
Chapter 4

Condition-specific combinatorial

regulation

4.1 Background

Transcriptional regulation takes place by many regulatory molecules which dynami-

cally bind DNA by interacting with each other, i.e., combinations of regulatory molecules.

Most of genes are hence regulated by multiple transcription factors (TFs) in a combi-

natorial way as discussed in Introduction. Although combinatorial regulation has been

implied in our module analysis in the two previous chapters, we did not properly deal

with the issue. For instance, two regulators in a coherent module do not necessarily act

together to regulate target genes. The regulatory links between regulators and target

genes in a module were derived from protein-DNA interaction data (ChIP-chip) which

reflect mere physical binding events. Expression or functional coherence of module

genes may result from regulation by only one of the two regulators, the other being

merely bound with no regulatory effect at all. For example, Swi6 has been argued to

have a regulatory function in the two heterodimers, SBF and MBF (Iyer et al., 2001).

In this chapter we present novel approaches to investigate combinatorial regulation by
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4.2 Identification of condition-altered TFs by a hypergeometric test

pairs of regulators, in a condition-specific way, using protein-DNA interaction data.

The protein-DNA interaction data by Harbison et al. (2004) showed dynamic binding

patterns of individual TFs in different experimental conditions. One class of such TFs

is those which bind different sets of genes in different conditions, so-called “condition-

altered” TFs such as Ste12 (Harbison et al., 2004). To explain these changes, they

proposed that “the binding specificity of many of the transcriptional regulators might

be altered through interactions with other regulators or through modifications (such

as chemical) that are dependent on environment” (Harbison et al., 2004). For in-

stance, Ste12 interacts with Mcm1 in response to pheromone to induce the expression

of mating genes, whereas during filamentous growth it interacts with Tec1 to express

filamentation-specific genes (Zeitlinger et al., 2003). Here we aim to formally inves-

tigate this type of scenario of selective partnership in a genome-wide way with the

hypothesis that such changes of target genes in different conditions are due to changes

of co-factors which interact with those condition-altered TFs.

ChIP-chip data assayed in different conditions are the main source of information for

our approaches in order to identify condition-specific combinatorial TF pairs and gene

expression data will be used to give support for our predictions by examining syner-

gistic effect of combinatorial TF pairs on coherent expression of their target genes.

Our two main goals of this chapter are (1) to predict condition-specific co-factors

of condition-altered TFs and (2) to investigate whether the occurrence of condition-

specific combinatorial regulation is statistically significant.
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Condition YPD ACID ALPHA BUT14 BUT90 GAL H2O2HI H2O2LO HEAT PI RAPA SM
# TFs 203 2 5 8 4 5 38 28 6 2 14 34

Table 4.1: ChIP-chip conditions and the numbers of TFs assayed. The abbrevia-
tions of conditions come from the supplementary material of the paper by Harbison
et al. (2004). For example, those conditions contain rich medium (YPD), mating in-
ducing (ALPHA), moderately hyperoxic (H2O2LO), elevated temperature (HEAT),
nutrient deprived (RAPA), and amino acid starvation (SM). These selected conditions
are also used in Subsection 4.5.1.

4.2 Identification of condition-altered TFs by a hyper-

geometric test

As the first step of our approach, we aim to identify transcription factors (TFs) which

have different sets of target genes in different conditions, i.e., condition-altered TFs.

We use ChIP-chip data by Harbison et al. (2004) which were produced in 14 different

conditions. As combinatorial regulation is our focus of study, we work with conditions

where at least two TFs were assayed. This leaves us with 12 datasets in 12 conditions

with 2 to 203 TFs and 6229 genes (Table 4.1). In addition, to reduce noise and errors in

gene assignments, we use a refined list of 5714 genes obtained by Kellis et al. (2003)

whose computational analyses discarded a number of genes based on whole-genome

comparisons with three other yeast species. We analyze the intersection of the two

gene sets by Harbison et al. and Kellis et al., which results in 5629 genes. To define

target genes by each TF, we set a ChIP-chip binding p-value threshold to be 0.001.

