
Chapter 2

Basic Concepts

2.1 Multidimensional Wentzel-Kramers-Brillouin

(WKB) theory

Multidimensional WKB theory can be regarded as the link between quantum me-

chanics and classical mechanics. In particular, Chapter 3 relies on arguments of

multidimensional WKB theory. Moreover, this theory facilitates the understand-

ing of state-specific tunneling. A brief outline of multidimensional WKB theory

is given in this section.

2.1.1 Invariant tori

The dynamics of a molecule of
�

vibrational DOF may be approximated by a

system of
�

uncoupled harmonic oscillators for small enough total energy � .

The classical Hamiltonian reads

�������	��

� �� �
� �
�
� ��� � �	� � 
��

(2.1)

where
�

and
�

are the
�

-dimensional vectors of momentum and position, respec-

tively, and
�
� ��� � �	� � 


is the Hamiltonian of a harmonic oscillator with frequency� � in mass-weighted coordinates,

�
� ��� � �	� � 
�� �� � �

���
�� � �

� � �� � (2.2)

The Hamiltonian
�
�

assumes a simple form by introducing action-angle variables� �
and �

�
according to � � � � � � � � � 
! #"$�

� �
(2.3)

� � � � � �
� � "&%(')�

�
� (2.4)
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Figure 2.1: Submanifold (solid ellipse) of the phase space of the � -th harmonic

oscillator for fixed action
� �

. The momentum as a function of position is double-

valued; the two branches
��� ���� � � � 


and
��� � �� ��� � 


are marked.

The transformed Hamiltonian only depends on the actions
� �

alone,

�
� ��� � 
 � � � � � � (2.5)

Figure 2.1 depicts the phase-space
��� � �	� � 


corresponding to a one-dimensional

harmonic oscillator for fixed action
� �

. The momentum
� �

is a double-valued

function of position
� �

; one branch corresponds to motion with positive and nega-

tive momentum, respectively. The action
� �

is given by the integral over a closed

trajectory, � � � ���� � � �
	 � � �
(2.6)

where the line integral is performed over both branches. By fixing the
�

actions
� �

a
�

-dimensional submanifold � � of the
� �

-dimensional phase space is selected.

This submanifold is called invariant torus because it is invariant with respect to the

dynamical transformation that generates the trajectories and it has the topology of

a
�

-torus [49]. A
�

-torus is characterized by
�

distinct irreducible closed curves� �
. For the two-dimensional case a

�
-torus is depicted in Fig. 2.2. The closed

curve
� � cannot be continuously deformed into

� � and vice-versa. Likewise, for

the multidimensional case with
��
 �

.

The present system of
�

uncoupled harmonic oscillators is integrable (cf.

Appendix A.1). Especially, there are
�

fundamental frequencies � � . Consider

a perturbation �� added to the Hamiltonian
�

[Eq. (2.1)]. If the perturbation is
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Figure 2.2: Torus of dimension 2 (schematic). Two irreducible curves,
� � and

� � ,
are indicated by dashed lines. None of the curves can be deformed into the other

without breaking. A two-dimensional invariant torus has the same topology, but

it is embedded in a four-dimensional phase space.

integrable then the invariant tori are deformed without destroying their topology.

If the perturbation is non-integrable (or has a non-integrable part) then the phase

space of the perturbed system is still filled with invariant tori �� � . However, part

of the invariant tori are destroyed and replaced by aperiodic trajectories. This was

shown by numerical investigations [50].

For each position vector
�

the invariant torus �� � associates a finite number of

momentum vectors
�

, i.e., there are several branches
� ��� � � ��
 of the momentum

vector function. For instance, in the case of
�

uncoupled harmonic oscillators

considered above, there are
� � branches. The line integral along any closed path�� that resides solely in a single branch vanishes [49],�

��
� ��� � 	 � � � � (2.7)

The path �� may be a trajectory or not. Thus, the line integral along any irreducible

closed curve
���

of �� � is invariant with respect to any continuous deformation of

that curve, i.e., there are
�

distinct constants of motion,

�� � � ���� � ��� �
	 � �

(2.8)

corresponding to the irreducible closed curves. For the system of
�

uncoupled

harmonic oscillators one has �� � � � �
[cf. Eq. 2.6)]. For the perturbed system, the

invariance guarantees that the �� � are unique.

Equation (2.7) has another important consequence: it implies that the line

integral between two points
� � and

� � is independent of the integration path, i.e.,

there exists a total differential on each branch,	
� ��� � �
	 � ��� � � ��
 	 � � � ��� � 	 � �

(2.9)
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where
� ��� � � ��
 is the action function corresponding to the � -th branch and the nabla

operator is
	���� � � �

. The momentum of a classical trajectory,

� ��� � � 	 � ��� � �
(2.10)

is always perpendicular to the surfaces of constant action. This relation is a gen-

eral result of classical mechanics [51] and it applies to a larger class of subman-

ifolds of the phase space called Lagrange manifolds [52, 53]. Such manifolds

(including invariant tori) can be constructed by propagating a field of trajectories

and collecting the values of the momenta along each trajectory given rise to a vec-

tor field
��� � 


of momenta, where
��� � 
�� 	 �

is a total differential. This is called

the method of characteristics [52, 53] (cf. Appendix A.2).

2.1.2 The Hamilton-Jacobi and transport equation

Throughout this work Hamiltonians
�

of the form

������� � 

� �� � �
� � � � 
 �

(2.11)

with mass-weighted Cartesian coordinates are used, where
� � ��


is the PES. The

corresponding time-independent Schrödinger equation with total energy � reads�
�
	 �� 	 �

� � � � 
���
 � � 
 � � 
 � ��
 � (2.12)

In multidimensional WKB theory [16, 53, 30] the position representation of the

wavefunction

 � ��


is expressed as
 � ��

�����������	 � � ��
�� � (2.13)

and the complex-valued function
� � ��


is expanded in a power series with respect

to 	 ,
� � � 

� ��� � � 
 � 	 � � � � ��


��� 	 � � � � � � � 

�
� � �!� (2.14)

Inserting the ansatz Eq. (2.13) into the time-independent Schrödinger equation

(2.12) leads together with Eq. (2.14) to an infinite set of equations for each power

of 	 . Only the equations corresponding to the zeroth and first order with respect to	 are relevant for the WKB theory; the zeroth-order term
�!�

determines the phase

of



, the corresponding zeroth-order equation reads

��
� � ��� � � 
� � � �

� � � ��
�� � � (2.15)
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This equation is known as the Hamilton-Jacobi equation (HJE) in classical me-

chanics [51] and
���

is the action function. The first-order term
� � determines the

amplitude of



, the corresponding first-order equation,

� � � � � ���� � � �
� � � �� � � �

�
�� � � ���� � �� � � � � (2.16)

mixes zeroth-order
���

and first-order
� � functions. The probability amplitude� 
 � �

fulfills a continuity equation. Accordingly, Equation (2.16) is essentially a

continuity equation [16, 53]. Both functions,
�!�

and
� � are in general complex-

valued quantities.

Joint solutions to Eq. (2.15) and Eq. (2.16), i.e., first-order solutions, are

called the WKB or semiclassical approximation to



. For the one-dimensional

case the derivation of such solutions is a textbook example [16]. The momentum

function
� � � 
���� � ��� � � � ���#
��

has a positive and a negative branch. Moreover,

in the classically forbidden region
� � � 
 
 � the momentum is imaginary. For

the connection of the wave function in the forbidden region to the wave function

in the allowed region
� ���#
�� � one finds	� � � � � ������
 � �	
����

������ �
	 � ����

�
� 	� � � � � ������
 �	
����

������ �
	 � ����

�
� � � �


 � 
 � � (2.17)

where
	

is a coefficient and
� �

is the classical turning point with
� ��� � 
 � � .

The result was derived by assuming
� ���#
 � � ��� � ��� � � � 


near
� �

, where
� � �

�

	 � � 	 � � ��� is the force at the turning point.

