Exponierung von Epitopen bakterieller Lipopolysaccharide und ihrer Aggregate

Inaugural-Dissertation zur Erlangung der Doktorwürde des Fachbereichs Chemie der Freien Universität Berlin

> vorgelegt von Diplom-Biochemiker **Stefan Obst** aus Wolfsburg

> > Berlin 1997

Diese Arbeit wurde unter der Leitung von Prof. Dr. Hans Bradaczek am Institut für Kristallographie des Fachbereichs Chemie der Freien Universität Berlin in der Zeit von Dezember 1994 bis Dezember 1997 angefertigt.

> Erster Gutachter Zweiter Gutachter Tag der Einreichung Tag der Disputation

Prof. Dr. Hans Bradaczek Prof. Dr. Harald Labischinski 30. Dezember 1997 ____.1998

We can calculate everything.

Enrico Clementi, 1972

Inhaltsverzeichnis

1 Einleitung	10
2 Grundlagen	14
2.1 Gram-negative Bakterien und ihre Lipopolysaccharide (LPS)	14
2.1.1 Escherichia und Chlamydia: Zwei Gattungen Gram-negativer Bakterien	15
2.1.1.1 Escherichia coli	15
2.1.1.2 Chlamydia	16
2.1.2 Die medizinische Bedeutung des LPS	18
2.1.3 Die Struktur der Lipopolysaccharide	21
2.1.4 Die LPS-bindenden Proteine	23
2.1.4.1 Antikörper gegen LPS	23
2.1.4.2 Das bakterizide/permeabilitätserhöhende Protein	24
2.1.4.3 Das Lipopolysaccharid-bindende Protein (LBP)	25
2.1.4.4 CD14	25
2.1.4.5 CAP18	25
2.1.4.6 Polymyxin B	26
2.1.4.7 Limulus Anti-LPS-Faktor	26
2.1.4.8 Weitere LPS-bindende Proteine	26
2.2 Molekulardynamik-Simulationen (MD)	27
2.2.1 Die Integration der Bewegungsgleichung	27
2.2.2 Das Kraftfeld	28
2.2.3 Abbruchradien	31
2.2.4 Periodische Randbedingungen	32
3 Material und Methoden	33
3.1 Computer-Hardware	33
3.2 Computer-Software	33
3.2.1 Fremde Software	33
3.2.2 Selbstentwickelte Software	34
3.3 Lipopolysaccharid-Strukturen	34
3.3.1 Die gemeinsame Lipid A-Struktur	34
3.3.2 ReLPS von <i>E. coli</i> F515	38
3.3.3 RcLPS der J5-Mutante von E. coli O111:B4	40
3.3.4 Chlamydia-LPS	44
3.3.5 Abmessungen und Ladungen der LPS-Modelle	48
3.4 Bestimmung der Packungsparameter mit MOLECULE	49
3.5 MD-Simulationen	51
3.5.1 Aufbau und Durchführung der MD-Simulationen im Vakuum	53
3.5.2 Aufbau der MD-Simulationszelle unter Einbeziehung von Wasser	55
3.5.3 Unterschiedliche Aggregatgrößen für die MD-Simulationen von hydratisiertem LPS	57
3.5.4 Aufbau der MD-Simulationszelle unter Einbeziehung von Wasser und Kationen	57
3.5.5 Durchführung der MD-Simulationen hydratisierter LPS-Aggregate	59
3.6 Auswertungsverfahren	61
3.6.1 Der Flächenbedarf des LPS und die Stabilität der LPS-Aggregate im Vakuum	61
3.6.2 Die Verteilung der Aufenthaltswahrscheinlichkeit entlang der Membrannormalen	61
3.6.3 Der Diffusionskoeffizient als Maß für die Beweglichkeit von Wassermolekülen	62

