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1 Introduction

All living organisms are composed of cells, some of them of one cell, some of many millions.
The higher organisms, such as mammals, consist of many millions cells which belong to hun-
dreds of different cell types. Cells of different cell types may differ greatly in their morphology
and function according to the tissue they form, see Figure 1.1. For example, the axons of
the neuronal cells in human can be over one meter long (Figure 1.1a), the skeletal muscle cell
can span tens of mm (Figure 1.1b), whereas the size of a white blood cell is about 7 um in
diameter (Figure 1.1c¢). Interestingly, the genetic information encoded in the nucleus of these
cells is nearly identical. The reason for this is that all cells of an organism have the same origin
from a single initial cell - the zygote, which is derived from the parental gametes. In every cell
division, the genetic information of the zygote is passed to its daughter cells which is why all
cells of an organism contain the same genetic information.

One of the key questions in molecular biology is how cells with the same genetic code differ-

(a) Neuronal cell (b) Muscle cell (c) Blood cell

g0 - ida

Figure 1.1: Human cells of three different cell types: (a) neuronal cell from
www.wadsworth.org, (b) muscle cell from www.sciencemuseum.org.uk and (c¢) blood cells from
www.just-health.net.

entiate to this large variety of cell types. Particularly, the differentiation of the cell is strongly
controlled through the regulation of gene expression - a cellular mechanism when only specific
part of the genetic information is active such that only specific gene products are generated.

The main factors of the gene regulatory mechanisms are the cellular environment, DNA acces-


http://www.wadsworth.org/cores/alm/gallery.htm
http://www.sciencemuseum.org.uk/antenna/musclemachines/
http://www.just-health.net/How-To-Increase-White-Blood-Cells.html

2 Chapter 1. Introduction

sibility and specific proteins controlling the transcription, called transcription factors (Coller
and Kruglyak, 2008).

Transcription factors (TFs) recognize regulatory signals in the DNA sequence and bind to the
DNA molecule to control the expression of their target genes. However, transcription factors
usually do not act alone but they interact - directly or indirectly - with specific partner TFs.
This combinatorial cooperation of TFs is critical for the regulation of gene transcription to
achieve cell type specificity and developmental level of the cell (Remenyi et al., 2004; Vaque-
rizas et al., 2009). However, the experimental techniques that can detect the combinatorial
cooperation of TFs on the DNA are very limited and they can assess only few proteins at the
same time.

The aim of my thesis is to predict the cooperation of TF pairs for large number of various
TFs on genomic regulatory regions using the sequence information and available information
on binding specificity of those TFs. TFs are represented by ranked lists of the target sequences
ordered by their binding affinities, thus several rank based statistics can be applied to detect

significant associations between TF pairs.

1.1 Outline

Chapter 1: Introduction

In the first chapter, the basics of regulation of gene expression in eukaryotes are ex-
plained. In particular, TFs and the experimental and computational methods for mea-
suring their binding affinity to the DNA are discussed. Furthermore, the importance of
cooperative regulation of transcription factors is presented together with the possible

approaches how to detect cooperativity.

Chapter 2: Rank based measures

In this chapter, the benefits of the scale and transformation free data representation via
ranked lists are presented. Then, the most common rank based association measures for
pairs of ranked lists are presented together with their applications to a simple example

which depicts different properties of these measures.

Chapter 3: Prediction of transcription factor co-occurrence on human pro-

moters

In this chapter, we show that transcription factors can be represented as a ranked list of
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genomic locations sorted by their binding affinity to the genomic sequence. Hence, pairs
of co-occurring transcription factors can be predicted using an association measure for
two ranked lists. The rank based association measures from previous chapter are applied
to determine significant associations of transcription factor pairs on human promoters.
Because strong associations between transcription factors might occur due to similar-

ity of their binding motifs we introduce motif similarity as a possible confounding factor.

Chapter 4: Tissue-specific co-occurrence of transcription factors in human
promoters

In this chapter, the concept of detecting transcription factor co-occurrence in tissue-
specific manner is discussed. Here, we look at the association between two ranked
lists (variables) stratified by tissue (third variable). Formally spoken, we arrive from
classical 2-way contingency tables to 3-way contingency tables by introducing a third
dimension (e.g. tissue) in the table. The best underlying null model for testing in
a 3-way contingency table is discussed and evaluated on the distribution of p-values.
Then, co-occurring TF pairs in various human tissues are predicted and validated with
known protein-protein interactions and compared with other computational methods.
Further, detailed analysis of co-occurring transcription factors in liver, skeletal muscle
and hematopoietic stem cells is presented. The results of this part of my thesis were
published in 2012 (Mysickova and Vingron, 2012).

Chapter 5: Cell-type specific co-occurrence of transcription factors in ge-
nomic regulatory regions

In this chapter, the challenges of investigating large number of genomic regions for tran-
scription factor co-occurrence are discussed. Studying a large number of genomic regions
increases dramatically the length of the ranked lists and with it the universe size of the
corresponding contingency table. In accordance to these findings, we developed a new
method based on ratios of p-values obtained from hypergeometric tests. This method
is demonstrated on transcription factor binding affinity predictions to a large number
of genomic regions of open chromatin defined by the DNase I hypersensitive sites in 64
cell types. In addition, definition, location and sequence properties of cell-type-specific
accessible genomic regions derived from DNase I sequencing are considered. One part
of this chapter is devoted to discussion of the optimal selection of the thresholds which
define the top-ranked items.




4 Chapter 1. Introduction

Chapter 6: Summary

This chapter provides a brief summary of my thesis.

1.2 Transcription factors and their binding affinity

1.2.1 Transcription factors

Transcription factors are proteins which activate or repress the transcription of their
target genes. They are able to bind to specific DNA sequences in order to regulate
gene expression in cis. Such cis-regulatory sequences can be located proximal to the
transcription start site (promoters) or can be located thousands of base pairs away from
the transcription start site (T'SS) of the gene being regulated (enhancers).

The protein family of transcription factors is very large and divergent. Several thou-
sands of genes within the human genome encode for these specific proteins (Vaquerizas
et al., 2009). One of the distinct characters of transcription factors is that they have
a DNA-binding domain that recognizes a short specific DNA sequence and bind to the
DNA. These short DNA sequences are usually different for distinct transcription factors
and are called transcription factor binding sites (TFBS). TEBS can be identified with
several experimental methods. The traditional approaches such as DNase footprinting
assay (Galas and Schmitz, 1978) and the Electrophoretic Mobility Shift Assay (EMSA,
Fried and Crothers, 1981; Garner and Revzin, 1981), are able to measure the binding
preferences for only few sequences at a time. The recently developed methods apply
the modern sequencing methods or microarray readouts: Chromatin Immunprecipita-
tion assays combined with microarray (ChIP-chip, Ren et al., 2000) or with sequencing
(ChIP-seq, Johnson et al., 2007), SELEX SAGE (Roulet et al., 2002) and Protein Bind-
ing Microarrays (PBMs, Bulyk, 2006). A comprehensive review of these methods was
published by Xie et al. (2011).

1.2.2 Position Weight Matrix

Binding of transcription factors to the DNA is to some extent stochastic and depends
on the biophysical properties of the DNA-binding domain and of the DNA sequence
(Berg and von Hippel, 1987; Roider et al., 2007). As a consequence, every transcription
factor is able to bind not only to a single DNA sequence but to a variety of DNA

sequences that share a core structure. These patterns of transcription factor binding
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for a single factor can be represented with a position weight matrix (PWM), which
summarizes the nucleotide counts of each position in the motif (Berg and von Hippel,
1987; Stormo et al., 1982). PWMs are usually derived from a set of aligned sequences
that were experimentally found to be functionally related to transcription factor binding.
A PWM has row entries for each symbol of the DNA alphabet (nucleotides A=adenine,
C=cytosine, G=guanine and T—=thymine) and column entries for each position in the
pattern. In the first step, a position-specific frequency matrix (PSFM) is created. The
cell entries of a PSFM are calculated as relative frequencies of each nucleotide at each
position in the pattern. Formally, given a set S of N aligned sequences of length [, the
entries of the PSFM denoted as F'(4 x [), are as follows:

N
1
Fiy= D U(Si; =), Je€(l...D), k€ {4,0,0,T} (1)
=1

where 1 is the indicator function taking the value of one if the condition is fulfilled and
the value of zero else.

In the next step, the values of a PWM, denoted as M (4 x [), are calculated as log odds
score of the corresponding PSFM entries and frequencies of a background model 7, as

follows:

F o
M ; = log (Wb'(“};) , je,...,]), ke{a,c,G,T}. (1.2)

For the background model, one use a simple model with the uniform distribution over
all nucleotides or a more sophisticated model reflecting the higher frequency of G and C
in the regulatory regions; e.g. m, = (0.2,0.3,0.3,0.2).

Usually, the number of experimental derived TFBS is very limited such that we can not
observe all rare occurrences of some nucleotides at some positions. For this reason, the
pseudocounts are applied in order to avoid PSFM entries having a value of 0 (resulting in
PWM entries of —oo). Then, to each each column of the PSFM a weighted background
distribution is added to account for the non-observed TFBSs (Rahmann et al., 2003).
PWNMs can be used to score genomic sequences being a functional binding site or being
a random site. Since the PWM model assumes statistical independence of the matrix
columns, the probabilities (or log odds scores) of the different positions can be treated
as independent. Then, the likelihood score L(S’) of a new sequence S’ to come from a
functional binding site or from a background distribution can be calculated simply as
the sum of the log odds scores in matrix M corresponding to nucleotides in sequence
S’ If L(S") > 0, it is more likely that S’ is a functional site than a random site, and if
L(S") < 0, it is more likely that S’ is a random site than a functional site. The sequence
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score can also be interpreted in a physical framework as the binding energy for that
sequence.

A useful information of a PWM is its information content (IC) which gives an informa-
tion how different a given PWM is from a background distribution. The IC is calculated
from the frequencies in the PSFM matrix F' as follows:

J

IC ==Y Fp;-logy(FLy). (1.3)
k

Very popular is the visual representation of PWMs with sequence logos, which show
the information content of each nucleotide at each position of the matrix. In such a
graphic, a sequence logo shows stacked nucleotide symbols of heights proportional to
their information content at the respective position (Schneider and Stephens, 1990).
The information content for a matrix position j is calculated as a difference of the 1C

of the matrix column j and of the IC of a (uniform) background model:
I1C(G) = Y m(k) - loga(m(k)) = D Frj - logy(Fij) =
k k

= —2-) Fy;-logy(Fry), k€ {A,C,G,T} (1.4)
k

The higher the preference of a nucleotide is in the PSFM at a given position, the higher
is the IC at that position and the higher is the corresponding letter at that position
in the sequence logo. Using the uniform background in the Eq. 1.4, the maximum
information content at each position is 2 bits.

The PSFMs, PWMs and the DNA-binding sequences are stored in several databases such
as TRANSFAC (Matys et al., 2006), JASPAR (Mathelier et al., 2014) and UniProbe
(Newburger and Bulyk, 2009).

Example 1. Figure 1.2 illustrates an example for calculating the PSFM, PWM and
the motif logo for the nuclear receptor NR4A2. First, let us consider a set of N = 13
experimentally derived bound sequences of length | = 8 nucleotides as given in Figure
1.2a. Then the PSFM matrix with 4 rows and 8 columns can be easily calculated from
the occurrences of the nucleotides at each position of the sequence, see Figure 1.2b.
Using a simple background model with a uniform distribution: m, = (1/4,1/4,1/4,1/4)T
and pseudocount weight of 0.9 for the PSFM and 0.1 for the background distribution
gives the PWM shown in Figure 1.2c. The corresponding motif logo is shown in Figure
1.2d. Here, position 7 has an exclusive preference for one nucleotide only and has an

information content of 2bits. Positions 2, 3 and 5 have a high preference for only one
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nucleotide and its information content is close to 2. On the other hand, positions with
a non-specific distribution of nucleotides like position 1 and 8 have a small information
content.

Let us consider two new sequences: S; = CAGGACAC and S, = TGGATTAT. What is
the likelihood that these sequences are functional binding sites or that they are just
background sequences? To answer this question, we can calculate the likelihood score
as a simple sum of the corresponding nucleotide entries on corresponding positions as:
L(S]) = —0.79 + 1.15 + 1.15 + 0.98 — 0.39 + 1.15 + 1.22 + 0.78 = 5.25; L(S}) =
—0.79 —0.79+1.15 - 0.07 4+ 0.88 — 0.79 + 1.22 — 1.61 = —0.8. Thus the first sequence
S} = CAGGACAC with L(S}) > 0 is more likely to be a functional binding site whereas the
second sequence Sy = TGGATTAT with L(S}) < 0 comes from a background distribution.

1.2.3 Computational prediction of TF binding affinity

The binding affinity of a transcription factor to a DNA sequence can be estimated
from the similarity of the binding motif (usually represented as a PWM) and the DNA
sequence. However, genome wide prediction of the transcription factor binding sites is
not trivial, since many binding sites can be found in the genome, approximately every
1000 bp. Thus, most of the predicted binding sites are false positive findings and only a
minority of them are bound by the transcription factor in vivo. One reason for the small
specificity of sequence based approaches is that they are cell type independent and do
not have any information about the accessibility of the DNA in the cell type. Also, other
factors such as co-factor binding and protein-protein interactions, have an influence on
the cell-type-specific binding of transcription factors in the cell. Nevertheless, sequence
based estimation of transcription factor binding affinities is a widely used approach
to receive an information about the sequence of interest or to find the cis-regulatory
sequences. Further, the theoretical approaches can be combined with experimental data
which can limit the sequence space for searching of the binding sites (Pique-Regi et al.,
2011).

Hit-based methods

The majority of the sequence based prediction methods are so called hit-based methods.
Using a PWM (or PSFM) representation of the preferential transcription factor binding,
a score based on the similarity to the binding motif is assigned to every site in the se-
quence of interest. Then, statistical approaches are used to find a significance of the hits
compared to the background sequences and to define a threshold for a binary separation

which report whether the site is a hit or not. As a result, one gets usually a list of sites
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(a)
bound sequence
AAGGTCAC
AAGGTCAG
CAGAACAC
AAGGTCAC
AAGGCTAC
AAGGCCAG
AGGGTCAC
AATATCAC
TAGGTCAA
GAGAACAC
AAGGTCAA
GAGGTCAC
GAGGTCAA

n
=
=
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O 00 3 O Tt W~

== =
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(b) Position-specific frequency matrix
pos | 1 2 3 4 5 6 7 8
A 0.62 0.92 0.00 0.23 0.15 0.00 1.00 0.23
C 0.08 0.00 0.00 0.00 0.15 0.92 0.00 0.62
G 0.23 0.08 0.92 0.77 0.00 0.00 0.00 0.15
T 0.08 0.00 0.08 0.00 0.69 0.08 0.00 0.00

(c) Position weight matrix with log odds scores
pos | 1 2 3 4 5 6 7 8
A 0.78 1.15 -1.61 -0.07 -0.39 -1.61 1.22 -0.07
C -0.79  -161 -1.61 -1.61 -0.39 1.15 -1.61 0.78
G -0.07  -0.79 1.15 0.98 -1.61 -1.61 -1.61 -0.39
T -0.79 -161 -079 -1.61 0.88 -0.79  -1.61 -1.61

(d) Sequence logo

Figure 1.2: Experimentally derived bound sequences (a) with corresponding position-specific
frequency matrix (PSFM) in (b), position weight matrix (PWM) in (c) and sequence logo (d).




1.3. Transcription factor cooperation 9

which exceed the chosen threshold with their corresponding p-values reflecting the sig-
nificance of the similarity. Some of the most used tools with integrated web services are
RSAT (Thomas-Chollier et al., 2011), PAP (Chang et al., 2006), balanced method for
false positive predictions (Rahmann et al., 2003) and binding energy estimation (Zhao
et al., 2009).

Affinity based methods

The affinity-based approaches for transcription factor binding (Roider et al., 2007;
Tanay, 2006) provides a measure of relative affinity of a transcription factor to a se-
quence of interest. Particularly, for our further analysis of co-occurrence of transcription
factor binding, the TRanscription factor Affinity Prediction (TRAP) tool from Roider
et al. is used because it has several advantages over the traditional hit-based methods.
In comparison to the hit-based methods, TRAP does not require any threshold for bi-
nary separation, but integrate the contributions from individual sites in the sequence of
interest to calculate the expected number of binding sites. More interestingly, TRAP
provides a natural ranking of studied sequences with respect to the particular binding
motif of interest.

TRAP is a probabilistic framework using a biophysical model of protein-DNA binding
interaction inspired from the findings of Berg and von Hippel (1987). As a measure of
relative affinity for a given PWM to a DNA sequence of interest, TRAP predicts the
expected number of bound transcription factor molecules. This measure is calculated

as the total contribution from all possible sites in the given DNA sequence.

1.3 Transcription factor cooperation

As other proteins in the organism, transcription factors function in cooperation with
other transcription factors and proteins to regulate the spatial and temporal expres-
sion patterns of genes. The combinatorial regulation of gene expression increases the
variability and flexibility of the regulatory mechanism, the organism can realize a large
variety of transcriptional responses already with a small number of different transcrip-
tion factors (Remenyi et al., 2004; Vaquerizas et al., 2009). Most of the transcription
factors contain - in addition to the DNA-binding domain - a trans-activating or inter-
action domain, which allow the factor to interact with other co-factors. Transcription
factors that build such complexes (called dimers for pairs of transcription factors) usu-
ally bind to the DNA in a close vicinity. Then their binding sites lie within a close
distance on the DNA sequence and we can say that these transcription factors co-occur

on the genomic sequence. Some of the interacting partners or dimers are well known
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and has been shown in various experiments (Chen et al., 1998, 2008a; Eriksson and
Wrange, 1990; Wang et al., 2011). Some of the factors can interact with a factor of
the same kind. These interaction are called homotypic interactions or homodimers.
One of the well known examples is the glucocorticoid receptor (GR) which binds to the
DNA as a homodimer (Eriksson and Wrange, 1990). Another example of a heterotypic
interaction, e.g. factor interacting with a factor of another type, is the interaction of
homeobox OCT4 and NANOG homeobox which was studied in embryonic stem cells
(Chen et al., 2008a). Beyond that, DNA-binding transcription factors can interact with
other transcription factors in an indirect way through other mediator proteins. These
interactions are not easy to detect, neither with experimental nor with computational
methods, since the interacting partners do not have to bind directly to the DNA.

1.3.1 Experimental methods to detect TF-TF interactions

The majority of the experimental methods which provide an evidence about interacting
transcription factors are set up for observation of general protein-protein interactions
(PPIs). In general, the detection of interactions between transcription factors is more
challenging than the interactions between other proteins. Transcription factors are usu-
ally lowly expressed in the cell and have to be artificially expressed for the validation
experiment. For some transcription factors, this process has very low efficiency, thus not
for all interactions between TFs a testing is technically feasible. In addition, methods
for detecting PPIs do not account for the potential transcriptional activity or expression
of the transcription factors, thus they can provide only a partial information about the
TF-TF interactions. In the following, the most popular approaches for detecting PPIs
are presented.

Two-hybrid screening

In the two-hybrid screening (known as yeast two-hybrid system Y2H) an activation
of downstream reporter gene by the binding of a specific transcription factor (usually
GAL4) on an upstream sequence is tested. The specific transcription factor is split into
two fragments, a DNA-binding domain and an activating domain. Then, two proteins
which are screened for the PPI, called Bait and Prey, are fused with the DNA-binding
domain (Bait) and with the activation domain (Prey), respectively. Usually, none of
the two fused proteins is able to initiate the transcription of the reporter gene alone.
Only if Bait and Prey interact, they gather the DNA-binding domain and the activating
domain of the specific protein together and therewith initiate the transcription of the
reporter gene. In the typical yeast two-hybrid system, which was introduced by Fields
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and Song (1989), separate Bait and Prey plasmids are introduced into the mutant yeast
strain. Suzuki et al. (2001) developed a high-throughput assay for systematic analysis
of PPIs based on the mammalian two-hybrid method (M2H), where Bait and Prey are
transfected into mouse cells. Two-hybrid screening methods for transcription factors

have a low sensitivity estimated to 25% and a moderate precision of 53% (Ravasi et al.,
2010).

Protein crosslinking

Protein crossliniking is an approach where lysine residues of proteins form covalent
crosslinks by oxidation. Further variations include other, less selective reagents which al-
low crosslinking independent of the sequence of the binding domain. Chemical crosslink-
ing is often used to detect low-affinity or weak protein interactions (Berggard et al.,
2007).

Mass spectroscopy

With mass spectroscopy (MS), introduced by Aebersold and Mann (2003), protein com-
plexes can be identified directly. The basic principle of the MS method is to convert
(unidentified) protein molecules in the condensed phase into ions using electrospray
ionization (ESI) or matrix assisted laser desorption ionization (MALDI), which can be
distinguished based on their mass-to-charge ratios. These mass spectra measurements
then allow the determination of the polypeptide sequences using some of the large va-
riety of algorithms (Aebersold and Mann, 2003). MS is not limited for binary protein
interactions only, it can detect multi-protein complexes. The limiting step of the MS is
the purification of protein complexes, which is not efficient for all proteins (or transcrip-
tion factors) of interest (Shoemaker and Panchenko, 2007). To address this problem,
Tandem Affinity Purification (TAP, Rigaut et al. (1999)) for rapid purification of protein

complexes in natural conditions was developed.

Co-immunoprecipitation

In co-immunoprecipitation (co-IP), one protein of interest (target) is bound by a protein-
specific antibody in a sample (usually cell lysate) and precipitated on a beaded support
(Berggard et al., 2007). All proteins not precipitated on the beads are washed away,
so that proteins bound to the target protein can be captured. These protein complexes
can then be analyzed by Western blot or immuno-detection. Whereas the approaches
mentioned above are used for screening of interactions between proteins, co-IP is a

method to verify a specific interaction between two proteins.
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1.3.2 Other experimental methods used for TF analysis

Recent large studies of functional elements in the genome (Bernstein et al., 2010; The
ENCODE Project consortium, 2012) enable the analysis of regulatory mechanisms and
transcription factor cooperation in cell-type-specific manner using a large collection of
distinct experiments. For example, the Chromatin-Immunprecipitation approach com-
bined with sequencing (ChIP-seq) determines genome wide binding information of a
single transcription factor of interest in a given cell type. However, combining a large
collection of such experiments for various transcription factors in different cell types
can provide an information about the co-association patterns between different tran-
scription factors (Gerstein et al., 2012). Furthermore, the DNase I digestion followed
by sequencing (DNase-seq) experiments can measure genome wide chromatin accessi-
bility in a cell type of interest (Boyle et al., 2008a). Binding of a transcription factor
to the DNA protects the underlying sequence from cleavage by DNase I, which leaves
so called ’footprint’ recognizable in the sequencing experiment. This information can
be combined with known binding preferences of various transcription factors to detect
associative binding of these factors (Neph et al., 2012). In the following, we briefly
introduce these two popular high-throughput methods.

Chromatin-immunoprecipitation assays

Chromatin immunoprecipitation (ChIP) is a widely used method that characterizes in-
teraction of a protein and a DNA sequence in vivo (Johnson et al., 2007; Mardis, 2007).
First, proteins directly binding DNA molecules are covalently crosslinked with the DNA
using formaldehyde or other chemicals. Then, the chromosomal DNA is fragmented
and the protein of interest with all crosslinked DNA fragments is immunoprecipitated
using a protein-specific antibody. Finally, the bound DNA fragments can be labeled
and hybridized to microarrays (ChIP-chip) or identified with massive paralell sequenc-
ing techniques (ChIP-seq).

Massive parallel sequencing (or next-generation sequencing, NGS) approaches use par-
allel platforms for sequencing of short DNA sequences (40-500 bp), which are called
reads. First, DNA sequencing libraries are generated by clonal amplification. Then, the
DNA is sequenced by synthesis, e.g. by the addition of nucleotides to the complemen-
tary strand. The sequencing of the DNA templates is processed in a massively parallel
fashion resulting in many million short reads per instrument run. The obtained reads
are then mapped against a reference genome. In order to obtain binding locations of the
transcription factor, the mapped reads are analyzed with various algorithms to detect

genomic regions enriched in reads, which correspond to loci in the genome bound by the




1.4. Conclusion 13

transcription factor.

DNase I hypersensitivity assays

Large majority of genomic DNA is densely packed by wrapping around protein com-
plexes called nucleosomes. Only a small part of the DNA is accessible for other proteins
to bind, this regions have usually regulatory functions for transcriptions (e.g. promoters
and enhancers). The accessible regions can be easily digested by the enzyme DNase I
and are called DNase I hypersensitive sites (DHSs). A high-throughput approach which
simultaneously identifies thousands of DHSs in an unbiased manner was developed by
Crawford et al. (2006a,b). First, the chromatin is digested with a small amount of
DNase I that preferentially cuts at a DNase I hypersensitive site. Then, a linker se-
quence is attached to the DNase I-digested ends which is then used for extraction of
short adjacent DNA fragments. The DNA fragments can be labeled and hybridized on
tiled arrays (DNase-chip, Crawford et al. (2006a)) or identified with next generation
sequencing techniques (DNase-seq, Crawford et al. (2006b)).

In order to detect DHSs in DNase-seq experiments, obtained reads are first mapped
against a reference genome. The hypersensitive sites in the genome are enriched in
sequenced reads, thus various algorithms can be applied to detect these sites.

1.4 Conclusion

Cooperativity among transcription factors is essential for spatial and temporal gene ex-
pression of the cell. As discussed above, the experimental detection of co-regulating
transcription factors is rather difficult, non-sensitive and unfeasible for some proteins.
For this reason, computational and statistical methods combined with other experimen-
tal measurements can help to reveal more insight into cell-type-specific gene regulation.
Our aim is to provide a statistical approach for prediction of co-occurring transcription
factors on genomic regulatory regions which is based on a rank based representation of

a transcription factor as a list of its target regions, in the following three chapters.
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2.1 Ranked list representation of genomic data

Due to the rapid development of experimental techniques in molecular biology over the
past few decades, large amounts of high-dimensional data are now available. Several
of these experimental techniques are able to analyse thousands of items in one single
experiment. For example, a typical ChIP-seq experiment measures binding of a protein
of interest to hundreds of thousand genomic locations at a time or in a microarray study,
mRNA expression profiles for tens of thousands of genes are generated from a collection
of samples. Thus the challenge for scientists is now to integrate and prioritize massive
amounts of information to gain insights into biological mechanisms (Aerts et al., 2006;
Subramanian et al., 2005).

One of the most popular ways to integrate experimental data is to represent the results
of each experiment as a prioritized or ranked list based on some (measurement derived)
statistics or significance. In this case, all measured items are ordered by a chosen mea-
sure such that the items on the top of the list are the most relevant (informative) ones.
For example, the genomic locations in a ChIP-seq study are ordered by the strength (or
significance) of the protein binding. Or in a microarray study, the genes are ordered
according to their differential expression between the classes.

A ranked list is a simple and natural way to represent data that is independent of scal-
ing and of transformation. One of its advantages is that one can apply nonparametric
statistics, where usually no assumptions on the underlying distribution are necessary.
Due to the reliance on fewer assumptions, nonparametric methods are generally easier
to use and more robust in comparison with parametric methods (Stuart et al., 2008).
A further advantage of the ranked list representation is that it simplifies the comparison
of two ranked lists that might represent results of two different experiments based on
different underlying scores. If the scores comes from two different experimental methods
or from measurements provided in different laboratories, the direct comparison might be

very problematic due to their differences in scaling, magnitudes etc. In these situations
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the comparison of two ranked lists using nonparametric tests for two populations or a
large variety of other rank based association measures (see Section 2.3) can be applied.
In many genomic studies, the results are based on p-values which assign a statistical sig-
nificance to each studied item. To calculate the p-values, usually a statistical model with
an underlying null hypothesis (and null distribution) is assumed and then the probabil-
ities to obtain a result at random at least as extreme as the observed measurements are
determined. Then the measurements that are the furthest from the null distribution and
thereby with the smallest p-values are usually of interest. For example, in a microarray
study, the p-value of a given gene assigns a probability that the differential expression
between the classes can be obtained at random. However, although the p-values encode
a lot of information, their comparison and interpretation can be difficult. One reason
for this is our lack of knowledge about the underlying null distribution. Very often, we
are not able to derive the true null model and as a consequence the significance assigned
to some measurements might be overestimated or underestimated. Another reason for
the difficulties with p-value interpretation is that most of the genomics studies perform
a large number of simultaneous measurements (items) in a small number of samples.
Then, for the identified significant measurements, one has to decide whether the find-
ings are truly informative or just a consequence of multiple hypothesis testing or due to
the variability introduced by measurement error. Although there are several methods
correcting for multiple testing problem such as the Bonferroni correction (Miller, 1966;
Simes, 1986) or Benjamini-Hochberg correction (Benjamini and Hochberg, 1995), there
is no mathematical solution available for correcting the high intrinsic variability be-
tween individual measurements. Therefore, the ranked list representation (often based
on the ordering according to p-values) is highly preferred in many genomics studies. For
example, Subramanian et al. (2005) evaluated ranked lists of genes from microarray ex-
periments for their biological interpretation, Boulesteix and Slawski (2009) used ranked
lists of genes for aggregating results of different studies, Eden et al. (2007) discovered
enriched sequence elements in ranked lists of sequences derived from ChIP-chip exper-
iments and Tembe et al. (2009) proposed a framework to statistically compare ranked
lists of candidates from different algorithms used in genome-wide association studies.

In most of the large-scale studies, the underlying rank information degrades with in-
creasing ranks. In particular, the ranking at the bottom of the lists becomes more or
less random. Thus, a researcher’s interest usually focuses only on the top of the list,
namely the top-k items with k£ smallest ranks. However, the identification of the best
value for k is not straightforward and has to be set a priori or has to be derived from

the data. The determination of the optimal threshold k& was discussed in the literature
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by Schimek et al. (2012) and Hall and Schimek (2012). The selection of this parameter
with an application on the transcription factor co-occurrence will be discussed more
deeply in Sections 2.3.3 and 5.5.

The basic notation for ranked list representation is introduced in the next Section 2.2.
Then, the most common rank based measures used for large experiments are discussed
in Section 2.3. Namely, the following five association measures are described: Spear-
man’s correlation (Section 2.3.1), Kendall’s 7 (Section 2.3.2), Fisher’s exact test (Section
2.3.3), Restricted two-dimensional Kolmogorov-Smirnov score (Section 2.3.4) and Irre-
producible discovery rate (Section 2.3.5). Further, the application of the rank based
measures is demonstrated on a simple example with two ranked lists of p-values (see
Example 2). The last section provides a short summary of this chapter.

2.2 Notation for ranked lists

In this section, we briefly summarize the mathematical notation of rankings and ranked
lists which will be used throughout the whole thesis.

Let a set O of n objects be given and a quantity x which assigns some ordinal values to
each object. Then z(i) denotes the value of object i assigned by the quantity z, for all
i € O. The rank of object i according to quantity z, r,(¢) is then defined as follows:

1+ Z 1[z(0) < z(i)] in case of increasing ordering

r.(i) = 0€0 2.1
Q 1+ Z 1[z(0) > x(i)] in case of decreasing ordering, (1)

where 1 denotes the indicator function taking the value of one if the condition in the
brackets is fulfilled and the value of zero else. In other words, rank of object ¢ is defined
as the number of objects with larger quantity x increased by one for sorting in an
increasing order; or as the number of objects with smaller quantity x increased by one
for sorting in a decreasing order. R, stands for the complete ranked list of all n objects
o € O ordered according to quantity = and |R,| = n denotes the length of the ranked
list.
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2.3 Association measures for two ranked lists

2.3.1 Spearman’s correlation

Probably the most widely used rank based correlation measure is Spearman’s correlation
introduced by Spearman (1906). Already in 1906, Spearman recognized the "necessity
of comparison by rank, as absolute measurements are not properly comparable with one
another”. Spearman’s correlation coefficient is defined as Pearson’s correlation coefficient
between two ranked lists.

Formally, let r,(i) denote the rank of object 7 in the first ranked list R, according to
quantity x and r,(i) the rank of object i in the second ranked list R, according to
quantity y; and for their lengths: |R,| = |R,| = n. In case that there are no identical
values within the scores z; and no identical values within the scores y;; so that there
are no ties in the rankings, Spearman’s correlation is defined as the normalized sum of
squared differences between the ranks of the two lists subtracted from 1 (Kendall and
Gibbons, 1990):

n

6 _lra(i) =1y (i) 6 d:
ST BT

(2.2)

d; denotes the ranking difference d; = r,(i) — r,(i), ¢ = 1,...,n. The normalization
and the subtraction from one is done to achieve the maximum correlation of 1 in case
of identical rankings of both lists and minimum correlation of —1 for lists when the
rankings are exactly the reverse of each other. Spearman’s correlation pg, between two
statistically independent random variables X and Y is expected to be zero.

The original definition of Spearman (1906) included absolute differences between the
rankings instead of the squared differences as in Eq. (2.2). This coefficient, known as

Spearman’s ’footrule’, is defined as follows:

3 Idi|
o i=1

Rgy=1- —t—

(2.3)

Thus, the coefficient Rg, does not fulfill the properties of a correlation coefficient. For

two identical rankings, there holds Y | |d;| = 0 and Rg, = 1. However, for inverse

rankings Spearman’s footrule implies Rg, = —0.5 for n odd and Rg, = —0.5(1 + n23—1)

for n even. Moreover, Rg, is less sensitive than pg,. For these reasons the use of
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Spearman’s correlation is preferred over Spearman’s footrule (Kendall and Gibbons,
1990).