This defines a background set of 3465 genes bound by at least one TF in any condition

examined.

As shown in Figure 4.1, identification of condition-altered TFs is achieved by calcu-

lating a hypergeometric p-value for the number of common genes bound in a pair of

conditions by a single TF. Since we are interested in significant changes of target genes
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for a TF in a pair of conditions, we expect to have a little overlap between two gene

sets in the condition pair in question. Hence, by taking those TFs with hypergeomet-

ric p-values > 0.1 (i.e., non-significant overlaps), we obtain a list of condition-altered

TFs in all pairs of conditions. The choice of the p-value threshold of 0.1 is arbitrary.

We exclude those TFs which bind no target genes in one of a pair of conditions be-

cause it may indicate the absence of the factors in the nucleus under that particular

condition, which is not of our interest. Note that this hypergeometric test of the gene

intersection being a small overlap is a practical way to identify condition-altered TFs.

In principle we do not want significance of the small overlap to depend on the size

of a background gene set which is one parameter in the hypergeometric probability.

However, our background set of 3465 genes is fixed throughout the hypergeometric

test for all TFs without greatly distorting our interpretation of significant changes of

target genes. In this way, we identified 32 condition-altered TFs for 86 condition pairs

from the ChIP-chip data (Table 4.2).

4.3 Systematic study of condition-specific co-factors

Given an identified condition-altered TF, TFX , and a corresponding pair of condi-

tions, we identify condition-specific co-factors of TFX in each of the condition pair

by a second hypergeometric test (Figure 4.1). Our focus here is the intersection of

the following two gene sets : one is the set of genes bound by TFX in one of the

two conditions but not in the other (i.e., condition-specific targets) and the other the

set of genes bound by another TF in that condition. We calculate a hypergeometric

p-value for the number of common genes between the two gene sets. Note that we

will have two such p-values given a condition pair and a TF (potential co-factor). By

taking those TFs which give rise to hypergeometric p-values < 10−4 (significant over-

lap) in one condition and > 0.1 (non-significant overlap) in the other, we obtain a
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4.3 Systematic study of condition-specific co-factors

Figure 4.1: Condition-altered TFs and condition-specific co-factors. The upper
panel shows how to identify condition-altered TFs from ChIP-chip data by a hyperge-
ometric test. An example TF, TF x, is a condition-altered TF which binds different sets
of target genes in two different conditions (colored circles) according to the small over-
lap, i.e., the hypergeometric (HG) p-value cutoff of 0.1. The lower panel shows how to
identify condition-specific co-factors for a given condition-altered TF by a second hy-
pergeometric test. In Condition 1, another TF, Z, has the large overlap (HG p-value <

0.0001) with TF x, whereas the two TFs have the small overlap (HG p-value > 0.1) in
Condition 2. Hence, TF Z is a condition-specific co-factor of TF x through a physical
or functional interaction (dotted line).
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4.3 Systematic study of condition-specific co-factors

list of condition-specific co-factors for TFX in each of the condition pair in question.

That is, those co-factors bind a significant number of common genes with TFX in a

condition-specific manner. Here the p-value thresholds are arbitrary. We note also that

we imposed a constraint of at least 3 genes on the size of both condition-specific sets

of target genes, given a condition pair and a condition-altered TF. This is an attempt

to reduce sensitive changes of hypergeometric p-values depending on the gene set size.

As an alternative and threshold-independent way of identifying condition-specific co-

factors for a condition-altered TF in a pair of conditions, we examine a difference be-

tween two distributions of ChIP-chip binding p-values given a candidate co-factor and

two condition-specific gene sets of the condition-altered TF corresponding to the con-

dition pair in question (Figure 4.2). If a particular co-factor shows a significant shift

of a binding p-value distribution in one condition against the other by the Wilcoxon

rank sum test with a p-value threshold of 0.001 (arbitrary choice), that co-factor is

deemed a condition-specific co-factor of the condition-altered TF under consideration

(Figure 4.2). As before we impose a constraint of at least 3 genes on each of the two

condition-specific gene sets. We will mainly focus on the first approach above because

the second alternative approach does not identify common target genes of two combi-

natorial TFs while our expression analysis below is applied to common target genes.