In the forbidden region (left-hand term) only the exponentially decaying term

leads to a normalizable solution; in the allowed region (right-hand terms) the two

branches of the momentum function
� � � 


yield an oscillatory wave function. The

prefactor �
� � � � ���#
 �

diverges at the turning point because there one has
� � � � 
�� � .

Thus, in the vicinity of turning points the semiclassical approximation is not suit-

able. This is because, the de Broglie wave length � � � of a particle becomes large

compared to the typical length scale of the system (for instance, the distance be-

tween two turning points of a potential well). A proper treatment of the divergence

leads to an additional phase of
� � �

that has to be added when connecting the wave

function in the forbidden and allowed region [16].

More interesting are solution in the multidimensional case. A general theory

for multidimensional semiclassical solutions was given by Maslov and Fedoriuk

[52, 53] for the case of real actions. Real solutions to the HJE were discussed

in Section 2.1.1: for a given invariant torus � � there are branches of the action

function
� ��� � � ��
 . According to Eq. (2.9) these action functions are solutions to
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the multidimensional HJE. Given a multidimensional solution of the HJE it is also

possible to construct solutions of the transport equation Eq. (2.16) [53, 54].

A numerical implementation of the solution theory of Maslov and Fedoriuk

was successfully applied to a bound state 2D system [54]. The application to mul-

tidimensional tunneling requires further approximations. This issue is addressed

in Chapter 3. To this end, approximate multidimensional solutions to Eq. (2.15) in

the forbidden region are required while multidimensional solutions to Eq. (2.16)

are not necessary. Multidimensional and generally complex valued action func-

tions in the forbidden region are discussed in Sections 2.1.3 and 2.1.4.

2.1.3 Complex-valued solutions of the Hamilton-Jacobi equa-

tion (HJE)

Consider an invariant torus � � and a trajectory that initially moves on branch � �
and crosses over to a neighboring branch � � via a particular crossing point. The

projection of the relevant region of the invariant torus onto configuration space

is depicted in Fig. 2.3a. There are neighboring trajectories that cross-over at

different points. The collection of these points forms a surface in
�

-space, the

caustic. For convenience, the 2D case is considered, then the surface becomes

a line. In 2D two caustic lines may touch at a point
�����

where
� � ����� 
 � � .

This situation is depicted in Fig. 2.3b. The points
�����

are known as hyperbolic

umbilic points (HU points) [30, 55]. The caustic lines touch at right angles [54]

and the HU point is the origin of a local coordinate system
��� �	� 


, where
�

and�
are directed along the two distinct caustic lines (cf. Fig. 2.3b). Near the HU

point the momenta are assumed to be
��
 � � ��� 
��

and
�
� � � ��� ���

, where� 
 � � � � � �
� � ��� and
� � � � � � � ��� � ��� are the respective forces at the HU point

(local separability). Then, the semiclassical wave function near the HU point

is given by a product of two one-dimensional wave functions like Eq. (2.17)

[30, 55, 54], 
 ��� �	� 
 ��
�
 ��� 
 
�� ��� 
 � (2.18)

This leads to the observation that there are four quadrants around the HU point

where the action
� ��� �	� 


is, respectively, real-valued ( � ), imaginary-valued (
�
),

and complex-valued (
	 � and

	 � ) [30, 55]. Likewise, there are
� � distinct regions

around a HU point of a
�

-dimensional system where
�

caustic surfaces touch.

The foregoing discussion applies to the properties of the wave function near

the HU point. Thus, it is necessary to investigate the properties away from the

HU points deep in the forbidden region. To this end, the complex-valued action

function
��� � ��


is written as
��� � � 
 � ��� � ��
 � � ��� � ��
 � (2.19)
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Figure 2.3: (a) Trajectories of an invariant torus � � cross from one branch to

another. The projection of the crossing points onto configuration space forms a

caustic. The caustic divides allowed and forbidden regions of configuration space.

(b) Two caustics may touch in a hyperbolic umbillic (HU) point. There are four

regions near the HU point. The action is real in the classically allowed (or � )

region, purely imaginary in the
�

region, and complex in the
	 � and

	 � region.

(c) Continuation of the action into the forbidden regions. Equi-amplitude (solid)

and equi-phase (dashed) lines are perpendicular at any point. The amplitude and

the phase is constant all-over, respectively, the � and the
�

region.
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where
���

and
���

are the real and complex part, respectively. The HJE takes the

form,

��
� � � ��� � � 
�$� � � �

� � ��� � � 
� � � ���
� � � � 
 � � �

(2.20)� ��� � ��
� � � � ��� � ��
� � � � � (2.21)

The second equation is required, because the PES and the energy � are real-

valued quantities [56, 30]. There are surfaces of constant
� �

and
���

. On the

surface of constant
� �

the phase of the semiclassical wave function is constant.

Likewise, on the surface
���

the amplitude of the semiclassical wave function is

constant (irrespective of the prefactor). Correspondingly, there are equi-phase and

equi-amplitude surfaces.

The amplitude is constant all-over the allowed (or � ) region since
� � � � .

Likewise, the phase is constant all-over the
�

region since
� � � � . In the

	
regions both

���
and

���
vary. According to Eq. (2.21) the corresponding surfaces

are perpendicular at any point. The expected structure of solutions of the HJE

equation in all regions is depicted in Fig. 2.3c. At the boundaries of each region

the corresponding surfaces smoothly join together. Especially, the caustics of the

� regions join smoothly onto the equi-amplitude surfaces of the
	

regions. Huang

et al. [56] gave a method to continue the equi-amplitude surface given by the �
caustics into the forbidden region. Takada [57] showed that the solution of the

HJE in the forbidden region indeed has the structure suggested by Fig. 2.3c (and

by the method proposed by Huang et al.) by employing analytical continuations

of the action functions
� � ��


into the forbidden region.

It is possible to define classical trajectories in the
�

region. With
� � � � , Eq.

(2.20) yields after multiplication by � � the HJE corresponding to the Hamilto-

nian with inverted PES at energy � � . The momentum
� � 	 � � � � 


is always

perpendicular to the equi-amplitude surfaces, which resembles Eq. (2.10) for the

� region. Thus, the method of characteristics can be used to construct solutions
���

of the HJE in the
�

region by propagating classical trajectories on the inverted

PES (cf. Appendix A.2).

Moreover, the
�

region can be extended to the minimum (the minima) of the

PES. In harmonic approximation [cf. Eq. (2.1)] the total energy reads

� � �� �
� � 	 �

� ��� � � �
� � 
��

(2.22)

with quantum numbers
� �

. One observes that the energy is proportional to 	 .

Thus, one can move the energy term from the HJE [Eq. (2.15)] to the transport
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equation [Eq. (2.16)] and write down the new equations for the sole
�

region [58],

��
� � ��� � � 
� � � � � � � � 
 �

(2.23)

�#� � � � ���� � � ��� � ��� � ��� � �� � � ���� � �� � � � 	 � � � (2.24)

where the amplitude function �� is introduced (sign convention according to Refs.

[58, 59]). It is assumed that
�

are normal mode coordinates. In the vicinity of

the minimum - where the harmonic approximation is applicable - the action is

separable and given by
��� � ��
�� � � � � � � � � � � � �� 
 � � � �

(2.25)

where the minimum is at
� � � � . For �� one finds

�� � ��
�� �
�#��� ' � � � � � � � �� � ���

�
� '
	 �

(2.26)

where 	 is a normalization constant (see below). Inserting
� � � � � � 	 �� � � into

Eq. (2.13) yields for the wave function in the vicinity of the minimum,
 � ��
�� 	�� � � � � � � � � �� 
 ����
 ��� � � � � � ��� ���� ����� ��� � (2.27)

Superpositions of these wave functions are eigenstates of the harmonic oscillator

(HO). Especially, for
� � � � the HO ground state is rediscovered. The harmonic

approximation was already applied by using Eq. (2.22) for the total energy � . The

solution Eq. (2.27) is consistent with that approximation, i.e., the wave function

of the forbidden region intrinsically resembles the wave function of the allowed

region in the vicinity of the minimum. To summarize: By assuming the harmonic

approximation to be valid for the wave function in the allowed region [without re-

distributing the energy] a global solution can be found by solving Eqs. (2.23-2.24)

[with redistributing the energy]. Note, no harmonic approximation applies to the

forbidden region [without redistributing the energy]. The result is contra-intuitive

at first sight. However, consider the eigenfunctions of the harmonic oscillator. The

shape of such a wave function is always a Hermite polynomial times a Gaussian

no matter whether the classically allowed or forbidden region is studied.

