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Abbreviations

ACSM1 : Acyl-CoA synthetase medium chain 1

AR: Androgen receptor

BIRC5 : Survivin

BRCA1/2 : Breast cancer 1/2

CDH1 : Cadherin-1

CDKN1B : Cyclin-dependent kinase inhibitor 1B (p27)

CI: Confidence interval

DC: Differential correlation

DE: Differential expression

ER: Estrogen receptor

FDR: False discovery rate

FOXC1 : Forkhead box C1

GATA3 : Transacting T-cell-specific transcription factor 3

GO: Gene Ontology

HER2: Human epidermal growth factor receptor 2

HR: Hormone receptor

ILC: Invasive lobular carcinoma

KEGG: The Kyoto Encyclopedia of Genes and Genomes

MAP3K1 : Mitogen-activated protein kinase kinase kinase 1

MYBL2 : Myb-related protein B

NCOR1 : Nuclear receptor corepressor 1

NF1 : Neurofibromin 1

NST: Invasive breast carcinoma of no special type

OS: Overall survival

PD-1: Programmed cell death-1

PD-L1: Programmed death-ligand 1

PFS: Progression-free survival

PGDH : Hydroxyprostaglandin dehydrogenase

PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha

PR: Progesterone receptor

PTPRD : Receptor-type tyrosine-protein phosphatase delta

RB1 : Retinoblastoma 1

TCGA: The Cancer Genome Atlas

TIL: Tumor-infiltrating lymphocyte

TP53 : Tumor suppressor 53
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Abstract

Histopathological diagnosis of cancer is the basis of oncological therapy. However, during

the last two decades, rapidly increasing amounts of high-dimensional molecular profiling

data has become available. These data have been used to complement classical morphology-

and immunohistology-based methods, but are still rarely used in the clinical practice. The

aim of this work is to contribute to bridging the gap between these approaches.

First, we designed two algorithms for differential correlation analysis in gene expression

data. Complementary to differential expression analysis, which searches for globally up- or

downregulated genes, differential correlation analysis aims to identify groups of genes that

exhibit different correlation patterns in two disease states. These algorithms were applied to

compare subgroups of breast cancer defined by immunohistochemistry for the estrogen and

the HER2 receptor. This permitted the identification of differentially correlated gene groups,

which contain known and potentially new prognostic or predictive biomarkers. In particular,

our analysis enabled the discovery of subtype specific divergences beyond the results of

conventional differential expression analysis. Secondly, we analyzed the relationship between

the mutational profile, histological tumor grade and subtypes of breast cancer. Notably,

this analysis showed that the mutational load is significantly correlated with the tumor

grade and the gene expression of known proliferation markers of breast cancer. Finally,

we investigated the prognostic value of programmed cell death-1 (PD-1) and programmed

death-ligand 1 (PD-L1) in gene expression data of ovarian high-grade serous carcinoma.

High expression levels were associated with favorable prognosis and these results corroborate

experimental findings based on immunohistochemistry.

In summary, the different parts of this work, although methodologically distinct, all

contribute to an integrative analysis of the complex relations between different data modal-

ities including high-dimensional molecular profiling data and (immuno-)histopathological

features. This is one step towards the integration of new omics-based data with classical

diagnostic approaches used in breast and ovarian cancer pathology.
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Abstrakt

Die histopathologische Diagnose einer Krebserkrankung ist die Grundlage für onkologische

Therapien. Gleichwohl sind in den letzten zwei Jahrzehnten eine stark zunehmende Menge

an hochdimensionalen molekularen Profilierungsdaten verfügbar geworden. Diese Daten

wurden dazu benutzt, um konventionelle auf Morphologie und Immunhistologie basierende

Methoden zu ergänzen. In der klinischen Routinearbeit werden sie aber weiterhin selten

eingesetzt. Ziel dieser Arbeit ist es dazu beizutragen, die Lücke zwischen diesen Ansätzen

zu verringern.

