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Zusammenfassung

Zu einer projektiven Familie semi-stabiler Kurven iiber einem vollstdndigen
diskreten Bewertungsring in Charakteristik p > 0 konstruieren wir einen Spezial-
isierungsfunktor zwischen der Kategorie der stetigen Darstellungen der pro-étalen
Fundamentalgruppe der speziellen Faser und der Kategorie der stratifizierten
Biindel auf der geometrischen generischen Faser. Dieser Funktor induziert einen
Morphismus zwischen den via Tannaka Dualitéit korrespondierenden affinen Grup-
penschemata. Wir zeigen, dass dieser Morphismus ein Lift von Grothendiecks
Spezialisierungsabbildung zwischen den entsprechenden étalen Fundamental-
gruppen ist, die in [SGA 1] konstruiert wurde. Dariiber hinaus ergeben unsere
Methoden ein allgemeines Framework um Giesekers Konstruktion von stabilen
Kurven mit degenerierter spezieller Faser aus [Gie73| zu verstehen.

Summary

Given a projective family of semi-stable curves over a complete discrete
valuation ring of characteristic p > 0 with algebraically closed residue field, we
construct a specialization functor between the category of continuous represen-
tations of the pro-étale fundamental group of the closed fibre and the category
of stratified bundles on the geometric generic fibre. By Tannakian duality, this
functor induces a morphism between the corresponding affine group schemes. We
show that this morphism is a lifting of the specialization map between the étale
fundamental groups constructed by Grothendieck in [SGA 1]. Moreover, the
setting in which we work provides a general framework to understand Gieseker’s
construction for stable curves with degenerate closed fibre explained in [Gie73].
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Introduction

In [SGA 1, Exp. V| Grothendieck stated the axiomatic conditions on a category
C endowed with a functor F': C — FSets, which ensure that the category C is
equivalent to the category of finite sets with a continuous action of the pro-finite
group Aut(F'). The pairs (C, F') that satisfy the axioms given by Grothendieck are
called Galois categories. Grothendieck’s motivation to introduce this framework
was to find an algebraic notion of fundamental group for schemes. For a connected
locally Noetherian scheme X, he defined the category Fétx of finite étale covers
7: Y — X. Given a geometric point x of X, he defined a functor F,(Y) = 7~ 1(x)
from Fétx to FSets and he proved that the pair (Fétx, F,) is a Galois category.
The corresponding pro-finite group Aut(F,) is called the étale fundamental
group of X and it is denoted by 7¢*(X,x). If X is a smooth connected complete
scheme over C, then 7*(X,z) is just the pro-finite completion of 7}°P (X" z),
the topological fundamental group of the analytification of X.

One of the interesting features of the étale fundamental group is the existence
of a specialization morphism. In [SGA 1, Exp. X] Grothendieck proved that,
given Y a locally Noetherian scheme, f: X — Y a proper morphism with
geometrically connected fibres and yg,y; two points of Y such that yg is a
specialization of 31, if Xy and X, are the geometric fibres over yo and y; with
two geometric points xg, 1, then a morphism of specialization can be defined in
a natural way

SPet W?t(Xlald) — Wft(Xo,xo).

Moreover, when the morphism f is smooth, he showed that if k(yo) has char-
acteristic zero then the specialization morphism is an isomorphism, whereas if
E(yo) is a field of positive characterestic p > 0 then the specialization morphism
induces an isomorphism between the maximal prime to p quotients.

Throughout the years there have been many attempts to generalize the
construction of the étale fundamental group and to produce a topological group
that encodes the information of a larger class of coverings.

The first generalization is due to Grothendieck himself and it is explained
in [SGA 3, Exp. X, §6]. Given a connected locally Noetherian scheme X and
a geometric point x of X, he proved that the functor, which associates with
every abstract group G the set of isomorphic classes of pointed torsors for the
constant group scheme associated with G over X, is representable. He defined
the enlarged fundamental group of X, which we denote by W%GAB(X , ), as its
representative. Furthermore, he showed that the functor F, defined as above,
induces an equivalence between the category of étale locally constant schemes
over X and the category of sets with a continuous 7$%43(X, x)-action.

This fundamental group was implicitly used by Mumford in [Mum?72|. In this



article, given a complete discrete valuation ring A of characteristic p > 0 with
fraction field K and residue field k, Mumford associated with a flat Schottky
group G C PGLy(K) a tree Ag on which G acts freely, deducing that G is a free
group. Then he constructed a stable curve X over A with k-split degenerate
closed fibre Xy and non-singular generic fibre X such that G is the group of
covering transformations of the universal covering Y, of Xy. Moreover, he also
showed that the dual graph of Y, is Ag. In the same article Mumford proved that
every stable curve X over A with k-split degenerate closed fibre and non-singular
generic fibre can be constructed in this way for a unique flat Schottky group G.
As we will remark in the third chapter of the thesis, the group G turns out to
be isomorphic to the enlarged fundamental group of the closed fibre.

The setting introduced by Mumford was later used by Gieseker in [Gie73] to
prove that, for any prime p > 0 and every integer g > 1, there exists a stable
curve of arithmetic genus g in characteristic p that admits a semi-stable bundle
of rank two whose Frobenius pull-back is not semi-stable. He first proved that,
given an algebraically closed field k of characteristic p > 0 and a stable curve
X of genus g over k[[t]] with smooth generic fibre and degenerate closed fibre,
there exists a semi-stable bundle of rank two on the geometric generic fibre X+
whose Frobenius pull-back is not semi-stable. In order to do so, he introduced
the notion of coherent sheaves with meromorphic descent data on the universal
covering ) of the completion X of X along its degenerate closed fibre and he
proved that the category they form is equivalent to the category of coherent
sheaves on the generic fibre X . This construction allowed him to associate
with a representation of the group of covering transformations of ) a stratified
bundle on the geometric generic fibre. Then he concluded showing that such a
curve X exists for every p and g.

The main goal of the thesis is to generalize the construction above and to
make it applicable to every projective semi-stable curve over a complete discrete
valuation ring, removing the assumption that the closed fibre is degenerate. To
achieve this goal, the last main ingredient is the pro-étale fundamental group
defined by Bhatt and Scholze, which is a generalization of both the étale and
the enlarged fundamental group.

In [BS15] the authors generalized the construction of Galois categories to
infinite Galois categories. These were first defined by Noohi in [Noo08] but
the conditions he imposed were too weak. In particular, Bhatt and Scholze
introduced the notion of tame infinite Galois categories and proved that every
such category is equivalent to the category of sets with a continuous action of a
Noohi complete topological group. Then, for a connected locally topologically
Noetherian scheme X and a geometric point z, they showed that the pair
(Covx, F,) is a tame infinite Galois category, where Covx denotes the category
of étale schemes over X that satisfy the valuative criterion of properness and F,
is the fibre functor over x. They defined the group associated with (Covx, Fy)
as the pro-étale fundamental group of X, which we denote by 7?°®(X, z). The
pro-finite completion of the pro-étale fundamental group is the étale fundamental
group, while its pro-discrete completion is the enlarged fundamental group, hence
we recover from the pro-étale fundamental group both the groups constructed
by Grothendieck. Another important result is that Q;-local systems on X are
equivalent to continuous representations of 72"° (X, z) on finite-dimensional
Q;-vector spaces, but this will not be the focus of the thesis.

Our aim will be to extend Gieseker’s results to connected projective semi-
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stable curves over a complete discrete valuation ring and to define a specialization
functor between the category of continuous representations of the proétale
fundamental group of the closed fibre and the category of stratified bundles on
the geometric generic fibre.

Leitfaden

In the first section of Chapter 1 we first give an introductory overview on infinite
Galois categories. We recall the definition of Noohi groups and state some results
of [BS15], among which the fact that a tame infinite Galois category is equivalent
to the category G-Sets for a Noohi group G. In the second section we present
the definition of the pro-étale site and the pro-étale fundamental group. In the
third section, after defining normal crossing curves (see Def. 1.3.4), we produce a
concrete computation of the pro-étale fundamental group of connected projective
normal crossing curves defined over an algebraically closed field. In particular
we prove the following theorem.

Theorem (Prop. 1.3.23). Let X be a connected projective normal crossing curve
defined over an algebraically closed field and let £ be a geometric point of X.
Denote by C; the irreducible components of X, by ﬁj their normalization and
fix a geometric point &; for every C;, then

P ON(X, &) = TN sy 78 (O, &1) *y -+ v 5 (O, ),

x| I|-N+1

where I is the set of singular points of X and 1s the free product of

|[I| = N + 1 copies of Z.

We begin Chapter 2 by presenting a brief overview on Tannakian categories,
which provides us with the formalism that is needed in order to construct
the specialization functor. We focus in particular on the category of F-linear
representations, with F' any field, of a given abstract group G. We define the
algebraic hull of G to be the affine group scheme over F' associated with this
category (see Def. 2.2.1 for details). We prove that, if the field F' is perfect,
then the algebraic hull over F' of any abstract group is reduced. Then we
generalize this result to the category of F-linear continuous representations of a
fixed topological group H, whose associated group scheme is called topological
algebraic hull of H over F' (see Def. 2.3.1 and Def. 2.3.2). Moreover, we describe
explicitly the topological algebraic hull of a complete pro-finite group.

Lemma (Lemma 2.3.5). Let F be a field and m = lim_ 7; be a complete pro-finite

group with surjective transition maps, then the topological algebraic hull of ©
over F' is isomorphic to the group scheme

].Lnl(ﬂi)lﬁ
i
where (m;)F are the constant group schemes over F' associated with the finite
groups ;.

These results will allow us to describe the topological algebraic hull of the
pro-étale fundamental group of a connected projective normal crossing curve
over an algebraically closed field. In particular, a required tool for this purpose
is the notion of free product of affine group schemes, which we introduce in the
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last part of this chapter (see Def. 2.4.4). We also prove in Lemma 2.4.5 that
this notion is compatible with the free product of abstract groups.

In Chapter 3 and Chapter 4 we work with the following setting: we denote
by k a given algebraically closed field of characteristic p > 0, we fix A a complete
discrete valuation ring of residue field k£ and we denote its fraction field by K,
then we set S = Spec(A4) and we fix X a projective semi-stable curve X over S
with smooth generic fibre X .

In Chapter 3, given such a curve X, we construct a functor from the category
of K-linear continuous representation of the pro-étale fundamental group of
the closed fibre, denoted by Rep$e (7P (X, £)), to Coh(X k), the category of
coherent sheaves on X, and hence we generalize Gieseker’s construction.

In the first section we recall Gieseker’s results presented in [Gie73|, which
are based on the notion of coherent sheaves with meromorphic descent data
(see Def. 3.1.10). The first step to generalize these results, in particular [Gie73,
Prop. 1], is to construct a geometric covering of the closed fibre X, associated
with a given K- linear continuous representation of 7" (X, ). This step is
explained in the second section, where we denote by Y’ the covering associated
with the representation p and we define V, to be the corresponding covering of
X , the completion of X along its closed fibre. In the third section we prove that
coherent sheaves on ), with meromorphic descend data descend to coherent
sheaves on a finite étale cover of X, denoted by Z%..

Theorem (Thm. 3.3.8). Let X be a projective semi-stable curve over S with
smooth generic fibre. Fiz (K™, p) € Rep$s (7P (X, €)) and let Y, and 2, be
the formal geometric coverings of)/(: defined in Section 3.2. Let Z, be the finite
étale covering of X corresponding to Z, and Z% = Z, xg K its generic fibre,
then the category of coherent sheaves on Y, with meromorphic descend data
relative to Z, is equivalent to the category of coherent sheaves on Z¥.

In Def. 3.4.1 we construct meromorphic descent data associated with the
continuous representation p for the trivial vector bundle (’)S‘, on ),. Then, in
the fourth section, we prove that this sheaf not only descends to a coherent sheaf
on ZY, as proved in the third section, but it also descends to a coherent sheaf
on Xy, as stated in the following theorem.

Theorem (Thm. 3.4.5). Let X, (K™, p), Y, as above, then the sheaf with
meromorphic descent data {Oalip’hfv}weAut(ypp?) associated with p (see Def.

3.4.1) descends to a coherent sheaf on X .

In particular these theorems lead us to the construction of the following
functor, which is explained at the end of the third chapter.

Theorem (Thm. 3.4.8). Given X a projective semi-stable curve over S with
smooth generic fibre, associating with (K™, p) € Rep§(n?°%(X,,€)) the co-
herent sheaf with meromorphic descent data {O”p, h&}weAut(ym)?) induces a
functor

F: Rep§ (7P (X, €)) — Coh(Xg).

In Chapter 4 we recall the definition of stratified bundles, we introduce the
notion of stratified bundles with meromorphic descent data and we show that
we can extend the results of the previous chapter to all the Frobenius twists of
X, which proves the following theorem.
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Theorem (Prop. 4.2.4). Given X a projective semi-stable curve over S with
smooth generic fibre and (K™, p) € Repi (%" (Xy)), let {(9 m,h” Y be the

stratified bundle on the i-th Frobenius twist of Y, with meromorphzc descent data
induced by p, then {O™ .y, h%"} descends to a stratified bundle on Xk .

Using the Tannakian formalism, we can finally prove the main result of the
thesis.

Theorem (Thm. 4.2.7). For a given projective semi-stable curve X over S with
smooth generic fibre, the descent of stratified bundles with meromorphic descent
data induces a functor

spg : RepSs (2% (X, €)) — Strat(Xg).
Moreover, if K is a fized algebraic closure of K, spy can be extended to
spg: RepS(m Proft( X, €)) — Strat(X#),
and it induces a morphism of group schemes over K
sp T (X ) (7D (X0, €))°

We conclude the fourth chapter by comparing this morphism of group schemes
with the specialization map between the étale fundamental groups of X7 and X
constructed by Grothendieck in [SGA 1]. In particular, we show in Proposition
4.3.3 that the following diagram is commutative

RepctS( %t(X(),g)) SPsg A1 RepctS( et<X[?7€))

l l

RepSt ( ot X, €)) —E Strat(Xz) ,

where the left vertical arrow corresponds to composition with the pro-finite
completion 7% (X,,£) — 78 (X, &), the right vertical arrow is defined as
descent along finite étale covering of X% and the upper horizontal arrow is
defined as the composition via the specialization map defined by Grothendieck.
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Conventions and notations

(a) The letter k will denote an algebraically closed field of characteristic p > 0.

(b) The letter A will denote a complete discrete valuation ring of characteristic
p > 0 with residue field k.

(¢) The letter K will denote the fraction field of A.
(d) The letter S will denote the scheme given by spectrum of A, i.e., S = Spec(A).

(e) Given a scheme X over S, we denote by X its closed fibre and by Xy its
generic fibre.

(f) Given a scheme X over S, we denote by X the formal completion of X along
its closed fibre Xj.

(g) All topological groups are assumed to be Hausdorff.

(h) Given G a topological group, we denote by G-Sets the category of sets S
with a left G-action that is continuous with respect to the discrete topology
on S.

(i) If G is a topological group we denote by G-FSets the category of finite sets
with a continuous left G-action.

(j) Given a field F' we denote by Vecg the category of finite dimensional F-vector
spaces.

(k) Given G and H two abstract groups, we denote the free product of G and
H by G % H. The elements of the underlying set are alternating sequences
of non-trivial elements of G and H and the word with no letter, which is
called the empty word. The group law on G « H is given by concatenation
followed by reduction. We recall that reduction is the map that associates
with any word an alternating sequence of elements in H and G by removing
any instance of the identity element of either G or H, replacing any pair
of the form gy g-> by its product in G and any pair hiho by its product in
H. By abuse of notation we will call this group law concatenation. The
neutral element for this group law is the empty word.

(I) If G and H are topological (Hausdorff) groups we call free topological product
of H and G the co-product of G and H in the category of topological group,
which was constructed in [Gra48]. Its underlying abstract group is free
product G x H, by abuse of notation, we will denote the free topological
product of H and G by G x H too.
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Chapter 1

Fundamental groups of
normal crossing curves

In this chapter we describe the pro-étale fundamental group of of a normal
crossing curve defined over an algebraically closed field F'. In the first two
sections we recall the definition of the pro-étale fundamental group and the
main results of [BS15]. In the third section we compute explicitly the pro-étale
fundamental of a normal crossing model via a descent argument.

1.1 Infinite Galois categories

In this section we present the definition of infinite Galois categories. This notion
was first introduced in [Noo08] and later improved in [BS15]. Infinite Galois
theory studies the conditions that force a category C to be equivalent to the
category G-Sets for some topological group G.

Definition 1.1.1. Given a category C that admits colimits and finite limits, we
say that an object X € C is connected if it is not empty (i.e., not initial) and
every subobject Y C X (i.e., Y =Y X x Y) is either empty or it coincides with
X.

Definition 1.1.2. An infinite Galois category is a pair (C, F') consisting of a
category C and a functor F': C — Sets that satisfy the following conditions:

1. C admits colimits and finite limits,

2. each object X € C is a disjoint union of connected objects,

3. C is generated under colimits by a set of connected objects,

4. F is faithful, conservative and commutes with colimits and finite limits.

Definition 1.1.3. Given (C, F) an infinite Galois category, we define its funda-
mental group to be the group m(C, F) := Aut(F) endowed with the topology
induced by the compact-open topology on Aut(S) for all S € Sets.

We recall that a basis of open neighborhoods of 1 € Aut(S) for the compact-
open topology is given by the stabilizers Up C Aut(S) of finite subsets F' C S.

16



Chapter 1. Fundamental groups of normal crossing curves 17

In order to present some examples we need to define a specific class of
topological groups.

Definition 1.1.4. Let G be a topological group and Fg: G-Sets — Sets be
the forgetful functor. We say that G is a Noohi group if the natural map
G — Aut(Fg) is an isomorphism of topological groups, where Aut(Fg) is
topologized by the compact-open topology on Aut(S) for all S € Sets.

Example 1.1.5 ([BS15], Ex. 7.1.2). For every set .S, the group Aut(S) endowed
with the compact-open topology is a Noohi group.

Definition 1.1.6. Given G a topological group, we define the Ratkov completion
of G as its completion with respect to its two-sided uniformity (see [AT08]). We
denote the Raikov completion of G by G*.

Definition 1.1.7. We say that a topological group G is Ratkov complete if
the natural morphism o: G — G¥, constructed in [AT08, Thm. 3.6.10], is an
isomorphism.

