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Zusammenfassung

Zu einer projektiven Familie semi-stabiler Kurven über einem vollständigen
diskreten Bewertungsring in Charakteristik p > 0 konstruieren wir einen Spezial-
isierungsfunktor zwischen der Kategorie der stetigen Darstellungen der pro-étalen
Fundamentalgruppe der speziellen Faser und der Kategorie der stratifizierten
Bündel auf der geometrischen generischen Faser. Dieser Funktor induziert einen
Morphismus zwischen den via Tannaka Dualität korrespondierenden affinen Grup-
penschemata. Wir zeigen, dass dieser Morphismus ein Lift von Grothendiecks
Spezialisierungsabbildung zwischen den entsprechenden étalen Fundamental-
gruppen ist, die in [SGA 1] konstruiert wurde. Darüber hinaus ergeben unsere
Methoden ein allgemeines Framework um Giesekers Konstruktion von stabilen
Kurven mit degenerierter spezieller Faser aus [Gie73] zu verstehen.

Summary

Given a projective family of semi-stable curves over a complete discrete
valuation ring of characteristic p > 0 with algebraically closed residue field, we
construct a specialization functor between the category of continuous represen-
tations of the pro-étale fundamental group of the closed fibre and the category
of stratified bundles on the geometric generic fibre. By Tannakian duality, this
functor induces a morphism between the corresponding affine group schemes. We
show that this morphism is a lifting of the specialization map between the étale
fundamental groups constructed by Grothendieck in [SGA 1]. Moreover, the
setting in which we work provides a general framework to understand Gieseker’s
construction for stable curves with degenerate closed fibre explained in [Gie73].
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Introduction

In [SGA 1, Exp. V] Grothendieck stated the axiomatic conditions on a category
C endowed with a functor F : C → FSets, which ensure that the category C is
equivalent to the category of finite sets with a continuous action of the pro-finite
group Aut(F ). The pairs (C, F ) that satisfy the axioms given by Grothendieck are
called Galois categories. Grothendieck’s motivation to introduce this framework
was to find an algebraic notion of fundamental group for schemes. For a connected
locally Noetherian scheme X, he defined the category FétX of finite étale covers
π : Y → X. Given a geometric point x of X, he defined a functor Fx(Y ) = π−1(x)
from FétX to FSets and he proved that the pair (FétX , Fx) is a Galois category.
The corresponding pro-finite group Aut(Fx) is called the étale fundamental
group of X and it is denoted by πét

1 (X,x). If X is a smooth connected complete
scheme over C, then πét

1 (X,x) is just the pro-finite completion of πtop
1 (Xan, x),

the topological fundamental group of the analytification of X.
One of the interesting features of the étale fundamental group is the existence

of a specialization morphism. In [SGA 1, Exp. X] Grothendieck proved that,
given Y a locally Noetherian scheme, f : X → Y a proper morphism with
geometrically connected fibres and y0, y1 two points of Y such that y0 is a
specialization of y1, if X0 and X1 are the geometric fibres over y0 and y1 with
two geometric points x0, x1, then a morphism of specialization can be defined in
a natural way

spét : πét
1 (X1, x1)→ πét

1 (X0, x0).

Moreover, when the morphism f is smooth, he showed that if k(y0) has char-
acteristic zero then the specialization morphism is an isomorphism, whereas if
k(y0) is a field of positive characterestic p > 0 then the specialization morphism
induces an isomorphism between the maximal prime to p quotients.

Throughout the years there have been many attempts to generalize the
construction of the étale fundamental group and to produce a topological group
that encodes the information of a larger class of coverings.

The first generalization is due to Grothendieck himself and it is explained
in [SGA 3, Exp. X, §6]. Given a connected locally Noetherian scheme X and
a geometric point x of X, he proved that the functor, which associates with
every abstract group G the set of isomorphic classes of pointed torsors for the
constant group scheme associated with G over X, is representable. He defined
the enlarged fundamental group of X, which we denote by πSGA3

1 (X,x), as its
representative. Furthermore, he showed that the functor Fx, defined as above,
induces an equivalence between the category of étale locally constant schemes
over X and the category of sets with a continuous πSGA3

1 (X,x)-action.
This fundamental group was implicitly used by Mumford in [Mum72]. In this
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article, given a complete discrete valuation ring A of characteristic p > 0 with
fraction field K and residue field k, Mumford associated with a flat Schottky
group G ⊂ PGL2(K) a tree ΛG on which G acts freely, deducing that G is a free
group. Then he constructed a stable curve X over A with k-split degenerate
closed fibre X0 and non-singular generic fibre XK such that G is the group of
covering transformations of the universal covering Y0 of X0. Moreover, he also
showed that the dual graph of Y0 is ΛG. In the same article Mumford proved that
every stable curve X over A with k-split degenerate closed fibre and non-singular
generic fibre can be constructed in this way for a unique flat Schottky group G.
As we will remark in the third chapter of the thesis, the group G turns out to
be isomorphic to the enlarged fundamental group of the closed fibre.

