Chapter 4

Case Studies

Before we will examine Pangaea’s behavior in several actual application programs, it is useful
to study some properties of the platforms that Pangaea uses individually. Omne such study
was performed by Miriam Busch (2001) to assess the performance of local invocations, remote
invocations, and object migration on the RMI-based JavaParty and Doorastha platforms, and
RMI itself. To this end, dummy objects were invoked in parameterless calls without return
values, both across the network and locally. In particular, the times were measured for:

a remote call on:

e a global (remotely invokable) object,
e a remote, migratable object that has not yet migrated,
e a migrated object, which started out locally and was then migrated away to another

machine, and

a local call on:

a local object (without any distribution technology intervening),

a global (remotely invokable) object on the same machine,

a migratable object that still resides on the local machine, and

e a returned object that was migrated back to the local machine.

For RMI itself, migration is not available and so some cases do not apply. The last case, a
returned object was “simulated” by looking a de-facto local object up in the name server, and
then invoking it.

Measurements were performed using Sun JDK 1.3 under Linux 2.4, JavaParty 1.04e and
Doorastha version 2.2.3 from the respective projects’ home pages. For JavaParty, both the
RMI-based “reference implementation” and the optimized version based on KaRMI (Philippsen
et al. 2000) was used. The hardware consisted of two equivalent Pentium III Coppermine 700
MHz PCs with 256 MByte RAM, connected via a closed loop, twisted pair Ethernet at 10 and
100 MBit/s. Each call was performed 10,000 times, and the execution time then divided by the
same number to obtain the results shown in table 4.1.

The execution times range from 700 us for the most expensive remote call to 50 ns for a
local call, which is a factor of 14,000. The table also shows that potential migratability has no
significant effect on the performance. What is noteworthy is however the relative performance
of remote and de-facto local calls, which is shown graphically in figure 4.1.

A remote call with RMI as the underlying mechanism takes about 700 us on 10 MBit/s on
all platforms, which is reduced to about 260 ps on 100 MBit/s. The optimized KaRMI layer

99

. Network JP JP
Call Type Receiver (MBit/s) RMI (RMT) | (KaRMI) Doorastha
lobal obiect 10 679.2 | 700.5 462.9 686.8
global objec 100 259.5 | 262.1 | 116.1 267.6
. . 10 — 676.9 465.7 681.6
remote call | migratable object 100 — 5651 116.0 5673
mierated obiect 10 — 675.6 461.4 685.8
& J 100 — 2640 | 1163 267.2
local object — 0.05 0.05 0.05 0.05
local call global object — 0.05 | 256.7 51.1 0.05
migratable object — — 257.6 51.0 0.07
returned object — 208.9 | 259.7 51.6 0.09
Table 4.1: Times in us for a single call
800 —
600 —

= Remote Call (10 MBit/s)
400 — = Remote Call (100 MBit/s)
@1 De-Facto Local Call

Time (Microseconds)

200 — Vg

O T ’ H /QOns

RMI JP(RMI) JP(KaRMI) Doorastha

N\
ANNNNN]

Figure 4.1: Platform Performance

achieves 460 us and 116 us, respectively, corresponding to 66% and 57% of RMI’s execution
time. However, a de-facto local call on a returned object takes essentially the same time as a
remote call on a fast network with RMI, and still 51us on KaRMI, which is about 20% of the
remote case on a fast network. This is still about 1,000 times slower than a local invocation.
With Doorastha, on the other hand, this call takes a mere 90 ns, which is less than twice the
time for an ordinary local call.

Despite its significant optimization, KaRMI obviously does not bypass the proxy completely
for a returned object, while Doorastha does. The difference amounts to three orders of mag-
nitude, which renders object migration essentially useless with KaRMI. To be fair, however, it
must be said that JavaParty/KaRMI maintains remote invocation semantics after migration,
which Doorastha cannot do in the general case. This points to a much more severe language
design issue which we will return to in chapter 5. In our case studies involving the migration
subsystem, we will however restrict ourselves to the Doorastha platform.