2.1.4 Approximate c-valued solution of the Hamilton-Jacobi

equation (HJE)

The application of results of the multidimensional WKB theory in trajectory based

simulations is hampered by the fact that no trajectories can be defined in the
	

re-

gion [56]. Takatsuka and Ushiyama [27, 60] proposed an approximate method to
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obtain classical trajectories in the
	

region. (The term classical means that these

trajectories are characteristic lines corresponding to a certain HJE.) A recent re-

view can be found in Ref. [28]. During this work the theory was reformulated [61]

and it was noted that the equations of motion of the reformulated theory assume

a canonical invariant form [62]. The reformulated theory is used throughout this

work; it is called TU theory.

The one-dimensional WKB theory shows that in the classically allowed and

forbidden region the momentum
� � � 


is, respectively, real and imaginary (cf. Sec-

tion 2.1.2). In the TU theory it is assumed in analogy to the 1D case that in a

multidimensional system the Cartesian coordinates
� �

are real while the conju-

gated momenta
� �

are either real or imaginary. Real conjugated pairs
���� � �	� � 


are

defined by associating parities of motion �
�

to each DOF [27, 60],

� � ��� �
�
�� � � (2.28)

For �
� � �

� and �
� � � � the motion is classically allowed and forbidden,

respectively. Note, the transformation Eq. (2.28) is non-canonical if �
� � � .

Inserting Eq. (2.28) into the Hamiltonian Eq. (2.11) yields the new Hamiltonian
���� �� � �����)
�� �#� �

�
� �� �

� � � � ��
 �
(2.29)

where
� � � � � � � � � � � � 
 is the vector of parities. Trajectories in the

� �� � ��

space

can be generated by Hamilton’s equation of motion,

	�� � � �
� ��� � � � �

� �� � � � (2.30)

	� � � � ���
�� � � �
�
�� � � (2.31)

The first equation, Eq. (2.30), is the unchanged Newton’s equation of motion.

However, the second equation, Eq. (2.31), determines that for �
� � � the velocity

	� �
and momentum

�� �
are directed in opposite directions. This formulation was

shown to be equivalent to the previous formulations [61, 62], but the equations

of motion Eqs. (2.30-2.31) assume a canonical invariant form. This implies that

the method of characteristics (cf. Appendix A.2) can be used to construct an

action function
�� � �����)


based on a fields of trajectories. However, as was noted

before, the transformation Eq. (2.28) is non-canonical, i.e., trajectories generated

for different sets of parities
�

(or different sheets [28]) refer to different dynamical

systems and it is necessary to resort to intuitive arguments in order to connect

solutions belonging to different sheets.

Consider a trajectory evolving in 2D on the classical allowed sheet (all �
� ��

� ) that touches a caustic line at a point
� �

(cf. Fig. 2.4a). One may introduce a
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Figure 2.4: (a) Trajectories evolving on the allowed sheet
� � � �

�
� 
 . At the cross-

ing point
� �

a coordinate systems
��� �	� 


is introduced. The parity �



is flipped to

� � giving rise to a trajectory evolving on the sheet
� � 
 � � � 
 � � � � �

�
� 
 in the	

region. (b) There is a coordinate system
����� �	��� 


for each individual crossing

point
���

. In general the complex vector function of collected momenta
� � ��


can

be defined, but
� � ��
 	 �

is no total differential.

local coordinate system
��� � � 


;
�

and
�

are directed perpendicular and tangent to

the caustic, respectively. One observes that at
� �

the momentum
�



in
�
-direction

vanishes. Transformation Eq. (2.28) can be applied at this point with �

�� � � and

� � � �
� . This gives rise to a non-classical trajectory (dashed line) that evolves on

the sheet with
� � 
 � � � 
 � � � � �

�
� 
 according to the Equations of Motion (2.30-

2.31). Two events are possible during the course of the non-classical trajectory:

The momentum of
� 


or
�
�

can vanish at a certain point
��� �

(in rare cases, the

events may also occur simultaneously): (i) if
��
 � � then transformation Eq.

(2.28) can be applied again by switching �



back to

�
� giving rise to a classical

trajectory emanating from point
��� �

; (ii) if
�
� � � then switching �

�
also to � �

yields a trajectory that evolves on the sheet with
� � 
 � � � 
 � � � � � � � 
 . In this case,

the Equations of motions Eq. (2.30-2.31) can be cast into

�� � � � �� � �
(2.32)

which is Newton’s equation of motion for the inverted PES.

Consider the caustic of a certain invariant torus (more generally, a Lagrange

manifold). A field of trajectories emanating from different points
���

on the caustic

is generated according to the present method in the
	

region. There is a local

coordinate system
����� �	��� 


and a distinct
� � � �

�
� 
 sheet associated to each point���

. Nevertheless, it is possible to collect all values of
�

along the trajectories; this

gives rise to a vector field of complex momenta
��� ��


. In order to be a solution of
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the HJE it is necessary that
� �

with� � � ��� � 
 	 � �
(2.33)

is a total differential, i.e., any line integral over
��� ��


must be independent of the

integration path. As a basic result of vector algebra this is the case if and only if� � �� � � � �#� �� � � � (2.34)

This conditions cannot be fulfilled in general by the TU theory, because some

momenta can be purely real while others are purely imaginary. Nevertheless, it is

possible to define the action along a trajectory on a
�

-sheet of the TU theory (for

constant energy) by

����� � �� � � � � ��� ��� 
�� � � ���� � �
�
�� � �
	 
 	� � �
	 
 	 	 �

(2.35)

where
� �� � � � � 


are the initial conditions of the trajectory.

2.1.5 Semiclassical quantization

Consider an invariant torus � � with
�

irreducible closed curves
� �

. The semi-

classical quantization condition reads [49]� � � ���� � � � �
	 � � 	 � � �

�
� ���� �
(2.36)

where
� �

are the Maslov indices [52, 49, 53]. The index counts the number of

singular points (on caustics) along the irreducible closed curve
� �

. For invariant

tori corresponding to deformed harmonic oscillators one has
� � � �

in analogy to

Fig. 2.1. The condition Eq. (2.36) is a generalization of the equivalent expression

for the one-dimensional case and it is due to Einstein, Brillouin, and Keller (EBK)

[49]. In the 1D case, it follows immediately by requiring solutions belonging to

the two turning points to coincide in the allowed region [16].

The application of Eq. (2.36) assumes a quantizing invariant tori � � to exist.

This is in fact not guaranteed in the multidimensional case. In general the phase

space of a multidimensional system can be divided into regular and irregular

regions [49]. The regular regions are filled with invariant tori while the irregular

regions are filled by aperiodic trajectories.

Consider a trajectory
� � � � � � 
 that evolves on a general invariant torus. Any

observable � �
� 
�� � ��� � �	� � 
 can be expressed as a discrete Fourier sum,

� ��� � � � � 
 � ��� ��� � � ��� ��� � ��� � (2.37)

�
� � �� �

� � �
� � � � (2.38)
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where � � �
� � � � � � � � � 
 is a vector of

�
integers,

� �
are the Fourier coeffi-

cients, �
�

are the
�

fundamental frequencies corresponding to the invariant torus,

and �
�

are linear combinations of the frequencies. Thus, the dynamics on the

torus is said to be regular. Conversely, observables corresponding to aperiodic

trajectories cannot be expressed according to Eq. (2.37).