For some applications, measuring association between two truncated ranked lists after
the top-k ranks might be of interest. In this case, we have to deal with incomplete
rankings where some items with rank r,(7) < k in the first list will not be among
the top-k items in the second list, so its ranks in the second list will be undefined.
Similarly, some items ranked among the top-£ in the second list might not be among
the top-k items in the first list and its rank will be undefined in the truncated list.
We denote the sets of these items as follows: O, = {i : r,(i) < k & 7,(¢) undefined}
and O, = {i : ry(i) < k & r,(i) undefined}; Vk € N. We can modify Spearman’s
correlation for the incomplete rankings easily by setting: r,(i) :== k+ 1, Vi € O, and
ry(i) == k+ 1, Vi € O,, as suggested by Schimek et al. (2012). Then, Spearman’s
correlation pg, can be calculated in the same manner as for the complete lists.

Example 2. In the following example, we illustrate different behavior of the classical
correlation coefficient and the rank based Spearman correlation coefficient on two dif-
ferent data samples which could be obtained from two different experiments studying
100 genes. We assume that one half of the genes is differentially expressed and should
be reflected in the measurements with a significant p-value.

Let us consider measurements x from the first experiment with corresponding p-values
p.. arisen from a mixture of two uniform distributions. The first 50 p-values correspond-
ing to a strong signal were sampled from the uniform distribution U([0,0.05]). The
next 50 p-values corresponding to a noise were sampled from the uniform distribution
U([0,1]), see histogram in Figure 2.1a. p,-values of the second experiment with mea-
surements y were simulated in such way that the first half is a quadratic function of the
p-values from the strong signal from the first experiment and the second half was again
randomly sampled from a uniform distribution U([0, 1]), see the distribution in Figure
2.1b. Thus the first 50 p-values obtained from both experiments have both small values
smaller than 0.05 but the values in sample y are much smaller than the values in sample
x. The remaining 50 values are randomly distributed between 0 and 1. The relationship
between p, and p, is depicted in the scatterplot in Figure 2.1c. However, when we look
at the rankings of the first 50 values, they are almost identical (see Figure 2.1d), which
demonstrates the advantage of the rank based representation. The classical Pearson
correlation coefficient between the p-values is r = 0.55, but the rank based Spearman
correlation is much larger, namely pg, = 0.83.

Due to the nature of our simulated data an association measure for truncated lists could

be of interest. Hence, we calculated Spearman’s correlation for incomplete rankings for
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different cutoffs of truncation ky and ko shown in Figure 2.2a. The maximal correlation
psp = 1 was obtained for the short lists of top-10 and top-20 objects. Very large cor-
relations pg, € [0.95,0.99] were obtained for combinations of top-30, top-40 and top-50
objects. In comparison, Pearson’s correlations for the top-30, top-40 or top-50 were
close to zero, r < 0.03, the highest correlation r = 0.97 was obtained for the top-20
objects, see Figure 2.2c.

This example shows that the rank based Spearman correlation can much better capture
the fact that the ordering of the first 50% of objects is identical in both samples although
their p-values might have different magnitudes.

2.3.2 Kendall's 7

Kendall’s 7k is defined as the number of adjacent pairwise exchanges required to convert
one ranking to another normalized by the maximal number of pairwise comparisons
between the ranks. Basically, this means counting the number of pairwise discordances
between the two ranked lists. Let us first define the discordance between two ranked

lists for a pair of objects ¢+ and 7 as:

d(i, j) = L[(r2(2) = ro(4)) (ry (i) — ry(4)) < 0] (2.4)

fori,7 =1,...,n. 1 is the indicator function taking the value of one if the condition in
the brackets is fulfilled and the value of zero otherwise.
Then Kendall’s 7 is defined as:

- d(z, g
e = Zz,ge{l,...,n} ( j) . (25)

()

The normalizing constant () = n(n — 1)/2 is the number of all possible pairwise com-

parisons such that 7, = 1 in case of identical rankings R, and R,; and 7, = —1 if ranking
R, is the reverse of ranking R,. If the random variables X and Y are statistically in-
dependent we expect 7 = 0. Compared to Spearman’s correlation, Kendall’s 7 does
not take into account the absolute rankings of the objects but the relative orderings
only. One disadvantage of Kendall’s 7 to Spearman’s correlation is the complexity of
the calculation. Whereas the calculation of Spearmann’s pg, is O(n) in time complexity,
the most sophisticated algorithm for calculation of 75 has complexity of O(nlogn).

Kendall’s 75 can be modified for comparison of incomplete (truncated) ranked lists as
well. We will use one of the extensions suggested by (Fagin et al., 2003) and applied in
(DeConde et al., 2006; Schimek et al., 2012) which we briefly review here. For any pair
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of objects i, j € O, there are four possible cases:

1. Objects i and j appear in both top-k ranked lists R* and R’y“. Then the discordance
is d'(i,j) = 1 [(ry(i) — r2(4))(ry (i) — ry(j)) < 0] as in the regular case.

2. Objects i and j appear in R* and only object i (not object j) appears in R’;. Then
the discordance d' (7, j) = 1 [r,(i) < r4(j)], because we infer that r, (i) < r,(j) since
object ¢ appears in the top-k list R’y“ but object 7 does not.

3. Object 7 appears only in R} (and not in R}) and object j appears only in R} (and
not in R¥). Then the discordance equals d'(4,j) = 1, since the ranking of the two

objects disagree in the two lists.

4. Objects i and j both appear in R* and none of them appear in R’;. For the missing
information about the ordering of ¢ and j in R, we set d'(i,j) = v, where v is a
predefined penalty v € [0,1]. Fagin et al. suggest a neutral penalty v = 0.5 or an
optimistic penalty ¥ = 0 when the relative ranking of items ranked higher than k

in one list is ignored.

Example 3. Kendall’s Tic for the simulated data introduced in Example 2 is 0.71 which
is much larger than the Pearson’s correlation coefficient (r = 0.55) but smaller than
Spearman’s correlation coefficient Rg, = 0.83.

Kendall’s Tk for incomplete rankings with different cutoffs ky, ko € {10, 20, 30,...,100}
is shown in Figure 2.2b. Similarly to Spearman’s correlation, the maximal value T =
1 was obtained for the short lists of top-10 and top-20 objects. Large values 1 €
[0.95,0.97] were obtained for combinations of top-20, top-30 and top-40 objects. With
this example, we can conclude that Kendall’s Tx is another appropriate measure of
rank based associations which can be adapted for partial ranked lists. Compared to
Spearman’s correlation it prefers slightly shorter truncated lists.

2.3.3 Fisher’'s exact test

Another possibility to measure an association between two ranked lists is to convert them
into a contingency table and calculate Fisher’s exact test for a statistical independence of
the two underlying random variables (Fisher, 1935). Here, we have to split each ranked
list into two parts: the top-k ranked items and the items ranked as k41 or lower. Then
we can construct a 2 x 2 contingency table as shown in Table 2.1. The entries nq1, n12, no;

and ngs in the inner cells denote the number of objects in the corresponding categories.




2.3. Association measures for two ranked lists 23
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Figure 2.2: (a) Spearman’s correlation coefficient, (b) Kendall’s 7 and (c) Pearson’s corre-

lation coefficients for simulated data with various cutoffs k; (horizontal axis) and ko (vertical
axis).
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2
n;4+ and nyy denote the one-way marginal totals, defined as: n;; = ank V5 € {1,2}
k=1

2

as the row marginals and n,; = Z njk , vk € {1,2} as the column marginals. For the
j=1
2 2

two-way marginal, it holds: n,, = Z Z Njk = N.
j=1 k=1

Table 2.1: 2x2 contingency table

| lil:ry@ <k | filin@>k | 5

i : 2 (i) < Ky ni1 nio niy
|i| : (i) > ky na1 n22 Not
> H YS! ‘ n42 H gt

Under the null hypothesis Hy of independence of the ranked lists R, and R,, condi-
tioning on the marginal totals, the counts in the 2 x 2 contingency table follow the
hypergeometric distribution (Agresti, 2013; Fisher, 1935):

(n?) (:122?) ~ onagnoyInggng,!

(nn ) nnlnlg!ngllngzln!
+1

P(ny =t) =

(2.6)

The H, of independence for 2x2 contingency tables is equivalent with Hy : 8 = 1, where 0
denotes the odds ratio. For our purpose we want to test for a positive association between
the two variables (e.g. ranked lists), so we can formulate the alternative hypothesis as
H, : 0 > 1. Then the p-value of Fisher’s exact test equals the probability P(ny; > to),
where ¢, stands for the observed value of n;;. In other words, the p-value is the sum
of the null probabilities of the observed contingency table and of tables having more
extreme (in this case of H,, greater) counts ny; (Agresti, 2013; Fisher, 1935):
m (14 (net to—1 (niy) (n24
o=y S ) ()

() ()
t=to n41 t=0 n41

for m = min{n;,,n,1} as the maximal possible value of ny;.

(2.7)

The significance of the association between the two ranked lists R, and R, detected
by the contingency table depends on the cutoffs k1 and ko which partition the ranked
objects into the top-ranked categories. To overcome this problem, Eden et al. (2007);
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Roider et al. (2009) suggest a solution to iterate over a sequence of possible cutoffs and
they assume that the smallest achieved p-value of tests with all possible combinations
corresponds to the most meaningful detectable association between the two ranked lists.
The resulting minimal p-value cannot be interpreted as the exact p-value due to the mul-
tiple testing complication. Eden et al. (2007) provide a novel algorithm for calculation
of an exact p-value which can be determined by means of dynamic programming.

Example 4. For the illustration of Fisher’s exact test on two ranked lists we use the
simulated data introduced in Example 2 . First, we define a sequence of all possible
cutoffs which we want to test. So let us investigate all pairwise combinations of cutoffs
ki, ko € {5,10,15,...,75,80}. Then, for each combination of k; and ky we construct a
2 x 2 contingency table and calculate the significance of the number of shared top-ranked
objects. For a better demonstration, we show the contingency table for ki = ko = 40 in
Table 2.2. The p-value of this contingency table is P(ny; > 37) = 2.47 - 1072° which is
highly significant.

Table 2.2: 2x2 contingency table for simulated data and cutoffs k1 = ko = 40.

| Jil s ry(i) <40 | il vy (i) > 40 | )
|i] : 2 (7) < 40 37 3 niy+ = 40
li| : o (i) > 40 3 57 ngy = 60
) | np=40 | np=60 | nip=100

However, to find the best combination of cutoffs with the smallest p-value, we have to
investigate all 256 combinations of ky and ky. The significance (as — log,, p-value) for all
combinations is shown in the Figure 2.3. The maximal significance log;y(3.45 - 10723 =
22.46 was achieved for the combinations ki = 50; ko = 45 and k; = 55; ko = 50. These
values lie very close to the true values used in the simulation that were ki = ko = 50.
Thus, Fisher’s exact test assigns the maximal significance to the correct values and
herewith performs better than Spearman’s correlation or Kendall’s 7. Note that the
significance decreases rapidly for ki, ks > 55 where the ranking of both samples becomes

random.

2.3.4 Restricted two-dimensional Kolmogorov-Smirnov score

Another measure of similarity between two ranked lists was proposed by Ni and Vingron
(2012). The restricted two-dimensional Kolmogorov-Smirnov score (R2KS), puts the
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Significance of the Fisher's exact test

8 5 4 4 3 3 2 2 2 2 1 1 1 1 1 05
5/13 10 8 7 6 5 4 4 3 3 2 2 2 1 1 10

4 1072/ 13 11 9 8 7 6 5 4 4 3 3 2 2 15

4 8 13@06 13 11 10 8 7 6 5 4 4 3 2 20

3 7 11/16/20116 13 11 9 8 6 5 6 5 4 3 25

3 6 9 13118 17 14 12 10 8 7 7 6 5 4 30

2 5 8 11 1520 7 7 6 4 3 35

2 4 7 10 13 N7 8 7 6 4 3 40 ¥
2 4 6 8 11 14 10 9 7 5 4 45 &
2 3 5 7 9 12 2 11 8 6 4 50
1 3 4 6 8 10 15 13 10 8 5 55

1 2 4 5 7 8 12 10 7 5 4 60

1 2 3 4 6 7 9 9 7 6 3 3 65

1 2 3 4 5 6 7 8 1012 8 6 5 4 2 2 70

1 1 2 3 4 5 6 7 8 9 5 5 3 2 1 1 75

0 1 2 2 3 4 4 5 6 7 4 4 3 2 2 1 80
©e2 2 QR 88eYLBBBBRES

top-k2

Figure 2.3: Significance of Fisher’s exact tests for simulated data with various cutoffs k1 (hor-
izontal axis) and ko (vertical axis). Rounded — log;,(p-values) for each underlying contingency
table with the corresponding k1 and ko cutoffs are shown in the matrix.

main emphasis on finding the objects at the top of the lists, while the objects with lower
rankings should have a weaker influence. The motivation of the R2KS is in the graphical
illustration of the two ranked lists in a scatter plot. In case that the two ranked lists are
unrelated of each other and rankings are complete and without ties, the ranks of one lists
should be uniformly distributed throughout the other list. If the two ranked lists have
an association among the ranks on the top of the lists one would see a concentration
of dots in the lower-left rectangle of the scatterplot. The R2KS measure quantifies this
effect by comparing the observed density of the dots (ranked objects) in the lower-left
rectangle with the expected density. Similarly to the (one-dimensional) Kolmogorov-
Smirnov statistic, the final score is the score in the point with the maximal difference
between the observed and expected density. Hence, this approach can be understood
as a special version of a two-dimensional Kolmogorov-Smirnov statistic. Formally, for
two ranked lists R, and R, with |R,| = |R,| = n, let us define A;; as the rectangle
[1,...,4 x[1,...,7], ¢ and j are the ranks in R, and R,, respectively. Let U denote the

whole space [1,...n] x [1,...n]. Then for each combination ¢ x j, R, ; is defined as:

R, — number of objects in A; ; R (2.8)

n nxn'
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and in a weighted version:

W X g h-(h+1
R . = ZZGA” =2 itk weights: w; = h-(ht1)

g
Yieww  nxn 2

, (2.9)

where h is the distance of the object to a cutoff £ defining the most informative top-
ranked objects. The R2KS score R* is then defined as:

R* = max(R; ;) or in the weighted version: R* = maX(R;j) . (2.10)
0,j Y] ’
Ni and Vingron (2012) give a simple dynamic programming algorithm for computation
of the R2KS score and show a stable distribution of the normalized score \/nR* for
simulated datasets.

Example 5. The unweighted R2KS score for the simulated lists introduced in Example
2 was relatively small: R* = 2.32. The reason for this might be the short lists in the
simulated data set since the R2KS is designed for large samples.

2.3.5 Irreproducible discovery rate

Li et al. (2011a) assess the reproducibility of ranked objects and consistency of the
top-ranked objects in long ranked lists over a small number of different experiments
(e.g. replicates). Li et al. define reproducibility as the extent to which the ranks of
the signals are no longer consistent across replicates in decreasing significance. The
loss of consistency of rankings is visualized via a copula-based graphical tool, which
enables an empirical inspection of the possible consistency breakdown without any prior
model assumption or without predefined thresholds. Then a copula mixture model is
used to quantify the reproducibility by classifying the signals into a reproducible and
irreproducible groups. For the copula-based graphical tool, let us first define W,,(k1, k),
the proportion of the pairs ranked both among the top-k1% objects of R, and among
the top-k2% objects of Ry:

U, (ky, ky) = Z]l (re(i) < [nky],my (i) < [nks]] , 0<k <1, 0<ky <1, (2.11)
where [nk;]| denotes the smallest integer greater or equal nk;. W, (kq, ko) is an empirical
survival copula and for simplicity we use ¥, (k) = V,,(ky, ko) for k = k; = ko. Then the
change of consistency with the decrease of significance can be visualized when plotting
U, (k) vs. k for 0 < k <1, which is called a correspondence curve. One can also plot the
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derivative W' (k) of W, (k) which shows the change of the correspondence curve. From
the properties of the survival copula, the correspondence curve and the change of the
correspondence curve have the following patterns in the three extreme cases:

1. perfectly correlated ranks R, = R,: all points lie on a straight line ¥, = t¢; all
points lie on a horizontal line ¥/ = 1, see Figure 2.4a.

2. independent ranks R, R,: all points lie on a parabola W¥,, = k?; all points lie on
a straight line W/ = 2t, see Figure 2.4b.

3. perfectly correlated ranks for the top-ky objects and independent for the higher
ranked objects: the points lie on the curve:

k if k <k
\Ijn k - 2 -
(k) { % if k >k
or on the derivative curve:
1 if k <k
U (k) = -
n(£) { —2(1k:,€lf)°) if k> ko

Both functions are depicted in Figure 2.4c.

These properties enable the user to detect the level of the positive association between
the two ranked lists and to derive the consistency breakdown from the graphical visu-

alisation.

For the statistical modeling of the dependence structure of the two ranked lists, Li et al.
suggest a semiparametric copula model, in which the marginal distributions (usually un-
known) are estimated nonparametrically by the ranks and the associations are modeled
parametrically. A simple parametric model for the associations should be able to dis-
tinguish the objects with consistent rankings over the lists from the noisy, inconsistent
ones. We assume that the assignment of ranks (or of the original scores) consists of a
mixture of two processes: the genuine process generating reproducible ranks (or scores)
and a spurious process generating random ranks (scores). Then we can assume that the
dependence structure between the replicates is different in the reproducible group and
in the less reproducible group.

Namely, the dependence between the replicates in the reproducible group is modeled
with a bivariate Gaussian distribution with the correlation coefficient p > 0, whereas

the dependence between the replicates in the less reproducible group is modeled with
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Figure 2.4: Correspondence curve and the change of the correspondence curve for three dif-
ferent data associations. From left to right: scatterplot of the ranks, correspondence curve ¥
in estimated data points with a smoothed curve (red line), change of the correspondence curve
U’ in estimated data points with a smoothed curve (blue line). (a) Perfectly correlated ranks:
data from multivariate Gaussian distribution with correlation matrix ¥ = (1 1) (b) indepen-
dent ranks: data from multivariate Gaussian distribution with correlation matrix ¥ = ((1) (1))
(c) perfectly correlated ranks for the top 500 objects and independent ranks for the higher
ranked objects: data from a mixture of multivariate Gaussian with a perfect correlation and

no correlation.
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a bivariate Gaussian distribution with p = 0. Then the underlying latent variables,
representing the unobserved biological replicates, follow a bivariate Gaussian distribu-
tion conditioned on an unobserved Bernoulli-distributed variable indicating whether the
rank was assigned by the genuine process or by the spurious process. Thus the copula
mixture model is parametrized by the probability of the Bernoulli-variable being 1 (e.g.
rank assigned by the genuine process), by the parameters of the Gaussian distribution
of the reproducible group (mean, covariance matrix) and by the continuous marginal
distribution of the original scores in the two groups. The parameters can be estimated
with the 'pseudo-likelihood’ approach.

The local irreproducible discovery rate (idr) which corresponds to the posterior prob-
ability that a rank is irreproducible in a pair of replicates, can be calculated from the
copula density function. The irreproducible discovery rate (IDR) is then defined in
analogy to the false discovery rate (FDR, Benjamini and Hochberg (1995)), as expected
irreproducible discovery rate for observations that are as irreproducible or more irrepro-
ducible than the given observations. This corresponds to a procedure giving in case of
n tests (e.g. ranked objects in the list), an expected rate of irreproducible replicates no
greater than predefined level a - n, where o € [0, 1].

Example 6. We used the simulated data introduced in Example 2 and estimated the
expected irreproducible discovery rate IDR for all 100 objects. Then we selected objects
with IDR < 0.05 which were the first 50 ranked objects and 2 other objects from the
bottom part of the lists. Thus, the first 50 objects were correctly identified as irrepro-
ducible (because of a high rank correlation). Further we estimated the correspondence
curve ¥ and its derivative W' to find the point where the consistency of ranks is lost. The
IDR tool identifies the correct point at the position 50 and the consistency loss point is
visible in the correspondence curve ¥ as the decline from the diagonal line at point 50,
see Figure 2.5. Similarly, the derivative of the correspondence curve V' declines from

the horizontal line between points 40 and 50.

2.4 Conclusion

Due to the rapid development of high-throughput approaches in molecular genomics,
one of the main challenges for scientists now is the integration of high-dimensional data
to gain insights into biological mechanisms. One of the popular data transformation
techniques, which is independent of scaling and transformation, is ranked list data
representation in which the measured items are sorted by a chosen quantity such that

the most informative items are placed on the top of the list.
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Figure 2.5: Correspondence curve ¥ (left) and the derivative of correspondence curve W’
(right) for the simulated data from Example 2. Points are the estimated values in selected
points, solid lines show the fitted splines.

One of the advantages of ranked list data representation is the simplicity of comparison
of two ranked lists. To determine the strength of an association between two ranked
lists, a large variety of nonparametric, rank based measures can be applied. In addition,
most of the measures can be extended to truncated ranked lists, where the focus is on
the k top-ranked items. In this chapter, we discussed five of the most common rank
based measures applied on large lists: Spearman’s and Kendall’s correlation (pg, and
Tk, respectively), Fisher’s exact test, Restricted two-dimensional Kolmogorov-Smirnov
score (R2KS) and Irreproducible discovery rate (IDR). The technical details of these
measures were discussed in Section 2.3.

Furthermore, their application on a simple example with two ranked lists based on p-
values from two different experiments was demonstrated. In the example, two samples
of p-values assigned to 100 genes were simulated. 50 genes were differentially expressed,
with significant p-values. However, the significant p-values in one sample were quadrati-
cally smaller such that a direct comparison of the p-values was difficult but their ranking
was almost identical, see Figure 2.1.

We calculated all five rank based association measures for these two simulated lists and
further we tried to identify the true significant genes using all five measures. We could
show that the rank based correlations (ps, and 7x) outperform the conventional Pear-
son’s correlation coefficient r for the simulated example.

Additionally, Fisher’s exact test and IDR almost perfectly identified the true 50 sig-

nificant genes in both lists. Spearman’s and Kendall’s correlation together with R2KS
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underestimated the number of significant genes (cutoff of 20 and 3 genes, respectively).
One of the reasons for the good performance of Fisher’s exact test and IDR is that they
are designed for the detection of the most reproducible (or most associated) subsamples,
whereas Spearman’s and Kendall’s correlation are designed for comparison of full lists
and were additionally adapted for comparing incomplete lists. R2KS puts the main
emphasis on finding items at the top of the lists by comparing the density of the dots
in a scatterplot of the top-ranked items to the density of the dots in scatterplot with
low-ranked items. Surprisingly, R2KS considerably underestimates the number of signif-
icant genes in this simulated example. The reason for this might be the small size of the
simulated samples since R2KS was constructed for analyzing large data sets (thousands
of genes). IDR was developed in such way that it identifies reproducible items, e.g.
items with similar rankings over different experiments and therefore is able to find the
significant genes in the simulated example. Fisher’s exact test divides the two lists into
top-ranked part and lower-ranked part and then calculates the significance of the shared
top-ranked items. Thus with all possible partitions of the lists to be tested, it is possible
to detect the best partition with the highest significance. The disadvantage of repeated
Fisher’s exact test approach is the exponentially increasing number of required tests
with the length of the ranked lists. On the other hand, one advantage of the Fisher’s
exact test is that it can be relatively easily extended for three or more variables by con-
structing multiway contingency tables. This extension together with an application on
predicting tissue-specific transcription factor co-occurrence will be discussed in Chapter
4.




3 Prediction of transcription factor
co-occurrence on human

promoters

3.1 Motivation

In this chapter, we apply the rank based association measures described in Section 2.3
to identify pairs of transcription factors (TFs) with highly associated ranked lists of
their target genes. To do so, we represent the TF as a ranked list of its target
genes based on the predicted binding affinity of the TF to the promoter sequences of
the target genes. Thus, if we assume that two co-occurring TFs share a significantly
higher number of target genes as compared with randomly selected TFs, then the TF
pairs with highly associated ranked lists represent the predicted co-occurring TFs.
Namely, if two TFs bind to the same promoter regions together more frequently than
by chance they very likely act together to direct the expression of their (shared) target
genes. To evaluate the significance of the shared target genes, we apply the five rank
based association measures introduced in Section 2.3.

In the next section, the representation of a transcription factor by a ranked list of its
target genes is introduced. The confounding factor of motif similarity is presented
in Section 3.3. In Section 3.4, the rank based measures are applied to pairs of TFs
represented by ranked lists of their target genes. The distribution of these measures
together with their relation to motif similarity is described. Section 3.5 describes the
predicted co-occurring transcription factors and compares the obtained results using

different association measures. The last Section summarizes our findings.

33
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3.2 Representing transcription factors by ranked lists of their

target genes

For our approach, we represent each transcription factor of interest as a ranked list
of its target genes (e.g. promoters) ordered by the estimated binding affinity of the
transcription factor to the promoter sequences. To define such ranked lists one needs
to:

1. define the promoter sequences of all genes of the studied organism (e.g. human)

2. define the binding preferences of the studied TFs using position weight matrices
(PWMs)

3. predict the binding affinity of the TFs using their PWMs to the promoter sequences

in such a way that they are comparable

To accomplish step 1., we define the promoter sequences as windows up to 500 basepairs
(bp) upstream of the transcription start site (T'SS) for all catalogued genes in the hg19
Ensembl assembly of the human genome from genome.ucsc.edu, which results in a list
of 42 380 promoters.

For step 2., we use the JASPAR CORE Vertebrata database (Bryne et al., 2008) of
130 PWMs corresponding to the most studied mammalian TFs. This results in total of
130 % 129/2 = 8385 TF pairs that are studied for their association.

For step 3., we choose the TRAP approach from Roider et al. (2007) to predict the
binding affinity of the 130 TFs to the promoter sequences. Unlike the hit-based binding
affinity prediction models TRAP avoids the artificial separation between binding sites
and non-binding sites in the studied sequence but rather computes the binding probabil-
ity of a given TF (e.g. PWM) to each possible site in the sequence. These probabilities
are then summed over the whole sequence such that we obtain a single value of the
binding affinity of the particular PWM to the particular promoter sequence, see Section
1.2.3. An example of the distributions of the TRAP scores for the promoter sequences
of four different TFs is shown in Figure 3.1. Note that the xz-axis of the histograms vary
from the interval [0;0.8] to the interval [0;3.5]. The ranges of the scores are not directly
comparable, thus the rank based representation of the TFs is suitable. Therefore, the
promoter sequences (e.g. genes) are sorted in decreasing order by the binding affinity
separately for each TF such that the genes with high binding affinity are placed at the
top of the list.
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Figure 3.1: Distribution of TRAP binding affinities for four transcription factors (a) ARNT,
(b) USF1, (c) NR4A2 and (d) SOX5.
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3.3 Confounding factor: motif similarity

Let us consider two TFs with very similar PWMs, graphically represented with motif
logos as shown in Figure 3.2 for the TFs ARNT and USF1. Very likely, the ranked
lists of their target genes will be very similar merely due to their motif similarity and
not necessarily due to their real co-occurrence at the genes’ promoters (Pape et al.,
2009). To eliminate the selection of highly associated TF pairs with similar ranked lists
as a result of the similarity of their motifs, we include a confounding factor into the
analysis, a measure of motif similarity. We choose the motif similarity measure MOSTA
developed by Pape et al. (2008) which is defined as the maximum of log-odds ratios
of the overlap probability and the independent probability of hits of two motifs over
all possible configurations on both strands of the DNA sequence. Formally, Sq(M;, M;)
denotes the log odds ratio of the independent hits and joint hits of motifs M; and M,
with distance d and is defined as follows:

; M;
POpt =1)- Py" = >> 51)

Sd(MZ,M]) = log <

where véwi is an indicator random variable for a hit of motif M; at starting position k.

MOSTA score S™2* is then defined as the maximum over all distances between the two

motifs and over all possible configurations on both strands on the DNA sequence:
SM(M;, M) = max max Sa(M;, Mj),m(?x Sa(M;, M;),

mC?XSd(M{,Mj),m(?XSd(M]{,Mi) : (3.2)

Here, the parameter d denotes the nucleotide position w.r.t. the first motif, M/ assigns
motif M; on the reverse complement strand.

The MOSTA scores were calculated for all 8385 TF pairs in our set and the distribu-
tion of the MOSTA similarity scores is shown in Figure 3.3. In our analysis, we focus
on TF pairs with small motif similarity defined by a threshold of the 90%-quantile of
the empirical distribution of MOSTA scores of the 130 JASPAR motifs. We choose the
quantile as a threshold for non-similar matrices to avoid TF pairs with very similar or
almost identical binding motifs. This threshold is highlighted with a vertical red line in
Figure 3.3.

To overcome the problem of similar ranked lists based only on the similarity of the un-
derlying binding motifs another approach could be applied. As an alternative approach
of predicting the binding affinity of a particular TF to a DNA sequence the hit-based
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Figure 3.2: Four transcription factor motifs with various motif similarities. ARNT (a) and
USF1 (b) have very similar motifs (S™&X = 7.31), ARNT (a) and NR4A2 (c) motifs have
medium similarity (S™&X = 3.60) and ARNT (a) and SOX5 (d) have very different motifs
(SMAX = _(.18).
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method could be used, which predicts the exact binding sites usually based on some
significance threshold. Then the TF can be represented as a ranked lists of promoter
sequences ranked by both the significance of the binding sites and the number of the
binding sites in the sequence. However, this ranking might not be as straightforward as
the ranking based on the TRAP scores. One would have to decidet the importance of
two quantities: shall a promoter with a large number of less significant binding sites be
ranked higher than a promoter with few, but highly significant binding sites? To avoid
the high similarity of the ranked lists due to their motif similarity, one would have to
control for an overlap of the predicted binding sites for each pair of TFs such that the
motif will not overlap by more than p% of the length of the motif or simply by more
than x basepairs. Thus, this alternative method requires another kind of thresholding
- for binding site prediction and for the overlap control - which might be even more
complex. For this reason, we choose from our perspective the simpler method using
TRAP and MOSTA scores.
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Figure 3.3: Histogram of MOSTA motif similarity values for all transcription factor pairs
from JASPAR database. The 90%—quantile at the value 3.9 is highlighted with the red line.

3.4 Rank based measures applied on ranked lists of target genes

Here, we apply the rank based methods introduced in Chapter 2 to all TF pairs in the
JASPAR database to predict transcription factor co-occurrence in human promoters. To
do so, we calculated the rank-based association measures for all pairs of transcription
factors represented as ranked lists of promoters.

Let us first investigate the distribution of the association measures for all TF pairs, as
shown in the left column of Figure 3.4. The top two panels correspond to the rank
correlations with similar distribution which have a bell-shaped density in the interval
[—1, 1] with highest density at 0.2 (Spearman correlation) and at 0.1 (Kendall’s 7). Both
of the distributions are slightly negative skewed which might be caused by the signal
from TF pairs with highly similar ranked lists of promoters.

The third panel shows a histogram of the minimal p-values of Fisher’s exact test, to define
the top-ranked genes, all possible combination of cutoffs k1, ks € {10, 20, ...,90, 100, 200,-
...,2000} were used. For a random data, one expects the p-values to be uniformly dis-
tributed, however our histogram has many small p-values in the interval [0,0.05]. This
phenomenon has two explanations. First, the overrepresented small p-values come from
overrepresented TF pairs with highly similar ranked lists, e.g. from a real biological
signal. Second, the overrepresentation of the small p-values is due to the way how we
choose the p-values. Namely, we selected the minimal p-values obtained from Fisher’s
exact test for contingency tables which were based on different cutoffs.

The forth panel from the top shows the distribution of R2KS scores with the majority
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of measurements in the interval [0,20] and a maximum at 42. The bottom panel shows
the distribution of the IDR scores. Here, we calculated for each TF pair the proportion
of highly reproducible promoters with an IDR score < 107!°. The majority of TF pairs
share a small portion (< 15%) of highly reproducible promoters, however there is a
group of approximately 500 completely reproducible TF pairs (with proportion one).
As expected, Spearman’s rank correlation and Kendall’s 7 give very similar results, the
Pearson’s correlation coefficient between them is one. Yet, the correlation of the rank
correlations and R2KS score is very high too (r = 0.9). Similarly, the correlation of
the rank correlations and the significance of Fisher’s exact test (defined as negative
logarithm of p-value) is relative high, » = 0.65. Surprisingly, IDR proportion has a
negative correlation to all other measures in a range of —0.7 with R2KS to —0.3 with
the significance of Fisher’s exact test.

Next we studied the relationship between the rank based association measures and the
confounding factor motif similarity. The right column in Figure 3.4 shows smooth scat-
terplots of these measures and the MOSTA motif similarity score introduced in Section
3.3. The density of the data points is represented with the dark color in all smooth
scatterplots. Fisher’s p-values were transformed to negative logarithms with base 10
with predefined minimal value of 107°° to avoid negative infinity values for log(0).

As expected, TF pairs with very similar motifs (S™#¥ € [6;8]) have high rank cor-
relations, both Spearman’s and Kendall’s, highly significant p-values and large R2KS
values. Surprisingly, a large group of nonsimilar TF pairs with S™8X < 3 are completely
reproducible, with IDR proportions equal to one. All measures are positively correlated
(r € [0.36,0.41]) to the motif similarity score with the exception of the IDR proportions
which are negatively correlated (r = —0.16).