In the previous section, we identified 32 condition-altered TFs. 2 of them were not

tested here because of our constraint of at least 3 genes in condition-specific gene sets.

The second hypergeometric test found that 25 out of the rest of 30 condition-altered

TFs have a total of 114 condition-specific co-factors in some of 5 specific conditions.

The number of unique co-factors over all the 5 conditions is 51 and some of them are

condition-altered TFs themselves. There are 18 such condition-altered TFs that act

as condition-specific co-factors as well. This implies that 72% of those 25 condition-
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4.3 Systematic study of condition-specific co-factors

Figure 4.2: An alternative way of identifying condition-specific co-factors. The
TF, GAT1, in the figure is meant to be a condition-altered TF in rich media (YPD)
and amino acid starvation (AAST) conditions. The red and grey circles represent the
target gene sets of GAT1 in the two conditions, 11 and 44 genes in the respective
conditions. Then, another TF, RCS1, is introduced to compare two distributions of
binding p-values for the two sets of GAT1 targets. The two distributions in the figure
are significantly different in the two conditions according to the Wilcoxon test. As
RCS1 favorably binds GAT1 targets in the AAST condition, RCS1 is a condition-
specific co-factor of GAT1.
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altered TFs (= 18/25) are involved with condition-specific combinatorial regulation.

Hence, if a TF shows different binding patterns in different conditions, the regulator is

likely to be subjected to combinatorial regulation rather than individual binding activ-

ity. Considering the dual role of those 18 TFs in our framework, we predict unique 104

combinatorial TF pairs under a certain condition (Table 4.2). Our predictions include

novel pairs such as GAT1 and RCS1 as well as known pairs such as MSN2 and MSN4.

Table 4.2: Predicted combinatorial TF pairs and supports. We predicted a total of
unique 104 combinatorial transcription factor pairs under a certain condition using two
consecutive hypergeometric tests. Here we show 44 of those pairs which are supported
by any of synergistic expression analysis, conserved motif data, and protein-protein
interaction data (Section 4.5). The columns are as follows: ‘TF1’, condition-altered
TF; ‘TF2’, condition-specific co-factor of TF1; ‘Condition’, ChIP-chip condition as-
sayed for TF1 and TF2; ‘N genes1’ and ‘N genes2’, numbers of target genes of TF1
and TF2 respectively; ‘N genes12’, number of common target genes of TF1 and TF2;
‘HG p-value’, hypergeometric p-value for N genes12; ‘SEC’, truth value for detection
of synergistic expression coherence of the common target genes; ‘Motif’, fraction of
those common target genes with conserved motifs for both TF1 and TF2; ‘PPI’, truth
value for protein-protein interaction between TF1 and TF2. ‘NA’ values appear if there
is no expression data or no conserved motif data.

TF1 TF2 Condition N genes1 N genes2 N genes12 HG p-value SEC Motif PPI
GAT1 RCS1 SM 44 21 9 9.51E-13 1 0 0
MSN4 PDR1 YPD 49 72 13 6.41E-12 1 0 0
YAP5 MSN4 YPD 73 49 16 5.27E-16 1 0.06 0
YAP1 CIN5 H2O2LO 36 117 13 4.57E-11 0 0.23 0
YAP1 YAP7 H2O2LO 36 144 28 3.28E-33 0 0.32 0
GAT1 GZF3 RAPA 26 32 8 2.88E-11 0 0.12 0
YAP1 SKN7 H2O2LO 36 169 11 5.58E-07 0 0.36 1
YAP1 YAP6 H2O2LO 36 55 11 2.51E-12 0 0.09 0

DAL80 GZF3 RAPA 33 32 14 8.75E-22 0 0.14 1
GAT1 GLN3 RAPA 26 62 19 1.84E-29 0 0.21 1
MSN2 MSN4 H2O2HI 73 64 43 4.66E-63 NA NA 1
MSN2 MSN4 H2O2LO 42 18 13 1.29E-22 0 0.23 1
MSN2 MSN4 RAPA 44 50 38 1.67E-72 0 0.24 1
MSN2 MSN4 ACID 30 6 3 1.15E-05 NA NA 1

