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Abstract

Coherent diffractive imaging with X-ray free-electron lasers (X-FEL) promises
high-resolution structure determination of single microscopic particles without
the need for crystallization. The diffraction signal of small samples can be very
weak, a difficulty that can not be countered by merely increasing the number
of photons because the sample would be damaged by a high absorbed radiation
dose. Traditional X-ray crystallography avoids this problem by bringing many
sample particles into a periodic arrangement, which amplifies the individual sig-
nals while distributing the absorbed dose. Depending on the sample, however,
crystallization can be very difficult or even impossible. This thesis presents
algorithms for a new imaging approach using X-FEL radiation that works with
single, non-crystalline sample particles.

X-FELs can deliver X-rays with a peak brilliance many orders of magnitude
higher than conventional X-ray sources, compensating for their weak interac-
tion cross sections. At the same time, FELs can produce ultra-short pulses
down to a few femtoseconds. In this way it is possible to perform ultra-fast
imaging, essentially “freezing” the atomic positions in time and terminating the
imaging process before the sample is destroyed by the absorbed radiation.

This thesis primarily focuses on the three-dimensional reconstruction of
single (and not necessarily crystalline) particles using coherent diffractive
imaging at X-FELs: in order to extract three-dimensional information from
scattering data, two-dimensional diffraction patterns from many different
viewing angles must be combined. Therefore, the diffraction signal of many
identical sample copies in random orientations is measured. The main result
of this work is a globally optimal algorithm that can recover the sample ori-
entations solely based on the diffraction signal, enabling three-dimensional
imaging for arbitrary samples. The problem of finding three-dimensional ori-
entations is reduced to one-dimensional sub-problems by arranging diffraction
patterns in geodesic similarity sequences. Relations between the one-dimen-
sional sub-problems are established by identifying rotations about the X-ray
axis and one-dimensional solutions are combined into a three-dimensional ori-
entation recovery. The global optimization approach ensures that information
is extracted from the whole diffraction dataset, not only individual diffraction
patterns. Therefore this method can cope with diffraction data sets consisting
of individual diffraction patterns with weak signals. The geodesic approach can
handle datasets from inhomogeneous samples as well as samples with symme-
tries. A successful application to experimental X-FEL data is shown, resulting
in the first three-dimensional reconstruction of a nanoparticle using X-FEL
coherent diffractive imaging.
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Zusammenfassung

Kohärente Abbildung mit Röntgenlasern (X-ray free-electron lasers , X-FEL)
ermöglicht die Strukturbestimmung von einzelnen mikroskopischen Teilchen
mit hoher Auflösung, ohne dass ihre Kristallisation notwendig ist. Das gestreute
Signal von kleinen Proben kann jedoch sehr schwach sein. Diese Schwierig-
keit kann nicht einfach durch mehr einfallende Photonen umgangen werden,
da die Probe bei der Absorption einer hohen Strahlendosis Schaden nimmt.
Herkömmliche Kristallographie vermeidet dieses Problem durch das periodi-
sche Anordnen vieler Probenteilchen, wodurch das Signal verstärkt und die
Strahlendosis verteilt wird. Je nach Probe kann die Kristallisation jedoch sehr
aufwändig oder gar unmöglich sein. Diese Arbeit behandelt Algorithmen für ein
neues bildgebendes Verfahren mit X-FEL Strahlung, das ohne Kristallisation
auskommt.

Mit X-FELs können Röntgenstrahlen mit sehr viel höherer Spitzenbril-
lanz erzeugt werden als mit herkömmlichen Röntgenquellen; somit können die
schwachen Wechselwirkungsquerschnitte von Röntgenphotonen mit Materie
kompensiert werden. Gleichzeitig können diese Röntgenstrahlen sehr kurz
gepulst werden, bis hin zu wenigen Femtosekunden. Dadurch kann eine Bild-
gebung erreicht werden, die so schnell ist, dass die Atompositionen zeitlich
„eingefroren“ werden und ein Abbild der Probe erzeugt wird, bevor diese durch
die absorbierte Strahlung zerstört wird.

Das Hauptaugenmerk dieser Arbeit liegt auf der dreidimensionalen Rekon-
struktion: Um dreidimensionale Information aus Streudaten zu gewinnen ist es
erforderlich viele zweidimensionale Streubilder aus verschiedenen Blickwinkeln
zusammenzufassen. Dazu werden Streubilder von vielen identischen Kopien
der Probe sequentiell gesammelt, wobei jede Probenkopie eine zufällige Orien-
tierung hat. Das wichtigste Ergebnis dieser Arbeit ist ein global optimaler Algo-
rithmus, der die Orientierungen allein mit Hilfe der Streubilder rekonstruiert,
wodurch eine dreidimensionale Bildgebung für beliebige Proben möglich wird.
Dazu wird das Problem dreidimensionale Orientierungen zu rekonstruieren
in eindimensionale Teilprobleme unterteilt, indem Streubilder aufgrund ihrer
Ähnlichkeit in geodätische Bildfolgen angeordnet werden. Die eindimensionalen
Teilprobleme werden dann miteinander in Bezug gebracht, indem gemeinsame
Drehungen um die Röntgenachse identifiziert werden. Somit können eindimen-
sionale Lösungen in eine dreidimensionale Rekonstruktion der Orientierungen
kombiniert werden. Die globale Optimierung stellt dabei sicher, dass die Infor-
mation des gesamten Datensatz genutzt wird, anstatt nur einzelne Streubilder
zu berücksichtigen. Aus diesem Grund kann diese Methode auch bei Daten-
sätzen eingesetzt werden, bei denen einzelne Streubilder nur ein schwaches
Signal erhalten. Die auf Geodäten beruhende Methode kann sowohl Daten-
sätze von inhomogenen Proben bewältigen, als auch mit Objektsymmetrien
umgehen. In dieser Arbeit wird eine erfolgreiche Anwendung auf experimentelle
X-FEL Daten gezeigt, die die erste dreidimensionalen Rekonstruktion eines
Nanopartikels mit Hilfe von kohärenten Abbildungen mit X-FELs ermöglichte.
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Introduction

Visualizing the microscopic world at the length scale of atoms is a fascinating under-

taking that gives exciting insights to many scientific fields. The development of high

resolution imaging methods has boosted physics, material science, chemistry and

in particular biology. In biological systems, function and structure are inseparably

intertwined. This holds for whole organisms as well as for cells and for individual

molecules. One of the best known examples of the impact of structural knowledge

on functional understanding is the structure of the DNA double helix that was first

proposed in 1953 by Watson and Crick. As Watson and Crick already recognized,

the base pairing in their model “immediately suggests a possible copying mechanism

for the genetic material” [1]. It is probably fair to say that the insight provided by

this single structure has revolutionized biology. Additional examples of such high

impact results are the structures of RNA polymerase (for which a Nobel prize was

awarded in 2006), the ribosome (Nobel prize in 2009), enzymes such as the ATP

synthase (Nobel prize in 1996) and several membrane proteins (Nobel prizes in 1988,

2003 and 2012). At the time this thesis was written, the protein data bank (PDB)

held over 99,000 structures of biological macromolecules. This considerable body of

information has, over the last couple of decades, changed the way in which we view

the living world.

Currently used imaging techniques

The vast majority of these structures was determined by X-ray crystallography, a

technique that was pioneered 100 years ago by Sir William Henry Bragg and his son

William Lawrence Bragg. Since then it has been successfully in use to determine



structures at or near atomic resolution. X-rays are an ideal probe for high-resolution

three-dimensional imaging because of their short wavelengths and their long pen-

etration depth. X-ray crystallography takes advantage of the amplification that is

achieved due to the scattering from many periodically arranged units, the unit cells ,

that adds up constructively, causing sharp maxima, the so called Bragg reflections .

In this way, N identical copies of the sample arranged in a three-dimensional lattice

result in an amplified scattering signal with a Bragg reflection intensity I that grows

quadratically with N: I ∝N 2. Thus, using crystals with many unit cells, the dose of

ionizing X-ray radiation can be reduced, mitigating the effects of radiation damage.

Even though the experiments are performed on crystalline samples which has

the potential to introduce artifacts, it has been shown that biological molecules

generally retain the same structure as in solution and often even at least part of

their activity. This enables studies on biochemical mechanisms, for instance by

introducing reaction partners into protein crystals and observing chemical reactions

using crystallography.

However, the method crucially relies on the ability to grow macroscopic, well-

ordered crystals, a requirement that is not always easily met. Membrane pro-

teins and macromolecular complexes are difficult to crystallize. Even if a successful

crystallization can be obtained, it is not guaranteed that the native sample envi-

ronment is preserved. Moreover, while crystallographic amplification reduces the

dose required to obtain sufficient signal, a typical radiation dose used to deter-

mine a protein structure can be as much as 20 MGy [2], a dose which is certain

to cause significant damage to the sample. Data collection at cryogenic temperatures

normally enables the crystal to endure such harsh treatments but in several cases

the radiation causes significant alterations to the chemistry of the molecule, ren-

dering the resulting structure useless for biological interpretation. Examples include

metalloproteins containing atoms with high atomic numbers such as the manganese

cluster in photosystem II [3] and heme proteins such as chloroperoxidase [4].

Nuclear magnetic resonance spectroscopy (NMR) enables structure determination

without ionizing radiation and without requiring crystals. NMR is a spectroscopic

method that can be applied to samples in solution or solid state which relies on the

spin properties of atomic nuclei.
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However, this method has disadvantages, too. NMR signals are typically weak so

that many spectra need to be averaged to obtain a sufficiently high signal to noise

ratio. This means that experiments often lasts for several days, requiring the sample

to be stable over the course of the experiment. Moreover, in NMR spectroscopy,

peak widths are inversely related to the speed with which the molecules tumble

in solution. In general, this puts an upper limit of about 50 kDa on the molecular

weight of the molecules that can be investigated, as large molecules give rise to

broad, overlapping peaks, resulting in uninterpretable spectra.

Electron microscopy (EM) is an imaging method like X-ray crystallography, but

uses electrons rather than X-rays. As these have a much higher scattering cross

section, EM is capable of imaging single molecules so that crystals are not required

[5, 6]. In a typical EM experiment, the molecules under study are embedded in a

thin film of vitreous ice and imaged using as low a radiation dose as possible to

minimize damage. This results in low signal-to-noise ratios of the individual images,

so that several thousands of images need to be collected, containing many two-

dimensional projections of different copies of the molecule. Individual molecules are

then identified in these images and grouped into classes, representing different ori-

entations and conformations, carrying dynamic information. Special algorithms are

then employed to reconstruct three-dimensional structures from these projections.

Like NMR, this allows structure determination in a near native environment without

requiring crystals. In addition, the identification of dynamic features is possible.

To a large extent, achievable resolution is limited by radiation damage; the large

cross sections that allow single particle imaging in the first place are also responsible

for rapid deterioration of the sample during imaging. However, as shown by recent

reports of near atomic resolution structures [7], electron microscopy is currently

being revolutionized by new detectors [8].

At the low doses typically employed to counter this and other effects, identifi-

cation of the molecules for reconstruction becomes difficult, if not impossible for

small molecules, currently putting a lower size limit of around 200-300 kDa on the

molecules that can be studied with EM. Given the mean free path of an electron

in biological materials, there is an upper limit to the thickness of the sample, too,

precluding the investigation of e.g. the inside of intact large viruses.

Currently used imaging techniques 3



Towards a new method

As shown above, the structural biologist’s toolkit contains a variety of methods for

structure determination, each with its own advantages and disadvantages, with X-

ray crystallography being the principal technique. However, as also shown, there is

a need for methods that allow the study of molecules that are difficult to crystallize

and cannot be studied by EM or NMR, for instance because of size limitations. Also,

the high-resolution information that X-ray crystallography can provide is sometimes

rendered useless by radiation damage, for instance in the case of highly radiation-

sensitive cofactors. This provides the motivation for the work described in this

thesis, which presents important first steps towards a new imaging method, three-

dimensional ultrafast X-ray Coherent Diffractive Imaging (CDI).

The small interaction cross sections of X-ray photons preclude the imaging of

single biological macromolecules as in EM, unless a sufficiently high number of

photons is used. At such high doses however, radiation damage would completely

destroy the molecule under study.

To counter this, it was proposed by Solem [9] to combine this large number of

photons in a single pulse of ultra short duration, passing the sample before the

molecule is destroyed by radiation damage. This ‘outrunning’ of radiation damage

is called the ‘Diffraction-before-Destruction’ approach.

Neutze et al. [10] performed theoretical calculations that supported this idea. In

molecular dynamics simulations of a single lysozyme molecule, the effect of sudden,

massive ionization as caused by a femtosecond X-ray pulse was analyzed. It was

predicted that the structure remains largely intact during an X-ray pulse of a few

femtoseconds duration and that the molecule is destroyed in a “Coulomb explosion”

only after the pulse has passed.

Several authors have characterized the damage caused by high intensity fem-

tosecond X-ray pulses in more detail [11, 12, 13, 14].

The dominant primary process is photoionization, whereby a photon is absorbed

and an electron is ejected. The lifetimes of the initially generated electron holes

relevant for radiation damage are on the order of femtoseconds [10]. Relaxation

occurs when an electron from a higher-lying shell fills the vacant orbital. The energy

of the relaxing electron can either result in fluorescence or in the ejection of another

electron in a process known as the Auger effect . In heavier elements, fluorescence is

the dominant process whereas in lighter elements such as carbon, nitrogen, oxygen
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and sulfur, the Auger effect is more likely. The electrons that are ejected by primary

processes such as photoelectric effect, re-absorption of the X-ray fluorescences as

well Auger electrons lead to avalanches of free electrons which do even more damage

to the sample. The final result is the Coulomb explosion: eventually, all atoms of

the sample are highly ionized, causing strong mutual electrostatic repulsion which

causes the sample to explode. However analysis of the time scales involved predicts

that significant radiation damage will only set in after the probing X-ray pulse

has left the sample. Moreover, imaging experiments indeed confirm the feasibility

of ‘Diffraction-before-Destruction’ [15].

As in crystallography, CDI requires the retrieval of the phases of the scattered

electromagnetic wave. In contrast to crystallography, where the diffraction signal

can only be sampled in Bragg reflections, in CDI the sample is non-periodic, giving

rise to a continuous diffraction pattern. This enables a sampling rate beyond the

Shannon limit [16]. As will be explained later on (see chapter 1.1.1), this provides

a set of constraints that can be exploited in iterative phase retrieval algorithms.

Free-electron lasers

Imaging with ultrashort pulses has now become possible with the advent of X-

ray free-electron lasers (FEL). These novel light sources provide the high peak

peak brilliance (spectral brightness) and the short pulses required for the Solem

experiment. X-ray FELs are sometimes referred to as fourth generation X-ray

sources which reflects their descent from synchrotron radiation sources. Contrary

to synchrotrons, where electrons are kept in a circular storage ring, in FELs elec-

trons are accelerated to relativistic speed in a linear accelerator. The relativistic

electrons are then introduced into an undulator; a periodic arrangement of mag-

nets with alternating polarity, forcing the electrons on a sinusoidal path with a

fixed phase relative to the electromagnetic wave. The resulting alternating accel-

eration causes the charged particles to emit radiation. The use of a linear accelerator

allows to decrease the beam emittance ; the average spread of electrons in six-dimen-

sional phase space. If the emittance is sufficiently low, interaction occurs between

electrons emitted photons, resulting in a nonlinear coupling that groups the electrons

into microbunches with the periodicity of the generated radiation. This introduces
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a temporal correlation with the motion of the electrons. In the limit of perfect

microbunching with bunch sizes much smaller than the radiation wavelength, all Ne

electrons of a bunch train radiate in phase. This leads to a significant amplification of

the radiation power (∝Ne
2 as opposed to ∝Ne in case of uncorrelated emission). The

light that is produced in this way is spatially and temporally coherent, like laser light.

Unlike conventional lasers, which use electrons in bound states as the gain medium,

FELs use free electrons as a lasing medium. Consequently, the resulting wave-

length can be tuned in a continuous fashion within a wide spectral range, including

the X-ray region. The operating principle of FELs is similar to that of synchro-

trons, however, the resonance effect leads to a much higher peak brilliance. In current

realizations, the peak brilliance exceeds that of synchrotrons by nine orders of magni-

tude. At present, two hard X-ray FELs are available worldwide, the Linac Coherent

Light Source (LCLS ) LCLS which went operational for users in 2009 [17] and the

Spring-8 Angstrom Compact free electron LAser (SACLA) which followed in 2011.

Since then, the construction and planning of many more facilities has progressed.

Serial coherent diffractive imaging

While diffraction using FEL pulses yields diffraction information of the undamaged

sample in femtoseconds, the following Coulomb explosion inevitably results in the

complete destruction of the sample [10].

Because, as in electron microscopy, a large number of snapshots is required

for a three-dimensional reconstruction and to improve the signal to noise ratio by

averaging, the sample must continuously be replenished during the experiment.

Therefore, the imaging experiment is performed in a serial way, as shown in figure 1.

Single objects have to be separated from the bulk and guided to the interaction

region. An additional complication is that the imaging (including scattering and

detection) is performed in high vacuum (∼10−7 mbar) to avoid absorption of the

incoming X-ray beam and absorption of the signal, and to suppress background

scattering. Three different, vacuum compatible techniques for serial sample delivery

are currently used: aerosol injection, liquid jet injection and pre-aligned objects

suspended on thin membranes.
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Fig. 1. Setup of coherent diffraction imaging experiments: a particle stream is intercepted
by the pulsed X-ray beam. In this example, a nebulizer aerosolizes the sample and an aerodynamic
lens stack is used to focus the particle stream. Diffraction patterns are measured by means of CCD
pixel array sensors which are triggered with the X-ray pulses. The diffraction pattern depicted
on the detector plane originates from a T4 bacteriophage virus.

Aerosol injection

The goal of aerosol injection is to introduce single sample particles into the X-

ray beam without the use of substrates, conserving a liquid sample environment,

reducing physical stress on the sample object and reducing background scattering

by removing as much of the solvent as possible. This is achieved by aerosolizing the

solvated sample and forming a molecular beam guided by a low density carrier gas.

In order to increase the chance of hitting a single particle with every X-ray pulse,

the particle beam is focused by means of gas-dynamic focusing [18]. The focusing

principle is illustrated in figure 2, figure 1 shows the setup of an aerodynamic lens

stack with differential pumping: the pressure is decreased along the path of the

particle stream and excess gas is removed before particles enter the vacuum chamber.

This sample delivery method relies on evaporation of the solvent shell around

sample particles during their flight into the interaction region. However, this evap-

oration is not necessarily uniform and sample particles may be left with different

amounts of residual solvent resulting in differently sized droplets. Moreover, the

drying process might leave a crust of dried buffer components on the surface of the

particles. In addition, multiple particles might reach the interaction region at the

same time, complicating the analysis of the diffraction pattern. Thus, all parameters

affecting the injection process such as gas flow, initial aerosol droplet size, particle

density etc. need to be optimized such that the chance of “hitting” single particles

Serial coherent diffractive imaging 7



is maximized. The substrate-free aerosol injection offers the possibility to perform

imaging on samples in their native state. However, only volatile buffers can be used.

Fig. 2. Illustration of the focusing principle of an aerodynamic lens stack. At each
aperture, the gas is compressed, focusing the embedded particles. After it passes the aperture,
the gas can relax and expand, the particles however stay on the central line due to inertia. The
diameters of the apertures decrease along the lens stack.

Liquid jet injection

In liquid jet injection the goal is to inject the sample into the FEL vacuum

chamber while still in native aqueous solution, i.e. it bypasses the need for aerosoli-

sation and drying required for aerosol injection and eliminates the need for volatile

buffers. To generate a micro jet, the solution containing the sample particles is

extruded while surrounded by a sheath of convergent, co-flowing gas. This gas sheath

forms a virtual nozzle [19] (see figure 3), focusing the jet into a micron-sized liquid

column. A virtual nozzle, i.e. one made of gas, rather than a “real”, physical nozzle

is used since these are less prone to clogging, which is a considerable problem when

producing microscopic jets of biological samples. In addition, the sheathing gas

prevents freezing of the sample when the liquid enters the vacuum chamber. In order

not to compromise the high vacuum environment of the experimental chamber,

the co-flowing focusing gas as well as the liquid are encased within a differentially-

pumped shroud.

Gas dynamic virtual nozzles (GDVNs) achieve much higher injection efficiencies

than aerosol injectors, resulting in a much higher “hit rate”, the fraction of FEL

pulses that results in a successful diffraction event. However, the solvent results

in a high background signal, and a strong diffraction signature which complicates

analysis is caused by the surface of the liquid column (see figure 3). Therefore, in

order to achieve sufficient contrast between the solvent and the sample particles, the

measurements have to be performed in the “water window” (at a wavelength between
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2.3 nm and 4.4 nm) where the absorption contrast between carbon (sample) and

oxygen (water) is high. Consequently, the achievable resolution is limited.

