Inhaltsverzeichnis

1	Ein	leitung	5	1
${f 2}$	Star	nd der	Forschung	5
	2.1	Einige	Vorbemerkungen zur Dissoziation von Wasser	5
		2.1.1	Dissoziation über den \tilde{A} -Zustand	6
		2.1.2	Dissoziation über den \tilde{B} -Zustand	9
		2.1.3	Dissoziation über höhere Zustände	13
	2.2	Vibrat	tionsanregung und selektive Dissoziation von HDO	15
		2.2.1	Theoretische Arbeiten zur selektiven Dissoziation	16
		2.2.2	Experimentelle Arbeiten zur selektiven Dissoziation	20
		2.2.3	Infrarotanregung mit kurzen Laserpulsen	21
3	Erz	eugung	g und Vermessung ultrakurzer Lichtimpulse	23
	3.1	Erzeug	gung ultrakurzer Lichtimpulse	23
	3.2	Metho	oden der Frequenzkonversion	26
	3.3	Verme	essung der Laserparameter	30
	3.4	Spezie	elle Erzeugungs- und Konversionstechniken	33
		3.4.1	VUV-Erzeugung durch Vierwellen-Differenzfrequenz-	
			Mischung	34
		3.4.2	Spektrale Verbreiterung und Impulsverkürzung mit	
			Hohlfasern	38
		3.4.3	MIR-Erzeugung in BBO und MLN	43
	3.5	Beschi	reibung der Lasersysteme	47
		3.5.1	VUV-Lasersystem	47
		3.5.2	Multipass-Lasersystem	50
		3.5.3	Multicolor-Lasersystem	53

4	Nac	hweis	und Analyse photoinduzierter Reaktionen 57		
	4.1	Nachv	veismethoden		
		4.1.1	Zeitaufgelöste Ionisation		
		4.1.2	Zeitaufgelöste Fluoreszenz 60		
	4.2	Daten	auswertung		
		4.2.1	Optische Bloch-Gleichungen 62		
		4.2.2	Numerische Integration und Faltung 65		
		4.2.3	Grenzen des verwendeten Verfahrens 67		
5	Messergebnisse und Interpretation				
	5.1	Zweifa	arben-Ionisationsexperimente		
		5.1.1	Einphotonen-Dissoziation im VUV 70		
		5.1.2	Multiphotonen-Ionisation im UV		
	ziation über den \tilde{B} -Zustand				
		5.2.1	Voranregung/Abtastung mit 2.4 μ m 85		
		5.2.2	Voranregung/Abtastung mit 3.6 μ m 91		
		5.2.3	Höhe der Infrarot Voranregung		
	5.3 Dissoziation über den \tilde{C} - und \tilde{D} -Zustand				
		5.3.1	Dissoziation mit 248 nm (Č-Zustand) 111		
		5.3.2	Dissoziation mit 244 nm (\tilde{D} -Zustand) 118		
6	Zus	amme	nfassung und Ausblick 123		
\mathbf{A}	Anl	nang	126		
	A.1	Phase	nanpassung in einachsigen Kristallen 126		
	A.2	Flugze	eitmassenspektrometer		
	A 3	Veröff	entlichungen		