Remark 1.1.8. By [AT08, Thm. 3.6.10], given G a topological group there
exists a continuous morphism o: G — @R, whose image is dense in GE. Let
(S, p) € G-Sets, then, by [BS15, Lemma 7.1.4|, the group Aut(S) endowed with
the compact-open topology is Raikov complete. Hence, by [AT08, Prop. 3.6.12],
the action p of G on S admits an extension to p such that the following diagram

commutes
@R

G —2 5 Aut(9) .
This induces an equivalence of categories between
(G-Sets, Fg) ~ ((A;R—Sets,F@N).

Proposition 1.1.9 ([BS15|, Prop. 7.1.5). Let G be a topological group with a
basis of open neighborhoods of 1 € G given by open subgroups, then there is a
natural isomorphism GT ~ Aut(Fg). In particular, G is a Noohi group if and
only if it is Raitkov complete.

Example 1.1.10. By [AT08, Thm. 3.6.24], any locally compact group G is
Raikov complete. Hence, the previous proposition implies that locally compact
groups G with a a basis of open neighborhoods of 1 € G are Noohi groups. In
particular, pro-finite groups and discrete groups are Noohi groups.

Example 1.1.11 (|[BS15], Ex. 7.2.2). Let G be a Noohi group and let Fg be
the forgetful functor F: G-Sets — Sets. The pair (G-Sets, F) is an infinite
Galois category. Moreover 71 (G-Sets, Fg) = G.

Remark 1.1.12. Not all the infinite Galois categories are of the type G-Sets for
some topological group G. A counterexample is presented in [BS15, Ex. 7.2.3].

In order to describe the infinite Galois categories (C, F') that are equivalent
to the category G-Sets, for a topological group G, we need to assume further
conditions on the pair (C, F').
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Definition 1.1.13. An infinite Galois category (C, F') is called tame if, for every
connected object X € C, the group 71 (C, F') acts transitively on F(X).

This definition is crucial and leads us to the following result.

Proposition 1.1.14 ([BS15], Thm 7.2.5). If (C, F') is an infinite Galois category
its fundamental group 71 (C, F') is a Noohi group.
If (C, F) is also tame the functor F induces an equivalence of categories

C ~m(C, F)-Sets.

1.2 Pro-étale fundamental group

In this section we give an overview of the definition of the pro-étale fundamental
group, introduced in [BS15]. We start by defining the pro-étale site.

Definition 1.2.1. A morphism of schemes f: Y — X is called weakly étale if
f and the diagonal morphism Ay: Y — Y xx Y are both flat.

Lemma 1.2.2 (|[BS15], Prop. 2.3.3). The composition and base change of weakly
étale morphisms are weakly étale.

Definition 1.2.3. We set X6t to be the category of weakly étale X-schemes,
which we give the structure of a site by endowing it with the fpqc topology. We
call X, 060 the pro-étale site.

Remark 1.2.4. The name pro-étale is justified by [BS15, Thm. 2.3.4], which
implies that every weakly étale map f:Y — X is Zariski locally on X and
locally in Yprost & pro-étale morphism, i.e., an inverse limit of étale morphisms.
However, since pro-étale morphisms are not local on the target (as shown in
[BS15, Ex. 4.1.12]), it is preferable to work with weakly étale morphisms.

The main ingredient needed for the definition of the pro-étale fundamental
group is the category of locally constant sheaves on the pro-étale site.

Lemma 1.2.5 ([BS15], Lem. 4.2.12). Let T be a topological space, then the
presheaf Fr that associates to every U € Xproet the set of continuous maps from
UtoT, i.e.,

]:T(U) = Ma‘pcts(U7 T>7

is a sheaf on the pro-étale site. Moreover, if T is discrete, then Fr is the constant
sheaf associated with T, 1i.e.,

Fr(U) = Map(mo(U), T),
where wo(U) is the set of connected components of U € Xproet-

Definition 1.2.6. We say that a sheaf 7 on X, is constant if there exists a
topological space T such that F ~ Frp.

Note that by Lemma 1.2.5 this notion coincides with the usual definition of
constant sheaves only if the topological space T is discrete.

Definition 1.2.7. Let F € Shv(Xproet), then F is called locally constant if
there exists a covering {Y; — X}, in X0t such that Fly; is constant.

We denote by Locx the full subcategory of Shv(Xpro0et) spanned by locally
constant sheaves.
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In [BS15] the authors prove that the category of locally constant sheaves is
equivalent to the category of geometric coverings, which is defined as follows.

Definition 1.2.8. A sheaf F € Shv(Xproet) is called geometric covering if it
represented by an étale Y — X that satisfies the valuative criterion of properness.

We denote by Covx the full subcategory of Shv(X 06t ) spanned by geometric
coverings.

Proposition 1.2.9 ([BS15|, Lemma 7.3.9). Let X be a locally topologically
Noetherian connected scheme, then

Locx = Covyx C Shvo(Xproet)-

Definition 1.2.10. Let X be a locally topologically Noetherian connected
scheme. Let Q be an algebraically closed field and &: Spec(2) — X be a
geometric point of X. A pro-étale neighbourhood of £ is defined as a pair (U, u)
of a scheme U that is weakly étale over X and a geometric point u € U(f2) such
that the following diagram is commutative,

N

Spec()) —— — X .

Definition 1.2.11. Let X and &: Spec(2) — X be as before, we define a
morphism of pro-étale neighbourhood from (U,u) to (U’, ') to be an morphism
f: U —= U’ over X such that

u = fou.

Lemma 1.2.12. Given X a locally topologically Noetherian connected scheme
and £ a geometric point of X, the category of pro-étale neighbourhood of & is
cofiltered.

Proof. This is proven following the same argument of [Stacks, Tag 04JW]. For
more details see also [Stacks, Tag 0991]. O

It follows from the previous lemma that the opposite category of pro-étale
neighbourhood of £ is filtered. Hence, we can define the stalk of a sheaf on X ;e
at a given geometric point of X.

Definition 1.2.13. Let X be a locally topologically Noetherian connected
scheme and § a geometric point of X, then for every F € Shv(Xproe) we define
the stalk of F at & as

‘/—"5 = COlim(U7u)F(U),
where the colimit runs over the opposite category of pro-étale neighbourhoods

of the geometric point &.

Proposition 1.2.14 ([BS15|, Lemma 7.4.1). Let X be a locally topologically
Noetherian connected scheme, £ a geometric point of X and set eve to be the
following functor:

eve: Locx — Sets, eve(F) = Fe,

then the pair (Locx, eve) is an infinite tame Galois category.


http://stacks.math.columbia.edu/tag/04JW
http://stacks.math.columbia.edu/tag/0991
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Definition 1.2.15. Let X be a locally topologically Noetherian connected
scheme and § a geometric point of X, then the pro-étale fundamental group of
X at ¢ is defined as the group 77" (X, €) := Aut(eve).

Corollary 1.2.16. If X is a locally topologically Noetherian connected scheme
and & is a geometric point of X, then the group 72" (X,€) is a Noohi group.
Moreover, the functor eve induces an equivalence of categories

eve: Locy o~ 7% (X, €)-Sets.

Remark 1.2.17. Let Y be a connected object in the category Covy, as in
Definition 1.1.1, then clearly Y is a connected scheme. In the proof of [BS15,
Lemma 7.4.1], the authors show also that if Y € Covy is a connected scheme,
then it is a connected object in the category Covy. This implies, by the previous
corollary, that connected geometric coverings of X correspond to sets with a
continuous transitive 7¥"°¢*( X, £)-action.

Remark 1.2.18. Let € be another geometric point of X then it follows from
Proposition 1.2.16 that the categories 7" (X, €)-Sets and 72" (X, €)-Sets are
equivalent. Moreover, since both groups are Noohi groups, by [BS15, Thm.
7.2.5.(2)],

7T{)roét (X, 6) ~ 7_‘_{nroét (X, 6).

Note that the condition of being Noohi groups is necessary to conclude that
the groups are isomorphic. Indeed, if G is a topological group with a basis of
open neighbourhoods of 1 € G given by open subgroups and G is not a Noohi
group, then Proposition 1.1.9 implies that G is not Raikov complete. Moreover,
it shows that the categories G-Sets and GT-Sets are equivalent even if G and
G are not isomorphic.

From the pro-étale fundamental group, we can retrieve both the enlarged
fundamental and the étale fundamental group, defined by Grothendieck in [SGA
3] and [SGA 1] respectively.

Proposition 1.2.19 ([BS15]|, Lemma 7.4.3 and Lemma 7.4.6). Let X be a locally
topological Noetherian connected scheme and & a geometric point, then

e the pro-discrete completion of 71"fmét(X7 €) is isomorphic to the enlarged
fundamental group w543 (X €),

e the pro-finite completion of T"°%°(X,€) is isomorphic to the étale funda-

mental group 7$*(X,¢).

Proposition 1.2.20 ([BS15], Lemma 7.4.10). If X is geometrically unibranch,
then ) )
(X €) 2 (X ).

1.3 Descent for étale and pro-étale fundamental
group

The aim of this section is to generalize [SGA 1, Exp. IX Cor. 5.4] in terms of
the pro-étale fundamental group and to present a concrete computation of the
pro-étale fundamental group of a connected projective normal crossing curve.
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Before we proceed, we state the definitions of normal crossing curves and
stable curves.

Definition 1.3.1. Let C' be a scheme of dimension 1 of finite type over an
algebraically closed field F', then C is a semi-stable curve if it is reduced and its
singular points are ordinary double points.

Definition 1.3.2. We say that a scheme C of dimension 1 of finite type over
an algebraically closed field F' is a stable curve if it is a semi-stable curve and
the following conditions are satisfied

e (' is a connected projective curve,
e C has arithmetic genus p,(C) = dimpH"(C,O¢) > 2,

e the non-singular rational components of C, if they exist, intersect the other
irreducible components in at least 3 points.

Definition 1.3.3. Let F' be an algebraically closed field and let C' be a scheme
of dimension 1 of finite type over F', then C is a normal crossing curve if the
associated reduced scheme Cleq is a semi-stable curve.

Definition 1.3.4. Let F be a field and let F be a fixed algebraic closure of F. A
curve C' over F'is a (semi-)stable curve if Cz = C x p Spec(F) is a (semi-)stable
curve over F. Similarly we say that C' is a normal crossing curve if Cf is a

normal crossing curve over F.

Definition 1.3.5. Given a scheme S, we define a semi-stable curve over S to
be a flat scheme X over S whose fibres are geometrically connected semi-stable
curves.

Remark 1.3.6. Note that in the literature the condition that the fibres are
geometrically connected is usually not assumed. However, in the thesis we need
this assumption in order to define the fundamental groups of the geometric fibres
and hence to construct the specialization functor.

Remark 1.3.7. If S is a Dedekind scheme and X is a semi-stable curve over S
with smooth generic fibre, by [Liu02, Prop. 10.3.15.(c)], the scheme X is normal.

Definition 1.3.8. Given a scheme S, a stable curve over S of genus g is a
proper flat scheme over S, whose fibres are stable curves of arithmetic genus g.

Definition 1.3.9. A stable curve C over an algebraically closed field F' is called
degenerate if the normalization of every irreducible component of C' is isomorphic
to PL.

There is a well-known structure theorem for the étale fundamental group of
such curves ([SGA 1, Exp. IX Cor. 5.4]), but as we are not aware of a reference
for a complete proof, we explain it in next paragraphs. In order to do this, we
need the notion of the coproduct in the category of pro-finite groups.

Definition 1.3.10. Given two pro-finite groups G and H we define their co-
product in the category of pro-finite groups to be the pro-finite completion of
their free topological product G x H. We denote the coproduct of G and H in
the category of pro-finite groups by G xp H.
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Lemma 1.3.11 ([SGA 1], Exp. IX Cor. 5.4). Given X a connected projective
semi-stable curve over an algebraically closed field F' and £ a geometric point
of X, for j = 1,...,N let C; be the irreducible components of X, C; their
normalizations and fix a geometric point &; for every Cj, then

ﬂ—?t(X7 5) =~ Z*FT *F ﬂ—?t(aa 51) *p kR ﬂ—?t(cil\ﬁ SN)u

where r = pa(X) — Y, pa(C;) is the difference of the arithmetic genera and Z*FT
s the coproduct in the category of pro-finite groups of r copies of Z.

We prove the statement by induction on N, the number of irreducible
components of X.

Base step: N = 1.
If I is the set of singular points of X, by [Liu02, Prop. 10.3.18] we have that

r :pa(X) _pa(X) = |I|

Since by assumption X = (4 is irreducible, the normalization X = C] is
connected. Moreover, the normalization g: X — X is finite and surjective, thus
by [SGA 1, Exp. IX, Thm. 4.12] it is a morphism of effective descent for finite
étale coverings.

In this simple setting, the descent data can be described explicitly. We
denote by (a;, b;) the pair of points of X that are identified to z; € I in X and
we set Fy, and Fp, to be the functors associating to a finite étale cover Y of
X its fibers over a; and b; respectively. Then giving descent data for a finite
étale scheme Y with respect to g is equivalent to giving a collection of bijections
{ai: Fai (Y) — Fbi (Y)}I1€I

Let C be the category whose objects are given by the datum (Y, a1, ..., a,),
with Y a finite étale cover of X and a;: F,,(Y) — Fp,(Y) isomorphisms of sets,
and whose morphisms from (Y, ;) to (Z, 3;) are given by X-scheme morphisms
@:Y — Z such that, for every ¢ € I, the following diagram commutes

Fai (Y) — Fbi (Y)

Fo, (ga)l lFb (%)

Bi
By construction, the category C is equivalent to the category of finite étale
coverings of X with descent data with respect to the map g, and hence it is
equivalent to the category of finite étale coverings of X. In particular, if we set
F¢, to be the functor

Fe,(Y,q;) = Fe, (Y),

then the pair (C, ﬁgl) defines a Galois category. Hence, to prove the lemma it
suffices to show that the pro-finite group associated with (C, ﬁgl) is the coproduct
in the category of pro-finite groups of the étale fundamental group of X and r
copies of 7. _

We claim that (C, F,) is equivalent to (Z*" % 7¢%(X, &;)-FSets, forg), the
category of finite sets with a continuous Z*" x 7{*(X, £1)-action, where forg is
the forgetful functor. If the claim is true, then it follows that C is equivalent to
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the category of finite sets with a continuous action of the pro-finite completion
of Z*" x ¥t (X, &), i. e., Z*F" xp 7$* (X, £1), and the base step is proved.

To prove the claim we first show that the functor ﬁgl factors through the
category of finite sets with a continuous Z*" % w$*(X, & )-action.

By definition, 7% (X, &) = Aut(Fe,) acts on F, (Y, ;) = Fe, (Y) for every
(Y, a;) € C. Since X is connected, we can choose, for every i, a path 7; from a;
to b; and a path o; from a; to &, that are natural isomorphisms of functors

Tit Fo, = Fp, and 0;: Fy, — Fg,.
We notice that o; € Hom(F,,(Y), Fp,(Y)) can be written as
a; = 7; 0 g; for some g; € Aut(Fy,(Y)).

Hence, we can define the action p; of i-th copy of Z on Fg, (Y') as

pi(l) =0i0gioo; "
To prove that f‘gl induces an equivalence of categories, we construct a quasi-

inverse functor. Given an object (S,p1,...,pr, pe,) € Z*" * m§*(X, & )-FSets,
there exists a finite étale cover Y of X such that

F§1 (Y) =~ (Sv p§1)'

Thus, we can define the following functor:
Gfl (Sa Pis pf1) = (Ya Ti © Ui_l o pz(l) o Ui)~

From the construction it is easy to see that G¢, and ﬁgl are quasi-inverse functors.

Inductive step: N —1 — N.

We fix (' an irreducible component of X such that the geometric point &
does not lie in O} and such that X \ C} is connected. We denote by (a},b}) the
pairs of points of C; identified to a singular point x} of C; and we denote by I
the set of these pairs. We set r; = |I1| > 0, then by the base case we conclude
that

T(C1, &) ~ 27 xp (O, 69).

Let X y_1 be the complement of C; in X. We denote by (ai\]*l7 szfl) the
pairs of points of X y_; identified to a singular point va 1 of X, and we denote
by In_1 the set of these pairs. Moreover, we set X y_1 to be the curve obtained
from X y_1 identifying the pairs in Iy_;. By construction, X _1 is a connected
projective semi-stable curve with NV — 1 irreducible components. Hence, by the
inductive hypothesis,

T (X N1, €) = LNt sep w5 (T, &) Hp - - kg T8 (COn, EN),

where ry_1 = pa(X) — Ziz p4(C;). Note that by [Liu02, Prop. 10.3.18] we
have
rN_1= |IN_1| — (N— 1) +1= |IN_1| — N + 2.
Finally, we denote by I; y_1 the set of pairs (a}, bivfl), with a} a point of Cy
and blN ~! a point of Xy_1, that are identified in the remaining singular points
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of X. We fix a pair (a(l),bévfl) € I; n—1. Note that I y—1 # 0 because X is
connected. Let X’ be the curve obtained from gluing C; and Xy_1 along the
pair (a}, bév_l) € I, n—1. We define Cy to be the category whose objects are of
the form

(Y1,Yn_1,00) € C’, with

e Y] a finite étale cover of C1,

e Yn_1 a finite étale cover of Xn_1,

e ag: Fa(Yr) — Fbé\l—l(YN_l) isomorphism of sets,
and whose morphisms

(Y1,YN-1,0) = (Z1,ZN -1, o)

are given by a pair (1, n—1) with

e ©1: Y7 — Z1 a morphism of C-schemes,

e on_1: YN, = Zny_1 a morphisms X _j-schemes,
such that the following diagram commutes

Foi (Y1) SELUEEN Fyv-1(Yn-1)
Fao(lm)l lFbo(waﬂ

Fo(Z1) =2 Fyva(Zn-1) -
Clearly Cy is equivalent to the category of finite étale coverings of X'.

We claim that Cy is equivalent to 7t (O, &1 )*m$t (X y_1, £)-FSets, the category
of finite sets with a continuous 7% (Cy, &1) *x w8 (X n_1, &)-action. If the claim is
true, then we can conclude that

m (X1,€) = 2PN 1 (O, &) xp -+ i (O ).

To prove the claim, we show that the functor fgl (Y1,Yn_1, a0) := Fe, (Y1)
induces the wanted equivalence of categories.

As in the base step, we first define the actions of 7$*(C1, &) and 7$%(Xn_1, &)
on F¢, (Y7). Since n{*(C1,&1) = Aut(Fy,), clearly 7$%(Cy, &) acts on Fy, (Y1).
Furthermore, the schemes C; and Xy_; are connected, so we can choose the
paths

o1: Faé — FE1 and ony_1: Fbév’l — Fg.