The power spectrum of an observable � �
� 
 � � � � � � � � 
 corresponding to a

trajectory
��� � � � � 
 reads [63]

� ������� �	� � � � 

� ���� � % �
���
 �� ����
� 
� 	 � � �
� 
 ����� � � � � � 
 ����

�
� (2.39)

If the trajectory resides in the regular region (i.e., evolves on an invariant torus),

then the power spectrum is characterized by sharp peaks corresponding to the

fundamental frequencies plus linear combinations thereof. If the trajectory resides

in the irregular region (i.e., it is aperiodic), then the power spectrum is undefined,

because the limes is non-existent. However, the finite time power spectrum exists,

but depends on the propagation time. It is more convenient to average the power

spectrum over a suitable ensemble of trajectories,

� � � 
 � ���� � % �
���
 ��
�
����
� 
� 	 � � �
� 
 ����� � � � � � 
 ����

��� �
(2.40)

where the ensemble may be, e.g., trajectories having the same energy. Stochas-

tic behavior of the single power spectrum corresponding to aperiodic trajecto-

ries is averaged out. Typical instants of averaged power spectra are shown in

Fig. 3.10 (Chapter 3) for the 3D model of the
��� �� anion. Power spectra

similar to these are exemplary for a system with mixed dynamics, i.e., a sys-

tem with regular and irregular regions of phase space. The prominent peaks at

distinct frequencies suggest correspondence to the fundamental frequencies and

the broadening is due to aperiodic motion. The existence of invariant tori was

rigorously shown for small non-integrable perturbations of non-degenerate inte-

grable systems (among further technical conditions). (An integrable system is

non-degenerate if � ��� � � � � � � ���� � .) The theorem is named after Kolmogorov,

Arnold, and Moser (KAM) [64]; sometimes invariant tori are also called KAM

tori. Numerical investigations showed that invariant tori do exist also when the

KAM theorem is not applicable [49, 50].

Adiabatic switching is a practical method to obtain a trajectory that evolves on

an invariant (quantizing) torus [65]. Consider the one-dimensional Hamiltonian

�������&� ���$
 � �� � �
� � � � � 
 � � � � �$
 � � � � 
 �

(2.41)

where ��� � � � is a constant,
� ���#


is the (anharmonic) PES, and
� � � � 


a PES

such that the transformation from
�����	� 


to action-angle variables
� � � � 
 is ana-

lytically known for
�������&� ��� � � 
 . Moreover, it is assumed that the canonical
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transformation from
�����	� 


to
���$� � 
 exists for each

�
. Thus, there is a generat-

ing function � � � �	� ���$

corresponding to the canonical transformation with (cf.

Appendix A.1)

� � � �� � �
(2.42)

� � � �� � (2.43)

Letting
� � � �
� 


become a slowly varying function of
�

it follows that the trans-

formed Hamiltonian reads

�� � � ��� 
�� ��� � ���$
 � � �� � � ��� � ���$
 � � 	���
(2.44)

where
� � � � � � �

and the dot denotes the derivative with respect to time. The

function
� � � � � �	� ���$


depends on
�
,
�
,
�

. One can express
�

as a function of�
and � by inverting Eq. (2.43) with respect to

�
; inserting of the solution yields� � � � � �	� ���$
 . The time evolution of

�
and � are then governed by

	� � �
� ��� � � �

� �� � 	� � � 
 �
(2.45)

	� � � ��� � � � � � ���$
 � � �� � 	� �
� 
�� �
(2.46)

where � � � ���$
 is the characteristic frequency of the system as a function of
�

and�
. The function

�
and its derivative - regarded as a function of

�
- are periodic

with period
��� � � . The integral

� � � 
 � � � � 

� �
� 
� 	 � � �� � 	� � � 
 �

(2.47)

is small, if the period
�

is large compared to
��� � � and if

�
is slowly varying on

the time-scale given by
��� � � . Since

� �
� 

is arbitrary, this can be always fulfilled

as long as � �� � during the switching process.

In the multidimensional case Eq. (2.47) is replaced by

� � � � 
 � � � � � 

� �
� 
� 	 � � �� � � 	� � � 
 � (2.48)

where again
� � � � � � �

and the generator function � � � ��� ��� ���$

depends

on the vector of angles
�

and actions
�

as well as on
�

. The function
�

- as any

observable of the system - can be expressed as a Fourier sum according to Eq.

(2.37) with
�

fundamental frequencies � � [65]. That non-negligible term
� �

for which the frequency �
�

[cf. Eq. (2.38)] is minimal determines the largest

relevant period
� � � � � . The time

�
in Eq. (2.48) must be large compared to

this period and
� �
� 


must be slowly varying with respect to the time-scale defined
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by this period. If there is a non-negligible term with resonant frequencies then� � � � and the adiabatic switching process fails. The numerical application

of the method is hampered by very large
��� � � � corresponding to near resonant

situations. Unfortunately these situations are very likely in a system with many

DOF. The adiabatic switching has been successfully applied only in 1D and 2D

systems.

An alternative method to obtain a trajectory that is close to an invariant torus

is normal mode sampling [66]. It is assumed that the Hamiltonian of the system

may be harmonically approximated [cf. Eq. (2.1)]. For a given set of actions
�
, the

momenta and positions are given by Eq. (2.3) and Eq. (2.4), respectively, where

the phases
�

are arbitrary. The energy of the trajectories depends on
�

because

the employed transformation applies exactly only to harmonic oscillators. Thus,

usually the energy of a trajectory is rescaled to a desired value � simply by linear

scaling of the momentum and position vector,
� � ��� �

and
� �
��� �

, where
�

is the
�

-dependent scaling constant. In order to verify that a certain ensemble of

trajectories generated by this method is reasonable, it is necessary to investigate

the corresponding ensemble averaged power spectrum.

2.2 Multidimensional tunneling

In this section general concepts of multidimensional tunneling are introduced,

that are considered to be “well-known” in the literature. These concepts are of

fundamental importance for the discussion in the following Chapters.

2.2.1 Non-rigid molecules

A molecule with two symmetrically equivalent minimum geometries is consid-

ered. The molecule is non-rigid if the energy barrier
� � =

� between the minima

and the saddle point structure is not insuperable [10]. Two corresponding tau-

tomers of the molecule are interconverted by a permutation
�

(cf. Fig. 2.5). The

saddle point geometry is invariant with respect to
�

. Moreover, the Hamilto-

nian
��

of the non-rigid molecule is invariant with respect
�

. The permutation
�

and the identity
�

form a group
� �$� � �

isomorphic to the point group
	��

. These

groups have two one dimensional representations,

�
� and � � , respectively. Thus

any eigenstate of
��

can be characterized to be either gerade (

�
� ) or ungerade

( � � ) with respect to
�

.

Let
���
	

be the number of atoms of the molecule then the total number of

DOF is
� �



���
	

. Let � denote a
�

-dimensional vector of the mass-weighted

Cartesian coordinates of a certain geometry of the molecule. The center of mass
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�������������������������������������������������
�������
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������� �������������������������������������������������
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�������
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Figure 2.5: One tautomer (right-hand) is interconverted to the other tautomer (left-

hand) by a permutation
�

. For instance, in the
��� �� anion the two oxygen atoms

are interchanged. The two structures are only unique up to an arbitrary rotation.

A certain rotation � around a certain rotational axis leads to a left-hand geometry

that is connected to the right-hand geometry by a rotation free path, e.g., the in-

trinsic reaction path (IRP) [see text for the definition]. The potential along the IRC� ��� 

is shown, where

�
is the intrinsic reaction coordinate (IRC). The two unique

tautomer geometries are represented by 9-dimensional vectors � �
and ��� .

coincides with the origin. In the vicinity of its extrema the full-dimension po-

tential energy surface (PES)
� � � 


of the molecule can be harmonically approx-

imated. For each of the three geometries among 3 infinitesimal translation and 3

infinitesimal rotation vectors (non-linear molecules) there are
� � � vectors

�
�

of

dimension
�

corresponding to
� � � eigenmodes �

�
with eigen frequencies �

�
.

The first order saddle point geometry � 
�� is designated by a mode
� � 
 � �

=
� with

imaginary frequency � � 
 � �
=
� .

