Entwicklung und Untersuchung einer photoelektrochemischen Membran für eine direkte Wasserstoffgewinnung aus wässrigen Elektrolyten

Dissertation

zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von

Bernhard Neumann

Oktober, 2007

•

- 1. Gutachter: Prof. H. Tributsch
- 2. Gutachter: Prof. K. Christmann

Tag der Disputation: 11.12.2007

•

Inhaltsverzeichnis

1	Ein	leitung	17
2	Sola	are Brennstofferzeugung in Natur und Technik	19
	2.1	Energiebedarf und Energiebereitstellung	19
	2.2	Brennstoffe als Energiespeicher	20
		2.2.1 Klassifikation von Brennstoffen	21
		2.2.2 Wasserstoff - ein schwieriges Multitalent!	23
	2.3	Solare Brennstofferzeugung	26
		2.3.1 Vorbild - pflanzliche Photosynthese	26
		2.3.2 Erzeugung von solarem Wasserstoff mit Photokatalysatoren	28
		2.3.2.1 Pulverförmige Photokatalysatoren	29
		2.3.2.2 Photoelektroden und photoelektrochemische Zellen	33
	2.4	Das Konzept der $TiO_2/Cu(In, Ga)Se_2/Nb_{0,03}Ti_{0,97}O_{1,84}$ -Membran dieser Arbeit	38
3	Gru	undlagen zur physikalischen Chemie von Halbleitern	41
	3.1	Struktur- und Eigenschaftsbedingungen in Halbleiterkristallen	41
		3.1.1 Die elektronische Struktur in Halbleitern	41
		3.1.2 Intrinsische und dotierte Halbleiter	44
		3.1.3 Der Halbleiter unter Beleuchtung	46
	3.2	Ladungsträgertransport in Festkörpern	48
	3.3	Ladungstransfer durch äußere Grenzflächen	52
		3.3.1 Ideale Heterokontakte bei Photoelektroden und Solarzellen	52
		3.3.2 Besonderheiten realer Heterokontakte	60
		3.3.3 Die Elektronentransfer-Theorie nach H. Gerischer	62
	3.4	Photochemische Prozesse an heterogenen Grenzflächen	64
		3.4.1 Eine Einführung in die Photokatalyse	64
		3.4.2 Modellierung von Photostrom-Spannungskurven	68
	3.5	Die Halbleiter TiO_2 und $Cu(In, Ga)Se_2$	72
		3.5.1 Eigenschaften des Metalloxids TiO_2	72
		3.5.2 Photoinduzierte Reaktionen auf TiO_2 -Oberflächen	75
		3.5.3 Das Chalkopyrit $Cu(In, Ga)Se_2$	79
4	Exp	perimentelle Methoden	81
	4.1	Verfahren zur Herstellung der Photoelektroden	81
	4.2	Methoden der Strukturaufklärung	83
		4.2.1 Röntgendiffraktometrie (XRD)	83
		4.2.2 Rasterelektronenstrahl-Mikroskopie (REM)	84
		4.2.3 Elementaranalyse mit elastischer Rückstreuanalyse (ERDA)	84
		4.2.4 RAMAN-Spektroskopie	85
		4.2.5 Gas-Sorptionsmessungen	87
	4.3	Methoden zur Untersuchung optischer und elektronischer Eigenschaften	88
		4.3.1 Transmissions- und Reflektionsmessungen	88