Abbildungsverzeichnis

Absorptionsspektrum und Potenzialkurven der angeregten	
Zustände von Wasser in C_{2v} -Symmetrie	6
Absorptionsspektrum und Potenzialkurven der angeregten	
Zustände von Wasser in C_S -Symmetrie	7
PES von H_2O für \tilde{A} -Zustand	8
PES von H_2O für \tilde{X} -Zustand und \tilde{B} -Zustand	10
PES von H_2O für \tilde{A} -Zustand und \tilde{B} -Zustand	11
Absorptionsspektrum und Potenzialkurven der angeregten	
Zustände von Wasser in Abhängigkeit vom Bindungswinkel	14
Verzweigungsraten für verschiedene Ausgangszustände von HDO	17
Ausbeute des H $+$ OD Kanals bei der Photodissoziation von	
vibronisch angeregtem HDO	19
Schematischer Aufbau eines Lasersystems mit regenerativem	
Verstärker	25
Schematischer Aufbau eines Lasersystems mit Multipass-	
Verstärker	26
Autokorrelationsmessung durch Selbst-Diffraktion	32
Schema der nahe-resonanten Vierwellen-Differenzfrequenz-	
Mischung in Argon	34
Pulsdauer und Energie der erzeugten Pulse bei 155 nm $\ \ldots \ \ldots$	36
Druckabhängigkeit des Spektrums der VUV-Impulse	37
Spektral verbreiterter Laserimpuls bei 400 nm; Füllgas: Kryp-	
ton; Gasdruck: 500 mbar; Faserdurchmesser: 130 $\mu\mathrm{m}$	39
Einkopplungeffizienz $\eta_m(w/a)$ als Funktion des normierten Fo-	
kalradius w/a	41
Impuls dauer der komprimierten Laserimpulse bei 400 nm $$	42
	Zustände von Wasser in C_{2v} -Symmetrie

3.10	Kreuzkorrelation der komprimierten Laserimpulse bei 800 nm und 400 nm	42
3.11	Transmission durch 1 cm Beta-Barium Borat (BBO)	43
	Transmission durch 1 cm Lithium-Niobat (LNB)	44
3.13	Spektrum der erzeugten MIR-Strahlung	46
3.14	Aufbau am VUV-Lasersystem	48
3.15	Aufbau am Multipass-Lasersystem	50
3.16	Aufbau am Multicolor-Lasersystem bei Erzeugung von 1.6 $\mu\mathrm{m}$	
	bis 2.4 μ m	54
3.17	Aufbau am Multicolor-Lasersystem bei Erzeugung von 3.6 $\mu\mathrm{m}$	
	und 3.9 μ m	56
4.1	Schema: Molekularstrahlapparatur mit TOF-Detektion	60
4.2	Schema: Fluoreszenz von OH und OD	61
4.3	Transiente Signale bei unterschiedlichen Lebensdauern T_1	68
1.0	Transferre eignate ser amerisemeanerien Beschsattatin 11.1.	
5.1	Schematische Darstellung des Pump-Abtast Experimentes im	
	VUV an Wasser	71
5.2	Schematische Darstellung des Pump-Abtast Experimentes im	
	VUV an Toluol	72
5.3	Transientes Ionensignal an Toluol	73
5.4	Transiente Ionensignale an H_2O , HDO und D_2O	74
5.5	Schematische Darstellung des Pump-Abtast Experimentes mit	
	Multiphotonen Ionisation von Wasser	76
5.6	Zwei Massenspektren bei unterschiedlichen Verzögerungszeiten	77
5.7	HDO ⁺ Ionensignal. Pulsdauer des Pumpimpulses: 15 fs	78
5.8	HDO ⁺ Ionensignal. Pulsdauer des Pumpimpulses: 30 fs	79
5.9	Darstellung der Schwingungsenergien von H ₂ O, HDO und D ₂ O	83
5.10	Schematische Darstellung der Anregung und des OH-Nachweises	84
5.11	Transiente OH/OD-Fluoreszenzsignale aus HDO, Dissoziati-	
	on: 256 nm	86
5.12	Transiente OH/OD-Fluoreszenzsignale aus HDO, H_2O und	
	D_2O , Anregung: 2418 nm, Dissoziation: 256 nm	87
5.13	Schematische Darstellung des Pump-Abtast Experimentes mit	
	$2.4~\mu$ und $256~\mathrm{nm}$	88