We also identified known protein-protein interactions (PPIs) that are present in public
databases (Chatraryamontri et al., 2013; Ravasi et al., 2010), denoted as red crosses
in the scatterplots in Figure 3.4. However, the majority of these known interactions
correspond to TF pairs with relatively small correlations (ps, < 0.5,7x < 0.4) or low
significance (p > 107?), small R2KS (R2KS < 20) and IDR proportions (IDR < 0.1).
Only a small group of non-similar interacting TFs have large significant values according
to Fisher’s test, these are protein-protein interactions mainly involving the factor SP1
(SP1:E2F1, SP1:MYC, SP1:YY1) and ETS1:NFKB. Three known PPIs (CEBPA:ESRI1,
CEBPA:MYC, ESR1:FOXO03) have large IDR value and small motif similarity. How-

ever, these pairs do not overlap with the significant ones from Fisher’s test.
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3.5 Predicted co-occurring TF pairs on promoters

To define significantly co-occurring TFs we select TF pairs with the largest associa-
tion scores (larger than the 99%-quantile of the corresponding measure) with nonsimilar
motifs (S™aX < 3.9). With this criterion, we detected between 29 (with Spearman’s
correlation) and 428 (with IDR) significant TF pairs. Consistency among the first four
methods (Spearman’s correlation, Kendall’s 7, R2KS and Fisher’s exact test) is very
high. 26 out of 29 TF pairs found with Spearman’s correlation are found by all other
methods and all 29 TF pairs are also found with Kendall’s 7 and R2KS. Kendall’s 7
detects one more TF pair, which is found with R2KS as well. R2KS identified 6 more
significant TF pairs, 2 of which were also identified by Fisher’s exact test. Findings for
these four association measures are summarized in the Venn diagram of the overlapping
significant TF pairs, shown in Figure 3.5.

Surprisingly, there was no agreement found among the predicted 428 TF pairs by the
IDR proportion and all other rank based measures. We have investigated the binding
affinity scores and rankings of these TF pairs with a large proportion of promoters with
small IDR values. The majority of these TF pairs show very surprising relationship of
mutual exclusivity of their binding affinities, see scatterplots of 8 TF pairs in Appendix,
Figure A.1. Since we are interested in TF pairs with similarly top-ranked promoters,
TF pairs predicted with the IDR score were not considered for further analysis.

Out of the TF pairs which were significant by at least one of the four association mea-
sures (Spearman’s correlation, Kendall’s 7, R2KS and Fisher’s exact test) an interaction
network was derived, see Figure 3.6. Here, transcription factors correspond to the nodes
of the network and the significant associations to the edges. The network has a total of
102 edges among 47 nodes and consists of two separated subnetworks and a single TF
pair. The width of the edges corresponds to the number of association measures sup-
porting the edge (e.g. 1,2, 3 or all 4). The first subnetwork is dominated by helicase-like
transcription factor (HLTF), which has helicase activity and regulates the transcription
of its target genes by altering chromatin structure (Maglott et al., 2011). Other highly
connected TFs are members of forkhead box family (FOXL1, FOXQ1) or members of
homeobox family (hepatic nuclear factors HNF1A, HNF1B, NKX3-1, NKX2-5, LHX3).
The enriched functions of these transcription factors are ’organismal and cellular devel-
opment’ (functional analysis conducted with Ingenuity ® Systems (IPA)). The second
subnetwork is dominated by the transcription factor AP2 (TFAP2) and by the tran-
scription factor SP1. Both of them are general transcription factors which regulate a
large number of genes and are involved in many cellular processes such as cell differ-
entiation, cell growth and apoptosis (Maglott et al., 2011). Most of the co-occurring
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TFs with TFAP2A and SP1 have a role in cellular differentiation and cell cycle pro-
gression (Ingenuity ® Systems, IPA; Maglott et al., 2011). 8 of 47 factors (17%) were
found in other studies as promoter-centric or promoter-specific TFs (Neph et al., 2012;
Whitfield et al., 2012), thus their frequent occurrence on general promoter regions is
expected. Among our predicted co-occurring TF pairs, 4 TF pairs were found in experi-
mental databases (Chatraryamontri et al., 2013) as directly interacting PPIs: SP1:YY1,
SP1:MYC, SP1:ETS1, TFAP2A:YY1; see red edges in Figure 3.6.

3.6 Conclusion

In this chapter, we first introduced the representation of transcription factors as
ranked lists of their target genes. With the usage of an affinity-based model for
prediction of transcription factor binding to genomic sequences, we are able to con-
struct for each transcription factor a ranked list of its target genes ordered by binding
affinity. With this representation, we have shown that rank based association measures
can be applied for prediction of co-occurring transcription factors on human promoter
sequences, when corrected for their motif similarity. Interestingly, a large proportion
of the significant transcription factors pairs are consistent for four different asso-
ciation measures: Spearman’s correlation, Kendall’'s 75, R2KS and Fisher’s exact
test. The results derived with the irreproducibility discovery rate (IDR) do not have
any agreement with the remaining association measures. The reason for this divergence
might be the different application of the IDR which was not constructed to directly
compare two ranked lists and to give a single association score to a pair of ranked lists.
IDR was rather designed for assessing the reproducibility of scores for single items with
replicative measurements, represented as ranked lists.

The significant transcription factor pairs which are supported by four different
measures build a highly connected subnetwork with 13 transcription factors and 3 sin-
gle transcription factor pairs with the promoter-specific transcription factor TFAP2A.
Most of the factors, which were found to have co-occurring significant partners, have
known functions related to the general differentiation of the cell, cell growth and apopto-
sis. Furthermore, 17% of the factors are known promoter-specific regulators which tend
to bind to general promoters rather than to cell-type-specific distal regulatory regions.
The co-occurrence of transcription factors on the tissue-specific and cell-type-specific

regulatory regions is discussed in the following two chapters.
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Figure 3.4: Histograms of association measures (left) and relation of association measures
to motif similarity (right) for all TF pairs. From top to bottom: Spearman’s correlation,
Kendall’s 7, minimal p-values of Fisher’s exact test, R2KS measure and proportion of genes
with IDR < 10719 Dark color in scatterplots indicates high density of data points, brown
crosses highlight known PPIs.
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Figure 3.5: Venn diagram of predicted co-occurring TF pairs by four different methods.
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Figure 3.6: Network of significant TF pairs derived using four different association measures.
The width of the edges corresponds to the number of association measures (e.g. 1, 2, 3 or 4)
supporting the edge, red edges are known PPIs in databases, TFs with red border are known
promoter-specific factors.







4 Prediction of transcription factor
co-occurrence on tissue-specific

promoters

4.1 Motivation

In Chapter 3, we showed that the prediction of transcription factor co-occurrence on
promoter sequences using rank based association measures gives plausible results. How-
ever, even of larger interest is the tissue-specific gene regulation. The tissue-specific
gene expression is regulated by an interplay of various transcription factors (Remenyi
et al., 2004). The key question is how different combinations of these factors in different
tissues influence the expression of their target genes. In particular, we want to investi-
gate the co-occurrence of transcription factors in various tissues. And specifically, with
the tissue-specific analysis of co-occurring transcription factors we want to answer the

following questions:

- Are the main players different in different tissues?

- Or, are there some ’stable’ players in most of the tissues and only their partners

are changing?

- Or, are there distinct sets of cooperative factors in different tissues or tissue groups
which define the tissue specificity?

There are many studies which investigate the regulatory networks in various tissues.
One group of previous studies (Klein and Vingron, 2007; Smith et al., 2007; Yu et al.,
2006) is based on common features in the promoter sequences of genes that are over-
expressed in the tissue of interest. Another study (Hu and Gallo, 2010) analysed the
functional conservation of various transcription factor binding sites in mouse and hu-

man to detect synergistic factors in functional pathways. Although these studies make
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plausible findings, they usually require large amounts of information apart from the
DNA sequences, such as the conservation across species, gene expression measurements
in various conditions or genes belonging to a functional group or pathway.

In the following, we present a method for the statistical prediction of tissue-specific
transcription factor co-occurrence. To identify co-occurring TFs, we combine the
predicted binding affinities of all possible pairs of TFs on their target genes and the
information about the tissue-specificity of these genes. To determine the significance of
the overlap of tissue-specific top-ranked target genes for pairs of different TFs we apply
a 3-way contingency table test. Our approach is based on the same assumptions as
the general approach discussed in Chapter 3:

1. Two interacting TFs are expected to share a significant number of their target

genes in comparison with two random target sets.

2. The list of target genes of a single TF can be represented by a ranked gene list
based on the binding affinity of the TF to the promoter sequences.

To our knowledge, this is the first method which is able to predict transcription factor
co-occurrence based only on the promoter sequence, its tissue-specificity information
and TF-binding motifs.

In this chapter, we first present the 3-way contingency table, the types of underly-
ing independence models and the construction of the test statistic (Section 4.2). In
Section 4.3, the selection of the best underlying null model is discussed and evaluated
on the distribution of p-values. Then, the co-occurring TF pairs in human tissues are
predicted and validated by known protein-protein interactions (Section 4.4). Further,
the predicted TF pairs in selected well-studied tissues (liver, muscle and hematopoietic
stem cells) are discussed in more detail in Section 4.5. A comparison with different com-
putational methods predicting tissue-specific co-occurring TFs is conducted in Section
4.6. Finally, the last Section 4.7 concludes the whole chapter.

4.2 Testing in 3-way contingency tables

By definition, the association of two ranked lists (or two random variables) partitioned
into two categories can be depicted by 2-way contingency tables as described in Section
2.3.3. In the application to transcription factor co-occurrence prediction, the two vari-
ables are the ranked lists of binding affinities to promoter sequences of two transcription
factors. In case of the tissue-specific co-occurrence, we additionally stratify by tissue.

By introducing a third dimension in the contingency table leads to a 3-way contingency
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table. For this purpose, let us introduce the binary variable Z;, which indicates the
specific (e.g. overexpressed) states of each of the genes in a particular tissue ¢:

Zu(i) = { (1)

Equivalently to Chapter 3, the ranked lists R, and R, are the lists of genes sorted

if gene 7 is expressed specifically in tissue ¢ (@1)
otherwise . '

according to the binding affinities of the first and second TF, respectively, to their
promoter sequences. We can then easily define the corresponding binary variables X
and Y indicating the genes ranked among the top-k; in R, and among the top-k; in R,
respectively. Formally, for each gene i, i =1,..., n:

Xy (4) (4.2)

0 otherwise

{ 1 r,(i) <k, ks €{1,...,n}

0 otherwise.

Y, (i) = {1 ry(i) < ko, ky € {1,...,n}

A graphic illustration of the setting of these three variables is shown in Figure 4.1. All
n genes are shown as dots, blue ones indicate tissue-specific genes, where Z;(i7) = 1. The
green set highlights the top-50 ranked target genes of the first TF with X}, _50(i) = 1 and
the red set highlights the top-50 ranked target genes of the second TF with Y},—50(7) = 1.
The corresponding 2 x 2 x 2 contingency table (with general count notation) is shown in
Table 4.1, with the color coding of the random variables being identical with the color

coding in Figure 4.1.

Table 4.1: 2 x 2 x 2 contingency table for shared genes among the top-k; and top-ko ranked
target genes of two different TFs and tissue-specific genes.

tissue-specific not tissue-specific
il 2y (i) < ko | il i ry(i) > ko | il :ry (i) < ko | Ji 17y (i) > ko >
|| + 72 (i) < K ni11 ni21 n112 n122 N4+
|| = 72 (3) > Ky n211 n221 1212 1222 N244
> ny11 21 N1z 22 Nytp =0

Basically, we want to test for each tissue whether the number of genes in the intersection
of all three variables, e.g. ny11 := ), 1[X}, (1) = 1,Y}, (i) = 1, Z,(i) = 1], is larger than
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Figure 4.1: Venn diagram of the setting for independence tests in 3-way contingency tables.
Grey dots indicate all human genes, blue dots are genes known to be specific for a selected
tissue. Green and red sets denote the top-ranked target genes of the first and second TF,
respectively.

expected by chance. This is in analogy to the null hypothesis of Fisher’s exact test for
2 x 2 contingency tables, which was discussed in Section 2.3.3.

4.2.1 Notation for 3-way contingency tables

Before applying statistical testing in the 3-way contingency tables, we define some basic
terminology and notation used in the analysis of multiway-contingency tables, based
on Agresti (2013). Each cell of the contingency table has its probability m;;; where in
general j =1,...,J; k=1,...,K and [ = 1,..., L with numbers of categories J, K, L
of the three random variables X,Y and Z, respectively. In our case, we deal only with
binary categories, thus J = K = L = 2. The only constraint on the cell probabilities is
the total probability sum: >, >, > mjm = 1.

Then, the expected frequencies for each cell are pji; = nmji; and the observed counts in
each cell are denoted by nj; as in Table 4.1, with n = 3", 3", >, nji being the total

number of observations. The two-way marginals for the observed counts and for the cell
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probabilities are defined in analogy to the two-dimensional tables as:
Njk+ = Z Nkl Tjk4 = Z%‘kh
l !
Ni =Y Mg T = Y T, (4.3)
k k
Nyg = Z Mkl Tkl = Z Tkl
J J
and equally, the one-way marginals as:
Njpqp = Z Z Nkl Tjpt+ = Z Z Tkl
Nt = Z Z Tkl Tkt = Z Z Tkl (4.4)
Nyy = Z Z Nkl T4l = Z Z Tkl -

4.2.2 Types of independence

With more variables in the contingency table, there are more potential hypotheses to
test. Thus in a 3-way contingency table one can test four types of independence that
are described below for binary random variables X,Y and Z. For further analysis,
it is useful to express the independence models with a loglinear representation, which
specifies the joint distribution among the random variables X,Y and Z that are cross-
classified to form the table. In the following, we use the formulation from Agresti (2013,
chap. 9).

Mutual independence

Hy: X LY I Z

Under the mutual independence of all three variables, no relationship among X, Y and
Z is assumed, so any pair of variables is independent. The cell probabilities in the
contingency table under this null hypothesis are independent of the two-way marginals,
such that:

Tjkl = Tjpt Tkt Tl VI, kL (4.5)

For expected frequencies {p }, the mutual independence model has loglinear form:

log pji = A+ A5 + AL + N Vi kL (4.6)
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with a constant A, a row effect A and column effects A} and A7. For the identifiability,
some constraints on the effects are required, usually weset: 3. AF =37, A = 37, A7 = 0.

Partial or joint independence

Ho: (X,)Y) L Z
Under the joint independence, one assumes that there is no relationship between the joint
variable (X,Y") and variable Z, but a relationship between X and Y is possible although
not required. The expected cell probabilities in the contingency table correspond then
to an ordinary two-way independence between Z and a variable composed of the J - K
combinations of categories of X and Y. This can be expressed as the following relation
of the cell probabilities:

Tjkl = Tjk+ T+ V7, kL (4.7)

The loglinear model for the expected frequencies is:
log fijr = A+ A5 + A + X+ X Vi kL (4.8)

with a constant X, a row effect AX and column effects A}, A/ and with an association
term )\ﬁy reflecting the deviation from the mutual independence. The association term
/\ﬁy is affiliated with the conditionally dependent variables X and Y. An equivalent
model can be constructed for the case of joint independence of variable X and joint
variable (Y, Z) or variable Y and joint variable(X, Z), respectively.

Conditional independence

Ho: (X LY)|Z
Here, one assumes that any relationship between variables X and Y can be explained
by variable Z. Thus, the independence of X and Y holds for each partial table with
fixed category of Z. In terms of the conditional cell probability 7, := P(X = j,Y =
k|Z =) it holds:

Tkl = Tisi Tkl V9, ks L. (4.9)

For the cell probabilities over the entire table, there holds:

T = % Vi, k, L. (4.10)
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The conditional independence of X and Y given Z has loglinear representation
log fijer = A+ XY+ AL + N + A7+ N7 Lk (4.11)

with a constant A, a row effect AX and column effects A} and A7 and with association
terms )\ﬁ Z and \}Z referring to conditionally dependent variables X and Z, and Y and
7, respectively. An equivalent model arises for conditional independence of variables X
and Z given Y or of variables Y and Z given X.

No-three-factor interaction

Hy: (XY, YZ, X7)

Under the no-three-factor interaction, no association among the three variables is as-
sumed, which means in the log linear representation: )\ﬁjz = 0. But, this model permits
all three pairs of variables to be conditionally dependent, thus the loglinear model form

is easy to derive using the association terms:
1og fjrn = A+ A5 + AL + X+ X N7+ AT Vik L (4.12)

with all three pairs of association terms )\ﬁy, )\ﬁz and A\ Z. For this independence

model, no closed form solution in terms of margins {7} is available.

All these four types of independence with corresponding cell probabilities are summa-
rized in Table 4.2. The mutual independence of all three variables is the strongest
condition and it implies partial independence of any one variable from the other two.
Conditional independence is a weaker condition than mutual or partial independence.
If variable Z is jointly independent of variable X and Y, it implies that X and Z are
conditionally independent given Y and Y and Z are conditionally independent given X.

4.2.3 x?> Goodness-of-fit test

To test whether an observed 3-way contingency table is consistent with a particular
null hypothesis one commonly uses a goodness-of-fit test. The goodness-of-fit test com-
pares the deviation of the observed cell counts n,j from the fitted expected counts ji;x
based on the underlying null hypothesis. The fitted values are derived from the cell
probabilities by setting 7, = pjr/n and using the maximum likelihood (ML) esti-
mates for the expected cell counts. For illustration, in case of the mutual independence
Eq. 4.5 holds for the cell probabilities: 7y = 7447k 744 and thus for the expected
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Table 4.2: Independence models for 3-way contingency tables, its probabilistic form and fitted
values

Interpretation Symbol Cell probabilities Fitted values
Mutual
independence XLY 12z Tkl = Tt Tt Ttk [ijpg = B
Eq. 4.5
Partial
independence (X,Y) 1L Z Tkl = Tkt T4 [ = A
Eq. 4.7
Conditional
. T e -~ n; n
independence (X LY)Z Tkl = %J"l Bkl = %ﬁ“
Eq. 4.9
No-three-factor
interaction (XY, YZ,XZ) no closed form iterative methods
Eq. 4.12
cell counts pg; = fljotpaksptsri/n*. The ML estimates of the expected cell count

marginals are derived from the loglinear models and are equal to the observed count
marginals (Agresti, 2013, Chap. 9.6). So the fitted values for the mutual independence
are: fjg = Ny NNy y/n? for all j, k1.

For the no-three-factor interaction hypothesis, there is no explicit formulation of the
cell probabilities in terms of marginal probabilities. For this reason, this independence
model does not have a direct estimate for the fitted values 7i;; and the ML estima-
tion requires numerical iterative methods like Newton-Raphson method (Agresti, 2013,
Chap. 4.6) or Iterative proportional fitting (Bishop, 1969; Deming and Stephan, 1940).
The fitted values for all four independence models are summarized in Table 4.2.

After estimating the fitted cell counts, the goodness-of-fit statistics for a particular null
hypothesis can be calculated. It is defined as the log-likelihood ratio of the model under
the null hypothesis Hy and of the saturated model based on the sample counts in the
contingency table:

MLy Nkl N
—2log ——>—=2) n;ulo (Aj—) =: D(n, 4.13
& Mo ; wilog (= (n, i) (4.13)
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This test statistic corresponds to the deviance measure D(n, i) and for large expected
frequencies p;j; it follows approximately a x2-distribution under the particular null
hypothesis Hy. The degrees of freedom equals the difference between the number of
parameters in the general case (df = JKL — 1) and the number of parameters under
the null hypothesis. So in case of binary categories of all three variables (e.g. J = K =
L = 2), the mutual independence model has df = JKL —J— K — L+ 2 = 4, the partial
independence model has df = (L — 1)(JK — 1) = 3, the conditional independence has
df = L(J—1)(K—1) = 2 and the no 3-way interaction has df = (J—1)(K—1)(L—1) =1
degree of freedom.

4.3 Selection of the underlying null model

Before we predict the tissue-specific co-occurrence of transcription factors, the null model
underlying the majority of the 3-way contingency tables for all TF pairs should be inves-
tigated. The choice of a proper null model is enormously important since the underlying
model influence dramatically the derived p-values and therewith the obtained results.
Thus, our strategy is to fit all possible null models to all TF pairs and then investigate
the obtained distributions of the test statistics or p-values.

For random data, one expects a uniform distribution of p-values in the interval [0, 1].
Thus for a mixture of random data and of a biological signal, one supposes a slight en-
richment of small p-values reflecting the non-randomness in the biological signal (Robins
et al., 2000). Hence, we search for the model which is closest to such distribution.
First, we derived 3-way contingency tables for all TF pairs in all tissues using a threshold
of k1 = ko = 1000 top-ranked genes for both transcription factors in each pair. Then,

we fitted all four models listed in Section 4.2.2, in our case namely
1. mutual independence of all three variables

2. joint independence of variables related to the transcription factors (X and Y) and
the variable related to tissue-specificity (Z)

3. conditional independence of the two transcription-factor-related variables (X,Y)

given the tissue-specificity variable Z
4. no-three-factor interaction among the 3 variables X,Y and Z

For each independence model, we calculated the deviance measure D(n, 1) from Eq. 4.13
and the corresponding p-values for each TF pair. Then, the distributions of p-values in

all four models were examined.
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The histograms of the p-values in four selected tissues (muscle, liver, kidney and heart)
are shown in Figure 4.2; each row panel corresponds to one independence model, each
column panel to one of the selected tissues. The first row shows the p-value distribution
for the mutual independence; whereas half of the p-values are distributed uniformly in
the interval [0, 1], half of the p-values show highly significant values p < 0.05. This
property is consistent over all four tissues. Very similar behavior can be observed in
the conditional independence model (third row in Figure 4.2). Here as well, half of the
p-values are significant (< 0.05). On the other hand, the no-three-factor interaction
model shows very different behavior. Only a very small part of the p-values (roughly
2%) are significant at the level of 0.05. Besides, the distribution of the p-values under
this hypothesis follows a moderate bell curve instead of the expected flat uniformity.
The model of partial independence has the closest distribution to a uniform distribution.
The histograms in the second row show a moderate signal, roughly 20% of the p-values
are significant and a majority of the p-values are uniformly distributed between 0 and
1.

From our findings described above we conclude that, the model of partial indepen-
dence fits best the underlying 3-way contingency tables for all different TF pairs and
studied tissues. The distribution of p-values consistently over all tissues, follows a uni-
form distribution on the [0, 1] interval with a moderate enrichment of small p-values
reflecting TF pairs with a large number of shared top-ranked tissue-specific genes. The
distribution of p-values under the mutual and conditional independence is indeed close
to the uniform distribution, however nearly one half of p-values is significant at level of
0.05. Usually, we do not expect that nearly half of the data show divergent behavior
from the null model. For this reasons, we chose the model of partial independence for
our further analysis performed in the following sections. Then, TF pairs with a signifi-
cant p-value in a given tissue have strongly associated a TF-related joint variable (X,Y)
and a tissue-related variable Z.

4.4 Prediction of tissue-specific transcription factor

CO-occurrence

4.4.1 Overview of the method

Our method for detecting tissue-specific transcription factor co-occurrence is summa-
rized in Figure 4.3. First, for each TF separately, all promoter sequences (e.g. genes)
are ranked by the binding affinity of the particular TF to these sequences. Second, for
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Figure 4.2: Histograms of p-values for four types of independence. From top to bottom in each
row: mutual independence, partial independence, conditional independence and no-three-factor
interaction in four different tissues: (a) muscle, (b) liver (c¢) kidney and (d) heart.

each particular tissue of interest, the tissue-specific genes are marked in the lists (e.g.
the muscle-specific genes highlighted in blue in Figure 4.3). Next, all possible pairs of
TFs are created and for each TF pair and each tissue, a 2 x 2 x 2-contingency table is
derived. Then, the independence model of interest can be tested and a p-value can be
assigned to the table. The most significant pairs for each tissue are marked as candidates
of co-occurring transcription factors in the corresponding tissue and a network out of
these TF pairs is created.
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To define the tissue-specific genes, we made use of the data published by Yu et al.
(2006) in 30 human tissues and data from Gupta et al. (2005) for 4 homogenous cell
lines. Both datasets are based on expression enrichments values for expression sequenc-
ing tags (ESTs). Yu et al. (2006) calculates for each gene and each tissue the expression
enrichment ratios between the observed and the expected number of ESTs. Assuming a
binomial distribution of the expression enrichment ratios, the corresponding p-value for
each gene and tissue can be derived. The tissue-specific genes are then defined as those
with large expression enrichment ratios (EE > 5) and small p-values (p < 10739).
Gupta et al. (2005) evaluate the tissue specificity of a given gene by computing a p-value
which reflects the overrepresentation of ESTs from a tissue among all ESTs of a given
EST cluster. For our analysis, only EST clusters with p-value < 107 in at least one of
the tissue categories were utilized.

The number of tissue-specific genes varies from 58 for uterus to 1409 for lymphocyte.
These are relatively small numbers in comparison with the total number of promoters
(42 380) listed in the hg19 assembly of the human genome from genome.ucsc.edu.

For the definition of tissue-specific genes, we chose data based on the ESTs analysis.
The ESTs are short sequence tags connected to the TSS of each gene, thus it is easy to
compare the expression measurements over all genes and various tissues. As an alter-
native, one could use direct approaches such as gene expression microarrays measuring
the change of expression between two conditions or direct RNA-sequencing of tissue
samples.



http://genome.ucsc.edu
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4.4.2 Predicted co-occurring TF pairs

For the prediction of the tissue-specific co-occurring transcription factors, we need to
specify the thresholds &y and ks defining the top-ranked genes for each transcription
factor in the pair. To keep the balance between the relevance of the biological informa-
tion and statistical significance we fix the thresholds of the top-target genes for both
transcription factors in the pair to k1 = ko = 1000. We can assume that an average
transcription factor regulates 1000 or more genes in a specific tissue (Chua et al., 2006).
However, we do not want to set the top-ranked genes threshold too large to avoid a large
number of possible false positive results. With increasing thresholds k; and ks the chance
to obtain a significant result increases, because increasing thresholds (k;, ks — n) more
and more genes fall into the intersection of variables X and Y. For these reasons, we
chose the cutoff for defining the top-ranked genes for all ranked lists of target genes to
k1 = ko = 1000.

Taking the most significant TF pairs, we identify 594 TF pairs in 4 specific cell lines
(with p-value < 107!) and 409 TF pairs in 12 human tissues (with p-value < 107°).
For the reasons discussed in Section 3.3, we focus on TF pairs with nonsimilar motifs
(e.g. with motif similarity S™&% < 90%-quantile(S™3%) = 3.9). The majority (869;
86.6%) of the significant TF pairs are between TFs with nonsimilar motifs. This points
to a strong association between the TF pairs that is not due to a high similarity of their
binding motifs.

Tissues with the highest number of identified TF pairs are retinal pigmented epithelium
(259), lymphocyte (181) and liver (106). 181 TF pairs are significant simultaneously in
two or more different tissues. 61 out of these are common in kidney and liver and 43 TF
pairs are common in hematopoietic stem cells and lymphocytes. In both cases, there
are tissues or cell lines with related molecular functions.

In 18 tissues, we did not find any significant TF pairs with p-value smaller or equal 1076,
We searched then for TF pairs with slightly larger p-value € (1075, 1075] and found ad-
ditional 58 interactions, 17 of them in another 6 tissues. No significant TF pairs with
p-value < 107° were found in the following 8 tissues: bone marrow, mammary gland,
ovary, prostate, skin, soft tissue, thymus and uterus.

Altogether, we conducted 8835 tests in each studied tissue. With the choice of a rel-
ative strict p-value threshold of 107° we limit the number of possible false positives
such that an additional multiple testing correction was not necessary. The number of
tissue-specific TFs and the number of co-occurring TF pairs including the three most
significant TF pairs for each of the 22 tissues are summarized in Table 4.3.
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4.4.3 Evaluation of the predicted TF pairs by known

protein-protein interactions

One of the possibilities to evaluate the biological relevance of the predicted co-occurring
transcription factors is to compare the co-occurring TF pairs with known interactions
from protein-protein-interaction (PPI) databases. Namely, when the two transcription
factors bind to the same promoter within relatively small distance they might physically
interact and together regulate the transcription of their target gene.

We compared our significant TF pairs to the BioGRID database of PPIs (Stark et al.,
2011) derived from various experiments including yeast-two-hybrid (Y2H) screens, mass
spectrometry and others. Further, we included the interactions between human and
mouse transcription factors validated by Ravasi et al. (2010) with mammalian-two-
hybrid (M2H) screens.

For the evaluation, we calculate the ratio of the PPIs from the databases in the set of our
candidates and of the total number of our candidates. Then, 4.2% of predicted tissue-
specific co-occurring TF pairs are also physically interacting proteins, this corresponds
to 1.8-fold enrichment compared to a random set of TF pairs and the corresponding
p-value of the Fisher’s exact test is p = 8.4 - 107%.

Further, we also calculate this ratio of known PPIs among the significant TF pairs
separately for each tissue, the enrichment is visualised in the barplot in Figure 4.4. In
the tissues eye,blood, bone and brain the percentage of known PPIs is more than 7-fold
higher than in a randomly chosen set of TF pairs. A moderate enrichment of known
PPIs can be observed in tongue, lymph node, hematopoietic stem cell, cerviz, muscle,
adipose, kidney, retinal pigment epithelial, liver and lymphocyte. However, there are 8
tissues (bladder, pancreas, stomach, testis, heart, placenta, peripheral nervous system
and small intestine) where no PPIs were found in the database.

One reason for the absence of known PPIs in some groups of significant tissue-specific
TF pairs may be the incompleteness of the experimental databases. Usually, there are
preferred groups of proteins and TFs which are well studied and easy-to-prepare in the
laboratory. Such proteins have more experimentally validated interaction partners than
the less studied proteins. Furthermore, there are many proteins and TFs for which the
validation experiment cannot be performed due to technical difficulties. On top of that,
the experimental techniques used for the PPI validation have very low sensitivity and
precision (Berggard et al. (2007); Ravasi et al. (2010), see Section 1.3.1), such that many

interactions cannot be detected.
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Figure 4.4: Enrichment of known protein-protein interactions among significant TF pairs in
22 tissues.

4.5 Predicted co-occurring TF pairs in selected tissues

In this section we present our predictions of co-occurring TFs in three well-studied
homogenous human tissues. Since a lot of information is provided in the literature for
these tissues, we are able to validate our predictions indirectly with related experimental
data.

4.5.1 Predicted TF pairs in liver

In analogy to the analysis of the association measures of two ranked lists in Section 3.5,
we investigate the relationship between the p-values of the 3-way contingency table test
and the PWM similarity measure, see Figure 4.5. Due to the stratification by tissue the
distribution of the data points changes in comparison with the general case shown in
Figure 3.4. Now, the highly significant TF pairs do not localize in the upper right corner
corresponding to the highly similar PWMs. On the contrary, there is a group of highly
significant TF pairs of non similar binding motifs shown as a cloud of significant TF
pairs with motif similarity smaller than 4, see Figure 4.5. However, looking at known
protein-protein interactions in the scatterplot, the majority of them do not have signifi-
cant p-values in liver (see red crosses in Figure 4.5). The following 5 TF pairs constitute
the exception: HNF1A:HNF1B, HNF1A:HNF4A HNF1B:CREB1, HNF1A:CEBPA and
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HNF1A:STAT3 (see circled crosses in Figure 4.5). These interacting proteins are known
regulators in liver which in turn suggests that the predicted interactions are real.

With a threshold of p-value < 1079, we define 106 significant TF pairs in liver. The
network created out of all these TF pairs is shown in Figure 4.6. Here, solid edges in-

SMmax) — 3.9, the remaining

dicate 98 TF pairs with low motif similarity S™&X < ggg(
8 edges (dashed lines) are between TFs with highly similar motifs.

We have further investigated the 67 TFs (nodes) in our predicted network. We found
support in the literature (Heinemeyer et al., 1998; Ingenuity ® Systems, IPA; Matys
et al., 2006) for 9 (13.4%) TFs in the network (CEBPA, HNF1A, HNF1B, HNF4A,
NR2F1, NFKB1, POU5F1, RELA and RXRA) to be known transcriptional regulators
in liver (see red nodes in Figure 4.6). Further, Krivan and Wasserman (2001) defines 4
TFs (HNF3, HNF1, HNF4 and CEBP) as critical regulators in liver, where the last 3 of
these factors as well as the connections between them are found in our liver regulatory
network too. We identified identical central regulators (HNF1A, HNF4A) in the network
according to Odom et al. (2004), these two central hubs have the highest number of TF
partners in our predicted network too. Further, HNF1A and HNF4A were identified
by the experimental work of Ravasi et al. (2010) as specifier in liver, e.g. transcription
factors with high specific expression in liver. In addition, we conducted an expression
analysis of the TFs in the predicted liver network. The majority (59.7%) of nodes (light
green nodes in Figure 4.6) were shown experimentally to be expressed in liver tissue
(Matys et al., 2006; Parkinson et al., 2011; Ravasi et al., 2010).

3 of the significant TF pairs (HNF1A:HNF1B, HNF1A:HNF4A, HNF1A:CEBPA; red
edges in the network in Figure 4.6) are known interacting proteins in the PPI databases
mentioned in Section 4.4.3. Next, we investigated the presence of a common known
interacting factor of the two transcription factors in any significantly co-occurring pair.
9 TFs in the liver network share such a common interacting factor (denoted as orange
edges in Figure 4.6). As an example, there are known PPIs between HNF1A and CEBPA
and SOX10 and CEBPA, such that a possible interaction (and co-occurrence) of HNF1A
and SOX10 is likely to exist too.