In the following, we will demonstrate the Pangaea system in three case studies. For each of the
example programs, we will use the following structure to describe them and their distribution:

100

Program Analysis The object graph created by Pangaea’s analyzer, and its properties. This
section makes it clear how the program actually works, and how well this is captured in
the object graph.

Distribution Analysis This section argues what would be good, i.e. efficient distributions for
the program, and how close Pangaea’s automatic distribution algorithms, and the back-end
systems used, come to finding and realizing these distributions.

Performance The performance of the distributions found in the previous section is shown and
analyzed.

4.1 RC5

The RC5 program is a classical manager/worker application that breaks RSA encryption keys
by a brute force search of the key space!. The program consists of three classes and an interface,
totalling about 350 lines of code.

Program Analysis

Pangaea computes the object graph of RC5 in 4.4 seconds (see page 72 for more details); the
result is shown in figure 4.2.

Manager

Thread

Manager

Worker

RC5 32 12 8

[] static object
(O concrete object RC5 32 12 8
© indefinite object

— usage edge

Figure 4.2: Object Graph of the RC5 Program

The program is started by the main method in the static part of the Manager class. This
method creates a dynamic Manager object, the Workers, and Threads to run them. The unit
of work is a byte array of length 8, which represents the first key that a Worker should try.
These byte arrays are created by the Manager, and retrieved by the Workers as the result of a

!The RSA implementation was written by Greg Hewgill; we added the manager/worker logic ourselves.

101

method call. Upon receiving the byte array, the Worker tries a fixed number of keys starting
with the one represented by the byte array, and reports any success back to the manager. The
actual RC5H algorithm is encapsulated in an instance of the class RC5_32_12_8, which in turn
relies on a number of constants defined in the static part of this class.

For clarity, we show the main loop of the Workers’ computation below. One potential
difficulty for the analysis is successfully handled here by Pangaea: The RC5 algorithm is not
called directly, but via the Algorithm interface. However, since only the RC5_32_12_8 object is
available to the Worker as an implementer of that interface, the Analyzer correctly infers the
usage relation shown in the object graph.

public void run() {
Algorithm algorithm = new RC5.32_12_8();
byte[] key;
while (true) {
key = manager.getWork();
if (key == null) {
// if there’s mo work for us, we’re done
break;
} else {
for (int i=0; i < iterations ; i++)
if (algorithm.isCorrectKey (key , ...)) {
manager.reportSuccess (key);
} else {
// increment key
for (int j=0; j < keySize; j++) {
key[j] = (byte)(key[j]+1);
if (key[j]!= 0) break;

Distribution Analysis

As for any master/worker application, it is best to distribute the workers evenly across the
processors, so that they handle the workload in parallel. Thus, each Thread and corresponding
Worker and Algorithm object should be placed onto a new processor. The constants in the static
part of RC5_82_12_8 can be copied (“replicated”) for each Worker since they are immutable.
It would in fact be a prohibitive bottleneck for the program if a single, remotely accessible
static object was used. However, this significant optimization could not have been found by any
automated system except by static analysis.

Another issue is how to handle the byte arrays that represent chunks of work. These arrays
are created and initialized by the Manager, and then used by one of the Workers. The code of
the method Manager.getWork(), which is responsible for this, looks as follows:

public synchronized byte[] getWork() {
byte[] work = new byte[8];
for (int i=0; i < 8; i++) workl[i] = keyl[i];
increment (key);
return work;

}

To a programmer, it is clear that the returned byte array is a local object in this method:
after getWork() returns, the array is no longer accessible to any object other than the Worker

102

that receives it. We may therefore use pass-by-value to return the array to the Worker, which
results in the most efficient implementation.

Pangaea’s static analyzer does however not use data flow analysis, so it is not able to detect
the above optimization. It would in fact be an excellent case for factory method detection as
in ¢cJVM (see page 47), which would be a worthwhile addition to our Analyzer. Pangaea in its
current form can only use a second-best guess, turning the array into a migratable object and
letting the run-time system move it to the Worker as soon as the Worker starts accessing it
frequently. One might also argue that pass-by-move is a good default passing mechanism for
arrays, since they tend to be accessed frequently after being received. In this case, the array
would be moved to the Worker immediately.