The setting introduced by Mumford was later used by Gieseker in [Gie73] to
prove that, for any prime p > 0 and every integer g > 1, there exists a stable
curve of arithmetic genus g in characteristic p that admits a semi-stable bundle
of rank two whose Frobenius pull-back is not semi-stable. He first proved that,
given an algebraically closed field k of characteristic p > 0 and a stable curve
X of genus g over k[[t]] with smooth generic fibre and degenerate closed fibre,
there exists a semi-stable bundle of rank two on the geometric generic fibre XK

whose Frobenius pull-back is not semi-stable. In order to do so, he introduced
the notion of coherent sheaves with meromorphic descent data on the universal
covering Y of the completion X̂ of X along its degenerate closed fibre and he
proved that the category they form is equivalent to the category of coherent
sheaves on the generic fibre XK . This construction allowed him to associate
with a representation of the group of covering transformations of Y a stratified
bundle on the geometric generic fibre. Then he concluded showing that such a
curve X exists for every p and g.

The main goal of the thesis is to generalize the construction above and to
make it applicable to every projective semi-stable curve over a complete discrete
valuation ring, removing the assumption that the closed fibre is degenerate. To
achieve this goal, the last main ingredient is the pro-étale fundamental group
defined by Bhatt and Scholze, which is a generalization of both the étale and
the enlarged fundamental group.

In [BS15] the authors generalized the construction of Galois categories to
infinite Galois categories. These were first defined by Noohi in [Noo08] but
the conditions he imposed were too weak. In particular, Bhatt and Scholze
introduced the notion of tame infinite Galois categories and proved that every
such category is equivalent to the category of sets with a continuous action of a
Noohi complete topological group. Then, for a connected locally topologically
Noetherian scheme X and a geometric point x, they showed that the pair
(CovX , Fx) is a tame infinite Galois category, where CovX denotes the category
of étale schemes over X that satisfy the valuative criterion of properness and Fx
is the fibre functor over x. They defined the group associated with (CovX , Fx)
as the pro-étale fundamental group of X, which we denote by πproét

1 (X,x). The
pro-finite completion of the pro-étale fundamental group is the étale fundamental
group, while its pro-discrete completion is the enlarged fundamental group, hence
we recover from the pro-étale fundamental group both the groups constructed
by Grothendieck. Another important result is that Ql-local systems on X are
equivalent to continuous representations of πproét

1 (X,x) on finite-dimensional
Ql-vector spaces, but this will not be the focus of the thesis.

Our aim will be to extend Gieseker’s results to connected projective semi-
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stable curves over a complete discrete valuation ring and to define a specialization
functor between the category of continuous representations of the proétale
fundamental group of the closed fibre and the category of stratified bundles on
the geometric generic fibre.

Leitfaden

In the first section of Chapter 1 we first give an introductory overview on infinite
Galois categories. We recall the definition of Noohi groups and state some results
of [BS15], among which the fact that a tame infinite Galois category is equivalent
to the category G-Sets for a Noohi group G. In the second section we present
the definition of the pro-étale site and the pro-étale fundamental group. In the
third section, after defining normal crossing curves (see Def. 1.3.4), we produce a
concrete computation of the pro-étale fundamental group of connected projective
normal crossing curves defined over an algebraically closed field. In particular
we prove the following theorem.
Theorem (Prop. 1.3.23). Let X be a connected projective normal crossing curve
defined over an algebraically closed field and let ξ be a geometric point of X.
Denote by Cj the irreducible components of X, by Cj their normalization and
fix a geometric point ξj for every Cj, then

πproét
1 (X, ξ) ' Z?|I|−N+1 ?N πét

1 (C1, ξ1) ?N · · · ?N πét
1 (CN , ξN ),

where I is the set of singular points of X and Z?|I|−N+1 is the free product of
|I| −N + 1 copies of Z.