		4.3.2 Analyse von Solarzell-Kennlinien	89
		4.3.3 Bestimmung der Quanteneffizienz von Solarzellen und Photoelektroden .	92
		4.3.4 Widerstands- und Hall-Messungen	94
		4.3.5 Oberflächenphotospannungs-Messungen (SPV)	96
	4.4	Qualitative und quantitative Analyse photochemischer Reaktionen	99
		4.4.1 Potentialabhängige Dunkel- und Photostrommessungen (CV)	99
		4.4.2 Elektrochemische Massenspektroskopie (EMS)	104
		4.4.3 Quantitative Gasanalysen bei Normaldruck	106
5	Unt	rsuchung potentiell für die photoelektrochemische Membran geeigneter	•
	Pho	okatalysatoren	110
	5.1	Titandioxid - modifiziert in Kristallstruktur und Morphologie	111
		5.1.1 Industriell gefertigtes TiO_2 (P25)	111
		5.1.2 Spraypyrolytisch hergestelltes TiO_2 (Spray- TiO_2)	120
		5.1.3 Mesoporöses TiO_2 aus templatgestützter Synthese (m- TiO_2)	125
		5.1.4 Perovskitartiges Titandioxid - TiO_2 -[B]	133
	5.2	Titandioxid - Dotiert mit Kat- und Anionen	137
		5.2.1 Kohlenstoff und Stickstoff dotiertes TiO_2	137
		5.2.2 Ubergangsmetall-dotierte TiO_2 -Elektroden	152
	5.3	Mesoporöse Wolframoxid-Photoelektroden (m- WO_3)	168
	5.4	Untersuchung von Bismuth-Vanadium-V-oxid-Photoelektroden $(BiVO_4)$	173
	5.5	Graphitisierte Mn-Porphyrin-Elektroden	182
		5.5.1 Einführung in die Elektrochemie von Mn-Porphyrin-Elektroden	184
		5.5.2 Mn-Porphyrinen-Elektroden unter anodischer Polarisierung	185
	5.6	Zusammenfassung Kapitel 5	191
6	Unt	rsuchungen zum Korrosionsschutz von $Cu(In, Ga)Se_2$ -Solarzellen	195
	6.1	Aufbau und Herstellung der $Cu(In, Ga)Se_2$ -Solarzellen	195
	6.2	Modifizierung der ZnO -Frontelektrode mit TiO_2 -Deckschichten	196
		6.2.1 Schutzwirkung kompakter TiO_2 -Filme	197
		6.2.2 Hydrophobisierung poröser TiO_2 -Deckschichten mit Tensiden	199
	6.3	Herstellung ZnO-freier Frontelektroden für Chalkopyritsolarzellen	204
		6.3.1 Reaktives-Magnetronsputtern von $Nb_xTi_{1-x}O_y$ -Schichten	205
		6.3.2 Eigenschaften der reaktiv gesputterten $Nb_xTi_{1-x}O_y$ -Schichten	208
		6.3.3 Solarzellen mit ZnO- und mit $Nb_{0,03}Ti_{0,97}O_{1,84}$ -Frontelektroden	218
		6.3.4 Stabilität der $Nb_{0,03}Ti_{0,97}O_{1,84}$ -Frontelektroden	222
	6.4	Zusammenfassung Kapitel 6	224
7	Was	$erstoffentwicklung mit der TiO_2/Cu(In, Ga)Se_2/Nb_{0.03}Ti_{0.97}O_{1.84}$ -Membran	226
	7.1	Vortests und technische Zusammenführung von Photoelektrode und Solarzelle	226
	7.2	Die $TiO_2/Cu(In, Ga)Se_2/Nb_{0,03}Ti_{0,97}O_{1,84}$ -Membranen im Experiment	231
		7.2.1 Die Wasserstoffentwicklung in Abhängigkeit experimenteller Parameter .	231
		7.2.1.1 Einfluss des Elektronendonors	233
		7.2.1.2 Einfluss des pH-Wertes	236
		7.2.1.3 Die $Nh = Ti = O$ Frontelektrode und der Platin Cokatelwaater	000
		$1.2.1.5$ Die $1.0,031$ $\iota_{0,97}$ $O_{1,84}$ -Frontelektroue und der Frath-Cokatalysator	236
		$7.2.1.3$ Die $N b_{0,03} T t_{0,97} O_{1,84}$ -Frontelektrode und der Frath-Cokatalysator 7.2.1.4 Einsatz des ionischen Lösungsmittels Ethylammoniumnitrat	$236 \\ 237$
		 7.2.1.3 Die <i>N</i>0_{0,03}<i>I</i> 1_{0,97}O_{1,84}-Frontelektrode und der Frath-Cokatalysator 7.2.1.4 Einsatz des ionischen Lösungsmittels Ethylammoniumnitrat 7.2.2 Wirkungsgrad der Membranen in der Energiekonversion	236 237 239
		 7.2.1.3 Die No_{0,03}T t_{0,97}O_{1,84}-Frontelektrode und der Frath-Cokatalysator 7.2.1.4 Einsatz des ionischen Lösungsmittels Ethylammoniumnitrat 7.2.2 Wirkungsgrad der Membranen in der Energiekonversion	236 237 239 240
		 7.2.1.3 Die <i>Nv0</i>_{0,03}<i>I i</i>_{0,97}<i>O</i>_{1,84}-Frontelektrode und der Frathi-Cokatarysator 7.2.1.4 Einsatz des ionischen Lösungsmittels Ethylammoniumnitrat 7.2.2 Wirkungsgrad der Membranen in der Energiekonversion	236 237 239 240 241
		 7.2.1.3 Die No_{0,03} r_{0,97}O_{1,84}-Frontelektrode und der Frathi-Cokatarysator 7.2.1.4 Einsatz des ionischen Lösungsmittels Ethylammoniumnitrat 7.2.2 Wirkungsgrad der Membranen in der Energiekonversion	236 237 239 240 241 243
		 7.2.1.3 Die No_{0,03} r_{0,97}O_{1,84}-Frontelektrode und der Frath-Cokatarysator 7.2.1.4 Einsatz des ionischen Lösungsmittels Ethylammoniumnitrat 7.2.2 Wirkungsgrad der Membranen in der Energiekonversion	236 237 239 240 241 243 245