3.6.4 Der Ordnungsgrad im Fettsäurebereich des LPS	64
3.6.4.1 Der Tiltwinkel	64
3.6.4.2 Die Ausdehnung der Acylketten	65
3.6.4.3 Die Torsionswinkel im Fettsäurebereich	65
3.6.4.4 Der NMR-Ordnungsparameter S _{CD}	66
3.6.5 Die zugängliche Oberfläche (SAS)	67
4 Ergebnisse und Diskussion	71
4.1 LPS-Moleküle im Vakuum	71
4.1.1 Der Aufbau der Monolayer-Packung	71
4.1.2 Die Stabilität der Packung in der Vakuum-MD	73
4.1.3 Der Tiltwinkel	78
4.1.4 Zusammenfassung der Vakuum-MD	79
4.2 Hydratisierte LPS-Aggregate	81
4.2.1 Der Einfluß der Aggregatgröße	82
4.2.2 Die bevorzugte Position und der Einfluß der Kationen auf das LPS	83
4.2.3 Der Einfluß von LPS und Kationen auf die Hydrathülle	90
4.2.4 Der Ordnungszustand im Fettsäurebereich	96
4.2.4.1 Der Tiltwinkel	96
4.2.4.2 Die Ausdehnung der Acylketten	98
4.2.4.3 Bindungswinkel und gauche-Anteil	100
4.2.4.4 Der Ordnungsparameter S _{CD}	106
4.2.5 Zusammenfassung der Lösungsmittel-MD	108
4.3 Die exponierte Oberfläche	111
4.3.1 Monosaccharide	111
4.3.2 LPS-Aggregate	115
4.3.2.1 <i>E. coli</i> ReLPS	115
4.3.2.2 <i>E. coli</i> J5-LPS	121
4.3.2.3 Chlamydia-LPS	125
4.3.3 Die Exposition des Lipid A	129
4.3.4 Vergleich der exponierten Oberflächen der drei LPS-Modelle	132
4.4 Konsequenzen für die Erkennung von LPS durch LPS-Bindeproteine und Antikörper	137
4.4.1 Antikörper gegen Lipid A	137
4.4.2 Antikörper gegen LPS	139
4.4.3 LPS-bindende Proteine	142
5 Zusammenfassung und Ausblick	1
6 Anhang	1
6.1 Literatur	1
6.2 Glossar	1
6.3 Danksagung	1
6.4 Lebenslauf	1
6.5 Eigene Publikationen	1

Abbildungsverzeichnis

1.1	Schema der Zellwand Gram-negativer Bakterien	11
21	Aktivierung von Zellen durch LPS	19
2.1	Pathologische Wirkungen bakterieller Infektionen	19
2.2	Schema des Aufbaus bakterieller Lipopolysaccharide	20
2.5	Schematische Darstellung des Lennard-Jones-Potentials	21
2.5	Winkeldefinitionen im CHARMM-Kraftfeld	30
3.1	Chemische Strukturen der verwendeten Lipopolysaccharide	37
3.2	Startstruktur des E. coli ReLPS	39
3.3	Energiekonturplot der Hep-3-GlcN-Bindung	42
3.4	Startstruktur des E. coli J5-LPS	43
3.5	Energiekonturplot der Dihydroxyethylgruppe an Kdo-1	44
3.6	Energiekonturplot der Carboxylgruppe an Kdo-1	45
3.7	Startstruktur des Chlamydia-LPS	47
3.8	Aufbau der LPS-Aggregate	50
3.9	Simulationszelle und periodische Randbedingungen	52
3.10	Aufbauprinzip der Simulationszelle hydratisierter LPS-Aggregate	55
3.11	Erzeugung von hydratisierten LPS-Aggregaten	56
3.12	Aufenthaltswahrscheinlichkeit einzelner LPS-Gruppen	62
3.13	Berechnung des Diffusionskoeffizienten	63
3.14	Der Tiltwinkel q	64
3.15	Der Boxplot zur Visualisierung von Verteilungen	65
3.16	Der NMR-Ordnungsparameter S _{CD}	67
3.17	Die Definition der zugänglichen Oberfläche (SAS)	68
3.18	Intra- und intermolekulare Abschirmung bei der SAS-Berechnung	69
3.19	Berechnung der SAS bei LPS-Aggregaten	70
4.1	Hexagonale Packung der Fettsäuren	72
4.2	Packungsmuster von E. coli ReLPS	74
4.3	Packungsmuster von E. coli J5-LPS	75
4.4	Packungsmuster von Chlamydia-LPS	76
4.5	Tiltwinkel der Fettsäureketten im Vakuum	78
4.6	Verteilung der Aufenthaltshäufigkeiten bei E. coli ReLPS	84