In dem ersten Teil entwickelten wir zwei Algorithmen zur differentiellen Korrelations-

analyse von Genexpressionsdaten. Komplementär zur differentiellen Expressionsanalyse,

welche nach global hoch- bzw. herunterregulierten Genen sucht, zielt die differentielle Kor-

relationsanalyse auf die Identifikation von Gengruppen, die in zwei Krankheitszuständen un-

terschiedliche Korrelationsmuster zeigen. Diese Algorithmen wurden anschließend angewen-

det, um die immunhistochemischen Subgruppen des Mammakarzinoms (eingeteilt nach

Östrogenrezeptor- und HER2-Status) zu vergleichen. Dies ermöglichte die Identifizierung

von Gruppen differentiell korrelierender Gene, welche bekannte und möglicherweise neue

prognostische oder prädiktive Biomarker enthalten. Insbesondere ermöglichte dieser Ansatz,

subtypenspezifische Unterschiede zu erkennen, die über die Ergebnisse konventioneller

differentieller Expressionsanalysen hinausgehen. Im zweiten Teil untersuchten wir die

Zusammenhänge zwischen Mutationsprofil, histologischem Tumorgrad und den Subtypen

des Mammakarzinoms. Diese Analyse zeigte insbesondere, dass die Mutationslast sig-

nifikant mit dem Tumorgrad und der Genexpression bekannter Proliferationsmarker des

Mammakarzinoms korreliert. Schließlich untersuchten wir den prognostischen Wert der

Genexpression von programmed cell death-1 (PD-1) und programmed death-ligand 1 (PD-L1)

im hochgradigen serösen Ovarialkarzinom. Hohe Expressionsniveaus waren mit einer günsti-

gen Prognose assoziiert. Diese Resultate bekräftigen experimentelle immunhistologische

Untersuchungen.

Zusammenfassend tragen die verschiedenen Teile dieser Arbeit, trotz unterschiedlicher

Methodik, alle zu einer integrativen Untersuchung der komplexen Relationen zwischen

verschiedenen Datentypen bei, insbesondere zwischen hochdimensionalen molekularen

Profilierungsdaten und (immun-)histologischen Merkmalen. Dies ist ein Schritt hin zur

Integration der neuen omik-basierten Daten mit klassischen diagnostischen Ansätzen in der

Pathologie des Mamma- und Ovarialkarzinoms.
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1 Introduction

The lifetime risk of developing cancer is currently around 51 % for men and 43 % for women

in Germany [1]. Despite significant advances in cancer research over the last decades,

oncological therapy remains very challenging and around 40 % of the patients die from

their disease within 10 years of the initial diagnosis. Breast cancer, which is the most

common cancer in females and main focus of this work, accounted for 30.8 % (69,550) of

the newly diagnosed cases and 17.5 % (17,728) of the cancer-related deaths for women in

Germany in 2012 [1].

In almost all cases, the final cancer diagnosis relies on the histopathological examination

of bioptic or surgical tumor samples. The tumor classification depends primarily on the

analysis of the morphological features on a standard (hematoxylin and eosin stained) tissue

section. Tumor type and other properties such as growth patterns or the differentiation

of the tumor cells (tumor grading) are determined based on these sections. Frequently,

immunohistochemical stainings are necessary to obtain additional information. For instance,

in breast cancer the hormone receptor (HR) status (i.e., the estrogen receptor (ER) and

the progesterone receptor (PR) status), the human epidermal growth factor receptor 2

(HER2) status and the cellular growth rate (estimated by the percentage of tumor cells

positive for the marker Ki67) may be determined. The HR and the HER2 status have

direct clinical implications since the corresponding signaling pathways can be blocked

by targeted therapies in patients with HR+ or HER2+ tumors improving their outcome

significantly. Accordingly, the current classification of cancers as implemented by the WHO

(cf. [2, 3] for an overview of the breast and ovarian cancer classification), primarily depends

on morphological features and is only complemented by molecular data.

During the last two decades, there has been a rapidly increasing amount of newly

available molecular data of cancer. These data are frequently referred to as “omics” data,

where the suffix -omics summarizes the different fields from which the data arise, e.g.,

genomics (mutational data and copy number variations), transcriptomics (DNA-microarray

gene expression data or RNA-seq data), proteomics and metabolomics. In 2001, Sørlie et

al. used clustering of breast cancer gene expression data in their seminal work [4] to define

new molecular subtypes, which were shown to be associated with distinct clinical outcomes.

In the following years, advances in experimental techniques, in particular next-generation

sequencing, allowed for the generation of huge amounts of comprehensive genetic profiling

data from various cancers. Most notably, The Cancer Genome Atlas (TCGA) project,

started in 2005, characterized around 11,000 tumors from 33 different entities and made

the resulting genomic, transcriptomic and proteomic data publicly available [5].