If object migration is not available, and neither a programmer nor a static analyzer detects
that pass-by-value can be used, the only solution is to allocate the arrays statically on the
Manager partition, and let the Workers access them remotely. This, of course, results in the
worst performance.

Pangaea’s automatic graph assignment scheme is sufficient to assign the Workers and their
corresponding Thread and Algorithm objects to an abstract partition, to keep the Manager on
the root partition, and to replicate the RC5_32_12_8 constants on each partition. By default,
the byte array object will be assigned to the Manager partition as well; this can be varied by
the programmer to achieve most of the program variants we have indicated above.

Performance

We executed the RC5 program on the Distributed ASCI Supercomputer DAS-2 in Amsterdam.
It consists of 72 Linux PCs equipped with two 1 GHz Pentium III CPUs and 512 MByte RAM
each. The nodes share a common file system and are connected by Fast Ethernet (100 MBit/s).
For our measurements, we used IBM JDK 1.3.0 and Doorastha version 2.0.

Since the DAS-2 nodes feature dual-processor boards, we had the opportunity to compare
the distributed programs to shared-memory parallel versions with two independent CPUs as
well. The measurements show that the IBM JDK we used does indeed schedule threads to both
processors. For the distributed programs, we always scheduled a single application thread to
each node, although the dual-processor boards are likely to have an impact on the performance
of the RMI communication layer.

For the measurements, the program’s workers operated on chunks of 65,536 keys, and we
adjusted the starting point of the search so that the correct result was found after 539 chunks.
As can be seen from the source code, the manager accesses each key array exactly eight times
to fill it with values. The worker extracts these values in eight individual accesses for each key
(the actual RC5 algorithm does not use the array), but it also increments the key array in situ,
resulting in about 65,536 - 9 array accesses for each chunk.

Altogether, we tested four different versions of the program:

e centralized (unmodified source code) with all worker threads being scheduled to the two
on-board processors of a node,

e distributed, passing the arrays to the workers by value,

e distributed, passing the arrays wrapped into an object by-copy (we would have liked to
test by-move but couldn’t due to a problem in Doorastha; we don’t expect any significant
performance difference though),

e distributed, letting the arrays be moved to the workers by the asynchronous migration
subsystem. For this version, we varied the number of calls after which a migration decision

103

was taken.

250 —
200 —
150 — _]
D 1 — 1 Worker
g - == 2 Workers
i | @ 8 Workers
100
50 —
] 7,
4 (@ ” /
| 12 . |- |z |0z | iZ
o 7. / /

shared memory arr bv-co migrate migrate migrate
(2 CPUS) &y y-copy (1 call) (50cals (500 cals)

Figure 4.3: Absolute Performance of RCH

We did also run a version where the arrays are allocated statically on the master machine
and accessed remotely by the workers. This version suffered prohibitive performance, though,
being several thousand times slower than all other versions. The first, second and fourth version
of the program above could be created simply by changing the configuration of the indefinite
byte array object in the object graph. The third version is not currently expressible by Pan-
gaea’s configuration mechanism, but setting an object to “pass-by-move” would be a simple and
worthwhile extension.

Some of the absolute execution times of the programs are shown graphically in figure 4.3.
The centralized, shared-memory version naturally shows the best performance for up to two
workers, but does of course not obtain any further speedup for more workers. The distributed
array version is however only marginally slower for a single worker (by 12.5%), and outperforms
the fastest centralized version for three workers and more. For eight workers (shown above), it
takes 33% of the shared-memory /two-worker version’s execution time, and for 32 workers, the
execution time was 4.8 seconds, or 20% of the best centralized version (see below for the actual
speedup graphs). This is of course due to the almost complete parallelism in this application.