We call p the action of 7" (X n_1,&) ~ Aut(Fg) on F¢(Yy_1) and we define, for
every g € Aut(Fy),
1)—1

7(9) = (oN—10p00] op(g)o(on—10agoarh).

Then 7 is an action of Aut(Fe) on Fg, (Y7).

To prove that F¢, induces an equivalence of categories we construct a quasi-
inverse functor. Given (S, p1,pn—_1) € m$¢(C1, &) * w84 ( X n_1, &)-FSets, there
exists a finite étale cover Y7 of C; such that

Fe, (V1) = (5, p1),



Chapter 1. Fundamental groups of normal crossing curves 25

and a finite étale cover Yy_;1 of Xn_1 such that
Fe(Yn-1) = (S, pn-1).
Thus, we can define the functor
Ge, (S, p1,pn—1) = (Y1, Yy_1,05", olds o o1).

From the construction it is easy to see that G¢, and ﬁgl are quasi-inverse functors.
So far we have computed the étale fundamental group of X', now we finally
compute the étale fundamental group of X.
We observe that a finite étale covering of X corresponds to the datum of a
finite étale covering Y of X" and the isomorphisms a;: F,1(Y) — Fyvs (Y) for

a
every remaining pair of points {a} ,i)fv_l} € I; y—1. Using the same argument
of the base step, where we replace X with X’, we conclude that

Ti(X,€) e 21N 2t (X, ).
Hence, we obtain that
A8 (X, €) e N H N I 8 (T ) e -k TS (O, ).
Moreover, by [Liu02, Prop. 10.3.18|,

N
r=r1+ 7+l = 1= 1= N+1=pu(X) =) pa(C)).
=1

Remark 1.3.12. The statement of the proposition does not depend on the
choice of &;, only the construction of the isomorphism does. Indeeed, since C;
are connected, if €; is another geometric point of C'; then we have

7T(lst (ﬁjv f]) = 7r§t (?J’ €j ) :

In the next chapters the construction of the isomorphism will not matter, thus
we will not specify the choice of geometric points ¢; and we will often write
instead R

78X, ) = 2" xp 7 (CL) xp - xp T (COy).

Lemma 1.3.13 ([SGA 1], Exp I, Cor. 8.4). Let X be a locally Noetherian
connected scheme, X ,eq its associated reduced subscheme and & a geometric point
of X then

The previous lemma let us generalize Lemma 1.3.11 to normal crossing curves.

Corollary 1.3.14. Given X a connected projective normal crossing curve over
an algebraically closed field F' and & a geometric point of X, forj=1,...,N
let C; be the irreducible components of X, C; their normalization and fix a
geometric point &; for every @, then

T (X, &) o ZrrImNFL sy md8 (T, €0) kg - - xp T8 (Cn €N,

where I is the set of singular points of X and 2”‘”‘{“ is the coproduct in the
category of pro-finite groups of |I| — N + 1 copies of Z.



26 Chapter 1. Fundamental groups of normal crossing curves

Proof. By Lemma 1.3.13 we have
(X, €) = 7Y (Xrea, €)-

Since, by definition of normal crossing curve, X,¢q is a semi-stable curve and it
is projective and connected by assumption, we can apply Lemma 1.3.11 and we
get

(X, €) = T (Xyea, &) = L 5p (Cr, &) %p - - p 7 (C, En),

where 1 = pg(Xyed) — Zf\il Pa((Cj)rea) is the difference of the arithmetic genera.
Hence, we conclude by [Liu02, Prop. 10.3.18], which implies that

N
1] = N +1=pa(Xrea) = > Pal(C)rea)-

i=1
O

The pro-étale fundamental group is associated with the category of geometric
coverings, described in Definition 1.2.8. Hence, to prove an analogous result
for the pro-étale fundamental group we need first to show that finite surjective
morphisms are morphisms of effective descent for geometric coverings.

Proposition 1.3.15 ([Ryd10], Thm. 5.19). An universally closed surjective
morphism of finite presentation g: X' — X is a morphism of effective descent
for étale algebraic spaces.

Corollary 1.3.16. Let g: X' — X be a proper surjective morphism of finite pre-
sentation, then g is a morphism of effective descent for étale separated schemes.

Proof. This follows from the previous proposition and [Ryd10, Thm. 5.4]. O

Remark 1.3.17. Geometric coverings of X are étale X-schemes that satisfy the
valuative criterion of properness (see Definition 1.2.8), so they are, in particular,
separated étale schemes over X. Let g be as in Corollary 1.3.16, then a geometric
covering Y’ of X’ with descent data relative to g descends to a separated étale
X-scheme Y. Moreover, since g is proper, Y’ satisfies the valuative criterion of
properness if and only if Y does. Hence, g is a morphism of effective descent for
geometric coverings.

Furthermore, we need a notion of coproduct of Noohi groups.

Definition 1.3.18. Given two Noohi groups G and H, we define Cq g to be the
category of triples (S, pg, pr), where S € Sets and pg and py are continuous
actions of G and H on S, and we set Fg 1 (S, pa,pr) = S to be the forgetful
functor. By [BS15, Example 7.2.6], (Cq,m, Fe,u) is an infinite tame galois
cateogory. We define the coproduct of G and H in the category of Noohi groups
as the Noohi group G xy H := Aut(Fg p).

Remark 1.3.19. The topological free product of two discrete groups is their
abstract free product endowed with the discrete topology. Since by Example
1.1.10 discrete groups are Noohi groups, using the universal property of the
coproduct it is easy to see that the coproduct of two discrete groups in the
category of Noohi groups coincides with their topological free product.
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We give now an alternative description of the coproduct in the category of
Noohi groups. In what follows, given two topological groups G and H, we denote
by G * H their topological free product constructed in [Gra48].

Lemma 1.3.20. For two Noohi groups G and H with a basis of open neighbor-
hoods of 1 given by open subgroups, we set B to be the collection of open subsets
of Gx H of the form

ziliyr N - - Neplnyn,

withn € N, z;,y; € GxH and I'; C G*H open subgroups of GxH. If we restrict
the topology on G H to the topology induced by B, we obtain a topological group
G *p H with a basis of open neighborhoods of 1 € Gx H given by open subgroups.

Proof. Given z,y € GxH and I' C G H an open subgroup, (21, 22) € m~!(zI'y)
implies that
yzo toyte = (27 220y~ ) T €T

Hence, the multiplication is continuous because we have, for every z,y and T,
(21,22) € aTyzy ' x 27 taTy € m™ ! (aTy).

Let i be the inverse morphism, then y~'T'z~! C i~ (aT'y), for every z,y and
every I', thus G x5 H is a topological group.

To conclude, it suffices to show that every set xI'y € B such that 1 € zI'y
contains an open subgroup of G xg H. The condition 1 € zI'y implies that
71yl € T. The set y~'T'y is, by definition, an open subgroup of G xz H.
Moreover, we see that y~'I'y C zI'y because, given § € y~'T'y, we have, for
some v € I,

§=y lyy=a(@"y vy €aly.

O

Corollary 1.3.21. Let G and H be two Noohi groups with a basis of open
neighborhoods of 1 given by open subgroups, then the coproduct in the category of
Noohi groups G *xn H is isomorphic to the Ratkov completion of the topological
group G xg H, defined above.

Proof. By Lemma 1.3.20, G xg H has a basis of open neighbourhoods of 1 given
by open subgroups. Hence, by Proposition 1.1.9, it suffices to prove that the
categories G xy H-Sets and G xg H-Sets are equivalent.

By the universal property of the free topological product, G xy H - Sets
and G x H-Sets are equivalent categories. Furthermore, the identity induces a
continuous morphism G x H — G xg H, which corresponds to a fully faithful
functor G xg H-Sets — G x H-Sets. As we will see in Lemma 2.3.4, an action
p of G*xp H on a set S is continuous with respect to the discrete topology
on S if and only if the corresponding map p: G *p H — Aut(S) is continuous
with respect to the compact-open topology on Aut(S). By definition, a basis
of open neighborhoods of 1 € Aut(S) is given by stabilizers of finite subsets of
S, hence every inverse image of an open neighborhoods of 1 € Aut(S) contains
an open subgroup. This implies that also the map p: G xp» H — Aut(S) is
continuous, and hence that the functor induced by the identity is an equivalence
of category. O
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Before we generalize Lemma 1.3.14 for the pro-étale fundamental of normal
crossing curves we prove the analogue of Lemma 1.3.13.

Lemma 1.3.22. Let X be a locally Noetherian connected scheme, X eq its
associated reduced subscheme and £ a geometric point of X, then

ﬂ_{)roét (X'reda 5) ~ 71_{)roét (X, 5)

Proof. By [SGA 1, Exp. I, Thm. 8.3] the category of schemes that are étale over
X is equivalent to the category of schemes that are étale over X,oq. Thus, it
suffices to prove that an étale scheme Y over X satisfies the valuative criterion
of properness if and only if Y X x X;eq = Yieq does.

Let R be any discrete valuation with fraction field F', then any morphism
Spec(F) — Y factors through Y;eq and similarly any morphism Spec(R) — X
factors through X,.q. Hence, it is clear that, for any diagram of the form

Spec(F) —— Y

| |

Spec(R) —— X,

there exists a unique map Spec(A) — Y that makes the diagram commutative if
and only if there exist a unique map Spec(A4) — Yieq that makes the diagram
between the associated reduced schemes commutative. O

Proposition 1.3.23. Given X a connected projective normal crossing curve over
an algebraically closed field F and § be a geometric point of X, for j=1,...,N

let Cj be the irreducible components of X, C; their normalization and fix a
geometric point &; for every Cj, then

PN (X €) o 2N HL G 18 (O, 60) *y -k T (Clvs ),

Z*|I\—N+1

where I is the set of singular points of X and is the free product of

|[I| = N + 1 copies of Z.

Proof. By Lemma 1.3.22, we can assume that X is reduced and hence that it is
a connected projective semi-stable curve. By Remark 1.3.16, the normalization
is a morphism of effective descent for geometric coverings. Thus, using the same
reasoning of Lemma 1.3.14, we can conclude that

ﬂ_{)roét (X’ §) ~ 7*T *N W{)I.Oét (av 51) *N kN 71.117)1‘0ét (CiNa gN)a

where r = |I| — N + 1. Morevoer, since @ are normal, by Proposition 1.2.20 we
have

nP (G 8) = (T &)
O

Remark 1.3.24. As for the étale case, we will not specify the choice of the
geometric points of C; and we will simply write

TPON(X, €) o 2N sy 78 (C) wy -+ - xS (Cy).
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Remark 1.3.25. With the same argument of Proposition 1.3.23, one can prove
the analogous result for the enlarged fundamental group, defined by Grothendieck
in [SGA 3, Exp.X]. Given G and H two pro-discrete groups, we set their
coproduct in the category of pro-discrete group to be the pro-discrete completion
of G x H and we denote it by G xp H. Then, under the assumptions of the
previous proposition, we find that

7_{_?G‘rAS()(’ 5) ~ Z*‘I‘*N+1 *D ﬂ?t(a) *p kD W?t(m).

Corollary 1.3.26. Let F' be an algebraically closed field and X be a degenerate
stable curve over F, then )

7_‘_{)root (X) ~ Z*T,
where r = pa(X).

Remark 1.3.27. If X is a degenerate stable curve over an algebraically closed
field F', then by Proposition 1.2.19 and the previous corollary we have

7T113roét (X) ~ W?GA3(X).

As shown in Deligne’s counterexample (see [BS15, Example 7.4.9]), if X is not
degenerate this is no longer true. Remark 1.3.25 emphasizes that this is because
the Noohi completion is, in general, not pro-discrete.



Chapter 2

Algebraic hulls

The goal of this chapter is to define, using Tannakian duality, the topological
algebraic hull of a topological group and to describe its properties. This notion
will be used in the next chapters to define the specialization homomorphism.

2.1 Tannakian categories

In this section we give a brief overview on Tannakian categories.

Definition 2.1.1. Given T a category and ®: T x T — T a functor, let I be
an object of T and e an isomorphism e: [ — I ® I, then we say that the pair
(I, e) is an identity object for ® if the functors X — X @ I and X — I ® X are
equivalences of categories.

Definition 2.1.2. A tensor category is a pair (7, ®) given by a category T and
an associative and commutative functor ®: 7 x T — T, for which there exists
an identity object.

Definition 2.1.3. Given (7,®) and (77,®’) two tensor categories, a tensor
functor between them is a pair (F,p), given by a functor F: T — T’ and a
functorial isomorphism ¢xy: F(X) ® F(Y) — F(X ® Y) that is compatible
with associative and commutative constraints and such that if (I, e) is an identity
object for ® then (F(I), F(e)) is an identity object for ®'.

Definition 2.1.4. Let (7,®) and (7',®’) be two tensor categories and F,
G two tensor functors from (7,®) to (7',®’), then a morphism of functors
A: F — G is a morphism of tensor functors if, for all finite families (X;);cr of
objects of T, the following diagram is commutative

®ie] F(XL) — F(®i61 Xz‘)

J{@i)\Xi fo@i X;

®ie[ G(Xi) — G(®ie] Xi) -

Definition 2.1.5. A tensor category (T, ®) is rigid if for every object X of T
there exists an object XV of 7 and morphismsev: X @ XV - 1,6: 1 — X® XV,

30
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such that the compositions

X X®6 X®XV ® X ev@X X,

Vv Vv
XV 28, yVe X XY 28N yv,
are the identity.

Definition 2.1.6. A tensor category (7, ®) is abelian if T is an abelian category
and ® is a bi-additive functor.

Definition 2.1.7. Given a field F, a neutral Tannakian category over F is a
rigid abelian tensor category (7,®) such that End(I) = F and such that it
admits an exact F-linear tensor functor w: 7 — Vecp, which is called fibre
functor.

Since we will deal only with neutral Tannakian categories, we will sometimes
drop the adjective neutral.

Example 2.1.8. Let G be an affine group scheme over a field F, Repy(G) the
category of its finite dimensional representations and wg: Repp(G) — Vecp the
forgetful functor, then (Repp(G),we) is a neutral Tannakian category.

In fact, by the theorem of Tannakian duality, all neutral Tannakian categories
will be of this form. Moreover, the tensor functors between them will be
characterized by the corresponding group morphisms.

Definition 2.1.9. Let 7 be a neutral Tannakian category over a field F' and w
a fibre functor of 7', then we define the functor Aut®(w): F-Alg — Grp on an
F-algebra R to be the set Aut®(¢r ow) of automorphisms of the tensor functor
¢r ow, where ¢pr: Vecpr — Modp is the functor V — V ®@p R.

Theorem 2.1.10 ([DM82], Thm. 2.11). If T is a neutral Tannakian category
over a field F' and w is a fibre functor of T, then

e the functor Aut®(w) is represented by an F-Hopf algebra B, i.e., by an
affine group scheme G = Spec(B) over F,

e the functor w defines an equivalence of category between T and Repp(G),
the category of representations of G.

Definition 2.1.11. Let 7 be a neutral Tannakian category over a field F' and w
a fibre functor, then the group scheme over F' that represents Aut®(w) is called
Tannakian fundamental group of (T,w) and it is denoted by 7 (7T, w).

Proposition 2.1.12 ([DM82], Cor. 2.9). Let G and G’ be two affine F-group
schemes, Repp(G) and Repp(G') the neutral Tannakian categories of their
representations, w and W' the forgetful functors, and F: Repr(G) — Repp(G)

a tensor functor such that w' o F = w, then there exists a unique homomorphism
f: G'" — G such that

F(V,p) = (V,po f) for every (V,p) € Repy(r(T,w)) = T

Proposition 2.1.13 ([DM82], Prop. 2.21). Let T and T’ be two neutral Tan-
nakian categories over a field F', w and ' fibre functors for T and T', G: T — T’
a tensor functor such that w' oG = w and g: w(T',w') = (T ,w) the correspond-
ing morphism of group schemes over F, then
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o g is faithfully flat if and only if G is fully faithful and, for every X € T,
every subobject of G(X) 1is isomorphic to the image of a subobject of X,

e g is a closed immersion if and only if every object of T is isomorphic to a
subquotient of an object of the form G(X), for some X € T.

2.2 Representations of abstract groups

We define, in this section, the algebraic hull of an abstract group and we present
some examples that are relevant for the next chapters.

Definition 2.2.1. Given F a field and G an abstract group, let Repr(G) be the
category of finite dimensional F-linear representations of G and w¢g the forgetful
functor, then Rep(G) is a neutral Tannakian category over F' and w¢ is a fibre
functor. We define the algebraic hull of G over F' as the affine group scheme
G := 7(Repy(G), we).

An explicit example is given by the following well known result.

Lemma 2.2.2. Let G be a finite group, then its algebraic hull G*& over a given
field F is isomorphic to the constant group scheme over F' associated with G.

Proof. Since G is finite, the category of finite dimensional F-linear representations
Reppr(G) is equivalent to the category of finitely generated F[G]-modules, where
F[G] is the F-Hopf algebra generated by the elements of G. Let F¢ be the dual
F-Hopf algebra of F[G], then Repy(G) is equivalent to the category of finitely
generated F'“-comodules. This implies that G*& = Spec(F¢) and hence, by
[Wat79, §2.3], G*# is the constant group scheme associated with G. O

Remark 2.2.3. If G is an infinite abstract group, the previous statement does
not hold. Indeed, if G is infinite, the constant group scheme over F' associated
with G is not quasi-compact, as it is an infinite disjoint union of Spec(k). Thus,
it is not isomorphic to the affine group scheme G*'8.

In general, it is difficult to compute explicitly the algebraic hull of an abstract
group. The next result shows that if F' is a perfect field of characteristic p > 0,
then the algebraic hull over F' of any abstract group is reduced.

Definition 2.2.4. Let A be a ring of characteristic p > 0. We say that Spec(A)
is a perfect scheme if A is a perfect ring, i.e., if the absolute Frobenius Fia: A — A
is an isomorphism.

Note that if Spec(A) is a perfect scheme then it is, in particular, reduced.

Lemma 2.2.5. If F' is a perfect field of characteristic p > 0 and G is an abstract
group, then the algebraic hull of G over F is a perfect scheme.

Proof. The argument we will use is similar to the one in [San07, Thm. 11], but
our case is much simpler.

Let G*& = Spec(B), we denote by Gate) = Spec(BW) the Frobenius twist
of G¥& and by F(): G2lg — Galg(l) the relative Frobenius. Since F' is perfect,
proving that G2 is perfect is equivalent to proving that F(!) is an isomorphism.
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Let V be a finite dimensional F-vector space, we define V(1) to be the F-vector
space whose underlying additive group is V' and whose scalar multiplication is
given by A -v = uw, for the unique p € F such that p? = \.

