iω1(t1−t′2)−iω2(t2−t′3)−iω3(t3−t′1)

G0(k1, k
′
2, ω1)G0(k2, k

′
3, ω2)G0(k3, k

′
1, ω3)

}

2=2′,3=3′,

∣
∣
∣
∣
1=1′

. (4.46)

Performing the spatial derivatives gives

j2(1) =
e3~

8m3

1

V 3

∑

ki,k′i

i(k1 + k′
1) tr

{

(τ1 − τ3)

∫

dx2dt2 A(eiνt2 + e−iνt2) · i(k2 + k′
2)

∫

dx3dt3 A(eiνt3 + e−iνt3) · i(k3 + k′
3) e

i(k1x1−k′2x
′
2+k2x2−k′3x

′
3+k3x3−k′1x

′
1)

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
e−iω1(t1−t′2)−iω2(t2−t′3)−iω3(t3−t′1)

G0(k1, k
′
2, ω1)G0(k2, k

′
3, ω2)G0(k3, k

′
1, ω3)

}

2=2′,3=3′,

∣
∣
∣
∣
1=1′

. (4.47)

Now we can perform the integrals over x2, t2,x3, t3

j2(1) =
e3~

8m3

1

V

∑

ki,k′i

i(k1 + k′
1) tr

{

(τ1 − τ3)A · i(k2 + k2)A · i(k3 + k3) e
ix1(k1−k′1))

∫
dω1

2π

∫

dω2

∫

dω3 δ(ω1 − ω2 ± ν) δ(ω2 − ω3 ± ν) eit1(ω3−ω1)

G0(k1, k2, ω1)G0(k2, k3, ω2)G0(k3, k
′
1, ω3)

}∣
∣
∣
∣
1=1′

(4.48)

and integrate over ω2 and ω3, leading to

j2(1) =
e3~

8m3

1

V

∑

ki,k′i

i(k1 + k′
1) tr

{

(τ1 − τ3)A · 2ik2A · 2ik3 e
ix1(k1−k′1))

∫
dω1

2π
eit1(±ν±ν)G0(k1, k2, ω1)G0(k2, k3, ω2)G0(k3, k

′
1, ω3)

}∣
∣
∣
∣
1=1′

. (4.49)
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Since we are interested in the time-independent components of the current only, we can
select those terms, where eit1(±ν±ν) ≡ 1, and arrive at

j2(1) =
e3~

8m3

1

V

∑

±

∑

ki,k′i

i(k1 + k′
1) tr

{

(τ1 − τ3)A · 2ik2A · 2ik3 e
ix1(k1−k′1))

∫
dω1

2π
G0(k1, k2, ω1)G0(k2, k3, ω1 ± ν)G0(k3, k

′
1, ω1)

}∣
∣
∣
∣
1=1′

. (4.50)

The next step is to expand the trace over the third power of the matrix Green functions.
We get

tr(τ1 − τ3)G0(k1, k2, ω1)G0(k2, k3, ω2)G0(k3, k
′
1, ω3)

= tr(τ1 − τ3)

(
R1R2R3 R1R2K3 +R1K2A3 +K1A2A3

0 A1A2A3

)

= −R1R2R3 +R1R2K3 +R1K2A3 +K1A2A3 +A1A2A3 , (4.51)

where we used the abbreviations

(R/K/A)1 ≡ GR/K/A(k1, k2, ω1)

(R/K/A)2 ≡ GR/K/A(k2, k3, ω1 ± ν)

(R/K/A)3 ≡ GR/K/A(k3, k
′
1, ω1) . (4.52)

The main assumption in the calculation, which will be discussed intensively in Section 4.4,
is that the Keldysh Green functions will stay in their equilibrium form

GK(k1,k2, ω) = ((1− 2n(ω))
(
(GR(k1,k2, ω)−GA(k1,k2, ω)

)
, (4.53)

where n(ω) is the distribution function. Inserting this in Eq. (4.51) turns the expression
for the current in second order in the field (Eq. (4.50)) into

j2(1) = −2i
e2~

m3

∑

±

∑

ki,k
′
1

k1 (A · k2) (A · k3)

∫
dω

2π

{

GA(k1,k2, ω)G
A(k2,k3, ω ± ν)GA(k3,k1, ω)n(ω)

−GR(k1,k2, ω)G
R(k2,k3, ω ± ν)GR(k3,k1, ω)n(ω)

GR(k1,k2, ω)G
R(k2,k3, ω ± ν)GA(k3,k1, ω) [n(ω)− n(ω ± ν)]

+GR(k1,k2, ω)G
A(k2,k3, ω ± ν)GA(k3,k1, ω) [n(ω ± ν)− n(ω)]

}

. (4.54)

These four different contributions to the current can be represented by diagrams which are
shown in Figure 4.5.
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∓ν

±ν

Figure 4.5: Diagrams for the current in second order in the field. The solid (dashed) lines
stand for retarded (advanced) Green functions, the little triangles for current vertices, the
wiggles for interactions with the field and the dots indicate distribution functions. The red
dots indicate, that the distribution function comes with a minus sign.

4.3.2 Current fluctuations

The diagrams for the current fluctuations can be constructed by drawing impurity lines in
all possible topologically distinct ways between two of the diagrams in Figure 4.5. Again (as
in chapter 2.4.3) those diagrams account for the largest contributions in which one retarded
and one advanced Green function are respectively connected by non- or maximally crossed
diagrams. Since we want to calculate the current fluctuations along the ring, i.e. 〈jxjx〉,
and the field is assumed to be perpendicular to the ring, we only have to account for those
diagrams in which the interactions with the field come in pairs in the inner and outer
triangle1.

One can see, that there are two different types of diagrams: Either one can pair dia-
grams of the first and second kind in Figure 4.5, where one has two distribution functions
and can draw diffuson and cooperon diagrams, or one can connect diagrams of the third
and fourth kind in figure 4.5. Here we can only draw diffuson contributions, and the re-
sulting diagrams are similar to those in Ref. [6]. We start by calculating the first kind of
diagrams.

RRR/AAA diagrams

This diagrams look similar to those calculated in Section 4.2, but now containing two pairs
of field-interactions, and are shown in Figure 4.6. On top of the diagrams in Figure 4.6 we
also have to consider those diagrams where the current vertices are not at the same point.
They correspond to the lower ones in Figure 4.4 for the equilibrium case and are shown in
Figure 4.7. The first step in the calculation of these diagrams is to calculate the so called
Hikami boxes [36] which are indicated by calligraphic Hi in the figures. Since the diffusons
and cooperons can be assumed to be long ranged in real space, the momenta on the
retarded or advanced path should be equal (diffuson) or equal up to the sign (cooperon).

1This point is manifested in Appendix A.3 where we calculate the Hikami boxes. The vanishing of the
Hikami boxes containing only one field-interaction is also the reason for the extinction of the second order
diagrams, see Section 4.3.3.
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Figure 4.6: Diagrams for RRR/AAA-like terms of the current fluctuations. The nomen-
clature is the same as in Figure 4.5. The boxes connecting the two current triangles are
diffusons (D) or cooperons (C). Hi stands for a Hikami box.

Thus we can expand the remaining Green functions at one point in the diagrams (the
Hikami boxes) up to lowest order in the momenta which is equivalent to assuming that
the Hikami boxes are short ranged in momentum space. This expansion is performed in
Appendix A.3, yielding

H1 = −
(
e~

π

)2 v2F
d
δα,β

2τ2e
γe

,

H2 = −
(
e~

π

)2 ( E

~ν

)2 v2F
d

2τ2e
γe

,

Ha
3 = i

e~

π

v2F
d

2τ2e
γe

(k − k′) ,

Hb
3 = −i e~

π

v2F
d

2τ2e
γe

(k − k′) (4.55)

for the diffuson Hikami boxes, and

H1 =

(
e~

π

)2 1

V

∑

k

vα vβ G
R(k, ǫ)2GA(k′, ǫ′)2 =

(
e~

π

)2 v2F
d
δα,β

2τ2e
γe

,

H2 =

(
e~

π

)2 ( E

~ν

)2 v2F
d

2τ2e
γe

,

Ha
3 = Hb

3 = i
e~

π

v2F
d

2τ2e
γe

(k + k′) (4.56)
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Figure 4.7: The diagrams for RRR/AAA-like terms of the current fluctuations correspond-
ing to the lower equilibrium diagrams in Figure 4.4.

for the cooperon Hikami boxes.

Collecting the contributions from the diagrams we get for the diffuson part of the
current fluctuations in x-direction (along the ring)

〈jxjx〉Diff = 8 e6
E4

(~ν)4
V
∑

ν,ν′

∑

q−

∫
dω

2π

∫
dω′

2π
n(ω)n(ω′)

(
D

γ
2τe

)3

Re

{

D(q−, ω − ω′)2D(q−, ω ± ν − ω′ ∓ ν ′)−

2
D

γ
τe V q

2
−
[
2D(q−, ω − ω′)3D(q−, ω ± ν − ω′ ∓ ν ′)

+D(q−, ω ± ν − ω′)2D(q−, ω − ω′ ∓ ν ′)2
]
}

. (4.57)
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Shifting ω → ω ∓ ν and the ν → ν ′ in the last term, we get

〈jxjx〉Diff = 8 e6
E4

(~ν)4
V
∑

ν,ν′

∑

q−

∫
dω

2π

∫
dω′

2π

(
D

γ
2τe

)3

Re

{

D(q−, ω − ω′)2D(q−, ω ± ν − ω′ ∓ ν ′)n(ω)n(ω′)−

2
D

γ
τe V q

2
−
[
2D(q−, ω − ω′)3D(q−, ω ± ν − ω′ ∓ ν ′)n(ω)n(ω′)

+D(q−, ω ± ν − ω′)2D(q−, ω − ω′ ∓ ν ′)2 (n(ω ± ν)− n(ω))n(ω′)
]
}

. (4.58)

The unperturbed diffusons are given by

D(q, ω) =
γ

V τe

[
D q2 + τ−1

in − iω/~
]−1

, (4.59)

where we introduced the inelastic scattering time τin [37]. Assuming that the ring is slim,
i.e. Lx ≫ Ly,z, we can concentrate on the summation over the modes in x-direction and
replace expression (4.59) by

D(q−, ǫ = ω/EC) =
γ

V

~

ECτe

(
n2 + η − iǫ

)−1
, (4.60)

η = ~τ−1
in /EC the dimensionless inelastic scattering time. Introducing the flux through the

ring which corresponds to replacing the momenta by

kx =
2π

L
n −→ 2π

L
(n− ϕ) and

k′
x =

2π

L
m −→ 2π

L
(m− ϕ′) , (4.61)

we get

D(q− = kx − k′x, ǫ = ω/EC) =
γ

V

~

ECτe

(
(n− ϕ−)

2 + η − iǫ
)−1

, (4.62)
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where ϕ− = ϕ− ϕ′. Inserting this into the expression for 〈jxjx〉Diff yields

〈jxjx〉Diff =
8e6

4π2
E4

(~ν)4
V

EC

∑

ν,ν′

∑

n

∫
dǫ

EC

∫
dǫ′

EC

(
D

γ
2τe

)3( γ

V τe

)3

n(ǫ)n(ǫ′)

Re

{
[
(n− ϕ−)

2 − i(ǫ− ǫ′)
]−2 [

(n− ϕ−)
2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−1

− 2(n − ϕ−)
2
(

2
[
(n− ϕ−)

2 − i(ǫ− ǫ′)
]−3 [

(n− ϕ−)
2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−1

+
[
(n− ϕ−)

2 − i(ǫ− ǫ′)
]−2 [

(n− ϕ−)
2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−2
)}

− 8e6

4π2
E4

(~ν)4
V
∑

ν,ν′

∑

n

∫
dǫ

τD

∫
dǫ′

τD

(
D

γ
2τe

γ

V

τD
τe

)3

(n(ǫ± ν)− n(ǫ)) n(ǫ′)

Re

{

2(n − ϕ−)2
[
(n− ϕ−)2 − i(ǫ− ǫ′)

]−2 [
(n− ϕ−)2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−2
}

,

(4.63)

where we omitted η = τ−1
in to keep the expressions compact.

We see, that the term splits into one part depending just on the distribution function
n(ǫ) and one depending on the difference (n(ǫ± ν)− n(ǫ)). We start by manipulating
the first one. In order to calculate the current current correlation function and not the
correlation function of the current density, as we did so far, we have to multiply with the

area squared
(
L2

4π

)2
. Further we can simplify the formula by replacing the circumference

of the ring by the radius, L = 2πR, and by introducing the flux quantum φ0 =
h
e . We get

〈IxIx〉Diff,I =
64

π2

(
eER

~ν

)4(EC

φ0

)2∑

ν,ν′

∑

n

∫

dǫ

∫

dǫ′ n(ǫ)n(ǫ′)

Re

{
[
(n− ϕ−)

2 − i(ǫ− ǫ′)
]−2 [

(n− ϕ−)
2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−1

− 2(n − ϕ−)
2
(

2
[
(n− ϕ−)

2 − i(ǫ− ǫ′)
]−3 [

(n− ϕ−)
2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−1

+
[
(n− ϕ−)

2 − i(ǫ− ǫ′)
]−2 [

(n− ϕ−)
2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−2
)}

(4.64)
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Performing a Poisson summation yields

〈IxIx〉Diff,I =
64

π2

(
eER

~ν

)4(EC

φ0

)2∑

ν,ν′

∫

dǫ

∫

dǫ′ n(ǫ)n(ǫ′)

Re

{
∑

p

∫

dx e−2πipx e−2πipϕ−
[
x2 − i(ǫ− ǫ′)

]−2 [
x2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−1

− 2x2
(

2
[
x2 − i(ǫ− ǫ′)

]−3 [
x2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−1

+
[
x2 − i(ǫ− ǫ′)

]−2 [
x2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−2
)}

=

(
eER

~ν

)4(8EC

πφ0

)2∑

ν,ν′

∫

dǫ

∫

dǫ′ n(ǫ)n(ǫ′)

Re

{
∑

p

e−2πipϕ−

∫

dx e−2πipx ∂x

(
x

[x2 − i(ǫ− ǫ′)]2 [x2 − i(ǫ± ν − ǫ′ ∓ ν ′)]

)}

.

(4.65)

The second part in Eq. (4.63) can be written as

〈IxIx〉Diff,I =

(
eER

~ν

)4(8EC

πφ0

)2∑

ν,ν′

∫

dǫ

∫

dǫ′ (n(ǫ)− n(ǫ± ν))
(
n(ǫ′)− n(ǫ′ ± ν ′)

)

Re

{
∑

p

e−2πipϕ−

∫

dx e−2πipx x2

[x2 − i(ǫ− ǫ′)]2 [x2 − i(ǫ± ν − ǫ′ ∓ ν ′)]2

}

.

(4.66)

We can get the cooperon terms out of this by replacing ϕ− by ϕ+ = ϕ+ϕ′ and adding the

relative minus signs coming from the Hikami boxes. Thus, defining I20 =
(
eER
~ν

)4
(
8EC
πφ0

)2
,

the full expression for the RRR/AAA diagrams turns into

〈IxIx〉RRR/AAA = I20
∑

ν,ν′=±ν

∫

dǫ

∫

dǫ′Re

{
∑

p

[
e−2πipϕ− − e−2πipϕ+

]
∫

dx e−2πipx

[

∂x
xn(ǫ)n(ǫ′)

[x2 − i(ǫ− ǫ′)]2 [x2 − i(ǫ± ν − ǫ′ ∓ ν ′)]

− x2 (n(ǫ)− n(ǫ± ν) (n(ǫ′)− n(ǫ′ ± ν ′)

[x2 − i(ǫ− ǫ′)]2 [x2 − i(ǫ± ν − ǫ′ ∓ ν ′)]2

]}

. (4.67)

Before we start evaluating the remaining sums and integrals, we will turn to the other
possible diagrams for current fluctuations, since it will turn out to be useful to derive a
compact expression for the correlation function which we can analyze before performing
the calculations.

RRA and RAA Diagrams

The second kind of diagrams for the current fluctuations arise from pairing diagrams three
and four in Figure 4.5. In this case it is neither possible to draw cooperon diagrams, nor to
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Figure 4.8: Diagrams corresponding to pairs of RRA and RAA diagrams in Figure 4.5.
For zero flux these diagrams are similar to those calculated in Ref. [6].

split the current vertices by a diffuson as it is done in Figure 4.7. Thus the only diagrams
we can construct are those of Ref. [6], shown in Figure 4.8. Since all Hikami boxes contain
already two momenta coming from current vertices or field interactions, the Hikami boxes
are the same as in Figure 4.6. Assuming again, that the microwave field points along the
z-direction, we get

〈IxIx〉RRA/RAA =
64

π2

(
eER

~ν

)4(EC

φ0

)2

∑

ν,ν′

∫

dǫ

∫

dǫ′ (n(ǫ)− n(ǫ± ν))
(
(n(ǫ′)− n(ǫ′ ± ν ′)

)

Re

{
∣
∣
[
(n− ϕ−)2 − i(ǫ− ǫ′)

]∣
∣
−2
(
[
(n− ϕ−)2 − i(ǫ± ν − ǫ′ ∓ ν ′)

]−1

+
[
(n− ϕ−)

2 + i(ǫ± ν − ǫ′ ∓ ν ′)
]−1
)}

=
64

π2

(
eER

~ν

)4(EC

φ0

)2

∑

ν,ν′

∫

dǫ

∫

dǫ′ (n(ǫ)− n(ǫ± ν))
(
(n(ǫ′)− n(ǫ′ ± ν ′)

)
Re

{

2(n− ϕ−)
2

∣
∣
[
(n− ϕ−)

2 − i(ǫ− ǫ′)
]∣
∣
−2 ∣
∣
[
(n− ϕ−)

2 − i(ǫ− ǫ′ + ν − ν ′)
]∣
∣
−2
}

.

(4.68)
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Performing a Poisson summation yields

〈IxIx〉RRA/RAA = I20
∑

νν′

∫

dǫ

∫

dǫ′ Re

{
∑

p

e−2πipϕ−

∫

dx e−2πipx

2(x2 + η) (n(ǫ)− n(ǫ± ν)) ((n(ǫ′)− n(ǫ′ ± ν ′))

|[x2 + η − i(ǫ− ǫ′)]|2 |[x2 + η − i(ǫ± ν − ǫ′ ∓ ν ′)]|2
}

, (4.69)

where we introduced I20 =
(
eER
~ν

)4
(
8EC
πφ0

)2
again and put back the η-dependence.

Before starting to evaluate the expressions for the current fluctuations we can combine
the RRR/AAA and RRA/RAA results into a relatively compact expression. Introducing
the dimensionless diffuson operator

D(E) =
1

x2 + η − i(ǫ− ǫ′ + E)
, (4.70)

we get

〈Ix(ϕ)Ix(ϕ′)〉 = I20
∑

ν,ν′

∫

dǫ

∫

dǫ′ Re

{
∑

p

∫

dx e−2πipx




[
e−2πipϕ− − e−2πipϕ+

]



∂x xD(0)2D(±ν ∓ ν ′)n(ǫ)n(ǫ′)
︸ ︷︷ ︸

Contribution1

− x2D(0)2D(±ν ∓ ν ′)2 (n(ǫ)− n(ǫ± ν))
(
n(ǫ′)− n(ǫ′ ± ν ′)

)

︸ ︷︷ ︸

Contribution2






+ e−2πipϕ− 2(x2 + η) |D(0)|2
∣
∣D(±ν ∓ ν ′)

∣
∣2 (n(ǫ)− n(ǫ± ν))

(
n(ǫ′)− n(ǫ′ ± ν ′)

)

︸ ︷︷ ︸

Contribution3




 ,

(4.71)

for the current correlation function. We have already indexed the terms we will treat
separately in the following. Exploiting that the underbraced terms in Eq. (4.71) do not
depend on the sign of x, we can simplify the expression to

〈
Ix(ϕ)Ix(ϕ

′)
〉
= I20 Re

{
∑

p>0

4 sin(2πpϕ) sin(2πpϕ′)
[

〈II〉Contr.1 + 〈II〉Contr.2

]}

+ 〈II〉Contr.3,p=0 +
∑

p>0

2 cos(2πp(ϕ− ϕ′)) 〈II〉Contr.3 , (4.72)
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where we abbreviated

〈II〉Contr.1 =
∑

ν,ν′=±ν

∫

dǫ

∫

dǫ′
∫

dx e−2πipx∂x xD(0)2D(±ν ∓ ν ′)n(ǫ)n(ǫ′) ,

〈II〉Contr.2 = −
∑

ν,ν′=±ν

∫

dǫ

∫

dǫ′
∫

dxx2 e−2πipxD(0)2D(±ν ∓ ν ′)2

× (n(ǫ)− n(ǫ± ν))
(
n(ǫ′)− n(ǫ′ ± ν ′)

)

〈II〉Contr.3 = Re

{
∑

ν,ν′=±ν

∫

dǫ

∫

dǫ′
∫

dx e−2πipx 2(x2 + η) |D(0)|2
∣
∣D(±ν ∓ ν ′)

∣
∣2

× (n(ǫ)− n(ǫ± ν))
(
n(ǫ′)− n(ǫ′ ± ν ′)

)
}

. (4.73)

Thus we have arrived at a quite compact expression for the current-current correlation
function. Prior to the evaluation of the remaining integrals, we take this expression (4.72)
and discuss the physics behind it as well as expected orders of magnitudes and observability
of the effect at this point.