It is interesting to note that the by-copy version, where the arrays are wrapped into objects
that are then passed by-copy, is also not much slower than the “real” array version (again by
only an additional 10%). This shows that Pangaea’s array transformation is indeed not very
expensive, which is of course due to the fact that array accesses are not very efficient in Java
to begin with, involving a null pointer check and a bounds check. The additional cost of a local
method invocation is therefore almost negligible.

If, due to the lack of static analysis such as factory method detection, the migration subsys-
tem is put in charge of the arrays, a significant slowdown of about a factor of three is incurred
however. In the migrate versions, the arrays are wrapped into objects, and calls to these objects
are tracked by corresponding Watcher objects. It is mostly the cost of this book-keeping that

104

30
20
] —=— aray
3] —e— by-copy
3 1 —a— mig. 1
& 1 —— mig. 50
1 —— mig. 500
10
0 10 20 30

Number of Workers

Figure 4.4: Relative Speedup of RC5

is responsible for the slowdown, as can be seen by varying the number of calls after which a
migration is triggered. If a migration decision is made after each call, an array object is moved
to its worker after the worker has made the ninth call to it. When the number of calls between
migration decisions is increased, performance slowly decreases further, as the array objects stay
on the manager’s node for a longer time before they are moved. This is hardly noticeable for 50
calls, and becomes only significant for several hundred calls between migration decisions.

Figure 4.4 shows the speedup curves for the different distributed program versions, each
of which is given relative to the execution of the corresponding program version with a single
worker. The speedup is close to ideal for up to eight workers in each program version (efficiency
better than 73%), and decreases as more workers are added. This is due to contention at the
manager node, of which it is noteworthy that the book-keeping overhead of the migrate versions
does not play a significant role except in the version with 500 calls between migration decisions.
Only then does the high amount of book-keeping work on the manager node lead to earlier
contention than with the other program versions.

The speedup for higher numbers of workers could of course be improved by making the work
chunks larger, so that less communication with the central manager node is necessary.

4.2 A Ray Tracer

Our second case study is a simple ray tracer that was written without any relation to the Pangaea
project? . We did not modify it in any significant way for the analysis, except in those places
that will subsequently be explained. The size of the ray tracer is about 1,000 lines of code in 17
classes.

2The author is Ronald Veldema, VU Amsterdam; I would like to thank him for his permission to use this very
instructive program.

105

Program Analysis

O static object
indefinite object

— ™ creation edge

reference edge

Surface

GfxWindow (@ Sphere3D

“GfxCoIor

©
N s Surfa(:e\@
BackingPixmap

- ’@‘/PlaneSD

GfxColor

Surface

~O

GfxColor

©

Rt Vector3D

@ @ "'*-.,(_;“fxCoIor

Gf)élor Ve%ED
ho

GfxColor Vector3D GfxColor

Light3D

©

Vector3D

Figure 4.5: Object Graph of the Ray Tracer

The object graph of the ray tracer is shown in fig. 4.5 (we have slightly simplified it for
presentation). Pangaea computes this graph in 13 seconds, of which 10 seconds are due to I/O
and parsing (Sun Ultra-10, JDK 1.2, with JIT). The root node of the graph is the static part
of the Main class, shown in the upper center. All objects created by Main are transitively
reachable via the creation edges shown in the graph, excepting the static parts of the GfxColor
and Vector3D classes shown lower left. The display engine, consisting of GfrWindow, Backing-
Pizmap, and GfrColor[] objects is visible on the left; the tracing is performed by the World
objects on the right hand side (each World is a thread), and their interior which represents the
scenery (Sphere3D, Plane3D, etc.). The GfrColor objects represent pixel values (RGB); these
are computed by the World objects and passed to the BackingPixmap in the form of individ-
ual rows, realized by the GfrColor[] array on the left. The BackingPizmap assembles these
rows into the complete image, stored in another, private GfrColor[] array. (This array is also
one-dimensional, with rows and columns being expressed by explicit index arithmetic.)