By Theorem 2.1.10, a G-representation on V corresponds to a B-comodule
structure p: V — V ®pr B. With a G-representation p on V' we can associate
also a BMM-comodule structure on V). Namely, we can define

pM v (V ®r B)(l) ~ VD g BW,
as the map p between the underlying additive groups, which is F-linear because
P\ v) = p(u) = pp(v) = X~ p(v).

We set (—)): Repr(G) — Repp (Galg(l)) to be the functor that associates to
every representation p the corresponding p(!), which clearly is an equivalence of
categories.

Given (V, p) € Repp(G), we define its Frobenius twist as

Ft(V,p) = (VY. Ft(p)),
where Ft(p) is the B-comodule structure defined as the composition

W ideF®
_

v 2 y® g B V) g B.

In terms of representations, if we fix a base of V such that p: G — Aut(V)
is defined by p(g) = (ai;(g)), then Ft(p)(g) is defined by the matrix whose
coefficients are given by

Ft(p)(9) = (a?}(9)) € Aut(VD),

With this second description it is easy to see that, since F' is perfect, the Frobenius
twist is an equivalence of categories.
Furthermore, by construction, the following diagram is commutative

Repp(G='")

(V xﬂ)

Repr(G) It Repp(G) .

Hence, the functor induced by the relative Frobenius F(!) is also an equivalence
of categories. Since the relative Frobenius is F-linear, this implies, by Prop.
2.1.13, that the corresponding F-group schemes G*'# and Galg(l) are isomorphic.

Note that, instead, the functors (—)™) and Ft are not F-linear. O

2.3 Representations of topological groups
Another example of Tannakian categories is the category of continuous repre-

sentations of a topological group. In this section we study the properties of the
affine group scheme associated with this category.
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Definition 2.3.1. Given a field F' and a topological group G, we call continuous

F'-linear representation of G a pair (V, p) given by a finite dimensional F-vector

space V and an F-linear action p: G x V — V that is continuous with respect to
cts

the discrete topology on V. We denote by Rep%°(G) the category of continuous
F-linear representations of G.

It is easy to see that the category RepCFtS(G) is a neutral Tannakian category
and that the the forgetful functor, denoted by wg, is a fibre functor.

Definition 2.3.2. Let F' be a field and G a topological group, then the
topological algebraic hull of G over F is defined as the affine group scheme
G = 1(Repi*(G), wa).

Remark 2.3.3. Let F be a field and G be an abstract group endowed with the
discrete topology, then it is clear that G°* = G*18.

The following lemma is a well-known elementary result in topology theory.
We recall it here as it will be the starting point for the construction of the
specialization functor.

Lemma 2.3.4. Given F a field, V a finite dimensional F-vector space and
p: GxV =V an F-linear G-action on V, the following are equivalent:

(a) p is continuous with respect to the discrete topology on V,

(b) the group morphism p: G — Aut(V), induced by p, is continuous with
respect to the compact-open topology on Aut(V),

(c) the group morphism p: G — Aut(V), induced by p, is continuous with
respect to the discrete topology on Aut(V).

Proof. We recall that a basis of open neighbourhoods of Id € Aut(V) for the
compact-open topology is given by the stabilizers Ug of finite subsets F C V.
Condition (a) is satisfied if and only if for every v € V the set

A{v} = {(g,’UJ) €Gx V‘ p(gaw) :U} CGxV

is open in G x V. For every v,w € V, let Uyr,,; C Aut(V) be the stabilizer of w,
then we have

@ if v is not in the orbit of w
Bv,w = {QEG| p(g,w):v}: ~_1 .
g-p " (Upwy) for g € By u, otherwise .

Hence, if condition (b) is satisfied, the set B, ,, is open in G for every v,w € V.
Since

Apy = | Bow x {w}) cGxV,

it is clear that (b) implies (a).
On the other hand (b) is satisfied if and only if for every finite subset F' C V
p~Y(Ur) C G is open. By condition (a), the set

Ap = p H(F) ={(g,w) € G x V| p(g,w) € F}
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is open. Hence, in particular, for every v € F the set Ap N (G x {v}) is open.
Let p1: G x V — G be the first projection, then

p H(Ur) ={g € G|p(g,v) € F, for every v € F} = ﬂ p1(Ar NG x {v}).
veF

Since p; is an open map, it follows that (a) and (b) are equivalent.
It remains to prove that (b) and (c) are equivalent. Let us choose a basis
{e1,...,en} of V, then the singleton

{Id} = U{el} n---N U{en} C Aut(V)

is open for the the compact-open topology on Aut(V'). Hence, for every automor-
phism ¢ € Aut(V) the singleton {¢} is open for the the compact-open topology
on Aut(V). This implies that the compact-open topology on Aut(V') coincides
with the discrete topology, so, clearly, (b) and (c) are equivalent. O

In the next statement we describe the topological algebraic hull of a pro-finite
group. This will be later applied to compute the topological algebraic hull of
the étale fundamental group of a scheme.

Lemma 2.3.5. Let F' be a field and m = @l m; a complete pro-finite group with

surjective transition maps, then 7, the topological algebraic hull of © over F,
is isomorphic to F- group scheme

@(M)F,

where (m;)F are the constant group schemes over F associated with the finite
quotients ;.

Proof. Since m; is finite, 7% = 7% and hence, by Lemma 2.2.2, 75 is the

constant group scheme over F' associated with m;, which we denote by (m;) .
The natural map pr,: m — m; induces a tensor functor between the categories
of continuous representations

Fy,: Rep®(m;) — Rep§*(7), Fy, (V. p) := (V. popry)
and, by Proposition 2.1.12, it induces, for each 4, a morphism of F-group schemes
i ™% = (1) p.
Hence, there exists a natural morphism of F-group schemes

o: T l'&n(m—)p,

which corresponds to a functor

F,: Repp(lim(m;)p) — Repp(7%) ~ Rep}ts(ﬂ).

lim
—
K3

By hypothesis, the maps pr; are surjective and this implies that the functor
F,, is fully faithful. Furthermore, it is easy to show that F,, satisfies the criterion
of Proposition 2.1.13.(i). Thus, the corresponding morphism of F-group scheme

; is faithfully flat and, in particular, it is surjective.
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Let us set 7 = Spec(A) and (m;) p = Spec(B;). Since (m;)F is reduced, the
affine morphism ¢; corresponds to an injective morphism of F-Hopf algebras
p;: B; C A. Then the induced map li iBi — A, which corresponds to the
morphism ¢, is injective because filtered colimits of rings are left exact. By
[Mil12, VI, Thm 11.1], we can conclude that ¢ is faithfully flat, and hence by
Proposition 2.1.13.(i), F,, is fully faithful.

It remains to show that F,, is essentially surjective. By Lemma 2.3.4, given an
object (V, p) € Rep%®(7), the map p: 7 — Aut(V), induced by p, is continuous
with respect to the discrete topology on Aut(V'). Thus, p factors through a finite
quotient of 7, say m;. This means that there exists a group morphism

pi: m — Aut(V) such that p; o pr; = p.
In particular, this implies that the 7**-action on V corresponding to p, which,
by abuse of notation, we denote again by p, factors through the (m;)p-action p;
induced by p;.

Let p;: limi s — 7% be the natural morphism of F- group schemes, then,
by construction, the following diagram commutes.

Hence, we have

F,(V.piop;) = (V.piopiop) = (V,piopi) = (V,p).
O

Remark 2.3.6. The group scheme @Z(m) r is often denoted in the literature
as 7w, even though it is not the constant group associated with m over F'. We
will also follow this notation.

Remark 2.3.7. We can generalize the previous lemma to pro-discrete groups.
Namely, we can prove that, if 7 = limi 7; is a complete pro-discrete group with
surjective transition maps, then its topological algebraic hull over a given field
F is isomorphic to the F-group scheme

@ ’/T?lg.

%

lg

Indeed, by Lemma 2.2.5, the group schemes 7; ¢ are reduced and hence we can

apply the same argument of the previous lemma.

The argument of Lemma 2.2.5, can be easily translated in terms of topological
algebraic hulls and we find the following result.

Lemma 2.3.8. Let F' be a perfect field of characteristic p > 0 and G a topological
group, then the topological algebraic hull of G over F is a perfect scheme. In
particular, G is reduced.
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2.4 Free product of algebraic hulls

We are interested in studying the topological algebraic hull of the pro-étale
fundamental group of a projective semi-stable curve. As saw in the previous
chapter, this essentially consists in studying the topological algebraic hull of a
free product of topological groups. In this section we introduce the notion of free
product of affine group schemes and we show that the free product of topological
algebraic hulls is compatible with the free product of topological groups.

Definition 2.4.1. Given 7; and 73 two neutral Tannakian categories over a
field F' and wy, wo respectively fixed fibre functors, we set 7; X T to be the
category whose objects are given by triples (V, p1, p2), with

e V € Vecp,
e p1: m(T1,w1) = GLy an F-linear 7 (77, ws)-action,
e py: m(T2,ws) — GLy an F-linear 7(7z,ws)-action,

and whose morphisms from (V, p1, p2) to (W, 1, 72) are given by F-linear mor-
phisms p: V — W that are 7(71,w1)-equivariant and 7 (73, ws)-equivariant.
We call 71 xg T the Tannakian product category of Ty and Tz over F.
If for ¢ = 1,2 @;: T; = Repp(n(T;,w;)) is the equivalence of categories
induced by w;, we call projections the functors

pit Ti xp T2 = To, pi(V, p1, p2) = @5 (V. i),
where w; 1is the quasi-inverse of @;.

Remark 2.4.2. Given (71,w;) and (72, w2) two neutral Tannakian categories
over a field F, it is easy to check that their Tannakian product category over
F,T1 xp Tz, is a rigid abelian tensor category. Moreover, the forgetful functor
forg(V, p1,p2) = V is a fibre functor, hence T; x g Tz, is a neutral Tannakian
category.

The following lemma explains the universal property that the Tannakian
category (71 X Tz, forg) satisfies.

Lemma 2.4.3. Let (T1,w1) and (Ta,w2) be two neutral Tannakian categories
over a field F', then, for every neutral Tannakian category (T,w) over F and
every pair of tensor functors

Gi:T—=Tiand Go: T — T

such that

w=w10G1=w20G27

there exists a tensor functor, unique up to natural isomorphisms,

GZT—)ﬂXk']—Q
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such that, for i = 1,2 p; o G ~ G; and, up to these natural isomorphisms, the
following diagram commutes,

G2

T -
e
A

Dp1
¢, TixpTh —2— T

2 Je

To —2 5 Vecp .

Proof. For i =1,2 and (V, p1,p2) € T1 X T2, we set
ai(V, p1,p2) = (V, pi) € Repp(n(Ti,w;)) and forg,(V, p;) =V € Vecp.

By Theorem 2.1.10 and Proposition 2.1.12, to prove the statement it is equivalent
to check that, for every pair of tensor functors (G1, G2)

G1: Repp(n(T,w)) = Repp(m(T1,w1))

Ga: Repp(n(T,w)) = Repp(m(Ta, w2))

such that for ¢ = 1,2
forg = forg, o Gj,

there exists a unique tensor functor
G: Repp(n(T,w)) = T1 xr T2
such that the following diagram commutes

Ga

Ti xp To —2— Repp(n(Ti,w1))

l‘h J{forg1

Repp(7(Ta,w2)) ————— Vecr .
If we set, for (V,p) € Repp(n(T,w)),
(Vi p1) := G1(V, p) and (Va, p2) := G2(V, p),
then we get for i = 1,2
V = forg(V, p) = forg o Gi(V, p) = V.
Thus, the functor G: Repp(n(T,w)) = T1 X T2 has to be

G(V,p) = (V. p1,p2)-
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Definition 2.4.4. Given G; and G, two affine group schemes over a field F',
we define the free algebraic product of G1 and Gy over F as the affine group
associated with the Tannakian product category Repyr(G1) X r Repp(Ga). We
denote the free algebraic product of G; and G5 over F by G1 xp Gs.

Lemma 2.4.5. Let F be a field and G1, Go two abstract groups, them the
algebraic hull over I of their free product G1 x Gy is isomorphic to G?lg * Gglg,
the free algebraic product of the algebraic hulls of G1 and G5 over F'.

Proof. By the properties of the free product of abstract groups, the category
Repr(G1*G2) is equivalent to the category 7 whose objects are given by triples
(V7 P1, p2) with

e V € Vecp,
e p1: G — GL(V) a Gi-action,
e po: Gy — GL(V) a Ge-action,

and whose morphisms from (V p1, p2) to (W, 71, 72) are given by F-linear maps
p: V — W that are both GG1-equiviariant and Gs-equiviariant.

By Definition 2.2.1, for ¢ = 1,2, Repp(G;) is equivalent to RepF(Gflg). Thus,
it is clear that 7T is equivalent to the category Rep F(szlg) X Rep F(Gglg) and
the conclusion follows by Theorem 2.1.10. O

Lemma 2.4.6. Let F a field and G1, Gy two topological groups, then the
topological algebraic hull over F of their topological free product is isomorphic
to G§* xp GS¥, the free algebraic product of the topological algebraic hulls of G1
and G over F.

Proof. The statement follow from Definition 2.3.2 and the same argument of
Lemma 2.4.5. O



Chapter 3

Descent of sheaves with
meromorphic data

Notation. The following notation will be used throughout all these last two
chapters.

o We fix k an algebraically closed of characteristic p > 0,

e we set A to be a complete discrete valuation ring of characteristic p with
residue field k,

e we denote by K the fraction field of A and we set S = Spec(A).

The goal of this chapter is to construct, given a projective semi-stable curve X
over S, a functor from Rep$ (7P°%( X)), the category of continuous K-linear
representations of the pro-étale fundamental group of Xy, to Coh(Xg), the
category of coherent sheaves on the generic fibre X of X. The main idea is to
associate with a continuous representation of 7°"°®(Xy, £) a coherent sheaf with
meromorphic descent data, which will be defined following [Gie73|, and then

prove that this sheaf descends to a coherent sheaf on Xy

3.1 Meromorphic descent data

In this section we introduce the notion of coherent sheaves with meromorphic
descent data and we state [Gie73, Prop. 1], which holds for a stable curve with
degenerate closed fibre. In the next sections we will prove analogous results for
projective semi-stable curves with smooth generic fibre.

The setting of [Gie73] is based on the construction illustrated in [Mum?72,
pg. 41], where given S as above and X a stable curve over S with degenerate
closed fibre X, the author constructs the universal covering Y, of Xy. For our
purposes the computational description of Yy in [Mum?72, §3] and [Mum?72, pg.
41] is not relevant, its geometrical description will instead play a very important
role in the thesis. After illustrating the main properties of Yy, we will prove a
lemma that justifies the adjective universal used by Mumford.

40
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Proposition 3.1.1 ([Mum72|, Step I-V). Given X a stable curve over S with
degenerate closed fibre Xg, there exists an Xg-scheme Yy such that

1. Yy — X is an étale surjective morphism;

2. Yo is a connected infinite union of P}.;

3. pa(Yo) = 0;

4. the group Aut(Yy|Xo) is a free group with r = p,(Xo) generators, i.e.

Aut(Y0|Xo) ~ 7.

Remark 3.1.2. If X is a degenerate stable curve over the field k, by Corollary
1.3.26 and Remark 1.3.27, we have that

7_‘_Ilaroét (XO) ~ 71_?GAZS (XO) ~ 7XT.

Since 7P°%( X)) is a discrete group, the left regular 7" (X, €)-action on the
set S = POt (Xo,€) is continuous with respect to the discrete topology on S.
Thus, the set W{’met (X0, &), endowed with the left regular action, is an object of
the category 72" (X, £)-Sets.

The following lemma gives us a geometrical interpretation of Yj.

Lemma 3.1.3. If X is a stable curve over S with degenerate closed fibre Xy
and & is a geometric point of Xo, then the scheme Yy, given by the previous
proposition, is a geometric covering of Xo. Moreover, it corresponds, via the
equivalence )

Covy =~ 7% (X, £)-Sets,

to the set T°%(Xy,€) endowed with the left regular action.

Proof. From Proposition 3.1.1.(1)-(2) it follows that Y; satisfies the conditions of
Definition 1.2.8 and thus it is a geometric covering of Xy. Since Y} is connected,
it corresponds to a set S with a transitive action p of 7P (Xy, £).

As explained in Remark 3.1.2, the set 72"°%(X,,¢) endowed the regular
representation is an object of the category 7% (X, £)-Sets. Fixing an element

s € S, we can define the surjective 7" (X, £)-equivariant map

oo TN (X0,8) = S, wslg) = p(g)(s).

By Corollary 1.2.16, the set 7% (X, ¢) endowed with the regular action
corresponds to a geometric cover Zy of Xy and ¢ corresponds to a map of
Xo-scheme @,: Zyg — Yy. By construction, Zj is étale over Yy and ¢, satisfies
the valuative criterion of properness, hence Z; is a geometric covering of Yj.
On the other hand, by Proposition 3.1.1.(3) and Proposition 1.3.23, we can
conclude that
Wi)rOét(Yb) - 1.

Thus, every geometric covering covering of Y; is isomorphic to a disjoint union
of copies of Yp. Since by construction Zj is connected, it follows that ¢, is an
isomorphism of Xy-schemes, and hence , is an isomorphism of 72" (X, £)-Sets.

O
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Definition 3.1.4. If X is a stable curve over S with degenerate closed fibre
Xo, we call the universal cover of Xy the geometric covering Yy of Xy that
corresponds to the set 777" (X, ) endowed with the regular action.

By the previous lemma, the universal cover of X is isomorphic to scheme
constructed by Mumford, hence the notation is not ambiguous.
Remark 3.1.5. The left regular action on S = 72" (X, £) is continuous with
respect to the discrete topology on S if and only if the group 7% (X,£) is
discrete. By Proposition 1.3.23, this condition is satisfied if and only if all the
normalizations of the irreducible components of X, have trivial étale fundamental
group, that is, if and only if X is degenerate. Thus, if X is not degenerate
7P (X, €) is not an object of the category (X, £)-Sets, and hence we
can not define Yj as in Lemma 3.1.3.

Before defining coherent sheaves with meromorphic descent data we recall
how to associate with a geometric covering of X, a formal étale scheme over X,
the completion of X along Xj.

Proposition 3.1.6 ([SGA 1], Exp. IX Prop 1.7). Let X be an S-scheme and X
the completion of X along its closed fibre, then category of étale schemes over the
closed fibre Xo and the category of étale formal schemes over X are equivalent.