	$7.2.4.2 ext{Stabilität der } Cu(In, Ga)Se_2 ext{-Schicht in wässriger Lösung} \\ 1.2.5 ext{Experimente zum alternativen Schutzkonzept } TiO_2/\text{Dodecylphosphat} \\ 1.2.5 ext{Dodecylphosphat} \\ 1.2.5 ext{Dodecylp$	246 251
	7.3 Zusammenfassung Kapitel 7	252
8	Zusammenfassung und Ausblick	255
Α	Symbol- und Abkürzungsverzeichnis	259
в	Anhang	263
	Literaturverzeichnis	266
	Veröffentlichungen	277
	Lebenslauf	278
	Danksagung	280

Abbildungsverzeichnis

2.1	Entwicklung und Prognosen des weltweiten Primärenergieverbrauchs	20
2.2	Energiekreislauf eines Brennstoffes	22
2.3	Die photosynthetische Einheit der pflanzlichen Zelle	27
2.4	Schemata photoelektrochemischer Tandemzellen	36
2.5	Aufbau der $TiO_2/Cu(In, Ga)Se_2/Nb_{0.03}Ti_{0.97}O_{1.84}$ -PEC-Membran dieser Arbeit	39
2.6	Die $TiO_2/Cu(In, Ga)Se_2/Nb_{0.03}Ti_{0.97}O_{1.84}$ -Membran in Kombination mit einem	
	Winston-Kollektor	40
- ·	<u></u>	
3.1	Ubergang zwischen reduziertem Zonenschema und Bändermodell	43
3.2	Das Korngrenzenmodell von J.Y.W. Seto	51
3.3	Der Metall-Halbleiter-Kontakt	53
3.4	Beispiel eines Homo- und eines Hetero-pn-Ubergangs in einer Solarzelle	57
3.5	Typische Dunkel- und Hellkennlinien einer $Cu(In, Ga)Se_2$ -Solarzelle	59
3.6	Das Fermilevel-Pinning am Beispiel einer n-Halbleiterelektrode	61
3.7	Besonderheiten nanoskopischer Elektroden	62
3.8	Das Elektronentransfer-Modell nach H. Gerischer	63
3.9	Übersicht möglicher Reaktionspfade von photogenerierten Ladungsträgern	65
3.10	Anforderungen an Photokatalysatoren	67
3.11	Das erdnahe AM 1.5-Sonnenspektrum	68
3.12	Modellierung von Photostromkurven nach W.W. Gärtner und H. Tributsch	71
3.13	Darstellung des $Ti_n O_{2n-1}$ -Phasendiagramm und einer Rutil-Elementarzelle	72
3.14	Ballstick-Modell einer 110-Rutil-Oberfläche	74
3.15	Reaktionsmechanismus der Photooxidation von Wasser nach Y. Nakato	79
11	Pärtgenstrehl Deflerien en den Netzehenen eines Kristells	09
4.1	Rontgenstram-Renexion an den Netzebenen eines Kristans $\dots \dots \dots$	00 06
4.2	Raman-active Schwingungsmoden von T_iO_2 -Kristaniten	00
4.5	N_2 -Adsorptions- und Desorptionsisotherme einer $I NO_2$ -P20-Probe	00
4.4	Freikenninge mit den typischen Kenngroben einer Solarzeite	90
4.5	Ersatzschaltbild des Eindlodenmodells $\dots \dots \dots$	91
4.0	Spektrale Quantenemzienz einer $Cu(1n, Ga)Se_2$ -Solarzelle	93
4.1	Kontaktgeometrie der Widerstandsmessungen	95
4.8	Aufbau der SPV-Anlage	97
4.9	Funktionsprinzip der SPV-Messung	98
4.10	Cyclovoltamogramm einer reversiblen Redoxreaktion	101
4.11	Aufbau der EMS-Messzelle	105
4.12	MS-Kapillarsystem für Gasanalysen bei Normaldruck	106
4.13	Messprozedur der Gasanalysen bei Normaldruck	107
4.14	Massenspektrum einer Gasanalyse unter experimentellen Bedingungen	108
5.1	Transmissions- und Reflektionsspektrum einer TiO_2 -P25-Schicht	112
5.2	Dunkel- und Photostromkurven einer TiO_2 -P25-Elektrode	113
5.3	Der Photostrom in Abhängigkeit der Elektrodenschichtdicke und der Lichtleistung	115
5.4	Einfluss der Messgeometrie auf den Photostrom	117
	\sim	