Next, we searched with Ingenuity Pathway Analysis (Ingenuity ® Systems (IPA)) for
molecular functions and pathways in which the TFs from our liver network are involved.
As expected, we found as the most enriched function transcriptional regulation and
DNA-binding. Other interesting molecular functions were found as significantly en-
riched, here shown with the corresponding p-value and involved transcription factors:
development of liver (p = 1.37-107% CEBPA, HNF1A, HNF1B, PDX1,RELA), prolif-
eration of hepatocytes (p = 5.71 - 10~%; CEBPA, HNF1A, NFE2L2, NFKB1) and liver
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hepatitis (p = 1.31 - 1072; ESR2, NFE2L2, PDX1, RELA). Further, transcription fac-
tor NFE2L2 is a known regulator in lipid metabolism and hepatic system development.
Transcription factor RELA has a known function in liver, it regulates the degeneration
of liver. In our liver network, we predict significant TF pairs between NFE2L2 and
both central hubs HNF1A and HNF1B and as well significant TF pairs between RELA
and these both central hubs. Known regulatory functions in liver of NFE2L and RELA
indicate that there is a possible functional co-occurrence of these two factors with the
central regulators HNF1A and HNF1B.

3-way contingency table test vs. motif similarity
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Figure 4.5: Relation of the significance value in the 3-way contingency table and the motif
similarity in liver. Pairs of known interacting transcription factors are highlighted with red
Crosses.

4.5.2 Predicted TF pairs in skeletal muscle

The significant co-occurring TF pairs in skeletal muscle with a threshold p-value < 10~¢
result in a network with 41 TF pairs (edges) involving 40 transcription factors (nodes),
see Figure 4.7. 38 of the predicted pairs are between TFs with nonsimilar motifs (solid
edges). The remaining 3 TF pairs are between TFs with similar motifs (dashed edges).
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9 of 40 (23%) TFs in the skeletal muscle network (GATA2, MEF2A, MYF, NFIL3,
PAX2, PAX6, SP1, SRF and TBP) are known regulators of gene expression in mus-
cle (Bentzinger et al., 2012; Sartorelli and Caretti, 2005; Smith et al., 2007). In our
predicted network, there are two central regulators: MEF2A and TBP. MEF2A is the
central hub with the highest number of predicted co-occurring partners (36), whereas
TBP with co-occurring general regulators TFAP2A and SP1 is a center of a smaller
network, which is related to general tissue development. Both of the central factors
(MEF2A, TBP) were classified as facilitator hubs by Ravasi et al. (2010), meaning that
they are central regulators with widespread expression over many different tissues. We
found evidence of expression in skeletal muscle for additional 22 (55%) factors (green
nodes) from our network (Matys et al., 2006; Parkinson et al., 2011; Ravasi et al., 2010).
Two co-occurring TF pairs (MEF2A:TEAD1 and TBP:SP1) in the muscle network are
already known direct interactions (see red edges in Figure 4.7). Four of the significant
TF pairs share a common known interacting TF partner, we call such connection a trio
and denote them with an orange edge as in the liver network. The knowledge of a known
shared interacting transcription factor increases confidence in the validity of our pre-
dicted TF pairs. Factors TBP and TFAP2A have two known shared co-factors: MYC
and TP53 (these connections are shown as grey edges in the network, because they are
not part of our predicted network). Three predicted TF pairs SRF:TBP, SRE:MEF2A
and TBP:MEF2A all share a common co-factor TEAD1 (see grey edges in Figure 4.7).
As found in literature, SRF, TBP and MEF2A are all known regulators in skeletal
muscle, thus there is a high probability that TEAD1 can build a complex with these
regulators and have a regulatory function in muscle, too. For the TF pair SRF:MEF2A
we found an experimental evidence of physical interaction between SRF and MEF2A in
mouse (West et al., 1997).

We searched for the overrepresented molecular functions in which the transcription fac-
tors from the muscle network are involved. The analysis was performed with Ingenu-
ity ® Systems (IPA). 8 TFs in the network control the differentiation of muscle cells
(p = 9.4 x 107%; MIZF, MEF2A, MYF5, NFIC, REST, SRF, STAT1, TP53); 6 TFs
in the network are involved in the differentiation of muscle cell lines (p = 8.1 x 107,
EWSRI1, FLI1, MYF5, NFKB1, STAT1, ZNF423). We found two more general func-
tional categories, that are related to molecular processes in muscle: apoptosis of fi-
broblast cell lines (p = 1.31 x 107%; AHR, EGR1, EVI1, EWSRI1, FLI1, NFE2L2,
NFKB1, RELA, STAT1, TP53) and development of organs (p = 8.5 x 107%°; AHR,
ARNT, EGR1, EVI1, FLI1, FOXD3, FOXQ1, GATA2, NFKB1, NOBOX, NR2F1,
PAX2, PAX6, PLAG1, RELA, RORA, SOX2, SP1, SRF, TEAD1, TFAP2A, TP53,
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Figure 4.7: Network of significant TF pairs in skeletal muscle. Red nodes are known regulators
in muscle, green nodes denote genes expressed in muscle. Factors with similar binding motifs
are connected with dashed edge, factors with non similar binding motifs with a solid edge.
Red edges are known protein-protein interactions, orange edges indicate a common interacting
partner of both nodes.

4.5.3 Predicted TF pairs in hematopoietic stem cells

To generate a network with significant TF pairs in hematopoietic stem cells (HSCs), a
threshold of p-value < 107! was used. More strict threshold for this cell line was selected
because of the large number of cell-line-specific genes (678) in HSCs which induce higher
number of significant TF pairs. The predicted network of significant TF pairs consists
of 50 TF-pair connections among 36 TFs, shown in Figure 4.8. 41 (82%) TF pairs are
between TFs with nonsimilar motifs. The remaining 9 TF pairs are between TF with
similar motifs. Similarly to the other two studied tissues, there are two subnetworks
with two central hubs: ELK1 and NFYA. These two factors were identified as facilitator
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hubs (i.e. central regulators with widespread expression) by Ravasi et al. (2010). Both
ELK1 and NFYA, together with 13 other factors (ARNT/AHR, ELK4, ELF5, EGRI,
GABPA, IRF1, IRF2, MYF, POU5F1, SPI1, USF1, TBP and ZFP423) are known
regulators in hematopoiesis. These are 41.7% of factors in the predicted network, see
red nodes in Figure 4.8. We found that further 13 (36.1%) TFs are expressed directly in
HSCs or in bone marrow, where the HSCs originate from (Matys et al., 2006; Parkinson
et al., 2011; Ravasi et al., 2010).

There are 4 TF pairs which are known as directly interacting proteins (ELK1:KLF4,
NFYA:ELK4, NFYA:SPI1, NFYA:CREB1). Moreover, 12 TF pairs in the network share
one or more of the interacting factors: BRCA1, SP1, SRF, TP53 as common co-factors
(for a better representation, these interactions are not shown in the network). Half of the
factors (CREB1, CTCF, E2F1, EBF1, EGR1, ELK1, ELK4, GABPA, HIF1A, HNF1A,
IRF1, IRF2, KLF4, MYB, NFYA, PBX1,RXRA-VDR, SPI1) in the predicted network
play a role in the hematopoiesis, as shown with Ingenuity ® Systems (IPA) analysis
(p = 7.19 x 10717). Further, 13 factors (CREB1, E2F1, EBF1, EGR1, ELK1, ELK4,
GABPA, HIF1A, HNF1A, IRF1, IRF2, MYB, SPI1) from the network have function in
the development of lymphocytes and leukocytes (p = 1.77 x 107), one of the processes
that take place in the HSCs.

4.6 Comparison of predicted TF pairs obtained with different

computational methods

The results of our study suggest that the gene expression in various tissues or cell types
is regulated by a large number of tissue-specific TF pairs which are dominated by only
a few central regulators. The experimental findings of Ravasi et al. (2010) confirmed
the central hubs in various tissues which were detected with our methodology. Ravasi
et al. further separate the hubs by their expression specificity into specifier (with tissue-
specific expression) and facilitator (with wide expression over tissues). In our networks
of significant TF pairs, we could find both of these groups of central hubs. In the follow-
ing, we compare our predicted TF pairs in liver, muscle and hematopoietic stem cells
with predictions obtained with two different computational methods predicting tissue-
specific interactions of TFs.

The first method from Yu et al. (2006) first searches for highly significant hits of tran-
scription factor binding sites in human promoters. Then, Yu et al. (2006) evaluate the
relations between all TF pairs with the co-occurrence of their highly significant binding

sites and their relative positions in promoters of tissue-specific genes. In contrast to our
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Figure 4.8: Network of significant TF pairs in hematopoietic stem cells. Red nodes are known
regulators in hematopoiesis, green nodes denote genes expressed in white blood cells. Factors
with similar binding motifs are connected with dashed edge, factors with non similar binding
motifs with a solid edge. Red edges are known protein-protein interactions, orange edges
indicate a common interacting partner of both nodes.
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analysis, another database of PWMs from TRANSFAC (Matys et al., 2006) was used.
In liver, we identified 11 TF pairs predicted by Yu et al. that are in agreement with
our significant TF pairs (HNF1:NFIL3, PBX1:HNF1, HNF4:HNF1, HNF4A:HNF1,
HNF1:FOXC1, CEBPA:HNF1, FOXD3:HNF1, HNF1:NKX2-2, HNF1:FOXL1,
HNF1:NKX3-A, RORA1:HNF1). The pair HNF1:NFIL3 belongs to the top three liver
interactions defined by Yu et al. In concordance with our predicted network in liver
(with two main central regulators HNF1A and HNF1B), HNF1 is the central regulator
in liver in Yu et al. too.

The comparison of the muscle-specific TF regulatory networks gives very similar re-
sults. 8 of our predicted co-occurring TF pairs in muscle (MYF:MEF2, TBP:MEF2,
SRF:MEF2, SRF:TBP, RREB1:MEF2, PAX2:MEF2, NFkB:MEF2, TBP:TFAP2A) could
be found in the muscle-specific network identified by Yu et al. Among them, the TF
pair MYF:MEF2 is one of the top three interactions identified by Yu et al. The central
regulator in muscle predicted by Yu et al. (2006) is MEF2 which corresponds to our
main central hub MEF2A.

A direct comparison of the results in hematopoietic stem cells is not possible, because
Yu et al. (2006) do not provide an analysis of this cell line. Therefore, we exam-
ined bone marrow tissue provided from Yu et al., which is the most related tissue to
HSCs, as HSCs originate from bone marrow. 5 of our predicted TF pairs in HSCs
(ELK1:GABPA, ELK1:CREB1, ELK1:NFY, ELK1:MYB1, NFY:VDR) could be found
in the bone-marrow-specific regulatory network from Yu et al.

The second method from Hu and Gallo (2010) makes use of the evolutionary conserva-
tion of biological function and high expression level of genes in human tissues to predict
TF pairs which control tissue-specific gene expression. In general, the predicted net-
works in skeletal muscle and in liver by our methodology and by Hu and Gallo differ
a lot. We could identify only two of our predicted TF pairs in liver (HNF1A:PAX4,
HNF1:SRY) and one TF pair in skeletal muscle (PAX:TBP) among predicted TF pairs
by Hu and Gallo One reason for the small agreement may be the different predicted cen-
tral regulators in studied tissues. The hubs identified by Hu and Gallo in liver are CEBP,
HNF3, and HNF4 whereas the hubs found with our methodology in liver are HNF1A,
HNF1B and HNF4A. The central hub in our predicted muscle network (MEF2A) does
not occur in the muscle-specific network of interacting TF pairs from Hu and Gallo The
agreement of predictions between Hu and Gallo and Yu et al. is very low too although
they use a very similar set of PWMs.

We see several reasons why the agreement of our tissue-specific predictions and those

from Yu et al. is much larger than the agreement in comparison with Hu and Gallo
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First, we use the sets of tissue-specific genes derived by Yu et al. for our tissue-specific
predictions too. Second, the predictions of Yu et al. are much more numerous (e.g. 1052
significant TF pairs in muscle compared to 121 significant TF pairs predicted by Hu
and Gallo) such that the chance to find some common TF pairs is much higher. Third,
whereas our method and the method of Yu et al. focus on the overrepresentation of
pairs of transcription factor binding sites, Hu and Gallo uses the functional co-evolution
and co-expression of the common target genes of TF pairs.

4.7 Conclusion

Tissue-specific gene expression is regulated by an interplay of multiple transcription fac-
tors (Remenyi et al., 2004). The identification of transcription factors which co-occur in
the promoter regions and regulate together the expression of their target genes is very
important to better understand how cells in different tissues and developmental states
achieve their specificity. Previous computational studies were usually based on com-
mon sequence features of promoters corresponding to some tissue function or function
related groups of genes (Klein and Vingron, 2007; Smith et al., 2007; Yu et al., 2006).
Another approach was based on evolutionary conservation and co-expression of genes
which are co-regulated by interacting TFs (Hu and Gallo, 2010). Although these studies
make plausible predictions, the mechanisms which control gene expression are still not
fully understood, nor are the exact relationships between various transcription factors
in different stages.

In this chapter, we presented a novel method for predicting co-occurring transcrip-
tion factors in tissue-specific manner. We represented each TF as ranked list of
promoters ordered by the predicted binding affinity of the TF to the promoter sequence.
To identify co-occurring TF pairs in a tissue-specific aspect, tissue-specificity informa-
tion of the target genes was included. Then, we applied statistical testing in 3-way
contingency tables to detect significant TF pairs co-occurring in the studied tissue.
Since four different null models for testing in 3-way contingency tables are available,
we conducted goodness-of-fit tests for all null models using all TF pairs. The suitable
model was selected based on the distribution of resulting p-values, which was closest
to a uniform distribution with moderate enrichment of significant p-values. With this
approach, we identified the partial independence model as the best underlying in-
dependence model fitting the data.

Then, we identified highly significant co-occurring TF pairs in 34 human tissues fulfilling
the p-value threshold. In total, we found 1061 significant TF pairs in 22 human
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tissues, corresponding altogether to 767 unique TF pairs. In our analysis, we focused
on TF pairs between transcription factors with nonsimilar binding motifs. The major-
ity (86.6%) of our significant TF pairs had nonsimilar motifs which reduces the possible
source of false positive predictions only due to high similarity of binding motifs. The
biological relevance of our discovered tissue-specific TF pairs was demonstrated by both
known protein-protein interactions in validated databases and by the expression of TFs
in the corresponding tissue. We have shown that known protein-protein interactions are
enriched (1.8-fold) in the set of predicted TF pairs with tissue specification. However,
the proportion of known PPIs in the groups of significant TF pairs varies in different
tissues from 10-fold enrichment to no occurrence of known PPIs.

A large majority (60— 70%) of the predicted tissue-specific factors have experimental ev-
idence to be expressed in the corresponding tissue. All factors in the tissue-specific
TF networks were found just by the selection criterion from the statistical test in the
contingency table, without any knowledge about their functions in the tissue of inter-
est. Thus, these results indicate that our predicted tissue-specific TF pairs and thereby
the tissue-specific regulatory networks are very likely functional in the corresponding
tissues. Furthermore, we investigated significantly enriched gene functions related to
the examined tissue which support the hypothesis of the regulatory function of these
predicted factors in the tissue.

Our predicted networks consisting of significant tissue-specific TF pairs are characterized
by one or two central regulators with a high number of respective partners. These
central hubs are HNF1A, HNF1B and HNF4A in liver; MEF2A and TBP in skeletal
muscle and NFYA and ELK]1 in hematopoietic stem cells. All these factors have known
regulatory function in the corresponding tissue and were experimental validated as spec-
ifier (e.g. tissue-specific central regulator) or facilitator (e.g. widely expressed central
regulator) hubs by Ravasi et al. (2010). These findings demonstrate that both, non-
specific and tissue-specific TFs play a large role in regulation of tissue-specific genes.
Furthermore, individual TFs can contribute to tissue specificity in different tissues by
interacting with distinct TF partners.

Despite the fact that we were able to successfully predict novel pairs of co-occurring TFs
in various tissues, our method could be improved. Since our method is not able to dis-
tinguish between a cooperative binding of two TFs with highly similar motifs and their
competing for one binding site, such TF pairs have to be excluded from our analysis.
However in general, factors with very similar motifs can in reality jointly bind to the
DNA sequence and regulate the transcription of the target gene (e.g. FOS and JUN,
Gerstein et al. (2012); Glover and Harrison (1995)).
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In this chapter, we use a simple definition of promoter regions as a fixed size region up-
stream from the TSS of a gene. We could achieve much higher accuracy of transcription
factor binding affinity prediction by using the open chromatin regions in various tissues
or cell lines (Boyle et al., 2008a). In that case, we would have an exact knowledge of
the accessibility of the genomic sequences. Moreover, these regions are generally much
smaller than our definition of promoter regions thus the rankings of these regions ac-
cording to binding affinity might differ.

Further, for our predictions, we have used the groups of genes which are specifically
expressed in the tissue of interest. This information was derived from the ESTs mea-
surements. But many mammalian tissues are highly heterogeneous and consist of large
number of different types of cells which might be regulated by different combinations
of transcription factors. So, rather focusing on cell-type-specific genes or regulatory
regions than on the whole tissue would improve the accuracy of predicted co-occurring
TF pairs. One problem of the usage of the cell-type-specific groups of genes is that they
might include smaller numbers of genes, and then the probability of having common
cell-type specific genes at the top of the ranked lists (e.g. the mi1; entry in the 3-way
contingency table) will be even smaller than for tissues.

The two challenges mentioned above (e.g. using only accessible DNA-regions and us-
age of cell-type-specific information) are addressed and further studied in the following
chapter. In addition, we hope that there will be more experimental data available (such
as a positive set of co-occurring TFs and a negative set of not co-occurring TFs) in the
near future which could provide a measure of the specificity and sensitivity of our predic-
tions. Finally, our findings showed that comparing the usage of rank based statistics for
transcription factor targets results in plausible predictions of co-occurring transcription

factors in various human tissues.




5 Cell-type-specific transcription
factor co-occurrence in genomic

regulatory regions

5.1 Motivation

The prediction of tissue-specific cooperative binding of transcription factors on promot-
ers was discussed in the previous chapter using the ranked list representation of TFs
and applying the 3-way contingency table test. For this prediction, we assumed that
the complete promoter regions are open and accessible for transcription factor binding
and applied the affinity prediction method on the complete promoter. However, the
cis-regulatory sequences, such as promoters and enhancers, are embedded in chromatin
and are accessible in dependance of the temporal and spatial development of the cell.
The presence or absence of nucleosomes, the basic repeating unit of the chromatin deter-
mines whether cis-regulatory elements are accessible for binding of transcription factors
or not. Thus, chromatin accessibility is necessary for cis-regulatory elements to exert
their regulatory effects.

The accessible regulatory regions can be identified using various experiments such as
chromatin immunoprecipitation (ChIP) experiments or DNase I hypersensitivity ex-
periments, see Section 1.3.2. Previous studies (Boyle et al., 2008a; John et al., 2011,
Pique-Regi et al., 2011) showed that the integration of the TF binding prediction models
and the DNase I hypersensitivity score considerably improve the prediction of putative
TF binding to the DNA by decreasing the false positive rate.

In this chapter, we make use of a recent large study (The ENCODE Project consor-
tium, 2012) where the open chromatin was assessed in more than 100 human cell types
using the DNase I experiments combined with sequencing (DNase-seq). With this large
scale data set, we can identify hundreds of thousands of cell-type-specific open reg-
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ulatory regions and ubiquitously open regulatory regions. Then, we study the
co-occurrence of various TFs in these cell-type-specific regions. Moreover, we are able to
detect pairs of TFs which preferentially co-occur in the cell-type-specific manner when
compared to their behavior in the ubiquitous regulatory regions. The large number of
distinct genomic regulatory regions in all cell types motivated the development of a new
method for detecting cell-type-specific co-occurring TFs. Namely, we compare the
similarity of two ranked lists (which represent two TFs) within the cell type of interest
against their similarity within the ubiquitously open regulatory regions. The significant
cell-type-specific TF pairs are pairs with high similarity within the cell-type-specific
regulatory regions and small similarity within the ubiquitously open regions.

In the past years, approaches predicting cooperation between TFs in the open regulatory
regions were developed. One class combines the experimental data of TF binding such
as ChIP-seq or ChIP-chip, for different factors to detect significantly co-binding TFs.
Usually, the main idea is to compare number of peak occurrences of two TFs on shared
locations to the number of single peak occurrences (Gerstein et al., 2012; Wang et al.,
2012) or to integrate overrepresentation analysis of secondary motifs in peak regions
bound by the primary TF (Oh et al., 2012; Wang et al., 2012; Whitington et al., 2011).
These approaches usually give highly precise predictions but they are restricted by the
availability of the experimental data. The largest available human study of the The
ENCODE Project consortium (2012) has generated ChIP-seq data sets for 119 distinct
transcription factors in five cell lines, and out of them only 87 have a DNA-binding
domain with a sequence-specific binding motif (Wang et al., 2012). The number of
ChIP-seq experiments in other cell lines is much smaller. It generally includes only few
TFs.

The second group of methods for predicting TF co-occurrence uses the experimental
evidence of open chromatin derived from the DNase I hypersensitive experiments to
find significantly enriched pairs of TFs. Jankowski et al. (2013, 2014); Kazemian et al.
(2013) focus on the prediction of direct TF-TF dimerization with fixed spacing and
orientation. Neph et al. (2012) investigated the occupancy of binding motifs in DNase I
footprints which provides precise information of DNA-protein binding due to a nonuni-
form DNase I cleavage. Then, they focus on the tethered binding of an indirect DNA
interaction of one TF through an interaction with another TF.

The third type of methods predicting TF cooperation (Park et al., 2014; Vandenbon
et al., 2012) is based on integration of gene expression measurements where the regu-
latory regions of co-expressed genes are investigated for TF motif overrepresentation.

These approaches have the advantage of the evidence of the functional effect on the
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differentially expressed genes by the combination of TFs on the promoter regions. How-
ever, they are limited by analysis of promoter sequences only or by a small number of
known enhancer-target pairs, since the general targets of distant regulatory regions are
not known. Further, they are also limited by the availability of experimental data.
Thus, to our knowledge, our approach is a novel method to detect cell-type-specific co-
occurrence of TFs with fuzzy spacing using arbitrary sets of binding motifs of interest
and experimental evidence of open chromatin region in the studied cell type. The advan-
tage of our method lies in the TF representation as a ranked list of the regulatory
regions which does not require setting of thresholds for binding motif hits and their
spacing (see Section 3.2), or for the identification of the accessible genomic regions. Our
rank based method requires only one parameter to define the top-ranked regions in the
ranked lists, which could be chosen based on a biological motivation or the results can
be aggregated over different choices of these parameters.

In this chapter, we first present the method for the determination of cell-type-specific
chromatin accessible regions with the DNase-seq data and discuss shortly the proper-
ties of these cell-type-specific regions (Section 5.2). In Section 5.3, the representation
of TFs as a ranked list of genomic regions in a cell-type-specific manner is introduced.
Section 5.4 presents single TF motifs which are overrepresented on the cell-type-specific
regulatory regions and examines in depth the TF motifs in immune-related cells, lung
cells, embryonic stem cells and in muscle cells. In Section 5.5, the method for predict-
ing co-occurring TFs on cell-type-specific regulatory regions is introduced. Further, the
results in immune-related cells, embryonic stem cells and in muscle cells are discussed.
The predicted TF pairs are validated with other computational and experimental based
approaches in Section 5.6. The last section provides a short summary of this chapter.

5.2 Cell-type-specific chromatin accessibility

The usual approach to measure chromatin accessibility genome-wide is to digest chro-
matin with the endonuclease DNase I followed by sequencing (DNase-seq). The accessi-
ble chromatin regions are preferentially cleaved by the endonucleases DNase I, therefore
they are referred to as DNase hypesensitive sites (DHS). The DNase-seq experi-
ment generates a genome-wide map of the accessible chromatin (Boyle et al., 2008a);
the more sequenced reads map to a certain region, the more the region is hypersensitive
to DNase I digestion and thus more accessible.

DNase I hypersensitivity, as measured by DNase-seq, has been used previously to char-

acterize cell-type-specific promoters and enhancers (Ernst et al., 2011; Song et al., 2011;
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Xi et al., 2007). However, such analyses focused either on immortalized cell lines or cell
lines derived from cancer cells. For our purpose, we want to use the DNase-seq exper-
iments in various healthy cell types to determine genomic regions with high degrees of
chromatin accessibility which are most specific for certain cell types. Moreover, we use a
statistical test to create ranked lists of accessible genomic regions ordered by their speci-
ficity for each cell type. To do so, we used data from The ENCODE Project consortium
across 88 healthy and 2 cancer cell lines. This large number of experimental data allowed
us to derive a whole set of cell-type-specific regulatory regions for well-studied human
cell types such as white blood cells, fibroblasts, myoblasts, epithelial cells, endothelial
cells and others. The detailed description of the experimental data used, with cell line
and corresponding tissue information is listed in Appendix, Table A.1. Some of the cell
lines which are biologically highly similar were grouped into one cell type, resulting in
a total number of 64 cell types (see Section 5.2.1 for detailed information).

In the selection of the experiments we focused mainly on healthy cell lines since we want
to study the natural epigenetic landscape in different cell types rather than to study
particular cell lines (e.g. immortalized or cancer cell lines) where the differences in chro-
matin accessibility might be a consequence of being a cancer or being immortalized.
For this reason we considered all DNase-seq experiments in healthy cell lines available
from the ENCODE consortium which were conducted in the same center (University of
Washington) to avoid high technical variability. In addition, we included two cancer cell
lines (K562 and HeLa-S3) because of a large number of experimental studies analyzing
these two cell lines for later comparison of our results.

5.2.1 Clustering of DNase hypersensitive sites

To investigate the reproducibility of the DNase-seq experiments in biologically related
cell lines first, a large matrix of read counts over genomic regions across the whole hu-
man genome and over all cell types was created.

Namely, the human genome (hgl9 Ensembl assembly from genome.ucsc.edu) was di-
vided into 200 bp long, non-overlapping windows. Windows which overlay repetitive
elements in RepeatMasker (Smit et al., 1996-2010) with scores higher than 1000 were
eliminated resulting in total of 9.7 million windows. The DNase-seq reads from a total
of 164 experiments in 90 cell lines were counted, and counts were normalized for se-
quencing depth by multiplying each sample by the average read count over all samples
divided by the sample’s average read count. Then the decadic logarithm of the normal-
ized counts with a pseudocount of one read was taken. An illustrative example for 14
data files from 7 different cell lines (highlighted with different colors) is shown in Figure
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5.1. The upper figure shows the DNase-seq raw data files, the bottom right part shows
the corresponding matrix with normalized read counts of 12 genomic windows.

To investigate the similarity of the read counts of biologically related cell types, we
calculated Pearson’s correlation of the read counts in all genomic windows over all sam-
ples. Afterwards, we used complete linkage clustering to find clusters. The correlation
matrix together with the dendrogram is visualized in Figure 5.2, the rows and columns
of the symmetric matrix correspond to 164 samples used for our analysis. The color
of each heatmap cell indicates the strength of the correlation, the darker the color, the
higher the correlation between samples. Further, we depicted the corresponding tissues
and types of cells where the studied samples came from. The tissue is displayed as
a horizontal color-barcode above the heatmap; the type of cell is shown as a vertical
color-barcode on the left side of the heatmap.

We could observe that the majority of the biological replicates from the same cell line
have a high correlation and cluster together. Further, functionally related cell lines, such
as renal cortical epithelial cells and renal epithelial cells, usually build small, highly cor-
related clusters (see highlighted samples in green in Figure 5.2). Such highly correlated
cell lines (which are biologically similar) were manually grouped into cell types, reducing
the number of groups from 90 to 64. The exact grouping of all cell lines into cell types
can be taken from the Appendix, Table A.1.

In addition, a very distinct clustering of some cell types or tissues can be identified
in the heatmap and in the corresponding dendrogram. The most striking groups are
highlighted in blue on the left dendrogram in Figure 5.2. For example, white blood cell
samples, T-cells and monocytes create a large distinct cluster as well as the skin and gum
fibroblasts and microvascular endothelial cells. Further, renal epithelial cells, B-cells,
embryonic stem cells (ESCs), skeletal myoblasts and others form small distinct clusters.
The large highly correlated cluster in the left lower corner consists of various cell types
such as: brain astrocytes, fibroblasts, myoblasts and endothelial cells originated from
different tissues. However, some biologically unrelated cell lines build relatively distinct
clusters too. For example leukemia samples cluster together with retinal epithelial cell
and lymphatic microvascular endothelial cell samples; and cervical carcinoma samples
cluster with myoblasts and epithelial cell samples, see highlighted groups in violet on
the left dendrogram in Figure 5.2. One possible reason for this clustering of unrelated

cell lines could be general high correlation level of the read counts over all samples.
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Figure 5.2: Correlation matrix among all DNase-seq samples calculated from the read coverage
in 9.7 million genomic windows. The horizontal barcode shows the corresponding tissue of the
sample, the vertical barcode the corresponding cell type of the sample. The complete linkage
method was used for clustering.

5.2.2 Ranking the DNase hypersensitive sites by cell-type
specificity

The cell-type specificity of the genomic windows is quantified with a ¢-statistic taking
into account within-tissue variation of the DNase hypersensitivity. For the calculation,
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the matrix of normalized read counts described in Section 5.2.1 and the grouping of
cell lines into cell types as listed in Appendix Table A.1 was used. This method for
quantification of cell-type specificity was adapted from Love and Chung (2012).

Formally, the t-statistics is derived for each genomic window separately, as described
in the following. For a given window w, w = 1,..., W, let C,; denote the normalized
log read count for sample ¢ which belongs to cell type (i) = . Let us denote the total
number of cell types with m and each cell type I, [ = 1..., m with n; number of samples
(e.g. replicates). Then the cell type average count for each window w over all samples

Z Clas. (5.1)

:t(i)=

belonging to cell type [ is:

Assuming equal variance among cell types, the pooled within-cell-type standard devia-

tion for each window w can be calculated as:

2.2 (Cui=C

=1 i:t(i)=
o= | ZLEE . (5.2)

m

\ (= 1)

1

~

We can also define the global average count for each window w over all cell types as:

Co =13 Cor 53

Then, the Student’s t-statistic for cell type [ and each window w can be calculated to
quantify the divergence of the cell type average from the global mean:

5 CwG
by = >
z/ % + nL(SwG + 50)

. . W
where sg is the mean over all windows: sg = % Y w1 SwG- So can be understood as

(5.4)

value to moderate the t-statistic, by preventing division by very small within-cell-type
estimates of standard deviation. Thus the t-statistic provides a measure of the cell-type
specificity of DHS for the corresponding cell type. An illustrative example for 14 data
files grouped in 6 different cell types is shown in Figure 5.1. The matrix of ¢-statistics
(bottom left figure) for 12 genomic windows over all 6 cell types is calculated from the

matrix of read counts (bottom right figure).
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Genomic windows with the largest positive t-statistic are cell-type-specific DNase hy-
persensitive regions, we call the top-ranked windows as cell-type-specific DNase hyper-
sensitive sites (CTS-DHSs). In contrast, globally open genomic windows have cell type
average counts Cy close to the global means Cie in all cell types, thus the global t¢-
statistic over all cell types ¢ := £ 3"t is close to zero. Then, we define sites with
the smallest global ¢-statistic ¢ as ubiquitous DHSs, e.g. sites which are globally open
in all cell types. We will use these sites as control sequences for the comparison of TF
co-occurrence in the cell-type-specific regions to the TF co-occurrence in the ubiquitous

regions.

5.2.3 Genomic location of CTS-DHSs

Next, we investigate the genomic location of the identified CTS-DHS and the identified
ubiquitous DHSs. We selected 5000 most cell-type-specific sites in each cell type and
5000 most ubiquitous sites, its distribution along the genome is shown in Figure 5.3.
The large majority (88%) of the top-ranked CTS-DHSs are located in intronic and
intergenic regions. Only 8% of the top-ranked CTS-DHSs are situated in promoters,
and a very small part (< 4%) overlay with annotated exons (hgl9 Ensembl assembly
from genome.ucsc.edu). The only exception is the primary T-cell which has 19% of sites
in exons and 22% of sites in promoters. The genomic distribution of the top CTS-DHSs
is in strong contrast to the genomic distribution of the top-ranked ubiquitous DHSs,
of which 43% overlap promoter regions (see the top bar in Figure 5.3). These findings
suggest that the CTS-DHS are mainly cell-type-specific enhancers, a conclusion that
has also been drawn in earlier studies about specific cell lines (Ernst et al., 2011; Song
et al., 2011; Xi et al., 2007).

5.3 Transcription factor as a ranked list of DNase hypersensitive

sites

For our goal of predicting overrepresented TFs and co-occurring TFs on the DHSs we
require a representation of a TF as a ranked list of (cell-type-specific) DNase hypersen-
sitive sites. In contrast to our definition of TF as a ranked list of its target genes in
Section 3.2, there is no fixed (predefined) number of DHSs which should be taken to cre-
ate a ranked list. When analyzing TF co-occurrence on human promoters, the complete
list of all human promoters (genes) from the Ensembl database was used. This was a
biologically justified number of items, although different gene databases like RefSeq or
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Figure 5.3: Genomic distribution of the 5000 most cell-type-specific DNase hypersensitive
sites in 64 cell types and of the top 5000 ubiquitous DNase hypersensitive sites sorted by the

overlap with promoter regions.
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Entrez might include slightly different number of genes.

However, there is no such natural information about how many sites of open chromatin
are present in the genome. This number might vary from cell to cell or cell line to cell
line. For example, Song et al. (2011) report 100000 — 140 000 DHSs in 7 different cell
lines. Many of them are open over all cell lines, some of them are cell-line-specific. Thus,
with the DNase-seq experiments, we are able to find hundreds of thousands of regions
with enriched read counts without any knowledge whether these regions are functional
or not. For this reason, representation of a TF as a ranked list of all cell-type-specific
DHSs is not feasible.