These huge amounts of high-dimensional molecular profiling data are undoubtedly

offering very promising opportunities for cancer research. Extraction of the relevant

information and their interpretation can, however, be very difficult. Indeed, the analysis of
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the data cannot be performed manually, and requires novel computational methods and

algorithms. Furthermore, statistical analysis of these data does not necessarily provide new

insights in the pathogenetic disease mechanisms, in particular if it is not associated with

prior biological knowledge [6]. The aim of this work is to contribute to bridging the gap

between the new omics-based research and classical morphology- and immunohistology-

based pathology. To this end, we developed novel and applied existing quantitative methods

for the analysis of “omics” data integrating histopathological features related to cancer

pathology.

In the first part of this thesis, we designed algorithms to identify differentially correlated

genes between two disease states. We applied these methods to determine subtype specific

gene expression patterns of the breast cancer subgroups as defined by immunohistochemistry

(ER+ vs. ER-, HER2+ vs. HER2-). Differential expression analysis (DE) [7] has widely

been used for this purpose [8–10]. Differential correlation (DC) analysis is a complementary

approach (see for example [11–18]), which aims for a deeper understanding of disease-specific

gene expression patterns. Indeed, differentially activated signaling pathways resulting in

highly coordinated gene expression patterns are not necessarily associated with global

up- or downregulation of gene sets. These expression patterns can be identified by DC

analysis, but may be overlooked by DE analysis. Previous approaches developed different

strategies to compare correlation networks of two different disease conditions [14–16].

In general, building these correlation networks requires setting a threshold. The genes

under investigation are represented by vertices and they are connected by edges if the

Pearson correlation of their gene expression profiles exceeds the given threshold. However,

the network topology can differ significantly between two thresholds. As a novelty, our

algorithms do not only compare networks built for a unique threshold, but investigate a

comprehensive series of networks built for 100 or 200 thresholds. This allows for a robust

detection of different kinds of correlation changes, strong changes of a small number of

genes and moderate changes of many genes.

In the second part, we analyzed the relationship between the mutational profile, the

histological tumor grade, the molecular subtypes and gene expression data in breast cancer.

As mentioned previously, daily routine diagnosis of breast cancer is still based on clinical,

morphology- and immunohistology-based features. To refine this approach, multigene

signatures have been proposed to classify the tumors according to their prognosis (such

as the PAM50 classifier [19]) or to assess the risk of recurrence after surgery without

chemotherapy [20–22]. However, mutational data is not used in routine diagnostics with

the exception of the BRCA1/2 screening. Therefore, our analysis aims at integrating

mutational profiling data and classical pathology of breast cancer.

Finally, we analyzed the prognostic value of programmed cell death-1 (PD-1) and

programmed death-ligand 1 (PD-L1) in high-grade serous ovarian carcinoma. PD-1 is an

inhibitory receptor frequently expressed on tumor-infiltrating lymphocytes (TILs). TILs
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were shown to be associated with increased survival in this tumor entity [23–25]. PD-L1,

which is commonly present on tumor cells, is a ligand of this receptor and its expression

inhibits antitumoral T cell response in different mouse models (reviewed in [26]). Several

clinical trials have investigated immune checkpoint inhibitors, i.e., molecules that target

PD-1 or PD-L1 and block their interaction, in various cancers (reviewed in [26]). These

molecules have been approved for the treatment of metastatic melanoma and advanced

non-small cell lung cancer. However, the precise functioning of the PD-1/PD-L1 pathway

in ovarian cancer, especially in presence of other mediators, remains unclear. In our paper,

PD-1 and PD-L1 expression patterns determined by immunohistochemistry in cancer cells

and TILs were systematically investigated. Our contribution to this work was focused on

the analysis of PD-1 and PD-L1 gene expression in data from TCGA, which we related to

the immunohistological findings.

In summary, the different parts of this work, although methodologically distinct, have

in common that they all allow for the analysis of complex relationships between different

data modalities, including molecular profiling and histopathological data.

2 Methods

All the statistical analyses, the implementation of the algorithms to investigate differen-

tial correlation and most of the data visualization were performed using the statistical

programming language R [27].