Fig. 3. Liquid jet. Left: cutaway drawing of a gas dynamic virtual nozzle. Right: diffraction
pattern with horizontal (orthogonal to jet) streak signature from diffraction of the jet’s surface
(sample: Cro-virus). The vertical line is a gap between two detector halves.

Fixed target

Both aerosol and liquid jet injection employ a continuous stream of particles

which is then intercepted by discrete X-ray pulses. The sample material injected

between subsequent FEL pulses is wasted. This can be avoided by depositing single

sample particles onto thin membranes analogous to the sample holders utilized in

EM. A disadvantage of this method is high background scattering, also the orien-

tations of the sample objects may be biased because of preferred alignment to the

substrate in specific orientations. Fixed targets are nonetheless useful to perform

two-dimensional imaging, providing a very stable mode of sample delivery and every-

thing can be prepared and characterized beforehand.

Sorting diffraction patterns

The serial sample delivery needed for three-dimensional coherent diffractive imaging

with FELs can introduce artifacts such as sample aggregates , solvent droplets , blank

shots , diffraction from multiple objects (multi-hit) and alien objects from impure

sample preparations (see figure 4). To a large extent, such artifacts can be recognized

before a three-dimensional reconstruction is performed, easing the reconstruction
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process and reducing the chance of such artifacts impairing the result. Statistical

sorting methods have been developed in this thesis to address this problem.

a b c d e f

Fig. 4. Typical diffraction patterns of different samples and injection artifacts. In addition
to the desired single sample particles, solvent droplets, sample aggregates and multiple particles
may be present in the interaction region at the time the X-ray pulse passes. (a) diffraction pattern
of a large aggregate, (b) solvent droplet, (c,d) single T4 virus phage particles, (f) single nanorice
grain, (g) two grains of nanorice at the same time.

The orientation problem

A diffraction pattern provides only two-dimensional information. For a three-dimen-

sional reconstruction, diffraction snapshots in different orientations need to be

combined. In crystallography, this can be achieved by rotating the macroscopic

crystal while measuring the diffraction signal. Discrete Bragg reflections allow an

exact interpretation of the orientation of a given diffraction pattern.

However, the single particle delivery methods employed for CDI described above

share one important limitation: the orientation of the sample object can neither be

controlled nor directly measured. Instead, sufficient sampling of orientation space

is achieved because the sample objects are injected in random orientations. If the

orientations are known, two-dimensional snapshots can be arranged into a three-

dimensional data set. The same problem occurs in electron microscopy with the

important difference that in EM, orientations can be recovered from real space

projections of the object under study, whereas in CDI the orientations need to

be recovered from diffraction data. Another important difference to orientation

recovery in EM is that the expected signal strength for CDI on individual mol-

ecules is significantly lower than in EM. This also necessitates the development

of new approaches to sorting and orientation.

The orientation problem , the task of obtaining the orientations a posteriori , can

be solved because a set of diffraction patterns originating from the same object, with

diffraction snapshots that only differ in the object orientations will show correlations

that can be identified and exploited to obtain relative orientation information.
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Motivation and outline

The ultimate goal of CDI at X-ray FEL sources is the three-dimensional structure

determination of single molecules . At present, many experimental and theoretical

obstacles still remain and this goal is not within reach. However, during the time

of this thesis, successful proof-of-principle experiments have been performed using

larger particles, providing strong scattering signals. The demonstration of a three-

dimensional reconstruction of such a nanoparticle by serial CDI marks an important

milestone on the way towards single molecule imaging. Before this thesis, such a

reconstruction using experimental data had never been shown.

The main goal of this work was therefore the development and successful appli-

cation of data evaluation methods that combine the information of many weak two-

dimensional diffraction signals into a reliable three-dimensional image of the sample

object. This includes the development of a new algorithm for orientation recovery

as well as statistical methods to sort diffraction patterns.

First, the concepts of coherent diffractive imaging are further developed in

chapter 1. It is shown how a real-space reconstruction can be obtained from dif-

fraction data using oversampling-based phase retrieval algorithms. Specifically, the

challenges of three-dimensional reconstructions are considered.

Then, statistical classification methods for the sorting of diffraction snapshots are

described in chapter 2. These methods are not only useful to automate the sorting

of many thousands of diffraction patterns, but also to provide useful feedback during

imaging experiments that aids in optimizing the injection parameters highlighted

above.

After this, a novel orientation recovery algorithm, gipral, is introduced and

developed in chapter 3. Finally, the classification methods developed in chapter

2 and the gipral method are successfully applied to real data collected at an X-

ray FEL in chapter 5, resulting in the first demonstration of the three-dimensional

reconstruction of a nanoparticle from serial CDI data.
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Part I

Background





1

The theory of coherent X-ray diffractive imaging

Simple transmission lenses like those used in light microscopes are not available for

X-rays, since the refractive index of all materials is close to 1 for such wavelengths.

Grazing incidence reflective optics [20] are used instead to build X-ray focusing

optics. However they can not withstand high intensities and introduce a considerable

amount of absorption and aberration, limiting their usefulness in a high resolution

imaging system.

Therefore, the work presented here focuses on “lensless imaging” where the image

is reconstructed computationally, making use of the coherence of the incident light

wave. Without lenses, the Fourier plane of the ray optics illustrated in figure 1.1 is

placed at infinity and can approximately be detected by a detector placed at a long

distance. The the inverse transformation back to real space has to be carried out

computationally.

f f f f

Fourier plane

object image

Fig. 1.1. Fourier optics in the 4f geometry. The first lens located at the focal length f

refracts the cone of rays that originates from each object point into a parallel beam. Every point
of the object is spread out into the Fourier plane where a superposition of the waves is formed that
can be described by a Fourier transform (see eq. 1.1). The same parallel superposition happens
without a lens on a detector that is placed at infinity. The second lens reverses the process which
can be described by the inverse Fourier transform. Without a lens the rays keep diverging and
thus the forward transform continues to infinity, but still the inverse process can be performed
computationally.



When the light scatters forward from the sample object onto a detector, each

point on the detector receives light from every point of the sample object, giving

rise to a superposed detector signal which will be called diffraction pattern. Only

elastic scattering will be considered in the following. In order to reconstruct the

object image by reversing the formation of the diffraction pattern, the far field

approximation can be used. The assumption is that the detector is practically placed

at infinity when its distance is compared to the wavelength and the size of the

sample object. Then, the rays that originate from arbitrary points of the object

can be considered to be parallel. The intensity that is registered at the detector is

the coherent sum over these rays. The addends of this sum are the electromagnetic

waves that originate from single points r in the sample via Thomson scattering [21],

the elastic scattering by the electrons of the sample. In the far field approximation,

diffraction can be modeled by Fraunhofer diffraction which is the topic of many

textbooks (see e.g. [22, 21]). In the following, this model is introduced following

the notation of [23]. The amplitude dA of the scattered wave originating at a small

volume element dV is proportional to the probability of encountering an electron

inside dV which can be expressed in terms of the electron density ρ(r) as dV · ρ(r).

The phase dϕ of this wave relative to the wave originating from a reference point

r0 = (0, 0, 0)T (which, for convenience defines the origin) and travels along the

direction of its wave vector k can be calculated as dϕ = (k − k0) · r because the

complete path difference relative to the incident beam is k · r/k − k0 · r/k (see fig

1.2) with k0 and k being the wave vector of the incident wave and the diffracted

wave, respectively, and |k |= |k0| := k because the scattering is elastic. Assuming a

planar incident wavefront eikx−ωt, the wave that leaves the volume element dV (r)

along the direction k can be expressed as the following plane wave at infinity:

dA(r , t) =
A0

|rdet|
ρ(r) ei[k·rdet−(k−k0)·r−ωt] dV

where rdet is the position of the detector relative to r0 and ω is the angular frequency

of the incident radiation. In an exact formulation, rdet would have to be replaced by

the position of the detector relative to r instead of rdet. Not doing so affects both

the phase and intensity of the wave front at the detector. However the phase shift

is constant and so of no consequence in an intensity measurement, and the intensity

difference is negligible given the mismatch in detector distance relative to object

size. Moreover rdet‖k, therefore k · rdet= |k| · |rdet| := k · rdet.
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The total amplitude of the wave that is detected at rdet can be calculated as the

sum of all amplitudes over all sample volume elements, or the integral

A(t, q) =
A0

rdet
e−i(ωt−krdet)

∫

Vsample

ρ(r) e−iqr dV (1.1)

with the scattering vector q := k−k0 defining reciprocal space .

The constant global phase factor of the incident beam that depends on the choice

of r0 relative to the incoming wavefront can be neglected since it does not affect the

intensity at the detector.

r0

r

k

k0

k

k0

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

=
−k0 · r

|k0|

=
k · r

|k0|

rdet

incident plane wave

Fig. 1.2. path difference between incident wave k0 and diffracted wave k. Figure adapted from
[23]

In summary, the amplitude of the wave detected as a function of the scattering

vector q is proportional to the Fourier transform of the electron density ρ(r), as can

be seen from eq. 1.1.

The amplitude factors that encode phase and intensity depend on the detector

distance and on the incident intensity A0. For imaging purposes, they are omitted

in the following, as their time-average is constant and only results in a constant

intensity factor. Only the time independent part of eq 1.1 that contains information

about the sample ρ(r) is of interest, the so-called scattering amplitude A1.1:

A(q) =

∫

Vsample

ρ(r) e−iqr dV . (1.2)

1.1. A(q) and I are introduced for simplicity. The factors that are omitted compared to A(t, q) and
I do not change the concept, they are reflected in the actual measurements, though.
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Note that A∝A. The inverse Fourier transform then takes the form

ρ(r) =
1

(2π)3

∫

A(q) eiq·r d3q (1.3)

Once the scattering amplitudes A(q) are sampled in three-dimensional reciprocal

space , the imaging process can be completed by mapping back the diffraction signals

to the electron density ρ(r) by means of the inverse Fourier transform 1.3, which

reveals information about the structure of the sample.

The amplitude A(t, q) cannot be measured by the pixel array detectors used

for CDI which only detect the intensity averaged over time I(q) = 〈I(t, q)〉∝ |A(0,

q)|2∝|A(q)|2. Again, the proportionality constant that accounts for the intensity of

the incident wave and the decrease in signal with increasing detector distance will be

omitted, and the intensity I that is invariant to these conditions will be defined as

I(q) := |A(q)|2. The measured intensity I is proportional to I (see footnote 1.1).

The scattering amplitude is complex-valued. The phase information is lost in the

time-averaged detection and has to be determined by other means in order to infer

A(q) from |A(q)|2.
Due to the relation of the elastic scattering |k| = |k0|, sampling the scattering

amplitudes from a single diffraction pattern constrains the scattering vector q =k−
k0 to lie on the two-dimensional surface of a sphere with radius r = |k0|. This sphere
is called Ewald’s sphere (see fig. 1.3). Therefore in order to sample A completely

in the three-dimensional reciprocal space, the imaging process needs to be repeated

with different directions of the incident beam relative to the sample, e.g. by rotating

the sample and measuring the intensities. Seen from the laboratory frame the Ewald

sphere is fixed by the incident X-ray beam while the orientation of the scattering

volume is given by the sample orientation. Thus different sample orientations sample

the scattering amplitude at the resulting intersections between the Ewald sphere

and the scattering volume, resulting in a three-dimensional sampling of I(q).

If the orientations of all diffraction patterns are known, it is straightforward to

assemble the three-dimensional diffraction volume I(q). Averaging the diffraction

patterns of similar orientations increases the signal to noise ratio. Next, the phase

information needs to be recovered and combined with I(q) to obtain the amplitudes

A(q) and eventually it is possible to use eq. 1.3 to obtain the structure of the sample

object.
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k0

k

k0
′

k ′

q
q ′

Fig. 1.3. Ewald sphere: Due to the elastic nature of the scattering, the scattering vector q is
constrained to the Ewald sphere , as shown here in a coordinate frame that is rotated along with
the sample object. The full three-dimensional scattering amplitude can be measured by sampling
reciprocal space (q) with different incident beam orientations k0

′ relative to the object, leading to
rotated Ewald spheres, as suggested by the dashed lines. All rotated Ewald spheres intersect at
the origin of reciprocal space q = 0.

1.1 Lensless imaging: the phase problem

The phase problem arises because the time-averaging nature of the pixel array detec-

tors like CCDs prevents the phase information from being measured. The missing

phase information complicates the determination of the electron density distribution

ρ because, without the phase information, eq. 1.3 can not be used to invert the

diffraction pattern formation process. Essentially the information content is cut in

half when the complex amplitudes A are transformed into real valued intensities

I =A∗A. In fact, the loss in information is reflected in a symmetry: The electron

density ρ was introduced as a real function that describes the probability ρ dV to

find an electron in the volume dV . It can be generalized to a complex function with

the imaginary part describing absorption. Without absorption, ρ∗= ρ and it can be

seen from eq. 1.2 that A∗(q) =A(−q), therefore

I(−q) = A∗(−q)A(−q)
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= A(q)A(−q)

= A(−q)A(q)

= I(q)

This result is known as Friedel’s law [24] which states that, in the absence of absorp-

tion, the intensity is centrosymmetric. For very short wavelengths, at which the

Ewald sphere can be approximated by a plane, this symmetry is visible in individual

diffraction patterns. The symmetry introduces an ambiguity that is directly related

to the phase problem.

Given that the strength of the diffraction signal at a detector pixel is determined

by the interference of all elementary waves originating in the sample and that the

interference is determined by the relative path differences of the waves, it is not

surprising that the diffraction pattern contains information about relative distances

in the electron density. One way to eliminate the absolute position dependence

of the electron density is to introduce relative distances x and integrate over the

correlations at all absolute positions ξ, which leads to the autocorrelation function

ρ⋆ ρ of the electron density ρ. Here, the cross-correlation function f ⋆ g is defined as

f(x) ⋆ g(x) :=

∫

R

f(ξ)∗ g(ξ + x) dξ.

For clarity the problem is restricted to one dimension which can easily be generalized

to three dimensions. Consider the Fourier transform of the autocorrelation of the

electron density:

F(ρ ⋆ ρ) =

∫

R

e−iqx

∫

R

ρ∗(ξ) ⋆ ρ(ξ + x) dξ dx

=

∫

R

e(ξ−z)iq

∫

R

ρ∗(ξ) ⋆ ρ(z) dξ dz with z := ξ + x

=

∫

R

ρ∗(ξ)eiqξ

∫

R

ρ(z) e−iqz dz dξ

=

∫

R

ρ∗(ξ) eiqξ dξ

∫

R

ρ(z) e−iqz dz

= A∗ · A
= |A(q)|2

= I(q) (1.4)

Here, Fubini’s theorem has been applied, which allows the double integral to be

separated. Generalized to three dimensions and with the Fourier transform inverted,

this shows that the autocorrelation of the electron density is equal to the inverse
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Fourier transform of the intensity (see [25, 26]):

ρ(x) ⋆ ρ(x) = F−1(I(q)). (1.5)

This means that relative information about the structure of the sample object can be

revealed, even without measuring the phases of the scattered waves at the detector.

Figure 1.4 elucidates the geometric interpretation of the autocorrelation function

and explains that the support supp(ρ ⋆ ρ)

supp(f) := {x∈R3|f(x)=/ 0} f :R3→C

of the autocorrelation covers twice the volume of the sample, in other words its

extent extend(supp(ρ⋆ ρ)) is twice the size of the sample. Here, the extent is defined

as the supremum of distances within a set:

extent(X) := sup
x,y∈X

‖x− y‖ X ⊆R3

source signal autocorrelation

Fig. 1.4. Two-dimensional autocorrelation (right) of the source image (left). Because the
relative relations from one point to another point can also be found with reversed direction, the
support of the autocorrelation covers twice the area of the support of the input signal.

1.1.1 Phase retrieval

A suitable way of looking at the phase problem is provided by the Nyquist-Shannon

sampling theorem [27] which is usually formulated in terms of signal processing: if a

signal is band limited in the frequency domain with B being the highest frequency,

then it is completely determined by equispaced samples that are
1

2 B
apart in the

time domain (when the sampling frequency is twice the maximum frequency). Sayre

[16] realized that this has implications for the sampling of diffraction patterns: the

domains of interest in coherent diffractive imaging are not time and frequency,
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but the real space positions of scatterers on one hand and the spatial frequencies

of the object which give rise to the diffraction pattern on the other hand. Sample

objects usually have a finite size d and therefore the electron density ρ is “band

limited” in the real space domain, with extent(supp(ρ))=d. Then the full diffraction

information can be obtained by sampling reciprocal space at the points 0,± 1

d
,±2

d
, ...

which can be understood in the following way:

For a real-valued signal f(x) and a real-valued sampling function g(x), the

convolution f ◦ g

f ◦ g :=

∫

R

f(ξ) g(ξ −x)dξ

is the same as the correlation f ⋆ g(−x) and, following equation 1.4, the convolution

theorem F(f ◦ g) =F(f) · F(g) can be found [28, 26]. With the intensity I as the

signal and with a sampling function that consists of a grid of evenly spaced delta

peaks with a distance h, resembling the pixel array of a detector, the measurement

of the diffraction signal is a multiplication of the sampling function and the intensity

(see figure 1.5). In Fourier space, this means a convolution of the intensity spectrum

with the Fourier transform of the sampling grid, which is still a grid after the

Fourier transform has been made. If the spacing 1/h of the convolution grid is larger

than (or equal to) the size d of the support of the intensity spectrum, then the

convolution does not lead to overlaps and the intensity spectrum can be separated

(or deconvoluted) by multiplying with a step function (see figure 1.5). The Fourier

transform of this step function gives rise to an interpolation function sinc(x) and it

suffices to sample the diffraction pattern at points 0,±1

d
,± 2

d
, ... to gain the maximum

extractable information about the object when the phases φ are known. Without

noise, oversampling of a factor of 2 provides enough additional constraints to recover

the phase information [29]. This increases the measured “bandwidth” of ρ. One can

think of that as including the empty space around the object into the measurement.

Prior knowledge about the sample can be used to constrain the position and size of

this empty space, and constraints like this along with oversampling can be used to

solve the phase problem which is otherwise under-constrained.

In crystallography, oversampling would require measurements between Bragg

reflections. For infinitely-extended crystals (and, in a first approximation, macro-

scopic crystals used in crystallography), however, the scattered intensity is rigorously

zero between the Bragg reflections (which become delta-functions), and phase

retrieval by over-sampling is precluded. The diffraction intensities of samples with
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finite size are not constrained to Bragg reflections but are distributed in a con-

tinuous fashion, facilitating oversampling (eq. 1.7 describes how object size and

oversampling are related).
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f(x) F[f ](q)

s(x) F[s](q)

s(x) · f(x) F[s] ◦F[f ] (q)

sinc(x) rect(q)

s(x) · f(x) ◦ sinc(x) F[f ] ◦F[s](q) · rect(q)

Fig. 1.5. Sampling theorem: a band limited signal f(x) can be fully recovered if the sampling
rate is higher than the Nyquist rate - in this case the replicated spectra in the Fourier transform
of the sampled signal do not overlap and they can be separated to reconstruct the original signal..
Figure adapted from [30]. Only the real part (cosine waves) is plotted.
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The complex scattering amplitude A can be decomposed into amplitude |A| and
phase φ(q) in the following way:

A(q) = |A(q)| · eiφ(q) (1.6)

(since |eix| = 1). Prior knowledge puts constraints on the phase φ and these con-

straints can be used in an optimization approach to find the function φ which agrees

best with the measurements and constraints. The most popular constraint is the

support constraint . It is a real space constraint which makes assumptions about the

support supp(ρ(r)). As explained in fig. 1.4, the autocorrelation can be used to find a

loose constraint of the support, but also a rough size estimate of the sample obtained

by other means can be used. A unified evaluation of phase retrieval algorithms can

be found in [31].

1.1.2 Iterative phase retrieval algorithms

Image reconstruction by phase retrieval can be described as the search for an

image that satisfies both the constraints of the measurement and the constraints

imposed by prior knowledge. According to eq. 1.6, the scattering amplitude can

be decomposed into amplitude |A| and phase. The amplitude is constrained by

the measurement of the intensities by I ∼ |A|2. Due to eq. 1.3, the search for

the image of ρ is equivalent to the search for the scattering amplitude A. Since

|eiφ| = 1, the intensity constraint is fulfilled by filling in the intensities into A =

|A| eiφ= I
√

eiφ and the search is limited to the phase φ which satisfies the additional

constraint imposed by prior knowledge, such as the aforementioned support con-

straint. It has been shown [32] that the result of this search is unique given that the

oversampling is sufficient. Since noise is always present in real diffraction patterns,

as well as other impairments caused by the detection, this search comes down to

an optimization: the search for the phases that fulfill the constraints best. The search

space for this optimization is huge, too large for an exhaustive search. Therefore,

iterative algorithms [33, 34] have been proposed to find a solution in acceptable time.