With the method described in the previous Section 5.2, we can detect up to several
thousands of cell-type specific DHSs which are unique for the corresponding cell type.
A full list of all CTS-DHSs from all available cell types would result in a ranked list
with more than 600 000 items for each TF. When looking for co-occurring TFs, the focus
is on the very top of the list, usually up to several thousands of items (e.g. sites). In
this case, a comparison of three ranked lists would lead to a large number of highly
significant results even for a very small number of shared top-ranked DHSs.

In general, increasing the universe of the contingency table (e.g. the number of all
ranked items in the list) can dramatically change the significance of the results. Let us
consider an example of two different 3-way contingency tables for top-ranked cell-type-
specific DHSs with different length of the lists as shown in Table 5.1. The threshold
for top-ranked sites is set in both lists to k; = ks = 2000 and there are total of 5000
cell-type-specific DHSs in both tables. Further, both TFs share the same number of
cell-type specific and non-specific sites, but the total length of both lists (universe of
the contingency table) in the first table is 200 000 sites and the total length of both lists
in the second table is 10000 sites. Hence, p-value of the partial independent test (see
Section 4.2.2) corresponding to the first table equals 0, whereas the p-value correspond-
ing to the second table is 0.88. This simple example demonstrates how drastically the
significance of p-values can be influenced by the length of the lists.

Therefore, to avoid an artificially large contingency table, we construct the ranked lists
of the DHSs for each TF in a cell-type specific manner including the ubiquitous DHSs as
a sort of contrast. First, in analogy to Section 3.2 we estimate the binding preferences
with TRAP (Roider et al., 2007) of all TFs of interest to the ¢ most cell-type-specific
DHSs and to the ¢ most ubiquitous DHSs. Then we construct for each TF a ranked
list R of length 2t of the ¢ most cell-type-specific DHSs and of ¢ most ubiquitous DHSs,
separately for each cell type. Whereas for given cell type, the CTS-DHSs change due to
their specificity, the set of ubiquitous DHSs remains the same for all studied cell types.
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Then we order the cell-type-specific DHSs and ubiquitous DHSs jointly by the binding
affinity, separately for each TF. An example of TFs represented by a ranked list of DHSs
is shown in Figure 5.4. Here, the ¢ = 10 most heart-specific DHSs (in red) and ¢ = 10
most ubiquitous DHSs (in grey) are ordered for a particular TF by its binding affinity.
Then, the same procedure is repeated for lung, brain and all other cell types.

For our analysis a list of 477 known TF motifs obtained from TRANSFAC 2012 database
from BIOBASE Corporation (Matys et al., 2006, www.biobase-international.com) was
used. We chose the TRANSFAC database for the analysis on DHSs because it in-
cludes motifs for more TFs than the JAPSAR database, which was used in the previous
Chapters 3 and 4. Further, TRANSFAC database includes motifs for the majority of
experimentally studied TFs in the ENCODE project (Wang et al., 2012) which can be
used for later comparison of our results. However, TRANSFAC database contains re-
dundant entries, i.e. multiple motifs corresponding to a single TF, since transcription
factors are known to recognize more than one consensus sequence (Badis et al., 2009).
In turn, similar DNA sequences can be recognized by different TFs (Ehret et al., 2001),
thus different TFs might have same motifs in the database. Therefore, we manually
annotated the 477 TF motifs to 262 single TFs or TF groups/families, using the infor-
mation provided by the TRANSFAC database and by Oh et al. (2012), see Appendix,
Table A.2. In the following, we refer to TF motifs when analyzing the 477 binding
motifs and to simple TFs or factors when discussing the matched results to the set of
262 TFs or TF groups.

5.4 Overrepresented TF motifs in cell-type specific DHSs

Next, cell-type-specific DNase hypersensitive sites are studied for overrepresented tran-
scription factor motifs. We want to find the transcription factors which are responsible
for the cell-type specific gene regulation in the CTS-DHSs. To do so, Fisher’s exact test
described in Section 2.3.3 is applied to determine the significance of the overrepresented
TFs.

First, for each TF motif and for given cell type, we create ranked lists according to TF
binding affinity of the cell-type-specific DHSs and the ubiquitous DHSs, as described in
previous Section 5.3. Then, for each TF motif a 2-way contingency table is constructed
in such way that the row variable partitions the ranked list into the top-k-ranked DHSs
according to TF affinity. The column variable identifies the cell-type-specific and ubiqui-
tous DHSs. Formally, we define a binary variable X} indicating DHSs ranked according
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Table 5.1: Two 3-way contingency tables for shared cell-type specific sites among the top-k;
and top-ko ranked target sites of two different TFs universe size (a) n; = 200 000 and (b)

ng = 10 000 (b).

(a)
cell-type-specific not specific
i £ 7y (i) < 2000 | i] 7y (i) > 2000 | [i] 7y (i) <2000 | |i] s 7y (i) > 2000 )
i] 70 () <
2000 209 791 202 798 2000
572 %0; 791 3209 798 193202 || 198000
> 1000 4000 1000 194000 200000
Partial independence test p-value = 0.
(b)
i] £ rali) <
2000 209 791 202 798 2000
7| : 7o (i) >
2000 791 3209 798 3202 8000
> 1000 4000 1000 4000 10000

Partial independence test p-value = 0.88.
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1. CTS-DHSs: Cell-type-specific DNase hypersensitive sites
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Figure 5.4: Transcription factor represented as a ranked list of CTS-DHSs and ubiquitous
DHSs ordered by the binding affinity. For each cell type separately, the CTS-DHSs and ubig-
uitous DHSs are jointly order by the binding affinity of each transcription factor.
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to TF affinity among the top-k as:

(5.5)

0 otherwise,

Xk(i):{ 1 ifr,(i) <k, ke{l,...2t}

for each DHSs 7, ¢ = 1,...,2¢. Further, the binary variable Z; indicates specific DHSs
of cell type [ and is defined for each DHS i, i =1,...,2t as:

(5.6)

0 1 DHS 1 is cell-type-specific for cell type [
1) =
: 0 DHS i is ubiquitous .

The significance of the top-ranked cell-type-specific DHSs (ny := Y, 1(Xx (i) = 1, Z; (i) =
1)) is assessed with the Fisher’s exact test.

A toy example for 10 most heart-specific and 10 most ubiquitous DHSs with & = 7
top-ranked DHSs and the corresponding contingency table is shown in Figure 5.7 in
module 3.

Analogous to the prediction of co-occurring TFs on general promoters discussed in Sec-
tion 2.3.3 a choice of the cutoff k£ defining the top-ranked DHSs has to be made. More-
over, since we are able to derive hundreds of thousands of cell-type-specific DHSs for
each cell type, another cutoff ¢ defining the most cell-type specific and most ubiquitous
DHSs is necessary.

To test the consistency of the enriched transcription factors in the CTS-DHSs we calcu-
lated Fisher’s exact test for all possible combinations of thresholds & € {500, 1000, 2000}
and t € {1000, 2000, 5000, 7000}. The dependency of the logio p-value on the choice of
different thresholds for all 477 TF motifs in 3 different cell types is shown in Figure
5.5. In general, we can observe a decline of the significance with decreasing number of
selected CTS-DHSs (¢) and with decreasing number of selected top-scored DHSs (k).
However, this trend is relatively weak in the majority of studied cell types as shown for
leukemia in Figure 5.5a and B-lymphocyte in Figure 5.5c¢.

In addition, the top-20 enriched motifs selected with & = 500 and ¢ = 5000 were high-
lighted in red and the selection of the top-20 enriched motifs with £ = 1000 and ¢ = 1000
was highlighted in blue. The first combination of thresholds k£ = 500; ¢ = 5000 repre-
sents one extreme case when k£ is relatively small and ¢ large. The second combination
of the parameters with £ = 1000 and ¢ = 1000 corresponds to the case when only the
most cell-type-specific DHSs are selected and the top-ranked DHSs account for half of
the list (since the length of the list is 2t).

For many cell types, the agreement of the top-20 enriched motifs between these two
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extremes is very large and is consistent over the majority of the threshold combinations,
as depicted in the case of leukemia (see Figure 5.5a). However, there are several cell
types (mainly the embryonic stem cells, see Figure 5.5b) where the agreement between
the two selections of thresholds is very small. The top-ranked motifs based on k£ = 1000
and ¢t = 1000 have lower significance for other combinations of thresholds with ¢ > 1000
and the top-ranked motifs based on k£ = 500 and ¢ = 5000 have smaller significance for
t < 2000. For some of the cell types one can observe a sort of mixture of the two above
cases; relative consistency over all threshold combinations with few outliers which show
low significance in one of the extreme combination of thresholds, as shown in the case
of B-lymphocyte in Figure 5.5¢c.

After evaluation of all cell types, the combination & = 500 and ¢t = 5000 was selected
for the further analysis of the overrepresented TF motifs. First, the biological interpre-
tation of this choice is reasonable, 5000 of the most cell-type-specific accessible regions
in the genome are analyzed and our focus is on the very top of the ranked lists. Sec-
ond, this combination of thresholds does not overestimate the significance as for other
combinations (e.g. k € {1000,2000} and ¢ € {5000, 7000}, respectively) where many of
the TF motifs reach the minimal possible p-value of 107%°. With these selected cutoffs
of £ =500 and t = 5000 the significance for all contingency tables corresponding to all
possible combinations of TFs and cell types was calculated.

The regulators of interest are those TFs with the greatest significance (smallest p-values)
in each cell type. First of all we identified several general enriched factors which were
ranked among the top 50 significant TFs in at least 40 out of 64 cell types. These general
factors are: ARNT (Aryl hydrocarbon receptor nuclear translocator) with HIF1A (Hy-
poxia Inducible Factor 1), ETFA (Electron-Transfer-Flavoprotein, Alpha Polypeptide),
TEAD2 (TEA Domain Family Member 2), GABP (GA Binding Protein Transcription
Factor), KLF4 (Kruppel-Like Factor 4), HIC1 (Hypermethylated In Cancer 1), MYC
(V-Myc Avian Myelocytomatosis Viral Oncogene Homolog) with MAX (MYC Asso-
ciated Factor X), NFY (Nuclear Transcription Factor Y), NKX6-2 (NK6 Homeobox
2), NRF1 (Nuclear Respiratory Factor 1), POU2F1 (OCT1, POU Class 2 Homeobox
1), SP1 (Spl Transcription Factor), TFAP2A (Activating Enhancer-Binding Protein 2-
Alpha), ZFP161 (Zinc Finger And BTB Domain) and E2F (Retinoblastoma-Associated
Proteins) family, EGR (Early Growth Response) family and ETS Oncogene Family.
Most of these factors are known regulators of many genes and are involved in general
cellular function such as: apoptosis, energy metabolism or cellular growth (HIF1, NRF1,
SP1), cell cycle (E2F, MYC, MAX) or in general development of organs (TFAP2A, EGR
family, KLF4, HIC1, TEAD2). Some of these factors control mitochondrial functions
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Figure 5.5: Dependency of the significance in Fisher’s exact test on threshold selection for
477 TF motifs in (a) leukemia, (b) embryonic stem cells (ESCs) and (c¢) B-lymphocytes. The
significance is represented as — log;, p-value on the vertical axis. 11 combinations of thresholds
k (defining the top-ranked DHSs) and ¢ (defining the number of cell-type-specific and ubiquitous
DHSs) is depicted on the horizontal axis. Top-20 enriched TF motifs selected with two extreme
values of k and ¢ are highlighted in red and blue, respectively.
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(ETFA, GABPA) or the biological rhythm (EGR). Three of these factors are tumor su-
pressors (E2F TEAD2, HIC1). The search of gene and protein functions was carried out
with the Entrez Gene database (Maglott et al., 2011, www.nchinlm.nih.gov/gene) and
UniProtKnowledgebase (UniProt Consortium, 2011, www.uniprot.org). Although the
general TFs are not cell-type-specific regulators, the overrepresentation of their motifs
on the CTS-DHSs is reasonable. Most of these factors are very important transcrip-
tional regulators so the high frequency of their motifs on distal regulatory elements is
plausible.

To easily visualize the overrepresented TFs in a cell-type-specific manner, we created a
color heatmap with significance for each TF in each cell type. For simplification, the
general TFs mentioned above were removed from the matrix as well as TFs which did
not show high significance (—log;,(p-value) < 20) in any of the cell types. In case
of multiple motifs corresponding to one TF the maximum significance (the minimal p-
value) over the multiple motifs was taken. The heatmap of 192 resulting TFs (in rows)
in all 64 studied cell types (in columns) is shown in Figure 5.6, the darkness of the cells
indicates the significance of the association between the corresponding cell type and the
occurrence of the corresponding TF.

First, we can see a large block of TFs enriched in a group of cell types in the left upper
corner, namely there are TFs of the FOX (forkhead) family, POU family, NK home-
oboxes, CEBP (CCAAT /Enhancer Binding-) proteins, EGR family, CREB (CAMP Re-
sponsive Element Binding-) proteins, GATA (GATA Binding-) proteins and AHR (Aryl
Hydrocarbon Receptor) - ARNT complex (AHR nuclear translocator), all enriched in
various fibroblasts (mesenchymal, neonatal dermal, pulmonary, gingival, gum, cardiac),
some endothelial cell lines (renal glomerular and umbilical vein), in astrocytes of spinal
cord, in pigment epithelial cells and in cervical carcinoma. Some of these factors such
as EGR family members 1 and 4, NKX3-1, FOXN1, CREB, AHR, together with EVI1,
HIF1A, LHX3, OCT4 and ETS1 (highlighted in red in Figure 5.6) are enriched in the
majority of the cell types.

In the following sections, we focus on the overrepresented TFs in some selected groups

of cell types such as immune cells, muscle cells, lung cells and embryonic stem cells.

5.4.1 Overrepresented factors in immune-specific DHSs

As first, let us investigate the most overrepresented factors in immune-related cell types
in the data set: B-lymphocyte, T-cell, primary T-cell, regulatory T-cell, monocyte,
hematopoietic progenitor cell, marrow stromal cells and leukemia.

The cell-type-specific TFs with the strongest association to these cell types are listed in
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Figure 5.6: Overrepresented transcription factors over 64 cell types. Each cell in the matrix
indicates the significance (—log;,p-value) of the association between the cell type and the
corresponding TF, the darker the matrix cell the higher the significance. TFs overrepresented
in the majority of cell types are highlighted in red. Cell-type-specific TFs are marked with
arrows of corresponding color.
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Table 5.2. There is a high agreement among the most associated factors in the different
T-cells with a strong distinction of the hematopoietic progenitor cells from all other
immune cell lines. Among the top enriched TFs, large number of known regulators
in immune cells such as: ATF family members (with ATF, CREB1, JUN, FOS), ETS
family members (with ELF, ELK, ETS, FLI1, GABPA, SPI1), EGR proteins, IRF pro-
teins, GATA proteins, POU-domains proteins (with OCT:POU2F, POU3F2, POU6F1),
STAT proteins, CEBP proteins, BACH2, MYOD and TCF3 were found (Matys et al.,
2006; Nutt and Kee, 2007). These immune regulators are highlighted in Table 5.2 in
bold and marked with a light brown arrow in Figure 5.6.

The top-scoring TFs were enriched in the following functional categories: transcrip-
tion regulatory region DNA binding (the majority of the TFs by definition), activation
of innate immune response (ATF, CREB1, ELK1, FOS, IRF1, IRF7, JUN, MEF2A,
NFKBI1, RELA), cellular response to type I interferon (IRF1, IRF2, IRF7, IRF8, EGRI)
and erythrocyte differentiation (ARNT, ETS1, HIF1A, SPI1). The functional analysis
was conducted with Ingenuity ® Systems (IPA).

Three of the top-100 factors in B-lymphocyte (E2F, PRDM1, ZNF384) were found as
associated TFs with so-called high plasticity regions in B-lymphocytes by Pinello et al.
(2014). The high plasticity regions (HPRs) characterize the chromatin-state plasticity
in cell-type-specific manner and are enriched in promoters, enhancers and DHSs (Pinello
et al., 2014), suggesting that TFs associated with HPRs might be overrepresented on
the CTS-DHSs from the corresponding cell line too.

Our findings of enriched TFs in monocytes are in agreement with previous studies in
monocytes (Huber et al., 2014; Martens et al., 2014). The enriched transcription factor
families in monocyte-specific DHSs, such as: ETS, ATF, IRF, SPI/KLF and CEBP,
were found to be expressed in monocytes, to have overrepresented motifs in DNase foot-
prints (Martens et al., 2014) and to have an important regulator function in monocyte
differentiation (Huber et al., 2014).

Concerning the enriched factors in leukemia, many of them such as GATA factors and
EVI1 were identified in previous studies (Nucifora et al., 2006; Tenen et al., 1997) to
have an important function in myeloid leukemia. Further, ETS1, HIF1A and GATA1
are regulators of myeloid cell differentiation (Maglott et al., 2011). In comparison of
other immune cell lines, the GATA factors, ETS1 and particularly EVI1 with HIF1A
are enriched only in the cancer cell line suggesting that these factors are essential for

the regulation of the myeloid leukemia.
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Table 5.2: Most significant cell-type-specific TFs in various cell types. TFs in bold are known
transcription regulators in the corresponding tissue.

Cell type cell group | Associated TFs

B-lymphocyte immune CREBI1, FOS:JUN, IRF, OCT:POU2F, TCF3, ZEB1

Tocell e BACH1, BACH2, CREB1, EGR1, EGR4, FOS:JUN,
NKX3-1, SRY, STAT3, TFAP2C

T-cell primary immune BACHI1, BACH2, CREB1, FOS:JUN, NFE2, NFYA, TFAP2C

T-cell regulatory immune ATF, BACH1, BACH2, CREB1, FOS:JUN, LHX3, NFE2,
NFYA, ZEB1

hematopoietic immune CREB1, FOS:JUN, GATA, MYOD, NFYA, TCF3, ZEB1

progenitor

marrow stromal e AHR, CREB1, EGR1, EGR4, LHX3, NKX3-1, POU1F1,
POU3F2, POU6F1

monocyte - Slfl?%;flg;gﬁ(;i‘l’ ELF:ELK:ETS:FLI1:GABP, HIF1A,

9 b
leukemia. immune AHR, ATF, CREB1, EVI1, ETS1:P54, GATA1, GATA3,
cancer GATAG6, HIF1A, LMO2

brain vascular muscle CREBI, EGRI, EGR4, ETS1, FOX, NFYA, SRY

smooth muscle

cardiac myocytes muscle AHR, CEBP, EVI1, GATA, HMGA, NFYA, PAX4, STAT5A

muscle myoblast muscle AHR, CREBI1, EGR1, ETS1, MEF2A, MYOD, MYOG, TCF3,
TFAP2C, TFAP4

skeletal myoblasts muscle CREB1, MYOD, MYOG , TAL1: TCF, TFAP4

skeletal striated AHR:ARNT, AR, CEBP, ETS1, HIF1A, NKX3-1, NR3C1, PATZ1,

muscle muscle PGR, POUIF1, TFAP2C

fetal Tung fibroblast Jung IE)’(I;%II,FFl(,))’I(‘gL,’ P"I‘%);Il, FOXJ2, FOXL1, FOXQ1, NKX3-1,

embryonic lung Jung FOXA, FOXF1, FOXI1, FOXJ2, FOXL1, FOXQ1l, NKX3-1,

fibroblast PATZ1, TBP, TFAP2C

lung fibroblast Jung ETS1, EVI1, GATA, GATA6, HIF1A, LHX3, MYCN,
NKX3-1, TFAP2C, USF2
CEBP, EGR4, ETS1, FOXF1, FOXJ2, FOXL1, FOXQ1,

pulmonary fibroblast | lung NKX3-1, POU6F1, TBP

BSC <tem cell | ATF, BACHL, BACH2, CREBL, CREM, ETSL, FOS, JUN,
MYF:MYOD:TCF, OCT4, ZEB1

undifferentiated AHR, ATF, BACH2, CREB1, CREM, FOS, JUN, NANOG, OCT4,

ESCs stem cell | 0%

differentinted ESCs | stom call | ATF, BACHL, BACH2, CREBL, CREM, ETSL, FOS, JUN, GATAL,

NFE2
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5.4.2 Overrepresented factors in muscle-specific DHSs

The muscle-related cell types in our data set are: skeletal muscle myoblasts, skeletal
striated muscle cells, cardiac myocytes and brain vascular smooth muscle cells. There
are several known muscle regulators among the most overrepresented factors, such as
MEF2A (myocyte specific enhancer factor 2A), MYOG (myogenic factor inducing myo-
genesis), NFYA (nuclear transcription factor Y) and TCF3 (Immunoglobulin Transcrip-
tion Factor 1), marked with a purple arrow in Figure 5.6. Remarkably, none of these
known muscle regulators is overrepresented in skeletal striated muscle (see Table 5.2
with the most enriched factors in selected cell lines).

The functional annotation of factors overrepresented in skeletal striated muscle showed
one enriched functional category which might take place in muscles: cellular response
to oxygen levels (for ARNT, HIF1A and NKX3-1). Further, the overrepresented fac-
tors in other muscle cells were enriched in the following functional categories (except all
functional categories related to DNA-binding and transcriptional regulation): cell fate
commitment (MYOG, MYOD1, TAL1, TCF3) and muscle cell differentiation (GATAG,
MEF2A, MYOD1, MYOG, TCF3). The functional analysis was conducted with Inge-
nuity ® Systems (IPA).

5.4.3 Overrepresented factors in lung-specific DHSs

There are four cell types in the studied data set which originated from lung tissue: fetal
lung fibroblast, embryonic lung fibroblast, lung fibroblast and pulmonary fibroblast.
Several of the most enriched factors are known regulators in lung development and
lung morphogenesis, such as: ETS family members (with ETS1), FOX family members
(FOXA, FOXF1, FOXL1) and GATA6 (Maeda et al., 2007; Matys et al., 2006), see
blue arrows in Figure 5.6. Many FOX family members are enriched in the embryonic
lung fibroblast and the fetal lung fibroblast which is in agreement with previous studies
which found FOX genes involved in embryonic development (Maglott et al., 2011).

Interestingly, factor NKX3-1 (NK3 Homeobox 1) belongs to the most enriched factors
in all lung-related cell types although it plays an important role in normal prostate
development but without any known function in lung. However, another homeobox
factor NKX2-5 (NK2 Homeobox 5) is a known regulator in lung morphogenesis (Maeda
et al., 2007), which binds to the consensus sequence 5°-[CT]AAGTG-3’. This motif
is actually very similar to the the consensus sequence of the enriched factor NKX3-
1, namely 5°-TAAGT[AG] -3’, suggesting that the motif of NKX2-5 might be enriched
in the lung-specific DHSs as well but ranked lower than NKX3-1. The most enriched
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cell-type specific TFs are listed in Table 5.2.

5.4.4 Overrepresented factors in ESC-specific DHSs

Among the studied cell types, there are three cell lines originating from the embryonic
stem cells (ESCs), namely: undifferentiated ESCs (H7-hESC cell line), differentiated
ESCs (H7-hESC cell line differentiated after 2-9 days) and ESCs (H1-hESC cell line).
The most enriched factors in all of the three cell lines are: BACH2, CREB1, CREM,
FOS and JUN. All these 5 factors have molecular function in tumor apoptosis or prolif-
eration (Ingenuity ® Systems, IPA), FOS-JUN complex is known to be involved in cell
differentiation (UniProt Consortium, 2011), CREBI1 is implicated in synchronization of
circadian rhythmicity and differentiation of adipose cells (UniProt Consortium, 2011),
BACH?2 is a transcriptional activator or repressor inducing apoptosis (Yoshida et al.,
2007) and CREM plays a role in spermatogenesis (Maglott et al., 2011).

There is a large agreement in the top-scoring factors in the differentiated ESCs and in
the general ESCs. The main factors responsible for the pluripotency of the ESCs, such
as OCT4, NANOG and SOX2 (Chen et al., 2008a; Yeo and Ng, 2013), are enriched only
in the undifferentiated ESCs but not in the differentiated ESCs (see green arrows in
Figure 5.6). This fact suggests that the undifferentiated-specific DHSs are very distinct
from the differentiated-specific DHSs (after few days only) and thus contain different en-
riched TF motifs. This phenomenon is confirmed in the clustered correlation heat map
of the DNase-seq read counts in Figure 5.2. Here, three samples of the differentiated
ESCs (after 9 or 14 days of differentiation) cluster together with other differentiated
cell lines such as B-lymphocytes, monocytes, and T-cells (see lower left corner of the
matrix in Figure 5.2). In contrast, the undifferentiated ESCs and few samples of the
early differentiated ESCs (after 2 or 5 days of differentiation) build a separate cluster

(see the center of the matrix in Figure 5.2).

5.5 Co-occurrence of TFs in cell-type specific DHSs

After identifying the main enriched factors in cell-type-specific DHSs in previous Section
5.4 our interest now is in predicting pairs of co-occurring TFs which regulate jointly the
cell-type-specific gene expression.

To do so, we use the representation of TFs described in Section 5.3 as a ranked list of
DHSs (both, cell-type-specific and ubiquitous) ordered by the binding affinity. When
studying the co-occurrence of two TFs, we can make use of the information about the

behavior in the cell-type specific regions and in the ubiquitous regions. In contrast to the
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procedure in Chapter 4, where a 3-way contingency table of shared tissue-specific regions
was constructed, we can now derive two 2-way contingency tables of TF co-occurrence in
cell-type-specific and in ubiquitous manner, respectively. This new strategy is enabled
due to the DHS properties, since we constructed the ranked lists with the same number
of cell-type specific sites and ubiquitous sites. Such information was not available for
the gene promoters analyzed in Chapter 4.

Thus, with two contingency tables describing the TF co-occurrence in the cell-type-
specific and in the ubiquitous sites, we can construct a score comparing the significances
of the two tables. The information about the association of the TF pair in the ubiquitous
sites is used as a sort of background. Then, we select those TF pairs which show a highly
significant co-occurrence in the cell-type specific DHSs and not in the ubiquitous DHSs.
Thus the selected TF pairs co-occur specifically in the given cell-type and not in a general
way. Further, with this method we avoid the problem of artificially large contingency
tables when the ranked list would be constructed out of cell-type-specific DHSs of all
cell types, as discussed in Section 5.3.

5.5.1 Methods

To predict co-occurring TFs on the cell-type-specific DNase hypersensitive sites (CTS-
DHSs), log ratio of p-values from two contingency tables is calculated to compare the
significance of a TF pair on the CTS-DHSs to the significance of the TF pair on ubig-
uitous DHSs. The ranked list representation of TFs as described in Section 5.3 is used
to construct the contingency tables.

Similarly to prediction of TF co-occurrence on gene promoters, let us define two binary
variables X and Y identifying the top-ranked DHSs for the first TF and for the second
TF, respectively. For given thresholds ki, ko defining the top-ranked DHSs for the first
and the second TF, respectively and for each DHS ¢, i =1,...,2t:

Xi, (1) = (5.7)

1 oifrg(i) < kg, ky€{1,...,2t}
0 otherwise

Vi, (i) = 1 ifry(i) < ko, ko € {1,...,2t}
k2 B 0 otherwise,

where 7, () and 7,(¢) are the ranks of item 7 in the ranked list R, and R, respectively.

In analogy to the previous Section 5.4, binary variable Z; indicates cell-type specific
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DHSs for a particular cell type and is defined as follows:

Zi(i) = {

Then two individual tables with fixed values of Z; can be constructed as shown in Table

1 DHS i is cell-type-specific for cell type [

. o (5.8)
0 DHS i is ubiquitous .

5.3, the same notation for cell counts as in Section 4.2 is used.

Due to the construction of the underlying ranked lists with ¢t most cell-type specific and
t most ubiquitous DHSs, both of the tables have the same universe ¢ and therefore are
simply comparable.

Table 5.3: Two partial contingency table for shared cell-type-specific DNase-hypersensitive
sites (top) and for shared ubiquitous DNase-hypersensitive sites (bottom).

cell-type specific: Z; =1

Liin@ <k | iln@>r | ¥

i] : 72 (1) < k1 ni11 ni21 Ni141

li| : r2(i) > k1 n211 n221 241
3 ny11 N421 niy1 =t

ubiquitous: Z; =0

Liin@ <k | ilinw>k | ¥

l5] : 72 (4) < ka ni12 ni22 n142

li| : r2(i) > k1 n212 N222 Nota2
3 N412 Ny22 Nyyo2 =1

We aim to predict TF pairs co-occurring in a cell-type-specific manner. Thus we define
a log ratio score as the log ratio of the p-values obtained from Fisher’s exact test in the
cell-type-specific table and of the p-value obtained from the ubiquitous table. Using the

same calculation for the p-value as in Eq. 2.7, we define the L; score for cell type [ as:

min(k1,k2) <n1+1) (n2+1) 7

m n211
2 (i)
m=my n411
min(k1,k2) (7L]+2) (n2+2) ’

2 m n212

('rl,++2 )
L m=muy n412

= —log

>m
Ll _ —log |:P(77,111 = 7771)):|

P(nq12 > my,)
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where m; stands for the observed value of shared top-ranked cell-type-specific DHSs and
m,, for the observed value of shared top-ranked ubiquitous DHSs in particular tables.
With this definition, the larger the L; score, the greater the association between the
two TFs on the CTS-DHSs in comparison with the ubiquitous DHSs. Thus TF pairs
with the highest score in each cell type are predicted as co-occurring TFs in a cell-type-
specific manner. Moreover, TF pairs with the largest negative L; score are TF pairs
which co-occur generally on the ubiquitous DHSs and not in the cell-type-specific way.
We call them the ubiquitous-specific co-occurring TF pairs. For easier understanding,
the method described above is summarized in four steps in Figure 5.7.

Our comparison method with the L; score can be extended for comparisons between
two different cell types of interest. For example, one could investigate TF pairs which
co-occur specifically in the differentiated cell line but not in the primary cell line. Then,

the Ly score will be defined as Ly = — log = diseniaed),
P(n112>Mprimary)
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5.5.2 Parameter choice

The L; score depends on two threshold parameters k; and ks defining the top-ranked
sites for the first and second TF in the pair, respectively. In addition, the construction
of the partial contingency tables depends on the choice of parameter ¢ which selects the
most cell-type-specific sites and most ubiquitous sites.

To investigate the stability of the obtained results, we calculated the L; scores for all TF
pairs for different combinations of parameters. Then TF pairs with the largest L; scores
(L > 99.5%-quantile) were selected and studied for the consistency of obtained results.
For easier comparison, thresholds k; and ks were chosen to be equal in all combinations;
all pairs of TF motifs were mapped to the corresponding TF names or groups.

Two matrices with numbers of identical TF pairs predicted with various combinations
of parameters k; = ko and ¢ in embryonic stem cells (ESCs) and in B-lymphocytes
are shown in Figure 5.8. Both matrices show very similar trend: with the choice of
t € {1000, 2000, 5000} the choice of k; and ky is not important for the group of highly
significant TF pairs; the predicted TF pairs remain exactly the same for different values
of k1 = ko (see dark blue boxes along the diagonal in Figure 5.8). Setting the threshold
t = 7000 causes a high variability between the significant TF pairs defined with differ-
ent thresholds k1 = ks € {500, 1000,2000}. Further, there is a high similarity of the
predictions derived with ¢ = 2000 and ¢ = 1000 with different values of k1 = ky. The
agreement between the two sets of significant TF pairs is 102 out of 232 and 269 TF
pairs (in B-lymphocytes, Figure 5.8b) and 70 out of 215 and 233 TF pairs (in ESCs,
Figure 5.8a). The combination of thresholds ¢ = 7000 and k; = ky = 2000 gives very
similar results to threshold ¢ = 5000 with various values for k; = k5. This behavior can
be observed for the majority of studied cell types.

These results suggest that the strongest cell-type-specific signal is among the top 5000
CTS-DHSs, since for this threshold ¢ < 5000 highly consistent results were obtain. For
further analysis, we use the longest possible list of CTS-DHSs and ubiquitous DHSs
with ¢ = 5000 and choose as appropriate threshold k; = ks = 1000.

5.5.3 Predicted co-occurring TF pairs on CTS-DHSs

Before applying calculation of the L; score to all possible TF pairs, the TF motifs were
clustered into 138 distinct groups based on their similarity according to Oh et al. (2012).
Using a group (e.g. cluster) of TF motifs rather than a single motif representing the
whole TF family to identify their binding regions is more effective and practical as sug-
gested by Oh et al. (2012).
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Figure 5.8: Consistency of the most significant TF pairs on CTS-DHSs for different com-
binations of parameters in a) embryonic stem cell (ESC) and b) B-lymphocyte. The matrix
entries denote the number of identical TF pairs with the highest L; score for 11 combinations
of thresholds k; = ko (the first number) and of threshold ¢ (second number).
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In addition, TF pairs solely from different clusters are considered for testing to avoid
unnecessary comparison of pairs with highly similar motifs and to reduce the total num-
ber of tests, resulting in total of 111241 pairs of TF motifs. Moreover, with the nature
of the L; score method, the significance of TF pairs with very similar TF motifs as
discussed in Section 3.3 should not confound the analysis. Namely, we focus on those
TF pairs which show high association in the ranked lists only in the CTS-DHSs and
not in the ubiquitous DHSs. Thus TF pairs with highly similar TF motifs should not
obtain high L; scores because both p-values - in the CTS-DHSs and in the ubiquitous
DHSs - should be very small.