The PES can be characterized by the intrinsic reaction path (IRP) [67]. The

IRP is the path of steepest descent starting at the saddle point geometry. The

definition of the IRP reads 	
� �!� 
	
� � 	 � � � 
� 	 � � � 
 � � (2.49)

where
�

is the intrinsic reaction coordinate (IRC), and � ��� 

is the IRP as a func-

tion of the IRC. The integration of Eq. (2.49) starts at a geometry � 
 � � � � � 
 � �
=
�

infinitesimally displaced (
� � �#"

� ) from the saddle point geometry in direction of

the mode with imaginary frequency. The IRP ends at the minimum geometries;

the minimum geometry corresponding to
� 
 � and

� � � are denoted right � �
geometry and left �$� geometry, respectively, where the terms right and left are
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used for convenience. Any infinitesimal displacement along the IRP is orthogonal

to any of the three infinitesimal rotations. Thus, the IRP is a rotation free path that

connects the two minima via the saddle point. The two minima are related by a

molecular symmetry transformation
�

[10],

��� � � � � �
(2.50)

where
�

is composed of the permutation
�

followed by a rotation � of the

molecule,
� � � �

. The rotation is necessary, because � �
and

� � �
are gener-

ally not connected by a rotation free path.

The stable limit theorem (Fukui theorem) states that the IRP reaches a mini-

mum along the weakest mode that is symmetrically available [68]. Symmetrically

available means, for instance, that for a planar molecule only in-plane modes are

relevant. The energy along a typical IRP of a non-rigid molecule is depicted in

Fig. 2.5 as function of the IRC. Those systems are called double-well systems.

In the present work, Hamiltonians of non-rigid molecules are expressed in

Cartesian coordinates. The identity and the molecular symmetry transformation

form a group
� �$� � �

isomorphic to
� � � � �

(and
	 �

). This group is the analog for

a Cartesian representation of the Hamiltonian. It is always possible to introduce

Cartesian coordinates that transform according to the irreducible representations�
� (symmetric) and � � (anti-symmetric). To simplify the discussion in this Sec-

tion it is assumed that the reacting atom (e.g., the hydrogen of a hydrogen bond)

may be described by a single large amplitude coordinate � , rotational effects are

negligible, and the remaining coordinates
� � � � � � � � � �	� � ��� 
 perform only small

amplitude motions. The large amplitude coordinate must be anti-symmetric with

respect to
�

; the other coordinates may be either symmetric or anti-symmetric.

The classical Hamiltonian in mass-weighted Cartesian coordinates reads

�������#�	� � � � � 
 � �� � ��
�
�� � �

� � � � � ��
�� (2.51)

where
� � � � ��
 is the PES and

���
and

�
are the momenta conjugated to � and�

, respectively. The Hamiltonian - and especially the PES
�

- is invariant with

respect to
�

.

2.2.2 Tunneling splittings

Consider the classical Hamiltonian
�

[cf. Eq. (2.1)]. A situation is assumed

where there exists a quantizing invariant torus with quantum numbers � and en-

ergy � in the right well. The situation is depicted in Fig. 2.6 for a generic two-

dimensional case. There are
�

constants of motion
� �

. Thus, the projection of

the torus onto configuration space is confined to a region inside the equi-energy
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Ψ (R)
n

Ψ (L)
n

V(x, q) = E

caustics
q

x

Figure 2.6: Generic double-well potential. Caustics of the right and left invariant

torus are indicated by thick solid lines. The caustics tough the equi-energy line

with
� � � �	� 
 � � at four HU points. Semiclassical wave function


 � � ��
and


 � � ��
live on the right and left torus, respectively.

surface. In the two-dimensional example of Fig. 2.6 the projected torus resides

inside the equi-energy line which is touched at four HU points.

The semiclassical wave function (global asymptotic approximation) corre-

sponding to the right invariant torus is denoted as

 � � �� � � �	��
 . Symmetry implies

existence of an equivalent torus with equal energy in the left well and correspond-

ing semiclassical wave function

 � � �� � � � ��
 . Since the trajectories are bound to

either invariant torus, a transfer from left to right and vice-versa is classically

forbidden. Nevertheless, the semiclassically wave functions have exponentially

decaying tails that penetrate into the respective opposite well.

The energy � of the localized invariant tori may well be above the barrier,

because the existence of
� � � additional constants of motion confines the dy-

namics. This kind of barrier-less tunneling was called dynamical tunneling by

Heller [69]. The basic properties of tunneling between tori are unaffected whether� is above or below the barrier; in principle, the invariant tori may also overlap

in, e.g., configuration space [55].

Eigenstates of the corresponding quantum Hamiltonian
��

are either gerade or

ungerade with respect to
�

. One can construct gerade and ungerade superpositions

of the semiclassical wave functions by,
��� � �� � � 
 � � �� � 
 � � ���� �
(2.52)
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 �� � �� � � 
 � � �� � 
 � � ���� � (2.53)

The right-localized semiclassical wave functions is assumed to be exponentially

small in the left-well and vice-versa, i.e., the semiclassical wave function are ap-

proximately orthogonal. It is expected that there are exact eigenstates ���� that are

closely resembled by the superimposed semiclassical wave functions

 �� . If so,

the semiclassical tunneling splitting
� � ��� ��

is given by the coupling matrix element

times two,
� � ��� �� � ��� 
 � � � � �� � 
 � � ��� .

Herring [70] showed that the semiclassical tunneling can be related to the

value and gradient of the left and right wave functions along the symmetry surface�
. In the present case a possible choice for

�
is the surface defined by � �

� . Consider the exact wave function �	�� ; they are solutions of the Schrödinger

equation [Eq. (2.12)] with energies �
� ,

	 � � �� � �
	 ��� � � � ��
 � �� � (2.54)

	 � � �� � �
	 ��� � � � � 
 � �� � (2.55)

Multiplication of Eq. (2.54) [Eq. (2.55)] from the left by � �� [ � �� ] and integration

of the difference between Eq. (2.54) and Eq. (2.55) over the half-space with � 
 �
yields by employing Green’s theorem�

	 ��� � �� � � �� 
 � ��� � 	 � � 	
� ��� � � �� � ��

� �
� � �

	
� ��� �

� � �� �� � � �� � � �� �� � � �� � � (2.56)

where the normal vector on
�

is directed in
� � � 
 -direction. Formally, this equa-

tion is exact. Inserting the superimposed semiclassical wave functions for the ex-

act wave functions yields Herring’s formula for the semiclassical tunneling split-

ting,
� ����� �� � 	 � � � � �

	
� ��� � 
 
 � � �� �� � 
 � � �� � 
 � � �� �� � 
 � � �� � �

(2.57)

where it is assumed that for � 
 � both products,

 � � �� 
 � � ��

and

 � � �� 
 � � ��

, are

negligible small.

Herring’s formula is widely used in the literature concerning WKB theory [55,

30, 71]. It is important to note that according to Eq. (2.57) a priori the tunneling

splitting is not related to a tunneling path, instead it is related to the properties

of the wave function along a symmetry surface (or line in 2D)
�

. Moreover, as

was pointed out by Benderskii et al. [71], if one interprets tunneling in terms of

classical trajectories by means of semiclassical theory, such trajectories need to be
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followed only up to
�

. Especially, these trajectories may never reach the opposite

well, but, nevertheless, their contribution can be significant [72].

The interpretation of tunneling in terms of tunneling paths was, nevertheless,

rather successful; for instance, generalizations of transition state theory to include

tunneling paths were carried out [73]. A brief overview of related theories is given

in Chapter 3.