5.5	Photostromdichten von Anatase:Rutil-Kompositelektroden	118
5.6	XRD- und Transmissions-Spektrum einer Spray- TiO_2 -Elektrode	121
5.7	Netzebenenabstände der untersuchten TiO_2 -Elektroden	121
5.8	Gas-Sorptionsmessungen der untersuchten TiO_2 -Elektroden	122
5.9	Dunkel- und Hellkennlinie einer Sprav- TiO_2 -Elektrode	123
5.10	Morphologie einer P25-, einer Sprav- TiO_2 - und einer m- TiO_2 -Elektrode	126
5.11	Transmissions- und Reflektionsspektren m- TiO_2 -Elektroden	127
5.12	Photostrom-Spannungscharakteristik der untersuchten m- TiO_2 -Elektroden	128
5.13	Schematische Darstellung des E/S/E-Modells	130
5.14	Vergleichende Kennlinienanalyse von m- TiO_{0-} P25- Sprav- TiO_{0-} Photoelektrode	131
5 15	Strukturelle und optische Charakterisierung von TiO_2 -B-Elektroden	134
5 16	Morphologie der Oberfläche einer TiO_{0} -B-Elektrode	134
5.17	Photostromkennlinien und SPV-Messungen von TiO_0 -B-Elektroden	135
5.18	Lage der Energiehänder und Zwischenbandzustände in $C_{-}TiO_{2}$ -Elektroden	130
5.10	Böntgendiffraktogramme verschiedener $C TiO_2$ Elektroden	140
5.20	Morphologia der Oberfläche von $C TiO_2$ -Elektroden	140
5.20	Morphologie der Obernache von $C-I iO_2$ -Elektroden	141
5.21	Detective Spannungslummen der untersuchten $C TiO$ Flahtreden	142
5.02	The following for the set of the set of the set of C^{-1} and C^{-1} and C^{-1}	140
5.20	Talei-Autragung der Flotostronndichte von 125- und $C-1iO_2$ -Elektroden	140
5.24	Lett- und spektralauigeloste SF V-Messungen an 1.00_2 -F 25- und $0.1.00_2$ -Elektrode Des SDV Speltrum in Cogenwert verschiedener Flektronendensteren	141
0.20 E 96	Das SPV-Spektrum in Gegenwart verschiedener Elektronendonatoren \dots	140
0.20 E 97	Modell zu möglichen Ladungstränsierreaktionen in $C-1 i O_2$ -Elektroden	150
0.27	Transmissionsspektren der Übergängsmetan-dotierten m- $I i O_2$ -Elektroden	154
5.28	Photostrom-Spannungskurven der I mol $\%$ dotierten m- IiO_2 -Elektroden	150
5.29	Photostrom-Spannungskurven der 10 mol $\%$ dotierten m- TiO_2 -Elektroden	162
5.30	Optische Charakterisierung einer m- WO_3 -Elektrode	169
5.31	Dunkel- und Photostrom-Spannungskurven von m- WO_3 -Elektroden	170
5.32	Rontgendiffraktogramm und DTA-Analyse des Halbleiters $BiVO_4$	175
5.33	Transmissions- und Reflektionsspektrum einer $BiVO_4:TiO_2$ -Kompositelektrode.	176
5.34	Dunkel- und Hellkennlinie einer $BiVO_4$ - und einer $BiVO_4$: IiO_2 -P25-Komposit-	4
r 0r	elektrode \dots D_{1}^{1} D_{2}^{1} $D_$	177
5.35	SPV-Messungen von $BiVO_4$: IiO_2 -Komposit und N3- IiO_2 -Elektroden	180
5.30	Kennlinien von MnTTP-Elektroden in N_2 - u. O_2 -haltigem Elektrolyt	187
5.37	Kennlinien von MnTTP-Elektroden unter positiver Polarisierung	189
5.38	EMS-Messung an MnTTP-Elektroden	190
6.1	Aufbau einer Standard $Cu(In Ga)Se_2$ -Solarzelle	196
6.2	Strukturformel von n-Dodecylphosphat und $Na fion^{\mathbb{R}}$	199
6.3	Einfluss polarer Lösungsmittel auf die Kennlinien von $Cu(In, Ga)Se_2$ -Solarzellen	201
6.4	Hellkennlinien von Tensid modifizierten $Cu(In, Ga)Se_2$ -Solarzellen	202
6.5	Einfluss unpolarer Lösungsmittel auf d Kennlinien von $Cu(In, Ga)Se_2$ -Solarzelle	1203
6.6	Grundprinzip des Sputter-Prozess	205
6.7	Baman-Spektren von TiO_2 -P25- und $Nb_{\pi}Ti_{1-\pi}O_{\pi}$ -Filmen (x: 0.03: y: 1-1.91)	$200 \\ 210$
6.8	BAMAN-Spektren zweier Nh Ti_1 , O -Filme (x: 0.03; y: 1.84 µ, 1.91) vor und	210
0.0	nach einer zusätzlichen Temperung	210
69	Morphologie einer $Nb_{0,02}Ti_{0,07}O_{1,04}$ -Schicht auf Glas und auf $Cu(In Ga)Se_2$	211
6 10	Elektronische Eigenschaften der $Nh_{2,2}Ti_{2,2,2}O_{1,2,4}$ -Schichten	213
6 11	Ladungsträgerbeweglichkeiten in $Nb_{0.02}Ti_{0.07}O_{1.84}$ -Schichten	214
6 1 9	Optische Charakterisierung der Nh Ti_{i} , O -Filme (v. 0.03, v. 1-1.06)	216
6.12	Kennlinien von i $Zn\Omega/A$]· $Zn\Omega_{-}$ und $Nb_{2,2}Ti_{2,2}$ · $C_{2,2}$ · boschichtoton $Cu(In, Ca)Sc_{2,2}$	210
0.10	\mathbb{Z}_{ellen}	219