With the selected parameters k; = ko = 1000 and using ¢ = 5000 most cell-type-specific
and ubiquitous DHSs, the corresponding tables for all 111241 TF pairs in all 64 cell
types were built and the corresponding p-values were calculated. This results in total
number of 14 238 848 tests. Before calculating the L; score, the p-values were corrected
for multiple testing with Benjamini-Hochberg method (Benjamini and Hochberg, 1995),
considering each cell type separately. To avoid comparisons in the extreme tails of
the hypergeometric distribution, the minimal value of all corrected p-values were set to
10719,

Then, separately for each cell type we identified significant TF-motif pairs as pairs with
the L; score larger than the 99.5%-quantile of the empirical distribution of L; scores in
the corresponding cell type, achieving total number of 5257 significant TF-motif pairs.
The significant TF-motif pairs were then aggregated to their corresponding pairs of
transcription factors (or transcription factor groups), resulting in total number of 2 359
significant TF pairs.

First, the agreement of identical significant TF pairs among the different cell types
was investigated. Our aim is to find co-occurring TFs in a cell-type-specific way, thus
we expect that the significant co-occurring TF pairs would be unique for the particular
cell type. This insight could be compared when looking at the matrix of overlapping
significant TF pairs over all 64 cell types as shown in Figure 5.9. The majority of
the significant TF pairs is unique for the corresponding cell type (shown with the dark
cells on the diagonal). The pluripotent cell groups on the top of the matrix (primary
T-cell, hematopoietic progenitor cells, embryonic stem cells) are very distinct from all
other differentiated cell types, the agreement of the significant TF pairs predicted in the
pluripotent cells and in the differentiated cells is very low (see light yellow cells in Figure
5.9). Further, many functionally related cell types such as renal glomerular endothelial
cells and umbilical vein endothelial cells or microvascular endothelial cells originated

from different tissues share high number of significant TF pairs (see dark blue cells in
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Overlap of significant TF pairs

tissue

gingival

adipose

Figure 5.9: Heatmap of overlapping significant TF pairs over 64 cell types. Each cell corre-
sponds to the number of identical TF pairs significant in the corresponding cell types. Dark
blue color denotes large numbers, light yellow color denotes small numbers close to zero.
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Figure 5.9).

In general, we identified 158 highly frequent TF pairs which are significant in at least 30
out of 64 cell types. The main factors among these frequent TF pairs are mainly home-
oboxes (ALX1, POU2F1, ONECUT, HNF1, homeodomain NKX factors) and members
of the forkhead-box (FOX) family. This finding suggests that the cell-type-specific DHSs
are enriched for homeobox and forkhead-box binding motifs. The functions of the most
frequent TFs are very broad: POU2F1 have a general function in embryonic develop-
ment, HNF1 and ONECUT are involved in the development of endoderm, TBP and
ALX1 are more general factors involved in various processes, NKX factors are involved
in cell differentiation, proliferation and death and FOX genes are involved in various
processes such as embryonic development, cell cycle regulation, tissue-specific gene ex-
pression, cell signaling, and tumorgenesis (Bieller et al., 2001; Ingenuity ® Systems,
IPA; Maglott et al., 2011; UniProt Consortium, 2011).

The most enriched functions of these TFs found with Ingenuity ®) Systems (IPA) anal-
ysis were general functions such as cellular and organismal development (52 and 39 out
of 68 TFs, respectively) and embryonic development (39 out of 68 TFs). The network
derived from the most frequent TF pairs is shown in Figure 5.10. It is dominated by a
large interconnected subnetwork with main nodes (TFs): POU2F1, ALX1, TBP, ONE-
CUT, HNF1, NKX6-2 and NKX3-1. Among the very frequent significant TF pairs,
there were several already known protein-protein interactions between: POU2F1: TBP,
POU3F2:TBP, FOXA:ONECUT and STAT3:NFKBI (highlighted in red in Figure 5.10).
Over all cell types, most significant TF pairs were found in dermal fibroblast with 320
pairs, the smallest number of significant TF pairs was found in primary T-cells with 161
TF pairs.

In the following, the regulatory networks derived from significant co-occurring TF pairs

in immune cells, embryonic stem cells (ESCs) and in muscle cells are discussed.

5.5.4 Co-occurring TF pairs in immune-specific DHSs

The significant TF pairs in immune cells, such as hematopoietic progenitor cells, B-
lymphocyte, T-cell (primary and regulatory), monocyte and leukemia were investigated.
The most significant co-occurring TF pairs were found in T-cells (312) and leukemia
(288), the least significant TF pairs were found in primary T-cells (161) and hematopoi-
etic progenitor cells (184).

The single TFs in the co-occurring TF pairs were first analyzed for their expression in the
corresponding cell type and second for a known regulatory function in hematopoiesis.
Roughly one quarter of the factors (from 21% in B-lymphocytes to 38% in monocytes)
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Figure 5.10: Network of highly frequent significant TF pairs in the majority of cell lines. Nodes
in the network represent transcription factors, edges are drawn between the significant TF pairs.
Red edges are known protein-protein interactions. The width of the edges corresponds to the
frequency over various cell lines.

are known regulators in hematopoietic differentiation or in the corresponding cell line
(Matys et al., 2006; Nutt and Kee, 2007; Ramirez et al., 2010; Wilson et al., 2010). Fur-
ther, more than three quarters of all factors (from 75% in T-cells to 80% in hematopoi-
etic progenitor cells) are expressed in immune cells, when comparing with the Ensembl
database (Flicek et al., 2014, release 75 based on RNA-seq experiments). One has to
point out that all these factors were selected only by the high L, score without any
knowledge of their possible function or expression in the corresponding cell type.

To focus on the cell-type-specific TF co-occurrence, we removed all general significant
TF pairs which appear in 30 or more cell lines and construct regulatory networks from
all significant TF pairs in the particular cell type.

The regulatory network in the hematopoietic progenitor cells consists then of 178 edges
(TF pairs) among 120 nodes (TFs) and is dominated by a highly connected large sub-
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network with 150 edges among 78 nodes and a smaller subnetwork with 9 nodes and 9
edges, followed by several triplets and pairs of co-occurring TFs. Most of the key regu-
lators of white blood progenitor cells such as: EVI1, TCF3, GATA, LEF1, IKZF1, IRF1
and bHLH-binding proteins SREBF and USF (Matys et al., 2006; Nutt and Kee, 2007,
Ramirez et al., 2010; Wilson et al., 2010) are present in the network (see Figure 5.11,
known regulators are highlighted as rectangles with red borders). Factors with most
co-occurring partners in the network are EVI1, GATA, POUG6F1, ONECUT and TEF.
Whereas EVI1 and GATA are known regulators in hematopoietic stem cells, the home-
odomain proteins POU6F1 and ONECUT are known regulators of pluripotency and
differentiation (Maglott et al., 2011; UniProt Consortium, 2011). Thyrotrophic Embry-
onic Factor (TEF) is involved in the embryonic development of pituitary gland and is
expressed in various adult tissues, however, it shows functional homology with other
basic region/leucine zipper (bZIP) family members such as the hepatic leukemia factor,
which is involved in transcriptional regulation in lymphoblastoids (Maglott et al., 2011).
Further, the predicted network includes several experimental validated protein-protein
interactions (PPIs) listed in Chatraryamontri et al. (2013) or validated by Ravasi et al.
(2010). The known complex of NFKB/RELA and STAT3 builds one of the triplets,
the known interactions GATA:MEF2A and GATA:POU1F1 as well as the known inter-
actions CEBP:ATF /CREB and CEBP:STAT5A are part of the large subnetwork (red
edges in Figure 5.11).

For comparison, let us investigate the transcriptional network derived for a differentiated
immune cell such as monocytes, see Figure 5.12. The network consists of 209 edges (TF
pairs) among 120 nodes (TFs) and is dominated by a large subnetwork of 179 TF pairs
among 86 TFs. The most connected hubs are distinct from the hubs in hematopoietic
progenitor cells, namely: POU2F1, CDX, LHX3, PBX1, ALX1, NKX3-1, NKX6-1 and
TEF. POU2F1 is a known regulator in the hematopoiesis (Matys et al., 2006); among
the caudal type homeoboxes (CDXs), CDX1 can inhibit T-cell factor transcriptional
activity and CDX4 is involved in hematopoiesis. It is known, that LHX3 with POU1F1
synergistically enhance the transcription of prolactin, which is a growth regulator of
immune cells (Maglott et al., 2011). This TF pair LHX3:POU1F1 is significant in our
transcriptional network in monocytes. Further, factor PBX1 can be associated with
lymphoblastoid leukemia (Maglott et al., 2011). Factors ALX1, NKX3-1, NKX6-1 and
TEF do not have any known specific function in monocytes or immune cells.

Further, the large network in monocytes includes two small subnetworks of 15 and 8 TFs,
one quintet, one triplet and two single TF pairs. The subnetwork with 15 TFs includes 4
known regulators in immune cells (ATF, TCF3, retinoid receptor RAR/RXR/THR and




5.5. Co-occurrence of TFs in cell-type specific DHSs 107

VDR-nuclear receptor NR1/RXRA) and some general receptors like TFAP2 (Activating
Enhancer Binding Protein 2) and ESR (Estrogen Receptors). The subnetwork with 8
TFs involves 4 immune cell regulators NFKB1, ZIC3 and zinc finger proteins EGR1
and ZNF148. The quintet describes a co-occurrence of 4 regulating factors in immune
cells: SREBF1, KLF12, MZF1 and ZIC1. In agreement with other studies (Huber et al.,
2014), most of the known regulators of monocyte differentiation such as SPI1, CEBP
proteins, IRF proteins, VDR nuclear receptors (RXRA, NR1), STAT1 and STAT3 pro-
teins are present in the predicted regulatory network. Further, known direct PPIs were
detected as significantly co-occurring TF pairs: CEBP:ATF/CREB, CEBP:POU2F1,
ATF/CREB: STAT5A, MAF and ETS-binding proteins, ESR:NR2F1 and the complex
STAT3:NFKB1:RELA.

Further, we compare the two regulatory networks in immune cell such that we calculate
the number of shared TF partners in both networks and the number of distinct significant
TF partners for all nodes in the networks. These values for all nodes are summarized in
Figure 5.13. The bar plots show the number (or proportion) of co-occurring partners in
hematopoietic progenitor cells (red), in monocytes (blue) and in both networks (black).
TFs with large number of significant partners in hematopoietic progenitor cells that are
not present in monocytes are: GATA factors, MYC:MAX, ETFA/TEAD2, ARID5B
and E2F family factors.

GATA proteins are of special interest in erythropoiesis as they play a crucial role in
the maintenance and proliferation of immature hematopoietic progenitors (Doré et al.,
2012; Ohneda and Yamamoto, 2002). With our analysis we showed that GATA factors
co-occur with their TF partners in regulatory regions of hematopoietic progenitor cells
but do not occur in the regulatory regions of monocytes. This is in agreement with
the known functionality of GATA factors in erythropoiesis and is reflected in the cell-
type-specific regulatory network in hematopoietic progenitor cells. Furthermore, c-Myc
(with MYC:MAX binding motif) is one of the transcriptional regulators of pluripotency,
thus it very likely co-occur with other TFs in the undifferentiated cells (hematopoietic
progenitor cells) rather than in the differentiated cells (e.g. monocytes).

On the other hand, factors which do not occur in the hematopoietic progenitor network
but have many significant pairs in monocyte network are: SPI1 and other ETS tran-
scription factor family members, ZIC3, PRDM1, FOXD3 and FOXJ2. Among them,
SPI1 is the most interesting as it was shown to be the major regulator of monocytic
differentiation (Gangenahalli et al., 2005; Huber et al., 2014). Factors, which share the
most partners in both networks are: POU6F1, CDC5L, LHX3, TEF, PBX1, STAT3 and
EVI1. Among them, EVI1, STAT3, PBX1, and LHX3 have known functions in white
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Figure 5.11: Network of significant TF pairs in hematopoietic progenitor cells. Nodes in the
network represent transcription factors, edges are drawn between the significant TF pairs. Red
edges are known protein-protein interactions. TFs expressed in the cell line are highlighted in
green with darker tone indicating higher evidence; known regulators in the corresponding cell
type are highlighted as rectangles with red border.
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Figure 5.12: Network of significant TF pairs in monocytes. Nodes in the network represent
transcription factors, edges are drawn between the significant TF pairs. Red edges are known
protein-protein interactions. TFs expressed in the cell line are highlighted in green with darker
tone indicating higher evidence; known regulators in the corresponding cell type are highlighted
as rectangles with red border.
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blood cells.

In addition, we compared the results which we obtained from the prediction of co-
occurring TF pairs on promoters specific for hematopoietic stem cells (HSCs) in Section
4.5.3 with the results obtained from the prediction on white-blood-specific DHSs. The
network derived on promoters is dominated by two central regulators NF'YA and ELK1.
However, NFYA do not occur in any of the white-blood-specific regulatory network on
DHSs, thus we could not find any agreement between the two approaches. For the ELK1
co-occurring partners, only two pairs ELK1:IRF1 and ELK1:KLF4 could be found in
the white-blood-specific regulatory networks too.

5.5.5 Co-occurring TF pairs in ESC-specific DHSs

Next, we studied the transcriptional network in embryonic stem cells (ESCs). There are
three different sorts of cell type in our data which are related to ESCs: undifferentiated
ESCs (H7-hESC cell line), differentiated ESCs (H7-hESC cell line differentiated after
2-9 days) and ESCs (H1-hESC cell line).

To focus on the ESC-specific significant TF pairs only, the frequently occurring TF pairs
in many cell types were removed from the networks, as described in Section 5.5.4. Then,
the transcriptional networks in embryonic stem cells have between 216 (differentiated
ESCs) and 234 significant TF pairs (undifferentiated ESCs) involving 127-147 distinct
TFs. The majority (67 —76%) of the regulators in the networks is expressed in the ESCs
(Flicek et al., 2014) and approximately 20% of the regulators have known function in
pluripotency or early development.

The main regulators in the undifferentiated ESCs with the highest number of signifi-
cant TF partners are: OCT4, NANOG, POU2F1, LHX3, ZBTB16 and PAX4. Among
them, OCT4 and NANOG are two of three most important pluripotent factors in hu-
man embryonic stem cells (Chen et al., 2008a). Besides, most of the known pluripotent
factors (SOX2, general motif SOX:SRY and OCT:POU2F motif) and most of known
early developmental regulators (STAT3, FOXD3, ESRR, KLF4, MYC, TCF3, zinc fin-
ger proteins and YY1 as a part of polycomb complex, Chen et al., 2008a,b) are present
in our transcriptional network (see rectangles with red borders in Figure 5.14).

The transcriptional network consist of a main subnetwork with 210 edges and 119 nodes,
a small subnetwork of 17 edges and few single TF pairs or triplets. The main subnetwork
is composed of two parts which are connected with factors PAX4 and STAT6. Both of
these factors have no known function in ESCs. PAX4 is a transcriptional regulator which
is able to differentiate the stem cells into primary pancreatic cells (Blyszczuk et al., 2003;
Liew et al., 2008), thus the presence of its binding motif in the ESC regulatory regions
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Figure 5.13: Comparison of significant TF pairs in hematopoietic progenitor cells and in
monocytes. For each TF, the barplot shows the number of distinct co-occurring partners in
hematopoietic progenitor cells (red) and in monocytes (blue) and the number of shared co-
occurring partners on both cell lines (black). The left column shows the absolute numbers, the
right column shows the proportions.
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is possible. The two parts of the main subnetwork suggest different functionality in ESC
regulation. One part includes the main pluripotent factors (OCT4, NANOG, SOX) with
CDX and FOXD3 regulators and with other FOX genes and some NK-Homeoboxes. The
function of this cluster is mainly the maintenance of the pluripotency and of the self-
renewal (Chen et al., 2008a). The other part of the subnetwork includes KLF4, STAT3,
Z1C3 and ZNF148 transcription factors which are all regulated by the three pluripotent
factors OCT4, NANOG and SOX2 and which regulate the early development (Neph
et al., 2012). The small subnetwork of only 17 TFs could be defined as a MYC-cluster
with TCF3, TBX5 and YY1.

It was shown in various studies that the main pluripotent factors OCT4, NANOG, SOX2
and SMAD1 bind in clusters in the regulatory regions in ESCs (Chen et al., 2008b). In
our predicted network, the TF pairs OCT4:NANOG, OCT4:50X2, NANOG:SOX/SRY
have large L; scores too and fully agree with the experimental findings. Further, the net-
work contains some experimentally proven direct protein interactions: NANOG:TCF /LIF1,
POU2F1:TLX2, CEBP:ATF/CREB, CEBP:OCT/POU2F, MAF:ETS, STAT3:NFKB,
TAL1:LMO2, LMO2:MYC (see red edges in Figure 5.14).

The predicted transcriptional network in the differentiated ESCs consists of 216 signifi-
cant TF pairs with 147 TFs. It includes a main subnetwork of 209 edges and 134 nodes,
one triplet and 5 single TF pairs, see Figure 5.15. The main regulators with the most
significant partners are ALX1, EGR, E2F1, ESRRA, LEF1/TCF, NANOG, GATA4
and TFAP2 proteins. Among them, NANOG, ESRRA and E2F1 (Chen et al., 2008a;
Yeo and Ng, 2013) are pluripotent factors in stem cells, LEF1/TCF is a regulator in
the hematopoietic primary cells (Nutt and Kee, 2007). GATA4 together with GATAG is
necessary for differentiation into primitive endoderm (Aronson et al., 2014; Murakami
et al., 2005) and EGR and TFAP2 proteins are general transcription factors involved in
development of many tissues and organs (Maglott et al., 2011). The specific function of
ALX1 is still unknown.

The large network in differentiated ESCs can be separated in four smaller subnetworks.
The first part with the pluripotent factors SOX2, NANOG, FOXC1 is connected to the
second part, that is dominated by the GATA proteins with co-occurring TFs important
for the development of blood (EVI1, IRF) and for the development of muscles (SRF).
The third part of the network, as well connected with the pluripotent factors, is domi-
nated by the ESR (or ESRRA) factor, which is a target of NANOG and OCT4 serving
for the maintenance of the cell pluripotency. Here, ESR co-occurs with HNF4 and NR2F
factors which are important for the mesoderm differentiation. The fourth part of the
network is a MY C-centered subnetwork with E2F1 factor, KLF4, zinc finger proteins
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and general regulators TFAP2 and SP1. MY C-centric clusters of co-binding with E2F1,
zinc finger protein ZFX and CTCF were already shown with a ChIP-seq study by Chen
et al. (2008b). The regulatory network includes some of the known protein interactions
such as: MYC:SP1, ESR:NR2F/HNF4, SOX:NANOG, GATA:SRF, GATA1:ZBTB16
and TCF3:LMO2.
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Figure 5.14: Network of significant TF pairs in undifferentiated embryonic stem cells. Nodes
in the network represent transcription factors, edges are drawn between the significant TF pairs.
Red edges are known protein-protein interactions. TFs expressed in the cell line are highlighted
in green with darker tone indicating higher evidence; known regulators in the corresponding
cell type are highlighted as rectangles with red border.
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Figure 5.15: Network of significant TF pairs in differentiated embryonic stem cells. Nodes in
the network represent transcription factors, edges are drawn between the significant TF pairs.
Red edges are known protein-protein interactions. TFs expressed in the cell line are highlighted
in green with darker tone indicating higher evidence; known regulators in the corresponding
cell type are highlighted as rectangles with red border.

Further, we examined the coherence and the differences between the two predicted
regulatory networks. TFs which share the most significant co-occurring partners in both
networks are the pluripotency factors SOX/SRY, NANOG, KLF4 and other factors
like LEF1/TCF, EGR, MZF1 and SPZ1. Factors, which have large number of co-
occurring factors in undifferentiated ESCs but do not occur in the differentiated ESCs
were the pluripotency factors OCT4 and FOXD3 (necessary for the maintenance of the
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pluripotency and self-renewal) and factors LHX3 and DBP. On the other hand, factors
with many co-occurring partners in the differentiated ESCs which are not present in
the undifferentiated ESCs are factors important for differentiation in endoderm (GATA
factors) or mesoderm (HNF4/NR2F) or other developmental factors (TFAP2, E2F1,
EGR1 and SRF). The differences between the two networks are summarized in Figure
5.16; each TF in the network is shown with the corresponding number of distinct and
shared TF partners in the two networks.

5.5.6 Co-occurring TF pairs in muscle-specific DHSs

The cell-type-specific regulatory networks (without frequently occuring TF pairs in
many cell types) in muscle-related cell types such as skeletal myoblast, muscle my-
oblast, skeletal striated muscle and cardiac myocytes were investigated. The networks
in muscle-related cell types consist of 165 (muscle myoblast) - 180 (skeletal myoblast)
sinificant TF pairs among roughly 130 TFs. Analog to other cell types mentioned above,
at least three quarters of all TFs in the network (75 — 78%) are expressed in myoblasts,
in myocytes or in differentiated muscle cells. Between 15 — 20% of TFs in the derived
network are known regulators in muscle development. Furthermore, the most relevant
regulators of the myogenic lineage MEF2A, MYF, MYOD, MYOG and PAX are present
in all muscle-specific regulatory networks.

The regulatory network in skeletal myoblast (see Figure 5.17) consists of a large in-
terconnected network, small network with five nodes and several single TF pairs or
triplets. The main network could be divided into two subnetworks connected with
a single factor FOXA. The first subnetwork is dominated by two regulators of early
muscle differentiation MYOD and MYOG. These factors co-occur in the network with
general factors such as TFAP2, HNF4A, ZEB1 and with other myogenic regulators
TAL1, TCF, RUNX1 and TBX5 (Bentzinger et al., 2012; Sartorelli and Caretti, 2005).
The second subnetwork includes more general regulators of cell and organ development
(homeobox proteins POU6F1, POU3F1, ONECUT, CUX1) co-occurring in many cases
with MEF2A, which is a myogenic regulator usually activated by MYOD (Sartorelli
and Caretti, 2005). It co-occurs with some other factors with known function in muscle
development such as GATA and LEF1. The two subnetworks suggest that there might
be two different processes regulated by distinct groups of TFs: one of the early devel-
opment directed by MYOD/MYOG and a second one directed by homeobox proteins
and MEF2 which is recruited by MYOD. We observed this phenomenon in the networks
of skeletal muscle cells and of muscle myoblasts. One reason for the high frequency of

homeobox factors in the muscle network might be their motif similarity to myogenic
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Figure 5.16: Comparison of regulators in undifferentiated and differentiated embryonic stem
cells. For each TF, the barplot shows the number of distinct co-occurring partners in undiffer-
entiated ESCs (red) and in differentiated ESCs (blue) and the number of shared co-occurring
partners on both cell lines (black). The left column shows the absolute numbers, the right
column shows the proportions.




5.5. Co-occurrence of TFs in cell-type specific DHSs 117

regulator Six1/4 which as well belongs to the homeobox family but was not included in
the list of the studied motifs. The network includes TF pairs which are known to be
directly interacting proteins: TAL1:LMO2, HNF4A:TP53, ESR:NR2F, CEBP:CREB,
ATF:NFE2L2, POU2F1:STAT5A, HSF1:STAT, AR:NR3C1 (Chatraryamontri et al.,
2013; Ravasi et al., 2010).

Skeletal myoblasts
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Figure 5.17: Network of significant TF pairs in skeletal myoblasts. Nodes in the network
represent transcription factors, edges are drawn between the significant TF pairs. Red edges
are known protein-protein interactions. TFs expressed in the cell line are highlighted in green
with darker tone indicating higher evidence; known regulators in the corresponding cell type
are highlighted as rectangles with red border.

The network in cardiac myocytes (see Figure 5.18) has a different structure than the
the network in skeletal myoblasts. It consist of a main network, small subnetwork with
5 nodes and several single TF pairs and triplets. Out of the myogenic regulators, the
main network is dominated by MEF2, SRF, NKX2-5 and GATA factors, all of them
are main modulators of cardiac transcription network (Schlesinger et al., 2011). Other
downstream regulators of the myogensis such as LEF1, TCF, RUNX and YY1 are
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Cardiac myocytes

Figure 5.18: Network of significant TF pairs in cardiac myocytes. Nodes in the network
represent transcription factors, edges are drawn between the significant TF pairs. Red edges
are known protein-protein interactions. TFs expressed in the cell line are highlighted in green
with darker tone indicating higher evidence; known regulators in the corresponding cell type
are highlighted as rectangles with red border.
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present in the network, too. The small subnetwork consists of quartet of co-occurring
proteins MYOD1, TAL1, TCF3 and ZNF238. Previous studies showed a co-regulation
of MYOD and TCF/LEF of the Wnt proteins, which are important for the formation
of groups of muscles myotomes (Dubinska-Magiera et al., 2013). The cardiac myocyte
regulatory network includes several known PPIs such as TAL1:LMO2, STAT6:RELA,
STAT3:NFKB, CEBP:RUNX, ATF/JUN:NFE2L1 and NR3CI1:AR (Chatraryamontri
et al., 2013; Ravasi et al., 2010).

When comparing the two regulatory networks of the progenitor myoblasts and the dif-
ferentiated cardiac myocyte, some interesting facts rise up. Regulators which have many
co-occurring partners in myoblasts but do not appear in the cardiac myocyte network
are MYOG, MYOD/MYF motif and CUX1. MYOG, MYOD and MYF are the main
regulators of the early myogenic differentiation from embryonic progenitors into my-
oblasts (Sartorelli and Caretti, 2005) and thus, are expected to co-occur with other
factors in myoblasts but not to be active in the further differentiated myocytes. On the
other hand, factors with many co-occurring partners in myocytes which do not occur
in the myoblast network are STAT1, STAT3 and NKX2-2. STAT proteins regulate the
expression of genes that are important (among other functions) for differentiation, pro-
liferation, and apoptosis (Levy and Darnell, 2002) and thereby are expected to be more
active in differentiated cell lines. Factors, which share the most co-occurring partners in
both networks are homeoboxes POU2F1, HNF4, SOX/SRY and EVI, factors involved
in the embryonic development and development of organs. The differences between the
co-occurring partners for all TFs in both networks are summarized in Figure 5.19.
Surprisingly, the agreement among the significant TF pairs predicted on the muscle-
specific DHSs and on the muscle-specific promoters as presented in Chapter 4, Sec-
tion 4.5.2 is very low. Only 4 significant TF pairs were found with both methods:
MEF2A:EVI1, MEF2A:FOX, MEF2A:PAX and TBP:FOX, where only the FOX and
PAX family (with similar binding motifs) was in agreement but not the exact members

of the families.

5.5.7 Co-occurring TFs in ubiquitous DHSs

As a contrast to cell-type-specific co-occurring transcription factors, we have investi-
gated TF pairs with largest negative L; scores in at least 20 cell types. These TF pairs
tend to co-occur on the ubiquitous DHSs more likely than on the cell-type-specific DHSs.
The network of the ubiquitous co-occurring TF pairs is visualized in Figure 5.20. The
network is dominated by a large, highly connected subnetwork with main regulators
such as SP1, E2F and PAX factors. Furthermore, a small subnetwork of STAT fac-
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tors, GABPA and NKX2-5 factors is connected to the large subnetwork via EP300. A
small separated subnetwork with JUN:FOS central hub, a small subnetwork with NFY
central hub and few single TF pairs are presented in the network. We could iden-
tified 14 factors (ATF, CREB, E2F1, NRF1, NFY, SP1, TBP, STAT factors) which
were described as promoter-specific or promoter-centric TFs in previous studies (Neph
et al., 2012; Whitfield et al., 2012). This is in agreement with our predictions since
the ubiquitous DHSs overlay in large part promoter regions. Further, we investigated
those TFs which were predicted as significant co-occurring pairs on general promoters
based on diverse rank based association measures, see Section 3.5. There were 27 (33%)
factors or factor families which appeared in both of the networks (highlighted as green
nodes in Figure 5.20). In addition, both approaches predicted identically 6 co-occurring
TF pairs (FOXD:PAX4, HNF1A:NKX2-5, TFAP2A:E2F1, TFAP2A:SP1, PAX4:ENI1,
SOX5:FOXL1). This corresponds to an odds score of 1.26 and corresponding p-value of
Fisher’s exact test p = 0.37. However, we do not expect a complete agreement between
the two methods. The co-occurring TF pairs in Section 3.5 are pairs of TFs with signif-
icantly similar ranked list of all promoters. But the predictions on the ubiquitous DHSs
are predicted co-occurring TF pairs with a prioritization on ubiquitously open DHSs
than on cell-type-specific DHSs.

5.6 Comparison with other computational and experimental

methods

To validate the accuracy of our predicted co-occurring TFs on CTS-DHSs and on ubiqui-
tous DHSs, a systematic comparison with a large-scale experimental database of protein-
protein interactions (PPIs) and with two other computational studies was conducted.

The results of this comparison are discussed in the next paragraphs.

5.6.1 Comparison with a database of protein-protein interactions

One possible verification of our predicted TF pairs is a comparison with experimental
validated direct protein-protein interactions (PPIs) between transcription factors. We
compared our predicted co-occurring TF pairs with the atlas of TF-TF interactions in-
ferred from mammalian two-hybrid assays (Ravasi et al., 2010) and from other forms of
experimental evidence listed in PPI databases (Chatraryamontri et al., 2013).

First, the TFs in both sets have to be mapped to each other to determine the number
of possible TF pairs. Thus, only 276 TFs are included in both sets (experimental atlas
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Figure 5.20: Network of significant TF pairs on ubiquitous DHSs. Nodes in the network
represent transcription factors, edges are drawn between the significant TF pairs. Red edges
are known protein-protein interactions. Known promoter-specific regulators are highlighted
as rectangles with red border; green nodes are TFs indicated as co-occurring on promoter
sequences in Section 3.5.
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and our TF data), resulting in possible number of 38 226 TF pairs. Then, the total list
of 5238 TF-TF interactions in the atlas can be mapped to 1516 TF pairs with TFs in
the joint universe. On the other hand, out of 2359 of our predicted co-occurring TF
pairs, only 1047 TF pairs are from the joint universe. Then, the comparison results in
83 identical TF pairs (7.9%) predicted with our method and experimentally verified as a
PPI. This represents a large enrichment compared to random choice of TF pairs with an
odds ratio of 2.1 and a corresponding p-value of Fisher’s exact test of p = 3.03 x 1077.
Over all studied cell types, the highest proportion of direct TF-TF interactions was
found in blood microvascular endothelial cells (15.3%), mammary fibroblasts (14.9%)
and cardiac fibroblasts (14.7%). The smallest overlap was found in primary T-cells,
mesenchymal stem cells and brain vascular cells (3.7%, 4.4% and 5.3%, respectively).
In a similar fashion, the comparison of the predicted co-occurring TF pairs in the ubiqg-
uitous DHSs was conducted. Out of 364 significant TF pairs on the ubiquitous DHSs,
35 (9.6%) pairs were found to be interacting proteins as well. The significance of this
overlap can be assessed again with Fisher’s exact test and the corresponding p-value is
1.8 x 1076, with odds ratio of 2.6.

When comparing with the experimentally derived database of direct PPIs, it is impor-
tant to consider the sensitivity (true positive rate) and the false discovery rate (FDR) of
the experimental method. The mammalian two-hybrid-assay has a very low estimated
sensitivity of 25% and a limited FDR of 53% (Ravasi et al., 2010). For this reason, we
cannot expect, even for a perfectly predicted set of TF interactions, that all of the TF
pairs would be included in the experimentally derived atlas. Similarly, even for a pre-
dicted set with all true TF interactions, we cannot expect that the whole PPI database
from the atlas will be included, due to the false positives in the database. Further, there
are fundamental differences between our statistical method and the experimental tech-
niques for detecting PPIs. Whereas our method investigates predicted binding affinities
of TFs on regulatory regions derived from living cells across multiple human cell types,
the experimental approaches such as two-hybrid assay test the interaction between arti-
ficially expressed proteins in yeast or mammalian cell. Therewith, the two-hybrid assays
measure a general ability of two proteins to form a complex - independent of binding
to the DNA or not. In contrast, our method focuses only at the cooperative binding of
two TFs on the DNA.

5.6.2 Comparison with a study based on ChlIP-seq experiments

The largest available study of experimental mapping of TF binding regions in human cell

lines with the chromatin immunoprecipitation technique coupled with high-throughput
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sequencing (ChIP-seq) was generated by The ENCODE Project consortium (2012).
In an accompanied study, Wang et al. (2012) analyzed all 457 ChIP-seq data sets on
87 sequence-specific human TFs across 72 cell lines to determine co-binding between
different TFs. Specifically, Wang et al. analyzed the canonical motifs as well as sec-
ondary motifs (possibly corresponding to a partner TF) found in the ChIP-seq peaks
of each TF. In this fashion, they identified total of 155 co-binding TF pairs between
69 TF motifs. Out of these 69 motifs, only 50 map to the TF motifs used for our
analysis. This restricts the number of comparable pairs from Wang et al. to only 94
co-binding TF motif pairs and the number of TF pairs with significant L; score to
only 67 TF pairs. Among them, 10 TF pairs are found with both methods, the cor-
responding odds ratio is 2.3 and the p-value of Fisher’s exact test p=0.02. The TF
pairs found with both of the approaches (with the cell type where the TF pair was
significant) are: MYC:YY1 (fibroblast and epithelial cells), TBP:YY1 (esophaegal ep-
ithelial cells), STAT1:CEBPB (fibroblast), HNF4:ESRRA (HeLa cells, skeletal muscle),
HNF4A:TCF12 (muscle myoblast, microvascular endothelial dermal cells), HNF4A:SP1
(fibroblast), IRF4:PAX5 (B-lymphocyte, T-cell, fibroblast, astrocytes), IRF4:MEF2A
(primary T-cell), TAL1:STAT3 (fibroblast) and RXRA:TCF7L2 (differentiated ESCs).
Among them, MYC:YY1, HNF4:ESRRA and STAT1:CEBPB are known PPIs (Cha-
traryamontri et al., 2013; Ravasi et al., 2010).