Datasets

The dataset used for differential correlation analysis was obtained by fusion of 6 publicly

available microarray datasets of breast cancer (GSE1456, GSE2034, GSE4922, GSE6532,

GSE7390 and GSE11121) from Gene Expression Omnibus [28]. The ER and the HER2

status of the samples were determined from the gene expression level of the corresponding

genes. The clinical information, the mutational data and the RNA-seq data of breast

cancer used in the second part of this work were obtained from TCGA [29]. The clinical

data and the transcriptomics data of ovarian cancer used in the third part for the in silico

validation of the experimental results were also obtained from TCGA [30]. All these data

were previously published and available without limitations.

Differential network analysis

We developed two algorithms to compare the global (DCglob) and the local (DCloc) topology

of correlation networks. In such a network, genes are represented by vertices and they

are connected by an edge if the Pearson correlation of the corresponding gene expression

profiles exceeds a given threshold t. Let us assume that we compare two disease conditions
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A and B. Since the network topology strongly depends on the choice of the cutoff, we

did, as a novelty, not only compare two fixed networks, but a series of k (typically 100

or 200) networks (N t
A), (N t

B), t ∈ 1, . . . , k. DCglob compares the evolution of connected

components, i.e., parts of the network in which any two vertices are connected by a path.

For each threshold t, the algorithm computes the connected components in the networks

N t
A and N t

B. A gene is considered to be differentially correlated for the threshold t if it

is member of a connected component with at least 3 vertices in the network constructed

for one of the disease conditions but not the other. This yields (potentially empty) sets

of intervals containing threshold values for which a gene is differentially correlated. The

length of the longest interval in this set is then converted into a score characterizing the

strength of differential correlation (DC) for every gene. DCloc focuses on the evolution

of the local gene neighborhood for the different thresholds. For every gene and for every

threshold, the number of common next neighbors in both networks N t
A and N t

B divided by

the total number of next neighbors is computed. This score is high if the neighborhoods are

similar and low if the neighborhoods are dissimilar. The results for the different thresholds

are averaged yielding a measure of differential correlation for every gene. Finally, both

algorithms return lists of differentially correlated genes showing higher correlation in one

of the disease states compared to the other, which can be ordered by the strength of DC.

The algorithms are untargeted in the sense that they do not rely on any prior biological

knowledge. In particular, they do not compare predefined gene modules but they are able

to detect DC in general situations. For a more precise description of the algorithms, we

refer to the methods section of the corresponding paper [31].

Association of clinico-pathological parameters and “omics” data

To identify associations of clinico-pathological parameters and “omics” data or associations

between different types of “omics” data (e.g., mutational load and RNA-seq), we used

several statistical methods and tests, including the Spearman correlation, Wilcoxon’s

test, Welch’s test and the Jonckheere-Terpstra test. In general, p-values < 0.05 were

considered statistically significant. Multiple testing correction using the Bonferroni or the

Benjamini-Hochberg method was applied whenever appropriate. More details are provided

in the methods section of the corresponding papers [31, 32].

Data visualization and functional analysis

The statistical analysis of the first two papers in this thesis frequently resulted in lists

of candidate genes, which were, for instance, differentially correlated [31] or associated

to the mutational load [32]. For the visualization and interpretation of the differentially

correlated genes, we used heatmaps and hierarchical clustering as implemented in R as well

as network representations prepared with Cytoscape [33]. We applied gene set enrichment
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analysis for a functional description of the resulting genes in both papers. To this end,

the overlap of the resulting genes and categories from established databases, like the Gene

Ontology (GO)[34], the Kyoto Encyclopedia of Genes and Genomes (KEGG) [35] or the

Reactome pathway [36] was computed and assessed for significance using Fisher’s exact

test.

Survival Analysis

We used the Cox proportional hazards model as implemented in the R package survival to

assess the continuous influence of covariates on the outcome [27, 37]. For dichotomous anal-

yses, the Cutoff Finder software [38] was used to find optimal cutoff points for biomarkers.

The statistical significance was assessed using the logrank test.

3 Results

Differential correlation in breast cancer

Reference: M. Bockmayr, F. Klauschen, B. Györffy, C. Denkert and J. Budczies: New

network topology approaches reveal differential correlation patterns in breast cancer; BMC

Syst Biol. 2013 Aug 15;7(1):78

We developed two untargeted algorithms (DCloc and DCglob) that are capable of

identifying differential correlation patterns from microarray data for two disease conditions.