4.3.3 Second order and other terms

As we already mentioned in the beginning of Section 4.3.2, the second order terms for the
current fluctuations will vanish. The reason for this is on the one hand that there are no
first order DC corrections to the current, and we thus would have to pair a second- and a
zeroth order current diagram in order to get second order fluctuations. Furthermore this
diagrams would involve Hikami boxes containing only one field-interaction. Those Hikami
boxes vanish (as argued in Appendix A.3) due to the angular integration as long as the
microwave field stands perpendicular on the ring.

Another contribution to the correlation function in the fourth order of the field comes
from the terms proportional to A2 in the kinetic momentum. Introducing a vector potential
changes the kinetic part of the Hamiltonian according to

p2

2m
−→ (p− eA)2

2m
=

p2

2m
− 2p ·A

2m
+
e2A2

2m
. (4.74)

So far we neglected the A2 term and expanded the second term to second order in the
vector potential in Section 4.3.1. The diagrams contributing to the correlation function
arising from this terms look similar to the ones in Figures 4.6 and 4.7, but now containing
two field interaction on the same loop, each contributing a factor e2A2

2m . The difference in
the diagrams is indicated in Figure 4.9. When calculating the Hikami boxes on the right
of Figure 4.9, we see that they are smaller by a factor ~τ−1

e /mvF , i.e. by the quotient
scattering rate over Fermi energy which is assumed to be small in the diffusive regime.
Thus the terms can be neglected.

Finally the diamagnetic terms ne2A/m of the current do not contribute to the consid-
ered fluctuations in x-direction as long as the microwave field stands perpendicular to the
ring.
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(evF ~A)2

Figure 4.9: Change in the Hikami boxes when calculating the contribution from the (eA)2-
terms.
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4.4 Magnitude and observability of the effect

Before we turn towards the calculation of the terms in equation (4.73) we should comment
on the physics behind the terms we derived yet and discuss the magnitudes of the param-
eters in a real system. The discussion will have an experiment along the lines of Ref. [14]
in mind, which is why we use material constants of which can be found in [14] and the
respective supporting online material [30].

4.4.1 Fluctuations of the density of states and rectification currents

There is an obvious qualitative difference between the terms arising from the RRR/AAA-
diagrams and those from the RRA/RAA-diagrams, manifesting itself in the prefactor of
the abbreviations introduced in (4.73): while the first and the second contribution vanish
for zero flux, as one could expect for persistent currents which arise from breaking the time
reversal symmetry, the third contribution remains still finite. The reason for this behavior
it that the terms arise from fundamentally different physical contexts.

The persistent current calculated from the RRR/AAA terms is very similar to the
equilibrium persistent current. The difference is a change in the density of states which
arises from the perturbation of the microwave field. Thus the physical properties of the first
two contributions will also be reminiscent of those of the equilibrium persistent current,
including e.g. the vanishing of the contribution when the magnetic flux goes to zero, i.e.
the time reversal symmetry is not broken. The third contribution describes a mesoscopic
photovoltaic effect in the sample. This effect still exists in the presence of time reversal
symmetry, since it relies on local symmetry breaking arising from a random distribution of
impurities in the metal. This contribution was already calculated in [6] for linear sample
geometries, and indeed one can see that our expression for the RRA/RAA contributions
simplifies to the expressions given in Ref. [6] when we set ϕ − ϕ′ = 0 and subtract the
zero-momentum mode which vanishes in [6] due to the boundary conditions in a linear
sample.

Experiments measure the dependence of the typical current on the applied magnetic
field, which can be described by the current-current correlation function at ϕ = ϕ′, rather
than the correlation function. On top a smooth background is subtracted from the data,
as it it can be seen in [14, figure 1 D/E]. In a measuring procedure like this one would
not see the photovoltaic contribution to the typical current, since the corresponding third
term in equation (4.72) is constant in the magnetic field when setting ϕ = ϕ′. However,
a photovoltaic contribution can become important when measuring the dependence of the
typical current on the frequency of the applied microwave field while keeping the magnetic
field constant. In this scenario the equilibrium persistent current would remain constant
and could be subtracted from the signal. Thus, when evaluating equation (4.72), we have
to specify which measuring process we have in mind.

4.4.2 Heating effects

The derivation of our expression for the functions above was performed perturbatively in
the external field. This approach implicitly assumes that there is an adequate relaxation
to stabilize the system. In the studied case the relaxation mechanism is due to phonons
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that carry away the energy pumped in the system by the external field. In this section
we will describe this relaxation mechanism in a qualitative way in order to estimate the
magnitude of the effect later.

The simplest way to accommodate excitation effects is to assume that the phonon
relaxation maintains the equilibrium form of the electronic distribution with an effective
temperature higher than the lattice temperature. This model is justified when the ex-
citation rate is much smaller than the electron-electron collision rate driving the system
towards the equilibrium distribution. The effective electronic temperature can be esti-
mated by requiring balance between excitation and relaxation processes as outlined in this
section.

The transitions induced by a harmonic perturbation H(t) = H ′e−i ω t+H ′†ei ω t can be
calculated from the Fermi Golden Rule [38]

Γi→f = 2π|〈f |H ′|i〉|2δ(Ef −Ei ∓ ω) . (4.75)

The total energy flux can be obtained from the rate by multiplying by the transition
frequency, averaging over the initial states and summing over the final states:

JE =2π
∑

i,f

Pi|〈f |H ′|i〉|2ω δ(Ef −Ei − ω)− 2π
∑

i,f

Pi|〈f |H ′|i〉|2ω δ(−(Ef − Ei)− ω)

= −2ω Im
∑

i,f

Pi
〈f |H ′|i〉〈i|H ′|f〉
ω − Efi + i0+

+ 2ω Im
∑

i,f

Pi
〈f |H ′|i〉〈i|H ′|f〉
ω + Efi + i0+

= −2ω Im
∑

i,f

(Pi − Pf )
〈f |H ′|i〉〈i|H ′|f〉
ω − Efi + i0+

, (4.76)

where Pi is the probability of state i (note also that Im
(

1
x+i0+

)

= −πδ(x)) and Efi =

Ef − Ei. The two terms on right hand side of the first line correspond to a field-induced
absorption (Ef − Ei = ω > 0) and emission (Ef − Ei = −ω < 0). Working in a gauge
where the external field enters as a scalar potential the time-dependent perturbation can
be written as

H(t) =
1

2

∫

dxV (x)ρ(x)e−i ω t + h.c. (4.77)

where ρ(x) = ψ†(x)ψ(x). Using this expression in Eq. (4.77) the net excitation takes the
form

JE = −2ω Im

(
1

2

)2 ∫

dx dx′V (x)V (x′)
∑

i,f

(Pi − Pf )
〈f |ρ(x)|i〉〈i|ρ(x′)|f〉

ω − Efi + iη
. (4.78)

The last part in the right-hand side containing the summation can be identified as the
Lehmann representation of a retarded density-density correlation function Cr

ρρ(x, x
′, t) =

−iΘ(t)〈[ρ(x, t), ρ(x, 0)]−〉, so the expression can be rewritten as

JE = −ω
2

∫

dx dx′V (x)V (x′) ImCr
ρρ(x, x

′, ω) . (4.79)
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Now we proceed by writing the density response function in terms of the current re-
sponse to create a connection to the conductivity. It is straightforward to show that
Cr
ρ̇ρ̇(x, x

′, ω) = ω2Cr
ρρ(x, x

′, ω). Making use of the continuity equation ρ̇(x) = ∇·J(x), the
energy current can be expressed in terms of the current response function as

JE =
1

2ω

∫

dx dx′V (x)V (x′) Im ∂α∂
′
βC

r
JαJβ (x, x

′, ω)

=
1

2

∫

dx dx′∂αV (x)∂′βV (x′) Im
1

ω
Cr
JαJβ(x, x

′, ω) . (4.80)

By identifying the usual linear response expression for the conductivity
Im 1

ωC
r
JαJβ (x, x

′, ω) = Reσαβ(x, x′, ω) the energy current finally becomes

JE =
1

2

∫

dx dx′∂αV (x)∂′βV (x′)Re σαβ(x, x′, ω) . (4.81)

When the conductivity can be approximated by an isotropic and local expression
σαβ(x, x′, ω) = σ0δαβδ(x − x′)2, we get

JE =
1

2

∫

dx
∑

α

∂αV (x)∂αV (x)Re σ0

=
σ0
2

∫

dx
∑

α

(Eα(x))
2 =

σ0
4
E2

0V , (4.82)

where E0 is the amplitude of the electric field and V is the sample volume. Note that this
result has the parametric dependence that is also claimed in [6].

In a steady state, the excitation energy rate by the external field should be compensated
by the electron-phonon relaxation. This leads to the requirement

JE − Je−ph = 0 . (4.83)

The electron-phonon energy current in mesoscopic sample is commonly approximated by
Je−ph = ΣV (T 5

e − T 5
ph), where Σ is an effective electron-phonon coupling and Te, Tph are

electron and lattice temperatures. Condition (4.83) can be then used to estimate the
effective electron temperature:

T 5
e =

σ0E
2
0

4Σ
+ T 5

ph. (4.84)

Thus the effective electron temperature only depends on material parameters and the
lattice temperature. For Al (material used by the Harris group) these parameters are
Σ = 2.4 · 109W/m3K5 and σ−1

0 ≈ 1.0 · 10−8Ωm. Using these numbers it is possible to
estimate the effective temperature entering the electron distribution functions.

2The frequency-dependent conductivity can be approximated by its DC value since we are dealing with
frequencies much smaller than the inverse mean-free time τ−1, see also [6].

54



4.4.3 Magnitude of the parameters in the experiment

In order to estimate the magnitude of the effect and to get realistic values for the parameter
regime when evaluating our results we collect some realistic values for the parameters of
the system. Therefore we concentrate on the experimental setup of Ref. [14], since the
experimental technique used provides the most accurate experimental data to date.

The data are mainly collected from Refs. [14, 23, 30]. The group measures the persistent
current of arrays of aluminium rings. The relevant material properties are listed in the
following table

Quantity Symbol Magnitude
Length L 1.2− 3.1µm
Diffusion constant D 0.026 ± 0.01m2/s
Temperature T ∼ 0.2 − 0.6K
Conductivity σ0 1.0 · 108 Ωm
Electron-Phonon coupling constant Σ 2.4 · 109W/m3K5

Fermi velocity vF 2.0 · 106m/s .

We will choose L = 1.2µm in the following. From this data we can calculate the
following quantities

Quantity Symbol Magnitude
Thouless energy EC 7.5 · 10−23 J
Mean free time τe ∼ 2.0 · 10−14 s
Mean free path le ∼ 3.9 · 10−8m
Characteristic temperature TT 0.87K .

These values allow us to estimate the regions for temperatures, electric field intensities
and frequencies which lie within the assumptions of our perturbation theory. First of all
we assumed that the mean free time τe and mean free path le are the smallest quantities
in the problem [6]. This implies, that

ω ≪ τ−1
e ≈ 5 · 1013 s−1 (4.85)

is an upper border for the frequency of the applied field. In choosing the electric field
intensity we can follow two different strategies. On the one hand one can apply a weak
field in the sense, that the electronic and the phononic temperature are similar. From
Eq. (4.84) follows, that field intensities of Eweak = 0.15V/m will keep the electronic
temperature equal to the phononic temperature up to ten percent. On the other hand the
effect of the microwave field will presumably be more pronounced for higher intensities as
long as the electronic temperature is of the order of the characteristic temperature. This
constraint leads to a field intensity of Estrong = 6V/m.

The choice of the intensity of the microwave field confines also the frequencies we can
analyze without leaving the limits of the perturbative approach. We have assumed

Eele
~ω

≪ 1 ⇒ ω ≫ Eele
~

=

{

∼ 9 · 106 s−1 forEweak

∼ 4 · 108 s−1 forEstrong
(4.86)

which gives us a lower limit for the frequency.

55



4.4.4 Magnitude of the photovoltaic effect

To get a feeling for the orders of magnitude of the typical current arising from the photo-
voltaic effect, we can adopt the results of Ref. [6] and insert the parameters of the preceding
section. Ref. [6] estimates the photovoltaic current in high frequency case, ω ≫ EeL/~,
to be of the order

IPVtyp ∼ e

(
ω

τD

)1/2 (EeL

~ω

)2

. (4.87)

Inserting the parameters and comparing to the equilibrium typical persistent current
∼ e/τD shows that we expect the photovoltaic contribution to be six (three) orders of
magnitude smaller for a weak (strong) field amplitude. In the low frequency limit we can
expect an even smaller signal from the photovoltaic contribution (cf. [6, Eq. 2.8]).

On the other hand we can estimate the magnitude of the effect arising from the field-
induced change in the density of states by dividing the prefactor I0 in Eq. (4.71) by
e/τD. We can see that the typical current can be of the same order of magnitude as the
equilibrium persistent current at low frequencies.
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4.5 Evaluation and results

In this section we finally calculate the remaining integrals in Eq. (4.72) and evaluate the
results in the parameter region discussed in Section 4.4. Since the evaluation process is
similar for the three different contributions defined in Eq. (4.73), we show the calculation
for the first term and shift the calculations for the other terms to Appendix A.4.

4.5.1 Evaluation of Contribution 1

Throughout the following calculations we will have to deal with square roots of imaginary
units. We will always choose the branch cut of the complex square root to be on the
negative real axis, leading to

√
i =

1 + i√
2
,
√
−i = 1− i√

2
= −i

√
i . (4.88)

We start by calculating the integrals of the first contribution. The term reads after
integrating by parts

〈II〉Contr.1 =

2πip
∑

ν,ν′=±ν

∫

dǫ

∫

dǫ′
∫

dx
x e−2πipx

(x2 + η − i(ǫ− ǫ′))2(x2 + η − i(ǫ− ǫ′ + ν − ν ′))
n(ǫ)n(ǫ′).

(4.89)

We can discriminate between the cases where ν = ν ′ and ν = −ν ′, and start with the latter
one.

ν = −ν ′

As a first step we note, that the term in Eq. (4.89) in the case ν−ν ′ = −2ν is the complex
conjugate of the term for ν−ν ′ = +2ν as one can see by substituting x→ −x and replacing
ǫ ↔ ǫ′. Thus we can concentrate on the case ν − ν ′ = 2ν and take twice the real part of
the result.

We start by integrating over x. Due to the exponent and since p is larger than zero
we can close the integration contour in the lower plane. Defining a =

√

η − i(ǫ− ǫ′) and
b =

√

η − i(ǫ− ǫ′ + 2ν) the x-integral turns into

∫

dx
x e−2πipx

(x2 + η − i(ǫ− ǫ′))2(x2 + η − i(ǫ− ǫ′ + ν − ν ′))
=

∫

dx
x e−2πipx

(x2 + a2)2(x2 + b2)
,

(4.90)

where the poles of the integrand lie at x = ±ia and x = ±ib. Writing

ia = i
√

η − i(ǫ− ǫ′) =
i+ 1√

2

√

ǫ− ǫ′ + iη for ǫ− ǫ′ > 0 and

ia =
i− 1√

2

√

−(ǫ− ǫ′)− iη for ǫ− ǫ′ < 0 (4.91)
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we see, that it is always the pole at x = −ia which lies in the lower plane. The same
applies for the pole at x = −ib in the cases ǫ− ǫ′ > −2ν and ǫ− ǫ′ < −2ν. Thus we can
calculate the integral by adding the residues and get

∫

dx
x e−2πipx

(x2 + a2)2(x2 + b2)
=

− 2πi

(

Res

[
x e−2πipx

(x2 + a2)2(x2 + b2)
, x = −ia

]

+Res

[
x e−2πipx

(x2 + a2)2(x2 + b2)
, x = −ib

])

= −
iπ
[

e−2πpb + e−2πpa
(

−1− πpa+ πpb2

a

)]

(a2 − b2)2
. (4.92)

Reinserting the terms for a and b we get for the x-integral

∫

dx
x e−2πipx

(x2 + η − i(ǫ− ǫ′))2(x2 + η − i(ǫ− ǫ′ + 2ν))

= − iπ

(2ν)2

[

e−2πp
√

η−i(ǫ−ǫ′+2ν)

+ e−2πp
√

η−i(ǫ−ǫ′)

(

−1− πp
√

η − i(ǫ− ǫ′) +
πp(η − i(ǫ− ǫ′ + 2ν)
√

η − i(ǫ− ǫ′)

)]

. (4.93)

Due to the exponential factors in Eq. (4.93) we can close the contour of the remaining
integral over ǫ in the upper half, and the contour of the ǫ′-integral in the lower half,
encircling only the poles of the Fermi functions3. These poles are of first order and lie at
ǫ = πi

β (2l + 1) and ǫ′ = πi
β (2m+ 1), l,m integers. Since

lim
z→πi

β
(2l+1)

n(z) = − 1

β
, (4.94)

we get for expression (4.89) in the case ν + ν ′ = ±2ν

2Re

[

2πip

∫

dǫ

∫

dǫ′
∫

dx
x e−2πipx

(x2 − i(ǫ− ǫ′))2(x2 − i(ǫ− ǫ′ + 2ν))
n(ǫ)n(ǫ′)

]

=

∞∑

l,m=0

2Re

[

2pπ4 e
−2πp

(√

2π
β
(l+m+1)+η+

√

2π
β
(l+m+1)+η−2iν

)

β2ν2
√

2π
β (l +m+ 1) + η

[

− e
2πp

√

2π
β
(l+m+1)+η

√
2π

β
(l +m+ 1) + η

+ e
2πp

√

2π
β
(l+m+1)+η−2iν

(√
2π

β
(l +m+ 1) + η + 2πipν

)]]

. (4.95)

3The poles on the contour at ǫ = ǫ′ can be pushed away from the integration area by the small but
finite positive inelastic scattering time η.
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Note, that since ǫ and ǫ′ where dimensionless, also β = EC
kBT has to be dimensionless in this

expression. Replacing 2π/β → 2π kBT
EC

= T
TT

with TT = 2π~D
kBL2 yields

2Re

[

− 2πip

∫

dǫ

∫

dǫ′
∫

dx
x e−2πipx

(x2 − i(ǫ− ǫ′))2(x2 − i(ǫ− ǫ′ + 2ν))
n(ǫ)n(ǫ′)

]

=

∞∑

l,m=0

(
T

TT

)2

Re

[

pπ2 e
−2πp

(
√

T
TT

(l+m+1)+η+
√

T
TT

(l+m+1)+η−2iν
)

ν2
√

T
TT

(l +m+ 1) + η
[

− e
2πp

√

T
TT

(l+m+1)+η
√

T

TT
(l +m+ 1) + η

+ e
2πp

√

T
TT

(l+m+1)+η−2iν

(√

T

TT
(l +m+ 1) + η + 2πipν

)]]

. (4.96)

ν = ν ′

The ν = ν ′-contribution to Eq. (4.89) takes the form

4πip

∫

dǫ

∫

dǫ′
∫

dx
x e−2πipx

(x2 + η − i(ǫ− ǫ′))3
n(ǫ)n(ǫ′) . (4.97)

We note, that this term is ν independent and start by performing the x-integration. Ab-
breviating a =

√

η − i(ǫ− ǫ′), the x-integral reads

∫

dx
x e−2πipx

(x2 + η − i(ǫ− ǫ′))3
=

∫

dx
x e−2πipx

(x2 + a2)3
. (4.98)

As before we can close the contour in the lower plane, encircling the pole at −ia clockwise.
Thus the integral turns into

∫

dx
x e−2πipx

(x2 + a2)3
= −2πiRes

[
x e−2πipx

(x2 + a2)3
, x = −ia

]

= − ie
−2πpaπ2p(1 + 2πpa)

4a3
. (4.99)

Reinserting a =
√

η − i(ǫ− ǫ′) we get

∫

dx
x e−2πipx

(x2 + η − i(ǫ− ǫ′))3
= − ipπ

2e−2πp
√

η−i(ǫ−ǫ′)

4(η − i(ǫ− ǫ′))3

(

1 + 2πp
√

η − i(ǫ− ǫ′)
)

. (4.100)

We see that we can close contour of the remaining integral over ǫ in the upper, and the
contour of the integral over ǫ′ in the lower half again, encircling only the poles of the Fermi
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Figure 4.10: Convergence of the first contribution for the sum over the Fermi poles for
different temperatures in the case η → 0.

function. Following the same steps as for the case ν + ν ′ = 2ν we get

4πip

∫

dǫ

∫

dǫ′
∫

dx
x e−2πipx

(x2 − i(ǫ− ǫ′))3
n(ǫ)n(ǫ′)

=

∞∑

l,m=0

4p2π5e
−2πp

√

2π
β
(l+m+1)+η

β2
(
2π
β (l +m+ 1) + η

)3/2

(

1 + 2πp

√
2π

β
(m+ l + 1) + η

)

=
∞∑

l,m=0

(
T

TT

)2 p2π3e
−2πp

√

T
TT

(l+m+1)+η

(
T
TT

(l +m+ 1) + η
)3/2

(

1 + 2πp

√

T

TT
(m+ l + 1) + η

)

, (4.101)

where we replaced 2π/β → T/TT again.