In a similar way, we compared the results based on the ChIP-seq data and TF pairs with
large significant negative L; score, i.e. TF pairs enriched on the ubiquitous sequences.
We found 6 TF pairs which were in both of the lists (odds ratio 3.1, p-value = 0.02),
namely E2F4:NRF1, JUN:FOXA, HNF4A:TCF12, HNF4A:ESRRA, RXRA:TCF7L2,
TBP:YY1. The latter 4 are TF pairs significant on some cell-type-specific DHSs as
well as on the ubiquitous DHSs which suggest a general rather than a cell-type-specific
co-occurrence of these TF pairs.

The number of sequence-specific TFs which have known DNA-binding motifs and for
which large scale data is available, is very limited. For our comparison, we narrow the
universe of all possible TF pairs from more than 46000 (with 306 unique TFs in our
data) to only 1225 possible TF pairs (with 50 TFs for which the TF motif and ChIP-seq
data is available). This restriction might be one of the reason for the relatively small but

still significant overlap of both predictions, since it focuses only on a subset of analyzed
TFs.
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5.6.3 Comparison with statistical prediction of TF-TF dimers

Jankowski et al. (2013) presents a computational method for predicting cooperative
cell-type-specific dimerization of TFs on the DNA. They have studied the occurrence
of more than 450000 TF motif pairs in cell-type-specific DHSs in 78 cell types and
investigate the cell-type-specific orientation and offset (with maximal spacing of 50bp,
allowing partial overlaps) of the two motifs. The significance of the enrichment of the
specific offset is evaluated with the binomial distribution and corrected for multiple
testing with Bonferroni correction. Thus, after conducting 1.4 x 10° statistical tests,
Jankowski et al. derived 5233 significantly overrepresented TF motif complexes cor-
responding to 603 significant distinct TF dimer pairs (after removing multiple motifs
corresponding to a single TF).

In total, the agreement of the predicted co-occurring TF motifs with our method and
with the predicted TF-TF dimers by Jankowski et al. is very low, only 90 (1.7%, Fisher’s
exact test p-value =1) out of more than 5257 TF motif pairs coincide in both methods.
Nevertheless, 4 of the top-10 predicted motif-complexes from Jankowski et al. (E-box
dimer, OCT-SOX heterodimer, IRF homotypic dimer and EBF1 homodimer), which
were additionally found in other independent studies, were included in our predictions
too. Surprisingly, the cell types where these motif-complexes were significant using our
method were not exactly in agreement with the cell types from Jankowski et al. Namely,
the E-box dimer of YY1 and MEIS1 was found with significant spacing in retinoblastoma
by Jankowski et al., but in various cell types such as lung fibroblast, muscle myoblast
and amniotic epithelial cells with our method. This dimer was confirmed with an in vitro
study by De Masi et al. (2011). The IRF homotypic dimer E2F1/IRF7 and NFAT3 was
found in B-lymphocytes by Jankowski et al. and in various fibroblast and in hematopoi-
etic progenitor cells with our method. An independent study of Tanaka et al. (1993)
identified this dimer in a non-cell-type-specific experiment. The EBF1 homodimer IKZF
and STAT1 had a significant offset in neuroblastoma found by Jankowski et al. and a
significant [; score in astrocytes, mesenchymal stem cells and in ligament fibroblast.
Treiber et al. (2010) found this dimer in an independent experiment in B-lymphocytes.
The well-known OCT-SOX heterodimer in embryonic stem cells (Chen et al., 2008b)
was found with our method and by Jankowski et al. also in embryonic stem cells.
Over the different cell types, the highest agreement between the two methods was found
for co-occurring TF motifs in dermal fibroblast with 22 matches, renal glomerular en-
dothelial cells and mesenchymal stem cells, both with 20 matches. The smallest overlap
was found in the primary cells such as primary T-cell, hematopoietic progenitor cells,
ESCs and muscle myoblast with less than 5 matching TF motif pairs.
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Similarly, when compared to the co-occurring TF motifs with a large negative L; score,
predicted on the ubiquitous DHSs, the agreement with the predictions from Jankowski
et al. is 34 (1.4%, Fisher’s exact test p = 1) out of 2379 significant TF motif pairs.
Among them, there is one of the top-10 predicted motif-complexes by Jankowski et al.
FOXAT1:AR dimer, whose enhancer function in prostate adenocarcinoma was shown in-
dependently by Wang et al. (2011).

The reason for the relatively small concordance of predicted co-occurring TF motifs and
predicted TF dimers from Jankowski et al. might be the different objectives of both pre-
diction methods. Whereas our method focus on TFs which co-occur in cell-type-specific
manner on small genomic regulatory regions, Jankowski et al. predicts directly inter-
acting TFs which bind as a dimer on the regulatory DNA with a fixed spacing. Further,
method of Jankowski et al. is sensitive to TF-dimers with widespread binding whereas
our method focus on the top 1000 bound cell-type-specific regions for each TF. There
might be further differences in the definition of the cell-type-specific regulatory regions
defined by the DNase-seq reads. Although we used partially the same data provided
by ENCODE, the definition of the CTS-DHSs by Jankowski et al. uses larger genomic
regions (400bp) which were detected with the F-seq peak-calling algorithm (Boyle et al.,
2008b). Then, the cell-type-specific regions are defined as regions in the corresponding
cell-types which do not overlap with other cell types. In contrast, our algorithm in-
cluding calculation of the t-statistic (see Section 5.2) takes into account the variability
between replicates of one cell types and enables to create lists of DHSs ranked by their
cell-type specificity.

5.7 Conclusion

Transcription in eukaryotic cells is regulated depending on chromatin, where the ge-
nomic DNA is wrapped around nucleosomes. The accessibility of the cis-regulatory
DNA sequences for transcription factor binding depends on the temporal and spatial
development of the cell. Early on discoveries showed that the accessible genomic regions
were hypersensitive to cleavage by an enzyme DNase I and that these regions might
contain regulatory sequences (Weintraub and Groudine, 1976). The DNase I technique
combined with high-throughput genomic sequencing (DNase-seq) allowed systematic
mapping of nucleosomes and accessible regions of the packed DNA. Recent studies
(Boyle et al., 2008a; John et al., 2011; Li et al., 2011b) showed that the TF binding

sites are preferentially located in those accessible regions which are hypersensitive to
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DNase I and which are therefore called DNase-hypersensitive sites.

In this chapter, we used DNase-seq data in 90 human cell types from a recent large study
(The ENCODE Project consortium, 2012) to derive cell-type-specific DNase hyper-
sensitive sites (CTS-DHSs) and ubiquitous DHSs which were quantified with a
t-statistic taking into account within-cell-type variation of the DNase hypersensitivity.
We showed that biologically related samples have high correlations of read counts in
genomic windows, suggesting a good quality and reproducibility of underlying samples.
The derived CTS-DHSs localize primarily in distant regions from the TSS (mainly in
introns and intergenic regions) compared to the ubiquitous DHSs which occur mainly
in promoters.

Next, we derived a representation of a TF as a ranked list of CTS-DHSs and ubiqg-
uitous DHSs ordered by the binding affinity. For each cell type, we took a fixed
number of CTS-DHSs and of ubiquitous DHSs and rank them by the binding affinity of
the particular TF.

Next, we studied the overrepresented TF binding motifs in the CTS-DHSs and
identified a large group of motifs present in the majority of cell types, such as homeobox
proteins (NKX6-2, POU2F1), nuclear factors (NFY, NRF1), general TFs (SP1, GABP,
TFAP2), ETS and E2F family members. These factors are known to regulate many
important genes involved in cell and organ development, energy metabolism and cell
cycle.

Notably, factors showing cell-type-specific occupancy patterns are particularly known
cell-selective transcriptional regulators including (1) SPI1, IRF, GATA, STAT and ATF
family members in white blood cells; (2) MEF2A, MYOD and MYOG in the myoblast
cells; (3) pluripotency factors OCT4, SOX2 and NANOG in the embryonic stem cells
and (4) ETS-family members and GATAG in lung fibroblasts.

Further, we developed a novel statistical method to detect pairs of co-occurring TFs in
a cell-type-specific manner. Our approach compares the similarity of two TFs (rep-
resented as a ranked list of DHSs) in the CT'S-DHSs and in ubiquitous DHSs. Therewith,
TF pairs of interest share significant number of CTS-DHSs but non-significant number
of ubiquitous DHSs. Thus, the predicted TF pairs with the highest score co-occur more
likely in the cell-type-specific sites than in the generally open sites.

In total, we predicted 2359 significant unique TF pairs in 64 cell types. Among
the predicted TF pairs, 158 are significant in the majority of cell types, suggesting that
these TF pairs occur together much likely in distal regulatory regions than on ubiqui-
tously open regions. Further, we detected 739 TF pairs which share significant number
of the ubiquitous DHSs compared to the CTS-DHSs over all cell types. The co-occurring
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TFs in ubiquitous DHSs involve many promoter-centric and general TFs and are in a
significant agreement with our predictions when comparing just two ranked lists as pre-
sented in Chapter 3.

Further, we derived cell-type specific regulatory networks from the predicted TF
pairs in each particular cell type. In general, more than 75% of factors in the networks
are expressed in the corresponding cell type as measured by an independent study
using RNA-seq experiments (Flicek et al., 2014). Moreover, roughly one quarter of TFs
in the cell-type-specific networks are known regulators in the particular cell type.
To gain further knowledge about the relevance of our predictions we studied in detail
the regulatory networks in white blood cells, embryonic stem cells and muscle cells.
The main regulators with most co-occurring partners in the hematopoietic progen-
itor cells are hematopoietic factors EVI1 and GATA and early development factors
POUG6F1 and ONECUT. By comparison, the main regulators in differentiated white
blood cells such as monocytes are immune cell regulators POU2F1, CDX, LHX3 and
PBX1 and other factors such as ALX1, NKX3-1, NKX6-1 and TEF. Further, majority of
the known regulators of monocyte differentiation (SPI1, CEBP, IRF, VDR, STAT1 and
STAT3) are present in the predicted regulatory network in monocytes. The networks in-
cludes several known direct protein interactions: NFKB/RELA:STAT3, GATA:-MEF2A,
GATA:POU2F1, CEBP:CREB, CEBP:STAT5A, CEBP:POU2F1, MAF:ETS,
ESR:NR2F1.

Next, the transcriptional networks in (undifferentiated and differentiated) embryonic
stem cells were investigated. The main regulators of undifferentiated ESCs are known
pluripotent factors OCT4 and NANOG, but other early developmental regulators such
as POU2F1, SOX/SRY, STAT3, FOXD3, KLF4, ESRR, MYC, TCF3, ZIC and YY1
are present in the network, too. The well known co-occurrence of pluripotent fac-
tors (OCT4:NANOG, OCT4:50X2, NANOG:SOX) was found with our method too.
In addition, several other known TF-TF interactions were found with our method:
NANOG:TCF/LIF1, POU2F1:TLX2, CEBP:ATF/CREB, CEBP:OCT, MAF:ETS,
STAT3:NFKB, TAL1:LMO2, LMO2:MYC. The regulatory network in differentiated
ESCs includes more cell-selective transcriptional regulators such as LEF1/TCF, GATA4,
EGR and TFAP2. Four smaller subnetworks of specific functions were identified in
the network in differentiated ESCs: (1) pluripotent subnetwork with SOX, NANOG,
FOXC1; (2) early blood development subnetwork dominated with GATA proteins to-
gether with EVI1, IRF and SRF; (3) ESR dominated subnetwork together with meso-
derm differentiation regulators HNF4 and NR2F; (4) MYC-centric subnetwork with
E2F1, KLF4, TFAP2, SP1 and zinc finger proteins. The co-occurrence of MYC with
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E2F1 and ZFX (or other zinc finger proteins) was observed in other study analyzing
ChIP-seq experiments in ESCs (Chen et al., 2008b).

Regulatory networks in myoblasts and differentiated muscle cells include the main
myogenic regulators MYOG, MYOD, MYF, PAX, MEF2, NKX2-5, SRF and GATA.
However, the regulators of early myogenic differentiation MYOG, MYOD and MYF were
present with high number of co-occurring partners only in the progenitor myoblasts but
not in the differentiated cardiac myocytes. Further, the regulatory networks in skele-
tal muscle cell types show 2 distinct regulatory groups of TFs: first one dominated by
myogenic factors MYOD and MYOG and the second one is dominated by the myocyte
factor MEF2.

The concordance of the predictions of co-occurring TFs in tissue-specific promoters pre-
sented in Chapter 4 and in the cell-type-specific (or tissue-specific) DHSs is relatively
small. One reason for the diverse results might be the difference in the genomic re-
gions which were studied. As shown in Figure 5.3, CTS-DHSs are preferentially located
in intronic and intergenic regions (more than 80% of them) and therewith correspond
mainly to enhancers. Less than 10% of the CTS-DHSs overlay with promoters, thus the
DNA sequences on the CTS-DHSs are different from the promoter sequences analyzed
in Chapter 4. Further, it is more likely that different combinations of TFs regulate the
transcription of their target genes on promoters and on enhancers. In addition, predicted
regulatory networks in promoters are dominated with few central hubs which co-occur
with many other factors. In contrary, TFs in regulatory networks in the CTS-DHSs are
usually more interconnected and include larger number of main regulators.

For a systematic validation of our results, the predicted co-occurring TF pairs were
compared against a large-scale experimental databases of PPIs (Chatraryamontri et al.,
2013; Ravasi et al., 2010), against predictions derived from an analysis of ChIP-seq ex-
periments (Wang et al., 2012) and against a statistical prediction of TF-dimerization
(Jankowski et al., 2013). Although the experiment-derived relationships between TFs
provide measurements of an even stronger cooperation of two TFs (such as direct PPI
or co-binding proteins measured by ChIP-seq experiment) than only co-occurrence on
the regulatory DNA (as the aim of our prediction), these experimental-derived TF
pairs are significantly enriched in our predicted set of the co-occurring TFs. The en-
richment of the direct PPIs in the set of cell-type-specific significant TF pairs is 2.1
fold (corresponding Fisher’s p-value= 3.3 x 107) and in the set of ubiquitous-specific
co-occurring TFs 2.6 (p = 1.8 x 107%). The overlap of studied TFs with the ChIP-seq de-
rived co-binding TFs is very small due to the limitation of the experimental technique.

However, we found a significant agreement among the predictions on the CTS-DHSs
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with total of 10 TF pairs (2.3 fold enrichment, p = 0.02) and on the ubiquitous DHSs
with 6 TF pairs (3.1 fold enrichment, p = 0.02). The agreement between the predicted
TF-TF dimers and our set of co-occurring TFs is very low, less than 2% of our predicted
co-occurring TF pairs was found as TF-TF dimer by Jankowski et al.. Nevertheless, out
of the 10 top-scored predicted TF complexes by Jankowski et al. with further evidence
in literature, 5 of them were found in our set of predicted co-occurring TF pairs. 3
of the 10 top-scored predicted TF dimers from Jankowski et al. are homodimers, e.g.
protein complexes of two identical factors, which are impossible to be predicted with
our approach, leaving only 2 of the top 10 predicted TF dimers undetected with our
methods. With these findings, we could support the accuracy of our results.

Overall, the validation of our predicted TF pairs and further analysis of cell-type-specific
networks show that our predictions include a significant proportion of independently val-
idated co-occurring (or directly interacting) TFs. Moreover, the large majority of the
regulators appearing in the cell-type-specific networks are actually expressed in the cor-
responding cell type and roughly one quarter of them have known function in the related
cell type. These findings suggest that our novel predictions of co-occurring TFs
have functional relevance. Further, our results indicate that the cell-type-specific
enhancers contain large number of TF motifs. One part of the TFs enriched on the
enhancers has more general function of cell development and metabolism. The other
part of TFs is highly cell-type-specific and might influence the differentiation of the
corresponding cell type.




6 Summary

One of the key questions in molecular biology is how cells with the same genetic code
are able to differentiate into a large variety of cell types. The differentiation of the cell
is controlled through the regulation of gene expression - a cellular mechanism which
activates only specific part of the genetic information in a way that only specific gene
products are generated. The main factors of the gene regulatory mechanisms are the
cellular environment, accessibility of the DNA and specific proteins called transcription
factors (TFs) (Coller and Kruglyak, 2008). TFs bind with sequence preferences to regu-
latory regions in the DNA to control the expression of their target genes. They usually
do not act alone but in a combinatorial manner thus regulating cell-type-specific gene
expression. This combinatorial cooperation of TFs is critical for the achievement of the
cell type specificity and of the developmental level of the cell. But, the experimental
techniques that are able to detect the combinatorial cooperation of TFs on the DNA are
very limited and are usually able to measure only few proteins at once.

The aim of this thesis was to use estimated information about the binding affinity of
transcription factors to the DNA to predict their co-occurrence in the genomic reg-
ulatory regions. Specifically, the transcription factors were represented by ranked lists
of their target genes (or other regulatory regions) and then several rank based statistics
were applied to detect significant associations between pairs of TFs.

The most common rank based association measures were introduced in Chapter 2
together with their application on a simple example of two ranked lists. In molecular
biology, experimental techniques are able to measure thousands of items in a single ex-
periment. Thus the researcher’s interest focuses mainly on the top-scored measurements.
Owing to this, in the statistical analysis the attention is also restricted to partial ranked
lists, i.e. ranked lists of top-ranked items only. For this reason, the behavior of the
rank based association measures for comparison of two partial ranked lists was studied
in Chapter 2. All of the discussed rank based association measures could successfully
analyze partial lists, though some of them (e.g. Spearman’s and Kendall’s correlation)
needed to be modified to be able to deal with incomplete ranked lists.

131
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In Chapter 3, we first defined the representation of TFs by ranked lists of their target
genes as a list of promoter sequences ordered by the estimated binding affinity of the
particular TF. Then we applied all five rank based association measures to detect sig-
nificantly associated pairs of TFs, i.e. pairs of highly associated ranked lists. When
corrected for similarity of binding motifs, the concordance of the predictions based on
four association measures (Spearman’s correlation, Kendall’s 7, R2KS score and Fisher’s
exact test) was very large. The regulatory network derived from the predicted associ-
ated TF pairs included several known promoter-specific regulators and several known
protein-protein interactions between predicted co-occurring TFs.

Of much larger interest is the tissue-specific or cell type-specific co-occurrence of
TFs. The key question is how different combinations of factors co-occur in different tis-
sues or cell types. Moreover, it is still unknown whether there are some general factors
playing an important role in many tissues which specifically change only their cooperat-
ing partners. Further, it is of interest whether there are different main regulators in each
cell type or tissue. We seeked to answer these questions with predicted co-occurring TFs
in tissue-specific promoters in Chapter 4 and in cell type-specific DNase hypersensitive
sites (CTS-DHSs) in Chapter 5.

Including additional information about the tissue (or cell type) specificity of the corre-
sponding genomic regions led to introducing a third dimension (or third ranked lists) for
the association measure. Because of an easier extension of conventional 2 x 2-contingency
tables (and therewith of the corresponding statistical test) to three dimensions we pref-
ered to use the contingency tables for prediction of co-occurring TFs in tissue-specific
manner.

In Chapter 4, we translated the problem of the association of two TFs (represented by
ranked lists of their target genes) in tissue-specific promoters into 3-way contingency
table. Then, the significance of the association of the two TFs could be assessed with
the corresponding statical test for the three-dimensional contingency table. However,
the choice of the correct null model in the table is essential for the obtained results.
Since there is no general rule how to choose the underlying null model in the analysis of
the TF co-occurrence we developed a new strategy to select the most appropriate model.
We first derived 3-way contingency tables for all TF pairs, fited all possible null models
to each table and calculated the corresponding test statistic and its p-value. Then, we
studied the obtained distributions of p-values for various null models. We selected the
model with p-value distribution closest to the uniform distribution with moderate en-
richment of significant p-values that should correspond to a real biological signal. The
underlying null hypothesis of the selected model was the partial independence of a
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joint variable selecting to the top-ranked promoters of both TFs and of the variable
assigning the tissue-specificity to each promoter.

In Chapter 5, we make use of newly available experimental results of the DNA accessi-
bility over many cell types using the DNase-seq technique. With this data set we were
able to define tens of thousands of DNase-hypersensitive sites (DHSs) which are specif-
ically open in the particular cell type or which are ubiquitously open in all cell types.
To derive such cell-type-specific DHSs (CTS-DHSs) and ubiquitous DHSs, an
approach from Love and Chung (2012) was adapted. With this new information, we
could represent each TF as a ranked lists of the DHSs sorted by the binding affinity.
However, if all CTS-DHSs over all cell types of interest are included the length of the
ranked lists and therewith the universe of the corresponding contingency table becomes
extremely large. For this reason, we developed a new method for comparing two TFs
represented by a ranked lists of DHSs. Now, we defined a new representation of the
TFs for each cell type of interest such that we ranked the same number of CTS-DHSs
and of ubiquitous DHSs by the binding affinity. For example, in liver tissue we created
the ranked list for a given TF as an ordered list (by binding affinity) of liver-specific
and of ubiquitous DHSs and in lung tissue as an ordered list of lung-specific and of
ubiquitous DHSs. Then, we derived two different 2 x 2 contingency tables for each TF
pair in each cell type, namely one for the CTS-DHSs and one for the ubiquitous DHSs.
The significance of these two tables was compared with a log ratio of its p-values.
Thus, TF pairs with a large log ratio were strongly associated in the CTS-DHSs but not
associated in the ubiquitous DHSs. With this approach we ensured that the predicted
associated TF pairs co-occur in a cell-type-specific manner.

With both methods, we were able to predict a large number of co-occurring TF pairs
in various human tissues and cell types. We detected several central cell-type-
specific regulators in the studied cell types and a large group of TFs which are active in
many cell types with some stable co-occurring partners and with some cell-type-specific
partners. We could show that known protein-protein interactions are enriched in the
set of predicted co-occurring TF pairs and that they are in significant agreement with
other computational studies. In addition, we found that the majority of the predicted
TFs is expressed in the corresponding tissue or cell type. Moreover, we could
identify roughly one third of the predicted TFs to have a known regulatory function
in the related tissue or cell type. Of note, all predicted TFs were selected just by the
significant test statistics, without any knowledge about their functions in the cell type
of interest. Thus, these results indicate that our predicted co-occurring TF pairs and

therewith the related regulatory networks are very likely functional in the corresponding
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cell types.

Our method might be applied in future studies for prediction of cell-type-specific coop-
eration of other regulatory factors or other important players of gene regulation, such
as microRNAs, long non-coding RNAs an others. In principle, our method requires
only that these factors can be represented by a ranked list of genomic regions or other
informative elements. Further, we hope, that the rapid development of experimental
techniques will produce reliable data of co-occurring TFs in cell-type-specific manner
which would enable the statistical validation of our predictions.
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List of Abbreviations

A adenine

C cytosine

G guanine

T thymine

bp base pair

ChIP chromatin immunoprecipitation
CTS-DHS cell-type specific DNase hypersensitive site
DHS DNase I hypersensitive site

DNA deoxyribonucleic acid

ESC embryonic stem cell

FDR false discovery rate

IDR irreproducible discovery rate

ML information content

IC maximum likelihood

PBM protein binding microarray

PPl protein-protein interaction

PSFM position-specific frequency matrix

PWM position weight matrix
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146 List of Abbreviations

RNA ribonucleic acid

TF transcription factor

TFBS transcription factor binding site

TSS transcription start site

TRAP transcription factor affinity prediction tool from Roider et al. (2007)

Y2H yeast-two-hybrid system




Notations

PsSp

njk
Smax(M;, M;)

Hy

sequence
position j in sequence S

length of sequence

position-specific frequency matrix of length [

position weight matrix of length [

Pearson’s correlation coefficient

rank of object ¢ according to quantity x

ranked list ordered according to quantity x

length of ranked list R,

Spearman’s correlation

Spearman’s footrule

Kendall’s 7

R2KS score

observed cell count in a 2-way contingency table
MOSTA similarity measure between PWMs M; and M,
null hypothesis

alternative hypothesis

binary variable indicating the specificity of gene i in tissue/cell type t
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Notations

Tkl
Tkl
Mgkl
ﬁjkz

X1Y

binary variable indicating whether gene ¢ is ranked among the top k
genes

cell probability in a 3-way contingency table

observed cell count in a 3-way contingency table

expected cell frequency in a 3-way contingency table

fitted cell frequency in a 3-way contingency table

random variable X is statistically independent of random variable Y
genomic window of a constant length

normalized log read count of sample ¢ in window w

average log read count of cell type [ in window w

global average log read count over all cell types in window w
Student’s t-statistic for cell type [ in window w

log ratio of p-value obtained from partial table in cell type [ and of
p-value obtained from ubiquitous partial table
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Figure A.1: Scatterplots of binding affinities for 8 TF pairs with large proportion of promoters
with low irreducible discovery rate (IDR< 1071%).
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A.2 Supplementary Tables

Table
http:

A.l: DNase

data

from The

ENCODE  Project

hgdownload.cse.ucsc.edu/goldenPath /hgl9/encodeDCC /wgEncodeUwDnase

consortium

from
used

in Chapter 5 with corresponding cell line identifier, assigned cell type, tissue and type of cell.

No. File name Cell line Cell type Tissue Type
wgEncodeUwDnaseAg04449- fetal thigh .

1 AlnRepl AG04449 fibroblast skin fibroblast
wgEncodeUwDnaseAg04449- fetal thigh .

2 AlnRep2 AG04449 fibroblast skin fibroblast
wgEncodeUwDnaseAg04450- fetal lung

3 AlnRepl AG04450 fbroblast lung fibroblast
wgEncodeUwDnaseAg04450- fetal lung

4 AlnRep2 AG04450 fibroblast lung fibroblast

5 weEncodeUwDnaseAg09309- AG09309 toe fibroblast skin fibroblast
AlnRepl

6 weHncodeUwDnaseAg09309- AG09309 toe fibroblast skin fibroblast
AlnRep2
wgEncodeUwDnaseAg09319- o

7 AlnRepl AG09319 gum fibroblast gingival fibroblast
wgEncodeUwDnaseAg09319- ..

8 AlnRep2 AG09319 gum fibroblast gingival fibroblast
wgEncodeUwDnaseAg10803- abdominal .

9 AlnRepl AG10803 Abroblast skin fibroblast
wgEncodeUwDnaseAg10803- abdominal .

10 AlnRep2 AG10803 fibroblast skin fibroblast

11 wgEncodeUwDnaseAoafAlnRepl AoAF aortic fibroblast blood vessel  fibroblast

12 wgEncodeUwDnaseAoafAlnRep2 AoAF aortic fibroblast blood vessel  fibroblast

13 wgEncodeUwDnaseBjAInRepl BJ skin fibroblast skin fibroblast

14 wgEncodeUwDnaseBjAInRep2 BJ skin fibroblast skin fibroblast
wgEncodeUwDnaseCd34mobilized- CD34+ hematopoietic .

15 AlnRepl Mobilized progenitor blood white blood

CD4+

16 Wg.Enci’)‘ﬁg%]gfgzngl' . Naive T-cell blood white blood

natvew fep Wh11970640
CD4+

17 WgEnci‘i‘;EgVE)gng‘icgl' . Naive T-cell blood white blood
natvew fep Wh78495824

18 WebncodeUwDnaseGm04503- GMO04503  twin fibroblast skin fibroblast
AlnRepl

19 wegEncodeUwDnaseGm04503- GMO04503 twin fibroblast skin fibroblast
AlnRep2

20 wetncodeUwDnaseGm04504- GMO04504 twin fibroblast skin fibroblast
AlnRepl

g1 WebncodeUwDnaseGm04504- GM04504  twin fibroblast skin fibroblast
AlnRep2
wgEncodeUwDnaseGm06990- .

22 AlnRepl GMO06990 B-lymphocyte blood white blood
wgEncodeUwDnaseGm06990- .

23 AlnRep?2 GM06990 B-lymphocyte blood white blood

gq  WebncodeUwDnaseGm12864- GM12864  B-lymphocyte blood white blood

AlnRepl
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25

26

27

28

29
30
31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
48

49
50

51

52

53

54

wgEncodeUwDnaseGm12865-
AlnRepl
wgEncodeUwDnaseGm12865-
AlnRep2
wgEncodeUwDnaseGm12878-
AlnRepl
wgEncodeUwDnaseGm12878-
AlnRep2

wgEncodeUwDnaseH1hescAlnRepl

wgEncodeUwDnaseH7esAlnRepl
wgEncodeUwDnaseH7esAlnRep2
wgEncodeUwDnaseH7esDiffal4d-
AlnRepl
wgEncodeUwDnaseH7esDiffal4d-
AlnRep2
wgEncodeUwDnaseH7esDiffa2d-
AlnRepl

wgEncodeUwDnaseH 7esDiffabd-
AlnRepl
wgEncodeUwDnaseH7esDiffabd-
AlnRep2
wgEncodeUwDnaseH7esDiffa9d-
AlnRepl

wgEncodeUwDnaseHacAlnRepl
wgEncodeUwDnaseHacAlnRep2
wgEncodeUwDnaseHaeAlnRepl
wgEncodeUwDnaseHaeAlnRep2
wgEncodeUwDnaseHahAlnRepl
wgEncodeUwDnaseHahAlnRep2
wgEncodeUwDnaseHaspAlnRepl

wgEncodeUwDnaseHaspAlnRep2

wgEncodeUwDnaseHbmecAlnRepl

wgEncodeUwDnaseHbmecAlnRep2

wgEncodeUwDnaseHbvpAlnRepl

wgEncodeUwDnaseHbvsmcAInRepl
wgEncodeUwDnaseHbvsmcAInRep2

wgEncodeUwDnaseHcfAInRepl
wgEncodeUwDnaseHcfAInRep2
wgEncodeUwDnaseHcfaaAlnRepl

wgEncodeUwDnaseHcfaaAlnRep2

GM12865
GM12865
GM12878

GM12878

H1-hESC
H7-hESC
H7-hESC
H7-hESC
diff14d
H7-hESC
diff14d
H7-hESC
diff2d
H7-hESC
diff5d
H7-hESC
diff5d
H7-hESC
diffod