4.7	Zwei Kopfgruppenkonformationen von E. coli ReLPS	85
4.8	Verteilung der Aufenthaltshäufigkeiten bei E. coli J5-LPS	86
4.9	Verteilung der Aufenthaltshäufigkeiten bei Chlamydia-LPS	88
4.10	D _{Relativ} (H ₂ O) bei der Simulation von <i>E. coli</i> J5-LPS	92
4.11	D _{Relativ} (H ₂ O) bei der Simulation von <i>E. coli</i> J5-LPS mit Natrium-Ionen	94
4.12	D _{Relativ} (H ₂ O) bei der Simulation von <i>E. coli</i> J5-LPS mit Calcium-Ionen	95
4.13	Tiltwinkel der Fettsäureketten	97
4.14	Ausdehnung der Fettsäureketten von E. coli ReLPS	98
4.15	Ausdehnung der Fettsäureketten von E. coli J5-LPS	99
4.16	Ausdehnung der Fettsäureketten von Chlamydia-LPS	_ 100
4.17	Torsionswinkel bei E. coli ReLPS	_ 100
4.18	Torsionswinkel bei E. coli J5-LPS	_ 101
4.19	Torsionswinkel bei Chlamydia-LPS	_ 102
4.20	Stereoabbildung einer gauche-Torsion im Verknüpfungsbereich	_ 103
4.21	Torsionswinkel im gauche-Bereich bei E. coli J5-LPS in Wasser	_ 103
4.22	Torsionswinkel im gauche-Bereich bei E. coli J5-LPS in Wasser mit Natrium-Ionen_	_ 104
4.23	Torsionswinkel im gauche-Bereich bei E. coli J5-LPS in Wasser mit Calcium-Ionen_	_ 104
4.24	Stereoabbildung einer gauche-Torsion	_ 105
4.25	Kinkenbildung in den Fettsäureketten	_ 106
4.26	Ordnungsparameter-Profile	_ 107
4.27	Intramolekulare Abschirmung bei E. coli ReLPS	_ 113
4.28	Intramolekulare Abschirmung bei E. coli J5-LPS	_ 113
4.29	Intramolekulare Abschirmung bei Chlamydia-LPS	_ 114
4.30	Schematische Darstellung der intra- und intermolekularen Abschirmung	_ 115
4.31	Exponierte Oberfläche von E. coli ReLPS im Vakuum	_ 116
4.32	Vier E. coli ReLPS-Moleküle als Kalottenmodell	_ 116
4.33	Exponierte Oberfläche von E. coli ReLPS in Wasser	_ 117
4.34	Zwei Kopfgruppenkonformationen von E. coli ReLPS	_ 118
4.35	Exponierte Oberfläche von neun bzw. 16 E. coli ReLPS-Molekülen in Wasser	_ 118
4.36	Kalottenmodell eines Aggregates aus neun E. coli ReLPS-Molekülen	_ 119
4.37	Exponierte Oberfläche von E. coli ReLPS in Wasser und in Anwesenheit von Katione	n 119
4.38	Zwei Stellungen der E. coli ReLPS-Kopfgruppe in Anwesenheit von Calcium	_ 120
4.39	Vier E. coli J5-LPS-Moleküle als Kalottenmodell	_ 122
4.40	Exponierte Oberfläche von E. coli J5-LPS im Vakuum	_ 122
4.41	Exponierte Oberfläche von neun bzw. 16 E. coli J5-LPS-Molekülen in Wasser	_ 123
4.42	Kalottenmodell eines Aggregates aus neun E. coli J5-LPS-Molekülen	_ 124