5.14	Verteilung der Zerfallskanäle $OH(X) + H$, $OH(A) + H$ und Zerfälle ohne $OH \dots \dots$
5.15	Schematische Darstellung der Pump-Abtast Experimente mit
	256 nm und 1.6 μ bzw. 2.0 μ
5.16	Transiente OH/OD-Fluoreszenzsignale aus HDO, Anregung:
	3630 nm
5.17	Transiente OH/OD-Fluoreszenzsignale aus HDO, Anregung:
	3630 nm
5.18	OH/OD-Fluoreszenzsignal bei Zweiphotonen-Dissoziation im
	Energieintervall von 9.3 eV bis 9.9 eV
5.19	Transiente OH/OD-Fluoreszenzsignale aus HDO und D ₂ O,
	Anregung: 3630 nm
5.20	Transiente OH/OD-Fluoreszenzsignale aus HDO, Anregung:
	3630 nm und 3910 nm
5.21	Fluoreszenzsignal bei Zweiphotonen-Dissoziation und
	Einphotonen-Absorptionswirkungsquerschnitt von 9.3 eV
	bis 9.9 eV
5.22	Verteilung von $OH/OD(X)$ -, $OH/OD(A)$ - und O-Fragmenten
	bei H_2O und D_2O
5.23	Schematische Darstellung des Pump-Abtast Experiments mit
	3.6 μ m und 259 nm
5.24	Schematische Darstellung des Pump-Abtast Experiments mit
	3.6 μ m und 252 nm
5.25	Schematische Darstellung des Pump-Abtast Experiments mit
	3.6 μ m und 264 nm
5.26	Schnitte durch die PES der Abbildungen 2.4 und 2.5 bei den
	Bindungswinkeln 135° und 165°
5.27	Berechnete Besetzung der Vibrationsniveaus 110 und 030 107
5.28	Berechnete Besetzung der Vibrationsniveaus 100 und 020 108
5.29	Schematische Darstellung des Pump-Abtast Experiments am
	Č-Zustand
5.30	Transiente OH-Fluoreszenzsignale aus ${\rm H_2O},$ Dissoziation: 248
	nm
5.31	Transiente OH/OD-Fluoreszenzsignale aus einer Mischung
	von H ₂ O, HDO und D ₂ O, Dissoziation: 248 nm

5.3	2 Transiente OD-Fluoreszenzsignale aus D ₂ O, Dissoziation: 248
	nm
5.3	3 Darstellung der heterogenen Prädissoziation als Rotation um
	die a-Achse
5.3	4 Schematische Darstellung des Pump-Abtast Experiments am
	Õ-Zustand
5.3	5 Transiente OH-Fluoreszenzsignale aus H ₂ O, Dissoziation: 244
	nm
5.3	6 Transiente OH/OD-Fluoreszenzsignale aus einer Mischung
	von H_2O , HDO und D_2O , Dissoziation: 244 nm 120
5.3	7 Transiente OD-Fluoreszenzsignale aus D ₂ O, Dissoziation: 244
	nm
	TOP 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Α.	TOF mit einfachem Beschleunigungsfeld
Α.:	2 Wiley-McLaren-TOF mit zwei Beschleunigungsfeldern 129

Tabellenverzeichnis

2.1	Dissoziationsenergien von Wasser	12
2.2	Korrelationstabelle für den Übergang von $\mathrm{H}_2\mathrm{O}$ zu HDO	14
2.3	An HDO durchgeführte Experimente zur selektiven Dissozia-	
	tion (nach vibronischer Anregung)	21
3.1	Am VUV-Lasersystem verfügbare Laserparameter	50
3.2	Am Multipass-Lasersystem verfügbare Laserparameter	52
3.3	Am Multicolor-Lasersystem verwendete Laserstrahlung	56
5.1	Einige verwendete Laserwellenlängen und korrespondierende	
	Energien	99
5.2	In Abschnitt 5.2.2 betrachtete Prozesse und deren Reaktions-	
	zeiten	105
5.3	Übergangsdipolmomente von HDO	106
5.4	In Abschnitt 5.3 betrachtete Prozesse und deren Reaktionszeiten	122