The following is a description of the error reduction algorithm [32] which makes

use of the support constraint:

• Initial phases φ0 are chosen and, after combination with the amplitudes |A|
(and as such ensuring compliance with the intensity constraint), the resulting
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preliminary scattering amplitude A0 is inversely Fourier transformed into real

space.

• Here, the real-space constraint can be enforced, in this case by forcing the values

of the preliminary image ρ0 to be zero outside of the assumed support.

• Taking the Fourier transform takes the image ρ0 back to scattering amplitudes

A1, which do not necessarily fulfill the intensity constraint anymore.

• The iterative enforcement of the intensity constraint and real space constraint

eventually converges to an image ρN which fulfills both constraints and therefore

constitutes a valid reconstruction, or the convergence ends in a local minimum

which cannot be escaped in further iterations.

ρ

A= |A| · eiϕ

A= I
√

· eiϕ

ρ= σ · ρ

σ(x)=

{
1 : x∈ support
0 : x∈/ support

Intensity constraint

F

F−1

Fig. 1.6. iterative phase retrieval: error reduction algorithm with support and modulus
constraint

The use of iterative phase retrieval algorithms requires the diffraction patterns to

be sampled finer than the Nyquist frequency. The missing phase information cuts

the information content in half and thus an two-fold oversampling suffices in theory

[29], but in practice it can not be guaranteed that the phase retrieval algorithm finds

the correct phases. Increasing the oversampling ratio increases the chances that the

iterative phase retrieval converges to the correct solution. An oversampling ratio

>10 per dimension has been used to obtain the diffraction data presented here.

The Nyquist frequency corresponds to the size of the Shannon pixel on the

detector (see section 1.3) while the sampling frequency corresponds to the pixel

size p on the detector. Thus the oversampling ratio σ is determined by the object

size d, the detector distance L and the wavelength λ:

σ =
λ L

d · p (1.7)
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In real space, this ratio can be seen as the maximum sample volume that can be

described by a Fourier synthesis of all discrete frequencies represented by detector

pixels (this volume is governed by the lowest spatial frequency) divided by the

volume of the sample object. Increasing the detector distance or decreasing the

wavelength increases the oversampling ratio but decreases the maximum possible

resolution.

Another factor that determines the chance to obtain the correct solution from

iterative phase retrieval methods is the location of missing information within the

detector region. A significant part in the center of the diffraction pattern can not

be recorded because it is overlayed by the direct beam which has to be blocked.

The affected pixels correspond to low spatial frequencies which are important in

determining the coarse structure of the sample. Simulations in [35, 36] suggest that

10 missing speckles can be tolerated. In diffraction patterns, speckles are connected

regions of high intensity surrounded by low intensity, the size s of speckles s =
2 π

d

is determined by the sample size d.

1.2 The orientation problem

As described earlier, the parts of the diffraction volume that can be measured are

constrained to lie the two-dimensional surface of the Ewald sphere and thus the

information content of a diffraction pattern is only two-dimensional. In the con-

siderations that led to eq. 1.2, the incident beam direction k0 served as a reference

orientation and a look at fig. 1.2 reveals that rotating the incident beam results in

a equally rotated diffraction signal. The same happens when the sample object is

rotated. Mathematically, since both a rotation R and the Fourier transform are

linear operations and since the integration of the Fourier transform covers the whole

space and as such is independent of rotations which preserve length and volume,

rotations and the Fourier transform commute:

F [ρ(R x)](q) =

∫

ρ(R x) e−2πiqxdV

=

∫

ρ(z) e−2πiqR−1zdV with z :=x = R−1 x

=

∫

ρ(z) e−2πiRqzdV
becauseR is an isometry and
preserves the dot product

= F [f(x)](R q).
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Generalizing the rotation R to an operator with Rf := f(R x), the commutation

of R and F can be stated as

RF(ρ)=F(Rρ). (1.8)

Therefore, rotations in reciprocal diffraction space and rotations in object space can

be treated equally and a rotation of the sample object results in an equal rotation

of the scattering amplitudes A in reciprocal space. A diffraction snapshot samples

the scattering amplitudes on the surface of the Ewald sphere which is fixed in the

laboratory frame. Rotating the sample object rotates the scattering amplitudes A
through this sphere and hence A can be sampled three-dimensionally in reciprocal

space. Consequently diffraction snapshots of different orientations can be combined

into a three-dimensional diffraction volume. This merge can be carried out if the rel-

ative orientations of the sample objects between the different snapshots are known.

Because of the equivalence of rotations in real space and diffraction space, it is

sufficient to know the relative orientations between the diffraction patterns.

Intuitively, the formation of a single diffraction pattern can be recognized as a

projection from the three-dimensional object to a two-dimensional diffraction pat-

tern. And indeed, in the flat Ewald sphere approximation this projection turns out

to be the orthographic projection of the sample object along the X-ray beam, as the

following considerations show:

Provided the wavelength λ is small compared to the distance of the detector,

the radius of the Ewald sphere |k0| =
2 π

λ
is large and the detected part of the

Ewald sphere becomes almost flat. In this approximation, a diffraction pattern is

a planar slice through the three-dimensional diffraction volume I(q) instead of a

spherical slice. For clarity, consider only the case of a two-dimensional diffraction

volume I(qx, qy) originating from the two-dimensional electron density ρ(x, y) and

a linear slice s(q) thereof. Without loss of generality, the slice can be described in

a coordinate system which is aligned to the slice:

s(q) = A(qx, qy = 0)

=

∫ ∫

ρ(x, y) e

−i

(

xqx+ yqy
︸︸︷︷︸︸
=0

)

dx dy
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=

∫





∫

ρ(x, y)dy

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
:=p(x)






e−ixqx dx

= F(p(x))

This result is known as the projection-slice theorem [25]. It can be seen that the

function p(x) is a projection of the electron density along the y-direction and, after

generalizing to three dimensions, we can note that a slice through the diffraction

volume is the same as the diffraction of the projection of the electron density on the

slicing plane. In other words, every diffraction pattern contains information about

the projection of the sample along the X-ray beam. The three-dimensional image

can be assembled from two-dimensional projections of different orientation if their

relative orientations are known. In the general case where the Ewald sphere is not

flat, the principle remains the same although the “curved” projections do not have

a simple geometric interpretation.

Fig. 1.7. 3D Merge: The diffraction Intensities sampled at multiple Ewald spheres are combined
into the 3D diffraction volume

1.3 Resolution and the number of required diffraction snapshots

The number of diffraction snapshots that are required for a given resolution can be

obtained from the Nyquist-Shannon sampling theorem (see 1.1), which states that

for an object of size d the full diffraction information can be obtained by sampling

reciprocal space at the points 0, ±1

d
, ± 2

d
, ... This leads to the “Shannon pixel size”

of sp=
L λ

d
of a detector placed at distance L when the diffracted photons have the

wavelength λ.
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To resolve sample object features down to the size r, the reciprocal space has to

be measured in the range [−1/r,1/r] along each dimension. For the two dimensions

that can be covered by a single diffraction pattern, the detector pixels have to be

smaller than (or equal to) the Shannon pixel to obey the sampling theorem. For the

third dimension, namely that out of the detector plane, the sampling theorem con-

strains the orientational sampling. At the reciprocal detector edge 1/r, the closest

pixel along the third dimension lies on another diffraction pattern. This pixel can not

be further away than 1/d without disobeying the sampling theorem. Therefore, the

angle θmin between closest (in an angular sense, see figure 1.8) diffraction patterns

has to obey θmin ≈ tan (θmin) <
1/d

1/r
=

r

d
in order to fulfill the sampling condition.

The following considerations are based on [37]. Assuming uniformly distributed

orientations that can be represented as points on the hypersphere S3, the average

volume that a snapshot orientation takes on the three-dimensional “surface” of S3

is
( θ

2

)
3 because every point on S3 represents the same orientation as its antipode

(inverting the angle is the same as inverting the rotation axis). The full area of S3

is 2 π2 but again, because of the antipodes, the area of all orientations is only π2.

Consequently, the minimum number of diffraction patterns that are necessary to

obtain the resolution r is (see [37])

N =
8π2 d3

r3 S
.

If the sample object is symmetric, this number is reduced by the cardinality S of

the symmetry group.

U =2 π

〈θmin〉= 2π/N

hypersphere S3: U =2π2

Fig. 1.8. Mean nearest neighbor angular distance between two diffraction snapshots used to
estimate the number of required snapshots. Drawn are the orientations of the sample object (left:
one degree of freedom, right: three degrees of freedom, a pair of closest neighbors is highlighted in
dark blue, θmin is visualized in red). Only the 2-sphere S2 can be visualized. The third dimension
is encoded in the orientation of the blue arrows. The curved tetrahedral grid is projected onto a
curved triangular grid.
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2

Digital image analysis and pattern recognition

Three-dimensional coherent diffractive imaging is based on the measurement of

many thousands of discrete diffraction snapshots, namely two-dimensional diffrac-

tion patterns. This chapter borrows ideas from the fields of computer vision and

pattern recognition to categorize and manage these patterns in an automated way.

2.1 Classification

In order to obtain enough diffraction snapshots of good quality to obtain a three-

dimensional image of the sample object with the desired resolution, data acquisi-

tion is performed in a serial manner with subsequent X-ray pulses that intercept

a stream of identical sample objects. It is inevitable to also record snapshots that

are either undesired or have to be treated in a special way, see fig 4 for examples.

These “special” snapshots fall into different classes:

i. empty snapshots where the X-ray pulse did not coincide with the presence of

a sample object in the interaction region

ii. ”multiple hits” where an X-ray pulses coincides with the presence of more than

one particle in the interaction zone

iii. clusters or big aggregates of the sample object

iv. alien sample objects from impure sample preparations

v. in case of aerosol injection: empty droplets of the solvent in which the sample

objects are immersed before aerosolization



These different classes of diffraction snapshots make it desirable to find a way to

automatically sort the data before continuing with the data analysis. Automating

this task is possible by borrowing ideas from statistical classification which is a vivid

field in statistics and machine learning.

2.2 Feature extraction

In principle, each pixel of a diffraction snapshot can be seen as an independent

variable that can help to classify the snapshot. Thus, an obvious solution to the

classification would be to feed all pixel values to a statistical classification algorithm.

In practice however, performing the classification in such a high-dimensional space

is problematic: With increasing dimensionality, individual observations get more

and more isolated unless a vast amount of observations are added. This is due to

the rapid increase of volume with increased dimensionality and is known as the

curse of dimensionality . It is therefore worthwhile to base the classification on a

small number of explanatory variables, called features , that carry enough decisive

information. Such features can be extracted from the diffraction snapshots. The

following sections describe different types of features that have turned out to be a

good choice for the classification of diffraction patterns:

• section 2.2.1: Intensity variations (Viola-Jones Features [38])

The spatial distribution of intensity variations in single-particle diffraction

patterns contains information on the size of the sample specimen

• section 2.2.2: Maxima of the rotational auto-correlation function and maxima of

the angular distribution function

Extracts information about rotational symmetries

• section 2.2.3: ”Eigenpatterns”, the score (see below) of eigenvectors obtained from

PCA (Principal Components Analysis) [39]

Eigenpatterns are special directions in the high-dimensional vector space of

diffraction snapshots, the directions that have the largest variance and thus carry

a large amount of information. For example, Eigenpatterns disentangle signal

from background signal. Also, variations in the signal strength are encoded in

separate Eigenpatterns.

In detail, these features are described in the following sections.
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Fig. 2.1. Feature analysis of a diffraction pattern. This illustration shows a diffraction pattern
decomposed into the first six principal components of a diffraction dataset. Their scores (graph
in the background) are used to extract descriptors containing discriminative information from the
diffraction pattern, reducing the dimensionality of the data that is fed into statistical classifiers.

2.2.1 Intensity variations

The idea is to capture the speckle sizes (see section 1.7) and their spatial distribution

by analyzing intensity variations within the diffraction patterns. Large objects will

lead to smaller speckles in the diffraction pattern than smaller objects, while the

spatial distribution is determined by the internal structure of the sample objects.

Extracted from the diffraction patterns, this information will provide features that

can be used for classification.

The implementation is based on the successful face recognition scheme developed

by Paul Viola and Michael Jones in 2001 [38]. In the original formulation, differences

in brightness between facial regions like eyes, nose and mouth are estimated by calcu-

lating the difference of integrated intensities of rectangular templates. In the context

of diffraction patterns the significant regions with different intensities correspond

to diffraction speckles. These features have the advantage that their computation

requires only a few look-ups in the integral image I(x, y)=
∑

x′6x,y ′6y
p(x′, y ′) which

can be precomputed in a single pass over the diffraction pattern p and reused for

several differently shaped or sized Viola-Jones features. Instead of integrating the

rectangular patches, the computation can be performed by just adding/subtracting

the corners of the rectangular regions in the corresponding integral image (see fig.
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2.2):
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p(x, y) = I(x2, y2)− I(x1, y1)

+

+

+ +

+ +

+

+ +

+ +

+ +

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(x1, y1) (x2, y1)

(x1, y2)

A

(x2, y2)

Fig. 2.2. Illustration of different Viola-Jones Features. The integrals over the intensities
in the rectangular regions can be looked up in the integral image I : A= I(x2, y2)− I(x1, y1).

2.2.2 Rotation symmetry

Since rotational symmetry can often be found in nature and some of the samples

that were used for this thesis display icosahedral and dihedral symmetries which are

reflected in symmetries of the diffraction patterns, an analysis of the two-dimen-

sional rotational symmetries reveals discriminative information that can be used for

classification purposes. As a fuzzy measure for symmetries, the positions of the first

few maxima of the angular autocorrelation function are used.

2.2.3 “Eigenpatterns”

The goal of feature extraction is to combine the discriminative information of many

pixels into a few numbers that build the basis for classification. This can be done

using prior information about the structure of the information that is hidden in the

pixels, such as the size and angle based features described above, or it can be done by

statistically analyzing the relations between pixels and learning about their relations

from examples. Here, this is performed by forming groups of correlated pixels and

treating them as basis vectors. When a single diffraction pattern is represented
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in such a basis, the corresponding coefficients can be interpreted as features that

carry discriminative information. It turns out that a linear analysis of inter-pixel

correlations is sufficient for this task and therefore the well-established Principal

Component Analysis (PCA) [39] can be used.

The following matrix representation of n snapshots consisting of m pixels will be

assumed:

X ∈Rn×m with Xi,j =

intensity measured

at the jth pixel in the

ith snapshot

The mean µj of the jth pixel is defined as µj :=
1

n

∑

i
Xi,j and the centered data

matrix is the data matrix with the mean µj subtracted from the jth column: X̃i,j :=

Xi,j − µj.

In this representation, the covariance between the ath and the bth pixel is given by

cov(a, b) =
1

n− 1

∑

i=0

n

(Xi,a − µa) · (Xi,b− µb)

=
1

n− 1

∑

i=0

n

X̃i,a · X̃i,b

=
1

n− 1

∑

i=0

n

X̃a,i
T · X̃i,b

which means that the covariance matrix C with Ca,b := cov(a, b) can be written in

terms of a matrix multiplication:

C =
1

n− 1
X̃

T · X̃

The covariance matrix is symmetric and can thus be diagonalized. The coordinate

system in which C is a diagonal matrix consists of the eigenvectors of C which have

no crossed variances: Cdiag i,j =0 for i=/ j. The eigenvalues Cdiag i,i of the covariance

matrix reflect the degree of “variance” that the corresponding ith eigenvector encodes.

A large variance along an eigenvector means that many different diffraction patterns

influence this eigenvector. The variance is therefore a measure of the importance of

that particular eigenvector and we can use it to reduce the whole training data set

to just a few very discriminative coefficients: the coefficients of the eigenvectors with

the highest eigenvalues.

In the case where the number of pixels m > n is larger than the number of

snapshots, the eigenvalue problem can be simplified since only a few eigenvectors

with the highest eigenvalues are of interest:
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let v be the eigenvector and λ be the eigenvalue that solves the eigenvalue problem

X̃ X̃ Tv = λv

then a left multiplication with X̃
T yields

X̃
T
X̃ X̃

T =λ X̃
T
v

which means that X̃
T

v is an eigenvector of the original eigenvalue problem for

X̃
T
X̃ . Since X̃ X̃ T is an n × n matrix, the eigenvalue problem is easier to solve

than for the larger m×m matrix X̃ TX̃ .

It turns out that for real data collected with pnCCD detectors at the LCLS (see

chapter 5), the first 120 eigenvectors with the highest eigenvalues capture enough

information for a successful classification. Fig. 2.3 shows a diffraction pattern in

the severely compressed PCA representation. The original basis consists of 1048576

base vectors (each representing a single detector pixel). In the basis of just 120

eigenpatterns , the structure of the signal is preserved and the diffraction fringes are

still visible. For classification, the scores , the components of the reduced basis of

eigenpatterns, are used as features.

a b

c

Fig. 2.3. (a) Detail of a diffraction pattern (sample: Cro-virus). (b) the same diffraction pattern
expressed in a basis of only the first 120 principal components. (c) the six most important
principal components or eigenpatterns for the entire training dataset of 1000 diffraction images.
Note that these diffraction patterns consist of two halves separated by a horizontal gap which has
been removed in this representation.
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2.3 Supervised classification

The features described in section 2.2 provide enough discriminative information

for sorting and classifying diffraction patterns. The classification process has to be

automated in a reliable and flexible way. A supervised classification scheme was

chosen in which the system learns the optimal classification based on a training

data set that consists of diffraction images with known classification results. This

eliminates the need to carefully optimize the parameters of the classification system

every time the experimental conditions change. If parameters like the wavelength,

detector settings or detector geometry change, all that needs to be done is to provide

the system with a valid training data set. Of course this is also true when switching

to a different sample object. The training data set can easily be created manually,

defining the classes based on visual inspection of the diffraction patterns. It turns

out that a training set with the surprisingly low number of ∼20 diffraction patterns

per class is enough to create accurate classifiers that are able to sort thousands of

diffraction patterns automatically.

2.3.1 Partitioning the feature space

The features introduced in section 2.2 constitute a feature space. A general approach

to the classification problem is to find a partitioning of the feature space into disjoint

regions. The class affiliation of a given feature vector can then be predicted based

on what region it falls into. In the case of supervised classifications, the partitioning

can be found by looking at the training data set where for each feature vector, a

valid class label is known. A decision boundary can be represented by a binary space

partitioning; the result is a decision tree . Note that the resulting decision tree can

perfectly resemble the class affiliations of the training data set provided the depth of

the tree is large enough. Perfect resemblance may seem like a valid goal, but in the

presence of noise there is a risk of over-fitting. In case of over-fitting, the decision

tree provides insufficient generalization to new data that is not part of the training

data set because a particular instance of noise in the training set is included into

the model and the added complexity can amplify small variations in the data.

Assuming a simple noise model for the training data ti = f(xi) + ε, i = 1, ..., N

with f being the true classification function and a statistical error ε with E{ε}=0,

the mean squared error (MSE) of the classification model y(x) that approximates
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f(x) can be estimated by validating the predictions of the training data:

MSE =
1

N

∑

i=1

N

(ti− yi)
2

The error MSE states how well the classification model can explain a specific real-

ization of the training data. Since the training data underlies randomness, so does

the MSE and a better estimate of the classification error is the expectation value

E{MSE} =
1

N

∑

i=1

N

E{(ti− yi)
2}

The analysis of the expectation value of just one test datum is enough to establish

a decomposition of the MSE into different error classes:

E{(ti− yi)
2} = E{(ti − fi + fi− yi)

2}
= E{(ti − fi)

2}+E{(fi − yi)
2}+ 2E{(ti− fi) (fi − yi)}

= E{ε2} + E{(fi − yi)
2} + 2 (E{ti fi}

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
=fi

2

+ E{fi yi} − E{fi
2}

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸
=fi

2

−

E{ti yi})
= E{ε2}+ E{(fi− yi)

2}+2 (E{fi yi}−E{(fi + ε) yi})
= E{ε2}+ E{(fi− yi)

2}+2 (E{fi yi}−E{fi yi}+E{ε yi}
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

=0

)

= E{ε2}+ E{(fi− yi)
2}

= E{ε2}+ E{(fi−E{yi}+ E{yi}− yi)
2}

= E{ε2}+E{(fi −E{yi})2}
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

:=bias2

+E{(E{yi}− yi)
2}

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
:=Var(yi)

+2 E{(E{yi}−

yi) (fi−E{yi})}
= E{ε2} + bias2 + Var(yi) +

2 (fi E{yi}−E{yi}2− fi E{yi}+E{yi}2)
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=0

= E{ε2}+ bias2 +Var(yi)

Thus, the classification error can be decomposed into the variance of the noise, the

model bias and the variance. The bias describes the error introduced by a systematic

classification error due to an unfit model. The variance describes the dependence

of the prediction on a given realization of the training data. A low bias means that

on average the predictions are accurate, a low variance means that the predictions

do not change much as the training set varies.
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The variance of the error E{ε2} can not be reduced, but it is clear that in order

to construct an optimal classifier, both bias and variance have to be minimized.