4.43	Exponierte Oberfläche von Chlamydia-LPS im Vakuum	125
4.44	Vier Chlamydia-LPS-Moleküle als Kalottenmodell	126
4.45	Exponierte Oberfläche von vier, neun und 16 Chlamydia-LPS-Molekülen	127
4.46	Kalottenmodell eines Aggregates aus neun Chlamydia-LPS-Molekülen	128
4.47	Exponierte Oberfläche von Chlamydia-LPS in Anwesenheit von Kationen	129
4.48	Exposition von Lipid A-Epitopen bei E. coli ReLPS	130
4.49	Exposition von Lipid A-Epitopen bei E. coli J5-LPS	131
4.50	Exposition von Lipid A-Epitopen bei Chlamydia-LPS	132
4.51	Zusammenhang zwischen Molekülgestalt und Größe der zugänglichen Oberfläche $_$	133
4.52	Oberflächenkontur der LPS-Aggregate	134
4.53	Relative Exponierung der Kernzuckerregionen der drei LPS-Varianten	135
4.54	Aufenthaltsort einzelner LPS-Gruppen	136

Tabellenverzeichnis

3-2 Kenndaten der LPS-Modelle	48
3-3 Zusammensetzung der LPS-Aggregate	53
3-4 Skalierungsfaktoren und Flächenbelegungen	54
3-5 Protokoll der Vakuum-MD	54
3-6 Wasserboxen zur Hydratisierung der LPS-Aggregate	56
3-7 Protokoll der MD in Wasser	60
3-8 Zusammensetzung der Simulationszelle bei hydratisierten LPS-Aggregaten	60
3-9 Bezeichnung der Torsionswinkel	66
4-1 Zugängliche Oberfläche isolierter LPS-Monosaccharide	112
4-2 Mittlere exponierte Oberfläche bei <i>E. coli</i> ReLPS	121
4-3 Mittlere exponierte Oberfläche bei <i>E. coli</i> J5-LPS	125
4-4 Mittlere exponierte Oberfläche bei <i>Chlamydia</i> -LPS	129
4-5 Aufbau der Rc-Kernzuckerregionen bei <i>E. coli</i> und <i>S. minnesota</i>	139

6.2 Glossar

α	Winkel zwischen Membrannormale und C-D-Vektor (s. S_{CD})
е	Dielektrizitätskonstante
γ	Winkel zwischen den Packungsvektoren a und b
р	Kreiskonstante (3,14159265)
θ	Tiltwinkel der Fettsäureketten
Å	Ångstrom (Längeneinheit, 1 Å entspricht 10 ⁻¹⁰ m bzw. 0,1 nm)
©	eingetragenes Warenzeichen
a	Packungsvektor
b	Packungsvektor
е	Elementarladung (1 <i>e</i> entspricht 1,6 \cdot 10 ⁻¹⁹ C)
BPI	bakterizides/permeabilitätserhöhendes Protein (<u>b</u> actericidal / <u>p</u> ermeability- <u>i</u> ncreasing protein)
BSA	Rinderserum-Albumin (bovine serum albumine)
С	Coulomb (Einheit der elektrischen Ladung)
CAP18	kationisches antibakterielles Protein mit einem Molekulargewicht von 18 kDa (<u>C</u> ationic <u>a</u> ntibacterial <u>P</u> rotein, <u>18</u> kDa)
CD14	Cluster of differentiation antigen 14 (bei Monozyten)
Core	Kernzuckerbereich
CSD	Kristallstrukturdatenbank (Cambridge Structural Database System)
Da	Dalton (Masseneinheit, ein Wasserstoffatom hat die Masse 1 Dalton)
DLPE	<u>Dilauroylphosphatidylethanolamin</u>
DMPC	<u>Dim</u> yristoyl <u>p</u> hosphatidyl <u>c</u> holin
DPG	1,2-sn-Dipalmitoylglycerol
DPPC	1,2-Dipalmitoyl-3-sn-phosphatidylcholin
E. coli	Escherichia coli
ENP	Endotoxin-neutralisierendes Protein (s. LALF)
EU	Endotoxin Einheiten (<u>e</u> ndotoxin <u>u</u> nits, 1 EU/ml entspricht einer LPS-Konzentration von 100 pg/ml)
Glc	D-Glucose
GlcN	D-Glucosamin (2-Amino-2-desoxy-D-glucose)
GlcNac	N- <u>Acetylgluc</u> osamin