The construction of correlation networks, which serve as input for the algorithms, requires

the selection of a correlation threshold above which the vertices (genes) are connected by

edges. As a novelty, our algorithms do not only investigate a single network constructed

for a fixed threshold but systematically analyze networks constructed for a comprehensive

series of 100 to 200 thresholds covering the full range of positive correlations. This allows

for the detection of different kinds of correlation changes at the same level of significance:

strong changes of a few genes and moderate changes of many genes. We applied the

algorithms on a large breast cancer microarray dataset (1317 samples) obtained by

fusion of 6 publicly available datasets and compared the ER+ vs. ER- and the HER2+

vs. HER2- subtypes. The false discovery rate (FDR) was estimated using a repeated

random subsampling analysis. Using DCglob, 630 differentially correlated genes (FDR

= 12.1 %) were detected between the ER subtypes and 804 (FDR = 9.5 %) between

the HER2 subtypes. Using DCloc, 770 differentially correlated genes (FDR = 12.8 %)

were detected between the ER subtypes and 1027 (FDR = 9.6 %) between the HER2

subtypes. We performed a two-fold cross-validation to assess the reproducibility of our

results. The overlap of the top 5 % differentially correlated genes comparing distinct sets

of 140 ER- tumors and 140 ER+ tumors was 49 % for DCloc and 33 % for DCglob. Gene
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set enrichment analysis was executed on the resulting gene lists and revealed numerous

significantly enriched gene sets, in particular cell cycle genes, for both analyses. The

resulting genes were also visualized using heatmaps and a network representation. The

clusters of genes showing higher correlation in ER- compared to ER+ breast cancer were

shown to be associated with marker genes of previously described breast cancer subtypes,

including invasive apocrine carcinomas (IAC) [39], the HER2+ subtype [40], an androgen

receptor (AR) responsive subtype [41], and the FOXC1 subtype [42]. Remarkably, our

algorithms detected several significantly differentially correlated genes (between 23 % and

53 % for the different analyses) that were not differentially expressed, including two of the

markers for IAC, hydroxyprostaglandin dehydrogenase (PGDH ) and acyl-CoA synthetase

medium chain 1 (ACSM1 ).

Mutational load and classical pathology of breast cancer

Reference: J. Budczies*, M. Bockmayr*, C. Denkert, F. Klauschen, J.K. Lennerz, B.

Györffy, M. Dietel, S. Loibl, W. Weichert and A. Stenzinger: Classical pathology and

mutational load of breast cancer – integration of two worlds; J Path: Clin Res 2015

Oct;1(4):225–238 (* J. Budczies and M. Bockmayr contributed equally to this work.)

The goal of this work was to link the two worlds of histopathology and multi-

layered molecular profiling in breast cancer. The most relevant histopathological

characteristics that influence clinical decision-making are the tumor type [2], the ER

and HER2 status, which is generally determined by immunohistochemistry, as well as

the tumor grading, which is based on the nuclear morphology, the mitotic rate and the

presence of tubule formation. Here, we performed an integrated analysis to elucidate

the relationships between molecular data (somatic mutations and RNA-seq) and the

aforementioned histopathological features. To this end, we evaluated the number of genes

with non-silent somatic mutations in a cohort of 687 primary breast cancer patients from

TCGA. The number of mutated genes was strongly associated with the tumor grade,

increasing from a median of 23 mutated genes in G1 tumors via 27 in G2 tumors to

43 in G3 tumors (p = 1.4e-14). It was also associated with the immunohistochemical

subtype with a median number of mutations increasing from 27 in ER+/HER2- via

39.5 in ER+/HER2+ via 41 in ER-/HER2+ to 49 in ER-/HER2- (p = 1.4e-10) and the

molecular subtype as determined by the PAM50 classifier [19] (p = 4.3e-10). The two

main histological subtypes, i.e., invasive breast carcinoma of no special type (NST) and

invasive lobular carcinoma (ILC) were not associated with a significantly different number

of mutated genes. Interestingly, nodal positive tumors had a slightly lower median number

of mutations than nodal negative tumors (34 vs. 30; p = 0.0048). Second, evaluating

the relationship between the mutational load and recurrently mutated genes, we found

that a high number of mutated genes was significantly associated with mutations in
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TP53, NCOR1, NF1, PTPRD and RB1, but not with mutated PIK3CA. Furthermore, we

assessed the correlation between the mutational burden and gene expression. We observed

significant associations (|R| > 0.4) between the abundance of mutated genes and expression

levels of genes related to proliferation in the overall and the ER+ cohort, including the

Recurrence Score gene signature [20] (e.g., MYBL2 and BIRC5 ). Specific genes, including

TP53, GATA3, CDKN1B, PIK3CA, CDH1, MAP3K1 showed characteristic associations

with tumor grade, immunohistochemical and PAM50 subtype. Finally, in a dichotomized

multivariate analysis of overall survival using Cutoff Finder [38], a larger number of

mutations (> 21) was associated with worse overall survival (hazard ratio = 4.6, 95 % CI:

1.0 – 20.0, p = 0.044). To sum up, we provided evidence that specific mutational patterns

underlie different morphological and biological phenotypes in breast cancer.