HAc
HAc
HAEpiC
HAEpiC
HA-h
HA-h
HA-sp

HA-sp

HBMEC

HBMEC
HBVP

HBVSMC
HBVSMC

HCF
HCF
HCFaa

HCFaa

B-lymphocyte
B-lymphocyte
B-lymphocyte

B-lymphocyte

ESC
undiff ESC
undiff ESC

diff ESC
diff ESC
diff ESC
diff ESC
diff ESC

diff ESC

astrocytes
cerebellar
astrocytes
cerebellar
amniotic
epithelial
amniotic
epithelial
astrocytes
hippocampal
astrocytes
hippocampal
astrocytes spinal
cord

astrocytes spinal
cord

brain
microvascular
endothelial
brain
microvascular
endothelial
brain vascular
brain vascular
brain vascular
cardiac
fibroblasts
cardiac
fibroblasts
cardiac
fibroblasts atrial
cardiac
fibroblasts atrial

blood
blood
blood

blood

ESC
ESC
ESC

ESC

ESC

ESC

ESC

ESC

ESC

brain
brain
epithelium
epithelium
brain
brain
brain

brain

blood vessel

blood vessel
blood vessel

blood vessel
blood vessel

heart
heart
heart

heart

white blood
white blood
white blood

white blood

SC
SC
SC

SC
SC
SC
SC
SC
SC
astrocytes
astrocytes
epithelium
epithelium
astrocytes
astrocytes
astrocytes

astrocytes

endothelial

endothelial
endothelial

myoblast
myoblast

fibroblast
fibroblast
fibroblast

fibroblast




A.2. Supplementary Tables

153

55
56

57

58

59
60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

wgEncodeUwDnaseHcmAlInRepl
wgEncodeUwDnaseHcmAlInRep2

wgEncodeUwDnaseHconfAlnRepl

wgEncodeUwDnaseHconfAlnRep2

wgEncodeUwDnaseHcpeAlnRepl
wgEncodeUwDnaseHcpeAlnRep2

wgEncodeUwDnaseHeeAlnRepl
wgEncodeUwDnaseHeeAlnRep2
wgEncodeUwDnaseHelas3AlnRepl
wgEncodeUwDnaseHelas3AlnRep2
wgEncodeUwDnaseHffAInRepl
wgEncodeUwDnaseHffAlnRep2
wgEncodeUwDnaseHffmycAlnRepl
wgEncodeUwDnaseHffmycAInRep2
wgEncodeUwDnaseHgfAInRepl
wgEncodeUwDnaseHgfAInRep2
wgEncodeUwDnaseHipeAlnRepl
wgEncodeUwDnaseHipeAlnRep2
wgEncodeUwDnaseHmecAlnRepl
wgEncodeUwDnaseHmecAlnRep2
wgEncodeUwDnaseHmfAInRep1

wgEncodeUwDnaseHmfAInRep2

wgEncodeUwDnaseHmvecdad-
AlnRepl

wgEncodeUwDnaseHmvecdad-
AlnRep2

wgEncodeUwDnaseHmvecdblad-
AlnRepl

wgEncodeUwDnaseHmvecdblad-
AlnRep2

HCM
HCM

HConF

HConF

HCPEpiC
HCPEpiC

HEEpiC
HEEpiC
HeLa-S3
HeLa-S3
HFF

HFF
HFF-Myc
HFF-Myc
HGF
HGF
HIPEpiC
HIPEpiC
HMEC
HMEC
HMF

HMF

HMVEC-
dAd

HMVEC-
dAd

HMVEC-
dBI-Ad

HMVEC-
dBI-Ad

cardiac myocytes
cardiac myocytes
conjunctival
fibroblast
conjunctival
fibroblast
plexus epithelial
plexus epithelial
esophageal
epithelial
esophageal
epithelial
cervical
carcinoma
cervical
carcinoma
foreskin
fibroblast
foreskin
fibroblast
foreskin
fibroblast
foreskin
fibroblast
gingival
fibroblasts
gingival
fibroblasts
pigment
epithelial
pigment
epithelial
mammary
epithelial
mammary
epithelial
mammary
fibroblasts
mammary
fibroblasts
lymph
microvascular
endothelial
dermal
lymph
microvascular
endothelial
dermal

blood
microvascular
endothelial
dermal

blood
microvascular
endothelial
dermal

heart
heart

eye

eye

epithelium
epithelium

epithelium
epithelium
urogenital
urogenital
urogenital
urogenital
urogenital
urogenital
gingival

gingival

epithelium
epithelium
epithelium
epithelium
urogenital

urogenital

blood vessel

blood vessel

blood vessel

blood vessel

myoblast
myoblast

fibroblast

fibroblast

epithelium
epithelium

epithelium
epithelium
cancer
cancer
fibroblast
fibroblast
fibroblast
fibroblast
fibroblast
fibroblast
epithelium
epithelium
epithelium
epithelium
fibroblast

fibroblast

endothelial

endothelial

endothelial

endothelial
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81

82

83

84

85

86

87

88

89

90

91

92

93
94

95

96

97

98

99

100

wgEncodeUwDnaseHmvecdblneo-
AlnRepl

wgEncodeUwDnaseHmvecdblneo-
AlnRep2

wgEncodeUwDnaseHmvecdlyad-
AlnRepl

wgEncodeUwDnaseHmvecdlyad-
AlnRep2

wgEncodeUwDnaseHmvecdlyneo-
AlnRepl

wgEncodeUwDnaseHmvecdlyneo-
AlnRep2

wgEncodeUwDnaseHmvecdneo-
AlnRepl

wgEncodeUwDnaseHmvecdneo-
AlnRep2

wgEncodeUwDnaseHmveclbl-
AlnRepl

wgEncodeUwDnaseHmveclbl-
AlnRep2

wgEncodeUwDnaseHmveclly-
AlnRepl

wgEncodeUwDnaseHmveclly-
AlnRep2

wgEncodeUwDnaseHnpceAlnRep1
wgEncodeUwDnaseHnpceAlnRep2

wgEncodeUwDnaseHpaecAlnRepl
wgEncodeUwDnaseHpafAlnRepl
wgEncodeUwDnaseHpafAlnRep2
wgEncodeUwDnaseHpdIlfAlnRepl
wgEncodeUwDnaseHpdIlfAlnRep2

wgEncodeUwDnaseHpfAlnRepl

HMVEC-
dBIl-Neo

HMVEC-
dBIl-Neo

HMVEC-
dLy-Ad

HMVEC-
dLy-Ad

HMVEC-
dLy-Neo

HMVEC-
dLy-Neo

HMVEC-
dNeo

HMVEC-
dNeo

HMVEC-
LBl

HMVEC-
LBl

HMVEC-
LLy

HMVEC-
LLy

HNPCEpiC
HNPCEpiC

HPAEC
HPAF
HPAF
HPdLF
HPdLF

HPF

neonatal blood
microvascular
endothelial
neonatal blood
microvascular
endothelial
lymph
microvascular
endothelial
dermal

lymph
microvascular
endothelial
dermal

lymph
microvascular
endothelial
dermal

lymph
microvascular
endothelial
dermal

lymph
microvascular
endothelial
dermal

lymph
microvascular
endothelial
dermal

blood
microvascular
endothelial lung
blood
microvascular
endothelial lung
lymph
microvascular
endothelial lung
lymph
microvascular
endothelial lung
ciliary epithelial
ciliary epithelial
pulmonary artery
endothelial
pulmonary artery
fibroblasts
pulmonary artery
fibroblasts
ligament
fibroblasts
ligament
fibroblasts
pulmonary
fibroblasts

blood vessel

blood vessel

blood vessel

blood vessel

blood vessel

blood vessel

blood vessel

blood vessel

blood vessel

blood vessel

blood vessel

blood vessel

epithelium
epithelium

blood vessel
blood vessel
blood vessel
epithelium
epithelium

lung

endothelial

endothelial

endothelial

endothelial

endothelial

endothelial

endothelial

endothelial

endothelial

endothelial

endothelial

endothelial

epithelium
epithelium

endothelial
fibroblast
fibroblast
fibroblast
fibroblast

fibroblast
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101

102
103
104
105

106

107

108
109

110

111

112
113
114
115

116

117

118

119
120
121

122

123

124

125

126

127

128

129
130
131
132

133

134

135

wgEncodeUwDnaseHpfAInRep2

wgEncodeUwDnaseHrceAlnRepl
wgEncodeUwDnaseHrceAlnRep2
wgEncodeUwDnaseHreAlnRepl
wgEncodeUwDnaseHreAlnRep2

wgEncodeUwDnaseHrgecAlnRep1

wgEncodeUwDnaseHrgecAlnRep2

wgEncodeUwDnaseHrpeAlnRepl
wgEncodeUwDnaseHrpeAlnRep2

wgEncodeUwDnaseHs27aAlnRepl

wgEncodeUwDnaseHs5AInRepl

wgEncodeUwDnaseHsmmAlnRep1
wgEncodeUwDnaseHsmmAInRep2
wgEncodeUwDnaseHsmmtAlnRep1
wgEncodeUwDnaseHsmmtAlnRep2

wgEncodeUwDnaseHuvecAlnRepl
wgEncodeUwDnaseHuvecAlnRep2

wgEncodeUwDnaseHvmfAlnRepl

wgEncodeUwDnaseHvmfAlnRep2
wgEncodeUwDnaseK562AInRepl
wgEncodeUwDnaseK562AInRep2

wgEncodeUwDnaseLhecnm2AInRepl

wgEncodeUwDnaseLhcnm2AlInRep2

wgEncodeUwDnaseLhcnm2Diff4d-
AlnRepl
wgEncodeUwDnaseLhcnm2Diff4d-
AlnRep2
wgEncodeUwDnaseMonocd14-
AlnRepl

wgEncodeUwDnaseMonocd14ro1746-

AlnReplV2

wgEncodeUwDnaseMonocd14ro1746-

AlnRep2

wgEncodeUwDnaseMscAlnRepl
wgEncodeUwDnaseMscAlnRep2
wgEncodeUwDnaseNhaAlnRep1
wgEncodeUwDnaseNhaAlnRep2

wgEncodeUwDnaseNhberaAlnRepl
wgEncodeUwDnaseNhberaAlnRep2

wgEncodeUwDnaseNhdfadAlnRepl

HPF

HRCEpiC
HRCEpiC
HRE
HRE

HRGEC

HRGEC

HRPEpiC
HRPEpiC

Hs27

Hsb

HSMM
HSMM
HSMMtube
HSMMtube

HUVEC
HUVEC

HVMF

HVMF
K562
K562

LHCN-M2

LHCN-M2

LHCN-M2
Diff4
LHCN-M2
Diff4
Monocytes-
CD14+
Monocytes-
CD14+
RO01746
Monocytes-
CD14+
RO01746
MSC

MSC

NH-A
NH-A

NHBE RA
NHBE RA

NHDF-Ad

pulmonary
fibroblasts

renal epithelial
renal epithelial
renal epithelial
renal epithelial
renal glomerular
endothelial
renal glomerular
endothelial
retinal epithelial
retinal epithelial

marrow stromal

marrow stromal

muscle myoblast
muscle myoblast
muscle myoblast
muscle myoblast
umbilical vein
endothelial
umbilical vein
endothelial
mesenchymal
fibroblast

renal epithelial
leukemia
leukemia
skeletal
myoblasts
skeletal
myoblasts
skeletal
myoblasts
skeletal
myoblasts

monocyte

monocyte

monocyte

MSC

MSC
astrocyte
astrocyte
bronchial
epithelial
bronchial
epithelial
dermal
fibroblasts

lung

epithelium
epithelium
epithelium
epithelium

kidney

kidney

epithelium
epithelium
bone
marrow
bone
marrow
muscle
muscle
muscle
muscle

blood vessel
blood vessel

urogenital

urogenital
blood
blood

muscle
muscle
muscle
muscle

blood

blood

blood

adipose
adipose
brain
brain

epithelium
epithelium

skin

fibroblast

epithelium
epithelium
epithelium
epithelium

endothelial

endothelial

epithelium
epithelium

white blood

white blood

myoblast
myoblast
myoblast
myoblast

endothelial
endothelial

fibroblast

epithelium
cancer
cancer

myoblast
myoblast
myoblast
myoblast

white blood

white blood

white blood

SC
SC
astrocytes
astrocytes

epithelium
epithelium

fibroblast
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136

137

138

139
140
141
142

143

144

145
146

147

148

149
150
151

152

153

154

155
156

157

158

159

160

161

162

163

164

wgEncodeUwDnaseNhdfad AlnRep2

wgEncodeUwDnaseNhdfneo-
AlnRepl
wgEncodeUwDnaseNhdfneo-
AlnRep2
wgEncodeUwDnaseNhIfAInRep1
wgEncodeUwDnaseNhIfAInRep2
wgEncodeUwDnasePrecAlnRepl
wgEncodeUwDnasePrecAlnRep2

wgEncodeUwDnaseRptecAlnRepl

wgEncodeUwDnaseRptecAlnRep2

wgEncodeUwDnaseSaecAlnRepl
wgEncodeUwDnaseSaecAlnRep2

wgEncodeUwDnaseSkmcAlnRepl

wgEncodeUwDnaseSkmcAlnRep2

wgEncodeUwDnaseTh17AInRepl
wgEncodeUwDnaseTh1AlnRepl
wgEncodeUwDnaseTh1AlnRep2

wgEncodeUwDnaseTh1wb33676984-

AlnRepl

wgEncodeUwDnaseTh1wb54553204-

AlnRepl

wgEncodeUwDnaseTh1wb54553204-

AlnRep2
wgEncodeUwDnaseTh2AInRepl
wgEncodeUwDnaseTh2AInRep2

wgEncodeUwDnaseTh2wb33676984-

AlnRepl

wgEncodeUwDnaseTh2wb54553204-

AlnRepl
wgEncodeUwDnaseTreg-
wb78495824AlnRepl
wgEncodeUwDnaseTreg-
wb83319432AInRepl

wgEncodeUwDnaseWi38AlnRepl

wgFEncodeUwDnaseWi38 AlnRep2

wgEncodeUwDnaseWi38Ohtam-
AlnRepl
wgEncodeUwDnaseWi38Ohtam-
AlnRep2

NHDF-Ad
NHDF-neo

NHDF-neo

NHLF
NHLF
PrEC
PrEC

RPTEC

RPTEC

SAEC
SAEC

SKMC

SKMC

Th17

Thl

Thl

Thl
Whb33676984
Thl
Wb54553204
Thl
Whbb54553204
Th2

Th2

Th2
Wb33676984
Th2
Wb54553204
Treg
Wb78495824
Treg
Wh78495824

WI-38

WI-38

WI-38-
Ohtam
WI-38-
Ohtam

dermal
fibroblasts
neonatal dermal
fibroblasts
neonatal dermal
fibroblasts

lung fibroblast
lung fibroblast
epithelial
epithelial

renal tubule
epithelial

renal tubule
epithelial
epithelial
epithelial
skeletal striated
muscle

skeletal striated
muscle

T-cell

T-cell primary
T-cell primary

T-cell
T-cell

T-cell

T-cell primary
T-cell

T-cell
T-cell
T-cell regulatory

T-cell regulatory

embryonic lung
fibroblast
embryonic lung
fibroblast
embryonic lung
fibroblast
embryonic lung
fibroblast

skin
skin

skin

lung
lung
epithelium
epithelium

epithelium

epithelium

epithelium
epithelium

muscle

muscle

blood
blood
blood

blood
blood

blood

blood
blood

blood
blood
blood
blood
lung
lung
lung

lung

fibroblast
fibroblast

fibroblast

fibroblast
fibroblast
epithelium
epithelium

epithelium

epithelium

epithelium
epithelium

myoblast

myoblast

white blood
white blood
white blood

white blood
white blood

white blood

white blood
white blood

white blood
white blood
white blood
white blood
fibroblast
fibroblast
fibroblast

fibroblast
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Table A.2: Transcription factor binding motifs and corresponding transcription factors or
transcription factor groups used in Chapter 5.

TF binding motif

TF/TF group

AHR_01 AHR
AHR_Q5 AHR
AHRARNT 01 AHR:ARNT
AHRARNT 02 AHR:ARNT
AHRHIF _Q6 AHR:ARNT:HIF1A
AIRE 01 AIRE

AIRE_ 02 AIRE
ALPHACP1 01 NFYA

ALX4 01 ALX4
AMEF2_ Q6 MEF2A
AML_ Q6 RUNX
AML1_01 RUNX1
AML1_ Q6 RUNX1

AP1 01 FOS:JUN:AP1
AP1_Q2 01 FOS:JUN:AP1
AP1_Q4 01 FOS:JUN:AP1
AP1_Q6_01 FOS:JUN:AP1
APIFJ Q2 FOS:JUN:AP1
AP2 Q3 TFAP2

AP2 Q6 TFAP2
AP2_Q6_01 TFAP2
AP2ALPHA 01 TFAP2A
AP2ALPHA_ 02 TFAP2A
AP2ALPHA_ 03 TFAP2A
AP2GAMMA 01 TFAP2C
AP2REP 01 KLF12
AP4_01 TFAP4

AP4 Q5 TFAP4

AP4_ Q6 TFAP4
AP4_Q6_01 TFAP4
AR_01 AR

AR_02 AR

AR_03 AR

AR_Q2 AR

AR_Q6 AR
AREB6_01 ZEB1
AREB6_ 02 ZEB1
AREB6_03 ZEB1
AREB6_ 04 ZEB1

ARNT 01 ARNT

ARNT 02 ARNT
ARP1_01 NR2F2
ATF1_Q6 ATF

ATF3_ Q6 ATF

ATF4_ Q2 ATF
ATF6_01 ATF

BACH1 01 BACH1
BACH2_ 01 BACH2
BLIMP1 Q6 PRDM1
BRACH_ 01 T:BRACH
BRN2 01 POU3F2
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CACCCBINDINGFACTOR_ Q6
CART1_01
CDC5_01
CDP_01
CDP_02
CDPCR1_01
CDPCR3_01
CDPCR3HD_01
CDX_Q5
CDX2_ Q5
CEBP_01
CEBP_C
CEBP_ Q2
CEBP_Q2 01
CEBP_Q3
CEBPA_01
CEBPB_01
CEBPB_ 02
CETS1P54_01
CHOP_ 01
CHX10_ 01
CIZ_01
CMYB_01
COUP_01
COUP_DRI1_Q6
COUPTF_Q6
CP2_01
CP2_02
CREB_01
CREB_02
CREB_Q2
CREB_Q2 01
CREB_Q3
CREB_Q4
CREB_Q4_01
CREBATF_ Q6
CREBP1_01
CREBP1_Q2
CREBP1CJUN 01
CREL_01
CRX_Q4
DBP_ Q6
DEC_Ql
DR1_Q3
DR3 Q4
DR4_ Q2
E12_Q6

E2A Q2
E2A_Q6

E2F 01

E2F 02

E2F 03

E2F Q2

E2F Q3

E2F _Q3_01
E2F Q4

ZNF148

ALX1

CDC5L

CUX1

CUX1

CUX1

CUX1

CUX1

CDX

CDX

CEBP

CEBP

CEBP

CEBP

CEBP

CEBP

CEBPB
CEBPB
ETS1:P54
CEBPA:DDIT3
ABCD4:VSX2
ZNF384

MYB
NR2F1:HNF4A
NR2F

NR2F

TFCP2

TFCP2

CREB1

CREB1

CREB1
CREB1:CREM
ATF:CREB
CREB1
CREB1:CREM
ATF:CREB
ATF:CREB
ATF:CREB
ATF:JUN

REL
CRX:RAX
DBP

BHLHB
HNF4:NR2
RXR:VDR:NRI1I
RAR:RXR:NR2F:NR1
TCF3
MYF:MYOD:TCF
MYEF:MYOD:TCF
E2F1

E2F

E2F1

E2F

E2F1

E2F

E2F1
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E2F Q4 01 E2F
E2F Q6 E2F1
E2F Q6 01 E2F
E2F1_Q3 E2F1
E2F1_Q3 01 E2F1
E2F1_ Q4 E2F1
E2F1_Q6 E2F1
E2F1_Q6_ 01 E2F1
E47 01 TCF3
E47_02 TCF3
E4BP4_01 NFIL3
EBF_Q6 EBF
EBOX_Q6_01 EBOX:MYC:MYF:MYOD:TAL:USF
EFC_ Q6 RFX1
EGR_Q6 EGR
EGRI1_01 EGRI1
EGR2 01 EGR2
EGR3_01 EGR3
ELF1_Q6 ELF1
ELK1 01 ELK1
ELK1 02 ELK1
EN1_01 EN1
ER_Q6 ESR
ER_Q6_02 ESR
ERR1_Q2 ESRRA
ETF_ Q6 ETFA:TEAD?
ETS_ Q4 ELF:ELK:ETS:FLI1:GABP
ETS_Q6 ELF:ELK:ETS:FLI1:GABP
ETSI B ETS1
EVIL 01 EVI1
EVI1_02 EVI1
EVI1 03 EVI1
EVIl_ 04 EVI1
EVIlL_05 EVI1
EVI1_ 06 EVI1
FACI 01 BPTF
FOX Q2 FOX
FOXD3_ 01 FOXD3
FOXJ2_ 01 FOXJ2
FOXJ2 02 FOXJ2
FOXM1_ 01 FOXM1
FOXO1_01 FOXO1
FOXO1 02 FOXO1
FOX03_ 01 FOX03
FOXO04_ 01 FOXO4
FOXO04 02 FOXO4
FOXP1 01 FOXP1
FOXP3_ Q4 FOXP3
FREAC2 01 FOXF2
FREAC3_01 FOXC1
FREAC4_ 01 FOXD1
FREAC7 01 FOXL1
FXR_ Q3 NR1H4
GABP_B GABP
GATA C GATA

GATA_ Q6 GATA
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GATA1 01
GATA1 02
GATA1 03
GATA1 04
GATA1 05
GATA2 01
GATA3_ 01
GATA4_Q3
GATA6_01
GCM_ Q2
GCNF_01
GFI1_01
GFI1_Q6
GFIIB_01
GKLF_02
GKLF_Q4
GLI_Q2
GR_01
GR_Q6
GR_Q6_01
GRE C
GZF1_01

HANDI1E47 01

HEB Q6
HELIOSA 01
HELIOSA 02
HES1 Q2
HFH1_01
HFH3 01
HFH4_ 01
HFH8_01
HIC1 02
HIC1 03
HIF1_Q3
HIF1_ Q5
HLF_ 01
HMEF2_ Q6
HMGIY Q3
HMGIY Q6
HMX1 01
HNF1_01
HNF1_C
HNF1_ Q6

HNF1_Q6_01

HNF3_ Q6

HNF3_ Q6 01
HNF3ALPHA Q6

HNF3B_ 01
HNF4_01
HNF4 01 B

HNF4 DRI_Q3

HNF4_ Q6

HNF4_Q6_01
HNF4_ Q6 02
HNF4_Q6_03
HNF4ALPHA Q6

GATA1
GATA1
GATA1
GATA1
GATA1
GATA?2
GATA3
GATA4
GATA6
GCM
NR6A1
GFI1
GFI1
GFI1B
KLF4
KLF4
GLI
NR3C1
NR3C1
NR3C1
NR3C1
GZF1

TCF3:HAND1

TCF12
IKZF2
IKZF2
HES1
FOXQ1
FOXI1

FOXF1:FOXJ1

FOXF1
HIC1
HIC1
HIF1A
HIF1A
HLF
MEF2A
HMGA
HMGA
HMX3
HNF1A
HNF1A
HNF1
HNF1
FOXA
FOXA
FOXA
FOXA
HNF4A
HNF4A
HNF4A
HNF4:NR2F
HNF4A
HNF4A
HNF4A
HNF4A
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HNF6_ Q6
HOX13_01
HOXA3 01
HOXA4 Q2
HSF_ Q6
HSF1 01
HSF1_Q6
HSF2_01
HTF 01
ICSBP_ Q6
IK1_01

IK2_ 01
IK3_01
IPF1_Q4
IPF1_Q4 01
IRF_ Q6
IRF_Q6_01
IRF1_01
IRF1_Q6
IRF2_01
IRF7_01
KROX Q6
LEF1_Q2
LEF1_Q2 01
LEFITCF1_Q4
LFA1_Q6
LHX3 01
LMO2COM_ 01
LMO2COM_ 02
LUNI_ 01
LYF1_01
MAF_ Q6
MAF_Q6_01
MAX_01
MAZ Q6
MAZR_01
MEF2_01
MEF2_02
MEF2_03
MEF2_04
MEF2_Q6 01
MEISI_01
MEISIAHOXA9 01
MEISIBHOXA9 02
MMEF2 Q6
MRF2_01
MSX1 01
MTF1_Q4
MYB_Q3
MYB_ Q5 01
MYB_ Q6
MYC_Q2
MYCMAX_ 01
MYCMAX 02
MYCMAX_ 03
MYCMAX B

ONECUT
HOXA5b
HOXA3
HOXA4
HSF1

HSF1

HSF1

HSF2
XBP1

IRFS8
IKZF1
IKZF1
IKZF1
PDX1
PDX1

IRF

IRF

IRF1

IRF1

IRF2

IRF7

EGR
LEF1:TCF
LEF1
LEF1:TCF
ITGAL
LHX3
LMO2
LMO2
TOPORS
IKZF1
MAF
MAF:NFE2:BACH
MAX
KIF22:MAZ
PATZ1
MEF2A
MEF2A
MEF2A
MEF2A
MEF2
MEIS1
HOXA9:MEIS1
HOXA9:MEIS1
MEF2A
ARID5B
MSX1
MTF1
MYB

MYB

MYB
MYC:MAX
MYC:MAX
MYC:MAX
MYC:MAX
MYC:MAX
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MYOD_01
MYOD_ Q6
MYOGENIN Q6
MYOGNF1_01
MZF1 01
MZF1_02
NANOG_01
NANOG_ 02
NCX_ 01
NERF_Q2
NF1_Q6
NF1_Q6_01
NFAT Q4 01
NFAT Q6
NFE2 01
NFKAPPAB_01
NFKAPPAB50 01
NFKAPPAB65 01
NFKB_C
NFKB_ Q6
NFKB_Q6_01
NFY 01
NFY C

NFY_ Q6
NFY_Q6_01
NGFIC_01
NKX22 01
NKX25 01
NKX25 02
NKX25 Q5
NKX3A 01
NKX61 01
NKX62 Q2
NMYC_ 01
NRF1_Q6
NRF2_ Q4
NRSE_B
NRSF_ 01
NRSF_ Q4
OCT_C
OCT_Q6
OCT1 01
OCT1_02
OCT1_03
OCT1_04
OCT1_05
OCT1_06
OCT1 07
OCT1 B
OCT1_Q5 01
OCT1_Q6
OCT4_01
OCT4_02
OSF2_Q6
P300_01

P53 01

MYOD1
MYOD1
MYOG
NFI
MZF1
MZF1
NANOG
NANOG
TLX2
ELF2
NFI

NFI
NFATC
NFATC
NFE2
NFKB:RELA
NFKBI1
RELA
NFKB
NFKB1
NFKB:RELA
NFY
NFY
NFY
NFY
EGR4
NKX2-2
NKX2-5
NKX2-5
NKX2-5
NKX3-1
NKX6-1
NKX6-2
MYCN
NRF1
NFE2L2
REST
REST
REST
OCT:POU2F
OCT:POU2F
POU2F1
POU2F1
POU2F1
POU2F1
POU2F1
POU2F1
POU2F1
POU2F1
POU2F1
POU2F1
OCT4
OCT4
RUNX2
EP300
TP53
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P53_02 TP53
P53 DECAMER Q2 TP53
PAX_ Q6 PAX
PAX1 B PAX1
PAX2 01 PAX2
PAX2 02 PAX2
PAX3_ 01 PAX3
PAX3 B PAX3
PAX4 01 PAXA4
PAX4_ 02 PAX4
PAX4 03 PAXA4
PAX4 04 PAXA4
PAX5 01 PAX5
PAX5 02 PAX5
PAX6_ 01 PAXG6
PAX6_ Q2 PAX6
PAX8 01 PAXS
PAX8 B PAXS8
PBX_Q3 PBX
PBX1 01 PBX1
PBX1_ 02 PBX1
PBX1_03 PBX1
PEA3_ Q6 ETV4
PEBP_ Q6 CBFB:RUNX
PIT1_Q6 POUIF1
PITX2 Q2 PITX2
PLZF 02 ZBTB16
POUIF1_Q6 POUIF1
POU3F2_01 POU3F2
POU3F2_02 POU3F2
POU5F1_01 OCT4
POUG6F1_01 POUGF1
PPAR_DRI_Q2 PPAR
PPARA 01 PPARA:RXRA
PPARA_ 02 PPARA:RXRA
PPARG 01 PPARG
PPARG 02 PPARG
PPARG 03 PPARG
PR_01 PGR
PR_02 PGR
PR_Q2 NR3C1:PGR
PUL_Q6 SPI1
PXR_ Q2 NR1
RFX_Q6 RFX
RFX1 01 RFX1
RFX1 02 RFX1
ROAZ 01 ZNF423
RORA1L 01 RORA
RORA2 01 RORA
RP58 01 ZNF238
RREB1_01 RREBI1
RSRFC4_ 01 MEF2A
RSRFC4_ Q2 MEF2A
S8 01 PRRX2
SF1_Q6 NR5A1

SMAD Q6 SMAD
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SMAD_Q6_01 SMAD
SMAD3 Q6 SMAD3
SMAD4_ Q6 SMAD4
SOX_ Q6 SOX:SRY
SOX2 Q6 SOX2
SOX5 01 SOX5
SOX9 Bl SOX3
SP1_01 SP1
SP1_Q2 01 SP1
SP1_Q4_01 SP1
SP1_Q6 SP1
SP1_Q6_01 SP1
SP3_Q3 SP3
SPZ1 01 SPZ1
SREBP_Q3 SREBF
SREBP1_01 SREBF1
SREBP1_02 SREBF1
SREBP1_Q6 SREBF1
SRF_01 SRF
SRF_C SRF
SRF_ Q4 SRF
SRF_Q5_01 SRF
SRF_Q5 02 SRF
SRF_ Q6 SRF
SRY 01 SRY
SRY 02 SRY
STAT 01 STAT
STAT Q6 STAT
STAT1 01 STAT1
STAT1 02 STAT1
STAT1 03 STAT1
STAT3 01 STAT3
STAT3_ 02 STAT3
STAT4_01 STAT4
STAT5A 01 STAT5A
STAT5A 02 STAT5A
STAT5A_ 03 STAT5A
STAT5A_ 04 STAT5A
STAT5B_01 STAT5B
STAT6 01 STATG6
STAT6_ 02 STAT6
STRA13_01 BHLHB
T3R_Q6 RAR:RXR:THR
TALI Q6 TALI
TALIALPHAE47 01 TAL1:TCF3
TALIBETAE47 01 TAL1:TCF3
TALIBETAITF2 01 TAL1:TCF4
TATA 01 TBP
TATA C TBP
TAXCREB_01 CREBI
TAXCREB_ 02 CREBI
TBP 01 TBP
TBP_ Q6 TBP
TBX5_01 TBX5
TBX5_ 02 TBX5

TBX5 Q5 TBX5
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TCF11_01
TCF11MAFG 01
TCF4_Q5
TEF_Q6
TEF1_Q6
TEL2 Q6
TFE_Q6
TFIIA Q6
TFIII_Q6
TGIF_01
TITF1_ Q3
TST1 01
TTF1_Q6
USF_01
USF_ 02
USF_C
USF_ Q6
USF_Q6_01
USF2_ Q6
VDR_Q3
VDR_ Q6
WHN_B
XBP1_01
YY1 01
YY1 02
YY1 Q6
YY1 _Q6_02
ZF5 01
ZF5 B
ZIC1 01
ZIC2 01
ZIC3_01
ZID 01

NFE2L1
NFE2L1
TCF7L2
TEF
TEAD1
ETVT
MDFI:MITF:TFE
GTF2A
GTF2I
TGIF1
NKX2-1
POU3F1
NKX2-1
USF1
USF1
USF1
USF
USF
USF2
VDR
VDR
FOXN1
XBP1
YY1
YY1
YY1
YY1
ZFP161
ZFP161
Z1C1
Z1C2
Z1C3
ZBTB6







Zusammenfassung

Eine der wichtigsten ungelosten Fragen in der Molekularbiologie ist wie die Zellen eines
héheren Organismus mit einer identischen genetischen Information in eine grosse Vielfalt
von unterschiedlichen Zelltypen differenzieren. Die Zelldifferenzierung wird durch die
zellspezifische Regulierung von Genen gesteuert. Dabei wird nur ein bestimmter Teil
der genetischen Information aktiviert, sodass nur die benétigte RNA und Proteine pro-
duziert werden. Eine der wichtigsten Komponenten in der Genregulation sind die Tran-
skriptionsfaktoren. Diese DNA-bindende Proteine kénnen die Expression ihrer Zielgene
aktivieren bzw. unterdriicken. Die Transkriptionsfaktoren agieren jedoch selten einzeln
sondern wirken mit anderen Transkriptionsfaktoren zusammen, um eine hohe kombina-
torische Vielfaltigkeit und Gewebespezifitat zu erreichen. Das kombinatorische Zusam-
menspiel zwischen Transkriptionsfaktoren experimentell nachzuweisen ist jedoch sehr
kompliziert und sogar fiir viele Proteine nicht durchfiihrbar.

Das Ziel dieser Arbeit ist das kombinatorische Auftreten von Paaren von Transkriptions-
faktoren in den regulatorischen Abschnitten der DNA vorherzusagen. Als Information
werden dafiir die zugrundeliegende DNA-Sequenz und die berechnete Bindungsaffinitéat
der Faktoren zu der Sequenz verwendet. Fiir die Vorhersage wird jeder Transkriptions-
faktor als eine Liste der regulatorischen Abschnitte, die gemé&f der Bindungsaffinitéat
geordnet ist, reprasentiert. Mit Hilfe dieser Listen kénnen rangbasierte Mafe fiir die
Assoziationsbestimmung verwendet werden. Diese Darstellung als geordnete Liste und
die Anwendung der rangbasierten Mafse wird in dem ersten Teil der Arbeit (Kapitel 2
und 3) diskutiert.

Im zweiten Teil der Arbeit wird dann das gemeinsame Vorkommen der Transkriptions-
faktorpaare in gewebe- und zelltypspezifischer Weise vorhergesagt. Durch die Gewebe-
bzw. Zelltypinformation wird in die Analyse eine dritte Dimension eingefithrt. Um
die assoziierten Transkriptionsfaktorpaare in den gewebespezifischen Promotoren zu
finden, werden die dreidimensionale Kontingenztabellen und die dazugehorigen statis-
tische Tests verwendet (Kapitel 4). Die Ergebnisse aus diesem Kapitel wurden im Jan-
uar 2012 veroffentlicht (Mysickova and Vingron, 2012). Im Kapitel 5 werden dann die
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assoziierten Transkriptionsfaktorpaare in den zelltypspezifisch offenen regulatorischen
Abschnitten, die mit Hilfe der DNase I-Verdauung und darauffolgender Sequenzierung
(DNase-seq) bestimmt wurden, vorhergesagt. Die neuartigen DNase-seq Daten erfordern
eine neue Methode um die assoziierten Transkriptionsfaktorpaare zu finden. Dazu wurde
ein Verhéltnis von zwei p-Werten des exakten Fisher-Tests definiert: der erste p-Wert
ist abgleitet von der Kontingenztabelle auf den zelltypspezifisch offenen Abschnitten
und der zweite p-Wert ist abgeleitet von der Kontingenztabelle auf den ubiquitér of-
fenen Abschnitten. Transkriptionsfaktorpaare mit einem signifikant hohen Verhéltnis
treten dann viel wahrscheinlicher gemeinsam in den zelltypspezifischen Abschnitten
auf, als in den ubiquitdr offenen Abschnitten. Die vorhergesagten gewebe- und zell-
typspezifischen Transkriptionsfaktorpaare stimmen mit Vorhersagen von anderen com-
putergestiitzten Methoden iiberein. Zudem sind sie angereichert mit bekannten Protein-
Protein-Interaktionen. Dariiber hinaus ist der Grofsteil der vorhergesagten Transkrip-
tionsfaktoren in dem jeweiligen Gewebe bzw. Zelltyp exprimiert und etwa ein Drittel
der Faktoren hat eine bekannte Funktion in dem jeweiligen Gewebe oder Zelltyp. Das
deutet darauf hin, dass die vorhergesagten Transkriptionsfaktorpaare tatséchlich eine
regulatorische Funktion in dem jeweiligen Zelltyp haben.

Zusammengefasst liefert diese Arbeit neue Erkenntnisse tiber die kombinatorische Gen-
regulation durch Transkriptionsfaktoren und préasentiert neue Anwendung der rang-
basierten Methoden um assoziierte Transkriptionsfaktorpaare in gewebespezifischer Weise

vorherzusagen.
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