GPI	<u>G</u> lykosyl- <u>P</u> hosphatidyl- <u>I</u> nositol
HDL	Lipoproteine mit hoher Dichte (High-density lipoprotein)
Нер	L-Glycero-D-manno-heptose
HSEA	hard sphere exo-anomeric
IL	<u>Interleukin</u>
in vitro	im Laborexperiment (außerhalb des Körpers)
in vivo	im lebenden Körper
InsP ₃	myo- <u>In</u> o <u>s</u> itol-1,4,5-tris <u>p</u> hosphat
Kdo	2- <u>K</u> eto-3- <u>d</u> esoxy- <u>oc</u> tonsäure (systematisch: 3-Desoxy- <i>D-manno</i> -2- octulosonsäure, dOclA)
L_{β} -Phase	feste oder Gel-Phase von Lipiden mit Tiltwinkel $> 0^{\circ}$
L_{β} -Phase	feste oder Gel-Phase von Lipiden ohne Tilt
L_{α} -Phase	fluide Phase von Lipiden (liquid-crystalline)
LALF	<u>Limulus</u> <u>A</u> nti- <u>L</u> PS- <u>F</u> aktor (s. ENP)
LBP	Lipopolysaccharid-bindendes Protein
LC-Phase	fest-analoge Phase von Monofilmen (liquid-condensed)
LDL	Lipoproteine mit geringer Dichte (Low-density lipoprotein)
LE-Phase	flüssig-analoge Phase von Monofilmen (liquid-expanded)
LPS	Lipopolysaccharid
МАРК	Mitogen-aktivierte Protein-Kinase
mCD 14	membrangebundenes CD 14
MD	Molekulardynamik (-Simulation)
MOF	multiples Organ-Versagen (multi organ failure)
NFκB	Kernfaktor κ B (<u>n</u> uclear <u>factor</u> $\underline{\kappa}$ B)
NMR	Kernspinresonanz (Nuclear magnetic resonance)-Spektroskopie
NO	Stickstoffmonoxid
PAF	Plättchen-aktivierender Faktor (platelet activating factor)
PC	Personal <u>c</u> omputer
PDB	Protein Datenbank (Brookhaven Protein Database)
PMB	<u>P</u> oly <u>m</u> yxin <u>B</u>
PMBN	<u>Polymyxin B N</u> onapeptid

PMN	Polymorphkernige Zellen (<u>polym</u> orpho <u>n</u> uclear cells, neutrophile Granulozyten)
POPC	1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholin
РТК	Protein-Tyrosin-Kinase
QENS	Quasi- <u>e</u> lastische <u>N</u> eutronen <u>s</u> treuung
rBPI	rekombinantes BPI (siehe dort)
RcLPS	LPS einer Rauh-Mutante mit reduziertem Core
ReLPS	LPS einer Rauh-Mutante mit minimalem Core
Residuen	(Zucker)-reste, aus denen ein Molekül aufgebaut ist
R-LPS	Rauhes LPS (ohne O-Antigen, u.U. unvollständiger Core)
RMSD	Mittlere Abweichung (root mean square deviation)
S. minnesota	Salmonella minnesota
SAS	Oberfläche, die dem Lösungsmittel zugänglich ist (solvent accessible surface)
sCD 14	lösliches (soluble) CD14
S _{CD}	² H-NMR-Ordnungsparameter
S-LPS	Glattes (Wildtyp-) LPS mit vollständigem Core und O-Antigen
TFE	<u>T</u> ri <u>f</u> luor <u>e</u> thanol
Tilt	Verkippung der Fettsäureketten relativ zur Membrannormalen
TNF-α	<u>T</u> umor- <u>N</u> ekrose- <u>F</u> aktor α
V_{ϕ}	Potential der Bindungswinkel
$V_{\overline{\omega}}$	Potential der uneigentlichen Torsionswinkel (improper torsions)
V_{θ}	Potential der Torsionswinkel
V _B	Potential der Bindungslängen
VLDL	Lipoproteine mit sehr geringer Dichte (Very-low-density lipoprotein)

6.3 Danksagung

Herrn Prof. Dr. Hans Badaczek danke ich für die weit über das übliche Maß hinausgehende Betreuung meiner Arbeit.

