


Przemyslaw Imielski

Untersuchungen von magnetischen und strukturellen Eigenschaften mittels lokalen Sonden

Untersuchungen von magnetischen und strukturellen Eigenschaften mittels lokalen Sonden

Inauguraldissertation zur Erlangung der Doktorwürde eingereicht am Fachbereich Physik der Freien Universität Berlin

> vorgelegt von Przemyslaw Imielski

> > aus Poznań (Polen)

- September 2007 -

Ein zufriedener Mensch erwartet vom Leben nicht mehr,
als das Leben ihm geben kann.
Ein zufriedener Mensch wirkt Wunder;
Manche Probleme, die andere zugrunde richten, gehen vor ihm aus dem Weg.
Ein zufriedener Mensch genießt die Tage so wie er sie bekommt.
Wer zuviel erwartet und fordert, zieht dunkle Wolken auf sich.
Er macht sich selbst die schlechten Tage.

<Phil Bosmans>

Fantasie ist wichtiger als Wissen. <**Albert Einstein>**

Mojej Rodzince Meiner Familie

Diese Dissertation wurde in der AG Brewer am Institut für Experimentalphysik der Freien Universität Berlin angefertigt.

Gutachter: Prof. Dr. William Brewer
 Gutachter: Prof. Dr. Jürgen Bosse

Tag der mündlichen Prüfung: 31.10.2007

Abstract

The signs of the magnetic hyperfine fields of Cd-probes in contact with Ni-atoms were determined for the positions with coordination numbers NN = 4, 5, 6, 7 and 9 using an external magnetic field with the TDPAC method. In these experiments, our group for the first time successfully used a magnet system together with a $135^{\circ}/45^{\circ}$ -detector geometry. The positions of the radioactive Cd probes on a Ni single crystal surface were carefully prepared by an annealing procedure. The signs of the magnetic hyperfine fields for the positions with NN = 9, 7, 6 and 5 were negative, while the sign was positive for the position with NN = 4. The magnitudes of B_{hf} und V_{zz} , measured in this work are summarised in table 6.1.

The results confirm the theoretical calculations of Mavropoulos using the Greens function embedding method [Mav03] and demonstrate that the hyperfine fields change signs between NN = 5 and 4.

The second part of this work focuses on Eu probe atoms.

In a series of measurements employing the TDPAC method, the behaviour of Eu ions was investigated in a ZnO single-crystal host and on Pd surfaces. The direct implantation of ¹⁴⁹Eu into ZnO single crystals followed by measurements at room temperature yielded spectra showing a pure quadrupole interaction. From the combined interactions applying an external magnetic field, Eu in the ZnO single crystal was determined to be divalent.

The Eu experiments on a Pd surface were first proposed in the thesis of K. Potzger, who suggested that the majority of the probe atoms may experience a unique and similar environment due to self organization. The Eu probes were deposited onto the Pd surface by soft landing. At room temperature, the ¹⁴⁷Eu probes on Pd exhibited a pure quadrupole interaction with a unique frequency.

The measurements with europium still require several complementary experiments to study the rare earth atoms, for example to determine the quadrupolar moment of the 11/2⁻-level of the europium isotopes used.