We begin Chapter 2 by presenting a brief overview on Tannakian categories,
which provides us with the formalism that is needed in order to construct
the specialization functor. We focus in particular on the category of F -linear
representations, with F any field, of a given abstract group G. We define the
algebraic hull of G to be the affine group scheme over F associated with this
category (see Def. 2.2.1 for details). We prove that, if the field F is perfect,
then the algebraic hull over F of any abstract group is reduced. Then we
generalize this result to the category of F -linear continuous representations of a
fixed topological group H, whose associated group scheme is called topological
algebraic hull of H over F (see Def. 2.3.1 and Def. 2.3.2). Moreover, we describe
explicitly the topological algebraic hull of a complete pro-finite group.
Lemma (Lemma 2.3.5). Let F be a field and π = lim←−i πi be a complete pro-finite
group with surjective transition maps, then the topological algebraic hull of π
over F is isomorphic to the group scheme

lim←−
i

(πi)F ,

where (πi)F are the constant group schemes over F associated with the finite
groups πi.

These results will allow us to describe the topological algebraic hull of the
pro-étale fundamental group of a connected projective normal crossing curve
over an algebraically closed field. In particular, a required tool for this purpose
is the notion of free product of affine group schemes, which we introduce in the
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last part of this chapter (see Def. 2.4.4). We also prove in Lemma 2.4.5 that
this notion is compatible with the free product of abstract groups.

In Chapter 3 and Chapter 4 we work with the following setting: we denote
by k a given algebraically closed field of characteristic p > 0, we fix A a complete
discrete valuation ring of residue field k and we denote its fraction field by K,
then we set S = Spec(A) and we fix X a projective semi-stable curve X over S
with smooth generic fibre XK .

In Chapter 3, given such a curve X, we construct a functor from the category
of K-linear continuous representation of the pro-étale fundamental group of
the closed fibre, denoted by Repcts

K (πproét
1 (X0, ξ)), to Coh(XK), the category of

coherent sheaves on XK , and hence we generalize Gieseker’s construction.
In the first section we recall Gieseker’s results presented in [Gie73], which

are based on the notion of coherent sheaves with meromorphic descent data
(see Def. 3.1.10). The first step to generalize these results, in particular [Gie73,
Prop. 1], is to construct a geometric covering of the closed fibre X0 associated
with a given K- linear continuous representation of πproét

1 (X0, ξ). This step is
explained in the second section, where we denote by Y ρ0 the covering associated
with the representation ρ and we define Yρ to be the corresponding covering of
X̂, the completion of X along its closed fibre. In the third section we prove that
coherent sheaves on Yρ with meromorphic descend data descend to coherent
sheaves on a finite étale cover of XK , denoted by ZρK .

Theorem (Thm. 3.3.8). Let X be a projective semi-stable curve over S with
smooth generic fibre. Fix (Kn, ρ) ∈ Repcts

K (πproét
1 (X0, ξ)) and let Yρ and Zρ be

the formal geometric coverings of X̂ defined in Section 3.2. Let Zρ be the finite
étale covering of X corresponding to Zρ and ZρK = Zρ ×S K its generic fibre,
then the category of coherent sheaves on Yρ with meromorphic descend data
relative to Zρ is equivalent to the category of coherent sheaves on ZρK .

In Def. 3.4.1 we construct meromorphic descent data associated with the
continuous representation ρ for the trivial vector bundle OnYρ on Yρ. Then, in
the fourth section, we prove that this sheaf not only descends to a coherent sheaf
on ZρK , as proved in the third section, but it also descends to a coherent sheaf
on XK , as stated in the following theorem.

Theorem (Thm. 3.4.5). Let X, (Kn, ρ), Yρ as above, then the sheaf with
meromorphic descent data {OnYρ , h

ρ
w}w∈Aut(Yρ|X̂) associated with ρ (see Def.

3.4.1) descends to a coherent sheaf on XK .

In particular these theorems lead us to the construction of the following
functor, which is explained at the end of the third chapter.

Theorem (Thm. 3.4.8). Given X a projective semi-stable curve over S with
smooth generic fibre, associating with (Kn, ρ) ∈ Repcts

K (πproét
1 (X0, ξ)) the co-

herent sheaf with meromorphic descent data {OnYρ , h
ρ
w}w∈Aut(Yρρ |X̂) induces a

functor
F : Repcts

K (πproét
1 (X0, ξ))→ Coh(XK).