Evaluation of contribution 1

For the evaluation we will use the experimentally relevant dimensionless parameters derived
in Section 4.4. Since we will evaluate the remaining sums over the Fermi poles numerically,
the first step is to examine the convergence of the two contributions for large l and m.
In Figure 4.10 we plot the two contributions for different parameters summing l and m
from 0 to M . We see, as one can expect, that we have to sum over more and more Fermi
poles when the temperature becomes higher, and that we can expect the result to converge
sufficiently within the temperature range we are interested in if we choose M = 20.
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Figure 4.11: Temperature dependence of contribution one for different values of the fre-
quency in the case η → 0.

Temperature dependence We evaluate the temperature dependence of the first con-
tribution by replacing β → EC/kBT . The result is plotted in Figure 4.11 for different
values of the frequency, where one can see the expected we exponential damping of the
components.

ν-dependence Since the contribution in the case ν − ν ′ = 0 is ν-independent, we plot
the two cases independently for different parameters in Figure 4.12. The ν-dependent term
is equal to the ν-independent term at ν ≪ 1 and damped for high frequencies.

Contributions two and three The calculation of the other two contributions resembles
the calculation of the first contribution and is shown in Appendix A.4. We show the
frequency depencies of the two contributions in Fig. 4.13. It turns out that due to the
difference of the Fermi functions both contributions are damped for low frequencies – the
regime favoured by the prefactor which will be included in the following section.

4.5.2 Results

When evaluating the calculations we have performed we will have different experimental
strategies in mind. Since a subtraction of a constant background signal from the raw data is
always possible, we have to identify the signal which changes with the respective parameters
varied in the experiment. First we will evaluate the influence of the additional microwave
field on the experiment on the typical current in [14] where the magnetic field and thus
the flux (ϕ−ϕ′ in Eq. (4.72)) is changed. After this we will look at the dependence of the
signal on the frequency of the microwave field. Since the equilibrium persistent current as
well as some parts of the correlation function in Eq. (4.72) are not frequency dependent we
can subtract their constant signal. Finally we will comment on the results one can achieve
when evaluating the current-current correlation function from the experimental data.
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Figure 4.12: Frequency dependence of contribution one in the case η → 0 for different
temperatures. (a)-(c) show the ν = ν ′ and ν = −ν ′ contributions for p = 1 separately for
different temperatures kBT

EC
= 0.05 (a), 0.1 (b), 0.15 (c). In (d) the sum of both contribu-

tions is plotted for a wider frequency range.

Variation of the magnetic field

By varying the magnetic field one can receive the correlation function at ϕ = ϕ′ from
the data. As already mentioned in Section 4.4.1 in this case the third contribution which
has its physical origin in rectification effects [6] will be constant and can be subtracted
from the raw data. Thus we are left with the equilibrium persistent current and with
contributions one and two from Eq. (4.72). Note that switching off the electric field
during the experiment will not only result in disappearance of the additional contribution
we calculated, but also in a lower electron temperature (Eq. (4.84)) leading to a larger
equilibrium persistent current. Thus for measuring the effect of an additional microwave
field just by switching the field on and off one would need a better picture of the influence
of the field on the distribution function than the qualitative dependence we derived in
Section 4.4.2 (cf. the comments in Section 5.1).

Subtracting the constant terms, Eq. (4.72) simplifies to

〈Ix(ϕ)Ix(ϕ)〉 =
(
eER

~ν

)4(8EC

πφ0

)2

Re

{
∑

p>0

4 sin2(2πpϕ)

[

〈II〉Contr.1 + 〈II〉Contr.2

]}

.

(4.102)
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Figure 4.13: Frequency dependence of contributions two (a) and three (b,c) in the case
η → 0 for different temperatures.

Since the equilibrium typical current is of order e/τD (Section 2.4.3, [5, 14, 23]) we will
pull a factor (e/τD)

2 = (πEC/φ0)
2 out of the equation to be able to compare the orders

of magnitude of the effects. We get

〈Ix(ϕ)Ix(ϕ)〉
(e/τD)2

=
4

π6

(
eER

~ν

)4

Re

{
∑

p>0

4 sin2(2πpϕ)

[

〈II〉Contr.1 + 〈II〉Contr.2

]}

.

(4.103)

In order to see also the effects of higher harmonics on the typical current, we plot the
typical current of the first three harmonics for a specific realistic choice of parameters in
Figure 4.14.

We can see already in Figure 4.14 that it is possible to find parameters under which the
microwave-induced part of the typical current becomes of order of the equilibrium typical
current. We also note that the typical current of higher harmonics is damped. It turns out
that it is sufficient to take the first three harmonics into account.

We plot the typical current for different frequencies and temperatures in Figure 4.15.
As expected the effect is more pronounced for low frequencies.
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Figure 4.14: Variable part of the microwave-induced typical current of metal rings. We
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lie well within the region of our approximations.

High intensities

We expect a more pronounced signal for higher field intensities. As argued above we will
set E = 6V/m which will heat the electronic temperature up to a value just under the
characteristic temperature. The results are plottet in Figure 4.16.

It turns out that it seems to be possible to get a signal that is even larger than the
eqiulibrium persistent current, but highly suppressed for higher frequencies.

Variation of the frequency

The variation of the frequency of an applied microwave field at different values of the
applied flux allows to study the field-dependent part of the persistent current in more detail
in an experimental setup. Dependent on the applied flux one can for example observe
the contribution of the third part in Eq. (4.72) alone (ϕ = ϕ′ = 0), or study various
combinations of the first two contributions on the one hand and the third contribution on
the other. Furthermore it is possible to subtract the equilibrium persistent current as well
as the frequency-independent parts of the field-dependent signal from the data.

To illustrate the possibilities we plot the frequency dependence of the expected signal
for different values of the applied flux in Figure 4.17. We can see that the contribution of
the third part in Eq. (4.72), which corresponds to the photovoltaic effect in Ref. [6], is
negligible compared to the other two terms arising from a change in the density of states
due to the microwave field at low frequencies, while high frequencies will be highly damped
by the ν−4-dependence of the prefactor.

Correlation function

In order to evaluate the effect of a microwave field on the current-current correlation
function, we evaluate Eq. (4.72) as a function of the difference δ = ϕ − ϕ′. Setting
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Figure 4.15: Variable part of the microwave-induced typical current of metal rings for
different values of the frequency and temperature. (a) Different values for the frequency
at temperature kBT

EC
= 0.7, (b) different temperature values for frequency ~ν

EC
= 5 · 10−4.

We choose the parameters L = 1.2µm, D = 0.026m2/s and E = 0.15V/m.

ϕ′ = ϕ− δ, Eq. (4.72) turns into

〈Ix(ϕ)Ix(ϕ− δ)〉 = I20 Re

{
∑

p>0

4

(

sin2(2πpϕ) cos(2πpδ) − 1

2
sin(4πpϕ) sin(2πpδ)

)

×
[

〈II〉Contr.1 + 〈II〉Contr.2

]}

+ 〈II〉Contr.3,p=0 +
∑

p>0

2 cos(2πpδ) 〈II〉Contr.3 .

(4.104)

We plot the correlation function for different values of ϕ and the frequency and temper-
atures already used above in Figure 4.18. One can see that the correlation function is
dominated by the first two terms in Eq. (4.72) as long as ϕ 6= 0. As one can expect from
Eq. (4.104), not only the magnitude but also the phase of the harmonics in the correlation
function is shifted when ϕ varies.

For higher frequencies the three contributions can become of similar order of magnitude
as it can be seen in Figure 4.13. To obtain an larger effect from the third contribution, we
evaluate the correlation function at the the frequency leading to the maximal signal from
this contribution. As shown in Figure 4.19, this leads to a mix of the different harmonics
in the correlation function. However, the magnitude of the effect is in this case small
compared to the equilibrium persistent current which makes an experimental observation
improbable.
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Figure 4.16: Microwave-induced typical current for high field intensities. The electronic
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Chapter 5

Conclusions and outlook

In the first part of the thesis we have considered normal (non-superconducting) metal rings
which exhibit persistent currents under breaking of time-reversal symmetry. We have ex-
tended existing theories towards the inclusion of an additional microwave field which drives
the system out of equilibrium. For this we have treaten the problem in the Keldysh formal-
ism which inherently allows for out-of-equilibrium studies. The considerations concentrated
on experimentally significant quantities like the average and the typical current.

We have seen that an additional microwave field can cause an extra contribution to the
persistent current of normal metal rings which can be of the order of the equilibrium current
for an appropriate choice of field amplitude and frequency. This additional contribution
splits in two parts originating from different physical effects. First, the presence of the
microwave field gives rise to corrections to the density of states which in turn affects the
current correlation function. Second, the random impurity distribution in the rings can
cause local symmetry breaking which leads to a photovoltaic effect in mesoscopic samples
under microwave irradiation, as already stated in Ref. [6].

Our analysis has shown that in the considered regime the first effect produces a signal
which is orders of magnitude larger that the photovoltaic effect, and strongly damped
for higher temperatures and frequencies. The characteristic temperature scale is of order
kB/EC which coincides with the equilibrium persistent current. We have seen that we can
choose parameters within the assumptions of our operturbative approach under which the
additional signal will be of the same order of magnitude or even larger than the equilibrium
persistent current. Thus adding an additional microwave field with appropriate frequency
and amplitude will lead to a clear measurable additional signal.

In the following we will comment on various limits and expansions of our assumptions
which can motivate future work on the subject.

5.1 Kinetic equation for the Keldysh Green function

In our considerations we have assumed that the electronic distribution stays in its equilib-
rium form and that we can account for the effect of the microwave field on the electronic
distribution by considering an electronic temperature estimated in Section 4.4.2. In our
expressions the amplitude E of the microwave field enters through a prefactor proportional
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to E4 and through the change in the electronic temperature Tel =
(
σ0E2

4Σ + Tph
5
)1/5

(cf.

Eq. (4.84)). However, this rough estimate will presumably not be sufficient when predict-
ing the dependence of the current correlation function on the amplitude of the microwave
field. A more detailed analysis could be based on a kinetic equation for the Keldysh Green
function as it is done e.g. in Refs. [39, 40].

The strategy of this analysis is not to replace the Keldysh Green function contained in
expression (4.50) of the current in second order in the field by its equilibrium form (4.15),
but to expand the Keldysh Green function in the field, too.

5.2 In-plane microwave field

Throughout the calculation we have assumed the microwave field to stand perpendicular
to the ring. This led to numerous calculational simplifications mentioned in Section 4.3.
However, in an experiment like that in Ref. [14] it will be hard to realize a field without
in-plane components. An in-plane microwave field will influence the motion of the electrons
directly and can lead to physically distinct features. In the calculations this will manifest
in considering also diagrams in which the field interactions do not come in pairs and
will eventually even give rise to second order contributions and contributions from the
diamagnetic current.
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Part II

Quantum dots with vibrational

degrees of freedom and negative-U

instability
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The second part of the thesis is dedicated to studying quantum dots with vibrational
degrees of freedom. Here the term “quantum dot” describes a low-dimensional nanometer-
sized system which serves as a confinement of only a few electrons and was introduced by
M. Reed et al. [41]. Artificial creation of such controllable and manipulable few-electrons
quantum confinements opened a field of physics in which it is possible to study paradigms
of quantum mechanical many body systems.

Besides the scientific motivation to create such “artificial atoms” or “designer atoms“,
as quantum dots were called in the beginning [42, 43], also the potential for technological
applications is exciting. The miniaturization process of semiconductor microchips, empiri-
cally remarkably well described by ”Moore’s law“ [44], suggests that dealing with quantum
mechanical effects in electric devices will become necessary if the progress in constructing
faster and more powerful transistors is maintained.

The most intuitive way to think of an experimental realization of a quantum dot is
to fabricate the system by restricting a two dimensional electron gas (e.g. realized in
a semiconductor heterostructure or graphene) laterally, using electrostatic gates [45, 46],
or vertically by etching techniques [47]. Other experimental techniques involve electron
beam lithography [48, 49] or optical confinements [50]. Preparation of these devices made
it possible to study effects of one dimensional physics, such as localization and electron
electron interactions [51, 52] as well as trapping of single electrons [53] and universal
conductance fluctuations [54].

The concept of coupling the electronic degrees of freedom of a quantum dot to vi-
brational modes and effects following from this coupling is known for several decades
[55, 56, 57]. However, it attracted even more notice when it became possible to fabricate
devices where single molecules serve as quantum dots [58], since experimental observations
suggested, that the electronic degrees of freedom couple to a single vibrational mode of the
molecule, describing e.g. nanomechanical vibrations [59]. Implications of this coupling are
vibrational sidebands in the current-voltage characteristics, the so called Franck-Condon
blockade [60], and the formation of a regime with an effectively negative charging energy,
the so-called negative-U regime [10].

In this second part of the thesis we analyze a variation of the latter situation. The
electron phonon coupling is in the negative-U regime so strong, that it leads to an effectively
negative charging energy which causes an instability. In Ref. [10] a situation where the
effective charging energy was negative but smaller than the loss in single-particle energy
was analyzed. We analyze the counterpart of this situation where the energy gain from
adding or removing one electron to the quantum dot overcomes the cost in single-particle
energy due to finite level spacing. Here the instability can be regularized by the anharmonic
contribution to the vibron energy. The resulting effective charging energy as a function of
the electron number takes a double well form leading to new features in Coulomb-blockade
physics, which are discussed here. We also argue, that the negative-U regime discussed is
accessible to modern day experimental techniques.

The outline of this part of the thesis is as follows. In the first section (6.1) we will
introduce the basic theoretical formalism for single electron transistors with vibrational
degrees of freedom and derive basic effects. After that we will turn to molecular quantum
dots and comment on the new physics emerging due to the coupling of the quantum dot
to a vibrational degree of freedom in Section 6.2. Section 7 will deal with the negative-U
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case. First we review theoretical work on molecules with large electron phonon coupling
[10, 61] and then consider the situation in metallic quantum dots (i.e. quantum dots
with a continuous density of states), discussing the instability towards adding or removing
an arbitrary number of electrons to or from the dot, which occurs in the common model.
Finally we discuss the consequences of an anharmonic term added to regulate the instability
in the negative-U regime, first on equilibrium (Section 7.3) and then on transport results
(Section 7.4). We conclude in Section 7.6.

Citations to previously published work Large portions of chapter 7, in particular
sections 7.2, 7.3, 7.4 and 7.6 have been published in [62].
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Chapter 6

Basic formalism

We begin by introducing the basic formalism describing single-electron tunneling through
quantum dots. The section splits basically in two parts. First we will concentrate on so-
called metallic quantum dots, i.e., systems with a continuous density of states, and then
we will extend the theory to include also effects in molecular quantum dots where the level
spacing is large, so that transport can be assumed to be dominated by a single energy level
on the dot. In deriving the basic effects we will also comment shortly on the corresponding
experiments.

In common devices, the quantization of charge, first measured by Millikan in 1911 [63],
cannot be perceived in voltage or current measurements. The reason for this is, of course,
on the one hand, that the number of electrons is very large in macroscopic devices, but also
that the flow of charge in conducting materials is a continuous process involving delocalized
electrons. E.g., the charge on a capacitor can be shifted by arbitrary small amounts, just
by shifting the position of the electronic fluid with respect to the ionic background. In
order to observe single-electron effects in solid state devices, one thus has to make use of a
tunneling effect. Two metallic electrodes that are separated by an insulating barrier which
is so thin that electrons can tunnel through it from one lead to the other, exhibit effectively
quantized transport characteristics if a voltage is applied across the sample. On top of this
tunneling effect, the two electrodes also behave as a capacitor. Thus the so called tunnel
resistance Rt of the insulating barrier and the capacitance C of the capacitor are the two
macroscopic parameters of such a junction. The tunnel resistance Rt is defined via the rate
V/eRt at which the electrons tunnel across the junction if a voltage V is applied, and is
fundamentally different from the ohmic resistance of a usual resistor through which charge
can flow continuously.

6.1 Metallic quantum dots

As mentioned, we call a quantum dot metallic if it has such a high density of states that
many electronic levels are involved in transport through the dot. In introducing the basic
concepts we will mainly follow the introduction in [64, Chapter 3]. We start by studying
the effect of the number of electrons, the transport- and the gate voltage on the charging
energy in two standard systems, the so called single-electron box (Section 6.1.1)and the
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single-electron transistor (Section 6.1.2). After this we will introduce the formalism used
to study transport in this system in Section 6.1.3.

6.1.1 Single-electron box

The single electron box (SEB) is the most simple system for which we can analyze charging
effects. It contains a tunneling junction which can be thought to be a small metallic island
between two metallic leads, and which is capacitively coupled to a gate voltage source,
such that a metallic island is formed between the gate-voltage-capacitor and the tunnel
junction. Since the island is surrounded by insulating material, the only way for electrons
to enter or leave is through the tunnel junction. An equivalent circuit of the SEB can be
seen in Figure 6.1.

VGCJ

q1 −q1 q2

−ne

−q2

Box

CG

(a)

(b) (c)

metalmetal

Figure 6.1: (a) Equivalent circuit of the single electron box. CG is the capacitance of the
coupling electrode, CJ the tunnel capacitance, VG the gate voltage and −ne the charge
on the quantum dot. ±qi denote the charges on the different sides of the capacitors. (b)
Schematic drawing of the tunnel junction. (c) Symbol for a metallic tunnel junction.

One can define the number of excess electrons n on the island as the difference of the
charges on the two capacitor plates within the island in multiples of the electron charge,
i.e. q2− q1 = ne in the notation of Figure 6.1. Although q1 and q2 are continuous variables
as discussed before, n is integer since electrons can enter or leave the island only one by
one. If the gate voltage is zero, in the lowest energy state there are n = 0 excess electrons
on the island. Changing the gate voltage results in a change of the number of electrons,
which can tunnel across the junction, on the island. While the gate voltage can be tuned
continuously, the number of electrons on the island is discrete. The charging energy, i.e.
the energy needed for n electrons to tunnel on the island can be derived by standard
electrostatic arguments ([64], Appendix B.1), and is given by

Ech(n,Qg) =
(ne−Qg)

2

2C
, (6.1)

where QG = CGVG stands for the gate charge, and C = CJ + CG denotes the total
capacitance of the island. In a plot (Figure 6.2) of the charging energy one can see that
in the lowest energy state the number of electrons increases with increasing gate voltage
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in discrete steps. It increases from n to n + 1 at the point QG/e = n + 1/2, so that the
number of electrons becomes a step-like function of the gate charge.