Inhaltverzeichnis

Abstract	5
Inhaltverzeichnis	7
Einleitung und Motivation	11
1. Allgemeine Grundlagen	15
1.1. Magnetismus	15
1.1.1. Ferromagnetismus	17
1.1.2. Paramagnetismus in Metallen	18
1.1.3. Curie-Gesetz	20
1.1.4. Gesamtdrehimpuls und elektronischer Grundzustand von Atomen und Ionen	21
1.1.5. Bestimmung des Grundzustandes	22
1.1.6. Van Vleck-Paramagnetismus	23
1.1.7. Magnetische Hyperfeinwechselwirkung	25
1.1.8. Elektrische Hyperfeinwechselwirkung	29
1.2. Seltene Erden	34
1.2.1. Ionische Eigenschaften von Seltenen-Erd-Atomen in Metallen	35
1.2.2. Termschema des Grundzustandes der Seltenen Erden	36
1.2.3. Das Element Europium	38
2. Grundlagen der gestörten Winkelkorrelationsspektroskopie (TDPAC - Time Differential Perturbed Angular Correlations Spectroscopy)	41
2.1. Die γγ-Winkelkorrelation	42
2.1.1. Die ungestörte γγ-Winkelkorrelation	42
2.1.2. Die gestörte γγ-Winkelkorrelation	44
2.2. Aufnahme der PAC-Spektren	46
2.3. Detektorkonfiguration	48
2.3.1. Standardgeometrie (180°/90°-Detektorgeometrie)	49
2.3.2. Vorzeichen-empfindliche-Detektorkonfiguration (135°/45°)	51
2.3.3. Definition von Winkeln relativ zum Laborsystem	52
2.4. PAC-Kerne	53
$2.4.1. ^{111}$ In / 111 Cd	53
$2.4.2. ^{111m}Cd/^{111}Cd$	54
$2.4.3.^{-147}Gd/^{147}Eu$	55
2.4.4. ¹⁴⁹ Gd / ¹⁴⁹ Eu	56
3.Experimentelle Methoden	58
3.1. UHV-Kammer ASPIC	58
3.2. Das "Soft-Landing" der Isotope auf Oberflächen	61
3.3 Verwendete Ni-kristalle	63

3.4. Präparation von Adsorbatplätzen an einer Oberfläche	65
3.5. Das externe Magnetfeld	68
4. Standort der Messapparatur	72
4.1. Der Massenseparator ISOLDE	72
4.2. ISL-Berlin (Ionen-Strahl-Labor)	73
5. Probenpräparation und Analyse	75
5.1. Beugung niederenergetischer Elektronen an Oberflächen (LEED - Low Energy Electron Diffraction)	75
5.2. Augerelektronen-Spektroskopie (AES)	77
5.3. Quadrupol-Massenspektrometer	80
5.4. Argon-Sputtern	81
5.5. Elektronenstoßheizung	82
5.6. Präparation dünner Filme	83
5.7. Einkristallpräparation und Analyse	84
6. Das Vorzeichen der magnetischen Hyperfeinfelder an verschiedenen Plätzen auf der Ni-Oberfläche	88
6.1. Der substitutionelle Terrassenplatz (NN=9) auf einer vizinal geschnittenen Ni(111)-Oberfläche	89
6.1.1. Standard Detektorkonfiguration (180°/90°)	89
6.1.2. Kombinierte Wechselwirkung	90
6.1.3. Die Vorzeichen-empfindliche Detektorkonfiguration (135°/45°)	93
6.1.4. Das angelegte externe Magnetfeld	94
6.2. Das Vorzeichen der freien inneren Eckplätze (NN=5) auf Ni(111)	96
6.3. Der substitutionelle Kantenplatz (NN=7) auf Ni(111)	98
6.4. Der freie innere Eckenplatz (NN=6) auf der Ni(111)-Oberfläche	99
6.5. Der freie Terrassenplatz (NN=4) auf Ni(001)	99
6.6. Systematik der gemessenen magnetischen Hyperfeinfelder	100
6.7. Systematik der gemessenen Feldgradienten	107
7. Untersuchungen an isolierten Eu-Atomen in ZnO-Kristallen und auf der Pd-Oberfläche	111
7.1. Paramagnetischen Verstärkungsfaktors und simulierte $R(t)$ -Spektren	113
7.2. Implantation und Deponierung der Eu-Sonden	116
7.3. Gammaspektren von ¹⁴⁷ Gd/ ¹⁴⁷ Eu	118
7.4. Messergebnisse und Interpretationen für die Eu-Sonden	119
7.4.1. Die elektrische Quadrupolwechselwirkung: ¹⁴⁹ Eu in ZnO	119

7.4.2. Die kombinierte Wechselwirkung: ¹⁴⁹ Eu in ZnO. Die Bestimmung der Valenz.	121
7.4.3. Das erste Experiment auf der Oberfläche: 147Eu auf der Pd(111)-Oberfläche	122
Zusammenfassung und Ausblick	125
Literaturverzeichnis	127
Lebenslauf	133
Danksagung	135