2.2.3 Coupling types

The most simple polynomial expression of an equivalent double-well potential of

a non-rigid molecule is given by the square-quartic Hamiltonian,� � � � 
�� � ���� � �
�
�� � � � � (2.58)

where only the large amplitude coordinate � is considered; � and � are constants

that determine the two minima at �����	� � � �
�
� � and the barrier height

� � =
� �

�
� �
�
� . The saddle point is at � � � . For instance, a PES like Eq. (2.58) may serve

as a simple model to describe the tunneling of a hydrogen atom in tropolone or

similar molecules. A small amplitude vibration can be modeled by the harmonic

oscillator PES, � � ���#

� �� 
 � � � � (2.59)

where
�

is the corresponding small amplitude coordinate (e.g., a normal mode),

and



is the frequency of the oscillator. If the two coordinates are coupled, the

dynamics is governed by the Hamiltonian Eq. (2.1) with PES� � � �&�#
�� � � � � 
 � � � � � 
 � � � � � � �	� 
 � (2.60)

where
� � � is the PES coupling term. The large amplitude coordinate is anti-

symmetric with respect to
�

while the small amplitude coordinate
�

can either

be symmetric or anti-symmetric with respect to
�

. Thus, if there is a minimum at� �� � �� 
 there must be an equivalent minimum either at
� � �� � �� 
 or at

� � �� � � �� 
 . Table

2.1 shows the three symmetrically allowed coupling terms that are at most second

order in �
�

and
� �

[72]. The constant
�

determines the coupling strength. The term

� � � is not allowed by symmetry, because
� � � must necessarily be invariant with

respect to
�

(obviously,
� � and

� � are so). All three coupling types are realized in

hydrogen transfer reactions of polyatomic molecules such as malonaldehyde [74]

or tropolone [75, 76] (cf. Chapter 6).

The term
� � � � corresponds to the symmetrical mode coupling (SMC) case.

The small amplitude coordinate (or mode)
�

is assumed to be symmetric with

respect to the molecular symmetry transformation
�

. The joined potential,
� � � � �
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Figure 2.7: Contour plots of instances of PES showing the three coupling types

(see text). The contour line spacing is 1/5 of the respective barrier height. The IRP

(thick black line; schematic) and straight line paths (dashed) are indicated. Top:

Symmetric mode coupling (SMC) [Eq. (2.61)]. The dimensionless parameters

are: �
� �� � � ,


 � � � ��� , and
� �



�

 � . Middle: Anti-symmetric mode

coupling (ASMC). The dimensionless parameters are: �
� � � � ,


 � � � ��� , and� � � � �����
�
. Bottom: Squeezed coupling (SQZ). The dimensionless parameters

are �
� � � � ,


 � � � ��� , and
� � � � � . The straight line path coincides with the

IRP.
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abrev. symmetry of
� � � � � � �	� 


SMC symmetric
� � � �

ASMC anti-sym.
� � �

SQZ both
� � � � �

Table 2.1: Symmetrically allowed coupling terms that are at most second order in

�
�

and
� �

. The constant
�

determines the coupling strength. [(A)SMC = (anti-)

symmetric mode coupling; SQZ = squeezed coupling]

� � � � � � � � � , can be written as a displaced harmonic oscillator coupled to a

double-well, � � � � � � �� � � �
�
�� �� � � � �� 
 �

� � � �

 � �

� � � � (2.61)

with a new constant �� � � � � �
. The displacement of the oscillator

� � � � �
� � � � � 
 � is proportional to the square of � . The saddle point and minima are at� � � � 
 and

��� �
�
� �� � � � � � �� 
 � 
 , respectively. The barrier height is

� � =
� � �

� �
�
�� .

Figure 2.7 (top) shows an SMC potential with typical parameters. Two character-

istic paths are also given: the IRP and a straight line path connecting the minima.

Trajectory (and path) based approaches for tunneling are discussed in Chapter 3.

Using the symmetry relation among the left and right wave function, it is possible

to rewrite Eq. (2.57) for the SMC case as

� � � 	 � �� � � � � �
	
� ��� � ��


 � � ��
��
� �

(2.62)

where real wave functions are assumed. Positivity of the probability density im-

plies that the integral is always positive. Moreover, reasonably a right localized

wave functions must be characterized by an exponentially decaying tail in the left

half of space ( � � � ). Thus, the tunneling splitting is always positive. According

to the stable limit theorem the mode with lowest frequency at the minimum is di-

rected along the IRP. Upon excitation the tunneling splitting increases for both, the

low and the high frequency mode, because the wave functions spread towards the

symmetry line [cf. Figure 2.7 (top)]. However, the spreading of the low frequency

mode is directed along the IRP. Therefore, the mode-selectivity of this mode is

pronounced.

The term
� � � corresponds to the anti-symmetric mode coupling (ASMC)

case. The small amplitude coordinate
�

is assumed to be anti-symmetric

with respect to
�

. The saddle point is at
� � � � 
 ; the minima are at � ���	� �� �

�
� �

� � � � � 
 � and
�
���	�

� � � � ���	� � 
 � . A typical PES is shown in Fig 2.7

(middle). Concerning tunneling splittings, the main properties of this coupling
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Figure 2.8: The shifted parabola model [cf. Eq. (2.63)]. Caustics of right and

left invariant tori with quantum numbers
��� � � � � 

� � � � � 
 are indicated (solid and

dashed). Dotted lines indicate nodes of the wave function. The nodes are also

present in the
	

region. The wave function oscillates along the symmetry line
�

( � � � ). The center of the two parabolas is indicated by a filled circle.

type can be most conveniently discussed by using the shifted parabola model [30].

The PES
� � � �	� 
 of the shifted parabola model equals the PES of two uncoupled

harmonic oscillators in the right and left well that are centered at, respectively,� � � �&� � 
 and
� � � � � � � � 
 ,� ��� � � � �	� 

� � �� � �� � � � � � 
 � � �� � �� ��� � � � 
 � � 
 �

�� � �� � �
�
� � 
 � � �� � �� � � � � � 
 � � � �

�
(2.63)

where � � and � � are frequencies corresponding to the � and
�

DOF, respectively.

Note, in principle the discontinuity at � � � could be removed by a smooth

switching function. Approximate solutions that are localized in either the right

or left well are shifted harmonic oscillator eigenstates. Caustics corresponding

to the invariant torus with quantum numbers
��� �#� � � 
 � � � � � 
 are depicted in

Fig. 2.8. The caustics (solid and dashed) and the nodal lines (dotted) are straight

lines. One observes that the wave functions oscillates along the symmetry line
�

( � � � ) because the action in the
	

region is complex. Thus, the value of the tun-

neling splitting is subject to a phase cancellation phenomenon when employing

Herring’s formula [Eq. (2.57)]. Especially, the tunneling splitting may oscillate

with respect to the quantum number
� � . This principal finding also applies to the

full ASMC-PES.
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The term
� � � � � correspond to the squeezed coupling case. The small ampli-

tude coordinate may either be symmetric or antisymmetric. The saddle point and

minima are at
� � � � 
 and

��� �
�
� � � � 
 , respectively. A typical instance of the PES

is shown in Fig. 2.7 (bottom). The joined PES can be written as an oscillator with

� -dependent frequency � � � 
 ,� ����� � � � � � 
 � �� � � � � 
 � � � (2.64)� � � 
 � � 
 �
� � � � � � (2.65)

where for
� 
 � the mode is weakened upon approaching the saddle point. The

PES coupling type is typically realized for out-of-plane modes in, e.g., tropolone

[76]. Upon excitation of the mode corresponding to the small amplitude coor-

dinate (typically the weakest mode), the wave function symmetrically spreads

towards the
�
-direction. The effective barrier for tunneling is increased and the

tunneling splitting decreases. Nevertheless, Eq. (2.62) applies for the SQZ-PES,

too, i.e., the tunneling splitting is always positive and the decrease is not related

to a phase cancellation phenomenon.

2.3 Propagation methods

Two methods are discussed in this section, that account for the propagation of mul-

tidimensional wave packets. First, the multi-configuration time-dependent Hartree

method is introduced. This method relies on a certain ansatz for the wave function

and has a numerical exact limiting case. It is therefore suitable for multidimen-

sional reference calculations. The second method is the semiclassical approxima-

tion to the quantum propagator. One may view it as the time-dependent version of

the semiclassical theory (as compared to the time-independent multidimensional

WKB theory discussed in Section 2.1). The semiclassical propagator is used in

Chapter 4.

