Chapter 1

Introduction

This dissertation shows that it is both desirable and feasible to distribute object-oriented pro-
grams automatically, and that static analysis of a program’s source code is an indispensable
means to that end. To demonstrate this, we have built a system named Pangaea, which an-
alyzes the source code of Java programs, and distributes them automatically using arbitrary
middleware platforms as a back-end. At run-time, Pangaea uses a generic migration subsystem
that can monitor the interactions between selected objects and may migrate them automatically
to reduce network communication, thus complementing the static placement decisions.

The name Pangaea (greek: “the entire earth”) derives from the ancient continent that was
postulated by Alfred Wegener (1915). The entire land mass of the earth was centralized in this
super-continent until about 200 million years ago, when it broke up and drifted apart to create
the distributed world we know today.

The Pangaea system is targeted both towards inherently distributed programs, such as inter-
active client/server applications on the Internet, and towards concurrent programs to be run
in parallel on loosely coupled machines such as clusters of workstations. For both categories of
programs, the distribution aspect considerably increases the complexity of programming. Au-
tomatic distribution, as performed in Pangaea, is a means to reduce this complexity. It allows
programmers to write programs in a centralized version first, without any regard to distribution
issues. After the program has been completed and tested on a single machine, Pangaea can
automatically create a distributed version of it, following both automatic optimization decisions
and constraints specified by the programmer.

Pangaea does not modify the execution logic of a program. It does therefore not attempt to
“parallelize” sequential algorithms. If parallelism is desired, we leave it to the programmer to
formulate the algorithm in a concurrent way, using the standard model of threads and objects
of the Java language. It is the distribution aspect that Pangaea handles automatically, e.g.
by placing objects and using remote communication mechanisms to execute the program on a
distributed set of machines. Likewise, Pangaea cannot convert a centralized program into a
client /server architecture where multiple clients can access a single or multiple servers. Leaving
the execution logic unchanged, Pangaea can only split a program into two or more parts, for
example a GUI front-end and a database back-end. With some extensions to our system, it
would however be possible for a programmer to provide the execution logic of a multi-client
program, and let Pangaea again handle the distribution aspect.

This thesis makes three main research contributions. The first is a set of static analysis algo-
rithms that allow our system to estimate a program’s run-time structure and dynamic behavior.
Based on this information, abstract distribution strategies for the program can be selected and
specified, which is done partly by the programmer, and partly by automatic tools that assist him.

7



The second contribution is that we show how the abstract distribution strategy can automati-
cally be implemented on a given middleware platform. Pangaea achieves this by re-generating
the source code of the centralized program, changing or adding whatever is necessary to express
the distribution strategy that was specified during analysis. We can thus consider Pangaea a
distributing compiler: the input language of this compiler is Java, and the target language is
the particular Java dialect or configuration language required by the middleware platform to
be used. The third contribution is that we show how a generic run-time system can monitor
interactions between objects, and re-adjust their placement automatically. Our implementation
and case studies allow us to evaluate the cost of such a migration system, suggesting to which
extent it is useful and necessary to complement static analysis.

Terminology

A distributed program is a program that runs on two or more separate computers, where sep-
arate means that these computers do not share memory. As a special case, this means that a
program that runs in multiple, separate address spaces on a single CPU may also be considered
a distributed program. Normally however, the term refers to applications running on loosely
coupled machines connected by a network that has much higher latency and lower throughput
than a single machine’s internal bus system.

When referring to the machines that execute a distributed program, we will use the terms
node, host, processor, CPU, and machine interchangeably. Each of these terms carries some
additional flavours of meaning that justify its use in a given context. The technical term used in
Pangaea for the different parts of a distributed program is partition, although we will sometimes
replace it with one of the above terms for clarity. Nothing in this usage implies a difference from
the above definition of a distributed program.

A program that is not distributed is called a centralized program, and the process of turning
a given, centralized program into a distributed program (preserving its execution logic and
semantics), is called to distribute the program. There are two sharply distinguished reasons why
we would want a program to be distributed:

e to enable parallel execution of a concurrent algorithm,

e to satisfy the constraints of an inherently distributed setting.

A concurrent program is a program that is formulated as a set of tasks that may run in-
dependent of each other. Such a program can either be executed on a single processor, e.g.
by time-slicing, or it can be executed in parallel on several processors, which may result in a

Sequential Concurrent
Not inherently - Concurrent
distributed Computation
Inherently . .
Client /Server Program
distributed / & Mixed

Table 1.1: Categories of Programs



speedup compared to single-processor execution. (We are following the definitions in Briot et al.
(1998) here.)

An inherently distributed application is a program that, in order to fulfill its functional
purpose, must run on two or more computers that are spatially separated. We call such an
environment an inherently distributed setting. As an example, consider a banking system where
a central database computer is connected to a set of remote ATM terminals, each of which is
equipped with a local processor. The software for such a system can be regarded as a distributed
program, where certain parts reside in each ATM terminal, and others in the central database
computer. Another example for an inherently distributed setting is the Internet, and as a typical
example application, we could think of a graphical interface to a database, where the interface is
downloaded as a Java applet while the code that accesses the database runs on a central server
host.