Continued on the next page. . .
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4.3 Systematic study of condition-specific co-factors

RCS1 AFT2 H2O2HI 45 53 13 2.66E-14 NA NA 1
RIM101 NRG1 H2O2LO 48 43 25 9.12E-39 0 0 1

YAP1 CAD1 YPD 65 32 13 2.68E-15 0 0.85 1
DAL80 MSN4 RAPA 33 50 8 1.11E-08 0 0.25 0
RTG3 GLN3 RAPA 48 62 10 6.13E-09 0 0.3 0
GAT1 ARG81 YPD 11 17 5 6.77E-10 0 0.4 0
HSF1 MSN2 H2O2LO 93 42 13 2.16E-11 0 0.46 0
MSN2 YAP7 H2O2LO 42 144 9 3.97E-05 0 0.56 0
MSN4 YAP7 H2O2LO 18 144 7 4.01E-06 0 0.29 0
SFP1 FHL1 SM 44 193 41 5.72E-50 0 0.68 0
YAP5 FHL1 YPD 73 180 19 2.10E-09 0 0.58 0
GAT1 GCN4 RAPA 26 150 7 8.14E-05 0 0.71 0
RTG3 GCN4 RAPA 48 150 16 4.69E-11 0 0.69 0
PHO2 DAL82 SM 21 55 5 1.41E-05 0 0.6 0
PHO2 HAP5 SM 21 36 4 5.18E-05 0 0.5 0
MSN2 CIN5 H2O2LO 42 117 9 7.32E-06 0 0.44 0
ROX1 SKN7 YPD 63 60 7 8.48E-05 0 0.43 0
MSN2 SKN7 H2O2LO 42 169 20 3.87E-16 0 0.4 0
YAP1 CIN5 YPD 65 141 11 4.64E-05 0 0.36 0
RTG3 DAL82 RAPA 48 52 6 6.45E-05 0 0.33 0
MSN2 YAP1 H2O2LO 42 36 7 1.47E-07 0 0.29 0
ROX1 YAP6 YPD 63 87 27 1.99E-28 0 0.19 0
DAL80 DAL82 RAPA 33 52 11 4.31E-13 0 0.18 0
YAP1 YAP6 YPD 65 87 12 3.97E-08 0 0.17 0
GAT1 HAP2 RAPA 26 40 7 8.84E-09 0 0.14 0
MSN4 SKN7 H2O2LO 18 169 7 1.17E-05 0 0.14 0
ROX1 CIN5 YPD 63 141 14 1.21E-07 0 0.14 0
GZF3 GLN3 RAPA 32 62 8 4.97E-08 0 0.12 0
ROX1 NRG1 YPD 63 66 21 3.65E-22 0 0.1 0
GAT1 STP1 SM 44 63 25 1.53E-34 0 0.04 0

We note that there exists the issue of selecting thresholds at various stages of our ap-

proaches such as a ChIP-chip binding threshold or hypergeometric thresholds, which

can result in different sets of individual predictions. Our arbitrary choice of thresholds

should be reconsidered in future investigation, which might be a challenge in terms

of comparisons of results. In addition, detailed mechanisms of each combinatorial TF

pair are still unknown. For instance, we need to know whether a combinatorial pair

binds the same promoter region by physically interacting with each other or binds two
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separate binding sites and then regulates target genes via yet another factor.

4.4 Condition-specific combinatorial regulation is sta-

tistically significant

Having identified condition-specific co-factors for condition-altered TFs, we ask to

what extent condition-specific combinatorial regulation takes place in the cell and how

significant it is. To this end, we test statistical significance of the condition-specific

combinatorial regulation by calculating two statistics and randomizing condition-specific

target gene sets of condition-altered TFs in pairs of conditions.