Prognostic impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-

L1) expression in cancer

Reference: S. Darb-Esfahani*, C.A. Kunze*, H. Kulbe, J. Sehouli, S. Wienert, J. Lindner,

J. Budczies, M. Bockmayr, M. Dietel, C. Denkert, I. Braicu and K. Jöhrens: Prognostic

impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer

cells and tumor-infiltrating lymphocytes in ovarian high-grade serous carcinoma; Oncotarget

2015 Nov;7(2):1486-1499 (* S. Darb-Esfahani and C.A. Kunze contributed equally to this

work.)

In this paper, the prognostic value of PD-1 and PD-L1 expression in high-grade

serous ovarian carcinoma tumor cells and tumor-infiltrating lymphocytes (TILs) was

investigated. We mainly contributed to the analysis of gene expression data from TCGA.

Immunohistochemistry was used to detect the expression of PD-1 and PD-L1 in cancer

cells (201 and 202 available cases, respectively) and the expression of PD-1, PD-L1 and

CD3 in TILs (200 cases). Furthermore, mRNA of PD-1 and PD-L1 was measured using

quantitative reverse transcription PCR (200 and 204 available cases, respectively). PD-1

and PD-L1 expression in cancer cells, CD3+, PD-1+, and PD-L1+ TILs densities as well

as PD-1 and PD-L1 mRNA levels were positive prognostic factors for progression-free

(PFS) and overall survival (OS), with all factors being significant for PFS (p < 0.035

each), and most being significant for OS. Furthermore, tumors with high PD-1+ TILs

or PD-L1+ TILs density in addition to high CD3+ TILs had a better prognosis (both

PFS and OS) than tumors with low PD-1+ or PD-L1+ TIL counts despite of a high CD3

infiltration (significance for PFS: PD-1+: p = 0.002; PD-L1+: p = 0.002). Finally, an in

silico validation using the high-grade serous ovarian carcinoma gene expression dataset

from TCGA [30] was performed. The prognostic value as to OS was assessed in three

platforms (Affymetrix, Agilent, RNA-seq) for PD-1 and two platforms (Agilent, RNA-seq)

for PD-L1. Cutoff Finder was used for the determination of cutoff points [38]. PD-L1
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expression was a robust positive prognostic factor in the total study cohort (Agilent: 113

out of 444 cutoffs significant (25.5 %); optimal cutoff p < 0.0001, RNA-seq: 117 out of

380 cutoffs significant (30.8 %), optimal cutoff: p < 0.0001). PD-1 expression was also

a positive prognostic factor for the total cohort. However, its prognostic value was of

reduced robustness as only few cutoffs were significant: Agilent: 14 out of 460 cutoffs

significant (3.0 %), optimal cutoff p = 0.02, which was also seen in Affymetrix data (36 out

of 445 cutoffs significant (7.9 %), optimal cutoff p = 0.013), however missed significance in

RNA-seq data (p = 0.065).

4 Discussion

In this thesis, we present different quantitative methodologies for an integrative analysis of

high-dimensional data, which permits a more precise description of tumor subgroups and

characteristics defined by histopathological features.

In the first paper, we developed two untargeted algorithms for the detection of differential

correlation patterns in microarray data and demonstrated their efficacy on a large breast

cancer dataset. Previous approaches to study differential correlation [14–16] compare

correlation patterns between two fixed networks. This kind of correlation networks is built

by fixing a threshold and connecting with an edge all the genes showing a correlation

exceeding the cutoff. These approaches neglect the fact that the topology of a correlation

network is heavily influenced by the choice of the threshold. Therefore, as a novelty, our

algorithms do not only compare two networks that are constructed for fixed thresholds,

but for a comprehensive series of 100 (or 200) thresholds, covering the full range of

positive correlations. This yielded more robust results than the classical approaches. While