In Chapter 4 we recall the definition of stratified bundles, we introduce the
notion of stratified bundles with meromorphic descent data and we show that
we can extend the results of the previous chapter to all the Frobenius twists of
X, which proves the following theorem.
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Theorem (Prop. 4.2.4). Given X a projective semi-stable curve over S with
smooth generic fibre and (Kn, ρ) ∈ Repcts

K (πproét
1 (X0)), let {On

Y(i)
ρ

, hρ,iw } be the
stratified bundle on the i-th Frobenius twist of Yρ with meromorphic descent data
induced by ρ, then {On

Y(i)
ρ

, hρ,iw } descends to a stratified bundle on XK .

Using the Tannakian formalism, we can finally prove the main result of the
thesis.
Theorem (Thm. 4.2.7). For a given projective semi-stable curve X over S with
smooth generic fibre, the descent of stratified bundles with meromorphic descent
data induces a functor

spK : Repcts
K (πproét

1 (X0, ξ))→ Strat(XK).

Moreover, if K is a fixed algebraic closure of K, spK can be extended to

spK : Repcts
K

(πproét
1 (X0, ξ))→ Strat(XK),

and it induces a morphism of group schemes over K

sp : πstrat(XK)→ (πproét
1 (X0, ξ))

cts.

We conclude the fourth chapter by comparing this morphism of group schemes
with the specialization map between the étale fundamental groups of XK and X0

constructed by Grothendieck in [SGA 1]. In particular, we show in Proposition
4.3.3 that the following diagram is commutative

Repcts
K

(πét
1 (X0, ξ))

spSGA1−−−−−→ Repcts
K

(πét
1 (XK , ε))y y

Repcts
K

(πproét
1 (X0, ξ))

spK−−−−→ Strat(XK) ,

where the left vertical arrow corresponds to composition with the pro-finite
completion πproét

1 (X0, ξ) → πét
1 (X0, ξ), the right vertical arrow is defined as

descent along finite étale covering of XK and the upper horizontal arrow is
defined as the composition via the specialization map defined by Grothendieck.
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Conventions and notations

(a) The letter k will denote an algebraically closed field of characteristic p > 0.

(b) The letter A will denote a complete discrete valuation ring of characteristic
p > 0 with residue field k.

(c) The letter K will denote the fraction field of A.

(d) The letter S will denote the scheme given by spectrum of A, i.e., S = Spec(A).

(e) Given a scheme X over S, we denote by X0 its closed fibre and by XK its
generic fibre.

(f) Given a scheme X over S, we denote by X̂ the formal completion of X along
its closed fibre X0.

(g) All topological groups are assumed to be Hausdorff.

(h) Given G a topological group, we denote by G-Sets the category of sets S
with a left G-action that is continuous with respect to the discrete topology
on S.

(i) If G is a topological group we denote by G-FSets the category of finite sets
with a continuous left G-action.

(j) Given a field F we denote by VecF the category of finite dimensional F -vector
spaces.

(k) Given G and H two abstract groups, we denote the free product of G and
H by G ?H. The elements of the underlying set are alternating sequences
of non-trivial elements of G and H and the word with no letter, which is
called the empty word. The group law on G ?H is given by concatenation
followed by reduction. We recall that reduction is the map that associates
with any word an alternating sequence of elements in H and G by removing
any instance of the identity element of either G or H, replacing any pair
of the form g1g2 by its product in G and any pair h1h2 by its product in
H. By abuse of notation we will call this group law concatenation. The
neutral element for this group law is the empty word.

(l) If G and H are topological (Hausdorff) groups we call free topological product
of H and G the co-product of G and H in the category of topological group,
which was constructed in [Gra48]. Its underlying abstract group is free
product G ? H, by abuse of notation, we will denote the free topological
product of H and G by G ? H too.
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Chapter 1

Fundamental groups of
normal crossing curves

In this chapter we describe the pro-étale fundamental group of of a normal
crossing curve defined over an algebraically closed field F . In the first two
sections we recall the definition of the pro-étale fundamental group and the
main results of [BS15]. In the third section we compute explicitly the pro-étale
fundamental of a normal crossing model via a descent argument.

1.1 Infinite Galois categories
In this section we present the definition of infinite Galois categories. This notion
was first introduced in [Noo08] and later improved in [BS15]. Infinite Galois
theory studies the conditions that force a category C to be equivalent to the
category G-Sets for some topological group G.