The two statistics are (1) DCR1, the fraction of those condition-altered TFs for which

any condition-specific co-factor is identified in any condition tested and (2) DCR2,

the average number of condition-specific co-factors for each condition-altered TF in

all conditions tested. From the previous section, we obtain that 25 out of 30 condition-

altered TFs have any condition-specific co-factor, or DCR1 = 83%, for both the hyper-

geometric and Wilcoxon tests. And on average there are 3.8 and 6.3 condition-specific

co-factors for each of those 25 condition-altered TFs, or DCR2 = 3.8 and 6.3, from

the hypergeometric and Wilcoxon tests respectively.

For randomization of target genes by a condition-altered TF in a pair of conditions,

we partition the union of the two condition-specific gene sets (i.e., excluding the com-

mon genes in both conditions) into two random sets of genes corresponding to the two

condition-specific gene sets. We then perform the second hypergeometric or Wilcoxon

test for a population of those random condition-specific gene sets to identify condition-

specific co-factors. Consequently, p-values of the two statistics being less than or equal

66



4.4 Condition-specific combinatorial regulation is statistically significant

Figure 4.3: Significance test. The figures show results of significance tests for
condition-specific combinatorial regulation. We considered two statistics, DCR1 and
DCR2, to characterize condition-specific combinatorial regulation as described in the
text. (A) and (B) are distributions of random DCR1’s by the hypergeometric and
Wilcoxon tests respectively. (C) and (D) are distributions of random DCR2’s by the
same two tests respectively. The red vertical lines and values are estimations from the
real data we analyzed. Note that there are values which cannot be obtained in (A) and
(B) because of discrete integer values in the numerators in calculating the fractions.
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to random ones are obtained from corresponding empirical distributions.

As shown in Figure 4.3, all p-values are less than 10−3 for DCR1 = 83% and DCR2

= 3.8 and 6.3 from the hypergeometric and Wilcoxon tests respectively. Note that

DCR1 is not sensitive to the two methods (the hypergeometric and Wilcoxon tests),

but DCR2 is. Although we do not aim to investigate which test is superior in detecting

condition-specific co-factors, the reader is reminded that the Wilcoxon test is applied

to condition-specific gene sets of a condition-altered TF without a ChIP-chip binding

threshold for a candidate co-factor. Another point to make is that all TFs assayed in

the ChIP-chip experiments by Harbison et al. (2004) were selected on the basis of their

known functions in the respective conditions except rich media. With this caveat in

mind, the condition-specific combinatorial regulation we observed from the ChIP-chip

data is statistically significant.

4.5 Support for condition-specific combinatorial regu-

lation

Having established that condition-specific combinatorial regulation takes place in abun-

dance, we now turn to inspection of individual predictions for supports from other di-

verse sources. Here we use expression data, conserved motifs data, and protein-protein

interactions data, which provide complementary supports for our predictions based on

ChIP-chip data.

4.5.1 Expression analysis

To give support for our predicted combinatorial TF pairs in Table 4.2, we first perform

expression analysis of their target genes. We collected diverse expression datasets
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ChIP-chip condition Expression data sources
numbers of genes;
samples compiled

Rich media elutriation assay
5397; 14

(YPD) (Spellman et al., 1998)
1. H2O2 0.3mM upto 120 min

5194; 12
Moderately hyperoxic (Gasch et al., 2000)

(H2O2LO) 2. H2O2 0.3mM, 10 and 30 min
(Carmel-Harel et al., 2001)

Amino acid starvation amino acid plus adenine starvation upto 6h
3587; 5

(SM) (Gasch et al., 2000)
Elevated temperature heat shock data

4612; 19
(HEAT) (Gasch et al., 2000)

Nutrient deprived rapamycin treatment
4364; 5

(RAPA) (Hardwick et al., 1999)
Mating inducing alpha-pheromone treatment

6181; 15
(ALPHA) (Roberts et al., 2000)

Table 4.3: Expression data sources corresponding to ChIP-chip conditions. The
abbreviations of ChIP-chip conditions in the parentheses are consistent with Table 4.1.

from the Stanford Microarray Database (SMD, http://genome-www5.stanford.edu).