differential expression (DE) of genes between breast cancer subtypes has already been

extensively studied (see for example [8–10]), our work was one of the first untargeted

attempts to characterize differential correlation in this disease (cf. [17] for a de novo

partitioning method or [18] for a targeted analysis of KEGG pathways). Our results showed

that DC analysis provides insights beyond the results of ordinary DE analysis. We were

able to identify several relevant genes that are differentially correlated but not differentially

expressed. Indeed, subtype specific changes in the correlation structure, which could be

mediated by the activation of a specific signaling pathway or transcription factor, are not

necessarily associated with up- or downregulated gene expression in the full subgroup, and

might be overlooked by DE analysis. The algorithms identified numerous clusters of genes

that show highly significant correlations in one of the subtypes but not in the other. Several

of these clusters, especially in the ER- group, could be associated with marker genes of

already known breast cancer subtypes [39–42]. Others might contain new prognostic or

predictive biomarkers or possible therapeutic targets. However, further studies are needed

8



to elucidate the clinical role of these genes. The use of the algorithms DCglob and DCloc

is not restricted to the analysis of microarray data. It can easily be translated to other

research areas. For example, we used a slightly modified version (with another metric) of

the algorithm DCglob to identify differentially correlated phosphosites in phosphoproteomic

time series data of lung cancer cell lines [43].

In the second paper, we investigated the relationship of histopathological features of

breast cancer, including immunohistochemical subtype and grade, and the mutational

load. The clinical staging and histopathological features are currently used to tailor

specific therapies and estimate the outcome of breast cancer. In addition, molecular data

has become more important in clinical oncology over the past decade. As an example,

new guidelines [44] are based on the molecular subtype of breast cancer [4], which is in

principle determined from gene expression data. Nevertheless, the molecular subtype is not

determined in routine diagnostics from gene expression data, but only approximated by

the immunohistochemical subtype. Furthermore, several multigene signatures have been

proposed to evaluate the risk of recurrence of breast cancer and are increasingly used in

the clinical praxis [20–22]. However, with exception of the BRCA1/2 screening for familiar

breast cancer, mutational data has not yet been integrated into the diagnostic, nor the

therapeutic process. In this study, we showed that the tumor grade is highly significantly

associated with the mutational load, which is itself assumed to be a measure of the genetic

heterogeneity of a tumor [45]. Hence, the tumor grade might by a microscopic readout

of the tumor’s genetic heterogeneity. Many of the genes correlated with high mutational

loads (TP53, NCOR1, NF1, PTPRD and RB1 ) have been associated with genomic

instability previously. However, the most frequent mutation in breast cancer, PIK3CA,

was not associated with an increased mutational load. Thus, we can hypothesize that these

mutations have different functional relevance and occur at different moments of tumor

evolution. Interestingly, the number of mutated genes was not positively correlated with the

nodal status of the tumor, which is one of the most relevant prognostic factors, suggesting

that a large number of mutations is not necessarily linked to a more aggressive metastatic

behavior. The subtype-specific mutational profiles of diverse oncogenes, in particular TP53,

GATA3, CDKN1B, PIK3CA, CDH1, MAP3K1 suggest different mechanisms of tumor

evolution in the immunohistochemical subtypes. Therefore, further investigation of the

clinical impact and the biological function of these mutations in a histopathological or

subtype-specific context is required. Although our results are mostly observational, they

are a step towards genomics-informed breast pathology.

In the final paper, the prognostic impact of the biomarkers PD-1 and PD-L1 in ovarian

high-grade serous carcinoma was studied. We mainly contributed to the in silico validation

of the experimental results using gene expression data provided by TCGA. Indeed, the

publicly accessible repositories of “omics” data do not only offer opportunities to generate

hypotheses, as done in the first two papers, but also allow for the validation of already

9



established biological conclusions. High expression of PD-1 and PD-L1 on cancer cells

as well as high densities of PD-1+ and PD-L1+ TILs were positive prognostic factors

in ovarian high-grade serous carcinoma. These results were surprising since PD-1 and