Definition 1.1.1. Given a category C that admits colimits and finite limits, we
say that an object X ∈ C is connected if it is not empty (i.e., not initial) and
every subobject Y ⊂ X (i.e., Y ' Y ×X Y ) is either empty or it coincides with
X.

Definition 1.1.2. An infinite Galois category is a pair (C, F ) consisting of a
category C and a functor F : C → Sets that satisfy the following conditions:

1. C admits colimits and finite limits,

2. each object X ∈ C is a disjoint union of connected objects,

3. C is generated under colimits by a set of connected objects,

4. F is faithful, conservative and commutes with colimits and finite limits.

Definition 1.1.3. Given (C, F ) an infinite Galois category, we define its funda-
mental group to be the group π1(C, F ) := Aut(F ) endowed with the topology
induced by the compact-open topology on Aut(S) for all S ∈ Sets.

We recall that a basis of open neighborhoods of 1 ∈ Aut(S) for the compact-
open topology is given by the stabilizers UF ⊂ Aut(S) of finite subsets F ⊂ S.
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Chapter 1. Fundamental groups of normal crossing curves 17

In order to present some examples we need to define a specific class of
topological groups.

Definition 1.1.4. Let G be a topological group and FG : G-Sets → Sets be
the forgetful functor. We say that G is a Noohi group if the natural map
G → Aut(FG) is an isomorphism of topological groups, where Aut(FG) is
topologized by the compact-open topology on Aut(S) for all S ∈ Sets.

Example 1.1.5 ([BS15], Ex. 7.1.2). For every set S, the group Aut(S) endowed
with the compact-open topology is a Noohi group.

Definition 1.1.6. Given G a topological group, we define the Raîkov completion
of G as its completion with respect to its two-sided uniformity (see [AT08]). We
denote the Raîkov completion of G by ĜR.

Definition 1.1.7. We say that a topological group G is Raîkov complete if
the natural morphism σ : G→ ĜN , constructed in [AT08, Thm. 3.6.10], is an
isomorphism.

Remark 1.1.8. By [AT08, Thm. 3.6.10], given G a topological group there
exists a continuous morphism σ : G → ĜR, whose image is dense in ĜR. Let
(S, ρ) ∈ G-Sets, then, by [BS15, Lemma 7.1.4], the group Aut(S) endowed with
the compact-open topology is Raîkov complete. Hence, by [AT08, Prop. 3.6.12],
the action ρ of G on S admits an extension to ρ̂ such that the following diagram
commutes

ĜR

G Aut(S) .

ρ̂σ

ρ

This induces an equivalence of categories between

(G-Sets, FG) ' (ĜR-Sets, FĜN ).

Proposition 1.1.9 ([BS15], Prop. 7.1.5). Let G be a topological group with a
basis of open neighborhoods of 1 ∈ G given by open subgroups, then there is a
natural isomorphism ĜR ' Aut(FG). In particular, G is a Noohi group if and
only if it is Raîkov complete.

Example 1.1.10. By [AT08, Thm. 3.6.24], any locally compact group G is
Raîkov complete. Hence, the previous proposition implies that locally compact
groups G with a a basis of open neighborhoods of 1 ∈ G are Noohi groups. In
particular, pro-finite groups and discrete groups are Noohi groups.

Example 1.1.11 ([BS15], Ex. 7.2.2). Let G be a Noohi group and let FG be
the forgetful functor FG : G-Sets → Sets. The pair (G-Sets, FG) is an infinite
Galois category. Moreover π1(G-Sets, FG) = G.

Remark 1.1.12. Not all the infinite Galois categories are of the type G-Sets for
some topological group G. A counterexample is presented in [BS15, Ex. 7.2.3].

In order to describe the infinite Galois categories (C, F ) that are equivalent
to the category G-Sets, for a topological group G, we need to assume further
conditions on the pair (C, F ).
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Definition 1.1.13. An infinite Galois category (C, F ) is called tame if, for every
connected object X ∈ C, the group π1(C, F ) acts transitively on F (X).

This definition is crucial and leads us to the following result.
Proposition 1.1.14 ([BS15], Thm 7.2.5). If (C, F ) is an infinite Galois category
its fundamental group π1(C, F ) is a Noohi group.
If (C, F ) is also tame the functor F induces an equivalence of categories

C ' π1(C, F )-Sets.

1.2 Pro-étale fundamental group
In this section we give an overview of the definition of the pro-étale fundamental
group, introduced in [BS15]. We start by defining the pro-étale site.