7.1	Ersatzschaltbild der photoelektrochemischen Membran
7.2	REM-Querschnitt der $TiO_2/Cu(In, Ga)Se_2/Nb_{0,03}Ti_{0,97}O_{1,84}$ -Membran 229
7.3	Arbeitspunkt der $TiO_2/Cu(In, Ga)Se_2/Nb_{0,03}Ti_{0,97}O_{1,84}$ -Membran
7.4	Massenspektren der Produktgase aus den Membranexperimenten
7.5	Photonenflächendichte der verwendeten Beleuchtungsquellen
7.6	Kennlinien von Ti/TiO_2 -Elektroden bei 110 mW/cm^2 UV-Vis-Licht
7.7	Analyse von verschiedenen Blindproben
7.8	Photoelektrochemische Korrosion der CdS-Pufferschichten
7.9	Dunkel- und Hellkennlinie einer $Ti/Cu(In, Ga)Se_2$ -Elektrode
7.10	Wasserstoffentwicklung der Tensid-geschützten $TiO_2/Cu(In, Ga)Se_2/ZnO/TiO_2/$
	$C_{12}H_{26}PO_4$ -Pt-Membran
B.1	Übersicht an entfalteten TiO_2 - und $Nb_xTi_{1-x}O_y$ -Raman-Spektren

Tabellenverzeichnis

2.1 2.2 2.3	Heizwerte derzeit gebräuchlicher, technischer Brennstoffe $\dots \dots \dots$
3.1	Freie Standardreaktionsenthalpie einer photosynthetischen- und einer photokatalytischen
	Reaktion
3.2	Ubersicht zu den verwendeten Photostrom-Modellierungsparametern \dots 1
3.3 3.4	Spezifische Daten zur $I i O_2$ -Kristalistruktur
0.1	
4.1	Raman-Moden von TiO_2 -; Ti_2O_3 -, NbO_2 - und Nb_2O_5 -Kristalliten
4.Z 4-3	Caszusammensetzung eines Experimentes mit leerer Messzelle
4.0	Gaszusammensetzung eines Experimentes mit leerer Messzene 109
5.1	Parameter der Spray-Pyrolyse von TiO_2
5.2	Elektrochemische Kenndaten der Spray- TiO_2 -Photoelektroden
5.3	Parameter der Templat-gestützten Synthese von m- TiO_2 -Photoelektroden 125
5.4 5.5	Ubersicht zu den untersuchten m- IiO_2 -lestreihen
0.0 5.6	Elektrochemische Kenndaten der $\text{II-}^{I} \mathcal{O}_2$ -Photoelektroden
5.0 5.7	Parameter zur Herstellung Kohlenstoff-dotierter TiO_0 -Photoelektroden $(C-TiO_0)$ 139
5.8	Optische Kenndaten der C- TiO_2 -Photoelektroden $\dots \dots \dots$
5.9	Elektrochemische Kenndaten der C- TiO_2 -Photoelektroden
5.10	Parameter der Herstellung Metall-dotierter m- TiO_2 -Photoelektroden
5.11	Elektrochemische Kenndaten der Fe- $mTiO_2$ -Photoelektroden
5.12	Elektrochemische Kenndaten der Sn- $mTiO_2$ -Photoelektroden
5.13	Elektrochemische Kenndaten der Ru- $mTiO_2$ - und RuO_2 : TiO_2 -Photoelektroden . 159
5.14	Elektrochemische Kenndaten der Ta- $mTiO_2$ -Photoelektroden
5.15	Elektrochemische Kenndaten der Eu- $mTiO_2$ -Photoelektroden
5.10	Elektrochemische Kenndaten der V- $mIiO_2$ -Photoelektroden
0.17 5.18	Elektrochemische Kenndaten der $m-wO_3$ -Fliotoelektroden
5.10	Parameter zur Herstellung von $BiVO_4$ -Photoelektroden 174
5.20	Abbauraten von 4-Chlorphenol an $BiVO_4$ - und TiO_2 -B-Pulvern
5.21	Elektrochemische Kenndaten der $BiVO_4$ -Photoelektroden
5.22	Synthese parameter und Eigenschaften von Mn-Porphyrin-Elektroden $\ . \ . \ . \ . \ 186$
6.1	Parameter zur Herstellung kompakter TiO_2 -Deckschichten
6.2	Parameter zur Hydrophobisierung von TiO_2 -P25-Filmen
6.3	Übersicht der verwendeten Sputter-Parameter
6.4	Quantitative Analyse der Schichtzusammensetzung mit ERDA 209
6.5	Elektronische Eigenschaften I - von $Nb_{0,03}Ti_{0,97}O_{1,84}$ -Schichten
6.6	Elektronische Eigenschaften II - von $Nb_{0.03}Ti_{0.97}O_{1.84}$ -Schichten