However, they cannot be minimized independently as a simple example shows: a

classifier that always gives the same prediction (ignoring the features) has perfect

variance Var=0. On the other hand the bias of this classifier would be tremendously

large. Another classifier that perfectly resembles the training data would lead to a

vanishing bias term for the training data set; in contrast the variance will become

equal to the variance of the noise, this classifier suffers from over-fitting .

(a) samples of different classes (blue and green)
in two-dimensional feature space

(b) decision tree (c) partitioned feature space

Fig. 2.4. Illustration of the feature space partitioning by means of decision trees. This
example shows a two-dimensional feature space and several data points belonging to two different
classes (blue and green). The partitioning is performed by dividing the feature space recursively
in a binary fashion along the feature dimensions x1 and x2, resulting in decision boundaries a, b,

c, d. This method can be easily generalized to higher dimensions as well as more classes.

2.3.2 Random forest classifier

The simultaneous minimization of bias and variance can be accomplished by

ensemble learning . Here, the classification is not based on a single model, but on

an ensemble of classifiers whose results can be combined, e.g. by a weighted sum.

This is an improvement over single classifiers like the decision tree described above,

because the risk of learning a wrong model is distributed over several hypothesis
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and therefore alleviated. At the same time, combining different classifiers adds more

flexibility to the model that is used to fit the data and therefore the bias can

be reduced. See [40] for an empirical study.

The ensemble learning method “random forest” developed by Leo Breiman and

Adele Cutler [41] was used as the main classifier in this work. This method uses an

ensemble of decision trees , and injects two sources of randomness into each tree to

introduce diversification in the ensemble of trees, hence the name random forest.

The first source of randomness is that in each node of the tree, the feature-dimension

that defines that node’s decision hyperplane is chosen from a random subset of

features instead of searching for the best split among all features. This limits the

generalization ability of a single tree and therefore makes the average of all trees less

prone to over-fitting. The second source of randomness is that the training data set

for each tree is limited to a random subset of the whole available training data. This

limits the variance error term described above because the variance of the individual

trees is averaged at the end. Moreover, the available training data that is not used

for a given tree can be used to estimate the generalization error of that tree (“out

of bag error ”) and therefore the generalization can be optimized.

In this work the generic computer vision library Vigra [42] was used, which

provides an implementation of the random forest algorithm.

With this tools at hand, the enormous amount of diffraction patterns can be

presorted. As will be shown in chapter 5.1.5, false positives can be tolerated by

the following orientation recovery step, but the efficiency of the presorting is very

important since the orientation recovery treats the diffraction dataset as a whole

ensemble and diffraction patterns can not be treated independently, resulting in

an unfavorable non-linear scaling of the computational complexity. The statistical

classification however treats diffraction patterns independently from each other,

resulting in a computational complexity that scales linearly with the number of

diffraction patterns. Reducing the number of unusable diffraction patterns that

are fed into the orientation recovery stage represents an efficient way to reduce

the overall computing time. Only a split second is needed for the classification of

each diffraction pattern and in addition the tasks can easily be parallelized and

distributed among different computers.
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Part II

Results





3

Geodesic orientation recovery

The assembly of many diffraction patterns with different orientation into a three-

dimensional scattering volume is straightforward once the relative angles between

the diffraction patterns are known. Finding a method that recovers the orientation

solely based on the diffraction signals is beneficial for the versatility of this imaging

scheme. This chapter describes a solution to this problem that has been developed

as the main result of this thesis.

3.1 Establishing and interpreting similarities among diffraction patterns

The approach to the orientation problem that is proposed here is to assemble

many local angular estimates into a robust global angular measure while reducing

the three-dimensional orientation problem to many one-dimensional sub-problems.

Therefore, pairs of measured diffraction patterns are compared and a global sim-

ilarity measure is found by global optimization over all such pairs. The underlying

principle is that objects of incrementally different orientation will yield diffraction

patterns that also differ only incrementally. Given a large enough number of mea-

sured diffraction patterns, it becomes possible - via pairwise comparisons - to arrange

the entire ensemble of measured diffraction patterns in what might be called sim-

ilarity sequences . In orientation space, such sequences can be interpreted intuitively:



the most direct transition between two different orientations is a rotation about

one single rotation axis. In other words, a geodesic on the special orthogonal group

SO(3) with respect to the angular distance measure d∠ is a rotation about a single

axis, generally called the Euler axis . Relating these geodesics to the aforemen-

tioned similarity sequences allows this specific axis to be identified and thereby

the angular relationships between the 2D diffraction patterns can be established.

The formation of the diffraction pattern can be seen as a mapping from the space

of object orientations to the space of diffraction patterns. According to eq. 1.2, this

mapping is described by the Fourier transform

A(q , R) =

∫

Vsample

ρ(Rr) e−iqr dV

where R is the rotation of the sample object. Using relation eq. 1.8 this becomes

the rotation RA(q) of A(q, 1) =A(q). This means that the mapping from orien-

tations to diffraction patterns is continuous in the sense that a slight rotation of

the object induces only a correspondingly slight change in the diffraction pattern.

Consequently, a measure ddiss(P1, P2) of the “dissimilarity” between two different

diffraction patterns P1 and P2 provides a local measure of the angular separation

between the two corresponding objects. One can think of many methods to capture

the dissimilarity, the simplest would be the Euclidean distance between the vectors

containing the pixel values as components (so each detector pixel is a basis vector).

Here the Pearson correlation coefficient is used to estimate the dissimilarity ddiss,

because this coefficient is invariant to offset (varying background signal) and scale

(varying signal strength). In order to extend this local estimate of angular distances

(slight changes in diffraction patterns corresponding to slight object rotations) to

global quantities (arbitrary changes in diffraction patterns corresponding to possibly

large rotations), the geodesic dissimilarity dgeo between two patterns P1 and P2 is

defined to be the shortest accumulated dissimilarity of all possible sequences {γk}
of diffraction patterns starting from P1 and ending at P2:

dgeo(P1, P2) = min
γ∈Γ(P1,P2)

∑

i=0

|γ |−1

ddiss(γi, γi+1).
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To cope with the local nature of ddiss, the optimization is limited to a subset Γ of

sequences with similar consecutive elements based on a threshold ε:

{Γ(P1, P2)= {γk}k=0
N |(γ0 = P1)∧ (γN =P2)∧ (ddiss(γi, γi+1)<ε∀i= 0, N − 1}.

The optimal sequence γ(P1, P2) is named the geodesic sequence or shortest path

between P1 and P2. Because of the close connection between rotations in real space

and rotations in diffraction space, it is useful to associate the shortest similarity path

between two diffraction patterns with a geodesic trajectory that can be interpreted

as a rotation about an Euler axis. This correspondence is exact if the true angular

distance d∠ is used, which is unknown in general. Since ddiss locally (for small angles)

correlates with d∠ it can be used to approximate d∠ locally, which is all that is

needed in order to find geodesics. In this thesis, the validity of this approximation

has been tested by numerical simulations (see figures 3.1 and 3.4). It turns out

that the correlation between ddiss and d∠ is strong enough to find geodesics for a

wide range of object shapes and quite generally the “shortest” similarity sequence

that smoothly connects two diffraction patterns (i.e., the path through diffraction-

pattern space having minimal cumulative dissimilarity) corresponds to the smallest

real space rotation of the object.

This mapping of similarity geodesics onto real space geodesics must be considered

very carefully. In general, the distance measure defined by the dissimilarity can

be distorted by any anisotropy of the experimental geometry or of the object itself

and thus deviates from the round metric of S3. One obvious anisotropy, as pointed

out in Ref. [43], is that due to the unidirectional nature of the x-ray beam which,

as a first approximation, results in a projection. However, this distortion is easily

treated by simply distinguishing rotations about the x-ray beam axis (which will be

termed in-plane rotations) from rotations about axes orthogonal to the x-ray beam

axis (out-of-plane rotations , see below). The consequences of anisotropies in object

shape are difficult to characterize in a general fashion. However, in simulations

with parameters typical for coherent diffraction imaging experiments and reasonable

sample object shapes (finite size and thickness), the effect of distortions due to object

shape is negligible. A result of such simulations is shown in figs. 3.1 and 3.4. It can

be seen that even under severe distortion the geodesics do not deviate much from
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great circles on S3 and thus they correspond to single axis rotations. Accordingly,

this mapping of similarity geodesics (within diffraction patterns) onto real space

geodesics (of object orientation) can be considered to be generally valid and in the

following, either will be referred to as simply a “geodesic”.

Fig. 3.1. Simulating the effect of distortions on geodesics. The similarity metric of dif-
fraction snapshots can be distorted, deviating from the round metric induced by S3. (A) shows a
3D slice through the heavily distorted three-sphere S3 (only its projection S2 can be shown here)
and a geodesic line (red). (B) shows that even under heavy geometric distortion the geodesic
connecting two poles is approximately preserved in a topological sense, i.e., it is a great circle
when mapped back to S3. Figure taken from [44].

The topological information on geodesic sequences can be translated into geo-

metric information on the orientations by comparison with distinct angles such as

the maximum geodesic angle. Provided that the number of diffraction patterns is

sufficient to approximate a complete sampling of the orientation space, the longest

geodesic sequence found in the data corresponds to the maximum geodesic angular

separation, which depends on the sample symmetry (180◦ for asymmetric objects).

The object symmetry can be assessed from the diffraction patterns, assisted by the

observation that the geodesic sequences end on symmetry poles, since beyond these

the diffraction patterns increasingly resemble the starting diffraction pattern.

3.2 Identifying in-plane and out-of-plane rotations and combining them

to span the orientation space

Two steps are required to successfully recover the orientations of all collected dif-
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fraction patterns of given sample objects via geodesic analysis: First, each pattern

has to be assigned to a geodesic sequence and then the relations between their

respective Euler axes need to be established. The former involves an optimization

that can be carried out efficiently by dynamic programming algorithms like Dijk-

stra’s shortest path algorithm [45] while the latter can be realized by adding another

source of angular information with the aid of in-plane rotations. Typical setups for

diffraction experiments are symmetric with respect to the x-ray beam axis. Due to

this symmetry, rotating the specimen about the x-ray beam axis corresponds to a

rotation of the diffraction pattern in the detector plane by that same angle (see fig.

3.2). Starting from a diffraction pattern P we can therefore identify or generate

a “synthetic” diffraction pattern P (α) that is rotated in-plane through an angle α.

Given two diffraction patterns P1 and P2 whose orientations are related by the Euler

axis E~ 0,0, introducing synthetic in-plane rotations P1 → P1(α) and P2 → P2(β) will

lead to the Euler axis E~ α,β of a geodesic sequence γ(P1(α), P2(β)). The fraction of

diffraction patterns that can be assigned to such sequences depends on the angular

separation θ and on the orientation of the Euler axis E~ 0,0 relative to the X-ray axis

c~ (the in-plane axis). The second dependence can be understood as follows: in-plane

rotations are also geodesic rotations and in the extreme case where E~ 0,0 = c~ , there

is no difference between in-plane rotations and the geodesic rotation that rotates

P1 to P2 and thus the in-plane rotations do not provide additional information. To

maximize the information gain that can be obtained from in-plane rotations the

overlap between in-plane rotations and the geodesic rotation has to be minimized by

choosing P2 such that the geodesic rotation that rotates P1 to P2 is orthogonal to the

in-plane rotations. These orthogonal rotations will be named out-of-plane rotations.

This suggests that the maximum number of diffraction patterns can be assigned

to geodesic sequences γ(P1(α), P2(b)) if P1 and P2 are separated by the maximum

geodesic angle θ = 180◦ and if the corresponding Euler axis E~ 0,0 is orthogonal

to the X-ray axis c~ . In fact, as shown below (also see formal proof in appendix

C.1), and illustrated in Figs. 3.2(b) and 3.2(c), this covers all diffraction patterns

and all orientations. In-plane and out-of-plane rotations can be orthogonalized by

artificially setting ddiss(P1, P1(α)) to zero for all values of α. Then, initial in-plane

rotations will be preferred in the search for the shortest path because they are cost-
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free. In this way, the in-plane component is only contained in the selection step

between P1 and the next diffraction pattern in the geodesic sequence and can easily

be removed, leading to out-of-plane geodesic sequences which are orthogonal to the

in-plane rotations.

Fig. 3.2. Illustration of geodesic and in-plane rotations. (A) Geometry of diffraction
experiment. The triad (red) denotes the object and its orientation. In-plane rotations correspond
to a rotation of both object and diffraction pattern around the X-ray axis. (B+C) Illustration of
combined geodesic and in-plane rotations. For clarity, only the red object O(P1) corresponding
to diffraction pattern P1 is rotated in-plane around the X-ray beam (yellow line). The geo-
desic sequences connecting the orientations of each in-plane rotation of O(P1) (red) to O(P2)
(blue) are shown in light green. (B) In-plane rotations of O(P1) with arbitrary orientation (see
www.gipral.org for an interactive illustration). (C) Maximum separation between the object ori-
entations O(P1) and O(P2) leads to full coverage of SO(3). The orientations of the red and the
blue arrows constitute the poles on S3. Note that only its projection S2 can be shown here.
Figure taken from [44].

In order to calculate the effect of combining in-plane and out-of-plane rotations,

consider a diffraction pattern Pα,β,ϕ which is part of the geodesic sequence γ(P1(α),

P2(β)) with the geodesic angle ϕ (see Fig. 3.3). The following is a derivation of the

orientation of P
α,β,ϕ

relative to the orientation of P1 under the condition that P2 is

related to P1 by a true out-of-plane rotation (without in-plane components) through

the angle θ. The coordinate system is chosen such that the y axis coincides with the

rotation axis a~ of the out-of-plane rotations and the z axis coincides with the X-
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ray axis c~ (= in-plane axis). Orientations are described as rotations of a reference

orientation so they can be expressed in quaternions

qe
��

,ϑ =

(

sin (ϑ/2) · e��
cos (ϑ/2)

)

,

where
(
e
��

, ϑ
)
is the Euler axis/angle representation. In this orientation represen-

tation, the unit quaternion q = 1 stands for the reference orientation which, for

convenience, is defined as the orientation of the diffraction pattern P1.

P1

P2

P1(α)

P2(β)

R(a~ , θ)

R(c~ , β)

qPα,β,ϕ
Pα,β,ϕ

R(e~∆, ϕ)
R(c~ , α)

Fig. 3.3. Relations between diffraction patterns and rotation operators R. Vertical
operators describe geodesic out-of-plane operations (rotations about a~ ), horizontal operators
describe in-plane operations (rotations about c~ ). Note that in the special case θ=180◦ the dashed
arrows are out-of-plane rotations, too.

Thus the orientation of P1(α) is the in-plane rotated reference orientation and

can be written as

qP1(α) =







0
0

sin (α/2)
cos (α/2)







.

The orientation of P2 is related to that of P1 by an out-of-plane rotation through

the angle θ and can be written as

qP2
=







0
sin (θ/2)

0
cos (θ/2)







.
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The orientation of P2(β) can be obtained by adding an in-plane rotation through

the angle β to qP2
:

qP2(β) =







0
0

sin (β/2)
cos (β/2)






⊗ qP2

=







−sin (θ/2) sin (β/2)
sin (θ/2) cos (β/2)
cos (θ/2) sin (β/2)
cos (θ/2) cos (β/2)







.

The geodesic rotation q∆ from P1(α) to P2(β) is given by

q∆ = qP2(β)⊗ qP1(α)
−1 =







−sin (θ/2) sin (β/2+α/2)
sin (θ/2) cos (β/2+ α/2)
cos (θ/2) sin (β/2−α/2)
cos (θ/2) cos (β/2−α/2)







.

The rotation axis e
��

∆ of all rotations that are part of the geodesic connecting P1(α)

and P2(β) can be extracted from the vector part of q∆:

e
��

∆ =
1
∣
∣q~

∆

∣
∣
·





−sin (θ/2) sin (β/2 +α/2)
sin (θ/2) cos (β/2+ α/2)
cos (θ/2) sin (β/2−α/2)





with

∣
∣q~

∆

∣
∣ = sin2

(
θ

2

)

sin2

(
β

2
+

α

2

)

+ sin2

(
θ

2

)

cos2
(

β

2
+

α

2

)

+ cos2
(

θ

2

)

sin2

(
β

2
− α

2

)
√

.

After introducing the angle ϕ to parametrize rotations along this geodesic the ori-

entations of the geodesic sequence are given by

qPα,β,ϕ
=

(

sin (ϕ/2) · e
��

∆

cos (ϕ/2)

)

⊗ qP1(α)

and thus

qPα,β,ϕ
=












− 1

|q∆|
sin
( ϕ

2

)
sin
( θ

2

)
sin
( β

2

)

1

|q∆|
sin
( ϕ

2

)
sin
( θ

2

)
cos
( β

2

)

sin
( α

2

)
cos
( ϕ

2

)
+

1

|q∆|
cos
( α

2

)
sin
( ϕ

2

)
cos
( θ

2

)
sin
(

βj

2
− αi

2

)

cos
( α

2

)
cos
( ϕ

2

)
− 1

|g∆|
sin
( α

2

)
sin
( ϕ

2

)
cos
( θ

2

)
sin
(

βj

2
− αi

2

)












. (3.1)
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In the special case θ = 180◦ ⇒ |q∆|=1, and

qPα,β,ϕ
|θ=180◦ = sin

(
ϕ

2

)

·









−sin
( β

2

)

cos
( β

2

)

sin (α/2)/tan (ϕ/2)
cos (α/2)/tan (ϕ/2)









. (3.2)

As can be seen from equation 3.2, in this case the orientations qPα,β,ϕ
cover the

whole orientation space and thus every possible diffraction pattern can be assigned

to the sequences Pα,β,ϕ. A proof using the Rodrigues formalism [46] can be found

in appendix C.1.

3.3 gipral - an orientation recovery algorithm in ten steps

The description of any orientation in terms of α, β and ϕ motivates an algorithm for

orientation recovery which will be referred to as geodesic in-plane rotation algorithm

(gipral). It can be outlined as follows:

1. Calculate diffraction pattern cross correlations C̃ (P1,P2) between all pairs (Pi,Pj)

of diffraction patterns. Normalize and invert in order to obtain the dissimilarity

measure as follows:

d̃diss(Pi, Pj) = 1− C̃ (Pi, Pj)/max
k,l

C̃ (Pk, Pl).

2. Threshold nearest neighbors to enforce the local range of validity of d̃diss:

ddiss(Pi, Pj) =

{

d̃diss(Pi, Pj) : d̃diss(Pi, Pj) <ε

∞ : otherwise
.

3. Select the initial diffraction pattern P1 random or by visual inspection to guar-

antee that the desired object is chosen (as opposed to a blank shot or a shot

containing artifacts as described in Refs. [47, 48] like solvent droplets or clusters

of the specimen object, see figure 4).
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4. Use Dijkstra’s algorithm [45] to find the sequences with minimum accumulated

dissimilarity from P1 to every other diffraction pattern that is connected to P1

(directly or indirectly through a sequence of other diffraction patterns in between,

without disobeying ε). The threshold ε should be chosen to be high enough so

that all diffraction patterns are indirectly connected to P1 and low enough so

that only very similar diffraction patterns are directly connected to each other.

In order to remove in-plane components from the sequence, add in-plane rotated

copies P1(α) of P1 to the pool of diffraction patterns and set their dissimilarities

ddiss(P1, P1(α)) to zero before running Dijkstra’s algorithm.

5. Identify the end pattern P2 as the one that maximizes dgeo(P1, P2). Provided

that the dataset covers a complete sampling of the orientation space this is the

antipode to P1 on S3, the three-sphere representing the orientations of SO(3).

Because in-plane components have been suppressed in the previous step P1 and

P2 are related by a true out-of-plane rotation.

6. In case of object symmetries, start again, this time choose the previous P2 as the

new initial image P1
′. This avoids premature termination of the geodesic sequence

due to symmetry (see appendix C.4).

7. Generate in-plane rotated diffraction patterns P1(αi) of P1 and P2(βj) of P2 and

keep track of their in-plane angles αi and βj. Add them to the pool of diffraction

patterns and repeat step 1 and 2. At this stage it is not necessary to calculate

every correlation anew; ddiss(Pi,Pj) has to be updated only for the new diffraction

patterns.