Definition 1.2.1. A morphism of schemes f : Y → X is called weakly étale if
f and the diagonal morphism ∆f : Y → Y ×X Y are both flat.

Lemma 1.2.2 ([BS15], Prop. 2.3.3). The composition and base change of weakly
étale morphisms are weakly étale.

Definition 1.2.3. We set Xproét to be the category of weakly étale X-schemes,
which we give the structure of a site by endowing it with the fpqc topology. We
call Xproét the pro-étale site.

Remark 1.2.4. The name pro-étale is justified by [BS15, Thm. 2.3.4], which
implies that every weakly étale map f : Y → X is Zariski locally on X and
locally in Yproét a pro-étale morphism, i.e., an inverse limit of étale morphisms.
However, since pro-étale morphisms are not local on the target (as shown in
[BS15, Ex. 4.1.12]), it is preferable to work with weakly étale morphisms.

The main ingredient needed for the definition of the pro-étale fundamental
group is the category of locally constant sheaves on the pro-étale site.
Lemma 1.2.5 ([BS15], Lem. 4.2.12). Let T be a topological space, then the
presheaf FT that associates to every U ∈ Xproét the set of continuous maps from
U to T , i.e.,

FT (U) = Mapcts(U, T ),

is a sheaf on the pro-étale site. Moreover, if T is discrete, then FT is the constant
sheaf associated with T , i.e.,

FT (U) = Map(π0(U), T ),

where π0(U) is the set of connected components of U ∈ Xproét.

Definition 1.2.6. We say that a sheaf F on Xproét is constant if there exists a
topological space T such that F ' FT .

Note that by Lemma 1.2.5 this notion coincides with the usual definition of
constant sheaves only if the topological space T is discrete.

Definition 1.2.7. Let F ∈ Shv(Xproét), then F is called locally constant if
there exists a covering {Yi → X}i in Xproét such that F|Yi is constant.

We denote by LocX the full subcategory of Shv(Xproét) spanned by locally
constant sheaves.
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In [BS15] the authors prove that the category of locally constant sheaves is
equivalent to the category of geometric coverings, which is defined as follows.

Definition 1.2.8. A sheaf F ∈ Shv(Xproét) is called geometric covering if it
represented by an étale Y → X that satisfies the valuative criterion of properness.

We denote by CovX the full subcategory of Shv(Xproét) spanned by geometric
coverings.

Proposition 1.2.9 ([BS15], Lemma 7.3.9). Let X be a locally topologically
Noetherian connected scheme, then

LocX = CovX ⊂ Shv(Xproét).

Definition 1.2.10. Let X be a locally topologically Noetherian connected
scheme. Let Ω be an algebraically closed field and ξ : Spec(Ω) → X be a
geometric point of X. A pro-étale neighbourhood of ξ is defined as a pair (U, u)
of a scheme U that is weakly étale over X and a geometric point u ∈ U(Ω) such
that the following diagram is commutative,

U

Spec(Ω) X .

u

ξ

Definition 1.2.11. Let X and ξ : Spec(Ω) → X be as before, we define a
morphism of pro-étale neighbourhood from (U, u) to (U ′, u′) to be an morphism
f : U → U ′ over X such that

u′ = f ◦ u.

Lemma 1.2.12. Given X a locally topologically Noetherian connected scheme
and ξ a geometric point of X, the category of pro-étale neighbourhood of ξ is
cofiltered.

Proof. This is proven following the same argument of [Stacks, Tag 04JW]. For
more details see also [Stacks, Tag 0991].

It follows from the previous lemma that the opposite category of pro-étale
neighbourhood of ξ is filtered. Hence, we can define the stalk of a sheaf on Xproét
at a given geometric point of X.

Definition 1.2.13. Let X be a locally topologically Noetherian connected
scheme and ξ a geometric point of X, then for every F ∈ Shv(Xproét) we define
the stalk of F at ξ as

Fξ := colim(U,u)F(U),

where the colimit runs over the opposite category of pro-étale neighbourhoods
of the geometric point ξ.

Proposition 1.2.14 ([BS15], Lemma 7.4.1). Let X be a locally topologically
Noetherian connected scheme, ξ a geometric point of X and set evξ to be the
following functor:

evξ : LocX → Sets, evξ(F) = Fξ,

then the pair (LocX , evξ) is an infinite tame Galois category.

http://stacks.math.columbia.edu/tag/04JW
http://stacks.math.columbia.edu/tag/0991
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Definition 1.2.15. Let X be a locally topologically Noetherian connected
scheme and ξ a geometric point of X, then the pro-étale fundamental group of
X at ξ is defined as the group πproét

1 (X, ξ) := Aut(evξ).