6.7	Übersicht der aus dem Eindioden-Modell ermittelten Kenndaten	220
6.8	Kennwerte von i-ZnO/Al:ZnO- u. $Nb_{0.03}Ti_{0.97}O_{1.84}$ -beschichteten $Cu(In, Ga)Se_2$ -	
	Solarzellen	222
6.9	Stabilitätsuntersuchungen an $Cu(In, Ga)Se_2$ -Solarzellen	223
7.1	Kennwerte des ersten Membran-Testsystems	228
7.2	Produktgas-Zusammensetzungen der Membran-Experimente Y0-Y30	233
7.3	Photostromdichte einer Ti/TiO_2 -Photoelektrode in Gegenwart unterschiedlicher	
	Elektronendonatoren	234
7.4	Externe Quantenausbeute der Wasserstoffentwicklung	240
7.5	Vergleich der theoretisch möglichen und der experimentell erhaltene Wasserstoff-	
	entwicklung	243
B.1	Hauptübersicht - Elektrochemische Kenndaten der untersuchten Photoelektroden	263
B.2	Hauptübersicht - Optische Kenndaten der untersuchten Photoelektroden	264
B.3	Ergebnisse der ERDA-Messung zur Bestimmung der Filmstöchiometrie	264
B.4	Übersicht der gesputterten Proben S1-S37	264
B.5	Übersicht der aus XRD- und BET-Daten abgeleiteten Kenngrößen	265

Zusammenfassung

Diese Arbeit stellt die Entwicklung einer neuartigen elektrochemischen $TiO_2/Cu(In, Ga)Se_2/Nb_{0,03}Ti_{0,97}O_{1,84}$ -Solarzelle für eine photogestützte Wasserstoffentwicklung aus wässrigen Elektrolyten vor. Im Gegensatz zu klassischen photoelektrochemischen Solarzell-Konzepten erfolgt in der hier vorgestellten Tandem-Membran die synergetische Kopplung zweier photoaktiver Zentren. Das Vorbild dafür findet sich im Z-Schema der pflanzlichen Photosynthese. Das erste Photon wird von einem Photokatalysator für die Photooxidation eines preiswert verfügbaren Elektronendonators, wie z.B. organische Rückstände in Abwässern oder Wasser selbst, verwendet, während das zweite Photon in der $Cu(In, Ga)Se_2$ -Solarzelle eine Photospannung generiert, die die Ladungstrennung im Photokatalysator unterstützt und bei der sich die potentiellen Energie des photoangeregten Elektrons soweit erhöht, dass Protonen zu Wasserstoff reduziert werden können. Erstmals wurden diesbezüglich $Cu(In, Ga)Se_2$ -Dünnschichtsolarzellen für die Herstellung einer photoelektrochemischen Zelle mit direktem Kontakt zum wässrigen Elektro-lyten angepasst und verwendet.

Die hergestellten $TiO_2/Cu(In, Ga)Se_2/Nb_{0,03}Ti_{0,97}O_{1,84}$ -Membranen produzierten nach einer Bestrahlung mit Licht sowohl in saurer, als auch in alkalischer wässriger Lösung sowie in einem protonenleitenden ionischen Lösungsmittel Wasserstoff. In Abhängigkeit des eingesetzten Elektronendonators und des pH-Wertes wurden Wasserstoffentwicklungsraten von 4,3 bis 11,2 $\frac{\mu mol}{h*cm^2}$ verzeichnet. Die Membranen sind damit in der Lage, Energie in Form von Licht für eine photoelektrochemische Redoxreaktion zu nutzen und dabei Protonen zum speicherbaren chemischen Energieträger Wasserstoff zu reduzieren. Die externe Quanteneffizienz der Energiekonversion erreichte einen Wert von 1,02%. Werden in den Effizienz-Berechnungen nur die Photonen berücksichtigt, die der verwendete Photokatalysator TiO_2 auch wirklich absorbieren kann, steigt die externe Quantenausbeute auf einen Wert von 4,4% an.