8. Similar to step 4 but without in-plane component suppression: Find geodesic

sequences between all pairs (P1(αi), P2(βj)).

9. Determine the angle ϕi,j,kbetween P1(αi) and the kth diffraction pattern Pi,j ,k in

the geodesic sequence between P1(αi) and P2(βj) by interpreting the dissimilarity

value between P1 and P2 as a single axis rotation of 180◦ (adapt in case of object

symmetries).

10. Relate the different rotation axes of different geodesics to each other using the

known in-plane angles and ϕi,j,k. The quaternion corresponding to the orienta-

tion of diffraction pattern Pi,j ,k with respect to P1 is given by Eq. 3.2.
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different geodesic sequences corresponding to different in-plane rotations
represented in orientation space

(left: side view, right: top view along the X-ray beam)

all orientations (ground truth) of the simulated diffraction snapshots,
with a geodesic sequence (based on diffraction patterns) highlighted in red

geodesic sequence in real-space, showing a single-axis rotation of the sample object.

Fig. 3.4. Geodesic sequences of simulated diffraction data. Diffraction snapshots of an object
were simulated in 10000 random orientations. Next, diffraction geodesics were found and related
to each other by in-plane rotations as outlined above. In the top row, the resulting geodesics are
represented based on the ground truth of orientations which are known for the simulated object.
It can be seen that the diffraction geodesics (similarity sequences of diffraction patterns) clearly
correspond to orientation geodesics (single axis rotations). This result was observed for different
object shapes as well.
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3.4 Computational complexity

The computational bottleneck of the proposed geodesic algorithm is the compu-

tation of pairwise dissimilarities between all pairs of diffraction patterns with a

computational complexity of O(N 2) for N diffraction patterns. This can be sped up

by parallelization, since the individual pairs are independent of each other. More-

over, the threshold ε sparsifies the dissimilarity matrix that is needed. Under the

assumption that the triangle inequality holds for the estimate of ddiss, then a table of

upper and lower bounds can be updated for ddiss iteratively while adding entries to

the dissimilarity matrix. These bounds can guide the computation of the next matrix

elements, since elements with a lower bound >ε can be rejected while elements

with a small upper bound will be preferred. This way, only a fraction of all pairs of

diffraction patterns needs to be taken into account.

Parallelization and other low level optimization techniques (see appendix B)

make the search for geodesics feasible for datasets consisting of ∼100.000 diffrac-

tion patterns. The computing time for such datasets amounts to 2-3 days. For larger

datasets, another idea for optimization - which has not been implemented in this

work - is the use of hierarchical search trees in which large numbers of comparisons

between pairs of diffraction patterns are avoided on the basis of a few inexpen-

sive features which are only computed once per diffraction pattern as opposed to

every possible pair of two diffraction patterns. For example, diffraction patterns with

big speckles do not need to be compared to diffraction patterns with small speckles.

3.5 Generalization to symmetric objects

Object symmetries complicate matters since symmetry operators can be applied to

any orientation without altering the diffraction pattern dissimilarity. This leads to

shortcuts on geodesic paths that act as “wormholes” in orientation space. A portion

of the orientation space that consists of symmetrically irreducible orientations and

therefore does not contain any wormholes can be constructed by applying symmetry

operators to map every orientation to a symmetrically equivalent orientation such

that the angular distance to a given reference orientation is minimized. These fun-

damental zones take very convenient shapes when expressed in Rodrigues-Frank

(RF) parametrization [46]: For finite symmetry groups they are polytopes with

planar boundaries. Moreover, geodesic paths are straight lines in RF space [46]
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(see appendix C.1 for an illustration), which makes RF space a natural choice for

the formal treatment of rotational geodesics. The maximum angular separation

that is possible under a given symmetry can be calculated from the shapes of all

finite symmetry group classes [49]. These angles (see Ref. [50] for a complete list)

correspond to the longest Euclidean distances between corners of the fundamental

zone and can be used to relate geodesic paths of maximum length to angles in

the case of symmetric objects. In Appendix C.2, it is shown how this can be used

to navigate in the orientation space of symmetric objects and which part of the

fundamental zone can be covered. With this extension, the geodesic method can

be used to recover the 3D diffraction volume using an ensemble of 2D diffraction

snapshots irrespective of the underlying object symmetry.

3.5 Generalization to symmetric objects 55





4

On-line analysis

Current FEL X-ray light sources are used for many different experiments which

leaves only limited beam-time for imaging experiments as carried out in the course

of this thesis. Thus, most of the experiment has to be set up just for a few days and

can not be carefully optimized over a longer period of time in a continuously running

experiment. This short-lived nature of the experiments requires perfect preparation.

But since almost every aspect of this new imaging method is being developed from

scratch, many experimental and technical uncertainties exist which can only be

resolved during the experiment, when the X-ray beam is available. Therefore, it is

crucial to get instant feedback about the quality of the diffraction data to be able

to optimize all accessible parameters.

4.1 On-line hit rate estimation

An example of such feedback is the hit rate : Maximal overlap between the injected

particle stream and the X-ray beam is required in order to minimize the number of

X-ray pulses that do not intercept any sample object which waste precious beam-

time and sample material. The injected particle beam or liquid jet containing the

sample is not always stable and has to be adjusted constantly. The feedback for

the continuous optimization of the injection parameters can be obtained from the

diffraction signal. It is helpful to automate the distinction between empty shots and

hits in order to estimate the hit rate which can then be maximized. To keep up with

the rate of the data acquisition, which currently clocks at 120 Hz, computational

speed is crucial. Therefore, using the offline classification scheme described in section



2.1 is not an option. It turns out that a simple median based outlier detection can

be used instead. A hit detection system is needed the most in situations where the

hit rate is low. Then, empty shots occur frequently enough such that hits can be

considered as statistical outliers. An obvious feature space for the hit detection is the

total scattered intensity. However it is possible that the magnitude of background

fluctuations is in the same range as the intensity of very weak diffraction signals.

Thus, additional features need to be considered. As described before (see 2.2.1) the

Viola-Jones features can be calculated very efficiently and add useful discriminative

information.

After calculating n features for each snapshot, on-line hit detection is performed

by updating a running average favg of the current feature vector for each snapshot.

The feature vector fcurr=





fcurr 1

···
fcurr n



 of the current snapshot is then compared to the

average feature vector by means of the Mahalanobis distance [51]

dMahalanobis= (fcurr− favg)
T Σ−1 (fcurr− favg)

√

where Σ is the covariance matrix which contains the covariance between different

features fcurr i, fcurr j within the last N snapshots:

Σi,j = cov(fcurr i, fcurr j)= E[(fcurr i − favg i) (fcurr j − favg j)].

Here, E denotes the expected value estimated by calculating the sample mean over

N snapshots. The Mahalanobis distance can be thought as a generalization of the

Euclidean distance

deuclidean= (fcurr− favg)
T (fcurr− favg)

√

which takes into account the correlations of the data set. If a feature varies a lot in a

specific direction in the n-dimensional feature space, then the weight of this direction

is reduced in the Mahalanobis distance. If, on the other hand, a specific direction

is very stable, then its weight is increased. That way, many different features with

different statistics can be combined, while their statistical differences are normalized.
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Fig. 4.1. Mahalanobis distance: instead of considering different features individually, the
Mahalanobis distance can be used to determine a distance from the average that combines all
features, normalizing their covariance. The resulting signal is stable enough to recognize hits
with a simple threshold. The plot shows different four feature values as a function of snapshot
number as well as the Mahalanobis distance from average in this four-dimensional feature space.
A snapshot containing a hit is marked (red ellipse).

As can be seen in fig. 4.1, the peak indicating a hit is more pronounced when

multiple features are combined using the Mahalanobis distance. This on-line hit-

finding scheme was used successfully in combination with aerosol sample injection

the hit-rate of which never exceeded 30%. During the experiment, a graph of the

hit-rate was displayed on a monitor next to the person steering the injection system.

This proved to be a very useful feedback to optimize the sample delivery.

4.2 On-line size estimation

As will be shown in chapter 5.2, the apparent sample size of biological objects as

estimated from diffraction patterns varied strongly, in contrast of what was expected

from the biological properties of the samples confirmed by pre-characterization using

transmission electron microscopy. This apparent size distribution most likely is

an artifact caused by the injection system and needs to be monitored. Continued

injection of a sample with huge size instabilities is a waste of beam-time and has

to be avoided. In order to estimate the sample size, diffraction fringes of simplified

model-objects are fitted to the observed diffraction fringes. A spherical model was

used to approximate the biological objects (viruses) with icosahedral shape that

were used in this thesis. The fit was performed semi-automatically: per mouse-click,

a few positions of a single diffraction fringe were submitted to a least-squares fitting

algorithm [52] to obtain the parameters of the circular approximation of the fringe.

4.2 On-line size estimation 59



From the radius rdiff of a spherical diffraction fringe and the diffraction order ndiff of

the fringe, the radius rob of the object is given by

rob=
Jz1(ndiff)λ

4π sin
[

1

2
atan

rdiff

rdet

]

where rdet is the detector distance, Jz1(n) is the n-th zero of the Bessel function of

the first kind.

Another tool that has been used to analyze the sample size is the autocorrelation

function obtained by eq. 1.5. The size can be estimated as half of the extent of the

autocorrelation support, see fig. 1.4.

Fig. 4.2. Semi-automatic fit of airy rings (red) to the diffraction pattern of a spherical object.

4.3 On-line feedback on sample concentration

For the reconstruction methods described in this thesis, diffraction patterns of single

sample particles are required. If the concentration of the injected sample is too high,

it can happen that two or more particles reside in the interaction region during

the arrival of an X-ray pulse. In principle, diffraction patterns of single objects can

be extracted from diffraction patterns of multiple object copies by analyzing well-

separated cross-correlation terms within the autocorrelation function [53] (see fig.

4.3), but a higher resolution can be achieved when single-particle diffraction patterns

are used to begin with. Therefore, the occurrence of multiple-particle diffraction

patterns needs to be monitored during the experiment and the sample concentration

needs to be reduced should they occur. This was done based on visual inspection of

the autocorrelation function, which shows cross-correlation terms once more than

one particle is present (see fig. 4.3).
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Fig. 4.3. Multi particle hit. (a): diffraction pattern of multiple Cro-virus particles injected
with liquid jet. (b,c): the autocorrelation shows 6 cross-correlation parts. Since identical particles
have been injected, this can be interpreted as cross-correlations of 3 particles, each pair (a,b)
results in two cross-correlation terms c(a,b) and c(b,a).

4.4 CASS - a framework for on-line analysis

All on-line analysis tools have been implemented as modular packages for the CFEL

ASG Software Suite (CASS) [54]. CASS can easily be customized to hook into the

live data streams of FEL experiments carried out at LCLS, SACLA and FLASH.

CASS can access the data of different detectors (e.g. CCD pixel array detectors,

reaction microscopes) as well as beam-line data (e.g. photon Energy, pulse length).

It is a very modular system that can easily be adapted to work with other data

sources as well. Computation tasks are split into elementary units and a dependency

graph is used to manage the order in which they are computed. This way, the

elementary units can be sent to different worker threads, resulting in a huge speed-

up by parallelization. Analysis tasks can be defined in a scripting language so that

modifications to the on-line analysis chains can be performed very fast, without the

need of recompiling software. In the course of this thesis CASS was extended to read

and write different detector data-streams (frms6: pnCCD [55], cbf: PILATUS [56,

57], MarCCD [58], xtc: CSPAD [59]) and a client software was developed that can

connect to CASS and request analysis results which can then be displayed as images

or graphs in a graphical user interface. The software of this graphical user interface

has been added to the main CASS software repository which can be obtained as

open-source from [60].

Fig. 4.4 shows a screen-shot of the graphical user interface which has been set up

to show a time-average of the estimated hit-rate as well as the diffraction pattern

of the last found hit.
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Fig. 4.4. graphical user interface used for tuning sample injection on-line. A time-average of
the hit-rate is displayed (bottom) as well as the last diffraction pattern classified as hit (top).
Sample: PBC virus. Photon energy: 1.8 keV. Injection: aerodynamic lens stack.
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5

Application

Despite the attractive prospects of X-ray single particle imaging, so far, no complete

three-dimensional reconstruction has been demonstrated. The main reason is that

almost every aspect of this imaging method is currently at an early stage of devel-

opment. This includes the development of the light source itself, which can be quite

unstable at times, the injection and handling of the single particles in vacuum, the

detection of the diffraction patterns and the development of algorithms that can

analyze the resulting data. The work presented here focuses on the algorithmic side

of the problems. Most of the published algorithms [61, 37, 62, 63] have been shown

to work with simulated data, where all parameters that affect the formation of the

diffraction signal can be controlled. Real data, however, still contain many artifacts

that have yet to be understood. Therefore, it is inevitable to use a model system

for development, for which most of the uncertainties can be eliminated. The model

system that is presented here is an iron-oxide nanoparticle called nanorice, which is

chemically stable, can be produced in huge quantities, is commercially available and

scatters strongly, providing a very good diffraction signal. The nanorice particles

were inhomogeneous in size and shape which reflects the situation expected for bio-

logical objects. The application of the algorithms described in chapter 3 to real data

is presented in the following, including the first three-dimensional reconstruction of

serial CDI data.

5.1 nanorice - an ellipsoidal iron oxide nanoparticle

Nanorice is a nanoparticle with a strongly scattering atomic composition. It consists

of an ellipsoidal iron oxide core (Fe2O3) with principal axes of ∼200 nm and 50 nm

and it is coated with silicon oxide (SiO2). See figure 5.1 for transmission electron



micrographs. It was purchased from Corpuscular, Inc. (Cold Spring Harbour, NY,

USA).

Nanorice is an excellent model system for the development of orientation clas-

sification algorithms since its symmetry axis C∞ reduces the rotational degrees of

freedom from three to two and the orientations can, in principle, be recovered “man-

ually” from individual diffraction patterns, making this sample an ideal test case

for general methods of orientation recovery. In section 5.1.6 this nice property of

nanorice will be used as a control.

Fig. 5.1. TEM images of nanorice particles. All TEM images reproduced in this thesis are
used with the kind permission of Thomas Barends.

5.1.1 Data acquisition

Diffraction patterns were obtained during imaging experiments at the AMO beam-

line at LCLS. These experiments were conducted in the vacuum chamber of the

CAMP end station [55] which has been installed into the AMO hutch in 2009 and

was available for three years. The CAMP instrument was designed by the Max-

Planck Advanced Study Group (ASG) for various types of experiments, including

coherent diffractive imaging experiments. It is equipped with ion and electron spec-

trometers as well as two large-area, one megapixel pnCCD detectors. The pnCCD

detectors can detect single photons and they can also be operated in a spectroscopy

mode where the deposited energy can be resolved to within 40 - 200 eV in the energy

range between 100 eV and 25 keV. The X-ray beam is focused to a spot of 10 µm2

using a pair of Kirkpatrick-Baez (KB) mirrors. The nominal X-ray pulse length
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(determined from the electron pulse length) was 150 fs and the photon energy was

1.2 keV with a pulse energy of 3.2 mJ. The FEL repetition rate was 60 Hz.

The sample was injected into the X-ray beam using aerosol injection (see page

6). The aerosol was generated from a liquid solution containing the sample objects

by a gas dynamic virtual nozzle [19] and by a commercial nebulizer (Burgener Mira

Mist CE nebulizer, AHF Analysetechnik, Tübingen, Germany). While the FEL

focus was 10 µm2, the diameter of the particle beam was approximately 440 µm at

the X-ray interaction region (22 mm from the aerodynamic lens stack exit). The

particle speed was estimated to be on the order of 100 m/s [64]. These parameters

allow a maximal achievable hit rate of 2.6% [47].

Diffraction patterns were recorded using a pnCCD detector [55] placed at a dis-

tance of 738 mm from the interaction region. The detector consists of 1024× 1024

pixels (each sized 75µm× 75µm) with detector-halves that can be positioned such

that the direct X-ray beam passes through the gap between the two halves. In

addition to the gap, a circular central region with a radius of 30 pixels is cut out

for the direct beam. The detector area was shielded by a 3 µm thick polymide

filter to prevent the contamination by sample particles. The detector readout was

synchronized with the repetition rate of the X-ray pulses of 60 Hz. The pnCCD

detector was operated in a gain mode that allows each pixel to store charges created

by 103 photons per pixel (measured at 2.0 keV [65]). A postprocessing was performed

to make use of calibration methods described in [66].

5.1.2 Classification results

The classification scheme described in chapter 2.1 was used without any specific

adjustment to the nanorice diffraction data apart from providing a training set

consisting of three different classes of nanorice diffraction patterns:

• Class 1: diffraction patterns of single nanorice particles (“single hits”)

• Class 2: diffraction patterns of two nanorice particles (“double hits”)

• Class 3: the remaining diffraction patterns, containing diffraction patterns of

multiple nanorice particles, empty shots and saturated shots.
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The training dataset consists of 20 diffraction patterns per class that were selected

based on visual inspection. A random-forest classifier was built for this training

dataset and the size-, symmetry- and PCA features described in chapter 2.1 proved

powerful enough to classify the whole nanorice data set, as visual inspection of

random images showed that 99% of the diffraction patterns were correctly classified.

Figure 5.2 shows a random subset of automatically classified diffraction patterns.

Fig. 5.2. Automatic classification results. Only a random subset of all 4248 diffraction
patterns is shown and only a central detail is shown for each diffraction pattern, the diffraction
extends beyond the borders shown here.
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The nanorice diffraction dataset consists of a total of half a million snapshots

that were collected with 1.2-keV photons at the LCLS. After removing most of

the empty shots by applying a pre-processing hit-finding filter (see chapter 4) 4248

patterns remained of which 1389 were recognized as single shots by the automated

classification employing the random-forest classifier.

5.1.3 Orientation recovery results

The single nanorice patterns that were identified by the statistical classification

method (see chapter 2.3) were used as the input for the geodesic orientation recovery

algorithm described in chapter 3. Figure 5.3 shows how P1 and P2, the two diffraction

patterns between which all geodesic sequences will be spanned to find orientation

relationships, were found following steps 1-6 outlined in section 3.3.

P̃1: randomly picked P2: out-of-plane P1: out-of-plane
diffraction pattern antipode of P1 antipode of P2

Fig. 5.3. Finding P1 and P2, the two diffraction patterns between which all geodesic sequences
will be spanned to find orientation relationships. P̃1 is picked randomly, then P2 is found as the
diffraction pattern with maximum geodesic out-of-plane distance to P̃1. In order to overcome
stops in the geodesic sequences that are caused by object symmetry, the initial pattern P̃1 is then
replaced by P1, the diffraction pattern with maximum geodesic out-of-plane distance to P2.

After the diffraction patterns P1 and P2 are chosen, geodesic sequences between

the in-plane rotated diffraction patterns P1(α) and P2(β) are searched for. The

rotational symmetry of the nanorice particle is reflected in the diffraction pattern

P2, therefore all resulting geodesic sequences can be visualized in two dimensions

as shown in figure 5.4. Not all of the 1389 single-particle diffraction patterns could

be assigned to geodesic sequences in between P1(α) and P2(β). Importantly, the

resulting orientation map covers only a subset of 128 diffraction patterns. As will be
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shown in section 5.1.5, the reason for this is a drastic inhomogeneity of the dataset,

as the remainder of the diffraction patterns belong to nanoparticles with different

sizes and shapes.

in-plane

o
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t-
o
f-
p
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n
e

Fig. 5.4. orientational alignment of XFEL nanorice diffraction snapshots using the geodesic
orientation recovery algorithm. This orientation map shows only a subset of the 128 aligned
diffraction patterns that were collected at LCLS. Figure taken from [44].

The angular orientation map shown in figure 5.4 can be used to interpret the

orientations of the individual diffraction patterns. The bottom row shows diffraction

patterns of the rice grain hit head-on, while the top row shows diffraction patterns

of the particles hit on their broadside. Thus the geodesic sequences in between

describe a rotation through an angle of 90 degrees. This is in line with the symmetry

of the particle: without symmetry the angle would be 180 degrees but it is reduced

by a factor of two by the two-fold symmetry axis of the nanoparticle. The geodesic

distance of these sequences is linearly mapped to angles between 0 and 90 degrees

and eq. 3.1 can be used with ϕ = 90◦ to calculate the orientations of all diffraction

patterns.

Now that the orientations are known, the diffraction patterns can be used to

construct the three-dimensional diffraction volume. Therefore the i-th detector pixel

position pi,j of the j-th snapshot is represented in a laboratory frame the origin of

which is located in the interaction region, with the z-axis aligned to the X-ray beam.