Corollary 1.2.16. If X is a locally topologically Noetherian connected scheme
and ξ is a geometric point of X, then the group πproét

1 (X, ξ) is a Noohi group.
Moreover, the functor evξ induces an equivalence of categories

evξ : LocX ' πproét
1 (X, ξ)-Sets.

Remark 1.2.17. Let Y be a connected object in the category CovX , as in
Definition 1.1.1, then clearly Y is a connected scheme. In the proof of [BS15,
Lemma 7.4.1], the authors show also that if Y ∈ CovX is a connected scheme,
then it is a connected object in the category CovX . This implies, by the previous
corollary, that connected geometric coverings of X correspond to sets with a
continuous transitive πproét

1 (X, ξ)-action.

Remark 1.2.18. Let ε be another geometric point of X then it follows from
Proposition 1.2.16 that the categories πproét

1 (X, ξ)-Sets and πproét
1 (X, ε)-Sets are

equivalent. Moreover, since both groups are Noohi groups, by [BS15, Thm.
7.2.5.(2)],

πproét
1 (X, ξ) ' πproét

1 (X, ε).

Note that the condition of being Noohi groups is necessary to conclude that
the groups are isomorphic. Indeed, if G is a topological group with a basis of
open neighbourhoods of 1 ∈ G given by open subgroups and G is not a Noohi
group, then Proposition 1.1.9 implies that G is not Raîkov complete. Moreover,
it shows that the categories G-Sets and ĜR-Sets are equivalent even if G and
ĜR are not isomorphic.

From the pro-étale fundamental group, we can retrieve both the enlarged
fundamental and the étale fundamental group, defined by Grothendieck in [SGA
3] and [SGA 1] respectively.
Proposition 1.2.19 ([BS15], Lemma 7.4.3 and Lemma 7.4.6). Let X be a locally
topological Noetherian connected scheme and ξ a geometric point, then

• the pro-discrete completion of πproét
1 (X, ξ) is isomorphic to the enlarged

fundamental group πSGA3
1 (X, ξ),

• the pro-finite completion of πproét
1 (X, ξ) is isomorphic to the étale funda-

mental group πét
1 (X, ξ).

Proposition 1.2.20 ([BS15], Lemma 7.4.10). If X is geometrically unibranch,
then

πproét
1 (X, ξ) ' πét

1 (X, ξ).

1.3 Descent for étale and pro-étale fundamental
group

The aim of this section is to generalize [SGA 1, Exp. IX Cor. 5.4] in terms of
the pro-étale fundamental group and to present a concrete computation of the
pro-étale fundamental group of a connected projective normal crossing curve.
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Before we proceed, we state the definitions of normal crossing curves and
stable curves.

Definition 1.3.1. Let C be a scheme of dimension 1 of finite type over an
algebraically closed field F , then C is a semi-stable curve if it is reduced and its
singular points are ordinary double points.

Definition 1.3.2. We say that a scheme C of dimension 1 of finite type over
an algebraically closed field F is a stable curve if it is a semi-stable curve and
the following conditions are satisfied

• C is a connected projective curve,

• C has arithmetic genus pa(C) = dimFH1(C,OC) ≥ 2,

• the non-singular rational components of C, if they exist, intersect the other
irreducible components in at least 3 points.

Definition 1.3.3. Let F be an algebraically closed field and let C be a scheme
of dimension 1 of finite type over F , then C is a normal crossing curve if the
associated reduced scheme Cred is a semi-stable curve.

Definition 1.3.4. Let F be a field and let F be a fixed algebraic closure of F . A
curve C over F is a (semi-)stable curve if CF = C ×F Spec(F ) is a (semi-)stable
curve over F . Similarly we say that C is a normal crossing curve if CF is a
normal crossing curve over F .

Definition 1.3.5. Given a scheme S, we define a semi-stable curve over S to
be a flat scheme X over S whose fibres are geometrically connected semi-stable
curves.

Remark 1.3.6. Note that in the literature the condition that the fibres are
geometrically connected is usually not assumed. However, in the thesis we need
this assumption in order to define the fundamental groups of the geometric fibres
and hence to construct the specialization functor.