2.3.1 Multi-configuration time-dependent Hartree (MCTDH)

approach

The grid-representation of a multidimensional wave function reads
 � ����� 

� ����
� � � �

� � � ����
� � � �

	 � � �
	
	
	 � � � � � 
 � � ���� � � � � 
�� � � � � � �� �
��� � 
 � (2.66)

where
	��

is a time-dependent coefficient matrix and � � � �� � � � � 
 are time-

independent basis functions. The coefficient matrix scales like

 � �� � 
 with re-

spect to the number of DOF
�

, where
��

is a typical number of basis functions for



2.3 Propagation methods 31

one dimension. This exponential scaling hampers any attempt of a direct propa-

gation of a multidimensional (say, with
� 
 �

) wave function. To this end, it was

proposed [77, 78, 26, 25] to resort to the multi configuration ansatz for the wave

function, 
 � ����� 
�� � ��
� � � �

� � � ����
� � � �

�
� � �
	
	
	 � � � � � 
 � � � �
	
	
	 � � � � ����� 
 � (2.67)

where a single configuration is given by a Hartree product of
�

time-dependent

so called single particle functions (SPF),

� � � �
	
	
	 � � � � ����� 
�� � � ���� � � � � ��� 
�� � � � � � �� �
��� � ��� 
 � (2.68)

The integers
� �

refer to the number of SPF corresponding to a certain DOF
� �

.

Equations of motion for the coefficient matrix
�
� � �
	
	
	 � � � �
� 
 and the SPF � �

�
�� � ��� � ��� 


can be derived by the Dirac-Frenkel variational principle,

� � 
 � �� � � 	 �� � � 
 � �� � � (2.69)

where the co-conditions are

� � �
�
�

�
� � �

�
�� � � � ��� � (2.70)� � �

�
�

�
� 	� �

�
�� � � � � (2.71)

Condition (2.70) guarantees that the SPF are orthonormalized; condition (2.71)

guarantees that the change of a certain SPF is orthogonal to the part of function

space that is already spanned by the unchanged set of SPF. A SPF should only

be changed, when the change cannot be expressed by a linear combination of the

old set of SPF. The equations of motion of the multi-configuration time-dependent

Hartree (MCDTH) method read� 	� � � �
�
� � � � �� � � � � � � � (2.72)

� �� �
�
� � � 	� � �� �

�
� � ��� �

�
� � ��� �� �

�
� � �

�
� � �

(2.73)

where the capital letters 	 and 
 are index vectors,
� �
�
�

are the vectors composed

of SPF of DOF � . The remaining quantities are defined by

�� �
�
� � � ��

� � �
� � �

�
�

� � � � �
�
�

�
� �

(2.74)

� �
�
��
� � � 
 � � �

�
�� � � � �

�
�� � 
 � �

(2.75)�� �
�
��
� � � 
 � � �

�
�� � �� � � �

�
�� � 
 � �

(2.76)

where
�� �
�
�

is the projector onto the space span by the SPF corresponding to DOF� ,
� �
�
�

are the single particle density matrices, and
�� �
�
�

are the mean fields. All
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Figure 2.9: Illustration of the MCTDH method. The initial wave packet

 �
�
� � 


moves and spreads during the time evolution. The time-dependent SPF � � � � can

follow the motion of



(only one SPF per DOF is shown).

three quantities are related to a single DOF � only. The mean fields are operators

acting on a particular DOF. The position representation of the density matrices

unveils the relation to the one-particle density of a many-body system [25]. The

eigenvectors and eigenvalues of
� �
�
�

are the natural orbitals and natural popula-

tions, respectively. These quantities are unique with respect to the choice of initial

SPF. The population of the highest natural orbitals provides a convergence test for

the MCTDH calculation.

The time-dependent basis (i.e., a set of time-dependent SPF) can follow the

wave packet during the propagation making the ansatz Eqs. (2.67-2.68) more ef-

ficient than using the same number of time-independent basis functions (cf. Fig.

2.9). The efficiency can be further increased by combining certain modes [79].

Let
� � � � � with � ��� � � denote a subset of the full coordinate vector

�
. There are� � �

subsets in total and they are mutually disjoined. A modified single con-

figuration is now given by a product of functions corresponding to the individual

subsets of coordinates,

�� � � �
	
	
	 � ��� � � ��� 
�� � � ���� � � � � � � � ��� 
�� � � � ��� ���� � � � � � � ��� 
 � (2.77)

The full ansatz is obtained by replacing � � �� and
� � � in Eq. (2.67). For

convenience the basis functions appearing in Eq. (2.77) are also denoted single

particle functions (SPF). For a numerical integration of the equations of motion

the SPF are usually expressed on a DVR grid [80, 81]. (A comprehensive review

of DVR techniques is given in one of the Appendices of Ref. [25].)

The MCTDH approach is also capable of diagonalizing a multidimensional

Hamiltonian [26]. First, the Hamiltonian is diagonalized within the basis of the

initial SPF (providing a certain SPF guess). This yields expansion coefficients
� �
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corresponding to each eigenstate. The coefficients corresponding to the desired

eigenstate are used to build the quantities appearing on the r.h.s. of Eq. (2.73).

Then, a small step of integration is performed for imaginary time (
� � � 	 ) and

a new optimized set of SPF is obtained. The procedure is repeated until conver-

gence. It was shown that this method converges to the eigenstates that correspond

to the variational principle applied to the MCTDH ansatz under co-condition Eq.

(2.70) [26]. The method was called improved relaxation in order to distinguish it

from a previous version, that was only able to determine the ground state.

There is a rather large number of successful applications of the MCTDH ap-

proach. For instance, a study of a 24D model of the pyranzine molecule was given

[79] and recently benchmark calculations for generalized Henon-Heiles systems

with up to 32 dimensions were reported [82]. However, all these systems are char-

acterized by a single minimum. On the opposite, the present work is concerned

with double minimum systems.

Extensions of the MCTDH approach were formulated [83, 84], that are head-

ing towards the treatment of even more DOF. The multilayer formulation of Wang

and Thoss [84], where each SPF is treated recursively as a MCTDH wave func-

tion, is one example.

2.3.2 The Herman-Kluk propagator

The discussion in Section 2.1 was concerned with semiclassical solutions to the

time-independent Schrödinger equation. In analogy, one may ask for semiclassi-

cal solutions to the time-dependent Schrödinger equation,

� 	 �� � 
 � ����� 

� �� 
 � ����� 
 � (2.78)

For time-independent Hamiltonians
��

the time evolution of an initial wave packet
 � ����� � 

is governed by the quantum mechanical propagator (QMP)

�� � ����� � 

; in

position representation one has

� � � � � � ��� � � � 
 � � � � ������� � �	 �� � � � � � 
�� � � � � �
(2.79)
 � ����� 
 � � 	

� � � �� � � � � � ��� � � � 
 
 � � � ��� � 
 � (2.80)

Note, formally, the QMP is a solution of the time-dependent Schrödinger equa-

tion. Thus, it is necessary to search for the semiclassical approximation to the

QMP.

Consider a canonical transformation from old variables
� � � ��


to new variables��� ��� 

(cf. Appendix A.1). Miller [85] derived the semiclassical correspondence

relation for probability amplitudes by using the stationary phase approximation
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[31]. For the semiclassical transition probability for a system being in a state

corresponding to the old canonical variable
�

(e.g., a position eigenstate) to a state

corresponding to the new canonical variable
�

(e.g., another position eigenstate)

one finds

� � � � � � �
� �� ��� � 	 
 � � � � � � � � � ��� 
� ��� � � � � � � � ��
 �	 � � � � � � 
 � �

(2.81)

where
� � is the generator function of the canonical transformation depending on

the considered variables [51].