Apart from the three static objects, there are only indefinite objects in the graph. It is not
typical for an object graph of this size to contain no concrete objects (which would represent
exactly one instance). In this program, this is because internal objects are not created within
constructors, but rather by explicit calls to initialization methods, which the algorithm, due to
its flow-insensitiveness, cannot resolve. However, the fact that only indefinite objects appear in
the graph does not hamper subsequent distribution analysis in any way.

The reference and usage structure within the graph is quite complicated, and we have omitted

106

O static object |:L
© ~ <

indefinite object , ~<
Main ‘@
""" > reference edge _-

- - - uysage edge 7 Malh\\ - t@

\
\
/,—'@\ \

_--777 GfxColor[“~.

@; ********************************** %}‘2@
BackingPixmap LT WOrld s -7 //Rﬁy?,D

- - ~
| - N 1

I . - I S

@ @rii ,,,,,,, ,,,,,, ;@

Sphere3D .. " Light3aD
GfxColor[] } A . |

@ PIaqe3D @

Surface @ Surface

Surface

Figure 4.6: The Ray Tracer without Immutable Objects

most of the edges (there are actually about 250 reference edges and 150 usage edges in the graph).
We have found that in general, it is useful to layout the graphs according to the creation edges;
this gives a very good impression of the hierarchical structure of a program. Pangaea’s user
interface then allows to selectively display reference and usage edges connected to certain nodes
(e.g. the reference edges emanating from the GfxColor/] array on the left).

Distribution Analysis

It is natural that the individual World objects, which are in fact thread performing the ray-
tracing, should be placed onto distinct processors to achieve maximum parallelism. The display
engine, comprising the objects on the left hand side of the graph, will likely have to be placed
onto a distinct machine at which the display device is located. This distribution strategy is
established fully automatically by Pangaea’s graph assignment algorithm that we described
in section 3.3, except for the fact not only the World threads, but also the display engine is
placed onto a distinct abstract partition, since the GfxWindow object is itself a thread. This
would have resulted in placing the display engine onto an arbitrary node at run-time, whichever
the round-robin scheduler would have used. We corrected this by reassigning the GfxrWindow,
BackingPizmap, and the left GfzColor[] array to the root partition.

The excessive reference structure within the object graph does however not permit an efficient
distribution this way. The GfzColor objects in particular, which represent individual pixels,
would be allocated statically on the World nodes that created them, and thus would have had
to be accessed remotely by the display engine. Object immutability can be used to remedy this
situation, allowing the GfrColor objects to be passed to the display engine by value.

However, neither the GfrColor class, nor another obvious candidate, Vector3D, where im-
mutable in the program as it was originally written. Both of these classes define containers for
triples of integers with some additional arithmetic functions provided. They were not originally
immutable because (a) the member fields were public and being read directly by the rest of the

107

program, and (b) arithmetic was often carried out in situ, i.e. an operation vl.add(v2) would
add the values of v2 to those of v1 and return the modified object v1 to the caller. By tight-
ening the field protections, providing access methods, and performing arithmetic by creating
new result objects and returning these, the two classes were made immutable with very few
changes throughout the program. As the objects of these classes are now completely irrelevant
for distribution purposes (they can be handled like values), they have been purged from the
object graph in fig. 4.6. (In this graph, all creation edges are omitted, while usage and reference
edges are complete — each usage edge implies a reference edge.)

In the centralized case, making the objects immutable did cause a slight performance penalty
of about 5% execution time. In the distributed case, however, this change is what turns pro-
hibitive performance into a workable behaviour (we were not able to get the version with global
GfzColor objects to work due to RMI being overloaded and eventually terminating). The modi-
fication of the program to exploit immutability was of course done manually. This suggests that
programmers need to be aware of the benefits of immutable objects for distribution, so that they
write immutable classes whenever possible. It would also be helpful to have compiler or even
language support to help programmers in ensuring this important property.