Verschiedene Photokatalysatoren, wie z.B. makro- und nanostrukturierte Titandioxide (TiO_2) , Wolframtrioxid (WO_3) und Bismuth-Vanadiumoxid $(BiVO_4)$ wurden hergestellt und für eine potentielle Anwendung in der photoelektrochemischen Membran in Form von Photoelektroden charakterisiert. Für die Strukturanalyse wurde auf Röntgendiffraktions- und Gasadsorptions-Messungen sowie auf die Rasterelektronenmikroskopie zurückgegriffen. Die Analyse der photoelektrochemischen Eigenschaften erfolgte mit Hilfe von massenspektrometer-gekoppelter Cyclovoltametrie sowie mit zeit- und spektral-aufgelösten Oberflächenphotospannungsmessungen (SPV). Im Potentialbereich 0-0,35 V/NHE zeigten TiO_2 -P25-Photoelektroden die größten Photostromdichten in der Photooxidation von Wasser und Methansäure. Für darüber hinausgehende Potentiale wurden mit mesoporösen TiO_2 - und mittels Spray-Pyrolyse hergestellten TiO_2 -Photoelektroden um den Faktor 1,2 bzw. 1,3 höhere Photostromdichten erreicht. Der Einfluss einer geordneten Mesoporenstruktur auf das Kennlinienverhalten von TiO_2 -Elektroden wurde im Detail untersucht. Durch eine Dotierung von m- TiO_2 -Elektroden mit Eisen-, Europium-, Tantal-, Zinn- und Kohlenstoff konnte die TiO_2 -Bandlückenenergie von 3,2 eV (Anatase) um 0,12-0,48 eV verringert werden. Eine signifikante Erhöhung des UV-Vis-Photostromes wurde jedoch nur für die Zinn- und Tantal-dotierten Proben gefunden. In der Photooxidation von Methansäure waren die Kohlenstoff- und die Vanadium-dotierten Elektroden auch unter reinem Vis-Licht (420< λ <800 nm) aktiv. Erstere zeigten jedoch nur sehr geringe Photostrom-dichten von 35 $\frac{\mu A}{cm^2}$ und letztere bedurften einer starken Polarisierung von 1,4 V/NHE. Anhand der experimentell zusammengetragenen Ergebnisse wurde für die Kohlenstoff-dotierten TiO₂-Photoelektroden ein Modell entwickelt, das deren verändertes photoelektrochemisches Verhalten qualitativ beschreiben kann.

Zum Schutz der verwendeten $Cu(In, Ga)Se_2$ -Solarzellen vor einer Korrosion im wässrigen Elektrolyten wurden mehrere Strategien verfolgt. Durch die Einführung hydrophobisierter TiO_2 -Deckschichten konnte eine Standard $Cu(In, Ga)Se_2$ -Solarzelle soweit geschützt werden, dass sie auch bei Benetzung mit 0,5M Schwefelsäure keine Veränderung in ihren solarzellspezifischen Kennwerten wie Kurzschlussstrom und Leerlaufspannung zeigte. Desweiteren wurde die in Standard $Cu(In, Ga)Se_2$ -Solarzellen vorhandene, besonders korrosionsempfindliche Zinkoxid (ZnO) Frontelektrode gegen eine, ebenfalls transparent und leitfähige, reaktiv gesputterte

 $Nb_{0,03}Ti_{0,97}O_{1,84}$ -Schicht ausgetauscht. Die Untersuchung der neuen $Nb_{0,03}Ti_{0,97}O_{1,84}$ -Frontelektrode mit Raman-Spektroskopie, Hall- und Leitfähigkeitsmessungen ergab, dass innerhalb der Schicht kleine Rutil-Kristallite in einer amorphen Matrix eingebettet vorliegen und dass vornehmlich Sauerstoff-Defektstellen die optischen und elektrischen Schichteigenschaften beeinflussen. Obwohl die Ladungsträgerkonzentration mit 5 * $10^{20} \ cm^{-3}$ ähnlich hoch war wie in Aluminium-dotierten ZnO-Schichten, war die Leitfähigkeit der $Nb_{0,03}Ti_{0,97}O_{1,84}$ -Schichten um 3 Größenordnungen kleiner. Als Ursache wird ein Korngrenzen-limitierter Ladungstransport angenommen. Solarzellen, die mit der neuen $Nb_{0,03}Ti_{0,97}O_{1,84}$ -Frontelektrode versehen wurden, zeigten keine Änderungen in ihren Leerlaufspannungen, was u.a. die Gegenwart starker Energiebarrieren an der neuen Grenzfläche ausschließt. Im Gesamt-Wirkungsgrad verschlechterten sich die Solarzellen jedoch aufgrund der im Vergleich zu Al:ZnO-Schichten um 15-20% verringerten Transparenz.

Die im Rahmen dieser Arbeit vorgestellte elektrochemische $TiO_2/Cu(In, Ga)Se_2/Nb_{0,03}Ti_{0,97}O_{1,84}$ -Membran bietet ein großes Potential für zukünftige Kostenreduktionen in der solaren Wasserstofferzeugung und sie besitzt darüber hinaus einen soliden Grundstock für eine stetige Weiterentwicklung. Das System kann z.B. leicht in solarthermische Anlagen integriert werden und es ergibt sich die Möglichkeit einer einfachen Kombination von verschiedenen Photokatalysatoren mit der $Cu(In, Ga)Se_2$ -Dünnschicht-Solarzelle.