Let Rj be the rotation matrix of the j-th snapshot, λ the wavelength and k0 = z~
2 π

λ
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the wave-vector of the incident beam, then pi,j can be mapped to reciprocal space

qi,j in the following way:

k̃i,j = Rj pi,j

ki,j =
2π

λ
· k̃i,j
∣
∣k̃i,j

∣
∣

qi,j = ki,j −k0

Figure 5.5 shows slices of the resulting diffraction volume and it can be seen that

the averaging of diffraction patterns with similar orientation enhances the intensity

of the diffraction fringes.

Fig. 5.5. Slices through the 3D diffraction volume assembled by the geodesic method. Fig.
5.4 shows a subset of the 128 diffraction patterns that contributed to this diffraction volume. The
color-scale shows the intensity values in the arbitrary digital units of the pnCCD detectors. Left:
slice with arbitrary rotation. Right: orthogonal slices aligned to the major axes of the particle.

5.1.4 Phase retrieval

Two algorithms (HIO [33] and RAAR [67]) for two-dimensional phase retrieval were

implemented and extended with a nonlinear modulus constraint which amplifies

strong intensities in the first few iterations in order to prefer the reconstruction

of intense low angle signals in the region where data is missing due to the beam-

stop. Also, HAWK [68] was used, a phase retrieval software suite and software

library developed by Filipe Maia which is unsurpassed in speed because it uses hard-

ware acceleration (GPU computing) for the discrete Fourier transformation. For the

three-dimensional phase retrieval, the software library dm_recon [69] implemented
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by Jan Steinbrener was used which is documented in [70]. This implementation

uses a distributed memory model that can connect the main memory of many com-

puters, forming a giant working memory that can hold the large three-dimensional

diffraction- and reconstruction data. At the same time, it uses message passing to

distribute work over the network of connected computers resulting in a huge speedup

by parallelization. The library dm_recon implements the algorithms HIO [33] and

difference map [71] in three dimensions.

diffraction pattern

200 nm

2D real-space reconstruction

reconstructed missing information

Fig. 5.6. Two-dimensional phase retrieval of a single nanorice diffraction pattern. The real-
space projection of the nanorice grain was reconstructed using the HIO algorithm [33]. The lower
right image shows the reconstruction of the low angle diffraction intensities that were missing in
the experimental data (left) because of a gap int the detector and a central hole for the direct X-
ray beam.

For three-dimensional phase retrieval a box 10 times larger than the expected

volume of the nanorice particle was used as a rough initial support estimate and

the difference map algorithm [71] was used to recover the phase information and

the electron density map which is shown in fig. 5.7. The algorithm converged after

1000 iterations. No sophisticated update of the support constraint or tweaking of

parameters was necessary. The width and length of the reconstruction correspond

to 39 nm and 150 nm, respectively. The result is consistent with the size and

shape that has been determined by transmission electron microscopy and is also

consistent with the individual two-dimensional diffraction patterns (see fig. 5.6).

The theoretical optical resolution of the imaging setup was 9.9 nm. However, the
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diffraction pattern did not extend to the detector edge, and only 7 diffraction orders

were visible, resulting in a resolution of 21 nm.

Figure 5.7 shows, the latter was used for the reconstruction of the nanorice shown

in fig. 5.7.

150 nm150 nm

Fig. 5.7. 3D reconstruction of the electron density of a medium-sized 150 nm long nanorice
particle. The size distribution of the sample can be seen in the TEM micrograph (inset). The
bounding box shows the oversampling volume, the red magnified object shows an isosurface
representation.

5.1.5 Data inhomogeneity

A closer look at the geodesic three-dimensional reconstruction showed the inhomo-

geneity of the diffraction snapshots as a fundamental difficulty of experimental CDI

data that could be successfully addressed by the geodesic approach. The size and

shape inhomogeneity (see fig. 5.7 for a TEM micrograph) of the nanorice particles

splits the diffraction data in different groups of diffraction patterns that match into

common three-dimensional diffraction volumes. Diffraction snapshots of particles

that are indistinguishable based on the optical resolution end up in the same group.

The geodesic approach singles out one such group by only considering diffraction

snapshots that are interconnected by similar pairs of diffraction patterns, starting

from a (randomly) user-chosen diffraction pattern. The degree of similarity is gov-

erned by the threshold ε introduced in chapter 3.1.

As mentioned before, a subset of 128 diffraction patterns out of 1389 was assigned

to geodesic sequences starting from the initial diffraction pattern P̃1 shown in fig. 5.3.

Interestingly, picking a diffraction image from the remaining unassigned diffraction
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patterns and starting the algorithm again with this pattern as P̃1 revealed another

subset of diffraction patterns which corresponds to an object smaller than the one

reconstructed in section 5.7. The orientation map can be seen in fig. 5.8. These

results confirm that the geodesic algorithm can robustly handle inhomogeneous data

sets by choosing the biggest subset of diffraction patterns that can be matched into

a three-dimensional diffraction volume. This is not possible without modification for

the common arc method, the Bayesian approaches and the diffusion map described

in appendix A, since these methods include all diffraction patterns into the three-

dimensional scattering volume whereas the diffraction patterns that are combined

by the geodesic approach are contained within the border that is defined by the

diffraction patterns P1, P2 and all their in-plane rotations.

Fig. 5.8. orientation map of a second subset of matching diffraction patterns, corresponding
to a smaller nanorice grain than the one resulting in fig. 5.4.

5.1.6 Using a simple geometric consideration as a control

In order to test the recovered orientations and to obtain more evidence that the

different subsets found in the diffraction data are caused by sample inhomogeneities,

the high symmetry of nanorice was exploited to verify the previous results.

The nanorice nanoparticle looks like a grain of rice (see fig. 5.7). Its minor axis

is invariant under projections and the Fourier transform transforms it into a major

axis in reciprocal space. The length of this major axis is constant in all diffraction

patterns. The real-space major axis of the rice grain however is affected by the

72 5 Application



projection and the Fourier transform leads to a minor axis in reciprocal space whose

size depends on the orientation. The ratio of the two axes in the diffraction pattern

varies between 1 (the head-on orientation that aligns the rice grain with the X-ray

beam, see bottom row of fig. 5.4) and an extremum rmin (broad-side orientation, see

top row of fig. 5.4). The ratio r can be read out automatically by fitting ellipses to

the diffraction fringes. When the rice grain is approximated by a cylinder of length

dmax with spherical caps with diameter dmin (see fig. 5.9), the relation between angle

and projection d is given by

sin (β) =
d− dmin

dmax− dmin

=
d/dmin− 1

dmax/dmin− 1
.

The ratios d/dmin and dmax/dmin translate to 1/r and 1/rmin in reciprocal space. The

angle β can be identified as the second Euler angle of the rice grain’s orientation and

can be determined from the ratios of major and minor axes in the diffraction pattern:

β = arcsin
1/r − 1

1/rmin− 1
(5.1)

The first Euler angle α of the rice grain’s orientation is given by the in-plane orien-

tation of the fitted ellipse. The third Euler angle γ is completely degenerate because

of the S∞ symmetry along the axis of the rice grain.

Projection

dmin

dmax

d

β

d− dmin

Fig. 5.9. Simplified projection model of a nanorice grain.

Assembling the diffraction patterns to the three-dimensional diffraction volume

with the orientations obtained by the simple and robust “unprojection” (eq. 5.1)

resulted in a surprise: the diffraction volume was not usable for three-dimensional
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reconstruction; the diffraction fringes were washed out. As it turned out, the dif-

fraction data could not be merged into a single dataset because of inhomogeneities

of the sample objects which was confirmed by transmission electron microscopic

images of the sample: the rice grains had slightly different sizes and shapes (see TEM

micrograph in fig. 5.7. The more general geodesic approach, however, without being

equipped with any prior information about the sample, found subsets of diffraction

patterns with matching fringes (see fig. 5.4). The averaging of several diffraction

patterns enhanced the diffraction fringes instead of washing them out (see fig. 5.5).

The result was consistent with the simple geometric check described in this section.

It turns out that such an inhomogeneity is also present in the diffraction data

collected from biological samples such as viruses. Here, the problem is so severe that

a three-dimensional reconstruction was not possible (see section 5.2).

5.2 Preliminary application to virus diffraction data

The successful 3D-reconstruction of the nanorice particle motivated the collection

of diffraction datasets of biological samples. Viruses with different sizes and shapes

were used: T4 bacteriophage, PBCV-1, CroV and Mimivirus.

5.2.1 Samples

The T4 virus is a large bacteriophage with an elongated icosahedral head (∼80nm

diameter) that contains a 172 kilobase pair DNA genome. A helical, hollow, con-

tractile tail (∼20nm × 100nm) is attached to the capsid.

Fig. 5.10. schematic drawing of a T4 bacteriophage (left) and TEM image (right, already
published in [47]).
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The Paramecium bursaria chlorella virus PBCV-1 and the Cafeteria roenber-

gensis virus CroV are both giant icosahedral double-stranded DNA viruses. PBCV-1

infects fresh water algae (Chlorella variablilis) [72], CroV infects a marine het-

erotrophic flagellate (Cafeteria roenbergensis) [73]. CroV is of particular biological

interest because it is a virus that itself can get parasitized by another virus named

Mavirus and no three-dimensional structural information is available. Mimivirus is

one of the larges known viruses, its icosahedral capsid has a diameter of 400 nm and

fibrils attached to the capsid add to the total diameter which is about 750 nm [74].

A two-dimensional reconstruction of single Mimiviruses was achieved using X-FEL

diffractive imaging [75].

5.2.2 Results - aerosol injection

The viruses, like all biological samples, need a hydration shell provided by residual

buffer solution which remains bound to the particle when an aerosol injection system

is used. The diffraction patterns were collected using the CAMP instrument at

the AMO beam-line at the LCLS. The experimental parameters correspond to the

parameters used for the nanorice dataset as described in 5.1.1.

The classification scheme described in 2.1 that was also used for automatic clas-

sification of the nanorice dataset proved general enough to handle virus diffraction

data without modifications, apart from specifying a different training dataset for

each sample. Again, a training data set of three classes (single hits, multiple hits

and a class containing the rest) consisting of 20 diffraction patterns per class was

selected and classification was performed using a random-forest classifier. Figure

5.11 shows a subset of automatically classified virus diffraction patterns.
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single hits

multi hits

saturated

or empty shots

Fig. 5.11. Classification: Randomly selected diffraction snapshots of Mimivirus and their auto-
matically obtained classes.

Unexpectedly, the aerosol dataset displayed huge size inhomogeneities. The

object size was estimated by fitting diffraction rings of a spherical object to the

diffraction patterns. Fig. 5.12 shows that the apparent size of the T4 virus varies

dramatically from snapshot to snapshot and the average size of ∼330nm is much

larger than the actual particle size (∼100nm T4 head). This effect only appears in

combination with aerosol injection, the size distribution obtained from TEM as well

as from liquid jet diffraction data (see 5.2.3) is homogeneous. A possible explanation

for the origin of this size inhomogeneity are varying particle to detector distances

which will only change the apparent size without really altering the particle. It

is also possible that structural changes occur or that a layer of solvent remains

around the particle, leaving a salt crust when it dries in the vacuum chamber.

The effect is less severe for larger particles (see fig. 5.12), suggesting that either

the focusing of the aerodynamic lens works better with bigger particles or that

the size of the bigger particles is similar to the preferred size of solvent droplets,

reducing solvent-shell artifacts as illustrated in fig. 5.12.
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Mimivirus
Mean = 402.6 nm

σ = 14.2 nm

FWHM = 33.4 nm

Bacteriophage T4
Mean = 327.7 nm

σ = 88.0 nm

FWHM = 207.2 nm
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Fig. 5.12. Top: Size histogram of the small T4 virus (blue) and the Mimivirus (green). The size
was estimated by fitting diffraction rings of a spherical object to the diffraction patterns. The
apparent size of the larger Mimivirus matches the nominal size obtained from electron microscopy,
but the obtained size of the smaller T4 virus (328 nm) differs from the nominal size (100 nm
icosahedral head). TEM image: T4 virus, courtesy of Thomas Barends. Middle: aerosol injection
of particles with different sizes. The solvent layer around the sample evaporates as the particle
moves along the injector with increasing vacuum. Equal initial droplet sizes may leave smaller
samples with a thicker remaining solvent shell, while a larger sample may dry off completely.
Bottom: autocorrelation functions of different T4 snapshots, displaying different apparent object
sizes.
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The severe size inhomogeneities render the current aerosol data of mid-sized

viruses unusable for combination into a single three-dimensional dataset. Also

selecting a subset of matching particle sizes was not possible because too few dif-

fraction patterns matched in apparent size.

5.2.3 Results - liquid jet injection

To avoid inhomogeneities in the apparent virus size, another injection system was

used, the liquid jet system introduced on page 6. In a liquid jet, the amount of solvent

in the vicinity of a sample particle is constant in contrast to aerosolized particles with

varying solvent shells; thus injection artifacts like varying salt crusts are avoided.

In order to reduce the large background signal from the liquid jet which is much

higher than the background of a small aerosol solvent shell, measurements were

performed in the “water window” with a wavelength that had to be increased to 2.4

nm / 520 eV photon energy (as compared to 1 nm used for aerosol injection). Water

window microscopy was first proposed by Wolter [76] in 1952, it is the wavelength

region between the K-absorption edge of oxygen at a wavelength of 2.3 nm and the

K-absorption edge of carbon at 4.4 nm where the contrast between biological samples

(mostly carbon) and water (mostly oxygen) is maximized.

The virus diffraction dataset obtained by liquid jet injection does not display

the size inhomogeneities observed in the aerosol dataset, but the resolution of this

dataset is reduced because the reduced wavelength necessary for water window

imaging. Still, the background scattering from the liquid jet severely hampered a

three-dimensional reconstruction. Figure 5.13 shows that finding geodesic sequences

is possible after masking out the intense background signal of the liquid jet, but

since the signature of the jet changes rapidly, not enough matching sequences could

be found to be combined into a three-dimensional diffraction volume.
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Fig. 5.13. CroV samples injected with a liquid jet. Top left: microscopic image of the jet, the
bright point shows fluorescence of the X-ray beam. Top right: strong diffraction signature of the
liquid jet (vertical streak). Bottom: geodesic sequence of diffraction patterns. Only diffraction
patterns with low jet signature were used to find the sequence and the jet streak was masked out
heavily.
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Discussion

The result of this thesis is a set of data evaluation methods for three-dimensional

serial coherent diffraction imaging of microscopic samples. A major achievement

is a new algorithm for orientation recovery of diffraction patterns - the Geodesic

In-Plane Rotation ALgorithm gipral. This algorithm is able to cope with the

practical difficulties posed by experimental conditions like noise, weak signals and

the possibility of inhomogeneous specimen which can be contaminated by artifacts

or the presence of multiple conformations. For the first time the successful appli-

cation to experimental data was demonstrated with XFEL diffraction patterns of

inhomogeneous nanoparticles which where automatically sorted and orientationally

aligned, resulting in the first three-dimensional reconstruction6.1.

6.1 Comparison to other orientation recovery approaches

During the last six years, several orientation classification algorithms [63, 77, 62, 43]

have been published and shown to work with simulated data. Although some are

reported to cope very well with simulated noise and very low photon counts [62, 78],

none have been used to successfully reconstruct an object from serial single particle

CDI data. This is not due to lack of experimental data, since we made the data used

in this work publicly available at cxidb.org [47]. A detailed overview over existing

approaches is presented in appendix A.

The essence of the method developed in the framework of this thesis is the finding

that geodesic sequences of diffraction snapshots in reciprocal space can be assigned

to geodesic sequences of object rotations in real-space. A distinguished property of

6.1. Loh et al. [77] demonstrated a successful application of the EMC algorithm to diffraction snapshots
of nanorice, but no real-space reconstruction could be obtained.



such sequences is their globally optimal nature: the geodesic distance is a combina-

tion of local distances between many data points into a conformable global distance,

a principle which makes the isomap [79] algorithm so powerful and robust against

outliers and noise. Fast dynamic programming approaches like Dijkstra’s shortest

path algorithm [45] are very efficient and guarantee globally optimal solutions.

gipral combines two reliable sources of angular information (in-plane, out-of-

plane) without propagating the error exponentially by nesting steps, a problem

which is treated by additional averaging in common-line or -arc methods [61, 80]. In-

plane angles can be obtained with an accuracy that is only limited by the discrete

nature of the pixel based diffraction detection. The introduction of artificially in-

plane rotated diffraction patterns increases the effective density of the orientation

sampling, a technique which could also benefit other approaches.

Moreover, every pixel of the whole diffraction pattern contributes to the angular

information and is considered in gipral, whereas in common-line methods used

frequently in EM, only lines within diffraction patterns are compared. This makes

gipral applicable to data sets with much fewer scattered photons. The method

of moments [81] used in EM which has also been described for X-ray diffraction

snapshots [82], analyzes an ellipsoid which has the same moments of inertia as

the sample in order to recover its orientation. This method, however, suffers from

ambiguities, especially when no phase information is available, as is the case in X-ray

CDI. gipral is also applicable to objects that have identical or very similar prin-

cipal axes, such as icosahedral viruses. While these limitations prevent the methods

established in EM from generally being used in CDI, gipral can only benefit from

the additional phase information of real space projections obtained from EM. An

application of gipral to EM data has not been tested yet, however, there are no

theoretical obstacles that would prevent this.

Orientation classification schemes proposed in Refs. [83, 80] make use of the

Pearson correlation coefficient to estimate the diffraction pattern similarity while

[43] uses the Euclidean distance measure. In the described geodesic approach, the

Pearson correlation coefficient is favored because of its invariance under linear trans-

formations of the diffraction intensities. As with Bayesian methods [62, 63, 37] the

ensemble information of all diffraction patterns combined is used to infer object

orientations, making gipral also useful for data with very low photon counts [62,

84]. Unlike the expectation maximization algorithms used in the Bayesian methods,
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the dynamic programming algorithms applied in the geodesic search ensure that the

global optimum is found. The Bayesian methods make use of a statistical noise model

to estimate the likelihood that a diffraction snapshot fits into the diffraction volume

with a given orientation. Such noise models are beneficial for low photon counts.

While this was not necessary for the data shown in this thesis, gipral can easily

be extended with such noise models. Then the notion of distance has to be replaced

with the Bayesian interpretation of likelihood and the noise models can be used to

estimate the likelihood that two diffraction snapshots are “nearest neighbors”.

Compared to the graph-theoretic analysis of scattering data [43], gipral refines

simple pairwise local distances into an accurate integral distance measure and uses

in-plane angles as an additional source of information. The geodesic analysis reduces

the orientation recovery to one-dimensional sub problems, making it fast and phys-

ically intuitive.

gipral is the first single-particle CDI orientation recovery method that has been

used for a successful three-dimensional reconstruction of X-ray diffraction snapshots

with random orientations. Its success is based on the ability to handle inhomo-

geneous data as well as its ability to find globally optimal solutions. Since the

intermediate one-dimensional snapshot-sequences are easy to visualize, the whole

process can be supervised and the parameters (nearest neighbor threshold ε) can

be tweaked. In conclusion, gipral is a method that can be used for single particle

CDI reconstructions in a very general sense: it requires no assumptions about the

sample object other than its symmetry group (which can be obtained from diffrac-

tion patterns), it can cope with weak diffraction signals and inhomogeneous data

and it can handle sample object symmetries.

6.2 Towards the imaging of biological samples

The ultimate goal of X-ray CDI, the imaging of single biological molecules, cannot

not be realized yet, because the peak brilliance of FEL X-ray pulses is currently

not high enough. While improvements in the X-ray sources making the necessary

intensities available eventually may be expected, the development of algorithms

for sorting and orientation recovery of such samples is required, too. The methods

presented in this thesis constitute a major step towards this goal by demonstrating

their applicability to experimental FEL data of inorganic nanoparticles.
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The next logical step in this development is the application to biological model

systems. Large viruses are ideal in this respect, since they have similar atomic

constituents as single biological molecules, but provide stronger scattering signals

due to their large size. In addition, many identical copies can easily be produced - a

prerequisite for serial CDI. Since the imaging of viruses is of high biological interest

in itself, too, a large amount of structural information obtained from cryo-electron

microscopy is already available to benchmark results obtained with CDI.

In terms of data analysis, biological viruses are no different from the nanorice

particle for which a three-dimensional reconstruction could be obtained. Exper-

imentally, however, they have to be treated very carefully in order not to affect

their integrity which makes sample injection difficult. In particular, the requirement

for defined buffer compositions can be at odds with the need for volatile buffers

that leave only minimal background for aerosol injection. Existing sample delivery

methods are not yet optimized to cope with these difficulties.