The remaining objects in the graph in figure 4.6 indicate how the display pixels are passed
to the BackingPizmap row-wise, contained in GfrColor[] arrays. These arrays are created in
what an algorithm like ¢JVM’s would classify as a factory method (see the previous case study
and page 47). This means that it can be proved statically that the creating World object does
no longer maintain a reference to an array once it is passed to the display engine. Although
Pangaea cannot yet detect factory methods, we exploited this property manually by deassigning
the GfrColor[] array in the graph, causing it to be passed by value (along with the contained,
immutable pixel objects).

Performance

We executed the ray tracer using Doorastha on the DAS-2 supercomputer in Amsterdam, under
identical conditions as the RC5 program in the previous case study. The example scenery was
a 128 by 128 picture containing several reflective spheres over a partially reflective, checkered
floor. Each World object computed a different horizontal stretch of the image, the height of
which was obtained by dividing the height of the image by the number of nodes.

1000 —
z = 1 thread
bt == 2 threads
-E @ 16 threads

8
|

/

| /4
_ 7 7/
_ Z /
. H Z

shared memory . _ .
(2 CPUS) distributed

Figure 4.7: Absolute Performance of the Ray Tracer

Despite the many optimizations that we performed, the ray tracer showed only poor parallel
performance (absolute execution times are shown in figure 4.7, relative speedup in figure 4.8).

108

] 2
30 P
T /
T 7
4 7
4 /7
4 7/
i /
7/
7 7/
4 7/
4 /
20 d
1 7/
Qo 7 7/
% 1 L7 —&— shared memory
] ’ —e— distributed
&] ’
- //
1 7
4 7
10 H d
] /
T 7/
T 7/
4 /
4 /
1 /
1 7
7
1 A
17 — —— =
0 10 20 30

Number of Threads

Figure 4.8: Relative Speedup of the Ray Tracer

The distributed program is slower than the shared-memory version by a factor of 2.7 for a single
tracing thread, and only slowly improves as more nodes are added. Only with as many as 16
nodes does it begin to outperform the shared-memory version; the speedup however reaches its
limits quickly after that, as shown in figure 4.8. (For some reason that we did not investigate
further, the shared-memory version cannot capitalize on the dual-processor architecture either.)

The reason for the poor performance seems to be that — caused by the low execution time
of barely a second — contention at the display engine occurs. (If this weren’t the case, at least
the relative speedup would be higher.) There is little that can be done about this at the level
of distribution technology, without modifying the code of the program. One idea would be to
group the individual rows in batches as they are delivered to the display engine. This could
be done automatically by the distribution platform, or programmatically within the ray tracer
itself, which would be an example for a design that needs to be adapted because of distribution
considerations.

4.3 A Chess Opening Database

Figure 4.9 shows the user interface of a graphical database for chess openings. The program is
intended to help chess players familiarize themselves with various openings. On the graphical
chess board, the user can make arbitrary moves; the program looks these moves up in a database
and displays the name of the corresponding opening, and possibly a commentary on the move.
The database is implemented as a simple text file. Note that the program itself cannot play
chess, it can only distinguish legal from illegal moves, and is simply an elaborated graphical
interface to a database.

Pangaea allows us to convert this program into a distributed client/server application, where
the user interface is displayed on the client machine, and the database resides, possibly separated
by large physical distance, on a server. Unlike the concurrent programs that we studied in the

109

1.e4 85 2.Mf3 Mch
3.BhI af 4 Bad Nt

Spanish Opening
(Buy-Lopez)

(5.0-0j This is the
strongest answer.
Although the pawn on
24 iz not actually
guarded now, and Black
may indeed capture it
(5... M=ed), White can
be sure either to regain
the pawn shartly, or to
achieve tremendous
‘advantage. Black,
though, may also

Figure 4.9: A Graphical Database for Chess Openings

previous sections, the goal in distributing this program is to keep the penalty of distribution as
low as possible, in order to satisfy the external constraint.

Program Analysis

The program has about 2,500 LOC, its object graph is computed by Pangaea in 52 seconds
(see page 72 for more details). The object graph is shown in figure 4.10. Unlike the previous
graphs, we have greatly simplified this graph for presentation (omitting all immutable objects,
for example).