PD-L1 are both reported to have an immune-inhibitory function. Controversial results

might partly be related to the lack of standardization of PD-1 antibodies. Even within

our study different antibodies for PD-1 showed distinct staining results. Indeed, PD-1

expression in cancer was observed using one carefully validated antibody, while using

another antibody, which produced quite similar staining results for TILs, PD-1 cancer cell

expression was not seen. Nevertheless, the results from our study corroborate the potential

importance of immune-checkpoints in this tumor entity. Further work, however, is required

to characterize the complex and multilayered interactions between cancer cells and the

immune system, in this and other tumor entities. In previous work [46], we investigated

the spatial relationship of cancer cells and immune infiltrates in breast cancer using spatial

statistics methods, in particular Ripley’s K-function. On the one hand, we could confirm

that the quantity of TILs was a positive prognostic factor in ER- but not in ER+ breast

cancer in agreement with previous results (see for example [47, 48]). On the other hand, we

could surprisingly not identify any prognostic relevance of the local spatial patterns (e.g.,

clustering vs. repulsion) of these two cell types, which we expected to be a morphological

portrait of their interaction. However, it might be interesting to reevaluate these spatial

features in combination with immunohistochemical data, as, for instance, the PD-1 and

PD-L1 expression on cancer and immune cells to get a better understanding of this process.

Indeed, the functional relevance of the PD-L1/PD-1 pathway is still not well understood

and there are contradictory results in other cancer types [49].

A precise characterization of specific tumor types together with the identification of

prognostic and predictive biomarkers is of outstanding importance for clinical oncology.

Despite the indisputable success of omics-based cancer research in the last decades, this

is still mostly effectuated with classical histopathological methods in the clinical routine.

We identified new elements that allow for a more precise, molecular characterization of

established disease conditions and features that are used in the current diagnostic framework.

We determined several clusters of genes that showed specific correlation patterns in the

immunohistochemical subtypes of breast cancer. Some of these clusters were composed

of known marker genes of clinically relevant subtypes, while others might contain new

biomarkers or therapeutic targets. Furthermore, we provided a portrait of the mutational

landscape, which was associated with breast cancer grading and molecular subtypes. Finally

we validated findings on PD-1 and PD-L1 expression based on immunohistochemistry on

an independent gene expression dataset from TCGA. All these results contribute towards

a more quantitative and less biased form of omics-informed pathology. However, it is

questionable that a purely genetic or transcriptomic profiling might be able to fully elucidate

the complex pathogenic mechanisms underlying oncological diseases. Indeed, the biological

10



impact of well-defined mutations, as for instance BRAFV600E, is different in nevi, malignant

melanoma, hyperplastic polyps of the colon, and colorectal cancer [50]. Although there are

large similarities between the mutational profiles of many cancers, this is not necessarily

reflected by their biological and clinical characteristics [51]. As discussed above, the role of

TILs and immune markers like PD-1 is manifestly not the same in different tumor entities.

Therefore, the full complexity of cancer can only be understood by an integrated analysis

combining omics-based data, macroscopic and microscopic morphological information

on the tumor and its environment, and clinical knowledge. Making sense of these huge

amounts of multilayered high-dimensional data requires development and application of

mathematical and computational methods able to incorporate the full, highly convoluted

information. The work presented here is one step in this direction.
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Schirmacher, A. J. Iafrate, W. Weichert and A. Stenzinger Pan-cancer analysis of copy

number changes in programmed death-ligand 1 (PD-L1, CD274) - associations

with gene expression, mutational load and survival. Genes Chromosomes Cancer

2016 accepted http://dx.doi.org/10.1002/gcc.22365 IF:4.041

(* equal contribution)

62

http://dx.doi.org/10.1186/1752-0509-7-78
http://dx.doi.org/10.18632/oncotarget.2677
http://dx.doi.org/10.1093/bioinformatics/btu805
http://dx.doi.org/10.1002/cjp2.25
http://dx.doi.org/10.18632/oncotarget.6429
http://dx.doi.org/10.1002/gcc.22315
http://dx.doi.org/10.1002/gcc.22365


Theses

8) M. Bockmayr: Analysis of the bifurcation structure in a physiologically

realistic but reduced mathematical model of cortical spreading depression

Bachelor thesis Mathematics, Freie Universität Berlin, 2012

9) M. Bockmayr: Applications of spatial statistics in image analysis of cancer

tissue Part III Essay Mathematics, University of Cambridge, 2013

Abstracts

10) M. Bockmayr, F. Klauschen, C. Denkert, J. Budczies: Identification of differential

co-expression patterns in breast cancer. Annual meeting of the German Society of

Pathology, Der Pathologe [Suppl 1] 2012; 33:177–180 (Talk)
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