Note that [SGA 1, Exp. IX, Prop 1.7] does not require the étale morphisms
to be finite. In particular, for any geometric covering Yy of X there exists an
étale formal scheme ), unique up to X-isomorphisms, which reduces to Yj.

Definition 3.1.7. Let X be an S-scheme, X its closed fibre and X the com-
pletion of X along Xj, then we denote by Et ¢ the category of formal schemes

that are étale over X. We define Covg to be the full subcategory Et ¢ given by
the essential image of Covx, via the equivalence in Proposition 3.1.6. We call
the objects of Cov ¢ formal geometric coverings of X.

Remark 3.1.8. It is important to note that, while the category of finite étale
Xo-schemes is equivalent to the category of finite étale X-schemes, the categories
Covy, and Covy are not equivalent.

A counterexample is given by stable curves over S with smooth generic
fibre and degenerate closed fibre. Indeed, if X is such a curve, then, by [Liu02,
Prop.10.3.15 (¢)], X is a normal scheme. Hence, by Proposition 1.2.20,

7_{_inroét()() ~ ﬂ_iat(X)
and, in particular, 7"°°(X) is profinite. On the other hand, by Proposition
1.3.23, w°%(X) ~ Z*", with r = p,(Xo) > 2. Thus, the groups 7" (X) and
7" (X() are non isomorphic Noohi groups and, by Proposition 1.2.14, this
implies that the categories Covx, and Covx are not equivalent.

Remark 3.1.9. Let Y beAa formal geometric covering of X, then ) is a S-
scheme via the map ) -+ X — X — S, and the composition Y — S = Spec(A)
corresponds to a morphism A — I'(), Oy). Hence a coherent Oy-module is a
sheaf of A-modules.
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Definition 3.1.10. Let X be an S-scheme, ) a formal geometric covering of
X and F a coherent sheaf on ), then meromorphic descent data on F are given
by a collection of elements

hy € H(Y, Homo,, (F, g*F) @4 K), g € Aut(V|X)
that satisfy:
® g*hg o hy = hgog for every g, ¢ € Aut(Y|X),
e hig =Idrg, k-

Definition 3.1.11. Let X be an S-scheme and Y a formal geometric covering of
X then, given {F, hy} and {G, k,} two coherent sheaves on ) with meromorphic
descent data, a morphism of meromorphic descent data from {F, hg} to {G, ky}
is given by an element

f e BV, Homo,, (F,G) ®4 K)
such that for every g € Aut(Y|X)
kgof:g*(f)ohg'

We denote by Coh™()) the category of coherent sheaves on ) with mero-
morphic descent data.

Proposition 3.1.12 (|Gie73], Prop. 1). Let X be a stable curve over S with
degenerate closed fibre and smooth generic fibre, Yy the universal covering of Xo
and Y the formal geometric covering of X corresponding to Yy, then Coh™ ()
is equivalent to the category Coh(X ) of coherent sheaves on Xy .

Theorem 3.1.13. If X is a stable curve over S with degenerate closed fibre and
smooth generic fibre, then there exists a functor

Rep g (2% (X, €)) — Coh(X k).

Proof. Let Yy be the universal covering of Xo, ) the formal geometric covering
of X corresponding to Yy and p: Aut(y|X) — GL,(K) be a representation of
Aut(Y|X). Since, for every g € Aut(Y|X), we have g*Oy = Oy, we can define
meromorphic descent data {hf} on O, as follows
hﬁ
Op(U)@a K= 0pU)@a K" —— Oy({U) @4 K" = 0%(U)®4 K
fev e f@plg)(v) .

Clearly, we have that g*h” 9 © hp = h; ‘og and hyq = Idoa;@AK. Thus, we can set

F'(p) := {O%, h2} € Coh™ ().

Let ¢: (K™, p) — (K ™ 1) a morphism of representations. By construction
F'(p) = {O%, hf} and F'(1 ) = {O%, h}, then we define F'(p) as follows:

Oy (U) @4 K* 2 04(U) 04 K™

f®v — fRe).
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Since ¢ is a morphism of representations, we get
hg o F'() = g"F'() o hf.

Hence, F’(ip) is a morphism of meromorphic data. This implies that F’ defines a
functor R
F": Repg (Aut(Y|X)) — Coh™ ().

Moreover, by Proposition 3.1.1, we have that
Aut(V]|X) ~ Aut(Yp| Xo) ~ Z*" ~ 7P (X, €).

Let v: 7P (Xo) — Aut(Y|X) be such an isomorphism, then pre-composing
with 1nduces an equivalence of categories

F: Rep (m7°(Xo, €)) — Repy (Aut(V]X)).

Hence, we can define the following functor
F' 0 7: Repyc (n]"** (X0,£)) — Cob™ (V).

Finally, by composing this functor with the equivalence of categories in Proposi-
tion 3.1.12 we obtain the desired functor. O

The aim of the next sections is to generalize this result to any projective
semi-stable curve over S with smooth generic fibre.

3.2 Coverings associated with representations

From this section on, given S = Spec(A) as before, we set X to be a projective
semi-stable curve over S and we denote by X its closed fibre and by X its
generic fibre.

The first obstacle we encounter while trying to generalize the argument of
Theorem 3.1.13 to projective semi-stable curves is that if the closed fibre Xy is
not degenerate we can’t construct its universal covering, as explained in Remark
3.1.5. We overcome this first issue by associating with each representation a
specific geometric covering of Xj.

We start by analyzing the category Rep$e (7" (X, €)) of continuous repre-
sentation of 7" (Xy, €), defined as in Definition 2.3.1.

Lemma 3.2.1. Given G a topological group with a basis of open neighborhood of
1 given by subgroups and G its Raikov completion, there exists an equivalence
of categories

RepCts(GR) — Rep$®(@).

Proof. As in Example 1.1.8, we see that there exists a continuous morphism
o:G— GR, whose image is dense in G and that o induces a fully faithful
functor

5: Rep$*(GT) — RepS¥(G).

Let (V,p) be a representation of G, then, by Lemma 2.3.4, p induces a
morphism p: G — Aut(V) that is a continuous with respect to the discrete
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topology on Aut(V). As remarked in Example 1.1.10, groups with discrete
topology are Noohi complete and hence, by [AT08, Prop. 3.6.12], p admits an
extension to p: GF — Aut(V) such that p oo = p. This implies that & is also
essentially surjective. O

Corollary 3.2.2. Let § be a geometric point of Xo and, fori=1,...,N, let
C; be the irreducible components of Xog and C; their normalizations, then there
erists an equivalence of categories

Repf™ (" (X0, €)) ~ Repf* (Z*17+ " (C1) + -4 7 (C)).
Proof. By Proposition 1.3.23, we have that, for r = |I| — N + 1,
TN (Xo, &) = Z sy 75 (C) #n -+ w7 (Cly).

Moreover, by Corollary 1.3.21, Z*" xy " (C1 ) *y - - - xn 75" (Cv) is isomorphic
to the Raikov completion of Z*"xg ¢t (C1) x5+ - -*g st (Cy ), defined as in Lemma
1.3.20. Thus, Lemma 3.2.1 implies that

Rep%s(ﬁfmét (X0,8)) =~ RepS¥(Z*" x5 7l (Ch) x5 - - - %5 7 (Cy)).

Futhermore, as in Corollary 1.3.21, we see that the identity induces an
equivalence of categories

Rep$P(ng) ~ Rep3 (Z*" + w4 (C1) % - - - x S (Cy)).
O

Remark 3.2.3. With the same reasoning of Lemma 3.2.1, one can show that, if
G is a given topological group and G is its pro-discrete completion, then there
exists an equivalence of categories

Repi®(G”) = Repi(G).

By Proposition 1.2.19, the pro-discrete completion of 7" (X, £) is isomor-

phic to m$943(X,, £), hence it follows that
Repgd(m}"** (X0, €)) = Rep® (nP 9% (X0, €)).

Note that this equivalence of categories holds even in the cases, presented for
example in [BS15, Example 7.4.9], where 7P (X, £) and 7$G43(X,, €) are not
isomorphic as topological groups.

We proceed by associating with a continuous K-linear representation of
7P (X, €) a geometric covering of Xg. The notation that we introduce will
be used repeatedly in this chapter and in the following one.

Let us fix an element (K™, p) € Rep®® (72" (Xo, £)). By Corollary 3.2.2 and
Lemma 2.3.4, p corresponds to a K-linear representation

p: X %7l (CL) % - - x 1 (Cn) — GL, (K),

which is continuous with respect to the discrete topology on GL,, (K).
Thus, by the universal property of the free product, (K™, p) corresponds to
the data
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o p¥s: 7 — GL,(K) fori=1,...,r,
. p?t: 7¢%(C;) = GL,(K) for j =1,..., N,
where p?is and p?t are group morphisms that are continuous with respect to the

discrete topology on GL,,(K).
By construction, each morphism p?t factors through the finite quotient of

7¢%(C;) given by G; = 7$%(C;)/U, where U = p?tfl(ld). Hence, we have the
following commutative diagram

G;
~ &t

aj 5;

&t
Pj

¢ (C;) ——————— Gl (K) .

In particular, (K™, p) induces to the following data
o pds: 7 — GL,(K) fori=1,...,r,
e 5;":Gj = QL,(K) for j=1,...,N,

which correspond, by the universal property of the free product, to a K-linear
representation

p: L *x Gy * -+ x Gy — GL, (K),

which is continuous with respect to the discrete topology on GL, (K).

Clearly, Z*"x Gy % - - - x G is a quotient of Z*" % 7$t(Cy)*- - %" (Cy). Since
it is a discrete group, by [AT08, Prop. 3.6.12] it is also a quotient of 7?"°¢*( X, £)
and we denote the quotient map by

q: (X0, €) = T xGrx -+ Gy

By Proposition 1.2.14, the set Z*" * G * - - - x G, endowed with the action
given by ¢, corresponds to a connected geometric covering of Xy, which we
denote by Y.

Definition 3.2.4. We set ), to be the geometric covering of X that corresponds
to the geometric covering Y of X defined above.

By construction, we see that
Aut(V,X) =~ Aut(YL|Xo) = (Z* % Gy * - - % G )°P. (3.2.5)

Similarly, we can endow the set Gy x --- x Gy with a 7" (X)-action, by
composing the map ¢ with the quotient map

a: 7" xGrix-xGn = G X x Gy.
Hence, we can associate with Gy x --- X G a finite étale cover Zg of Xg.

Definition 3.2.6. We set Z, to be the finite étale covering of X that corresponds
to the finite étale covering Z{ of X, defined above.
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We can observe that
Aut(Z,]X) ~ Aut(Z8|Xo) ~ (G x --- x Gn)°P. (3.2.7)
Moreover, ), — X factors through ¢: Y, — Z, and we have
Aut(V,|Z,) ~ Aut(Y| Zf)) ~ ker(a)°P. (3.2.8)

Remark 3.2.9. Since this thesis focuses on the categories of continuous represen-
tations of the above groups, the isomorphisms in Equation 3.2.5, Equation 3.2.7
and Equation 3.2.8 will not play a role, hence we will treat them as equalities.

It is instead important to distinguish the left and right multiplication in
the groups, so we use two different notations. We denote the multiplication
in ker(«)°P by w o w’, while when we do not write any symbol (i.e., ww'), we
refer to the concatenation in ker(a). We will use the analogous notation for
(Z*" %G1 % xGny > Gy X -+ x GN)°P and (G1 X --- x GN)°P.

Remark 3.2.10. The group ker(a) is torsion free. Indeed, by the properties of
the free product, if w € ker(a) is a torsion element, then it is of the form

w = vg;v~ " for some v € Z*" x 7l (C1) % - x 7 (Cy), g5 € G-

Since a(w) = (1,...,1,,g5,1,...,1) and w € ker(a), we conclude that g; = 1
and hence w is the neutral element of Z*" x w$*(C}) % - - - % 7$*(Cl), which is the
empty word.

3.3 Infinite descent

In the previous section we have constructed, for a projective semi-stable curve
X over §, the formal geometric coverings ), and Z, of X associated with a
given representation (K, p) € Rep$ (7% (X, ¢)). The aim of this section is
to prove that coherent sheaves on ), with meromorphic descend data descend
to coherent sheaves on Z,.

Definition 3.3.1. Given X an S-scheme, ) and Z two formal geometric cover-
ings of X, gy;z: Y — Z an X-morphism and F a coherent sheaf on ), we call
meromorphic descent data relative to Z on F a collection of elements

hy € HY(Y, Homo,,(F,g*F) ®4 K), g € Aut(Y|2)
that satisfy:
® g*hg o hg = hgog for every g,¢" € Aut(Y|Z);
e hig =Idrg, k.

We define morphisms of meromorphic descent data relative to Z as in
Definition 3.1.11 and we denote by Coh™ (Y|Z) the category of coherent sheaves
on )Y with meromorphic descent data relative to Z.
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Definition 3.3.2. Given X an S-scheme, Y, Z and qy,z: Y — Z as above, let
{F, h e Aut(y|z) be a coherent sheaf on ) with meromorphic descent data
relative to Z. We say that {F, hy }weaut(y|z) descends to a coherent sheaf on
Z if there exists G € Coh(Z) such that

{F hwtweawyiz) = {6529 Bl bweaw ) 2),
where hd : q;‘,/Zg — w*q;/zg are the natural isomorphisms.

In this section we work mainly with meromorphic descent data on Y, relative

to Z,, where ), and Z, are the coverings of X associated with p constructed in
Definition 3.2.4 and Definition 3.2.6.

The following proposition is a generalization of [Gie73, Prop.1].

Proposition 3.3.3. Given X a projective semi-stable curve over S and a co-
herent sheaf {F, hw}weAut(yp\Zp) with meromorphic descent data relative to Z,,
there exists a coherent sheaf {F', kw}au(y,|z,) with meromorphic descent data
relative to Z, that is isomorphic to {F, hw bwe Auny,|z,) and such that

kw € HY(X, Homo,, (F',w*F")).

Proof. Asin |Gie73, Prop.1], it suffices to show that for any Aut(),|Z,)-invariant
open U C ), there exists a quasi-compact open V' of ), such that

e 1/ is not contained in U,
e VNuwV CU for all w € Aut(V,|2,), w # Idy, .

By Proposition 1.3.23, an irreducible component of ), corresponds to an
orbit of the left Gj-action on Z*" x Gy * --- » Gy, for some j € {1,...,N}.
Given a word s € Z*" « G1 x - - - x G, we denote )’ the irreducible component
of Y, corresponding to the Gj-orbit of s. Since the action of ker(a)°® on
Z*" % Gy * -+ x G is defined by right concatenation, given ygj an irreducible
component of Y, and w € ker(a)°?, w # Idy,, we have

w(Gjs) = Gysw # Gjs and w(YVl) = Vi, # Vi

Hence, the action of ker(a)°? on the set of irreducible components of ), is free.

Let us suppose that we are given an open Aut(Y,|Z,)-invariant set U C ),
then for the construction of V' there are two possible cases.

First case: there exists € ), \ U that is a non-singular point.

We set )V, to be the irreducible component of Y, containing x, I, to be the
set of the singular points of ), and we define V = Y, \ I,. By construction,
V is not contained in U. Since ker(«)°P acts freely on the set of irreducible
components, for all w € ker(a)°P, w # Idy,, we have

VNnwV =0cU.

Second case: Y, \ U C I, where I is the set of singular points of V,.

Let x € Y, \ U, then z belongs to exactly two irreducible components of ),
say V! and Y!. Let I, be the set of singular points of V! UY/ different from ,
then we set V = (V' UY!)\ I,. Clearly, V is not contained in U. Since ker(a)°P
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acts freely on the set of irreducible components, for any non-trivial w € ker(«)°P
we have

VawV = ((ViN Vi) U VN Y5,)) \ {sing. pts}.

Thus, there are three possibilities:
o VI #Yiand Vi, # V!, that implies VNwV =0 C U,
o VI =Yiand V!, # V!, that implies VNwV = Y\ {sing. pts of Y} C U,

o V. #Yiand Vi, = VI, that implies VNwV = P!\ {sing. pts of Y!} C U.

Note that the case where )}, = V! and V!, = V! does not occur because it
would imply that w? =T dy,, which is not possible because by Remark 3.2.10
ker(«)°P is torsion free. O

Remark 3.3.4. The action of (Z*" x Gy x - -- x Gn)°P on the set of irreducible
components of Y, is not free. Indeed, if } is the empty word and :)Jé is the
irreducible component of ), that corresponds to G; C F¢(Y,), then for every
g; € Gj, ‘ . ‘
9;(Vy) =Y, =Y
The following theorem generalizes [Gie73, Prop.2].

Theorem 3.3.5. Any coherent sheaf {F, hw}weAut()Jp|Zp) on Y, with meromor-
phic descent data relative to Z, descends to a coherent sheaf on Z,,.

Proof. Asin [Gie73, Prop.2], it suffices to prove that there exists a quasi-compact
open subscheme T of Y, such that its Aut(),|Z,)-translates cover Y,.

We fix a non-trivial word w € ker(c)°P. Note that the irreducible components
of the form Y, with a(s’) = a(s), defined as in the previous thereom’s proof, are
ker(c)°P-translates of Y7 _. Indeed, the word t = s~lw~1s’ € ker(a)°P satifies

t(yvi)s): tjust: Z/'

Given an element g = (¢1,...,g9n) € G1 X --- x G, we denote by o(g) the
word g1 - gn € Z"" x Gy * - - - * Gy with letters g; € G; and we define the map

0:G1 X - XGN 2L xGyx---*xGn,0(91,---,9N) =91 " gN-

We denote by 1; the word whose only letter is the element 1 € Z belonging to
the i-th copy of Z. Then we set

N r

_ J J

= U (ywa(m v tha(.q))'
j=1geG1 x---xXGN i=1

and we define I to be set of points of T that are intersection points with
irreducible components of ), not contained in 7. Finally, we set

T =T\ I¢.

By construction, 7" is an open quasi-compact sub-scheme of V,, so it suffices
to prove that its ker(a)°P-translates cover V.
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Given s € Z*" x Gy % - - - * G, we set g5 := a(s). Since a(s) = a(wo(ygs)),
there exists ¢t € ker(«)°P such that

t(yi)a(gs)) = yg

This implies that

yp = U t(TG)

teker(a)oP

To conclude, it suffices to prove that for every = € I there exist y € T and
t € ker(«)°P such that t(y) = z. A point z € I is, by definition, an intersection
point of an irreducible component of Tz and an irreducible component of Y,
not contained in Tz. We assume that x € yio(g) N Y% for some j, k=1,...,N,

s’ € Z*"xG1x--xGy and g € G1 X --- X G . We recall that ij(g) corresponds
to the G;-orbit

Gijwo(g) C Fe(Y,) =Z*" Gy %--- %Gy,
while yf, corresponds to the G-orbit
Gis' CFe(Y,) =Z" Gy x---xGn.
Hence, the point z corresponds to the identification of two words of the form
we, = hjwo(g) € Gywo(g) and wy, = hiys' € Gis'.