Figure 6.2: Charging energy Ech(n,QG) of a SEB as a function of the gate voltage. The
differently colored curves stand for different numbers n of electrons on the quantum dot.

For finite temperatures this step-like behavior is washed out, and the steps are rounded,
vanishing when the characteristic energy kBT of one excess electron on the island becomes
large compared to the electrostatic energy EC = e2/2(CJ + CG).

6.1.2 Single electron transistor

As it can be seen in the equivalent circuit (Figure 6.3), the single electron transistor (SET)
consists of two tunnel junctions capacitively coupled to a gate voltage. Across the island,
which is indicated by a dotted square in Figure 6.3, a voltage drop VL−VR is applied such
that a current can flow.

−ne

CL CR

CG

VG

VL VR

Figure 6.3: Equivalent circuit of a single electron transistor.

The charging energy of the SET is derived in Appendix B.2 (cf. [64, 65]) and again
given by

Ech =
(ne−QG)

2

2C
, (6.2)
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where C = CL+CR+CG is the sum of the capacitances, and QG = CLVL+CRVR+CGVG
is the gate charge defined by the three voltage sources. Thus adding an electron to the
island by tunneling changes the charging energy by

Ech(n+ 1, QG)− Ech(n,QG) =
e2

2C

(

2n+ 1− 2QG

e

)

, (6.3)

which leads to equidistant energy levels on the dot that can be shifted by the gate voltage.
Two distinct situations are drafted in Figure 6.4. If an energy level on the dot lies between
the chemical potentials of the leads (we assume VL > VR for simplicity) a tunneling current
can flow, but if there is no dot-energy level between the lead energy levels (Figure 6.4 (b))
the system is in the so called Coulomb blockaded regime, and no current can flow although
a voltage is applied. In a plot of the conductance in the (VL − VR, VG)-plane this leads to

eVR

eVL

eVR
eVL

(b)(a)

E(n+ 1, QG)− E(n,QG)

Figure 6.4: Draft of the energy levels of the leads (red) and on the dot (black). (a) One
energy level of the dot lies between the energy levels of the leads, such that a tunneling
current can flow. (b) Coulomb blockade: Although a net voltage VL − VR > 0 is applied,
no current can flow, since there is no energy level on the dot available to tunnel through.

the so called Coulomb diamond structure shown in Figure 6.5. Tunneling from the left lead
into the island is allowed, if eVL > Ech(n + 1, QG) − Ech(n,QG), and tunneling from the
island into the right lead requires Ech(n+ 1, QG)− Ech(n,QG) > eVR. If both conditions
are fulfilled simultaneously, a current can flow through the SET.

6.1.3 Rate equations

After introducing a qualitative picture of the basic effects in a SEB and a SET, we turn
now to a more quantitative description of the tunneling of electrons in a SET. This is done
by introducing the Hamiltonian of the system and using first order perturbation theory
(“Fermis golden rule”) in the tunneling constants, leading to a good picture of the system
in the unblocked regime. Within the Coulomb blockade regime, higher order tunneling
processes like cotunneling become important1.

The Hamiltonian of a SET consists of five parts and can be written as

H = HL +HI +HR +Hch +Htun (6.4)

1For a review of cotunneling effects, see e.g. [66, Section 6]
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Figure 6.5: Coulomb blockade diamonds for a symmetric SET. The green areas are in the
Coulomb blockaded regime where no current flows, in the yellow (light blue) areas one
(two) channel(s) on the dot lie(s) between the left and the right gate energies.

where HL+HR =
∑

k,σ ǫk c
†
k,σck,σ +

∑

q,σ ǫq c
†
q,σcq,σ, c†k,σ (k,σ) the creation (annihilation)

operator of an electron with momentum k and spin σ, describes the quasiparticles in the
two metal electrodes, k represents the momentum of an electron in the left, and q in
the right electrode, and HI describes the electrons on the island. Hch is the Coulomb
interaction which we assume to depend only on the number of excess electrons on the
island and which is thus equal to the charging energy,

Hch =
(n̂ −QG)

2

2C
, (6.5)

n̂ the number operator, and Htun is the tunneling Hamiltonian describing charge transfer
from and to the island, e.g. for the tunneling between the left lead and the dot

Htun,L =
∑

k,p,σ

tk,pc
†
k,σcp,σ + h.c. , (6.6)

where the term written out describes the annihilation of an electron in state (p, σ) on the
island and creation of an electron in state (k, σ) on the left electrode, i.e. tunneling from
the island to the left electrode, and tk,p is the respective tunneling probability amplitude.
The hermitian conjugate describes the conjugated process (k, σ)left electrode −→ (p, σ)island.

Tunneling rates We now calculate the tunneling rates, starting with the Hamiltonian
(6.4). We consider the tunneling Hamiltonian Htun as a perturbation and calculate the
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tunneling rate within the golden rule approximation

Γi→f =
2π

~
|〈f |Htun|i〉|2 δ(Ei − Ef ) , (6.7)

where Ei(f) is the energy of the initial (final) state |i〉 (|f〉). For tunneling between the left
lead and the island, the tunneling element thus becomes

〈f |Ht|i〉 = 〈Ef |He
tun|Ei〉+ 〈Ef |He †

tun|Ei〉 , (6.8)

where we used the shortcut He
tun =

∑

k,p,σ tk,pc
†
k,σcp,σ. The total rate of electrons tunnel-

ing from the left lead into the island can be calculated by summing over all initial and final
states, weighted with the probabilities to find the initial state occupied, fL(ǫk), and the
final state empty, [1− fI(ǫp)], where f(ǫ) is the distribution function. We get, assuming
the tunnel probability amplitudes to be constants, tk,p ≡ t,

ΓLI =
4π

~
NI(0)ΩINL(0)ΩL|t|2

∫ ∞

−∞
dǫk

∫ ∞

−∞
dǫp fL(ǫk) [1− fI(ǫp)] δ(ǫp − ǫk + δEch) ,

(6.9)

which can be reduced to

ΓLI =
1

e2Rt,L

∫ ∞

−∞
dǫk

∫ ∞

−∞
dǫp fL(ǫk) [1− fI(ǫp)] δ(ǫp − ǫk + δEch) , (6.10)

where we introduced the tunnel conductance

1

Rt,L
=

4πe2

~
NI(0)ΩINL(0)ΩL|t|2 , (6.11)

with NI/L(0) the density of states at the Fermi level of the island and the left lead respec-
tively, and ΩI/L the corresponding volumes,

The tunneling rate depends on the applied voltage at the left lead and the gate voltage
through the charging energy term in the delta function. Explicitly we have

δEch = Ech(n+ 1, QG)− Ech(n,QG)− eVL . (6.12)

In a situation where we can assume the distribution functions fL/I(ǫ) on the leads and on
the island to stay in their equilibrium form, i.e. to take the form of a Fermi function, we
can perform the integrals, leading to

ΓLI(n) =
1

e2Rt,L

δEch

eδEch/kBT − 1
. (6.13)

From this equation, we can already deduce the basic properties introduced sections 6.1.1
and 6.1.2. For low temperatures, kBT ≪ δEch, tunneling is suppressed if δEch > 0, i.e., if
the charging energy increases in the tunneling process. Since the change of the charging
energy is given by Eq. (6.12), and current can only flow if tunneling from the left lead to
the island and tunneling from the island to the right lead are not suppressed, this leads to
the same conditions for a current to flow as derived in the end of Section 6.1.2.
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Master equations Master equations are equations for the evolution of the probabilities
ps(t) that the system can be found in state |s〉 at time t. In this paragraph we will derive
the form of those equations phenomenologically following [67] and show how to use them
to get expressions for the current through the quantum dot. A systematic derivation using
diagrammatic techniques can be found in Refs. [68, 69].

The starting point is a simplified version of the model (6.4), H = Hdot+Htun+HL+HR,
where HL/R/tun takes the same form as before (after Eq. (6.4)), and Hdot is assumed to
contain all forms of interactions and to be diagonalized

Hdot =
∑

s

Es |s 〉〈 s| , (6.14)

|s〉 denoting the discrete many body state on the dot. We further assume a symmetric
splitting of the transport voltages, µL/R = µ ± V/2, and that the applied bias voltage
is static, which will lead to stationary expressions for the probabilities ps(t) ≡ psts . The
change in the occupation probabilities ps(t) is now given by the sum of the transition rates
Γs,s′ weighted with their respective probabilities

ṗs(t) =
∑

s′

Γs′sps′(t) , (6.15)

which turns after defining the matrix (Γ̄)s′s = Γs′s and the vector (pst)s = psts in the
stationary case into

Γ̄pst = 0 . (6.16)

We can include the normalization
∑

s ps = 1 by replacing one arbitrary row in the matrix
Γ̄ by (1, . . . , 1) making the overdetermined Eq. (6.16) invertible and leading to the solution

pst = (Γ̃)−1v . (6.17)

Here Γ̃ is equal to the matrix Γ̄ but with row r replaced by (1, . . . , 1), and (v)s = δs,r. The
current through e.g. the left lead, which is under symmetric conditions equal to the total
current, can now be calculated as the sum of the transitions rates times the occupation
probabilities over all states,

IL(t) = −e
∑

s

[ΓLI(s)− ΓIL(s)] ps(t) . (6.18)

To illustrate the usability of the master equations we derive the qualitative results from
sections 6.1.1 and 6.1.2 within an easy model, assuming sequential tunneling and a two
level system. We further assume the temperature and the transport voltage V to be so
small, that only two levels on the dot have a non vanishing probability p(n, t). Thus we
have a two level system effectively. We can call the levels n and n+ 1, which means, that
we assume ne < QG < (n+1)e, where QG = CGVG+CLVL+CRVR is the gate charge. We
also can neglect all tunneling rates but those changing the island charge from n to n + 1
electrons or the other way round, i.e. ΓIL(n+ 1), ΓIR(n+ 1), ΓRI(n) and ΓLI(n).
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In the sequential tunneling regime, i.e. if we assume, that just one electron tunnels at
a time, Eq. (6.15) simplifies to

d

dt
p(n, t) = [ΓLI(n− 1) + ΓRI(n− 1)] p(n− 1, t) + [ΓIL(n+ 1) + ΓIR(n+ 1)] p(n+ 1, t)

− [ΓLI(n) + ΓIL(n) + ΓIR(n) + ΓIR(n)] p(n, t) , (6.19)

where we denoted the states by the number n of excess electrons on the dot. The first line
in Eq. (6.19) describes processes changing the number of electrons on the dot from n± 1
to n, and the second line subtracts processes, where the number of electrons changes from
n to n± 1. Note, that if we are interested in DC-current the current through the left and
right lead will be equal, IL = IR, and we can use the stationary solution of (6.19), i.e. we
can set d

dtp(n, t) = 0.
As a further simplification of the model we first assume, that the bias voltage is sym-

metric, VL = VR = V/2. The stationary solution of the master Eq. (6.19) reads

p(n) =
ΓIL(n+ 1) + ΓIR(n+ 1)

ΓLI(n) + ΓRI(n) + ΓRI(n+ 1)
, and

p(n+ 1) =
ΓIL(n) + ΓIR(n)

ΓLI(n) + ΓRI(n) + ΓRI(n+ 1)
, (6.20)

where we used p(n)+p(n+1) = 1. Inserting this in Eq. (6.18) and again taking just those
tunneling processes into account which leave the dot in state n or n+ 1 yields

I = IL = IR = −e [ΓLI(n) p(n)− ΓIL(n+ 1) p(n + 1)]

= −e ΓLI(n)ΓIR(n+ 1)− ΓIL(n+ 1)ΓRI(n)

ΓLI(n) + ΓRI(n) + ΓRI(n+ 1)
. (6.21)

The change in the charging energy determining the tunneling rates is given by Eqs. (6.3)
and (6.12), and turns in the case of symmetric bias voltage into

δE
L/R
ch = ±

[

Ech(n+ 1, QG)− Ech(n,QG)∓
eV

2

]

= ±
[
e2

2C

(

2n+ 1− 2QG

e

)

∓ eV

2

]

, (6.22)

where the upper sign stands for the tunneling process from the left lead to the island,
changing the state of the island from n to n+ 1 and the lower sign for tunneling from the
island to the right lead changing the island state from n+1 to n. These are the processes
which are allowed for V > 0, i.e. in the case where the current flows from left to right.

We can see, that tunneling from the left lead to the island is allowed at low temperatures
(ΓLI(n) 6= 0), if 2QG− (2n+1)e ≥ −V C, and tunneling from the island to the right lead is
allowed (ΓIR(n+1) 6= 0), if 2QG− (2n+1)e ≤ V C. Since both tunneling processes have to
be allowed for a current to flow, we reproduced the same condition as we already deduced
heuristically in Section 6.1.2, and a current can flow in a window −V C ≤ 2QG−(2n+1)e ≤
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V C. The current within this window can be calculated in the limit T → 0 using the
tunneling rates in equation (6.13), which fro zero temperature are given by

ΓLI(n) =
1

e2Rt,L

∣
∣δEL

ch

∣
∣ , and

ΓIR(n+ 1) =
1

e2Rt,R

∣
∣δER

ch

∣
∣ . (6.23)

Assuming symmetric tunnel junctions where Rt,L = Rt,R ≡ Rt, we get for the current

I = −e ΓLI(n)ΓIR(n+ 1)

ΓLI(n) + ΓIR(n + 1)

=







1
4Rt

[

V − e2

C2V

(

2n+ 1− 2QG
e

)2
]

if − V C ≤ 2QG − (2n + 1) ≤ V C

0 else
. (6.24)

This function is illustrated in Figure 6.6, where the Coulomb blockade regime manifests
itself in the fact, that for integer QG/e the current vanishes as long as the bias voltage is
below e/C. We also see evenly spaced peaks around half integer values of QG/e, consistent
with what we expect from the qualitative discussion in Section 6.1.3.

As we have already seen in Figure 6.5, at higher transport voltages, V > e/C, more
charge states contribute to the transport than we took into account in our two level model,
since the voltage is high enough to overcome the increase of charging energy when an
additional electron enters the island from the left lead. The steps in which the respectively
next charge state comes into play are at transport voltages V = (2n + 1)e/C, leading to
the typical so called Coulomb staircase behavior of the transistor which is e.g. discussed
in Ref. [70].

6.2 Molecular quantum dots

The field of molecular electronics was initiated by the pioneering work from Aviram and
Ratner [71] in 1974 who introduced the idea of a molecular rectifier, although it was
at this point far from being realized experimentally. Indeed it took twenty three more
years, until first experiments on molecular junctions could be performed by Reed et. al.
[58]. The main differences in the transport through conventional nanostructures and the
transport through quantum dots consisting of a single molecule arise from the coupling of
the electronic degrees of freedom to molecular vibrations.

In this section we will briefly introduce two of the consequences of this electron-vibron
coupling on the transport, i.e. the development of vibrational sidebands (Section 6.2.1) and
the Franck-Condon blockade (Section 6.2.2), and describe how it is possible to treat molec-
ular quantum dots theoretically in the framework of the Anderson-Holstein Hamiltonian
(Section 6.2.3).

6.2.1 Vibrational sidebands

The coupling to a vibrational mode provides low lying excited states (as indicated by
the dotted lines in Figure 6.10) which can also contribute to the transport through the
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Figure 6.6: Density plot of the current in a symmetric single electron transistor at low tem-
peratures and transport voltages. Lighter colors indicate higher current, and the Coulomb
Diamonds which where already depicted in Figure 6.5, are indicated by white lines. As
long as the transport voltage is low, V C/e < 1, only two charge states play a role, while
more charge states are involved at higher transport voltages.

quantum dot. When an additional transition between two of these excited states or one
excited states and the ground state becomes allowed, the current changes which leads to
sidebands within the Coulomb blockade diamonds as indicated in Figure 6.7. Note, that
these transitions are only allowed within the Coulomb diamonds, i.e. when the ground
state transitions are allowed. This effect has been observed in a number of experiments
[59, 72, 73, 74].

6.2.2 Franck-Condon blockade

The strong suppression of the sequential tunneling current at low bias voltage is referred
to as Franck-Condon blockade [75, 76, 77]. Heuristically the effect arises due to the vibron-
induced displacement of the potential surfaces (cf. Section 6.2.3) indicated in Figure 6.10
leading to a suppressed overlap of the low-lying vibrational states if this displacement is
large compared to the quantum fluctuations (Figure 6.8). This causes a strong suppression
of the current at low bias voltages which can not be lifted by changing the gate voltage as
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Figure 6.7: Sidebands due to transport through excited states in the µ-V -Diagram. The
red dotted line indicates a transition from an excited state with energy E1 + ∆1 to the
ground state with energy E0, the green line a transition between two excited stated and
the bold black lines indicate transitions between ground states.

it is the case in the Coulomb blockade regime.
An additional crucial timescale in the Franck-Condon regime is the vibrational relax-

ation rate. Since just low lying vibrational states are blockaded it is obvious that the effect
is more pronounced for fast vibrational relaxation. However, the effect still exists in the
limit of slow vibrational relaxation [77].

Experimentally Leturcq et. al. [60] observed the Franck-Condon blockade in suspended
carbon nanotubes. The longitudinal stretching mode of the nanotubes is coupled linearly
to the electrons which leads to the appearance of a Franck-Condon blockaded regime in
conductance measurements. In Figure 6.9 we depict experimental results as well as the
corresponding theoretical predictions of Ref. [60], showing not only the suppression of the
current at low bias voltages, but also the development of vibrational sidebands described
in Section 6.2.1.

6.2.3 Model Hamiltonian – the Anderson-Holstein Hamiltonian

The system we want to analyze is a single electron transistor in which the metallic quantum
dot is replaced by a single molecule. Thus two main differences compared to the consider-
ations of the SET occur: First we assume that transport through the system is dominated
by tunneling through only one spin degenerated electronic level, instead of the many levels
of the metallic dot, and second we include the possibility of a single vibrational mode
with frequency ω0 coupled to the molecule. Due to the Coulomb interaction occupying
the molecule with two excess electrons is possible, but costs an additional charging energy
U > 0. We further keep the assumption, that the metallic leads stay in equilibrium at all
times, i.e. that electronic relaxation in the leads is the shortest timescale in the system.

The natural starting point for an analytical discussion of the system is the so-called
Anderson-Holstein Hamiltonian [56, 57, 78, 79, 80]. It consists of three parts, H = Hdot +
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Figure 6.8: (a) Suppressed overlap of low-lying vibrational states. (b) Cotunneling pro-
cesses partially lifting the suppression of the current in the Franck-Condon regime. Figure
taken from [77].

Hleads +Htun, where

Hdot = ǫdnd + Und↑nd↓ + ~ω0b
†b+ λ~ω0(b

† + b)nd (6.25)

describes electronic and vibrational degrees of freedom on the molecular quantum dot as
well as their coupling. The metallic leads are modeled by the Hamiltonian

Hleads =
∑

α=L,R

∑

p,σ

(ǫp − µα)c
†
α,pσcα,pσ , (6.26)

and the tunneling Hamiltonian contains the two tunneling matrix elements tL and tR
parameterizing the strength of the coupling between the dot and the left and right lead,

Htun =
∑

α=L,R

∑

p,σ

tαc
†
α,pσdσ + h.c. . (6.27)

Here the operator nd,σ = d†d,σdd,σ is the number operator, counting the number of excess

electrons on the dot, d†d,σ, dd,σ are the creation and annihilation operators on the dot,
and nd stands for the spin resolved number operator, nd =

∑

σ nd,σ. The operators b
and b† annihilate and create a vibrational excitation with energy ~ω0, while the term
λ~ω0(d+ d†)nd describes the linear coupling of the electronic and the vibrational degrees
of freedom on the dot, where the parameter λ parametrizes the coupling strength. Finally
the operators cαpσ and c†αpσ denote the annihilation and creation operators on the left
(α = L) and right (α = R) lead respectively.

It is assumed, that the leads consist of the same material, i.e. that they have the same
band structure. We apply the wide-band limit, which means that we assume the energy
range involved in transport to be small compared to the bandwidth of the conduction
band of the leads, leading to an effectively constant density of states in the leads. The
bias voltage can be modeled by fixing the chemical potentials of the dot, µL − µR = eV
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Figure 6.9: (a) Experimental data from Leturcq et. al. ([60]). One can see the suppression
of the current at low bias voltage. (b) Numerical simulation of the Coulomb diamonds
under the same conditions as the experimental data in (a). Figure taken from [60].