The action along a trajectory that goes from
� �

to
�

in time
� � � �

is given by

the integral over the Lagrangian
�

(cf. Appendix A.1),

� � � � � � ��� � � � 
�� � �
� � � � ��� � 	��� 


	 	 �
(2.82)

where the Lagrangian is the usual difference between kinetic energy
�

and poten-

tial energy
�

,
� � � � �

. The action
�

is the
� � -type generator function of the

dynamical transformation. According to its definition, it is the canonical trans-

formation from old variables
�

at time
�

to new variables
� �

at time
� �

[51], i.e.,

it transforms from a final point of the trajectory to its initial position. With this

in mind and by using Eq. (2.81) the position representation of the semiclassical

propagator reads

� ����� � � � � � � ��� � � � 

��
� �� ��� � 	 
 � � ��� � � � � �	� � 
� ��� � � � � � � ����� 
 �	 � � � � � � ��� � � � 
 � � (2.83)

If there is more than one trajectory connecting the initial and final point in time� � � �
one has to sum all the contributing trajectories in Eq. (2.83). Gutzwiller

[86] derived the semiclassical propagator (also known as van Vleck-Gutzwiller

propagator) as the 	 � � limit of the path integral [87]. Gutzwiller found [31, 86]

that a phase � � � � � � � � � has to be added to account for sign changes of the

determinant, where
� �

counts the number of points along the trajectory at which

the determinant vanishes (conjugate points).

The semiclassical propagator
�� � � � � is of limited use in numerical applications,

because the integral involves a search for a trajectory given the two end-points

and a time. This is a double-ended boundary condition. Its implementation would

mean to try all possible momenta for a fixed position, which is impractical at best.

The problem has been solved by resorting to initial value representations (IVR) of

the propagator [88]. An IVR involves only a single integral over initial conditions

of trajectories.
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A numerically rather convenient IVR was derived by Herman and Kluk [34].

The method was motivated by Heller [35]. It takes advantage of the properties of

generalized Gaussians (coherent states [32]) of the form

� � � � � � � � � � ���� � � � � � � ��� � � � � � � �
�

 � � �	 � � � � � �

�

 � �

(2.84)

where
�

is the number of DOF, � is an arbitrary positive parameter,
�
� is the

expectation value of the momentum operator
��
, and

�
� is the expectation value

of the position operator
��
. The properties of coherent states are summarized in

Appendix B. For a fixed parameter � they form an overcomplete set [32] and

satisfy � 	
� � � � 	

� � � � � �
� �
�
� �
� � � � � � � � � � �� � � 	 
 � � � � � � � ��
 � (2.85)

By sandwiching the semiclassical propagator Eq. (2.83) using this relation twice

and performing position integrals by means of stationary phase Herman and Kluk

derived the equation [34]

�������� � � � � 
�� � ��� 	 
 � � �
	
� � �� � � �� � � 	 � 
�� � � � � � �� � � � (2.86)

where
�� � � ���� �� 


has been introduced as abbreviation,
�� � and

�� � are, respectively,

initial and final conditions of a classical trajectory with propagation time
� � � � , � �

is the action along that trajectory [cf. Eq. (2.82)], and
	 � is a complex prefactor,	 � � � � ��� �� �

	
� �

�
	 � � � � � 	 	 � � � �

� 	 	 � � � � � � � � (2.87)

where the elements of the monodromy matrix were introduced,

� 	
� �

	
� �

	 � � 	 � � � � � � �� � � � �� � � �� � � � �� �� �� � � � �� � � �� � � � �� � � � (2.88)

The sign of the prefactor has to be chosen in order to ensure continuity of the

function
	 � [89, 33]. The essence of the final result of Herman and Kluk (HK)

is rather intuitive: Consider an initial wave packet

 � ��� � 
 . The HK propagated

wave packet for a later time
�

is obtained by propagating the center of Gaussians

with a frozen width determined by � along classical trajectories from
�� � to

�� � . The

contribution of each Gaussian is summed up and weighted by a factor given by

the prefactor
	 � , the classical phase determined by the action

� � , and the weight� �� � � 
 � � 
 � . This weight can be written as � 
 ��
 with an amplitude � and a phase � .

The amplitude � can be conveniently used as distribution function for importance

sampling (Metropolis algorithm) [90].

The HK propagator has been investigated and widely used by several authors

[91, 92, 93, 94]. Moreover, it was combined with high-resolution spectral analysis
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methods in order to obtain semiclassical eigenvalues [95, 39]. There are a number

of different derivations known in the literature. The original derivation of Herman

and Kluk is sketched here [34, 96]. More elegant treatments start from the semi-

classical approximation to the representation of the propagator in coherent states�� � � � � � ��� � � � 
 . Weissman [97] derived correspondence relations for so-called co-

herent transformations in analogy to the results of Miller [85] for canonical trans-

formations. Semiclassical approximations based on coherent states (i.e., Gaus-

sians) were recently reviewed by Baranger et al. [33]. Especially, these authors

note that the original HK formula is no strict 	 � � approximation. Nevertheless,

the use of the original HK formula is suggested because (i) it is widely used, (ii)

it essentially simple, and (iii) the error between semiclassical approximation and

quantum mechanical exact solution is analytically known in one-dimension (see

below).

Ankerhold et al. [98] showed that the HK propagator satisfies Schrödinger’s

equation up to an error operator
�� � ,

� 	 �� � ����� � �� ��� �

� �� � � (2.89)

and gave an explicit expression for
�� � for 1D systems. For the derivation one

straightforwardly evaluates the time-derivative of the HK expression Eq. (2.86).

For
�
� � it is possible to obtain a closed expression,

�� � � �

 � � � � 
 � � � � � 
�� �� � �#
 ����� � � � �� 
 �

(2.90)

where � is corresponding HK parameter,
� � � 


is the potential energy function,
��

is the position operator, and the average is defined for a function � � � 
 as:

� � � � 
 � � ��� �� � 

� 


	 � � � ��� � � � �� � � 
 � � � � � 
 � (2.91)

There are two kinds of errors that make up
�� �

: (i) the difference between semi-

classical and quantum propagation and (ii) an error, that has been introduced by

the approximations made in deriving the HK propagator [33]. Nevertheless, there

seems to be no intuitive explanation for expression Eq. (2.90).

An analytic PES
� ���#


can be expanded by the well-known Taylor series:� � � 
�� � � � 

� � � � � 
 �

�
�� � � � � � 
 � �

�
�
�
� � � � � � 
 �
	 � � � � � (2.92)

where a prime means derivation with respect to
�
. Moreover, the average

� � �
�

is

linear with respect to its argument. Thus, in order to determine
�� �

for a given

PES
� ���#


it is sufficient to determine
�� �

for
� �

with
� � � � � � � � � � � . In Table 2.2

the corresponding error operators up to
���

are listed. Not surprising, the
�� �

for at



2.3 Propagation methods 37� ���#
 � � � � � � � 	 � � �
�
�� � � 0 � 	� � � � � �

�
� �

� � ��
Table 2.2: The HK error operator Eq. (2.90) at

��� � for PES of the form
� �

with

� � � � �
.

most harmonic terms (
� � �

) vanish. This is because the semiclassical propaga-

tor is exact for harmonic potentials. Interestingly also
�� �

for the first anharmonic

term
� 	

vanishes [98]. The error operator for the quartic term is a constant propor-

tional to the inverse square of the HK parameter � . This clearly indicates, that the

corresponding error is of unphysical nature, because in the derivation of the HK

propagator � was arbitrary. The same is true for the
���

term error operator. Here,

the error operator is proportional to the position operator. These observation are

of particular importance in Chapter 4.

According to Eq. (2.89) the HK propagator can be separated into the exact

propagator
������� � �� �� ��� and an error term:

�� ��� �
� 
�� ������� � �	 �� ��� � �	
� �� �� ��� 	 � � � (2.93)

One could argue, that any non-classical effect is accounted for by the error term.

However, this conclusion is incorrect. Consider the linear term in the Taylor series

expansion with respect to
��� � ,

�������� � 
 � �� � �	
� �� � �� � � � ��� �	 �

� � �� �
� 	 � � �� �� � ����� � �

� � � � � � � � � (2.94)

It is proportional to a new operator
�� � � ��

� �� �
. Thus, for short enough time,

the propagation is governed by a new time-independent Hamiltonian
�� �

. For at

most quadratic terms appearing in
� ���#


the error operator is a constant (cf. Tab.

2.2). This implies - somewhat counter-intuitive - that all non-classical effects

are included in a 1D semiclassical HK propagation for short times with at most

quadratic terms.
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