However, by Proposition 1.3.23, the identification of the points in the different
orbits is given either by the identity or by the action of Z*" on Z*" xG1 - - - *xG .
Hence, there are only two possibilities:

1. wg, = wy,, which implies hys" = hjwo(g),
2. there exists i such that w,, = l;w,,, which implies hys’ = 1;h;wo(g).

Let a € X be the singular point over which z lies and set ¢/ = a(hjwo(g)),
then we define y € F,,()),) to be the point corresponding, via a chosen path from
& to a, to the word

wy, =wo(g') € Gjwo(g') C Fe(V,).

Since a(wy) = a(w,, ), there exists ¢ € ker(a)°? such that t(w,) = w;, which
implies t(y) = x. It remains to prove that y € T

If 1. is satisfied, the word w,, is identified to the word wo(g") € Grwo(g’)
and we have

y e yi)o(g’) N ygf’(gl) cT.

If 2. is satisfied, the word w,, is identified to the word 1,wo(¢") € Grwo(g’)
and we have

Yy S yi)o_(g,) N yﬁwg(g/) C T

The case where x is an intersection point of two irreducible components of
the form Y N Y% follows by the same argument. 0O
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Lemma 3.3.6. Let {F, hw weauw(y,|z,) and {F', iy, weau(y,|z,) be two coher-
ent sheaves on Y, with meromorphic descent data relative to Z, and assume that
they descent to the coherent sheaves G and G’ on Z,, then we have the following
group isomorphism

Homo, (G,G") @4 K ~ Hom({F, hy}, {F', 1, }).
Proof. The result follows by the same reasoning of [Gie73, Prop.2]. O

Proposition 3.3.7. Given W a finite étale covering of X and W — X the
corresponding finite étale covering of X, let Cth(W) be the category whose
objects are coherent sheaves on W and whose morphisms are defined by

Hom ¢, () (F, G) := Homo,, (F,G) ®a K.

Let Wi =W xg Sk be the generic fibre of W, then COhK(W) is equivalent to
the category Coh(Wi).

Proof. By Grothendieck’s existence theorem [EGA III, Cor.5.1.6], the category
Coh™ (W) is equivalent to the category Coh™ (W), whose objects are coherent
sheaves on W and whose maps are given by

Homgopx (wy (F, G) := Homo,, (F,G) ®a K.

Denoting j: W — W the open immersion, it suffices to show that the
functor

Ak Cth(W) — Coh(Wk)

is an equivalence of categories.
By flat base change [Liu02, p. 5.2.27], for every coherent sheaf F on W and
for any p > 0,
HP(W,F)®4 K 2 HP(Wg, j*F).

Applying this for p = 0 to the sheaf Homp,(F,G), for every F and G coherent
sheaves, we get that j* is a fully faithful functor.

Moreover, since W is proper over S, we can apply [EGA I, Thm. 9.4.8] and
deduce that the functor j* is essentially surjective. O

Theorem 3.3.8. Given (K™, p) € Rep§ (7P (Xo,£)), let Z, be the finite étale
covering of X corresponding to Z, and Zf, = Z, xg K its generic fibre, then
the category Coh™(Y,|Z,) of coherent sheaves on Y, with meromorphic descent
relative to Z, is equivalent to the category Coh(Z%.) of coherent sheaves on Z,.

Proof. By Theorem 3.3.5 and Lemma 3.3.6, it follows that Coh™(Y,|Z,) is
equivalent to the category Coh® (2,), whose objects are coherent sheaves on Z,
and whose morphisms defined by

HOmCOhK(ZP)(J—", g) = HOm@ZP (f, g) ®a K.

Moreover, by Proposition 3.3.7, the category CohX (Z,) is equivalent to the
category Coh(Z%,). O
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3.4 Finite descent

. . . . &t .
In this section, given (K™, p) a continuous 77 °“" (X, £)-representation, we con-

struct meromorphic descent data on the trivial sheaf (’)Sﬁp. Assuming that the

generic fibre of X is smooth, we prove that the coherent sheaf on Z7. that
corresponds to this descend data, via the equivalence in Theorem 3.3.8, further
descends to a coherent sheaf on Xg.

Note that, as explained in Remark 1.3.7, if the generic fibre is smooth then
X is normal. This property will be crucial in Theorem 3.4.5.

Definition 3.4.1. Given (K", p) € Rep$ (nP™°%( Xy, £)), set
~: Aut(yp|)?) S 77" %Gy *x---xGpn

to be the composition of the isomorphism in Equation 3.2.5 and the inversion
and set p:= pory, then we define the meromorphic descent data on (’)Sﬁp induced
by p as the collection {hf,}  _ Aut(V,| %) where the morphisms hf, are given by

hp
pr Rq K" —— pr Qa4 K™
for s fo ).
Definition 3.4.2. Let (K™, p) a continuous 77"°%*( Xy, £))-representation that
factors through Z*" x G1 x - - - x G, then for every j € {1,..., N} we define the

group morphism
S5t G;p — (Z*r *Gph-ox GN)Op,

which sends an element g; € G; to the word that consists of the letter g;.

Lemma 3.4.3. Given (K", p) € Rep ("% (Xo,£)), j € {1,...,N}, g € G5,
let {(’)"ﬁ7 kz}j}weAut(y,JZ,,) be the sheaf with meromorphic descend data relative
to Z, given by

g
kol

Oy, ®4 K" —2 s Oy, ©a K"
fov  —— f@p(sig) owos;i(g;)™)(v)

where s; is defined as above. If the sheaf {(’)Sﬁp, hfu}weAut(y,,\Z,,) with meromor-
phic descent data relative to Z, induced by p descends to the coherent sheaf F
on Z,, then {(’)"p7 ki YweAuny,|z,) descends to g;* F.

Proof. If {O%, , 1, }weAut(y,|z,) descends to the coherent sheaf Fon Z,, there

yp ?w
exists an isomorphism

VY qy . F ®a K — Oy, ®4 K"
such that for every w’ € ker(«)°P the following diagram commutes

G, F ©a K —Y s 0y @4 K"

ml lhﬁ,, (3.4.4)

w'™*

Wy, FoaK =¢Fo K s Oy @4 K.
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Moreover, we observe that, for every g; € G377,

gj°Qyv)z =4qv)z © 3j(9j)~

The proof of this identity is obvious when one translates it in terms of the
corresponding maps of sets between Z*" x Gy x---xGx and G X --- X Gy.
Thus, we can define the isomorphism of sheaves

. . 55(95)" Y "
53(9))" 85 F = 429" F ©a K =22 Oy, @4 K™,

The Equation 3.4.4 applied to w’ = s;(g;) ow o s;(g;) " for every w € ker(a)
tells us that the following diagram commutes

q{//Z.F@AK —)w pr ®a K"

idl lk;‘iﬂ'

si(gj)owos;(g;)~1)* )
q{//z]_-@AK (s;(g95) 3(95)7 )" pr ®4 K" .

Then applying s;(g;)* to the previous diagram, we get that the following diagram
commutes

5j(9;) @y 7 F ®a K REICA Oy, ®4 K"

idJ{ J/ki’j
* Kk w*sj (gj)*w n
Sj(gj) qy/Z]-'®AK _— pr ®q K™ .
Hence, s;(g;)*% induces an isomorphism of meromorphic descent data be-
tween {Q§//Zgj*f}weA11t(yp|Zp) and {O?;p, k3 }weAut(y,|z,) and this proves that
{(’)"p, kqgf}weAut(yp‘Zp) descends to g;*F on Z,. O

Let Z, be the finite étale cover of X associated with (K™, p) that we con-

structed in Section 3.2. We denote by Z, the corresponding finite étale covering
of X and by Zf. the generic fibre of Z,.
Theorem 3.4.5. Gwen X a projective semi-stable curve over S with smooth
generic fibre and (K™, p) € Rep$ (7P (X, £)), let Fx be the coherent sheaf
on ZY. that corresponds, via the equivalence in Theorem 3.3.8, to the sheaf
{(’)S‘,ﬁ, R }we aut(y,|z,) with meromorphic descent data induced by p, then Fx
descends to a coherent sheaf on Xk .

Proof. The idea of the proof is to break the argument in NV steps and proceed
by induction. First let us define the intermediate steps.
We set Zy = Z, and Z¥ = Z%.. By definition,

Aut(Z,|X) = Aut(Zx|X) = (Gy x --- Gn)°P.
Fori=1,...,N — 1, we define ¢y_; to be the projection
qN—i - Gl XGi+1 X oo XGN—>G1'+1 X oee XGN,

while
qgo: Gy — 1 and qn := a.
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Fori=0,...,N —1, the set Gi;1 x --- x Gy, is endowed with a 70" (X, €)-
action, via the map

aN—i:qN—iO"'OQN—loQN:Z*T*Gl*"'*GN%Gi-‘rlX"'XGN~

Thus, it corresponds to a finite étale coverings Zév ' 5 X,. We define Zy_; to
be the corresponding finite étale covering of X.

Furthermore, if Zx_; is the finite étale cover of X corresponding to Zy_;,
then we set Zgﬂ to be its generic fibre. By construction,

~

Aut(ZN,i\X) = Aut(ZN,AX) = (GiJrl X GN)Op,

Aut(Zn_it1|Zn—i) = Aut(Zy_i1|2Zr i) = G7°,
Aut(V,|Zn-;) = ker(an_;)°P.

We claim that, for i =0,...,N — 1,

Aut(Zy_i| X) =~ Aut(ZE 7| X k). (3.4.6)

Applying the pullback along the open immersion Xx — X we get a natural
morphism

Aut(Zn 4| X) — Aut(ZR ' Xg).

Since, if two automorphisms of Zx_; coincide on the open Z ﬁ_i they coincide
on the all Zyx_;, then the above morphism is injective. It remains to show that
it is surjective. As seen in Remark 1.3.7, X is a normal scheme. Hence Zx_; is
also normal and applying [Ll\/‘[997 Lem. 4.11] to the model Zy_;, we see that an
automorphism f € Aut(Zp ‘|Xx) can be extended to the scheme Zx_;. Thus,
the morphism Equation 3.4.6 is an isomorphism.

Similarly, we see that

Aut(ZR TN ZETY) ~ Awt(Zy i1 Zn—i) = G5P.

Hence, to construct descent data for the sheaf Fx relative to the finite
étale map qy_1: ZR — ZE ', it suffices to construct, for every g; € GSP,
isomorphisms

hé\i71: Frx — 91" Fk

satisfying the co-cycle condition.

The sheaf with meromorphic descent data {(’)3’,p, k3 Yweut(y,|2,), defined
in Lemma 3.4.3, descends to g1*F on Zy so, by Theorem 3.3.8, we need to
construct

hy e Homozlj\(, (Fx, 91" Frc) = Hom({O% , 10}, {O%  kd}).

Let s; be as in Definition 3.4.2, then we set, for every g; € Gy,

N-—1

Oy, @4 K" —2— 0y ©4 K"

feov  —— f@p(si(g1))(v)-
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and we get that the following diagram commutes

N-—1
g1

pr R K" —— pr ®Ra K™

| s

pr ®A Kn ﬁ) pr ®A Kn
w’*hg1
because

p(s1(g1)owosi(g1) ™ )op(s1(g1)) = p(s1(g1)owosi(g1) " osi(g1)) = p(s1(g1)ow).

Hence, {h)}~'} are isomorphisms of descent data. Since by construction they
satisfy the co-cycle condition, they induce the isomorphisms we wanted. This
shows that Fx descends to a coherent sheaf F g “tonZz ﬁfl.

By construction, if Fx_1 is the sheaf on Zy_1 corresponding to fﬁfl, then
{F, hé\i_l}gleg?lﬂ descends to F_; as sheaf with meromorphic descent data, i.e.,
there exists an isomorphism 1y _1 such that, for every g; € Gi*, the following
diagram commutes

qfvil]:N71 ®a4 K M) FRa K

| w7
* 9{1/JN71 *
N 1 FN-1 @A K ——— s1(q1)*" F@a K .

We want now to construct descent data for the sheaf % ' relative to the
finite étale map qn_o: Zﬁ_l — Zg_Q. In order to do this, we need first to find
a sheaf with meromorphic data on Y, that descends to Fn_i.

Fori=1,..., N, the following sequence of groups is exact

1 = ker(an—_i+1)? = ker(ay—_;)® = G;¥ — 1

and the map s;: G;¥ — ker(an_;)°P, defined as in Definition 3.4.2, induces a
section. Thus, ker(an_;)°P is the semi-direct product of ker(an_;41)°P and G;*.
In particular, any word w € ker(any_1)°P can be written as

w=wos1(g1) with w’" € ker(an)® = ker(a)°?, g1 € GI*.
Given w = w’ 0 s1(g1), we set, for f @v € (’)?,p R4 K,
hyy 2(f@w) = s1(g1) hiyy o BTN @ 0) = f @ pw)o.

By construction, {O”p, hY ’Q}weker(a ~_1)ov 18 a sheaf with meromorphic descent
data on Y, relative to Zn_;.
Moreover, the following diagram commutes:

Cay  Froa@ak L ¢F s K —Y s 0y, @4 K"
| i o
" giYN—1 s1(91)* 9

TN FN-104a K ———  s1(q) ¢ F @4 K ——— 0Oy ®aK"

Idl Idl 51(91) " hayr J

@l Fro1 94 K sl N, s1 (g ) P F 04 K slg) Wy, Oy, @4 K™
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where for simplicity we wrote ¢ = qy,z. The upper left square commutes because
F descends to Fy_1 on Zn_1; the upper right by construction of hév_l; the
lower left square commutes because g; o ¢ = g o s;(g;); while the lower right
commutes because {Oy,, hy} descends to F.

In particular, also the external square commutes and this implies that the
sheaf {(’)"p7 th_Q}weker(aN_l)op descends to Fy_1 on Zn_1.

For every go € Ga, let {Ogﬁp7 k92 } weker(an_1)or be defined by

92

Oy, @4 K"~ Oy, @4 K™
fov  —— [®p(sa(g2) owosz(g2) ") (v).

As in the proof of Lemma 3.4.3, we find that {05, ,k§?} descends to the
sheaf go*Fn_1 on Zn_1. Then, repeating the argument of the base step, we
find that the maps

N-—2
g

h
pr ®a K" = pr ®a K™
fov  —— f®p(s2(g2))(v)

induce isomorphisms of meromorphic descent data between {Ogﬁp,hﬁ)’ 2} and
{03, kg2 }. Moreover, by Theorem 3.3.8

ht =% € Hom({0% , bl 2}, {0}, k$?}) = Hom(F{ ", g2* F§ ).

By construction hg’; —2 satisfy the co-cycle condition, hence they induce descent
data for Fg71 relative to the finite étale map Zﬁfl — Zﬁ”.
By induction on IV, the proof is complete. O

Remark 3.4.7. Let {Ogﬁp, b} weaus(y,|z,) and Fi as above, then we showed
that Fx descends to a coherent sheaf gf;( on Xg. Let G, be the coherent sheaf on

X that corresponds to G/ via the equivalence in Proposition 3.3.7, then it is clear

from the construction that {Ogﬁp, R} e Aut(Y,|R)? the sheaf with meromorphic

data induced by p, descends to G, on X in the sense of Definition 3.3.2, i.e.,
there exists a morphism of meromorphic descent data

{03, hg}wGAut(yp\)A() ~{qyGp, hqqn}weAut(y,,p?)v

where gy : YV, = X is the structure map of V, and hl: ¢5-G, = w*¢i-G, are the
natural isomorphisms.

Theorem 3.4.8. Given X a projective semi-stable curve over S with smooth
generic fibre, associating with (K™, p) € RepSe (7% (Xo, €)) the coherent sheaf
{Oglfpvhﬁj}weAut(ypp?) with meromorphic descent data induced by p defines a
functor

F: Rep$ (nP°%*( Xy, €)) — Coh(X k).
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Proof. Given (K™, p) € Repi (72" (Xy,€)), we defined in Definition 3.4.1
{03, hﬁf}weAut(yp\)?) and proved in Theorem 3.3.5 and Theorem 3.4.5 that it

corresponds to a coherent sheaf F, on Xg. Then we can set
F(K™, p) = FF.

Hence, it suffices to define F(y) for every morphism of continuous repre-
sentations ¢: (K™, p) — (K™, 7). Assume that p factors through the quotient
Z*" x Gy x -+ x G and 7 factors through Z*" x Hy % ---x Hy, then we denote
by Y, and Y, the formal geometric coverings of X associated with p and 7, as
in Definition 3.2.4.

We consider now the set

Z"" x(Gy x Hy) *---x (Gn x Hy).
Since, for every j, there exists a quotient map
Bj: m"(Cy) — G x Hj,
the map
B: (X0, &) = Z*" x (G1 x Hy) %+ x (Gy x Hy),

induced by B; on the letters in 7$*(C;) and by the identity on the letters in

. . A . 6t .
Z*" is a continuous group morphism. Hence, it defines a 7} (X, £)-action

on Z*" x (G1 x Hy) *---x (Gn x Hy) and we can associate with it a geometric
covering of X, which we call J, -. By construction, there exist X-morphisms

Pp: Vor = Vpand pr: YV, r — Vi
We set
P 7" x (G x Hy) %% (Gy x Hy) = GL,(K)
to be the unique group morphism such that
o p/(w) = p(w) for every w € Z*",
e p'(gi,hi) = p(g;) for every (g;,h;) € G; x Hy,i=1,...,N.

Similarly, we define 7/. Then we have that
p {0y, ko ={0%, ki, } and pr{Oy  hy} = {03 hy}

By construction, the sheaf {Ogﬁp ’hﬁ;}wGAut()/ %) descends to a coherent
T p,T

sheaf 7, on X , which corresponds via the equivalence in Proposition 3.3.7 to
F(p) on Xk and, similarly, {(’)Sﬁ‘p,r,h;/} descends to a coherent sheaf F, on X ,
which corresponds to F(7) on Xg.