(compare to Eq. (B.7), first line). Since the bias voltage just defines the difference between
the two chemical potentials we introduce a splitting parameter 0 ≤ η ≤ 1 with µL = ηeV
and µR = (1 − η)eV . The energy ǫd is the particle energy on the molecule which can
be tuned by applying a gate voltage VG. In the remainder of this section we will assume
symmetric splitting η = 1/2, which can always be reached by changing the gate voltage.

The influence of the vibrational degrees of freedom can be enlightened by performing a
canonical transformation which eliminates the coupling term in Eq. (6.25). The so-called
Lang-Firsov transformation [81] map the Anderson-Holstein Hamiltonian to a Hamiltonian
describing polaron quasiparticles in which the coupling between the quasiparticles and the
vibration is absent. This mapping results in a change of the tunneling matrix elements
and in the so called polaron shift – a renormalization of the charging energies ǫd and U .
We present the transformation in Appendix B.3, and constrict ourselves to a qualitative
argument at this point which will bring out the same results.

The vibrational part of the Anderson-Holstein Hamiltonian (6.25) reads

Hvibr = ~ω0b
†b+ λ~ω0(b+ b†)nd . (6.28)

We switch to real space and momentum variables, x = losc√
2
(b+ b†) and p = ~

i
1√
2 losc

(b− b†),
yielding

Hvibr =
p2

2m
+
mω2

0

2
x2 +

√
2λ~ω0

x

losc
nd , (6.29)

and complete the square in x

Hvibr =
p2

2m
+

~ω0

2

(
x

losc
+

√
2~ω0nd

)2

− λ2~ω0n
2
d . (6.30)
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We read off two consequences from this trivial rewriting: first the variable x in the harmonic
oscillator is shifted by

√
2λnd, which means, that the potential minimum will vary with

the occupation number nd, and which will change the tunneling constants tL/R. Second
we see an additional energy shift. Rewriting this shift as

−λ2~ω0n
2
d = −2λ2~ω0nd(nd − 1)/2 − λ2~ω0nd , (6.31)

and comparing to the energy term ǫdnd we can see, that the orbital one particle energy is
shifted, ǫd → ǫd − λ2~ω0. Further we can rewrite Und↑nd↓ = U nd(nd−1)

2 and see, that also
the charging energy is renormalized, U → U − 2λ2~ω0. From Appendix B.3 we read off,
that the tunneling matrix elements are shifted as

tαp → tαp e
−λ(b†−b) = tαp e

√
2 losc

d
dx . (6.32)

which can be interpreted as a shift of the minimum potential surface in real space (see
Figure 6.10). This shift originates from different equilibrium distances of the atoms in the
molecular structure for different charge states [82] and is given by ∆x =

√
2λlosc, where

losc =
√

~/Mω0 is the harmonic oscillator length. The potential surfaces of the Anderson-
Holstein Hamiltonian for a spin degenerated electronic orbital are drafted in Figure 6.10.
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Figure 6.10: Sketch of the potential surfaces corresponding to the Anderson-Holstein
Hamiltonian. Charging the molecule with one (two) electron(s) costs energy ǫd (ǫd + U).
The electron-phonon coupling causes a local shift of the potential surface by ∆x each time
an extra electron enters the molecule. The dotted lines indicate the ground state and the
first excited states of the vibrational mode
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Chapter 7

Negative-U regime

After sketching the aftermath of the shift in the tunneling matrix elements due to the
coupling of a quantum dot to a vibrational degree of freedom, resulting in vibrational
sidebands and the Franck-Condon blockade, we will concentrate on the influence of the
polaron shift on the physical properties of the system in this section. As we have seen in
Section 6.2.3 the electron-vibron coupling renormalizes the charging energy of the quantum
dot. While in general a finite on-site interactions always opens the possibility of two
electrons hopping on and off the quantum dot simultaneously, we will concentrate on the
regime of an effectively negative charging energy, where hopping of two or more electrons
at a time dominates the electronic transport.

The possibility of reaching a regime with effectively negative charging energy was first
pointed out by Anderson in 1975 [83] who analyzed an attractive Hubbard model of local-
ized states suitable for semi-conducting glasses which has no gap for two-electron excita-
tions but an energy gap for one-electron ones. Ever since systems exhibiting a negative-U
regime have been studied to some extend [10, 61, 84, 85, 86, 87, 88, 89, 90]. E.g. in chem-
istry molecules in the negative-U regime are known under the name “potential inversion
[91]. In metallic quantum dots the negative-U regime can be reached if the electron vibron
coupling is sufficiently strong, while indications of such a strong coupling e.g. in suspended
carbon-nanotube quantum dots have been observed recently [60, 92, 93, 94, 95].

It has been shown recently that the negative-U regime opens the possibility for novel
features such as an efficient electron pair tunneling through single molecules [10] and a
charge-Kondo effect [61]. An underlying assumption of these works is that the negative
charging energy does not induce an instability of the system. This is indeed the case when
the energy gain due to the effectively attractive charging energy is smaller than the cost in
single-particle energy due to the finite level spacing, when adding (removing) electrons to
(from) the dot. This part of the thesis is devoted to study the opposite regime where the
magnitude of the negative (renormalized) charging energy exceeds the single-particle level
spacing. The studied system is modeled as a single-electron transistor (SET, see Section
6.1.2) whose center island is coupled to a mechanical vibration [59, 75, 92, 96, 97, 98].
It is shown that the system becomes unstable toward addition or extraction of electrons.
Assuming that the vibron Hamiltonian contains an anharmonic contribution we show that
the instability is regularized and that the system possesses a well-defined ground state. The
effective charging energy as a function of the electron number in the dot has a double-well
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structure which, moreover, depends on temperature. This is in striking contrast to the
usual parabolic charging energy and leads to a variety of novel effects. At zero gate charge
and low temperatures, there is a symmetry between particle-like and hole-like excitations
causing the existence of degenerate minima of the effective charging energy. For a weak
anharmonicity these are separated by a large number of electrons. The average population
and the electron number fluctuations are highly sensitive to the gate voltage which breaks
the symmetry between the minima. We also show that the transport properties of the
system exhibit a number of distinctive features attributed to the unusual form of the
effective charging energy.

The section is organized as follows. We will start (Section 7.1) by reviewing existing
results on the negative-U regime in the case of a molecular quantum dot, i.e. if the level
spacing is large compared to the absolute value of U [10, 61]. The model we use is intro-
duced in Section 7.2, where we also demonstrate the origin of the negative-U instability,
and state the precise conditions under which it takes place. In Section 7.3 we explore the
equilibrium properties of the instability, including the effects of the vibron nonlinearity.
Non-equilibrium (transport) properties in the presence of a bias voltage are discussed in
Section 7.4. In Section 7.5 we argue that the system we analyze can eventually be realized
experimentally in carbon nanotube quantum dots. We conclude in Section 7.6.

7.1 Negative-U in molecular quantum dots

As long as the absolute value of the charging energy is small compared to the level spacing,
the transport is dominated by one single-particle orbital ǫd. When sweeping the gate volt-
age the ground state occupation of the molecule switches from empty to double occupied
at the resonance condition 2ǫd +U = 0. Single occupation of the molecule is energetically
unfavorable at all gate voltages. Thus we can conclude that also the transport through
the system will be dominated by processes where two electrons hop on and off the dot
simultaneously. To describe the transport through the system analytically we have to keep
track of eight different pair-tunneling processes in total, including six processes where pairs
of electrons tunnel on and off the molecule (two of them sketched in Figure 7.1 (b/c)) and
two cotunneling processes [10] which are illustrated in Figure 7.1 (a).

Figure 7.1: Schematic energy level configuration of the energies for the single (ǫd) and
double (ǫd + U/2) occupied dot as well as the energy for holes propagating through the
double occupied dot (ǫd + U). (a) Cotunneling process in which an electron propagates
from the left lead to the right lead. (b) and (c) depict pair tunneling processes.
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Assuming to be in a bias voltage and temperature regime where only the vibrational
ground state is populated, the Hamiltonian of the system can be modeled as

Heff = ǫd nd + U nd↑ nd↓ +Hleads +Htun , (7.1)

where we already absorbed the shifted energies and tunneling matrix elements due to the
Lang-Firsov transformation in the definition and thus can assume U to be negative. The
system can be treated analytically by performing a so-called Schrieffer-Wolff transforma-
tion [99, 100] which eliminates the tunneling Hamiltonian to first order, leading to the
transformed Hamiltonian

HSW = ǫd nd + U nd↑ nd↓ +Hleads +Hdir,ex +Hpair . (7.2)

The first new term occurring after the Schrieffer-Wolff transformation describes the direct
exchange interaction between molecule and leads, and occurs also in the positive-U-regime.
It describes the single electron tunneling processes which dominate the transport in the
positive-U regime and reads

Hdir,ex =
1

2

∑

αα′ pp′ σ

[
tα t

∗
α′

ǫαp − ǫd
cαpσc

†
α′p′σ + tα t

∗
α′ M(ǫαp)×

(d†σ̄dσc
†
αpσcα′p′σ̄ − c†αpσcα′p′σ̄ ndσ̄) + h.c.

]

, (7.3)

where we introduced M(ǫ) = [ǫ− ǫd]
−1 − [ǫ− (ǫd +U)]−1 and the notation ↑̄(↓̄) =↓ (↑). In

the negative-U regime we also have to keep track of the pair-tunneling processes described
by the last term in Eq. (7.2), which abbreviates

Hpair =
∑

αα′ pp′

tαtα′ M(ǫαp) d↑d↓ c
†
α′p′↓c

†
αp↑ + h.c. . (7.4)

One can see immediately, that Hpair vanishes for zero effective charging energy U .
At this point one can calculate the tunneling rates for the tunnel processes indicated

in Figure 7.1 in the golden rule approximation [10]. The rates for pair-tunneling processes
arising from Hpair turn in a regime where single occupation of the dot is negligible (|2ǫd +
U |, |eV |, kBT ≪ ǫd, |ǫd + U |) and for symmetric voltage splitting out to be

Γaa′
0→2 =

2πNa(0)Na′(0)|ta|2|ta′ |2
~

M2(0)F [2ǫd + U + eVa + eVa′ ] . (7.5)

Here we have defined the function F (ǫ) = ǫ/[exp(βǫ)− 1], and Γaa′
0→2 describes the rate of

the process where an electron with spin up originating from lead a and one with spin down
originating from lead a′ enter the dot, and thus change the dot occupation from zero to
two. The rates Γaa′

2→0 for electron pairs leaving the dot differ just by an overall minus sign
in the argument of F (ǫ).

From Eq. (7.5) one can immediately deduce several features of the pair tunneling
process. First we note, that only pair tunneling with electrons originating from the same
lead (Figure 7.1(c); a = a′ in Eq. (7.5)) leads to rates depending on the bias voltage, while
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for pair tunneling of electrons from different leads the bias voltage dependence drops out.
The rate of the pair tunneling, if allowed energetically, is proportional to the energy of the
pair state 2ǫd +U1. This can be explained by the fact, that only the sum of the energy of
the two electrons involved in the pair tunneling process is fixed by energy conservation –
in contrast to the single particle sequential tunneling, where the energy of the electron is
fixed (cf. Eq. (6.9)). This leads to a phase space whose size is proportional to 2ǫd + U .

The rates for cotunneling in the same regime turn out to be

Γaa′
0→0 = 2

2πNa(0)Na′(0)|ta|2|ta′ |2
~

F (eVa)

ǫ2d
, and

Γaa′
2→2 = 2

2πNa(0)Na′(0)|ta|2|ta′ |2
~

F (eVa)

(ǫd + U)2
, (7.6)

where a factor of two for spin degeneracy was included.
The stationary master equation reduces in this regime to

0 = P2Γ2→0 − P0Γ0→2 , (7.7)

where we introduced the total rates for transitions from state i to state f ,
Γi→f =

∑

a,a′ Γ
a,a′

i→f . Including the normalization of the probabilities, P2 = 1− P0, we can
solve Eq. (7.7), leading to

P0 =
Γ2→0

Γ2→0 + Γ0→2
. (7.8)

The current can now be calculated as in Section 6.1.3. We distinguish between the current
arising from pair tunneling2,

Ipairs/e = P0

[
2ΓLL

0→2 + ΓLR
0→2 + ΓRL

0→2

]
− P2

[
2ΓLL

2→0 + ΓLR
2→0 + ΓRL

2→0

]
, (7.9)

and the cotunneling current, which takes the form

Icot/e = P0

[
ΓLR
0→0 − ΓRL

0→0

]
+ P2

[
ΓLR
2→2 − ΓRL

2→2

]
. (7.10)

Linearizing the current in the symmetric bias voltages VL = −VR = V/2 leads to the
expression for the linear conductance, dI/dV ,

G =
2e2ΓLΓR

h

[
U2

ǫ2d(ǫd + U)2
β(2ǫd + U)

2 sinh[β(2ǫd + U)]
+
f(−2ǫd − U)

ǫ2d
+
f(2ǫd + U)

(ǫd + U)2

]

(7.11)

which is plotted in Figure 7.2. One can see, that the linear conductance is composed of a
featureless background resulting from the cotunneling contributions and a pair-tunneling
induced peak of height and width ∼ T .

1To be more exact one should say, that the rate is proportional to the detuning of the pair state from
the Fermi energy which is set to zero.

2As in Section 6.1.3 we calculate the current between the left lead and the dot, which is for symmetric
transport voltages equal to the total current.
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Figure 7.2: Linear conductance of a molecular quantum dot in the negative-U regime for
different temperatures. The figure resembles [10, Fig. 2].

While it turns out that the linear conductance stays in the same form for asymmetric
bias voltages, the current, i.e. the finite-bias behavior, still depends on this symmetry. We
abbreviate the discussion of the calculation of the current at this point and instead show
the results of Ref. [10] in Figure 7.3. In the symmetric case one can see that, in contrast
to the Coulomb blockade regime, the conductance peak lies at zero gate voltage and its
width is determined by the bias voltage. In the asymmetric case, Figure 7.3(b), we observe
an asymmetry with respect to voltage inversion. Due to this feature asymmetric molecular
quantum dots in the negative-U regime can be use as rectifiers, as it is argued in Ref. [10].
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Figure 7.3: Color plot of the current dependence on bias and gate Voltage for (a) a sym-
metric junction, ΓL = ΓR = kBT and (b) an asymmetric junction with ΓL = 0.1 kBT and
ΓR = 10 kBT . Figure taken from [10].
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7.2 Model and negative-U instability

Figure 7.4: Equivalent circuit of the quantum dot. Capacitances C1 and C2 model high
resistance tunnel junctions which allow the island to exchange electrons with the reservoirs,
Cg represents a gate capacitance. The central part is coupled to a vibrational mode.

We are considering a quantum dot or a single-molecule junction coupled to a single
vibrational degree of freedom. The dot is modeled as a SET where the number of electrons
on the island couples to a vibron mode, see Figure 7.4. The system could be realized, for
example, by a suspended center element between large metallic leads enabling tunneling
between the dot and the leads. The electronic part of the Hamiltonian for a SET is

He =
∑

L,R,C

ǫjc
†
jcj +HT + U(N), (7.12)

where the first term represents the single-particle energies of the leads and the center part,
the second term describes tunneling between the leads and the center, and the last term is
the relevant charging energy of the system. The tunneling Hamiltonian and the charging
energy take the standard forms

HT =
∑

i∈C, j∈L/R

(

tijc
†
i cj + t∗ijc

†
jci

)

, (7.13)

and

U(N) =
(Ne−Qg)

2

2C
, (7.14)

respectively. Here, N =
∑

C c
†
jcj − N0 is the number of excess electrons on the island,

C = C1 + C2 + Cg, and Qg = V1C1 + V2C2 + VgCg is the total induced gate charge. The
number N0 corresponds to the positively charged lattice ions on the central island. The
full Hamiltonian of the system, H = He +Hph, also includes the vibrational contribution

Hph =
P 2

2M
+

1

2
MΩ2x2 + α(2MΩ2)2x4+λ ~ΩN

x

losc
, (7.15)
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where we have included the electron-vibron coupling λ ~ΩNx/losc with losc =
√

~/2MΩ
into the phonon Hamiltonian. The Hamiltonian (7.15) also includes an anharmonic x4

term whose strength is controlled by the parameter α.
The anharmonic term becomes comparable to harmonic effects when the phonon dis-

placement is of the order of (α~Ω)−2 times the oscillator length losc. The inclusion of this
term, even in the weakly nonlinear case α ~Ω ≪ 1, is crucial for the stability of the system
for large couplings λ. To demonstrate this let us first assume α = 0 and examine the
phonon-induced modification of the charging energy. Since the electron number couples
linearly to the phonon position, it is possible to introduce a shifted phonon coordinate by
completing the square in the phonon Hamiltonian. As a result one eliminates the coupling
term and generates an extra term ∆U(N) quadratic in N , leading to the effective charging
energy

U eff(N) = U(N) + ∆U(N) =
(Ne−Qg)

2

2C
−N2λ2~Ω. (7.16)

It is important to recognize that the well-known polaron shift ∆U(N) gives rise to a
negative contribution. The overall prefactor of the N2-term will be negative if

γ =
e2

2C
− λ2~Ω < 0, (7.17)

meaning that the effective potential favors large absolute values ofN . Defining the quantity
Ech = e2/2C, the negative charging energy condition (7.17) takes the form

λ >

√

Ech

~Ω
. (7.18)

Consequently, in metallic quantum dots with a vanishingly small single-particle level sep-
aration, the energy can always be lowered by adding or removing an arbitrary number of
particles when condition (7.18) holds. Thus the system does not possess a ground state and
is unstable. In dots whose orbital energies due to confinement are not negligible compared
to the charging and vibron energies, the single-particle energy cost should also be taken
into account. To analyze this, we introduce equidistant single-electron orbitals

En = ~ vF
nπ

Ld
= ∆n, (7.19)

where vF is the Fermi velocity of the dot, Ld is the effective size of the electronic confinement
and ∆ = ~vFπ/Ld is the level separation. Expression (7.19) is appropriate in the vicinity
of the Fermi energy and holds exactly for a one-dimensional Dirac spectrum. The energy
cost of adding or removing N electrons to or from the lowest available orbitals (ignoring
the spin degeneracy) is

N∑

n=1

En = ∆
N(N + 1)

2
. (7.20)

Adding the single-particle contribution to the effective potential (7.16) we get

U eff(N) = ∆
N(N + 1)

2
+ Ech(N −Qg/e)

2 −N2λ2~Ω

=

(
∆

2
+ Ech

)

(N −Qg/e)
2 −N2λ2~Ω+ const, (7.21)
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where the second line follows by shifting the gate charge Qg → Qg +
∆

2Ech
( e2 + Qg). The

constant in Eq. (7.21) is independent of N and can be dropped. Thus the functional form
of the effective potential remains invariant, and the finite level separation just renormalizes
charging energy and gate charge. The system is still fundamentally unstable provided that

λ >

√

Ech +∆/2

~Ω
. (7.22)

In the spin-degenerate case ∆ should be replaced by ∆/2. Alternatively, we can write this
condition as Ech − λ2~Ω < −∆/2, i.e., we find an instability when the magnitude of the
renormalized charging energy becomes larger than the level spacing.

Result (7.22) shows that a constant (or decreasing) level spacing is not adequate to
stabilize the system at sufficiently large couplings. The instability tends to change the
electron number by increasing the displacement of the phonon mode. Therefore it is
natural to assume that at some point when the displacement becomes large the harmonic
approximation for the vibron mode breaks down and anharmonic effects become significant.
It turns out that a generalization of the above analysis to include a nonzero anharmonic
term (α > 0) in Eq. (7.15) always produces a well-defined ground state. The effective
potential for electrons becomes temperature dependent and exhibits a variety of novel
features.

Our discussion has a close relation to familiar stability conditions in Fermi-liquid theory
[101]. In fact, it is well known that the Fermi liquid remains stable even when the Landau
interaction parameter F0 becomes negative as long as F0 > −1. Since F0 measures the
interaction strength in units of the density of states, this is a precise analog of the stability
condition (7.22) expressed as (Ech − λ2~Ω)/(∆/2) > −13.