Meine (ehemaligen) Kollegen Clemens Kahle, Dr. Manfred Kastowsky, Dr. Peter Keller, Peer-Joachim Koch, Dr. Thomas Gutberlet, Dr. Andreas Sabisch und Dr. Wilhelm Uebach haben durch ihr reges Interesse an meiner Arbeit, ihre Diskussionbereitschaft und durch die Unterstützung, die sie mir zuteil werden ließen, viel zum Erfolg des Werkes beigetragen.

Frau Helga Bombosch danke ich für die technische Unterstützung bei der Anfertigung des Manuskripts.

Freunden und Verwandten und insbesondere Frau Nicole Bauer schulde ich Dank für Verständnis, Motivation und Unterstützung während der gesamten Dauer des Studiums und der Promotion.

Der Deutschen Forschungsgemeinschaft danke ich für die finanzielle Unterstützung.

6.4 Lebenslauf

Name	Stefan Obst
geboren am	8. März 1967
in	Wolfsburg
Eltern	Gerda Obst, Lehrerin
	Dietrich Obst, Konstrukteur
Familienstand	ledig
6.4.1 Schulbildung	Frick Köstner Crundschulz (VC 15) Walfshurz
1973 - 77	Ench-Kastner-Grundschule (VS 15), Wollsburg
1977 - 79	Orientierungsstufe der VS 15, Wolfsburg
1979 - 86	Theodor-Heuss-Gymnasium, Wolfsburg
Juni 1986	Abitur am Theodor-Heuss-Gymnasium, Wolfsburg
1986 - 88	Zivildienst im Kinderheim St. Nikolaus, Braunschweig
6.4.2. Studium	
Oktober 1988	Beginn des Studiums der Biochemie an der Freien Universität Berlin
Oktober 1991	Vordiplom in Biochemie
1994	Anfertigung der Diplomarbeit Untersuchungen zur Struktur
	hydratisierter Lipopolysaccharide in der Arbeitsgruppe von
	Prof. Dr. Hans Bradaczek
November 1994	Diplom im Studiengang Biochemie
1995 -97	Anfertigung der vorliegenden Dissertation in der Arbeitsgruppe von
	Prof. H. Dr. Bradaczek am Institut für Kristallographie,
	Fachbereich Chemie der Freien Universität Berlin

6.4.3 Erwerbstätigkeiten

1986 - 1988	Softwareentwicklung und Betreuung beim Konstruktionsbüro
	Eckard-Design, Wolfsburg
1989 und 1990	Werkstudent im Produktionsbereich bei der Volkswagen AG,
	Werk Wolfsburg
1991 - 1992	Messebau für die Firma Schendel & Pawlaczyk, Berlin und Münster
1993 - 1995	Labortätigkeit und Datenerfassung beim DRK-Blutspendedienst,
	Berlin
1992 - 1994	Studentische Hilfskraft im DFG-Projekt Elekronendichte-
	simulationen bei Prof. Bradaczek, Freie Universität Berlin
1995 - 1997	Wissenschaftlicher Mitarbeiter im DFG-Projekt Berechnung
	dreidimensionaler Modelle von unterschiedlich langen bakteriellen
	Lipopolysacchariden und Beschreibung daraus abgeleiteter
	Aggregate bei Prof. Bradaczek, Freie Universität Berlin
ab 1.1.1998	Procter & Gamble Pharmaceuticals Deutschland