By Proposition 3.3.7, in order to define F(y), it suffices to construct a
morphism

Fooa K = Froa K.
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However, by Theorem 3.3.5 and Theorem 3.4.5, such a morphism corresponds to
a morphism of meromorphic descent data

Q- {Oglip,uhfu}weAut(yp,Tp?) - {Oanz,,whl}weAut(ywp?)-

We set N
pr,ﬂ_ ®a K" —2— prﬂ_ ®a K™

fev  —— feeW),
then o, is the wanted morphism of meromorphic descent data. Indeed, since
¢ is a morphism of representations, for every w € Aut(), ,|X) the following

diagram commutes

P
hZ,

pr’T Rq4 K" ——— w*OymT ®a K"

*
O%J, lw Qg

pr,r XA K™ T) U}*O)}pﬂ— XA K™ .

O

Remark 3.4.9. If X is a stable curve over S with smooth generic fibre and
degenerate closed fibre, then the functor constructed in the previous lemma
coincides with the functor constructed in Theorem 3.1.13.



Chapter 4

The specialization functor

Given S and K as in the previous chapter, K a fixed algebraic closure of K and
X a projective semi-stable over S with smooth generic fibre, the goal of this
chapter is to construct a tensor functor from the category Rep%s(ﬂfmét(Xo, €))
of continuous K-linear 75" (X, £)-representations to the category Strat(Xz)
of stratified bundles on the geometric generic fibre Xz. By Tannakian dual-
ity, this functor will induce morphism of group schemes from 75"*(X%) to
(% (X0, €))°.

In analogy with the previous chapter, stratified bundles with meromorphic
data will play a crucial role in the construction of the functor.

4.1 Stratified bundles with meromorphic descent
data

In this section we recall the definition of stratified bundles and we state the
properties of the group scheme associated with the Tannakian category that
they form. These properties will be the starting point for the study of the
correlation between the specialization functor that we construct and the usual
étale specialization map. We conclude by introducing the notion of stratified
bundles with meromorphic descent data.

Given F' a field of positive characteristic p > 0 and T a smooth scheme
of finite type over F, we denote by T the i-th Frobenius twist of 7 and by
F}/F: T® — TG+ the j-th relative Frobenius over F.

For our purposes it would, in fact, be sufficient to consider 7" = X4, the
geometric generic fibre of a projective semi-stable curve X.

Definition 4.1.1. Let T be a smooth scheme of finite type over a field F of
positive characteristic, then an F-divided sheaf on T is given by a sequence
(&i,04)i>0, where &; are bundles on 7@ and o, : F%/F*&H — &; are Ope)-linear
isomorphisms.

Definition 4.1.2. Given T as above and (&;,0;),(G;, 7;) two F-divided sheaves
on T, a morphism of F-diided sheaves from (&;,0;) to (G;,7;) is defined as

99
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a sequence of Op-linear maps, o = {«;: & — G;}, such that the following
diagram is commutative

i *
Fr/p’ @it

F%/F*giﬂ F}/F*Qiﬂ
& — g .

Definition 4.1.3. Let T be a smooth scheme of finite type over a field F' and
Dr,p the quasi coherent Op-module of differential operators defined in [EGA 4,
Section 16], then a stratified bundle on T is a locally free Or-module of finite
rank endowed with a Op-linear Dy, p-action extending the Or-module structure
via the inclusion Or C Dr/p. A morphism of stratified bundles is a morphism
of Dy, p-modules.

Theorem 4.1.4 (Katz’s theorem, [Gie75], Thm. 1.3). Let T be a smooth
scheme of finite type over a field F' of characteristic p > 0, then the category of
stratified bundles on T and the category of F-divided sheaves on T are equivalent.

Since they are equivalent, we identify these two categories and we use the
term stratified bundles for both definitions. Moreover, we denote by Strat(T)
the category of stratified bundles on T'.

Proposition 4.1.5 ([SR72|, Section. VI.1). Let T be a smooth scheme of finite
type over a field F' of characteristic p > 0, then the category Strat(T) of stratified
bundles on T is a rigid abelian tensor category. Moreover, if T has a rational
point x € T(F), the functor

wy: Strat(T) — Vecp, w, (&, 0;) = 2%&
is a fibre functor and Strat(T') is a neutral Tannakian category over F'.

Definition 4.1.6. Let T a smooth scheme of finite type over a field F' of
characteristic p > 0 and suppose that T has a rational point « € T'(F), then we
denote by 75" (T', z) the affine group scheme associated with (Strat(7'),w;) via
Tannakian duality (Theorem 2.1.10).

Definition 4.1.7. Given £ € Strat(T) we denote by (£)g the full subcategory
of Strat(T') whose objects are subquotients of objects of the form P(&,EY), with
P(z,y) € N[z, y].

The category (€)g is the smallest Tannakian subcategory of Strat(T) that is
closed under subquotients and contains &£.

Definition 4.1.8. Suppose that T is a smooth scheme of finite type over a field
F of characteristic p > 0 and that it has a rational point = € T'(F'), we define
the monodromy group of £ € Strat(T') to be the affine group scheme associated
with the Tannakian category ((€)g,wz|(),) and we denote it by G(&, z).

Definition 4.1.9. Under the above assumptions, we say that £ € Strat(T") has
finite monodromy if the group scheme G(&, z) is finite over K.

To check if a stratified bundle has finite monodromy, we can use the following
criterion.
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Lemma 4.1.10 ([EL13|, Lem. 1.1). If F is an algebraically closed of char-
acteristic p > 0 and T is a smooth scheme of finite type over F, then given
E € Strat(T) the following are equivalent

e & has finite monodromy,

e there exists a finite étale cover p: T' — T such that p*E is trivial in
Strat(T).

Analysing the category Strat(T") one finds even more information about the
group scheme 75" (T 1).
Theorem 4.1.11 ([San07], Thm. 11). If F is an algebraically closed of charac-
teristic p > 0, T is a smooth scheme of finite type over Fand x € T(F), then
the group scheme w5%3(T, ) is perfect. In particular, it is reduced.

Corollary 4.1.12 ([Kinl4|, Thm. 2.9). Let F' an algebraically closed field of
characteristic p > 0, T a smooth scheme of finite type over F and x € T(F),
then if a stratified bundle £ on T has finite monodromy, its monodromy group
G(&,x) is a constant group scheme over F.

The following description of the pro-finite completion of the group scheme
St (T 1) will be very important for the next sections.

Proposition 4.1.13 ([Kinl4]|, Prop. 2.15). Given F' an algebraically closed of
characteristic p > 0, T a smooth scheme of finite type over F' and x € T(F), let
(T, x) = im,_ 7; be the étale fundamental group of T', then

(i) if a stratified bundle £ on T has finite monodromy, its monodromy group
G(&,x) is isomorphic to the constant group scheme over F associated with
a finite quotient of w$*(T, x),

(i) for every finite quotient m; of n$'(T, x) there exists a stratified bundle € such
that G(E,x) ~ (m;)F, where (7;)F is the constant group scheme over F
associated with ;.

In particular, there exists a morphism of group schemes over F

ST, 1) — lgl(ﬂl)p

Remark 4.1.14. In analogy with Remark 2.3.6, the group scheme mz(m) Fis
denoted as 7¢*(T, z) .

We return now to our original notation, where A, S and K are as in the
previous chapter and we fix a projective semi-stable curve X over .S with smooth
generic fibre. We proceed defining stratified bundles with meromorphic descent
data.

Definition 4.1.15. Given Y a formal geometric covering of X , & coherent sheaf
F on Y is called meromorphic bundle if there exists a locally free sheaf £ on )
such that F ®4 K 2 E®4 K.

We denote by Y@ the i-th Frobenius twist of V and by FJ@/S: Y@ — plit+1)
the i-th relative Frobenius over S.
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Remark 4.1.16. If X is a projective semi-stable curve over S with smooth
generic fibre, then so are its Frobenius twists X (.

Indeed, since X is projective over S, by base change also X ® is projective
over S. Moreover, by [Liu02, Prop. 10.3.15.(a)], X is a semi-stable projective
curve over S(. The generic fibre of X ® is given by (X)) = (X, )®, which is
smooth by base change, and the closed fibre of X is (X)) 2 (X)®. Hence,
the fibres of X are geometrically connected, as we required in Definition 1.3.5.

Furthermore, given a geometric covering Yy of X and Y the corresponding
formal geometric covering of X, we see that, since k is perfect,

Aut(Yo| Xo) ~ Aut (Y VX)) =~ Aut(YD[XD) ~ Aut(Y|X).
We will identify the above groups, treating these isomorphisms as equalities.

Definition 4.1.17. Given ) a formal geometric covering of )?, a stratified bundle
with meromorphic descent data on Y is a sequence {{&;, haiu}weAut(yp?)? 0:}i>0,
with

o {&, 0L} e ant (v|%) meromorphic bundle on Y () with meromorphic descent
data _
h;’vi 51 XA K — ’LU*EZ‘ XA K,

e 0; isomorphisms of meromorphic descent data
i * i *pitl _ g _
gi {FJZJ/S 5i+1’F311/S ha }wEAut()iIX) - {g“hZU}wEAut(MX)'

To simplify the notation, we will denote a stratified bundle with meromorphic
descent data by {&;, hi,,0;} or by {&;,hi,}, when the isomorphisms o; are clear.

Definition 4.1.18. Given Y a formal geometric covering of )?, a morphism of
stratified bundles with meromorphic descent data from {&;, h',, 0} to {G;, ki, i}
is given by a sequence {¢;};>¢ of morphisms of meromorphic descent data on
Y such that the following diagram is commutative

Fi oy
i *fge. i+1 o y/s At i *ra. i+1 -
FJZJ/S {5z+17hiu }weAut(y|X) Favz/s {gﬂrl’kfu }wEAut()ilX)

al Jn

, a ,
{€i i} e nun(y) %) - 190 K bweau () -
We denote by Strat™()’) the category of stratified bundle with meromorphic
descent data on V.

4.2 Construction of the specialization functor

In this section we explain the construction of the specialization functor. The
idea is to repeat the construction of Theorem 3.4.8 for all Frobenius twists of
X and then prove that the obtained sequence of coherent sheaves is a stratified
bundles.

Lemma 4.2.1. Given X a projective semi-stable curve over S with smooth
generic fibre, a representation (K™, p) € Rep$e® (7P (X, €)) induces a stratified
bundle with meromorphic descent data on Y,.
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Proof. Given a representation (K7, p), we set {Ogﬁp, th}wEAut(y %) to be the
P
sheaf with meromorphic descent data induced by p, as in Definition 3.4.1.
By Remark 4.1.16, we can repeat the construction on X . Namely we can

define, on the sheaf O;é”’ the meromorphic descent data {hg’i}weAut(ypp?)

het
Oy ®@a K" —— Oym @4 K"
P P
feov  —— fepw)(v),

with p as in Definition 3.4.1.
Hence, we get a sequence {O;E,i) , h£*}; of meromorphic bundles with mero-

morphic descent data, and, by construction of A%, it is clear that
S, e ;
G5 O WY = {00 18

Thus, {C’);(i) ,h2%}; is a stratified bundle with meromorphic descent data. [
P

Definition 4.2.2. Given X a projective semi-stable curve over S with smooth

generic fibre and (K™, p) € Rep$(n?°%(Xo,€)), then a stratified bundle with

meromorphic descent data on Y, relative to Z, is given by the data of

o {&,hi} e Aut(¥,|2,), @ meromorphic bundle on yéi) with meromorphic
descent data _
hy: & @4 K — wE ®4 K,
for each ¢ > 0,

e 0;, isomorphisms of meromorphic descent data
L i * i *ritl i
o {Fy, /s Eirts By, 15 b Ywean,12,) = {80 My buean,|2,)-

The morphisms of stratified bundles with meromorphic descent data on Y,
relative to Z, are defined as in Definition 4.1.18 and we denote by Strat™(Y,|Z,)
the category that these objects form.

The next proposition is the analogue of Theorem 3.3.8 for stratified bundles
with meromorphic descent data.

Proposition 4.2.3. Given X a projective semi-stable curve over S with smooth
generic fibre and (K™, p) € Rep$e (w2 (X)), let Z, be the finite étale covering
of X corresponding to Z, and Zt, = Z, x s K its generic fibre, then the categories
Strat™(V,|Z,) and Strat(Z%,) are equivalent.

Proof. By Remark 4.1.16, we can extend the results we found on X in the
previous chapter to all its Frobenius twists X ().
In particular, given an object {&;, hi,}; € Strat™(),|Z,), by Theorem 3.3.5,

the sheaf {&;, ki }.c Aut(Y,|2,) With meromorphic descent data relative to ngi)
descends to a coherent sheaf G' on ngi) for every i, and it corresponds via

Groethendieck’s existence theorem to a coherent sheaf @ on Z;i). Since by
[Stacks, Tag 05B2| locally free sheaves of finite rank correspond via fpqc descent
to locally free sheaves of finite rank, then, by construction, if &; is a meromorphic
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bundle, also G? is a meromorphic bundle on Z,(,i). Moreover, as shown for example

in [Her05, Cor. 1.15] locally free sheaves on Zéi) correspond via Grothendieck’s
existence theorem to locally free sheaves on Z,(f)
bundle.

To simplify the notation we write Fi = FZ /S F} Fép/s, and Fy = FJZJ /8"

, hence also G* is a meromorphic

If p3, , is the composition of pj, 5 : v = Zéz and the map 25 — Z{”, then
we have that

Homozéi) (F%‘*giﬂ’ gNZ) @4 K ~ Homoy‘(}i) (P$/z*(F§K*§i+1),pﬁ;/z*gi) @4 K.
Since the relative Frobenius is functorial, i.e.,

F% Opiy/z :ng+/12 OF)ii;
and pg,/z*g’?' ~ {&;, h,}, we get

Homo ., (F;"G"".G") @4 K ~ Hom(F}" {€1, Wi} {3 1, ).
P

Hence, the category Strat™(),|Z,) is equivalent to the category Strat™(Z,),
()

whose object are defined by sequences of meromorphic bundles {@, o;} on Zpi
with isomorphisms
e~ ~
i Fy Giy1®@a K — Gi®a K

and whose morphisms from {G;, 0} to {G/, 7;} are sequences {(;} of morphisms
P @@AK%@'-@AK

that are compatible with the isomorphisms o; and 7.
On the other hand by Proposition 3.3.7, gz corresponds to a coherent sheaf

Gi % on Zp @ . Since gl are meromorphic bundles, the sheaves G? % are locally free.
As above by functoriality of the Frobenius, we see that

Homo p o (Fy,. Gidt Gy ~ Homo_,, (FL"G* .G @
P

Hence, the category Strat™ (Z,) is equivalent to the category Strat(Z%.). O

The next proposition is the analogue of Theorem 3.4.5 for stratified bundles.

Proposition 4.2.4. Given X a projective semi-stable curve over S with smooth

generic fibre and (K™, p) € Rep$e (7P (X)), let {Oy( 1, W0} iso be the strati-

fied bundle on with meromorphic descent data y,, induced by p, then {O;;(f) ,heity

descends to a stratified bundle on X .

Proof. By Proposition 4.2.3, the stratified bundle with meromorphic descent
data {O"( )5 RO ‘}i>0 defined by p descends to a stratified bundle gl K on zr, @,

Applylng Theorem 3.4.5 to every Frobenius twists of X, we see that for every @
the sheaf G! 5. i further descends to a locally free sheaf F) ; Kk on X3 () Morcover,

—

as in Remark 3.4.7, we can see that, if 77 is the meromorphic bundle on X

corresponding to F; i Kk on X1(<) via the equivalence in Proposition 3.3.7, then the
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meromorphic bundle {O"( )5 host}

weAut(Y,|X) with meromorphic descent data

induced by p descends to ]-" i for every i > 0.

To prove that {F K} is a stratified bundle on X it suffices to construct
the isomorphisms
;i F%K/K*f;j}% — .Fi K
To simplify the notation, we write F)’( = FX /K FA = F)?/S and also
FZ F)Z, I By functoriality of the Frobenius and Propos1t10n 3.3.7, we have
that
Homo, (Fi, Fih, Fi ) ~ Homo (FL Fitt Fi) @4 K.

Moreover, if py : éi) — X@ is the structure map of yfgi)7 since
F)%opg/ = “rl OFy
) o
and {O;/()L) ’ hﬁ;l}wEAut(yp\i) ~ p%, f;’ we get

HomOxK (F)Zq{ ]:/Z)—;%a ' ) Hom(Fy {wal)vh Hl} {Oyu)vhﬁ’i})-

Hence, the identities
o, 1y p
FJZ/S {O;/(Ji-%-l)vh’ful_‘— b= {O;;gi)ahﬁz}
induce the isomorphisms ¢; that we wanted. O

Proposition 4.2.5. Given X a projective semi-stable curve over S, the descent
of stratified bundles with meromorphic descent data associated to continuous
representations of m"° (X, €) induces a functor

spy : Rep$ (%" (X, €)) — Strat(Xx).

Proof. By Proposition 4.2.4, given (K™, p) € RepCts( Proct(Xy)), the stratified
bundle with meromorphic descent data {Oy(l),hw }i>o induced by p on Y,

descends to a stratified bundle {F}} on Xg. Thus, we can define
spr (K™, p) == {F;}i € Strat(Xg).

Let ¢: (K™, p) — (K™, 7) be a morphism of representations, then, using the
same argument of Proposition 3.4.8 for every Frobenius twist of X, we can define
the morphisms of sheaves F;(y),

Fi(p): {Fp} = {F7}-

By construction, it is clear that the collection {F;(¢)} induces a morphism of
stratified bundles from {F}} to {F}} and the statement follows. O

Lemma 4.2.6. The functor spy constructed above is a tensor functor.

Proof. Let (K™, p), (K™, 1) € Reps®(n?°%( Xy, £)) two continuous representa-
tion. As we saw in Section 3.2

e ), corresponds to a 75" (Xo, €)-set of the form Z*" x Gy % --- x Gy,
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e Y, corresponds to a " (X, £)-set of the form Z*" x Hy x ---x Hy.