7.3 Thermal equilibrium properties

7.3.1 Effective potential

In this section we study effects of the anharmonic phonon term on the negative-U insta-
bility, focusing on thermal equilibrium properties of the junction. Diagonalizing (7.15) one
obtains phononic eigenvalues {Ej(N)} as a function of the electron number N and the
island partition function becomes4

Z =
∑

N,j

exp {−β [U(N) + Ej(N)]}

=
∑

N

exp {−βU(N)}
∑

j

exp {−βEj(N)} . (7.23)

In Eq. (7.23) we have assumed that the electron tunneling is weak and its contribution to
the partition function is negligible compared to the charging energy5. Defining a phononic

3The quantity (Ech − λ2
~Ω)/(∆/2) corresponds to F0 apart the difference of factor two which can be

readily traced to trivial differences in definitions.
4For simplicity, we present our analysis in the case ∆ = 0. A nonzero ∆ can be readily included by a

simple renormalization of Ech and Qg.
5Tunneling is still important in the sense that in the equilibration process the island can change its

charging state by exchanging electrons with the leads.
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partition function as Zph(N) =
∑

j exp {−βEj(N)}, the partition function takes the form

Z = Zph(N = 0)

×
∑

N

exp

{

−β[U(N)− 1

β
ln (Zph(N)/Zph(N = 0))]

}

. (7.24)

From expression 7.24 one can identify the effective electronic potential

U eff(N,T ) = U(N)− 1

β
ln [Zph(N)/Zph(N = 0)] . (7.25)

In the absence of the electron-phonon interaction, Eq. (7.25) reduces to the ordinary
charging energy, and in the absence of the anharmonic term (α = 0) it is temperature
independent and coincides with expression (7.16). In the anharmonic case the polaron
shift depends on the phonon state and thus the effective potential depends on the phonon
temperature. In general, an evaluation of Eq. (7.25) requires one to diagonalize (7.15)
numerically and to compute the phonon partition function. The behavior of the system
is then determined by the relative strength of the energy scales Ech, ~Ω, α−1, and the
magnitude of dimensionless electron-phonon coupling λ.

7.3.2 Analytical considerations

Analytical expressions for the effective potential can be obtained for weakly unstable sys-
tems at zero temperature when considering the vibronic degree of freedom as classical.
As this already illustrates some of the essential physics, we first consider this case before
presenting more general numerical results for the fully quantum mechanical model.

Starting with equation (7.25), we can write the effective potential at zero temperature
as

U eff(N) = U(N) +E0(N)− E0(0), (7.26)

where E0(N) denotes the ground state energy of the phonon Hamiltonian Hph for excess
charge N . In the classical limit, the ground state energy is simply given by the minimum
of the potential energy. Noting that E0(0) vanishes, we obtain

U eff(N) = U(N)− λ2~ΩN2

+min
x

{1
2
MΩ2(x+ 2λNℓosc)

2 + α(2MΩ2)2x4}. (7.27)

For a weakly unstable system near zero gate charge, we expect that the effective potential
has a minimum for small (but nonzero) N . Thus, we can neglect the quartic term when
determining the position of the minimum in equation (7.27),

x0 ≃ −2~ΩN. (7.28)

It is straightforward to include corrections to this expression and find that this approxi-
mation is valid as long as λ2|Ech − λ2~Ω|/~Ω ≪ 1, i.e., as long as the instability is only
weakly developed. With this expression for x0, we find for the effective potential

U eff(N) = U(N)− λ2~ΩN2 + 16α(~Ω)2N4. (7.29)
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Focusing on the case of zero gate charge, we can now compute the number of electrons N0

which are entering the quantum dot as a consequence of the instability. Minimizing the
effective potential in equation (7.29), we find

N2
0 =

|Ech − λ2~Ω|
32α(~Ω)2

. (7.30)

Note that there are indeed degenerate minima at N = ±N0 for zero gate charge.
Once the instability develops, we can define an effective charging energy Eeff

ch which
describes the curvature of the effective potential in the vicinity of the minima. Expanding
equation (7.29) around the minima, we find

Eeff
ch = 2|Ech − λ2~Ω| (7.31)

This sign reversal of the effective charging energy induced by the instability has important
consequences. While a negative renormalized charging energy leads to pair tunneling in
the absence of the instability [75], the positive effective charging energy Eeff

ch implies that
transport will be dominated again by single electron sequential tunneling processes once the
instability develops. It is also interesting to note that the Coulomb blockade is significantly
weakened near the instability where many charge states have similar energies.

We close this section with a remark on the validity of the classical approximation for the
vibrons employed in this section. As can be readily seen from equation (7.26), the quantum-
mechanical zero-point energy of the vibron mode cancels out from this expression as long
as the vibron remains harmonic, implying that the zero-point energy is independent of the
electron number N . Thus, quantum corrections to our classical discussion are proportional
to the anharmonicity and our classical expressions are an excellent approximation to the
results of a fully quantum mechanical calculation as long as the anharmonicity remains
small (see Section 7.3.3 for a comparison with numerical results).

7.3.3 Numerical results

A solution of the full quantum problem for arbitrary parameter values requires a numerical
approach. We now focus on the results of such a calculation. Figure 7.5 illustrates the
dependence of the effective potential on the electron-phonon coupling strength and the
charging energy. As the coupling strength is increased the system exhibits a crossover
between the γ > 0 regime and the negative-U regime γ < 0, signaled by the formation
of a double-well structure. Decreasing the (bare Coulomb) charging energy results in
qualitatively similar behavior as increasing the coupling strength.

Figure 7.6 shows the temperature dependence of a typical effective charging curve
U eff(N,T ) in the negative-U regime γ < 0. At low temperatures the potential exhibits
a double-well structure whose details depend on the particular parameter values. The
shape of the potential can also change qualitatively as the temperature is increased: the
double well structure present in Figure 7.6 is eventually deformed to a single-well potential.
The temperature dependence of the potential is a consequence of the nonlinear phonon
interaction. In the asymmetric case (i.e., at nonzero gate charge Qg 6= 0) there exists a
metastable energy minimum whose decay towards the global minimum requires multiple
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Figure 7.5: Effective potential as a function of the electron number. Left: the coupling-
dependence of the potential, T = 0.1~Ω, α = 0.01, Ech = ~Ω, Qg = 0 and from bottom
to top λ2 = 3, 2.5, 2, 1.5, 1. Right: the effective potential corresponding to different
charging energies, α = 0.01(~Ω)−1, λ2 = 2, T = 0.1~Ω, Qg = 0, and from bottom to top
Ech = 0.5, 0.8, 1, 1.5, 2× ~Ω.

electron tunneling (roughly 10 electrons for the parameter values). Figure 7.7 (left) shows
a comparison between the full quantum mechanical solution obtained numerically and
the classical result obtained in Section 7.3.2. As argued above, we find that the classical
approximation is quite accurate for small anharmonicity. The wells are closer at stronger
anharmonicity and higher temperature, as indicated by Figure 7.7 (right).

The average number of electrons as a function of the gate charge is presented in Figure
7.8. In the absence of the electron-phonon coupling and at low temperatures, the average
number 〈N〉 exhibits the usual Coulomb staircase behavior. As the coupling is increased,
this is gradually transformed into a new dependence reflecting the double-well nature of the
effective potential. The double-well structure leads to a rapid increase of the population
at low gate charges. The reason for this is that the gate acts as a symmetry breaking
field and the values Qg/e & kBT/Ech are sufficient for the system to prefer one of the two
nearly degenerate wells.

This physics is also clearly reflected in the average number 〈N〉 as function of temper-
ature, as shown for various gate charges in Figure 7.9. For finite positive gate charge the
zero temperature average value corresponds to the minimum of the right well. As the gate
charge increases, the position of the minimum shifts and electrons are added to the dot in
discrete jumps of one electron. At higher temperatures, the system is no longer trapped
in the right well so that the average number of electrons decreases rapidly. However, the
average number saturates at a finite value at high temperatures, reflecting the gate-induced
asymmetry of the potential.

Charge fluctuations also exhibit interesting behaviors. In the absence of the electron-
phonon interaction the electronic potential is U(N) = Ec(N −Qg/e)

2, so the mean square
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Figure 7.6: Effective potential as a function of the electron number. Left: Curves illustrate
the temperature dependence of the potential corresponding to parameters Ech = ~Ω, α =
0.01(~Ω)−1, λ2 = 2, Qg = 0 at T = 0.1, 3, 5, 10 × ~Ω (from bottom to top ). Right: The
same as the left figure but at finite gate charge Qg = e/2.

number fluctuation,
∆N2 = 〈N2〉 − 〈N〉2 , (7.32)

is proportional to temperature, ∆N2 ∝ T . The situation is very different when the elec-
trons couple to an anharmonic vibron mode. First of all, the zero-temperature number
fluctuations do not vanish at zero gate charge, Qg = 0, but saturate to a finite value, see
Figure 7.10. This happens because there exist symmetric minima on both sides of the ori-
gin. The curve also exhibits a weak dip at finite temperatures since charge fluctuates more
frequently towards values smaller than the charge at the minima. Eventually fluctuations
grow due to the population of higher energy states. At finite gate values Qg 6= 0 the fluc-
tuations are drastically modified at low temperatures. The symmetry between the minima
is broken and only states close to the preferred minimum are populated. When there is a
single global minimum, the fluctuations vanish at zero temperature. At finite gate charge
the curves approach to the zero gate curve at finite temperatures. At small gate charges,
even a weak thermal excitation is sufficient to restore an approximate symmetry between
the minima, leading to a sharp increase of the fluctuations from zero to the symmetric
value at Qg = 0.

7.4 Transport properties

So far we have explored consequences of the negative-U and the anharmonic phonon effects
on equilibrium properties. In this section we focus on non-equilibrium characteristics of
the system in the negative-U regime. To simplify the analysis we assume a continuous
density of states of the dot and that the energy scales separate ~Ω ≫ Ech so that only
the lowest vibrational state |E0(N)〉 is relevant at low temperatures and bias voltages. As
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Figure 7.7: Left: Comparison of the classical and quantum mechanical effective potentials.
Solid curves correspond to the quantum mechanical calculation with parameters Ech = ~Ω,
α = 0.01 (~Ω)−1, Qg = 0, T = 0 and λ2 = 2.5 (blue), λ2 = 2.0 (green), λ2 = 1.5 (yellow).
The dotted lines correspond to the classical approximation obtained by minimizing the
phonon potential energy. Right: Electron number corresponding to the minimum of the
right potential well as a function of the nonlinearity, Ech = ~Ω, λ2 = 2, Qg = 0 and
T = 0.1~Ω (solid), T = 3~Ω (dashed), T = 5~Ω (dotted) and T = 10~Ω (dash-dotted).

implied by considerations in Section 7.3 and the estimate for the effective charging energy
Eq. (7.31), close to the instability the curvature of the potential is weak and one expects
the sequential tunneling processes to dominate the transport. In the lowest order of the
tunneling coupling transport properties are described by a rate equation with Golden-Rule
transition rates [102]. Rates for the processes in which the initial dot state contains N
electrons and where the electron number changes by one due to the tunneling through the
left/right junction are

Γ
L/R
N±1,N = γL/Rf

(

U eff(N ± 1)− U eff(N)± µL/R

)

, (7.33)

where f(x) = x
eβx−1

, γL/R = |〈E0(N±1)|E0(N)〉|2
e2Rt

and 1/Rt =
4πe2|t|2νL/RνC

~
. In the positive-U

regime in the absence of the anharmonic term the matrix element |〈E0(N ± 1)|E0(N)〉|2
leads to the usual Franck-Condon suppression of the conductance given by |〈E0(N ±
1)|E0(N)〉|2 = e−λ2

. The probability P (N) of having N extra electrons on the dot follows
from the detailed balance condition ΓN−1,NP (N) = ΓN,N−1P (N − 1), where the rates Γ
are given by the sum of the corresponding left and right lead rates. The stationary current
through the SET can then be calculated from the expression

I = −e
∑

N

(
ΓL
N+1,N − ΓL

N−1,N

)
P (N). (7.34)

In Figure 7.11 we have plotted the current as a function of the gate charge at different
temperatures and bias voltages. The current is normalized to the Franck-Condon sup-
pressed tunneling current I0 = e−λ2

~Ω/eRt. At temperatures T & Ech/2 current is a
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Figure 7.8: Average dot population as a function of the gate charge. The left figure
corresponds to parameters T = 0.1~Ω, α = 0.01(~Ω)−1, Ech = ~Ω and from bottom to
top λ2 = 0, 0.2, 0.8, 1, 1.2 and 1.5. At vanishing coupling (λ = 0) we recover the usual
Coulomb steps, in the strong coupling we have a rapid increase at low gate voltages. The
right figure clarifies the small gate charge region for couplings λ2 = 0.8, 1, 1.2, 1.5 (from
bottom to top).

slowly varying function of the gate charge. Below this temperature it gradually starts
to show signatures of Coulomb-like oscillations which become pronounced at low temper-
atures. Although this is in qualitative agreement with the standard Coulomb blockade
results in absence of the vibron interaction there are also some essential differences. All
the curves exhibit a slowly decreasing tendency and the amplitude of current oscillations
grow as a function of gate charge. The strict periodicity of the usual Coulomb-blockade
conductance is broken by the nonlinear phonon interaction which does not leave the ef-
fective charging spectrum invariant as Qg is increased by multiples of the electron charge.
Figure 7.11 (right) shows also that, within a reasonable accuracy, the current is a linear
function of the applied voltage at low bias.

It is noteworthy that the current is not completely blocked even at relatively low tem-
peratures T ∼ 0.1Ech where the usual Coulomb-blockade current is completely suppressed
around integer gate charges. The reduction of the blockade can be qualitatively understood
by considering the estimate (7.31), which indicates that in the vicinity of the instability the
value of the effective charging is reduced. With parameters corresponding to Figures 7.11
and 7.12 the minima of the double-well potential are flatter than the minima corresponding
to the bare electronic potential in the absence of vibrations and, as illustrated in Figure
7.12, there exist two (and at weaker nonlinearity more) almost degenerate states in each
well. Transitions between these closeby states at the bottom of the wells enable current
to flow below temperatures where the bare electronic energy cost would block it. The
estimate for the effective charging (7.31) is valid only in the vicinity of the instability and
by increasing |Ech − λ~Ω| one eventually enters deep in the negative-U region where the
curvature at the potential minimum exceeds Ech. In this region the blockade is stronger
than the usual Coulomb blockade and one has to consider higher-order tunneling processes.
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Figure 7.9: Average dot population as a function of temperature. The left figure cor-
responds to parameters λ2 = 2, α = 0.01, Ech = 1 and from bottom to top Qg/e =
0.05, 0.1, 0.2 0.4 and 0.5. The right figure clarifies the low-temperature region.

In Figure 7.13 we have plotted current vs. gate charge with a variable phonon nonlin-
earity. Small changes in the strength of the nonlinearity change energy differences of the
nearby states at the potential minima leading to phase shifts in the current oscillations.
Since the current is an even function of the gate charge it exhibits a cusp close to Qg = 0
depending on the phase of the current oscillations. The most pronounced effect is achieved
when the current oscillations jump by half a period at the origin. At finite temperatures
the cusp is always smooth and becoming sharper when temperature decreases. The reason
for the existence of the cusp is the symmetry breaking between the two minima of the
effective potential at finite Qg. Even small gate values localize the system in one minimum
leading to observable effects in the current through the structure.

7.5 Carbon nanotube realization

The interplay of electronic and mechanical degrees of freedom is enriched when the corre-
sponding energy scales are roughly of the same order of magnitude. Then the realization
of the negative-U regime requires that also the coupling energy scale is comparable to
the charging and the vibron energies, as indicated by conditions (7.18) and (7.22). This
requirement seems to rule out the currently existing suspended electron beam lithography
samples where the coupling energy is still a small fraction of the uncoupled energy scales.
However, recent experimental [60] and theoretical [9] studies seem to indicate that the
negative-U regime could be reached in suspended carbon nanotube quantum dots.

The relevant phonon modes for this purpose in the case of a nanotube are stretching
modes and breathing modes. The mechanical motion associated with these modes cor-
respond to a longitudinal and a radial stretch and contraction, respectively. Stretching
modes provide a large electronic coupling, limitation being that the vibron energy scale
tends to be somewhat smaller than the single particle and charging energies. For breathing
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Figure 7.10: Root mean square fluctuation as a function of temperature. The left figure
corresponds to parameters Ech = ~Ω, α = 0.01 (~Ω)−1, λ2 = 2 and from bottom to top
Qg/e = 0.5, 0.1, 0.01, 0. At vanishing gate the low-temperature fluctuations saturate at
finite value, otherwise they will go to zero. The right figure clarifies the low-temperature
region.

modes the situation is reversed, the vibron energy is large but the electronic coupling is
smaller. To realize condition (7.22) it is beneficial to have high vibron energies and cou-
pling, so one has to search for an optimal trade off. The vibron energies are determined
by the material constants and the tube dimensions as

Ωstretch = vstretchq ,

Ωbreath =
√

(Ar2 + κ)/ρ0r4, (7.35)

where vstretch ≈ 2.4 × 104 m/s, A = 2µ + λ′, µ = 4λ′ = 9 × 1020eVm and κ = 1 eV [9].
These numbers lead to the prediction

~Ωstretch ≈ 0.60K/L[µm] and

~Ωbreath ≈ 200K/r[nm], (7.36)

where L and r are the length and the radius of the (suspended part of the) nanotube.
Employing the above introduced numerical values the single-particle level separation (7.19)
becomes ∆ = 24K/Ld[µm]. Estimates for coupling constants become

λstretch =
3

√

L⊥[nm]
and

λbreath =
7× 10−2

√

L[µm]
. (7.37)

Assuming that the charging energy is in the range Ech ∼ 10 − 20 K, the above estimates
suggests that condition (7.22) could be realized for a breathing mode of a nanotube of
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Figure 7.11: Current as a function of the gate charge. Left: Different curves correspond
to temperatures (from top to bottom) T = 0.2, 0.15, 0.1, 0.07, 0.05, 0.03, 0.02 × ~Ω,
other parameters being Ech = 0.2~Ω, α = 0.05 (~Ω)−1, λ2 = 0.5, and µL = −µR =
0.1~Ω/e. Right: Curves correspond to voltages (from top to bottom) µL = −µR =
0.1, 0.08, 0.06, 0.04, 0.02 × ~Ω/e, other parameters being Ech = 0.2~Ω, λ2 = 0.5, α = 0.05,
and T = 0.05~Ω.

dimensions r ∼ 1 nm and L ∼ 50 − 100 nm. For a stretching mode condition (7.22)
could be fulfilled if the electronic confinement length is roughly ten times the suspended
length Ld ∼ 10L. The recent experiment [60] indicates that, indeed, it is possible that the
effective electronic confinement length is larger than the suspended part of the nanotube
which is beneficial for reaching the negative-U regime by coupling to a stretching mode.
Although the employed material constants are not known accurately, preventing us making
a precise statement, they indicate that the instability is at least a real possibility in suitable
circumstances. Moreover, there is at least no fundamental principle which would make it
impossible.