6.5 Eigene Publikationen

6.5.1 Artikel

- P. Mukerjee; M. Kastowsky; <u>S. Obst</u>; K. Takayama (eingeladene Publikation) LPS preparations in aqueous media: Implications for solution versus suspension *In:* Endotoxin in Health and Disease; Chapter III: Chemistry and Physical Chemistry of LPS (Hrsg.: H. Brade, D.C. Morrison, S.M. Opal und S.N. Vogel) Marcel Dekker Inc., New York, 1998.
- M. Popescu, A. Lörinczi, F. Sava, P.-J. Koch, <u>S. Obst</u>, T. Gutberlet, W. Uebach, H. Bradaczek, V. Meriacre, C. Turta, S. Zamfira Structure of the evaporated films based on triiron complexes with short carboxylate chains *Rom. J. Phys.*, angenommen.
- A. Kuzmin; <u>S. Obst</u>; J. Purans X-ray absorption spectroscopy and molecular dynamics studies of Zn²⁺ hydration in aqueous solutions *J. Phys.: Condens. Matter*, 1997, **9**, 10069-78.
- <u>S. Obst</u>; Hans Bradaczek Molecular dynamics simulations of zinc ions in water using CHARMM *J. Mol. Model.* 1997, **3**, 224-32.
- <u>S. Obst;</u> M. Kastowsky; H. Bradaczek Molecular dynamics simulations of six different fully hydrated monomeric conformers of *Escherichia coli* Re-Lipopolysaccharide in the presence and absence of Ca²⁺ *Biophys. J.* 1997, **72**, 1031-46.
- <u>S. Obst</u>; H. Bradaczek Molecular Dynamics Study of the Structure and dynamics of the Hydration Shell of Alkaline and Alkaline-Earth Metal Cations *J. Phys. Chem.* 1996, **100**, 15677-15687.
- S. Obst; P.-J. Koch; C. Kahle; H. Bradaczek Corrosion Induced by Chromosulfuric Acid Influences Pressure Readings from a Wilhelmy Balance Mounted on a Tombak Spring *Langmuir* 1996, 12, 3527-3528.

6.5.2 Poster und Vorträge

- <u>S. Obst</u>, H. Bradaczek (P) Molecular dynamics simulations of inorganic cations in water using the CHARMM 22 force field 11. Darmstädter Molecular Modelling Workshop, Darmstadt, 1997.
- <u>S. Obst</u> (V) Molecular Dynamics of fully hydrated ReLPS W.S. Middleton Memorial Veterans Hospital, Madison, WI, 1996.
- M. Popescu, F. Sava, A. Lörinczi, E. Vateva, D. Nesheva, I.N. Mihailescu, P.-J. Koch, <u>S. Obst</u>, H. Bradaczek (P) Amorphous Se/CdSe and SiO_x/CdSe multilayers. Preparation and properties 5th Conference in Optics 'ROMOPTO', Bukarest, 1997.
- M. Popescu, A. Lörinczi, F. Sava, E. Skordeva, E. Vateva, A. Andriesh, M. Iovu, V. Verlan, P.-J. Koch, <u>S. Obst</u>, H. Bradaczek (P) Modifications induced by ultraviolet light in amorphous chalcogenide films Romanian Conference on Advanced Materials 'ROCAM', Bukarest, 1997
- <u>S. Obst</u>, M. Kastowsky, H. Bradaczek (P) Hydration of monomers of Re-lipopolysaccharides of *E. coli* studied by molecular dynamics simulations 2nd Symposium on Biological Physics, München, 1995.
- T. Gutberlet, M. Kastowsky, P.-J. Koch, <u>S. Obst</u>, W. Schwenk, H. Bradaczek (P) Strukturuntersuchungen von bakteriellen Lipopolysacchariden mittels Röntgendiffraktometrie und molecular modelling Simulationen Jahrestagung der Deutschen Gesellschaft für Biophysik, Berlin, 1994.
- S. Obst, P.-J. Koch, A. Sabisch, M. Kastowsky, T. Gutberlet, H. Bradaczek (P) MD-Simulation eines Lipopolysaccharid-Moleküls in einer Wasser-Box
 8. Darmstädter Molecular Modelling Workshop, Darmstadt, 1994.
- S. Obst, P.-J. Koch, M. Kastowsky, H. Bradaczek (P) Molecular modelling studies on isolated, fully solvated molecules of *E. coli* ReLPS and MD simulation of the influence of polymyxin B on ReLPS monolayers 3rd Conference of the International Endotoxin Society, Helsinki, 1994. *J. Endotox. Res.* 1994, **1** Suppl. 1, A64