The graph shows the graphical user interface on the left; the objects that implement the
database are on the right. There are actually two separate Board objects: one is used as the
application model for the graphical chess board on the screen; the other is used internally by
the Parser to interpret algebraic chess move notation found in the text file. Some interesting
properties can be shown regarding these two objects:

e The Position and MoveList objects used internally by the two Board objects are indefinite,
because they are not created initially. However, despite the uncertainty about their actual
numbers at run-time, the graph makes it clear that each Board has its own private objects
of those types, and does not pass them to the outside.

e The left Board object communicates heavily with the user interface objects on the far
left side. These interactions are realized through the Subject-Observer pattern, i.e. the
Board object is a subclass of a Subject class that stores a list of Observer objects, which
are updated on request. Of course, the right Board object also has such a list. However,

110

Q X
\
NameView ‘ ‘
-‘ Parsy Scanner

Database
CommentView

‘ Cache Boary
MovesView
- @ © ©
‘ Boayd Position MovelList

1
; 1
BoardView : @

| MovelList
1
‘ | @ — use (method call)
TurnView \ Position — “frequent” use
V naive (call in a loop)
|} . . .
. distribution optimized
distribution

Figure 4.10: Object Graph for the Chess Opening Database

reference propagation shows that none of the Observer objects is ever registered with the
right Board object, and therefore it cannot invoke methods of them at run-time.

Distribution Analysis

A naive distribution where only the user interface objects are allocated on the client is obviously
suboptimal for this program, because these objects communicate heavily with the left Board
object that serves as the model for the GUI. For example, the entire chess board needs to be
redrawn after each move, which involves 64 separate calls to the model to retrieve the position.
An optimized distribution can be found by partitioning the graph so that the number of edges
crossing the distribution boundary is minimized. As shown in figure 4.10, this means that the

model objects are allocated on the client as well, and only the Database object needs to be
invoked remotely.

Performance

We created both the naive and the optimized distribution by manually assigning the objects
to partitions. The JavaParty platform was used as the backend.? No object migration had
to be used, since the program parts communicate via immutable objects. We executed the
centralized and both distributed versions using a low-end Pentium 90 laptop as the client, and
a Sun Sparc 10 as the server. Both a 10 MBit/s Ethernet network and a 28.8 kB/s modem were
used to connect the machines, the latter being typical for connection speeds for normal Internet

users. In the centralized version, both the user interface and the database were executed on the
Sparc 10.

3Due to a problem in the most recent JavaParty version, we could not use the program that was generated
by Pangaea to produce the numbers found in this section. Shown here are results for an equivalent program that
was manually distributed using an earlier version of JavaParty.

111

A number of chess moves were then made on the user interface, and we measured the time
until each move had been processed, involving the redrawing of the chess board and the display
of the information retrieved from the database. This indicates the interactive response time of
the application. The results are shown in figure 4.11 for the Ethernet connection, and in figure
4.12 for the modem. The light part of each bar indicates the time to the first visual response of
the program, while the dark part is the added time until the interaction had completely been
processed.

time (ms)
35004
3000+
2500 m first update
= last update
2000+
1500
thon naive distribution
500 oplimized distribution
o centralized

1.ed 1...e5 2.Qe2 illegal back

interaclion

Figure 4.11: Performance of the Chess Program via Ethernet (10 MBit/s)

time (ms)
180007

16000

14000+

m first update
m lasl updale

12000

10000

8000+

6000

4000+

naive distribution
2000 oplimized distribution

centralized

o
1l.ed 1...eb 2.0e2 illegal back

interaction

Figure 4.12: Performance of the Chess Program via the Modem (28.8 kB/s)

The graphs show that the response time of the naive distribution is noticeably higher than
that of the optimized distribution, which hardly exceeds that of the centralized version. On the
fast network, the naively distributed program responds at least inconveniently slow to the user,
while on the slow connection, its response time is simply unacceptable.

112