As in Proposition 3.4.8, we define )Y, » to be the geometric covering of X
corresponding to the Wproet(Xo, €)-set Z*" % (G x Hy) %% (Gn x Hy).
Moreover, we set

p 2" % (Gy X Hy) % x (Gy x Hy) = GL,(K)
to be the unique group morphism such that
o p'(w) = p(w) for every w € Z*",
o o' (gi,h;) = p(g;) for every (g;,hi) € G; x H; and every i =1,..., N.
Similarly, we define /. Then we can consider
P77 x(Gy x Hy) %% (Gy x Hy) — GLp (K)

and we can define the associated stratified bundle on ), ; with meromorphic
descent data {O",, , h2/®7"}.
Let

y()7

Pp: Vor = Ypand pr: YV, - — Vr,

then we have that

pp{Oy( 0y ey Z} {Oy< ) 7hp l} and pT{Oy( )ah”} = {Oy< ) ; Z}-
Hence, we can define
{Oy< )5 e l} ® {O;L,gflv w } = {Oy< )5 e @ hl’i}“

We immediately find that

{05 H @ {031  hi} = {05 R}

y()a

Furthermore, by construction, we notice that {O;(i) ,hful} descends to the
PRT

stratified bundle {F}} = spg(p), {Oy< ,,h} descends to the stratified bundle
{Fi} = spg(7) and also that {O;’[}) ,h2'®"} descends to the stratified bundle

PRT

{Fl9r} = spk(p® 7). Thus, by Theorem 3.3.8 and Theorem 3.4.5 it follows
that

P (p) @ spg(T) = spr(p® 7).

All the properties of tensor functor can be easily checked in a similar way. [

Theorem 4.2.7. Given X a projective semi-stable curve over S with smooth
generic fibre, the functor spy can be extended to a tensor functor

spy : RepS™ (7 pmet(Xo,é)) — Strat(Xp),

where X1, = X xx Spec(L), for every finite extension L of K.
Moreover, fizing v € X7(K), it induces a morphism of group schemes

spr TN (X)) = (7] (X, €))°.
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Proof. Let (K™, p) € Repz(n?"®(Xy)), then there exists a finite field extension
K C L and (L™, pr) € Rep, (7?°%(X,)) such that

(L™, pr) @r K = (K", p).
We say that p is defined over L and we set
e Ay to be the integral closure of A in L,
e S5, = Spec(Ay),
o X5, =X xg85L.

By definition, Ay, is a complete discrete valuation ring, whose residue field is &
and whose fraction field is L. By base change, Xg, is proper over Sy. Moreover,
we have that

(Xs.)o = Xs, xg, Spec(k) = X xg Spec(k) = X,

(XSL)E = XSL XS5 Spec([?) =X Xs Spec([?) = XE.

Hence, Xg, is a projective semi-stable curve with smooth generic fibre.

We can apply Proposition 4.2.5 to Xg, and we can define a functor sp; that
associates to (L", pr,) a stratified bundle on X. Let bsy: X3 — X be the
base change, we set

sp(K™, p) :=bs} (sp.(L", pr)) € Strat(Xz).

For every morphism ¢: (K™, p) — (K™, T) there exists a finite extension L
of K such that p and 7 are defined over L and there exists ¢, : (L™, p) — (L™, 1)
such that o7 @1 K = ¢, then sp; (¢r) is a well defined morphism of stratified
bundles on X and we can set

sp(p) = bsy (spr(¢L))-

Since, by Proposition 4.2.6 applied to Xg, , sp;, is a tensor functor, for every
finite extension K C L, then also sp is a tensor functor.

Let « be the fixed point of Xz, w, be the associated fibre functor of Strat(Xz
and w, the fiber functor of Rep%s(ﬂf %X, €)) given by the forgetful functor.
We claim that w, osp >~ w;.

Let (L™, pr) € Repy (727°%(X,)) for some finite extension L of K such that
(L™, pr) ®L K = (K", p), then choosing a trivialization of sp(L",pz)) on a
neighborhood of z induces an isomorphism

ww(sp(LnapL)) ~ K" = ww([?nap)'

Given ¢r,: (L™, p) — (L™, 7) a morphism of representations, we denote by
}"2 and GY the meromorphic bundles on Xg, corresponding, via Theorem 3.3.8,
to the first term of sp; (L™, pr) and sp (L™, 1) respectively. We set {U;} to be
a covering of Xg, on which F; and G; are trivialized and we fix two trivializations
So J’-"0|Uj0 ~ OEJ_O, to : QO\U],O ~ Oﬁjo on an affine open U}, that contains the

point x € Xg, (K). We notice that

Uj = XSL7
{U;1 UjnXo#0}
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because if it was a strict inclusion, then its complement in Xg, would have
non-trivial intersection with Xy, which is a contradiction. Therefore, we can
assume that Uj, N X # 0 and we can define U;, to be the formal completion of

U, along U, N Xo. By [EGA III, Cor. 5.1.3], the pullback along U, — Uj, is a
fully faithful functor, hence the diagram

s
]'—2|Uj0 ®a L 0 OUjO ®q L™
lsPL(<PL)|UjO lid@apL
t.
QS|U].O Q4L —2— OUjo Ra L™
commutes on Xg, if and only if the corresponding diagram on )?g\L commutes.

Furthermore, by fpqc descent, the latter commutes if and only if its pullback on
Y, x Uj, commutes, but this follows by construction because the corresponding

diagram on Y, . x Uj, is

Id
or — L — O — L
Vo, XUjg ©a Vo, XUj, ®a

J{id®<ﬁL lid@)soL

Thus, we can conclude that the following diagram commutes

P (Fo@a L) 22 Rn
stspu(en) | |¢rex®
2*(G2®a L) o, B
which implies that
Wz = we(p).

Let v be a natural transformation between w, o sp and w, constructed as
above, then we set

wi (K", p) = v(w<(K", p)).

s

Hence, by [DM82, Cor. 2.9], the functor sp corresponds to a morphism of group
schemes

sp: ™" (X ) — m(RepSe (mproét( X)), wl).
Moreover, w, and w, are naturally isomorphic, so we have that
m(Rep (miproét(Xo)), wy) = (w1 (Xo))*
and, composing with this isomorphism, we get a morphism of group schemes

sps 7w (Xpe) > (e (X)),
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Corollary 4.2.8. For j=1,...,N, let C; be the irreducible components of Xo
and C; their normalizations, then the functor sp induces a morphism of group
schemes

sp: (X ) = (2RI we (2O ) * -+ (77 (CN) ),

where if I is the set of singular points of X, (Z¥8)*&" is the free algebraic product
of v copies of Z*'® and 7$'(C;) 7 is defined as in Remark 2.5.6.

Proof. By Corollary 3.2.2,
(Wlproét(X07§))cts ~ (2T T (Th) % - - % 7w (T))°s,
thus by Lemma 2.4.6 we have that
(ﬂ;roét(XO’g))cts ~ (L) R ret (Cy)ets - (O s
Moreover, since Z is discrete, by Remark 2.3.3 we have that
gets ~ galg
and by Lemma 2.3.5 we have that, for every j,

' (C)* = 7 (Chz

where 7$*(C})% is defined as in Remark 2.3.6. O

4.3 Compatibility with the étale specialization
map
In [SGA 1] Grothendieck constructed a specialization map for the étale funda-

mental group. In this section we compare the specialization functor that we
defined with Grothendieck’s construction.

Lemma 4.3.1. Let Xy be a connected noetherian scheme over k and £ a geo-
metric point of Xg, then the category RepSs (7$t(Xo, €)) is equivalent to a full

K
sub-category of RepSe® (™% (Xo, €)).

proét

Proof. By Proposition 1.2.19, the pro-finite completion of 77 °*"(Xy,§) is iso-
morphic to the étale fundamental group 7¢*( Xy, £). Hence, there exists a dense
continuous group morphism

et mp" % (Xo,€) = 71" (Xo, £).
This morphism induces a faithful functor

Rep(}?ts(ﬂfft (X0,8)) — Rep%s(ﬂi)rOét(XOv £))-

Since the image of ¢ is dense, this functor is also full. O
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Given z € XE(K)7 we denote by spgn4; the specialization map constructed
by Groethendieck in [SGA 1]
SPsGAl*: Wft(Xfa z) — 75t (Xo, ).
By [SGA 1, Exp. X, Cor. 2.4], spga4; is surjective. Hence, it induces a fully
faithful functor
sPsgar: Reps (n5(Xo, €)) = RepS (7" (X, 2)).
We construct now a functor

F: Rep®® (n7" (X%, x)) — Strat(X).

Let (K", p) € Rep%®(n{' (X%, z)), by continuity and Lemma 2.3.4, p factors
through a finite quotient of 7$*(Xz, z) that we call G,.

Wijt(x?a )

N

G, £ GL,(K)

In particular, there exists a finite Galois cover W of X such that
Aut(W§|X?) == Gopp.

We can define descend data {h{},cq, for the sheaf O _on W as follows

Wi h—5> O
(fi) —— pl9)(fi) -

Since Wz — Xz is a morphism of effective descent for coherent sheaves,
{(’){}Vf,hg} descends to a coherent sheaf £ on X3 that, by construction, is
locally free. As in the proof of Proposition 4.2.5, if we repeat the argument for
the Frobenius twists of Xz we can associate to p a stratified bundle.

It remains only to define the functor on the morphisms and this is done as in
Proposition 3.4.8 and Proposition 4.2.5.

In the end, we get the following diagram
Rep$ (7§ (Xo,€))  —45 Reps(n$' (X g, @)
lc lF (4.3.2)

Rep%s (7T11Jr0ét (X07 f)) L} Strat(XE) .

Proposition 4.3.3. If X is a projective semi-stable curve over S with smooth
generic fibre, the diagram (4.3.2) is commutative up to a natural transformation.

Proof. Let (K™, p) € RepSZ(n$'(Xo, €)), then there exists a finite field extension

L of K and (L™, p1) € Rep™(7$*( Xy, &)) such that

(I?nvp) = (anpL) @K K.



Chapter 4. The specialization functor 71

For simplicity we call p also the representation with coefficients in L.

By continuity and Lemma 2.3.4, the morphism p factors through a repre-
sentation p of a finite quotient G, of 7$*(Xy,&). Hence, we have the following
commutative diagram

T0é C &
(X0, &) — (X0, §)

¢, —L L ar.(n),

where ¢ is the morphism induced by the pro-finite completion.
Since G, is endowed with the discrete topology, the continuous morphism p
factors through the quotient Z*" x Hy x - - - x Hy, where

H; = 77(Cy)/p; ' (g, ),
and p; = po j, with j is the natural morphism
J: it (C)) = T (X0, ).

We recall that in Section 3.2, given poc € Rep%s(ﬂ'lfmét (Xo,&)) we defined

Gj =n5'(Cj)/(pocoy)~ (1d).

By commutativity of the diagram, pocoj = popo j. Since, by construction,
proét

p is injective, this implies that H; = G;. Thus, there exists a 7]~ (Xo,§)-
equivariant morphism

¢ L *xGrx--*x Gy — G,

such that the following diagram is commutative

TOé c é
TN (Xo, &) —— 78 (Xo,¢)

R~

T % Gyw ok Gy —s G, GL.(L) .

Let Xg, be defined as in the proof of Theorem 4.2.7 and let )?SL be the
completion of Xg, along Xo. Then the 7P (Xy,&)-sets Z*" « Gy x - x Gx
and G, correspond, via the equivalence in Corollary 1.2.16, to two geometric

coverings of X 5, that we call Y and W and ¢ corresponds to a X g, -morphism

2%
/ Y‘v
Py e

Yy —— Xg,
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By construction, sp(L™, poc) corresponds to a sequence {.7-';} of meromorphic
bundles on X 5, such that

Pi{f;} = {Oﬁ‘;mhﬁf’q”'}we(zwaw..*cNm-

We observe that, if W is the finite étale covering of Xg, corresponding to W
and Wy is its geometric generic fibre, then, using [LM99, Lem. 4.11] as in the
proof of Theorem 3.4.5, we deduce that

Aut(W| X) =~ G

By construction of the functor F, if pw: Wi — X3 is the structure map of
Wg, then

P F(spsaar (L™, p)) ~ {07 ), hg’i}geagp :
K

Hence, by Proposition 3.3.7, F(spggai (L™, p)) corresponds to a sequence of

~

meromorphic bundles {G”} on Xg, such that
PGy =~ {O%mh’gj’l}geczp-

We claim that {O%, hipe'} descends to {O5, ), h2"} on W.
By construction we have Aut(Y|W) = ker(q)°P, so, if w € ker(q)°P, then

clearly poq is trivial on w. Hence
{Oglz(i)u th:;oq7i}w€kcr(q)op = {OSL](i) ’ Id}kacr(q)°P7

which implies that {(’);(i) , hﬁ;i}weker(q)op descends to the trivial stratified bundle

{0, }- Clearly, we can identify
Hom({O3,,),1d}, {O0%),1d}) @ L = Hom({Oy,» }, {0y, }) ® L.

Then we see that for every w,w’ € (Z*" x Gy % - -- x Gn)°P such that g(w) = g,
hiPt = b and it corresponds, via the identification above, to hf".
This implies that

* n P, _ n pogq,i
q {OW(i)7hg }QEG})JP - {Oy<i)7hw }ufEZ*T*Gl*~-~*GN-

Hence, we find that there exists an isomorphism of stratified bundles with
meromorphic descent data on )

np: sp(e(L™, p)) = F(spsgai(L", p))-

It remains to show that the isomorphism 7, is functorial.

Given ¢: (K", p) = (K, 7) a morphism of representations, there exists a
finite extension L of K, (L™, p), (K, 7) € Rep$s(n$*(Xo,€)) and a morphism
or: (L, p) = (L™, ), such that ¢ = p;, @ K. As we did before, we drop the
index L and we call both maps .

Let G, and G, be the quotients of 7{*(Xy,£) over which p and 7 are defined
and set W, and W; the corresponding geometric coverings of X s, - Then we set
W,ri=W, X %s, W, , which corresponds to the 7¢*(Xo, £)-set G, x G.
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By Proposition 3.3.7 and Theorem 3.4.5, the diagram

sp(c(L", p)) e F(spsgai(L", p))
lsp(c(cp)) lF(SpSGAl(SD))
sp(e(L™, 7)) —"— F(spsgar(L™,7))

commutes if the corresponding diagram on XSL pulled back on W, . commutes,
that is, if the following diagram commutes

(O, hpX19) s {0, hp19i)

)
lea lF“" (4.3.4)
n T [ Id n T i
{(91/\1;,,.,.7h’gXId7 } {(91/\1/,,,.’hg><1(17 } .

Since the diagram (4.3.4) clearly commutes, we conclude that the isomorphism
is functorial and hence it induces a natural transformation. O

Lemma 4.3.5. If X is a projective semi-stable curve over S with smooth generic
fibre, the diagram (4.3.2) induces the following diagram of group schemes

sstrat (X?) ; ﬂ_{)roct ()(07 g)cts

JF l (4.3.6)

(X o) o aft (X, g
where (' (X7, v) 7 and (X, &) are defined as in Remark 2.5.6.

Proof. We proved in Remark 4.2.7 that sp induces a morphism between the
corresponding group schemes. With the analogous argument on F', one proves
that also the functor F' induces a morphism of group schemes between 752 (X )
and 7{( X, x)*.
Clearly spgn 41 and c are tensor functors and they commute with the forgetful
functor, hence they induce a morphism between the corresponding group schemes.
Moreover, by Lemma 2.3.5, we have that

T (X, ) = 71" (X, 2) g and 77" (X0, &) = 77°(Xo, &) %
in the sense of Remark 2.3.6. O

Proposition 4.3.7. If X is a projective semi-stable curve over S with smooth
generic fibre, the functor F of the diagram 4.3.2 is fully faithful and its essential
image consists of stratified bundles with finite monodromy.

Proof. Clearly the functor F is faithful, we prove now that it is also full.

Let (K™, p), (K™, 7) € Rep$ (7" (X4, x)), then p factors through the finite
quotient G, while 7 factors through G.. Let W, and W, be the corresponding
finite étale coverings of Xz and W, . := W, xx_ Wr. Let ¢ = {¢;}i>0 be a
morphism of stratified bundles from F(K™,p) to F(K™,7). By construction
and finite étale descent, we get

Hom(F(I?",p),F(I?m,T)) Hom {OWU)v g Z>0a{OW(l)7 g }120)'
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Moreover, since the pullbacks of F(K",p) and F(K™, 1) on W, , are trivial
stratified bundles and Strat(W), ) is a neutral Tannakian category, we find that

Hom(F (K™, p), F(K™, 7)) C My (E).

Hence, the maps ¢; correspond to linear morphisms ¢;: K™ — K™. This implies
that

. . _
F;V,SZIK Yiy1 = Pi = Po € My (K).

To prove that F is full, it suffices to show that ¢g is 7¢*(Xz, x)-equivariant.
This follows by the fact that ¢y commutes with the descent data, which are
defined by p and 7.

It remains to analyse the essential image of F. By construction, F(K™, p)
is a stratified bundle on X3 trivialized on a finite étale cover of X4, then by
Lemma 4.1.10, F(K™, p) has finite monodromy. Thus, it suffices to show that
all stratified bundles with finite monodromy are in the essential image.

Let E = {&;} € Strat(Xy) with finite monodromy, then by Lemma 4.1.10,
there exists a finite Galois cover p: ¥ — Xz such that p*E is trivial, i.e.,
p &} =~ {O0% ) } for some n. We set G = Aut(Y'|X5)°P, which, by construction,
is a finite quotient of the étale fundamental group s (X7, z). Then O, can
be endowed with descent data {h}secer such that {OF.;), hy} descends to {&;}
on Xz. Since hy € M,2(K) by the above argument and they are isomorphisms,
we can set for every g € G

p(g) = hy-1 € GL,(K).

As in Remark 3.2.9, we denote by o the multiplication in G°P and we refer to the
multiplication in G when we don’t write a symbol. Then applying the co-cycle
condition, we get

plgg') (0) = h 1y (0) = WOy a (0) = B0y 0 B, (0) = plg)(p(g)(v)).

Hence, p defines a group morphism p: G — GL,(K).
By construction, it is clear that F(K™, p) ~ {&;}, hence {&;} is in the essential
image of F'. O

Remark 4.3.8. Note that in general a specialization morphism between the
topological groups 70" (X, ) and 7% (X,, &) compatible with the étale
specialization map does not exist.

Assume for example that X is a stable curve over S with smooth generic fibre
and degenerate closed fibre. Since the generic fibre X is smooth, by [Liu02,
Prop. 3.15] X is normal. Hence by Proposition 1.3.23 and Lemma 1.2.20,

PN ( X, €) = Z*" and 7Y (X, ) = 78 (X g, ),

where r = p,(Xj) is the arithmetic genus of the closed fibre.
Any continuous morphism

sp: " (X, ) — Z*"

factors through a finite quotient of 7$* (X4, z), but since Z*" is a free group this
implies that sp has to be the zero map.
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Under the same assumptions, the étale specialization map is surjective. Hence,
in particular, the following diagram does not commute

AP X e, ) = 8 (X, ) — s 78 (X, 7)

Ol lspscm

(X0, ) 2 2 — 2 wi(Xo,€) .
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