Abstract

This work presents experimental results on a new photoelectrochemical $TiO_2/Cu(In, Ga)Se_2/$ $Nb_{0.03}Ti_{0.97}O_{1.84}$ -tandem-solarcell that can be used for light driven hydrogen formation from aqueous solutions, where the reduction process is accompanied by the oxidation of inexpensive electron donors like organic residues in waste water or water itself. In contrast to basic photoelectrochemical cell concepts, the new membrane like tandem cell is based on a two photon-absorption process, approaching the bio-analogue model of the Z-scheme in plant photosynthesis. Furthermore, it is designed to operate immersed in the electrolyte. Structurally, a $Cu(In, Ga)Se_2$ solar cell is fitted inbetween a titanium dioxide layer, that is used for the photooxidation reactions and a visible light transparent $Nb_{0.03}Ti_{0.97}O_{1.84}$ counter contact layer, where the reduction of protons takes place. The prepared $TiO_2/Cu(In, Ga)Se_2/Nb_{0.03}Ti_{0.97}O_{1.84}$ membranes were able to produce solar hydrogen in acidic and alkaline solutions with an external quantum efficiency (EQE) up to 1.02%, what is equivalent to a hydrogen evolution rate of 11.2 $\frac{\mu mol}{h*cm^2}$. Considering the UV-light-only activity of the so far used TiO_2 -photocatalyst in the EQE-calculations the overall efficiency increases to 4.4%. In comparison to simple colloidal photoelectrochemical systems a significant improvement in hydrogen formation was observed. Several photocatalysts, like titanium dioxide (TiO_2) , tungsten trioxide (WO_3) and bismuthvanadium oxide $(BiVO_4)$ were prepared and investigated according to their photoactivity and their current-voltage-characteristics (I-V) as thin film electrodes. Structure analysis were done with X-ray diffraction, gas adsorption measurements and secondary electron microscopy. The charge separation process in the photocatalysts was investigated with time- and spectralresolved surface photovoltage measurements. Electrochemical measurements revealed that at weak polarizations below +0.35 V/NHE TiO_2 -P25-photoelectrodes show the highest UV-Vislight photocurrents for the photooxidation of water and formic acid. For polarizations above 0.4 V/NHE, mesoporous TiO_2 - photoelectrodes and TiO_2 -photoelectrodes prepared by spraypyrolysis showed 1.2 times and 1.3 times higher photocurrent densities. The influence of a ordered three dimensional mesopore-structure on the I-V characteristic of TiO_2 -photoelectrodes was investigated in detail. Doping the TiO_2 -matrix with iron, vanadium, europium, tin, tantal and finally carbon extended the absorption region of the electrodes by 0.12 to 0.48 eV into the visible. But a real improvement of the full-arc photocurrent was observed for the tin- and tantal-doped electrodes only. The carbon- and the vanadium-doped TiO_2 -electrodes were in addition able to photooxidize formic acid with pure visible light. But the former shows low photocurrents of only 35 $\frac{\mu A}{cm^2}$ and the latter needs high external potentials above 1.4 V/NHE. In order to explain the observed changes in the I-V characteristics of carbon doped TiO_2 electrodes relative to undoped ones a model of internal redox-reactions is proposed.

Different efforts were undertaken to protect the $Cu(In, Ga)Se_2$ solar cell from corrosion in aqueous solution. A strategy, based on hydrophobizied TiO_2 -P25-toplayers, was able to protect a standard $Cu(In, Ga)Se_2$ solar cell with a ZnO-front contact successfully against corrosion in 0,5M sulfuric acid (pH 1) for several minutes. No loss in the solar cells corner point values was observed for a short term test period of about 10 minutes. In a second strategy, the most corrosive part of a standard $Cu(In, Ga)Se_2$ solar cell, the zinc oxide (ZnO) front contact, was replaced by a reactively sputtered $Nb_{0.03}Ti_{0.97}O_{1.84}$ -film, that was transparent and conductive, too. Its characterization with Raman-spectroscopy, Hall- and resistivity measurements showed, that inbetween the $Nb_{0.03}Ti_{0.97}O_{1.84}$ -film small rutile particles were embedded in an amorphous matrix and that mainly oxygen defect states control the optical and electronic film properties. While the charge carrier concentration in these films was high as in the aluminium-doped ZnO-films, the conductivity was 3 orders of magnitude lower. A strongly grain-boundary limited charge transport was assigned for this. $Cu(In, Ga)Se_2$ solar cells equipped with the new $Nb_{0.03}Ti_{0.97}O_{1.84}$ -front contact showed no differences in the open circuit voltage, wherefrom the presence of strong interfering energy barriers can be excluded. The within observed lower overall efficiency, is mostly caused by the 15-20% reduced light transparency relative to Al:ZnO-films. The new photoelectrochemical $TiO_2/Cu(In, Ga)Se_2/Nb_{0.03}Ti_{0.97}O_{1.84}$ -membrane presented here has a large potential for future cost reduction in solar hydrogen production. The membrane can easily be introduced in solar thermal applications and it allows an easy combination of several photocatalysts with the flexible $Cu(In, Ga)Se_2$ solar cell in a simple way.