We used R/G normalized mean values of mRNA expression and took the ratio of the

respective mean values of R and G intensities if duplicate entries were observed. For

consistency of experimental conditions between ChIP-chip and gene expression assays

as discussed in the previous chapter, we attempted to retrieve expression data in similar

conditions to ChIP-chip conditions. We were able to compile 6 expression datasets for

6 ChIP-chip conditions. For each dataset, we retain only those genes with upto 40%

missing values and normalize expression ratios across all samples because it contains

data from different sources or a subset of the whole data. The six datasets and the

data sources are summarized in Table 4.3 together with corresponding ChIP-chip con-

ditions.

One way to support combinatorial regulation by multiple TFs is to examine synergis-

tic expression of their target genes. The algorithm by Pilpel et al. (2001) is one such
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4.5 Support for condition-specific combinatorial regulation

method to address a combinatorial effect of two DNA motifs on expression coherence

of genes with both motifs. Given two motifs, m1 and m2, they partitioned all genes

with any of the motifs into three sets, Gm1, Gm2, and Gm12, which consist of genes with

motif m1 alone, motif m2 alone, and both motifs m1 and m2, respectively. The two

motifs are considered synergistic if Gm12 with both motifs shows a better expression

coherence score than the other two gene sets which have either motif alone. This al-

gorithm can be equally applied to TF pairs using genome-wide ChIP-chip data, which

were not yet available at the time of their work.

However, the partitioning strategy by Pilpel et al. does not necessarily address such

synergistic or combinatorial effect by multiple motifs. First of all, Gm1, Gm2, and

Gm12 are disjoint, i.e., each partition has a distinct gene set. It is not clear that the

two distinct gene sets with either motif have no functional role at all. If they do, they

are likely to have a certain degree of expression coherence as well. In addition, their

functions may be different from the function which is associated with the gene set

with both motifs. Therefore, if those functions are different for those disjoint gene

sets, comparisons of expression coherence among them are biologically implausible in

principle. In the line of our arguments, the classification of promoter architecture by

Harbison et al. (2004) provided a similar distinction. They identified a class of genes

with a DNA binding site for a single regulator, termed ‘single regulator architecture’.

Those genes were found to be involved in functions like carbon metabolism regulated

by Gal4, amino acid metabolism by Gcn4, and glyoxylate cycle by Sut1. This indicates

that those genes may have expression coherence too. In addition, they also identified

another class of genes with multiple binding sites for multiple regulators subject to

combinatorial regulation, termed ‘multiple regulator architecture’. Those genes were

found to be involved in multiple metabolic pathways. Note that those two classes with

a single TF and multiple TFs respectively are independent with different functions,
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4.5 Support for condition-specific combinatorial regulation

hence cannot be compared for better expression coherence for instance. More TFs do

not necessarily regulate target genes with better synergistic expression.

Hence, we suggest here an alternative approach to detect synergistic effects by multi-

ple TFs on expression coherence of module genes based on our method of expression

coherence assessment presented in Chapter 2. Given two TFs and two respective sets

of target genes, we assess expression coherence of the common genes with respect to

random sets of common genes sampled from each gene set for each TF. As in Chap-

ter 2 we calculate the average of absolute Pearson correlation coefficients (ζ’s) for all

gene pairs in each set as our expression coherence score. Each TF gives a background

distribution of expression coherence scores for those random sets of common genes.

We then estimate two p-values of the expression coherence score of the real common

gene set for two background distributions from the two TFs in question. Two TFs are

deemed synergistic for the expression coherence of common target genes if those two

p-values are significant (less than 0.05). This synergistic effect on gene expression is

taken to be a support for combinatorial TF pairs.

Among our 104 predicted TF pairs in Table 4.2, three pairs are supported by our syn-

ergistic expression analysis (the column ‘SEC’ in the table). As an illustration, we

predicted that Gat1 and Rcs1 are combinatorial regulators for 9 target genes in amino

acid starvation condition from the ChIP-chip data. This prediction is supported by the

synergistic expression analysis as shown in Figure 4.4. No reports have been made in

literature about this TF pair. On the other hand, the other two pairs have been previ-

ously predicted computationally (Tsai et al., 2005). Using appropriate expression data

in accordance with ChIP-chip experimental conditions as well as improved expression

data with more samples or time points might further detect synergistic expression from

our predicted TF pairs.