Indeed, as shown in chapter 5.2, a three-dimensional reconstruction of the virus

diffraction data was not possible because because of various reasons. In the case

of liquid jet injection, the background signature of the liquid jet, which was not

constant over time, combined with a high background scattering interfered with

orientation recovery. In the case of aerosol injection, huge inhomogeneities of the

injected sample objects were observed, as can be seen in Fig 5.12. Possible causes of

these inhomogeneities are poor aerodynamic focusing resulting in different particle

to detector distances or different amounts of residual solvent around the particles.

The data of CDI experiments with giant Mimiviruses (700 nm) does not display

the injection artifacts, but these giant viruses are not perfectly reproducible, which

was one of the factors preventing a high-resolution three-dimensional reconstruction.

If the injection problems encountered with T4 and CroV cannot be alleviated,

other possibilities for sample introduction include a mechanical sample delivery with

sample particles suspended on thin membranes analogous to the sample holders used

in cryo-EM. Alternatively, electrospray can be used to disperse liquids containing

the sample objects into fine aerosols using Coulomb repulsion.

It can be expected though that these problems will be overcome in the near

future, making the algorithms proposed in this thesis applicable to single particle

coherent diffractive imaging of nano-scale biological samples.
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6.3 Room for improvements / outlook

6.3.1 Technical improvements

During the course of this thesis, much of the technology has not only been devel-

oped but also improved already. New imaging modes have been established for the

pnCCD detectors which reduce the effects of charge spill, greatly improving the

quality of the recorded diffraction patterns. A successor to the CAMP instrument

has been built, LAMP [85] (LCLS ASG Michigan Project) including large gate-

valves in order to separate the detectors from the interaction region, so that the

vacuum chamber may be vented without having to warm up and cool down the

detectors. This allows for rapid changes to and repair of components inside the

chamber without wasting hours of valuable beam-time. These are just two examples

of improvements that do away with factors that made life difficult for CDI pioneers.

In addition, many more details will be solved and labor-some tasks will be auto-

mated, turning the exciting but sometimes “touchy” CDI experiments more and more

into a standard imaging method.

On a more fundamental level, there is still room for improvement in the con-

struction of detectors with higher dynamic range, which will greatly benefit data

evaluation. As an example, samples of the giant Mimiviruses (700 nm including

fibrils) lead to very high intensities at small scattering angles, exceeding the dynamic

range of detectors available so far.

In addition, the repetition rate of future FEL facilities will be increased (sev-

eral kHz up to MHz at supra-conducting European XFEL and LCLS-2) which will

help tremendously as the number of diffraction snapshots is a limiting factor right

now. More diffraction snapshots will improve the signal to noise ratio of the data

ensemble, facilitate orientation recovery by improving the orientational sampling

and will also soften the resolution limit outlined in section 1.3.

6.3.2 direct measurement and manipulation of orientations

At least for some types of sample, the necessity for a posteriori orientation recovery

can be eliminated by directly measuring or even manipulating the orientation of

the sample particles. While optical tweezers can be used to manipulate electrically

neutral particles, these use very strong fields which might compromise the integrity

of the sample object. However, weaker electric or electromagnetic fields can be
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used to control the orientation of sample particles with a permanent electric dipole

moment [86]. Also, the orientation of such sample objects can be measured by

analyzing the flight direction of fragments that are released after the destruction of

the sample by the intense FEL pulse [87].

6.4 Conclusions

In this thesis, the first successful three-dimensional reconstruction from serial

coherent diffraction data is demonstrated. To this end, novel algorithms such as

feature-based classification and the Geodesic In-Plane Recovery ALgorithm gipral

for orientation recovery were conceived and developed, and subsequently applied

to real data.

It may be expected that coherent diffractive imaging with X-ray FELs will evolve

from its current, budding stage to a stage that provides new insights into biomolec-

ular structures that cannot be obtained by other methods. X-rays stand out because

of their long penetration depth, the high resolution that can be achieved. Moreover,

X-ray FELs not only promise to “outrun” radiation damage but also provide the

possibility to perform time resolved measurements with ultra-short pulses. However,

a lot of method development is still required to reach this stage. Many aspects have

to be improved in concert, ranging from the light source itself to sample-handling

and data analysis. A better understanding of injection and detection artifacts will

help to improve reconstruction algorithms.

Two-dimensional diffraction snapshots have already helped to analyze nanoparti-

cles in their natural environment, an example is the investigation of the morphology

of airborne particulate matter without introducing substrates [88] . The generaliza-

tion to three-dimensional imaging opens up the door to a new exciting chamber of

the nano-world.
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Appendix A

Existing approaches to the orientation problem

While gipral was the first algorithm that could demonstrate the feasibility of serial

coherent diffractive imaging, several alternative orientation recovery methods have

been published. This appendix provides a brief summary of the approaches relevant

for CDI.

A.1 Correlation

Section 1.1 showed that the spatial correlations that exist within the electron density

of a sample object can be obtained by calculating the auto-correlation function of the

electron density based on diffraction intensities. Using phase retrieval algorithms,

the spatial correlations can be turned into a spatial reconstruction of the sample.

Similarly, correlations within the diffraction signal can be used to reconstruct the

diffraction volume. It can be thought of as an angular extension to small-angle X-

ray scattering (SAXS), where radial information of the rotational average of many

particle diffraction signals is used to extract information about the shape of the



sample object. If the degree of this rotational averaging is reduced to a small number

of different orientations (as opposed to a continuous distribution of orientations),

small angular fluctuations remain in the averaged intensities, carrying information

about the sample structure. These angular SAXS fluctuations can be obtained by

freezing the sample particles in space or time, removing the influence of diffusion on

the rotational average.

Kam [89] showed that angular correlations of a single-particle diffraction volume

can be obtained by forming ensembles of discrete orientations (without rotational

averaging caused by diffusion), summing up the scattering within one ensemble,

correlating the summed up intensities between pairs of different scattering directions

and then averaging over many ensembles. Uncorrelated pairs will cancel out during

the averaging. The correlations can thus be determined from many single-particle

diffraction patterns or from diffraction patterns of particle ensembles. Converting

these correlations into structural information is an under-constrained problem. Just

as in phase retrieval, additional constraints like information on the sample symmetry

can help to overcome the information deficiency [90]. This method was successfully

applied to experimental soft X-ray scattering of nanoparticles that were lying on a

membrane only allowing rotations about a single axis, constraining their orientations

to one dimension [91]. Theoretical considerations for application to three-dimen-

sional XFEL data can be found in [92].

A.2 Common arc

The common arc method is borrowed from the common-lines [93] methods used

for three-dimensional reconstructions from micrographs in cryo-electron microscopy

(cryo-EM). Because of the large depth of focus of conventional electron microscopes,

electron micrographs can be seen as a projection of the sample object onto a plane.

Any two such projections of a three-dimensional object share a common one-dimen-

sional projection [93]. It is possible to identify those common projections which can

then be used to find relative orientations of three projections, which are fixed by

three common-lines [94].
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Fig. A.1. The common arc (red line) of two slices of the diffraction volume sampled by the
Ewald sphere in two different orientations (blue and green). The two spheres intersect in the
common arc.

The projection-slice theorem (see chapter 1.8) relates reciprocal slices to the

Fourier transform of projections: the Fourier transform of a two-dimensional pro-

jection of the sample object is the same as a slice through the origin of the three-

dimensional Fourier transform of the object parallel to the projection plane. These

reciprocal slices share a common intersection.

This concept can be generalized to diffraction patterns which, depending on the

wavelength, can not be considered to be orthographic projections corresponding to

planar reciprocal slices (see chapter 1.8): the three-dimensional scattering volume

(reciprocal space) is sampled by the Ewald sphere. When the sample object is

rotated, so is the intersection of the scattering volume with this sphere. This spher-

ical intersection always contains the origin and thus the sampling sphere of two

diffraction snapshots always intersect in a common-arc, where the two diffraction

snapshots share the same diffraction signal, allowing the common-arcs to be iden-

tified. Three common arcs of three diffraction snapshots uniquely determine their

relative orientations (up to chirality) [83]. If the Ewald sphere is almost flat the

common-arcs become common-lines, but unlike in electron microscopy, where the

complex phase information can be measured, in diffractive imaging ambiguities are

introduced because of Friedel symmetry. In [61] it is shown that a unique solution

can still be obtained.
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Since only local relationships are used in common-arc methods to establish the

global orientations of all diffraction snapshots, local errors can accumulate and a

global refinement is required, optimizing the self-consistency of all pairs of diffrac-

tion patterns [80]. In contrast to other methods (including gipral), common-arc

methods only consider correlations between small subsets of the diffraction patterns

(the common-arc) instead of all the available scattering information.

A.3 Bayesian methods

The orientation recovery problem can be seen as an optimization problem in which

a model of the diffraction volume and the orientations of the underlying diffraction

patterns is sought that maximizes the likelihood of the model explaining the data. As

shown in [95], both the Expansion-Maximization-Compression algorithm (EMC [63,

77]) and the Generative-Topographic-Mapping (GTM [62]) use Bayesian inference

methods to find optimal models.

The EMC algorithm starts with a random initial guess of the diffraction volume.

Tomograms (curved Ewald sphere sections) are extracted from this model volume

and the likelihood is calculated of how well the measured diffraction patterns are

explained by these tomograms, assuming a Poisson noise model. This likelihood is

maximized by altering the model tomograms. Therefore, a tomogram is updated by

averaging measured diffraction patterns weighted by the probability that the model

tomogram explains the diffraction pattern. In a compression step, the consistency

of the updated tomograms is enforced by interpolating all tomograms into a three-

dimensional regular grid representing the model diffraction volume. These steps are

repeated iteratively and can be thought of as an expectation maximization ([96])

technique.

The GTM method uses Gaussian functions as basis functions for a mapping from

diffraction patterns to the underlying orientations. Similarly to the EMC method,

the expectation maximization algorithm is used to maximize the likelihood. The

central principle behind this method is the finding that while changing orientations

of the sample are reflected in changes in high-dimensional ’manifest space’ of mea-

sured pixel intensities, the true nature of this changes is only three-dimensional as

different orientations only introduce three degrees of freedom. Thus, a latent three-

dimensional manifold exists within manifest space, representing the orientations.

GTM provides a way to embed this manifold into manifest space, mapping diffrac-
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tion snapshots to their orientation.

A.4 Diffusion map / graph theory

The orientational relationships between diffraction snapshots that correspond to a

finite number of different sample orientations can be encoded in a graph (see fig. A.2)

with each vertex being a diffraction snapshot while the edge weights of the graph

reflect the orientational distances, or angles. Just like in the geodesic orientation

recovery developed in chapter 3.3, the orientational distances can be approximated

locally by dissimilarities of diffraction patterns. Establishing the global structure

of the graph also reveals information about the orientations. In the following, a

geometrical interpretation of the graph theoretical take on the orientation problem

is presented, which was described in a more formal way in [43].

Fig. A.2. Snapshots of an object from different orientations (as viewed from the blue cam-
eras around Beethoven’s bust). The graph that reveals the orientations can be constructed by
linking the two closest neighbors. Although the two graphs shown in this figure are identical in
a topological sense, the orientations only become apparent in an adequate geometrical layout, as
shown in the circular arrangement in the top image.
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For simplicity, in this paragraph the dimensionality of the orientation problem is

reduced to just one rotational degree of freedom, corresponding to a sample object

which can only rotate about a fixed single axis. If only the two nearest neighbors

of each vertex are taken into account, the graphical structure of this problem is

that of a ring while the position on the ring encodes the orientation (see fig. A.2).

Consider the one-dimensional ring graph Rn with n vertices. In a geometrical rep-

resentation where the vertices are distributed equidistantly on a circle, the action

of the graph Laplacian has a nice geometrical interpretation: The graph Laplacian

is the discretized Laplacian differential operator and as such is symmetric in the

sense that both the left and the right neighbor of a given vertex contribute equally

to the effect of the Laplacian on said vertex. Therefore the Laplacian preserves the

symmetry of the equispaced circular representation and it can only affect the radial

position of the vertices, changing the scale of the circle. This shows that the circular

representation behaves similarly to an eigenvector of the graph Laplacian, with the

radial scaling factor (change in radius) being the eigenvalue. This scaling behavior

still holds after decomposing the circle into the two components x(u)= sin (u 2 π/n)

and y(u) = cos (u 2 π/n), two continuous eigenfunctions which, after evaluating at

the vertex positions lead to two discrete eigenvectors x and y of the graph Laplacian

of Rn. In this representation, the parameter u can be interpreted as the position

along the circular ring graph and as such it encodes the angle of the underlying

orientation. Thus, calculating the value of the Laplacian eigenfunctions evaluated

at a given vertex (or snapshot) reveals the orientation of this snapshot.

The geometrical interpretation of the eigenvectors of the graph Laplacian was

built on the requirement of equidistant vertices, or a uniform density of the orien-

tation distribution. This requirement can be relaxed when the eigenfunctions of

the continuous Laplace Beltrami operator are considered instead of the discrete

eigenvectors of the graph Laplacian which might be sampled non uniformly [97].

A way to find these continuous eigenfunctions can be adopted from the analysis of

physical diffusion processes where the Laplace operator plays a fundamental role.

In a diffusion process, the spatial flux j is proportional to the spatial concentration

gradient j = −D ∇c, while the temporal change of the concentration is directly

linked to the flux and has to obey the continuity equation
∂c

∂t
+∇j = 0. These two

requirements can be combined into the diffusion equation

∂c

∂t
= D∇2c
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which displays the continuous Laplace operator. Simulating a diffusion process by

means of a random walk among diffraction snapshots where the probability of a

step is governed by the local angular similarity of the snapshots (the edge weights)

can be used to find approximations of the wanted continuous Laplace Beltrami

operator and its eigenfunctions even when the discrete sampling of the underlying

continuous orientations are non uniform [43, 97]. In higher dimensions with three

rotational degrees of freedom, the eigenvectors of the Laplace Beltrami operator are

the Wigner D-functions [43, 98] which map the snapshot’s orientation to the value

of the Laplacian eigenfunction evaluated at its corresponding graph vertex, just like

x and y do in the one-dimensional case.
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Appendix B

Implementation

The computations carried out for this thesis were organized into a high-level con-

trolling stage written in Python [99] and a low-level stage for time-critical computa-

tions written in C/C++. Therefore, numerical data was represented as continuous

memory blocks that could be accessed from C/C++ code while Numpy [100] wrap-

pers were used for high-level access from Python. The following chapter focuses

on performance optimizations that were performed to make gipral applicable in

acceptable time to big diffraction datasets (on the order of 100000 diffraction snap-

shots with a million pixels each). Starting from a naive implementation without

optimizations, the computation times went down from months to days.

B.1 Hardware optimization

Several parts of the implementation required fast numeric linear algebra routines.

SIMD (Single instruction, multiple data) hardware optimization was provided by

the linear algebra library Eigen [101] which uses SSE (Streaming SIMD Extensions)

provided by the Intel x86 processors that were used for calculations. In addition,

the library LAPACK [102] was used along with ATLAS [103] (Automatically Tuned

Linear Algebra Software) that offered automatically performed extensive optimiza-

tions of the provided linear algebra implementations, tailored to the exact machines

that were used for computations. Numpy was used as a high-level wrapper for

LAPACK and ATLAS. With those hardware optimizations, on the same machine

a matrix multiplication of 10000x10000 random numbers with double floating point



precision was two times faster than a commercial implementation (Matlab) that

was not optimized for this specific machine.

B.2 Parallelization

The computational bottleneck for geodesic orientation recovery is the computation

of a pairwise distance matrix of all pairs of diffraction patterns. The calculation

of the distance between different pairs (resulting in single matrix elements) can

be done independently, which means that this task can be parallelized easily. The

distance matrix is divided into several parts and each part is sent out for calculation

and distributed among several computing units (“workers”). There are two different

types of workers: workers which share memory and thus data with the master process

and workers that have isolated memory and need to send and receive data in a point

to point type communication like a computer network. In the former, the shared

memory type, communication between workers is only necessary if they need to write

to a memory address which is concurrently read or written by a different worker.

The latter, distributed memory type needs direct communication for every exchange

of data or instructions. The computations carried out for this thesis were performed

on a cluster of 164 machines that did not share main memory. The machines in

turn consisted of 4 to 16 computing cores with shared memory, totaling in 1000

CPUs, of which approximately 300 CPUs could be reserved on average for this work.

Therefore, a mixture of distributed and shared memory parallelization was used in

a two-stage approach (see figure B.1).

B.2.1 Shared memory parallelization

Shared memory parallelization was implemented using Python threads and OpenMP

[104]. Python threads were managed using a queue data structure to store tasks and

several instances of processing classes that worked through the queue carrying out

the tasks. While Python has a global interpreter lock (gil) that blocks concurrent

access of threads to python data structures, low-level routines written in C/C++

can release the gil (using the Python C-API macros Py_BEGIN_ALLOW_THREADS and

Py_END_ALLOW_THREADS) in parts of the code that does not use Python data struc-
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tures. Computation heavy parts were implemented in C/C++ such that no Python

data structures were necessary and the gil could be released, achieving true paral-

lelism. OpenMP was used for C/C++ code to parallelize for loops using the compiler

directive #pragma omp for (see listing B.2).

import Queue

inputQueue = Queue.Queue( nr_of_threads + 2)

import threading

class correlateThread(threading.Thread):

def __init__(self, correlationclass):

threading.Thread.__init__(self)

self.correlationclass = correlationclass

def run(self):

self.finished = False

while not self.finished:

try:

data_in = inputQueue.get()

if data_in is None:

# finished with all tasks

inputQueue.task_done()

break

except Queue.Empty:

break

img1, mask1 = data_in[0]

ii = data_in[1]

jj = data_in[2]

img2 = self.correlationclass.getimage(jj)

mask2 = self.correlationclass.getmask(jj)

cormat = self.correlationclass.cormat

cormat[ii,jj] = self.correlationclass.image_

crossCorrelation(img1, img2, mask1, mask2)

cormat[jj,ii] = cormat[ii,jj]

inputQueue.task_done()

Listing B.1. A Python thread class that carries out tasks that are deposited in a queue
(inputQueue)
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#import <math.h>

#pragma omp for schedule (dynamic)

for (int aa=0; aa<npoints; ++aa)

for (int bb=0; bb<npoints; ++bb)

RESULT2(aa,bb) = sqrt( (VECTORS2(aa,0)-VECTORS2(

bb,0))*(VECTORS2(aa,0)-VECTORS2(bb,0)) ) }

Listing B.2. Example code showing the simple parallelizations of loops with OpenMP [104].

Fig. B.1. Two level parallelization architecture for computer clusters that consist of nodes
with multiple processor cores.

B.2.2 Distributed memory parallellization

In order to harvest the big computational power of large computer clusters that

do not use a single shared main memory, parallelization has to be managed by

sending messages between the machines. Commands, input data and results are

communicated with such messages. The implementation developed for this thesis

uses Open MPI , a high performance message passing library. Open MPI provides

an implementation of the standardized message passing interface, providing synchro-

nization and communication between different processes on different machines. One

of the cluster machines was designated as a master node that distributes tasks and

collects results. The computational bottleneck of gipral is the calculation of the

dissimilarity distance matrix of pairs of diffraction patterns. A big contribution to
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the computation cost is slow loading of diffraction patterns from disk into memory.

Smart caching was used to speed this up. Each node caches diffraction patterns in

memory and computes all possible distance pairs for the cached diffraction patterns.

In order to avoid unnecessary reloading, the parallel tasks are scheduled such that

the cache of one machine can be reused in big parts for the next task (see figure B.2).

Orchestrating the machines accordingly minimizes the amount of reloading to a large

extend and the computational time is reduced tremendously. The computational

time needed for the computation of the distance matrix of 50000 diffraction patterns

went down from a half a year (naive implementation without parallelization and

optimizations) to just a couple of days when a parallel implementation with smart

caching was used.

Fig. B.2. Parallel calculation of a distance matrix. A machine can re-use parts of the diffrac-
tion pattern cache if the tasks of computing sub-matrices are distributed accordingly. Carefully
tuning the shape of the sub-matrices can lead to huge speed-ups.