7.6 Conclusions

In this part of the thesis, we have studied effects of strong electron-phonon interaction
in quantum dots with a vibrational degree of freedom. At sufficiently strong couplings
the vibron-induced polaron shift overcomes the charging energy cost and the effective
potential for electrons favors large charging. The instability towards an arbitrarily large
electron population on the dot is regularized by the anharmonic contribution to the phonon
energy. The effective potential differs qualitatively from the usual Coulomb repulsion,
leading to characteristic modifications of the low temperature Coulomb blockade properties.
Signatures include a rapid change in the average and the fluctuations of the electron number
as function of the gate charge in the neighborhood of Qg = 0 as well as the temperature
dependence of these quantities. Moreover, transport properties also show a number of
unique signatures that can be used to characterize the negative-U instability and the
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Figure 7.12: Left: Probability distribution of the dot population corresponding to param-
eters Ech = 0.2~Ω, α = 0.05 (~Ω)−1, λ2 = 0.5 and µL = −µR = 0.1~Ω/e, Qg = 0 at
T = 0.1~Ω. Right: The effective potential corresponding to the same parameters.

nonlinear phonon effects.
It is interesting to check whether in addition to molecules, an effectively negative U

could also be achieved in nanoelectromechanical systems. As shown by Eq. (7.22), this
requires an electron-vibron coupling (as measured by λ~ω) which is of the same order of
magnitude as the charging and the single-particle energies. It turns out that this condition
rules out currently existing suspended electron beam lithography samples. At the same
time, the situation is more favorable (though still marginal) for suspended carbon-nanotube
devices, for which strong electron-vibron coupling has been observed in several recent
experiments [93, 94, 95]. The most likely vibron mode to cause a negative U in this system
is the radial breathing mode with frequency ω ∼ c/L⊥. (Here, c denotes the velocity of
propagation of acoustic phonons in graphene and L⊥ is the circumference of the nanotube.)
The charging energy and the single-particle level spacing are of the same order (assuming a
"fine-structure constant" e2/~vF ∼ 1 as appropriate for graphene) so that in order to reach
the negative U instability, the electron-vibron coupling λ must exceed [(vF /c)(L⊥/L)]1/2

for a nanotube of length L. Using vF /c ∼ 102, L⊥ ∼ 1nm, and L ∼ 1µm, we find that
the critical coupling strength is λc ∼ 0.1 − 1. Unfortunately, this coupling constant is
relatively poorly understood at present. However, both experiment [93] and theoretical
estimates for one possible coupling mechanism [9] suggest that it is of the same order as
λc

6. While these estimates do not allow us to claim that the instability discussed here
could be observed in carbon-nanotube devices, they do suggest that realizing a negative U
in nanoelectromechanical systems is certainly conceivable.

According to results of Ref. [9], the breathing-mode frequency of a nanotube and
the electron-vibron coupling with the typical material parameters can be estimated as

6According to Ref. [9], λ for the breathing mode scales as L− 1

2 which means that decreasing the critical
coupling strength by increasing the length of the tube does not improve the possibility of reaching the
negative-U regime.
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Figure 7.13: Current as a function of the gate charge at different phonon nonlinearity
strengths. Left: The different curves illustrate cases α = 0.058 (~Ω)−1 (green), α =
0.05 (~Ω)−1 (red), α = 0.045 (~Ω)−1 (blue) and α = 0.04 (~Ω)−1 (black), other parameters
being Ech = 0.2~Ω, λ=0.5, T = 0.05~Ω and µL = −µR = 0.05~Ω/e. Right: Same
quantities in the vicinity of Qg = 0. The curves correspond to α = 0.056 (~Ω)−1 (black),
α = 0.053 (~Ω)−1 (green), α = 0.05 (~Ω)−1 (red) and α = 0.047 (~Ω)−1 (blue), other
parameters as in the left plot.

Ωb ∼ 200K/r[nm] and λb ∼ 10−1/
√

L[µm] where r and L denote the radius and the length
of the nanotube. For a nanotube with radius ∼ 1 nm and length ∼ 1µm the charging and
the single-particle energies are expected to be 10 − 50 K, suggesting that the system is
close to the instability λb ∼

√

(Ech +∆)/~Ωb. The presented estimate for λ is based on
idealized theoretical considerations and is of limited applicability in a real experimental
setting [93] where details of the electron-vibron coupling are not well understood. The
existence of the negative-U regime in these systems cannot be determined conclusively at
present.
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Chapter 8

Conclusions

In this thesis we have analyzed two distinct systems on nanometer scales which are driven
out of equilibrium. This has been accomplished by adding an additional perturbation in
the case of persistent currents in normal metal rings or by assuming that a perturbation
which is inherently present becomes particularly strong in the case of quantum dots coupled
to vibrational modes. Both systems have in common that they were studied theoretically
and experimentally to some extent before, and that new effects of quantum mechanical
origin arise from adding (or increasing) the respective perturbation. We have analyzed the
emerging effects and discussed the accessibility to experiments as well as arising theoretical
questions.

The first part of the thesis is dealing with normal metal rings developing persistent
currents under breaking of their time reversal symmetry. We have shown that the exper-
imental signal of these currents can be amplified by adding an additional microwave field
which, in the considered case, stands perpendicular to the rings. Since the microwave field
drives the electronic distribution out of its equilibrium form we have applied a formalism
which is inherently able to treat out-of-equilibrium processes. We have analyzed and ex-
tended known methods of calculating correlation functions using this formalism to the case
of rings pierced by a magnetic flux.

In summary we have been able to discriminate two distinct physical effects leading to
an additional signal in the typical current and the current fluctuations. It has turned out
that at the lower bound of field-frequencies lying within the borders of our perturbative
approach the additional signal arising from the microwave-induced change in the density
of states dominates the photovoltaic effect. We have shown that the microwave field can
produce an additional signal which can become even larger than the equilibrium persistent
current in the low-frequency regime. In the regime of high frequencies the photovoltaic
effect becomes more pronounced compared to the effect arising from the change in the
density of states, but both signals together will be small compared to the equilibrium
persistent current and thus hardly accessible to experiments.

In the second part of the thesis we have considered quantum dots which are coupled to
a vibrational mode. As we have discussed it is at least possible that carbon-nanotube quan-
tum dots can exhibit an electron-vibron coupling which is so strong, that the renormalized
charging energy becomes negative and its absolute value larger than the cost in charging
energy for tunneling of additional electrons on the dot. In this case the commonly used
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harmonic approximation of the vibronic energy would lead to an unphysical instability to-
wards adding an infinite number of charge carriers to the quantum dot. We have corrected
this instability by adding an anharmonic contribution to the phonon energy and analyzed
the effect of this anharmonic term on thermal equilibrium and transport properties of the
system.

We have shown that the anharmonic term leads to an effective potential which exhibits a
double-well form as a function of the number of excess electrons on the dot. This effective
potential leads to new equilibrium values of the number of excess electrons, which are
degenerated at zero gate charge. Driving the system slightly out of equilibrium by varying
the gate voltage leads to a characteristic rapid change in the average and the fluctuations of
the number of excess electrons on the dot. Analyzing the transport properties of the system
yields several modifications of Coulomb blockade effects. The Coulomb blockade regime is
known to exhibit a strict periodicity under changing the gate charge by multiples of the
electron charge. This periodicity is broken in the considered negative-U case. Instead we
observe a slowly decreasing tendency of the current as well as a growth of the amplitudes
of the Coulomb oscillations when the gate voltage is increased. Further we have shown
that, in contrast to the Coulomb blockade regime, the current is not completely blocked
around integer gate charges at low temperatures in the negative-U case. Finally we have
discovered that the current will exhibit a cusp at zero gate voltage which arises due to the
symmetry breaking of the double-well effective potential even at small gate charges.

In summary, we have discussed two known mesoscopic systems which exhibit new in-
teresting and experimentally accessible features when exposed to additional perturbations.
In deriving these new effects we have analyzed and expanded non-equilibrium techniques
which are applicable to a variety of problems in theoretical condensed matter physics.
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Appendix A

Additional calculations to persistent

current under microwave irradiation

A.1 The diffuson in momentum and energy space

The Dyson equation for the diffuson shown in Figure 2.7 reads in momentum and energy
space1

D(q, ω) =
γe
V

+
γe
V

∑

k′

GR(k′,Ω)GA(k′ + q,Ω + ω)D(q, ω) . (A.1)

Since we can expect the diffuson to be sharply peaked in space and time variables, we can
expand the advanced Green function in Eq. (A.1) in q and ω,

GA(k′ + q,Ω+ ω) ≈ GA(k′,Ω) + (v · q + ω)
(
GA(k′,Ω)

)2
+ (q · v)2

(
GA(k′,Ω)

)3
.

(A.2)

Inserting this into Eq. (A.1) and using ([2], chapter 3)

γe
V

∑

k

(
GR(k, ω)

)n (
GA(k, ω)

)m
=







1 for m = 1 and n = 1

iτe for m = 1 and n = 2

−τ2e for m = 1 and n = 3 ,

(A.3)

we get, noting that the term proportional to q vanishes after angular integration,

D(q, ω) =
γe
V

+

(

1 + iτeω − τ2e v
2
F

d
q2
)

D(q, ω)

=
γe
V τe

1

Dq2 − iω
, (A.4)

where we introduced the diffusion constant D = v2F τe/d.

1We set ~ = 1 in this section.
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A.2 Integrals in section 4.2

We want to calculate the integral
∫

dx e−2πipx x

x2 − i(ǫ− ǫ′)
. (A.5)

The integrand has poles at x1/2 = ±i3/2
√
ǫ− ǫ′, and we can close the integration contour

in the lower half due to the exponential factor. We define the branch cut of the complex
square root to lie on the negative real axis, leading to

√
i = 1+i√

2
. Calculation of the residue

yields
∫

dx e−2πipx x

x2 − i(ǫ− ǫ′)
= −2πiRes

(
x e−2πipx

x2 − i(ǫ− ǫ′)
,−i3/2

√
ǫ− ǫ′

)

= −2πi e2πi
3/2p

√
ǫ−ǫ′ −i1/2

√
ǫ− ǫ′

−2i1/2
√
ǫ− ǫ′

= −πi e2πi3/2p
√
ǫ−ǫ′ . (A.6)

The other integral to solve is the integral over the energies at zero temperature
∫ 0

−∞
dǫ

∫ 0

−∞
dǫ′ e2πi

3/2p
√
ǫ−ǫ′ . (A.7)

Introducing sum and difference variables σ = 1
2 (ǫ+ ǫ′) , ∆ = ǫ− ǫ′ , yields

∫ 0

−∞
dǫ

∫ 0

−∞
dǫ′ e2πi

3/2p
√
ǫ−ǫ′

=

∫ 0

−∞
dσ

∫ 2|σ|

−2|σ|
d∆ e2πi

3/2p
√
∆

=

∫ 0

−∞
dσ

∫ 2|σ|

0
d∆

[

e2πi
3/2p

√
∆ + c.c.

]

= 2Re
∫ 0

−∞
dσ

∫ 2|σ|

0
d∆ e2πi

3/2p
√
∆

x=
√
∆

= 2Re
∫ 0

−∞
dσ

∫
√

2|σ|

0
dx 2x eαx

∣
∣
∣
∣
∣
α=2πi3/2p

= 2Re
∫ 0

−∞
dσ 2∂α

∫
√

2|σ|

0
dx eαx

∣
∣
∣
∣
∣
α=2πi3/2p

= 4Re
∫ 0

−∞
dσ ∂α

1

α

(

eα
√

2|σ| − 1
)
∣
∣
∣
∣
α=2πi3/2p

, (A.8)

and since ∂α 1
α is purely imaginary

= 4Re
∫ 0

−∞
dσ ∂α

1

α
eα
√

2|σ|
∣
∣
∣
∣
α=2πi3/2p

= 4 ∂α
1

α3

∣
∣
∣
∣
α=2πi3/2p

=
3

4

1

(πp)4
, (A.9)

where we used Reα < 0 in the last line.
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Figure A.1: Hikami boxes of the diffuson diagrams in Figures 4.6 and 4.7. In the diffuson
Hikami boxes one can expand around k − k′ ≈ 0.

A.3 Hikami Boxes for RRR/AAA diagrams

The Hikami boxes for the Diffusons are shown in Figure A.1. Since the current vertices and
the interactions with the field are linear in momentum, we can neglect additional impurity
lines connecting two advanced or two retarded Green functions. Including the expression
found for the current vertices in chapter 4.2

ϑα = −i e~
π
vα , (A.10)

the first Hikami box reads

H1 =

(

i
e~

π

)2 1

V

∑

k

vα vβ G
R(k, ǫ)2GA(k′, ǫ′)2 . (A.11)

Since the Green functions depend only on the absolute value of the momentum, we can
calculate the angular integral first. With

∫
dΩ

Ω
vα vβ =

v2F
d
δα,β , (A.12)

where we replaced the velocity by the Fermi velocity since the Green functions which are
left to integrate are sharply peaked at k = kF , we are left with

H1 = −
(
e~

π

)2 v2F
d
δα,β

1

V

∑

k

GR(k, ǫ)2GA(k′, ǫ′)2 . (A.13)

Sums of this type are performed in reference [2], Section 3, and we will accordingly call

fm,n ≡ γe
V

∑

k

GR(k, ǫ)mGA(k, ǫ)n , (A.14)

as we did before. Thus H1 is to lowest order in k − k′ given by

H1 = −
(
e~

π

)2 v2F
d
δα,β

1

γe
f2,2 = −

(
e~

π

)2 v2F
d
δα,β

2τ2e
γe

. (A.15)
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Figure A.2: Hikami boxes occuring in second-order diagrams and in diagrams in which the
field interactions do not come in pairs.

The second Hikami box can be evaluated the same way replacing the current vertices by
the field interactions

k ·A = kz Az = kz
E

~ν
. (A.16)

We get

H2 = −
(
e~

π

)2 ( E

~ν

)2 v2F
d

2τ2e
γe

. (A.17)

Since the third Hikami box contains just one current vertex, the angular integration van-
ishes in zeroth order in k − k′ and we have to expand to first order. Using

GR/A(k + q, ǫ′) ≈ GR/A(k, ǫ) + v · qGR/A(k, ǫ)2 (A.18)

we get

Ha
3 = −i e~

π

1

V

∑

k

kαG
R(k, ǫ)2GA(k′, ǫ′)

≈ −i e~
π

1

V

∑

k

kαG
R(k, ǫ)2

(
GA(k, ǫ)− v · (k − k′)GA(k, ǫ)2

)

≈ i
e~

π

v2F
d

2τ2e
γe

(k − k′) ,

Hb
3 = −i e~

π

1

V

∑

k′

k′αG
R(k, ǫ)GA(k′, ǫ′)2

≈ −i e~
π

v2F
d

2τ2e
γe

(k − k′) . (A.19)

At this point we can also deduce, that diagrams in which the field interactions do not
come in pairs vanish as long as the microwave field stands perpendicular to ring. Those
diagrams would contain Hikami boxes of the form shown in Figure A.2, which turn out to
vanish after angular integration.

The Hikami boxes for the cooperon diagrams are shown in Figure A.3. Since the Green
functions depend only on the absolute value of the momentum we can replace k′ → −k′
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Figure A.3: Hikami boxes of the cooperon diagrams in Figure 4.6 and 4.7. The Green
function can be expanded around k + k′ ≈ 0.

in the arguments. Following the same reasoning as for the diffuson Hikami boxes we get

H1 =

(
e~

π

)2 1

V

∑

k

vα vβ G
R(k, ǫ)2GA(k′, ǫ′)2 =

(
e~

π

)2 v2F
d
δα,β

2τ2e
γe

,

H2 =

(
e~

π

)2 ( E

~ν

)2 v2F
d

2τ2e
γe

,

Ha
3 = Hb

3 = i
e~

π

v2F
d

2τ2e
γe

(k + k′) . (A.20)

A.4 Calculation of contributions two and three in Eq. (4.72)

A.4.1 Contribution 2

The second contribution takes the form

〈II〉Contr.2 =
∑

ν,ν′=±ν

∫

dǫ

∫

dǫ′ [n(ǫ± ν)− n(ǫ)]
[
n(ǫ′)− n(ǫ± ν ′)

]

×
∫

dxRe

{
x2 e−2πipx

(x2 + η − i(ǫ− ǫ′))2(x2 + η − i(ǫ− ǫ′ + ν − ν ′))2

}

.

(A.21)

We will discriminate between the cases ν = ν ′ and ν = −ν ′, and start with the latter one.

ν = −ν ′

We can see that the contributions in the cases ν − ν ′ = 2ν and ν − ν ′ = −2ν are the same
by shifting ǫ→ ǫ− ν and ǫ′ → ǫ′ + ν. In the case ν − ν ′ = 2ν the x-integral turns into

∫

dx
x2 e−2πipx

(x2 + η − i(ǫ− ǫ′))2(x2 + η − i(ǫ− ǫ′2ν))2
=

∫

dx
x2 e−2πipx

(x2 + a2)2(x2 + b2)2
, (A.22)

where we defined a =
√

η − i(ǫ− ǫ′) and b =
√

η − i(ǫ− ǫ′ + 2ν) again. As in Section 4.5.1
we can close the contour in the lower plane, encircling the poles x = −ia and x = −ib.
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Thus the x-integral turns into

∫

dx
x2 e−2πipx

(x2 + η − i(ǫ− ǫ′))2(x2 + η − i(ǫ− ǫ′ + ν − ν ′))2

= −2πi

(

Res

[
x2 e−2πipx

(x2 + a2)2(x2 + b2)2
, x = −ia

]

+Res

[
x2 e−2πipx

(x2 + a2)2(x2 + b2)2
, x = −ib

])

= −π
2

(
e−2πpa(a2(3 + 2πpa) + b2(1− 2πpa))

a(a2 − b2)3
− e−2πpb(a2(1− 2πpb) + b2(3 + 2πpb))

b(a2 − b2)3

)

=
πe

−2πp
(√

η−i(ǫ−ǫ′)+
√

η−i(ǫ−ǫ′+2ν)
)

8
√

η − i(ǫ− ǫ′) ν3
√

η − i(ǫ− ǫ′ + 2ν)
[

e2πp
√

η−i(ǫ−ǫ′+2ν)
√

η − i(ǫ− ǫ′ + 2ν)
(

−2iη − 2(ǫ− ǫ′)− ν + 2πpν
√

η − i(ǫ− ǫ′)
)

+ e2πp
√

η−i(ǫ−ǫ′)
√

η − i(ǫ− ǫ′)
(

2iη + 2(ǫ− ǫ′) + 3ν + 2πpν
√

η − i(ǫ− ǫ′ + 2ν)
)]

.

(A.23)

Due to the exponential factors we can close the ǫ-integration contour in the upper, and
the ǫ′-integration contour in the lower half, encircling only the Fermi poles, which lie this
time at ǫ = 2π

β (2l+1) for n(ǫ) and ǫ = 2π
β (2l+1)− ν for n(ǫ+ ν). Evaluating the function

in Eq. (A.23) at the four different poles yields a quite lengthy expression which can be
written as

〈II〉Contr.2,ν=−ν′ = 2

(
2π

β

) ∞∑

l,m=0

[

fν−ν′=2ν,Contr2

(
πi

β
(2l + 1)− ν,−πi

β
(2m+ 1), p, ν, η

)

− fν−ν′=2ν,Contr2

(
πi

β
(2l + 1),−πi

β
(2m+ 1), p, ν, η

)

− fν−ν′=2ν,Contr2

(
πi

β
(2l + 1)− ν,−πi

β
(2m+ 1) + ν, p, ν, η

)

+ fν−ν′=2ν,Contr2

(
πi

β
(2l + 1),−πi

β
(2m+ 1) + ν, p, ν, η

)]

, (A.24)

where fν+ν′=2ν,Contr2 (ǫ, ǫ
′, p, ν, η) abbreviates the result of the x-integral in Eq. (A.23),

and we included a factor of two accounting also for the case ν − ν ′ = −ν.

ν − ν ′ = 0

The two possibilities ν = ν ′ = ±ν leading to ν − ν ′ = 0 give the same contribution as one
can see by shifting ǫ → ǫ − ν and ǫ′ → ǫ′ − ν. Thus we concentrate on ν = ν ′ = ν and
multiply the result by two. The x-integral reads

∫

dx
x2e−2πipx

(x2 + η − i(ǫ− ǫ′))4
=

∫

dx
x2e−2πipx

(x2 + a2)4
, (A.25)
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where we introduced a =
√

η − i(ǫ− ǫ′). We can close the integration contour in the lower
plane, encircling the pole at x = −ia, again, which leads to
∫

dx
x2e−2πipx

(x2 + a2)4
= −2πiRes

[
x2e−2πipx

(x2 + a2)4
, x = −ia

]

=
πe−2πpa

48a5
(
3 + 6πpa− 8π3p3a3

)

=
e−2πp

√
η−i(ǫ−ǫ′)

48(η − i(ǫ− ǫ′))5/2

(

3 + 6πp
√

η − i(ǫ− ǫ′)− 8π3p3(η − i(ǫ− ǫ′))3/2
)

.