71



4.5 Support for condition-specific combinatorial regulation

Figure 4.4: Synergistic expression analysis. The figure shows two distributions of
expression coherence (EC) scores for random sets of 4 common genes of Gat1 and
Rcs1, respectively. The red line and EC value are from real data. The two significant
p-values for the two regulators (see the inset legend) suggest that their common genes
are synergistically expressed by the two factors. Hence, this supports combinatorial
activity of the two factors we predicted from the ChIP-chip data. Note that there are
many genes missing in the expression dataset we used, so that the numbers of target
genes by the regulators are less than those found in the ChIP-chip data. This resulted
in 4 common genes with expression data instead of 9 from the ChIP-chip data, and in
the smaller number of samples for Rcs1 (

(
12
4

)
= 495) than 1,000 random samples for

Gat1.
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4.5.2 Conserved motif

To check if there is any indication of conserved binding sites upstream of common

target genes for both of each predicted TF pair, we used conserved motif data in S.

cerevisiae by MacIsaac et al. (2006). They produced a refined version of regulatory

interactions of Harbison et al. (2004) using two conservation-based motif discovery

algorithms. We used their published results of 5201 TF binding sites of 116 TFs for

2343 target genes which are conserved in at least one other yeast species. Using these

data, we calculated a fraction of common target genes of each combinatorial TF pair

which contain conserved binding sites for both regulators. There are a total of 38 pre-

dicted TF pairs for which at least one target gene contains both conserved binding sites

in their upstream regions (the column ‘Motif’ in Table 4.2). The number of predicted

TF pairs for which more than 50% target genes contain both conserved binding sites

is 7. We note that all target genes of the three TF pairs with synergistic expression in

the previous subsection are not found to possess both conserved motifs except for one

gene for the YAP5-MSN4 pair (1 / 16 ∼ 0.06 in Table 4.2). One may also perform

independent motif analysis such as MacIsaac et al. (2006) for those predicted TF pairs

and target genes, but it is beyond the scope of our work.

4.5.3 Protein-protein interaction

We also checked protein-protein interaction (PPI) data for predicted TF pairs from 5

published data sources (Gavin et al., 2006; Han et al., 2004; Krogan et al., 2006; Patil

and Nakamura, 2005; Reguly et al., 2006), which resulted in 97821 unique PPI pairs

in total. Those 5 studies include data from yeast two-hybrid experiments, tandem-

affinity-purification coupled to mass spectrometry (TAP-MS), and literature curation.

13 predicted TF pairs are supported by those interaction data (the column ‘PPI’ in Table

4.2), but it should be noted that those pairs are not necessarily physically interacting
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partners because experimental conditions are not the same. We simply note that one

can utilize protein-protein interaction data to give further support for combinatorial

regulation of multiple TFs.

4.6 Summary

Transcription is often regulated by multiple transcription factors (TFs) concurrently.

Such combinatorial regulation is a key mechanism in transcription. Genome-wide

ChIP-chip data have shown that each transcription factor has distinct DNA-binding

patterns in different environments. Combinatorial regulation by multiple regulators

has been suggested as one possible mechanism for such changes of DNA-binding (and

hence target genes) through interactions with each other. We investigated this scenario

and focused on such condition-altered TFs and their interactions with co-factors in a

condition-specific way. The hypothesis tested was that changes of target genes of each

condition-altered TF are due to condition-specific co-factors with which it interacts in

the respective conditions.

We employed two successive hypergeometric tests to identify condition-altered TFs

and their condition-specific co-factors from ChIP-chip data. An alternative method

was also proposed to identify condition-specific co-factors without using thresholds.

We showed that such condition-specific combinatorial regulation is more predominant

than expected by chance given the data. Our predicted combinatorial TF pairs were fur-

ther inspected to obtain supports from gene expression, conserved motifs and protein-

protein interactions data. Although supports from those data sources were weak, our

approach was able to provide novel testable hypotheses about specific combinatorial

TF pairs under a certain condition.
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