The following listing shows the definition of a virtual base class that was used to

manage cluster nodes. Classes can be derived from this base class, overwriting the

worker functions to implement specific calculations.

from mpi4py import MPI

mpi_comm = MPI.COMM_WORLD
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mpi_rank = mpi_comm.Get_Rank()

mpi_size = mpi_comm.Get_size()

class MPI_Pool:

’’’general class to distribute tasks

to an Open MPI worker pool.’’’

tag_work = 0

tag_stop = 1

# the following worker functions have to be specialized

# by derived classes

def work_init(self, *initargs):

# gets called before the nodes start working

self.work_size = 0

def work_finalize(self):

# gets called after every node is finished

def work_doWork(self, index, work_data):

# does the actual work

def work_checkInWorkResult(self, index, result):

# gets called after a work chunk is finished

def work_getWorkChunks(self, index):

# splits work into chunks, returns chunk

# number ‘index’

# end of worker functions

def process(self, *initargs, **keyargs):

# main function of a computer node

self.work_init(*initargs, **keyargs)

if self.mpi_rank == 0: # use node number 0 as master node

self._master()

100 B Implementation



result = self.work_getResult()

else:

self._slave()

result = None

self.work_finalize()

return result

def _master(self):

work_index = 0

num_completed = 0

# fill all nodes with work

for ii in range(1, min(self.mpi_size, self.work_size+1)):

work_data = self.work_getWorkChunk(work_index)

self.mpi_comm.send(work_index, ii, tag=self.tag_work)

self.mpi_comm.send(work_data, ii)

work_index += 1

# receive results and distribute remaining work:

for ii in range(self.mpi_size, self.work_size+1):

result = self.mpi_comm.recv(source=MPI.ANY_SOURCE,

tag=self.tag_work)

result_index = status.tag

self.work_checkinWorkResult(result_index, result)

num_completed += 1

proc = status.source

work_data = self.work_getWorkChunk(work_index)

self.mpi_comm.send(work_index, proce, tag=self.tag_work)

self.mpi_comm.send(work_data, proc)

work_index += 1

# collect remaining results

while num_completed < self.work_size:

B.2 Parallelization 101



result = self.mpi_comm.recv(source=MPI.ANY_SOURCE,

tag=MPI.ANY_TAG,

status=status)

result_index = status.tag

self.work_checkinWorkResult(result_index, result)

num_completed += 1

# shut down workers:

for proc in range(1, mpi_size):

self.mpi_comm.send(-1, proc, tag=self.tag_stop)

def _slave(self):

status = MPI.Status()

continue_working = True

while continue_working:

work_index = self.mpi_comm.recv(source=0, tag=MPI.ANY_TAG,

status=status)

if status.tag == self.tag_stop:

continue_working = False

else:

work_data = self.mpi_comm.recv(source=0, tag=MPI.ANY_TAG,

status=status)

result = self.work_doWork(work_index, work_data)

self.mpi_comm.send(result, dest=0, tag=work_index)

B.3 Class hierarchies

In order to make the implementation re-usable for many different data sources such

as different detectors as well as simulated data encoded in different data formats,

a flexible class hierarchy was used. This way, the algorithms can access diffraction

snapshots by means of a unified interface.
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diffractionData

getDiffractionPattern(nr)

numberOfSnapshots

dissimilarityMatrix[nr, nr]

calculateCorrelations()

orientations[nr]

diffractionDataCached
cacheSize

diffractionData_fromFileList
fileList

loadDiffractionPattern(nr)

save()

getDiffractionPattern(nr)

loadDiffractionPattern(nr)

addDiffractionPattern(pattern)

diffractionData_simulated
loadDiffractionPattern(nr)

diffractionData_simulatedAngularDistances
calculateCorrelations()

checks cache before loading from file,

saves last accessed pattern in cache.

simulates diffraction pattern or loads from

file if already simulated

diffractionData_fromSingleFile
file

loadDiffractionPattern(nr)

diffractionData_pnCCD
getMask(nr)

getMask(nr)

loadDiffractionPattern(nr) takes care of specific detector preprocessing

diffractionData_csPAD
getMask(nr)

loadDiffractionPattern(nr) takes care of specific detector preprocessing

diffractionData_xcam
getMask(nr)

loadDiffractionPattern(nr) takes care of specific detector preprocessing

base class defining a common interface

specifys pixels that should not be used

generates a dissimilarity matrix based

on true simulated angular distances between random

snapshots.

orientationsGroundTruth[nr] the true orientations are known for simulated

diffraction patterns. Can be used to test orientation

recovery results.

snapshotCache[nr]

Fig. B.3. Class diagram showing inheritance relationships and specialized class members. This
hierarchy provides a unified interface to diffraction data.
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Appendix C

Mathematical Tools

C.1 Rodrigues Frank parametrization

Geodesics of objects with rotational symmetries can be treated elegantly in the

Rodrigues/Frank (RF) parametrization. RF parametrization is a mapping from

SO(3) to R3. R3 is not a natural space for rotations, because it does not reflect the

curvature of SO(3). In RF space, this problem is addressed by “flattening” out the

round structure that is inherent to rotations by mapping rotations of 180ř to infinity

via a factor tan
( α

2

)
. The effect is that each circle representing a rotation has infinite

curvature radius and is hereby flattened. RF space can be seen as a gnomonic

projection of quaternions to Euclidean space. At the price of the nonlinear mapping

tan
( α

2

)
comes a very nice property of RF space: the aforementioned flattening

transforms geodesic lines into straight lines and the boundaries of Voronoi cells into

planes. A rotation defined by a Euler axis ê and angle ϑ can be expressed as a RF

vector

v = ê tan

(
ϑ

2

)

. (C.1)

As shown in [46] a rotation r1 followed by a rotation r2 then takes the form

r1 ◦ r2 =
r1 + r2− r1× r2

1− r1 · r2
. (C.2)

From the definition C.1 it is clear that geodesic movements that start from the



reference orientation (the origin in RF space) are straight lines in RF space, because

they are rotations about a single, fixed axis. This fixed axis defines the direction of

the RF vector and the angle modulates the length. From C.1 it can be seen that

geodesics are straight lines, even if the reference orientation is changed by applying

a rotation to a new reference orientation first; see [49]. This means that all geodesic

curves are straight lines in RF space.

The proof of full orientation coverage of Eq. 3.2 can now be performed using the

RF parametrization. Since the orientation of P1 is used as the reference orientation,

its RF vector can be found at the origin RF(P1) = (0, 0, 0)T (this means that no

rotation is necessary to reach the orientation of P1 from the reference orientation).

The in-plane rotations of P1 are single-axis rotations and therefore geodesics, thus

the points RF(P1(α)) lie on a straight line l1 and the points RF(P2(β)) describe a

straight line l2. The geodesics Pα,β,ϕ between P1(α) and P2(β) are then the straight-

line segments lgeoα,β that start at l1 and end at l2. Since we are free to choose any

combination of α and β, every combination of start and end points on l1 and l2 is

possible, and the possible geodesics lgeo fill the convex hull of l1 and l2 (see fig. C.1

for an illustration).

The out-of-plane rotation axis a~ is orthogonal to the X-ray axis c~ , therefore a

parametric representation of l2 is l2(t)=
tan (θ/2) a~ + tan (t α/2) c~ −d~ (t)

1
, where d~ (t)∼a~ ×

c~ is perpendicular to both a~ and c~ . RF(P2)= tan (θ/2) ·a~ , so l2(t)=RF(P2)+ g~ (t),

where g~ (t) is orthogonal to RF(P2), so the distance between the origin and l2 is

d = |RF(P2)|= tan (θ/2). l1 is parallel to c~ , so RF(P2) is also orthogonal to l1 and

since l1 contains the origin and l2 contains RF(P2), d is the distance between l1 and

l2 with d→∞ for θ→ 180◦.

As stated earlier, the convex hull of l1 and l2 contains all RF vectors that can

be reached by a combination of out-of-plane geodesics and in-plane rotations. The

boundaries of the convex hull of two infinite lines is given by two planes whose

normals are orthogonal to both lines. The distance of these planes is the distance

of the lines, and since d→∞, the half-space that is cut out of RF space by a plane

that includes the origin is the space of all rotations that can be reached by patterns

Pα,β,ϕ. This half-space is sufficient to cover the full orientations space, since the

other half represents equivalent rotations with inverted axes and angles.
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Fig. C.1. Illustration of geodesics in Rodrigues/Frank space. Purple arrows: geodesic
sequence in real space which connect the start and end orientation (green arrows), blue squares:
corresponding points in Rodrigues space. The grids indicate the planar borders of the convex
hull of possible geodesics after adding in-plane rotations to the start and end orientations. For
a separation θ = 180ř between start and end orientation, the planes are infinitely far apart. The
bottom row is the same as the top row except an in-plane rotation of the start orientation has
been added. The green arrow pointing upwards depicts the start orientation. It points along the
X-ray direction. For an interactive graphic, see www.gipral.org.

C.2 Object symmetries in Rodrigues-Frank space

The geodesic analysis of gipral is based on a diffraction pattern distance which

is subject to the rotational specimen symmetry. Only the asymmetric unit can be

explored, like wave vectors in a crystal that always reside in the first Brillouin zone.

The analysis of in-plane rotations does not underlay this restriction, since the true

angular distance measure can be used here. This has implications for the geodesic

paths which gipral identifies as shortest paths. The longest of these can only span

half of the maximum angle which is irreducible under the object’s symmetry. If

additional diffraction patterns are added to the longest geodesic pattern sequence,

there will be a different sequence that acts as a shortcut to the additional diffraction

patterns to which they will then be attributed instead. In principle, there are ways

to find longer geodesic sequences, but the notion of shortest paths is simple, robust

and efficient.
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The fact that the “longest of all shortest” paths corresponds to a rotation of half

the maximum irreducible angle can be used to calibrate the diffraction pattern

distance to an angular distance. Therefore, the maximum possible object rotation

within the fundamental zone of the symmetry has to be known. This is similar to

the maximum misorientation angle used in crystallographic texture analysis, for

which RF space has proved to be an elegant tool ([46],[50]).

Finite rotation groups can be classified into just a handfull of classes: a finite

subgroup of SO(3) is isomorphic to either a cycle group, a dihedral group or one of

the groups of regular (platonic) solids [105]. This result allows to categorize the fun-

damental RF cells of all possible symmetry classes. A list can be found in [50]. The

maximum angle can be found as the longest RF vector within these cells, in the case

of finite symmetry groups this is the RF vector of the cell vertices. Geometrically,

it can be seen that the maximum angle is unique in the sense that it corresponds to

rotation axes which are equivalent in terms of the symmetry operations. Thus, by

identifying the “longest shortest paths”, not only angles, but also the orientation of

the rotation axis with respect to the symmetry axes of the specimen are determined.

Due to the symmetry, there is a degeneracy of the maximum angle, since a rotation

by an angle ω of the specimen around the maximal-angle-axis d~ does not change

the maximum geodesic distance. The axis d~ restricts c~ to the intersection I of the

fundamental cell with a plane perpendicular to d~ (because c~⊥d~ ). Within this plane

the angle ω can be inferred with additional constraints: in-plane rotations are not

restricted by the symmetry and thus the size of the fundamental cell in the direction

of the in-plane rotations can be determined. The in-plane axis c~ lies within the

planar region I and the point pborder where it touches the border of the fundamental

cell reveals the orientation of c~ within I and can be used to obtain ω. The geodesic

distance will be modulated by in-plane rotations such that jumps occur when in-

plane rotations push qP1(α) (or qP2(β)) over the boundaries of the fundamental cell.

These jumps can be used to identify pborder. Therefore, the orientation of both d~ and

c~ with respect to the fundamental cell can be obtained and the diffraction snapshot

orientations can be related to the object’s symmetry axes.

When geodesics are identified as shortest paths the corresponding out-of-plane

angle is restricted to only half of the maximum possible object rotation. There-

fore the completeness of orientation coverage depends on the symmetry. However,

because in-plane angles are not affected by the symmetry, the effect is not that

108 C Mathematical Tools



severe. In the case of the dihedral symmetry of nanorice (see chapter 5.1.3), com-

plete coverage can be achieved. As an example of higher symmetries, I numerically

identified the possible coverage to be 92% for icosahedral symmetry (see figure S

C.2). This coverage can be increased to 100% when results with different spanning

patterns P1 and P2 are merged. Icosahedral symmetry is very common in nature

and is of high importance for biological samples such as viruses.

Fig. C.2. Fundamental cell in Rodrigues space for icosahedral symmetry (dodecahedron).
The blue part can be reached by a combination of out-of-plane geodesics and in-plane rotations
of P1 and P2 in one go. Further iterations can then fill the whole fundamental cell. Due to the
nonlinear deformation of Rodrigues space the gaps at the corner of the fundamental cell appear
large but correspond to very small angular regions. In fact the blue region corresponds to 92% of
all possible orientations.

C.3 extending geodesics

The orientation recovery of symmetric objects using the geodesic approach can be

improved by eliminating the effect of the symmetry on the geodesic sequences. In

the algorithm proposed in chapter 3.3, geodesic sequences are found by looking for

shortest paths. Without any object symmetry, the maximum length of such a path

corresponds to a rotation of 180◦, which is reduced by symmetries. This reduction

has to be taken into account when interpreting the geodesic sequences, which is

somewhat alleviated by the RF formalism but still limits the number of orientations
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which are reachable by the geodesic search in one go. The in-plane rotations do

not suffer from this limitation, they can be interpreted regardless of the object

symmetry. In principle, this can also be achieved for the out-of-plane rotations if

full geodesic paths can be found instead of just the sub-path that corresponds to the

shortest path between two snapshots. Figure C.2 shows that this limitation is not

severe, and can be worked around by repeated execution of the algorithm, but it is

also possible to find full geodesic sequences. One solution would be to find geodesics

based on local properties, but this works against a main advantage of the proposed

method: finding shortest paths can be achieved efficiently in a globally optimal way.

Mixing the global search with a more local search is possible with the following idea:

the geodesic sub-paths found by a global search for shortest paths can be extended

by other sub-paths as illustrated in fig. C.3: sub-paths can be patched together if

they display a big intersecting part.

Fig. C.3. patching geodesic sub-paths A and B

The resulting full geodesic rings still reflect the objects symmetry, but they fill

the gaps in the space of orientations that can be reached in one go.

Another method to fill these gaps is the repeated execution of the geodesic algo-

rithm, picking new start end endpoints P̂1 and P̂2 from already reached orientations

(blue part in fig. C.2) will result in geodesics between P̂1(α) and P̂2(β) that protrude

into previously unreached orientations.

C.4 Projections and mirror symmetry

Suppose the object under consideration is symmetric under a mirror operation M

and the object orientation O is such that the X-ray axis coincides with the normal

of the mirror plane. If the image formation process is approximated by a parallel

projection P along the X-ray axis, it follows P p=P M p for every point p. Suppose
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R+ is a rotation whose axis of rotation lies within the mirror plane of M and

R− := R+−1

is the inverse rotation (see figure S C.4). Then R+p = R+ M M p =

M R− M p because mirroring inverts the rotation direction. It follows that P R+p=

P M R− M p = P R− M p. Applied to the set of object points, we can neglect the

mirroring operation due to the symmetry ⇒P R+p = P R− p. Thus, starting from

the orientation O, the sequence of diffraction patterns obtained by intermediates of

the rotation R+ will be the same as for intermediates of its inverse, R−. Inversely,

the sequence starting from [O, R+] going to [O,Id] gives a sequence of inverted

element order compared to the sequence going from [O,Id] to [O, R−]. Only a single

rotation axis is involved and thus the full sequence from [O, R+] to [O, R−] is of

geodesic nature. However, the diffraction pattern based distance will increase until

[O, Id] is reached and then decrease until it falls to zero when [O, R−] is reached.

When we search for the maximum geodesic sequence starting from [O, R+], then

[O, Id] will be the end of the found sequence when only diffraction pattern based

similarities are taken into account. This means that the geodesic sequences tend to

end at mirror axes as shown in figure C.4. This can be used to identify the symmetry

of the object, as stated in the main text.

A stop at mirror axes means that geodesic sequences might become very short,

depending on the the proximity of the start orientation S0 to mirror axes. But the

sequence can be extended afterwards by making the orientation of the stop the new

start orientation. The search for long geodesic sequences then yields sequences of

maximal length.

Fig. C.4. Mirror symmetry together with a projection operation leads to symmetry in rotation
such that rotations in positive and negative direction yield the same projection. The diffraction
pattern based geodesic sequence depicted by red arrows on the right side is equivalent to the blue
sequence and it therefore stops at the mirror plane. It does not continue to the blue arrows as it
would without symmetry.
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C.5 Orthogonalizing in-plane and out-of-plane rotations

In the following considerations we will use a coordinate system that is fixed to the

sample object. So instead of considering orientations of the sample we consider

orientations of the x-ray beam and the detector. This implies that the in-plane axis

changes from shot to shot. Three non collinear points are sufficient to represent

orientations. Since we don’t consider translations, all orientations are related by

rotation axes that have one point in common: the origin O which is used as the first

reference point r0. r0 is invariant for all shots. We choose the second reference point

r1 as the unit vector pointing along the x-ray beam and the third reference point r2

is a point on the detector that does not coincide with the x-ray beam. The shortest

(in an angular sense) rotation R1 that rotates r1 of one shot to r1
′ of a different shot

is a rotation about an axis e~ that is perpendicular to the x-ray beams of both shots:

e~⊥r0r1, e~⊥r0r1
′. After applying R1, the two reference points R1 · r0 = r0 = r0

′ = O
and R1 · r1 = r1

′ are aligned to the new orientation. To complete the rotation to the

new orientation, r2 also has to be rotated to r2
′ by a rotation R2. R2 needs to leave

r0 and r1
′ invariant, so its rotation axis is r0r1

′ which is the new x-ray axis of the

second shot, meaning R2 describes an in-plane rotation. Thus the complete relative

rotation between the two shots is R = R2 ◦ R1. By construction no rotation that

rotates r1 to r1
′ can be shorter than R1, meaning that the angle of the composition

R is minimized when R2 = 1. Since R2 is a in-plane rotation, an in-plane-rotation

of the second shot can be found such that upon replacing the shot with its in-plane

rotation, R=1 ·R1. Thus finding the shortest rotation between the two shots while

allowing cost-free in-plane-rotations of the second shot will yield a true out-of-plane

rotation R1 with an axis that is orthogonal to the x-ray beam.

C.6 Discontinued: neighborhood preserving embedding

The following section describes an orientation recovery method that was developed

initially for this thesis but was then abandoned in favor of the geodesic method

described in chapter 3.

The orientation recovery problem can be formulated in terms of dimensionality

reduction: the nominal dimensionality in detector space for a diffraction pattern

is in the millions (one dimension for the intensity values of every pixel), but the

intrinsic dimensionality is just three, because the only thing that differs between
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different diffraction snapshots is the orientation of the sample object which can be

described by three Euler-angles. Embedding the diffraction snapshots in this three-

dimensional orientation space would solve the orientation problem. Two things are

known about this embedding:

1. the orientation space is “round” since orientations can be wrapped around by

rotations through an angle of 2π. A natural choice for the target space of the

embedding is therefore the three-dimensional surface of the hypersphere S3.

2. The similarities should be preserved. If two diffraction snapshots are similar in

the high dimensional detector space, they are also close by in orientation space.

This leads to the following embedding procedure: given the dissimilarity measure

δi,j = ddiss(Pi, Pj) in detector space, N diffraction snapshots are embedded into a

four dimensional Euclidean space while being constrained to the surface of a three-

sphere C3. Their positions (x1, ..., xN) are thereby chosen to minimize the deviation

of pairwise distances ‖xi −xj‖ from the dissimilarity measure δi,j:

min
x1,...,xN

∑

i<j

(‖xi −xj‖− δi,j)
2.

To account for geometric differences between the two metric spaces, the radius

r of the three-sphere C3 is chosen such that its hyper-area 2 π2 r3 can be covered

uniformly with N points such that the average distance between closest neighbors

corresponds to the average minimum distance δmin between all pairs of diffraction

snapshots:

r =
N δmin

4π2

3

√

.

The three-sphere is a double-cover of the orientation space (see section 1.3) To

solve the optimization problem, a classic multidimensional scaling algorithm [106] as

well as a gradient descent similar to simulated annealing [107] were used. Another

approach was the use of a simulated physical model in which the data points where

connected pairwise by springs the length of which represent the dissimilarity distance

of the given pair. With carefully adjusted damping, a random initial state relaxes

to the solution while being constrained to the surface of the three-sphere.

Only local similarity distances are correlated to angular distances. Figure C.5

shows the effect of missing global distance information. gipral solves this problem

by introducing a global geodesic distance measure.
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Regardless of the optimization algorithm, the orientation recovery of simulated

data was only successful when no noise was added to the diffraction snapshots.

Even moderate noise lead to a solution that was stuck in a local minimum of the

objective function. Also it is not easy to visualize and control the intermediate steps

of the algorithm. Both problems can be overcome with the geodesic method as it

guarantees global optima and the one dimensional geodesic snapshot sequences are

easy to visualize.

Fig. C.5. Global structure from local distances. Distances of points on a regular grid are
fed into a multidimensional scaling algorithm. The left shows the resulting embedding into two-
dimensional Euclidean space for the case where only distances of nearest neighbors were included,
while the right images shows the result for distances in the 4-neighborhood with a result closer
to the original regular grid.
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