Both distribution incentives, whether we want to exploit concurrency or adapt to inherent distri-
bution, are orthogonal to another, resulting in a matrix of program categories, as shown in table
1.1. For each of these categories, there are different optimization criteria and means to achieve
these criteria. This is most clearly visible when comparing the two extremes, a sequential client
/ server program, and a concurrent computation without any inherent distribution constraints
(see table 1.2).

Program Type

Sequential Concurrent
Client/Server Program Computation
P.{eas.on for adapt to environment parallel execution
distribution
Distributed slower than centralized | faster than centralized
performance (tolerated) (desired)
P.rm.aary minimize distribution
optimization speedup
. penalty
criterion
. twork load distribution;
How to optimize TILImIZE .ne Wor co-locate activities and
communication .
objects
Secondary resources; downloading o
criteria time; security

Table 1.2: Incentives for Distribution

A concurrent computation that is not inherently distributed is usually an input/output-type
program with little or no interactive facilities. The reason to distribute such programs is to
reduce their execution time, which ideally should be inversely proportional to the number of
machines used. To what extent this goal is achieved depends on the nature of the computation,

9



the amount of concurrency inherent in the program, the distribution technology used, and the
way the components of the program are actually distributed. With respect to the latter, the
optimization criterion is that activities should be placed onto distinct processors, and the data
that each activity operates on be co-located on the same processor (if possible), so that costly
network communication is minimized.

For inherently distributed client/server type programs, distribution is not a means to an end
as it is for concurrent computations; it is a constraint that must be met. Because such programs
are usually sequential, this constraint necessarily implies a performance penalty, so that the
distributed program does not run faster, but slower than a centralized version of it. The goal
when deciding how to distribute such a program is thus to draw the distribution boundaries so
that the penalty is minimized.

This thesis focuses on the distribution of object-oriented programs. We follow the classical defi-

nition of Peter Wegner (1987), where object-orientation is a property of programming languages
involving (a) objects, (b) classes, and (c) inheritance (polymorphism). The technical part of this
thesis focuses on the Java language, although our results are applicable to any object-oriented
language, and they specifically include implications that would be useful in the design of fu-
ture object-oriented languages. When referring to object-oriented constructs, we will use Java
terminology as defined in Gosling et al. (2000).

Making programs run in a distributed fashion requires some sort of distribution technology
that is often separate from the standard compiler and run-time system of a programming lan-
guage. We refer to this technology as distribution platforms. The term middleware is a loosely
defined concept that refers to some particular kinds of distribution platforms which Pangaea
particularly focuses on; a detailed explanation will be given in chapter 2.

The term distributed object system refers to distribution technology for object-oriented pro-
grams. This includes object-oriented distribution platforms, but also systems that define a
special, object-oriented programming language that cannot be separated from the underlying
technology. Distributed object systems also include systems where the standard compiler and
run-time system are completely replaced with distribution-enabled versions. For simplicity and
historical reasons, we will also use the term distributed object system for systems that are not
strictly object-oriented according to the Wegner definition, but can be seen as predecessors of
object-oriented distribution technology.

Since distributed programming is inherently more complex than centralized programming, an
important goal of distribution technology, and distributed object systems in particular, is to
hide the distribution aspect from the programmer and to make distributed programming sim-
ilar, if not identical to centralized programming. This is commonly referred to as distribution
transparency. There is a classical definition of distribution transparency in the Reference Model
for Open Distributed Processing (RM-ODP, 1995-1998), which breaks it down into the sub-
categories access tramsparency, location transparency, migration transparency, and replication
transparency. 1 consider these definitions of little practical use, because they are at the same
time too broad and too coarse. For example, almost no distributed object system actually satis-
fies even the requirements for access transparency, since remote object invocations do not have
the same semantics as local invocations. In this thesis, we will therefore use the term distribution
transparency in a more pragmatic sense, indicating how similar a technology makes distributed
and centralized programming. We will thus speak of higher vs. lower degrees of distribution
transparency, and spell out individual transparency deficits in detail.

10



Road Map

This dissertation is organized as follows.

In chapter 2, we describe the evolutionary progress in the development of distributed object
systems over the past decades. This chapter is not a classical “related work” section, because
rather than describing projects that do something similar as our own, we portray the techno-
logical development that ultimately leads to a system like ours being useful. Pangaea is not a
distributed object system itself, it rather utilizes existing distribution technology to distribute
programs. Our system also uses ideas from several other areas than those indicated in chapter
2, and we will refer to them where they are actually mentioned.

Chapter 3 describes the Pangaea system itself, following the progression of its subsystems
from analysis to implementation and execution. The description is illustrated with numerous
small examples for clarification.

In chapter 4, we report on several individual case studies, distributing complete programs
with Pangaea and evaluating their performance.

Chapter 5 concludes this thesis and summarizes our project, as well as pointing out some
implications for future design of programming languages and distribution technology.

Many concepts in this thesis are closely related and referred to in several different places.
The index at the end should therefore provide a useful tool for locating definitions (usually the
first mentioning of a concept) and any related aspects.

11



12