(A.26)

The integration contours for ǫ (ǫ′) can again be closed in the upper (lower) half, and we
get for the second contribution in the case ν = ν ′

〈II〉Contr.2,ν=ν′ =
π3

6β2

[

− 2e
−2πp

√

2π
β
(l+m+1)+η

(
2π
β (l +m+ 1) + η

)5/3

(

3 + 6πp

√
2π

β
(l +m+ 1) + η − 8π3p3

(
2π

β
(l +m+ 1) + η

)3/2
)

+
e
−2πp

√

2π
β
(l+m+1)+η−iν

(
2π
β (l +m+ 1) + η − iν

)5/2

(

3 + 6πp

√
2π

β
(l +m+ 1) + η − iν − 8π3p3

(
2π

β
(l +m+ 1) + η − iν

)3/2
)

+
e
−2πp

√

2π
β
(l+m+1)+η+iν

(
2π
β (l +m+ 1) + η + iν

)5/2

(

3 + 6πp

√
2π

β
(l +m+ 1) + η + iν − 8π3p3

(
2π

β
(l +m+ 1) + η + iν

)3/2
)]

.

(A.27)

Evaluation

As a first step we examine the convergence of the sums over the Fermi poles for different
temperatures. The results can be seen in Figure A.4. We can see again as expected, that
the sums converge faster if the temperature is higher and that summing over twenty Fermi
poles is sufficient in the evaluated temperature range.

Temperature dependence We plot the temperature dependence of the second contri-
bution for three different frequencies in Figure A.5. As expected also this contribution is
damped exponentially for higher temperatures.

ν-dependence We plot the ν-dependence of 〈II〉Contr2 in Figure A.6. The function ex-
hibits a relative maximum before aspiring to a saturation value. To examine this behavior,
we plot the contribution of the ν = ν ′ and ν = −ν ′ cases separately in Figure A.7.
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Figure A.4: Convergence of the second contribution for the sum over the Fermi poles for
different temperatures in the case η → 0.

A.4.2 Contribution 3

The third contribution takes the form

〈II〉Contr.3 = Re

{
∑

ν,ν′=±ν

∫

dǫ

∫

dǫ′ (n(ǫ)− n(ǫ± ν))
(
n(ǫ′)− n(ǫ′ ± ν ′)

)

∫

dx
2(x2 + η) e−2πipx

|x2 + η − i(ǫ− ǫ′)|2 |x2 + η − i(ǫ− ǫ′ ± ν ∓ ν ′)|2
}

(A.28)

We will again discriminate the cases ν = ν ′ and ν = −ν ′ and start with the latter one.

ν = −ν ′

As a first step we note, that the contributions of the cases ν − ν ′ = ±2ν are the same
as one can see by shifting ǫ → ǫ − ν and ǫ′− → ǫ′ + ν. Thus we can concentrate on
the case ν − ν ′ = 2ν and multiply the result by two. Introducing the abbreviations
a1 =

√

η − i(ǫ− ǫ′), a2 =
√

η + i(ǫ− ǫ′),
a3 =

√

η − i(ǫ− ǫ′ + ν − ν ′) and a4 =
√

η + i(ǫ− ǫ′ + ν − ν ′) turns the x-integral into

∫

dx
2(x2 + η) e−2πipx

|x2 + η − i(ǫ− ǫ′)|2 |x2 + η − i(ǫ− ǫ′ + ν − ν ′)|2
=

∫

dx
2(x2 + η) e−2πipx

∏4
j=1(x+ iaj)(x− iaj)

.

(A.29)
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Figure A.5: Temperature dependence of contribution two for different values of the fre-
quency in the case η → 0.

We can close the integration contour in the lower plane again. Noting, that the poles at
−iaj lie in the lower plane, we get

∫

dx
2(x2 + η) e−2πipx

∏4
j=1(x+ iaj)(x− iaj)

= −2πi
∑

j

Res

[

2(x2 + η) e−2πipx

∏4
j=1(x+ iaj)(x− iaj)

, x = −iaj
]

=

= Re

[
π

(ω2
1 − ω2

2)

[

e−2πp
√
η−iω2(η − iω2)

−1/2 − e−2πp
√
η−iω1(η − iω1)

−1/2
]]

(A.30)

where we abbreviated ω1 = ǫ − ǫ′ and ω2 = ǫ − ǫ′ + 2ν. We see, that we can close the
contour of the ǫ (ǫ′)-integration in the upper (lower) plane again which yields

〈II〉Contr.3,ν=−ν′ = 2

(
2π

β

)2 ∞∑

l,m=0

[

fν−ν′=2ν,Contr3

(
πi

β
(2l + 1),−πi

β
(2m+ 1), p, ν, η

)

− fν−ν′=2ν,Contr3

(
πi

β
(2l + 1)− ν,−πi

β
(2m+ 1), p, ν, η

)

− fν−ν′=2ν,Contr3

(
πi

β
(2l + 1),−πi

β
(2m+ 1) + ν, p, ν, η

)

+ fν−ν′=2ν,Contr3

(
πi

β
(2l + 1)− ν,−πi

β
(2m+ 1) + ν, p, ν, η

)]

(A.31)

where fν+ν′=2ν,Contr3 (ǫ, ǫ
′, p, ν, η) abbreviates the result of the x-integral in Eq. (A.30) and

we introduced a factor of two accounting for the case ν − ν ′ = −2ν, too.
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Figure A.6: Frequency dependence of 〈II〉Contr2 for different temperatures in the case
η → 0. A plot over a wider range can be seen in Figure 4.13.

ν = ν ′

Noting that the terms ν = ν ′ = ±ν are equal, we start by performing the x-integration
which goes along the lines of the previous cases and yields

∫

dx
2(x2 + η) e−2πipx

|x2 + η − i(ǫ− ǫ′)|2 |x2 + η − i(ǫ− ǫ′ + ν − ν ′)|2

=
iπ

(ǫ− ǫ′)

[

e−2πp
√

η+i(ǫ−ǫ′)

(η + i(ǫ− ǫ′))3/2

(

1 + 2πp
√

η + i(ǫ− ǫ′)
)

+ c.c.

]

(A.32)

We see, that we can close the contour of the ǫ (ǫ′)-integration in the lower (upper) half
this time. Defining

fν=ν′,Contr3(ǫ, ǫ
′, p, η) =

iπ

4(ǫ− ǫ′)
e−2πp

√
η+i(ǫ−ǫ′)

(η + i(ǫ− ǫ′))3/2

(

1 + 2πp
√

η + i(ǫ− ǫ′)
)

(A.33)

we get

〈II〉Contr.3,ν=ν′ = 2Re

{(
2π

β

)2 ∞∑

m,l=0

[

fν=ν′,Contr3

(

−πi
β
(2l + 1),

πi

β
(2m+ 1), p, , η

)

− fν=ν′,Contr3

(

−πi
β
(2l + 1)− ν,

πi

β
(2m+ 1), p, η

)

− fν=ν′ν,Contr3

(

−πi
β
(2l + 1),

πi

β
(2m+ 1)− ν, p, η

)

+ fν=ν,Contr3

(

−πi
β
(2l + 1)− ν,

πi

β
(2m+ 1)− ν, p, η

)]}

. (A.34)
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Figure A.7: Frequency dependence of 〈II〉Contr2 splitted in the two cases ν = −ν ′ and
ν = ν ′ for η → 0.

p = 0-terms

In the third contribution also terms with p = 0 occur. Although the exponential factor is
absent in this terms, the contour of the x-integration can still be closed in the lower half
yielding the same result as in Eqs. (A.30) and (A.32) after setting p = 0. The exponential
factors allowing to close the contours of the energy integrals are now absent. Instead we
have to use the difference of the Fermi functions which take the form

n(ǫ)− n(ǫ+ ν) =
1

eβǫ + 1
− 1

eβ(ǫ+ν) + 1
=

eβν + 1

eβ(ǫ+ν) + 1 + eβν + e−βǫ
, (A.35)

allowing us to close the contours in both planes. To avoid encircling other poles than the
Fermi poles we close the contours in the same way as in the p > 0 case. The result of the
calculation is the same as we would get from the p > 0 cases by taking the limit p→ 0.

Evaluation

We start evaluating contribution three by looking at the convergence of the sum over the
Fermi poles both for the p = 1 term and the p = 0 term. The plots can be seen in Figure
A.8 and A.9.

Temperature dependence The temperature dependence of the third contribution is
plotted for different frequencies in Figure A.10. As expected the contribution is damped
for high temperatures, too.

Frequency dependence The frequency dependence of the third contribution is plotted
for different temperatures in Figure A.11.
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Figure A.8: Convergence of the third contribution for the sum over the Fermi poles for
different temperatures in the case η → 0.
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Figure A.9: Convergence of the p = 0 term of the third contribution for the sum over the
Fermi poles for different temperatures in the case η → 0.
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Figure A.10: Temperature dependence of contribution three for different values of the
frequency in the case η → 0 for p = 1 (a) and p = 0 (b).
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Figure A.11: Frequency dependence of contribution three for different values of the Tem-
perature in the case η → 0 for p = 1 (a) and p = 0 (b). A wider region is plotted for in
Figure 4.13.
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Appendix B

Additional calculations to the basic

formalism of quantum dots

B.1 Charging energy of a SEB

The charging energy in a single electron box which can be seen in Figure 6.1 is
Q2

J
2CJ

+
Q2

G
2CG

.
To get the relevant free energy we have to perform a Legendre transformation from the
charge variables to n and VG and also have to add the work −VGQG done by the voltage
source. So the starting point is

Ech =
Q2

J

2CJ
+

Q2
G

2CG
+ VGQG , (B.1)

where QJ/G is the charge on the gate/tunnel junction. The number of excess electrons on
the dot is given by the sum of the charges on the two capacitor plates,

−ne = QJ +QG , (B.2)

and the gate voltage VG is equal to the voltage drop over the island,

VG =
QJ

CJ
− QG

CG
. (B.3)

Combining the last two equations and solve for the charges gives

QJ = CJ
CGVG − ne

CJ + CG
,

QG = −CG
CJVG + ne

CJ + CG
. (B.4)

Introducing the total capacitance C = CJ + CG and replacing the charges in Eq. (B.1)
leads to the expression

Ech =
(n −CGVG)

2

2C
+ f(VG) , (B.5)

where f(VG) is a function of the gate voltage which is dropped in Eq. (6.1) since it does
not depend on n.
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B.2 Charging energy of a SET

Using the the nomenclature from Figure 6.3 we ca write the charging energy before per-
forming the Legendre transformation as

Ech =
Q2

L

2CL
+

Q2
R

2CR
+

Q2
G

2CG
+ VGQG + VLQL + VRQR . (B.6)

According to Kirchhoffs’ voltage law the directed sum of the voltage around any closed
circuit has to be zero, which leads us to the three equations

VL − QL

CL
+
QR

CR
− VR = 0 ,

VL − QL

CL
+
QG

CG
− VG = 0 ,

VG − QG

CG
+
QR

CR
− VR = 0 . (B.7)

Solving this for potential differences gives

VL − VR =
QL

CL
− QR

CR
,

VL − VG =
QL

CL
− QG

CG
,

VG − VR =
QG

CG
− QR

CR
. (B.8)

Together with the condition, that the charge on the island is the sum of the charges on
the capacitors, −ne = QL +QR +QG, we can solve this equation for QL/R/G, getting

QL =
CL

C
[−ne+ CG(VL − VG) + CR(VL − VR)] ,

QG =
CG

C
[−ne+ CL(VG − VL)− CR(VR − VG)] ,

QR =
CR

C
[−ne− CG(VG − VR)− CL(VL − VR)] , (B.9)

where we introduced the total capacitance C = CL + CR + CG. Inserting this into Eq.
(B.6), sorting by powers of n, and shortcutting a term f(VG, VL, VR) which does not depend
on n again yields

Ech =
(ne− CGVG)

2

2C
+ f(VG, VL, VR) . (B.10)

Thus the charging energy on the SET has the same form as the one of the SEB, but
includes an additional capacitance in the total capacitance C.
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B.3 Lang-Firsov transformation

The Lang-firsov transformation is a canonical transformation of the form

H ′ = eSHe−S . (B.11)

The generator S of the must be anti-self-adjoint, S = −S† in order to keep H ′ hermitian,

H ′† =
(
eSHe−S

)†
= e−S†

H†eS
†

= eSHe−S = H ′ . (B.12)

We choose S according to [81] to be

S = λ(b† − b)nd . (B.13)

For calculation of the new operators we have to use the Baker-Campbell-Hausdorff (BCH)
formula. Since not all operators commute with the relevant commutators, we have to use
the whole BCH series1

eSOe−s =
∑

n

= 0∞
1

n!
[S,O]n , (B.14)

where O is an operator and [S,O]n is the n-fold commutator

[S,O]n =
[
S,
[
S, . . .

[
S

︸ ︷︷ ︸

n times

,O
]

− . . .
]

−
]

− , (B.15)

and [S,O]0 = O. With the commutators
[
b† − b, b

]

− = −1 and [nd, dσ]− = (−1)ndσ we
get

d′(†)σ = d(†)σ eλ(b−b†) ,

b′(†) = b(†) − λnd ,

c
′(†)
αpσ = c

(†)
αpσ , and

n′d = nd . (B.16)

The transformed Hamiltonian turns into H ′ = H ′
dot +H ′

leads +H ′
tun with

H ′
dot = (ǫd − λ2~ω0)nd + (U − 2λ2~ω0)nd↑nd↓ + ~ω0b

†b ,

H ′
leads =

∑

αpσ

ǫαpc
†
αpσcαpσ , and

H ′
tun =

∑

αpσ

(

tαp e
−λ(b†−b)c†αpσdσ + t∗αp e

λ(b†−b)d†σcαpσ
)

. (B.17)

we see, that the energies transform in the way we expected from the argument in section
6.2.3, and the tunneling matrix elements are shifted as tαp → tαp e

−λ(b†−b).

1To be exact, Eq. (B.14) is called Hadamard-Lemma; the BCH formla reads eAeB = eBeAe[A,B]
− and

is valid if the operators A and B commute with their commutator.
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Summary

In this thesis we investigate two distinct mesoscopic systems which are driven out of equi-
librium. This implies that we have to go beyond first order perturbation theory to describe
the expected properties of their physical quantities.

In the first part of the thesis we consider mesoscopic non-superconducting metal rings
which are known for exhibiting persistent currents, i.e. perpetual currents flowing in the
rings without an applied voltage, in the absence of time reversal symmetry. We assume
the electronic distribution in the system to be driven out of equilibrium by applying an
additional microwave field and analyze the effect on the physical quantities accessible for
experimental investigations. In order to avoid effects arising from the direct influence of
the microwave field on the electronic motion in the rings, we hereby restrict ourselves to
the situation where the microwave field stands perpendicular to the ring. In this case it
turns out that the fourth order in the interaction of the electrons with the field is the lowest
non-vanishing order correction to the relevant quantities, i.e. the typical current and the
current-current correlation function.

We discriminate between two distinct physical processes, one arising from fluctuations
of the density of states caused by the microwave field and the other from a photovoltaic
effect conditioned by local symmetry breaking due to the random distribution of impurities
in the rings. Our analysis shows that the effect of the former process on the considered
physical quantities is orders of magnitudes larger than the effect of the latter contribution.
Further it is possible to obtain an effect which is of the same order of magnitude – or even
larger – than the equilibrium persistent current by choosing certain field amplitudes and
frequencies that lie well within the region of the assumptions of our perturbative approach.
We argue that it should thus be possible to observe the calculated effects experimentally
and provide suitable experimental configurations.

The second part of the thesis deals with quantum dots in which the electronic degrees
of freedom are assumed to be strongly coupled to a vibrational mode. This coupling
causes a shift in the tunneling matrix elements, leading e.g. to the formation of vibrational
sidebands in the I-V characteristics of the quantum dot. Furthermore the coupling to
a vibrational mode causes a renormalization of the charging energy, which is the energy
needed to add another electron to the dot. We analyze a situation where the coupling
of the quantum dot to the vibrational mode is so strong that the renormalized charging
energy becomes not only negative (“negative-U regime“), but also overcomes the cost in
single-particle energy due to finite level spacing. This leads to an instability in the system
which can be regularized by adding an anharmonic term to the vibron energy.

We find that the effective potential in this situation differs qualitatively from the case
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with positive charging energy, leading to modifications of the low temperature properties
in the Coulomb blockade regime. The system develops e.g. rapid changes in the average
and the fluctuations of the number of excess electrons in the neighborhood of zero gate
charge. We argue that the negative-U regime analyzed can be experimentally accessible
using carbon nanotube quantum dots which are known for exhibiting strong electron-vibron
coupling.
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Kurzfassung

In dieser Arbeit werden zwei verschiedene mesoskopische Systeme im Nichtgleichgewicht
untersucht. Nichtgleichgewicht bedeutet dabei, dass explizit höhere Ordnungen in der je-
weiligen Störungstheorie berücksichtigt werden müssen um die charakteristischen physika-
lischen Größen der Systeme zu beschreiben.

Der erste Teil der Arbeit widmet sich mesoskopisch kleinen Ringen, welche im Gleichge-
wicht Dauerströme ausbilden, wenn die Zeitumkehrinvarianz in den Ringen gebrochen wird.
Es wird angenommen, dass ein zusätzliches Mikrowellenfeld angelegt wird, welches das Sy-
stem aus dem Gleichgewicht auslenkt und die Auswirkung auf experimentell zugängliche
physikalische Größen – den typischen Strom und die Strom-Strom Korrelationsfunktion –
berechnet. Hierbei wird angenommen, dass das Mikrowellenfeld senkrecht zur Ebene der
Ringe steht um Effekte zu vermeiden, die durch den direkten Einfluss des Feldes auf die
Bahn der Elektronen in den Ringen entstehen. Da die Feld-induzierte Korrektur des Stro-
mes in erster und die Korrektur der Korrelationsfunktion in zweiter und dritter Ordnung
Störungstheorie verschwinden, ergibt es sich, dass typischer Strom und Korrelationsfunk-
tion in der vierten Ordnung Störungstheorie berechnet werden müssen.

Zu der durch das Mikrowellenfeld induzierten Änderung von typischem Strom und Kor-
relationsfunktion tragen zwei grundlegend verschiedene Prozesse bei. Zum einen führt das
Anlegen des Feldes zu Fluktuationen der Zustandsdichte, welche ihrerseits die Strom-Strom
Korrelationsfunktion beeinflussen. Zum anderen trägt ein photovoltaischer Effekt, welcher
durch die lokale Symmetriebrechung aufgrund der zufälligen Verteilung der Störstellen in
den Ringen bedingt ist, zum Strom bei. Es ergibt sich, dass der erste Effekt um mehrere
Größenordnungen größer als der zweite ist. Außerdem ist es möglich Feldamplituden und
Frequenzen innerhalb der Grenzen der Störungtheorie zu wählen, bei welchen der mikro-
wellenfeldinduzierte Effekt so gross wie, wenn nicht sogar größer als, der Dauerstrom im
Gleichgewicht ist. Abschließend wird festgestellt, dass der berechnete Effekt experimentell
messbar ist. Es werden mögliche Messabläufe, welche den berechneten Effekt nachweisen
können, vorgestellt und deren Ergebnisse berechnet.

Im zweiten Teil der Arbeit werden Quantenpunkte betrachtet, in welchen die elek-
tronischen Freiheitsgrade stark an eine Vibrationsmode gekoppelt sind. Diese Kopplung
bedingt eine Verschiebung der Elemente der Tunnelmatrix, welche sich z.B. in Vibrati-
onsseitenbändern im Coulomb blockierten Regime manifestiert, sowie eine Renormierung
der Ladungsenergie der Quantenpunkte. Es wird ein Spezialfall betrachtet, in welchem die
Ladungsenergie effektiv nicht nur negativ, sondern betragsmäßig sogar größer wird als der
Energieverlust, welcher durch den endlichen Energielevelabstand beim Tunneln eines Elek-
trons auf den Quantenpunkt entsteht. In diesem Fall weist das System eine Instabilität
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auf, welche durch das Hinzufügen eines anharmonischen vibronischen Terms regularisiert
wird.

Es ergibt sich, dass das effektive Potential des Systems grundlegende Unterschiede
zum bekannten Fall positiver Ladungsenergie aufweist. Dies ändert die Eigenschaften im
Coulomb blockierten Regime bei niedrigen Temperaturen. Zum Beispiel zeigen sich große
Änderungsraten der durchschnittlichen Elektronenzahl sowie deren Fluktuationen bei ge-
ringer Gatespannung. Schließlich wird die Möglichkeit der experimentellen Realisierung des
Systems in Kohlenstoffnanoröhren, welche starke Elektron-Vibrations Kopplungen aufwei-
sen, diskutiert.
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