Remark 1.3.7. If S is a Dedekind scheme and X is a semi-stable curve over S
with smooth generic fibre, by [Liu02, Prop. 10.3.15.(c)], the scheme X is normal.

Definition 1.3.8. Given a scheme S, a stable curve over S of genus g is a
proper flat scheme over S, whose fibres are stable curves of arithmetic genus g.

Definition 1.3.9. A stable curve C over an algebraically closed field F is called
degenerate if the normalization of every irreducible component of C is isomorphic
to P1

F .

There is a well-known structure theorem for the étale fundamental group of
such curves ([SGA 1, Exp. IX Cor. 5.4]), but as we are not aware of a reference
for a complete proof, we explain it in next paragraphs. In order to do this, we
need the notion of the coproduct in the category of pro-finite groups.

Definition 1.3.10. Given two pro-finite groups G and H we define their co-
product in the category of pro-finite groups to be the pro-finite completion of
their free topological product G ? H. We denote the coproduct of G and H in
the category of pro-finite groups by G ?F H.
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Lemma 1.3.11 ([SGA 1], Exp. IX Cor. 5.4). Given X a connected projective
semi-stable curve over an algebraically closed field F and ξ a geometric point
of X, for j = 1, . . . , N let Cj be the irreducible components of X, Cj their
normalizations and fix a geometric point ξj for every Cj, then

πét
1 (X, ξ) ' Ẑ?F r ?F πét

1 (C1, ξ1) ?F · · · ?F πét
1 (CN , ξN ),

where r = pa(X)−
∑
i pa(Ci) is the difference of the arithmetic genera and Ẑ?F r

is the coproduct in the category of pro-finite groups of r copies of Ẑ.
We prove the statement by induction on N , the number of irreducible

components of X.

Base step: N = 1.
If I is the set of singular points of X, by [Liu02, Prop. 10.3.18] we have that

r = pa(X)− pa(X) = |I|.

Since by assumption X = C1 is irreducible, the normalization X = C1 is
connected. Moreover, the normalization g : X → X is finite and surjective, thus
by [SGA 1, Exp. IX, Thm. 4.12] it is a morphism of effective descent for finite
étale coverings.

In this simple setting, the descent data can be described explicitly. We
denote by (ai, bi) the pair of points of X that are identified to xi ∈ I in X and
we set Fai and Fbi to be the functors associating to a finite étale cover Y of
X its fibers over ai and bi respectively. Then giving descent data for a finite
étale scheme Y with respect to g is equivalent to giving a collection of bijections
{αi : Fai(Y )→ Fbi(Y )}xi∈I .

Let C be the category whose objects are given by the datum (Y, α1, . . . , αr),
with Y a finite étale cover of X and αi : Fai(Y )→ Fbi(Y ) isomorphisms of sets,
and whose morphisms from (Y, αi) to (Z, βi) are given by X-scheme morphisms
ϕ : Y → Z such that, for every i ∈ I, the following diagram commutes

Fai(Y )
αi−−−−→ Fbi(Y )

Fai (ϕ)

y yFbi (ϕ)

Fai(Z)
βi−−−−→ Fbi(Z) .

By construction, the category C is equivalent to the category of finite étale
coverings of X with descent data with respect to the map g, and hence it is
equivalent to the category of finite étale coverings of X. In particular, if we set
F̃ξ1 to be the functor

F̃ξ1(Y, αi) = Fξ1(Y ),

then the pair (C, F̃ξ1) defines a Galois category. Hence, to prove the lemma it
suffices to show that the pro-finite group associated with (C, F̃ξ1) is the coproduct
in the category of pro-finite groups of the étale fundamental group of X and r
copies of Ẑ.

We claim that (C, F̃ξ1) is equivalent to (Z?r ? πét
1 (X, ξ1)-FSets, forg), the

category of finite sets with a continuous Z?r ? πét
1 (X, ξ1)-action, where forg is

the forgetful functor. If the claim is true, then it follows that C is equivalent to
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the category of finite sets with a continuous action of the pro-finite completion
of Z?r ? πét

1 (X, ξ1), i. e., Ẑ?F r ?F πét
1 (X, ξ1), and the base step is proved.

To prove the claim we first show that the functor F̃ξ1 factors through the
category of finite sets with a continuous Z?r ? πét

1 (X, ξ1)-action.
By definition, πét

1 (X, ξ1) = Aut(Fξ1) acts on F̃ξ1(Y, αi) = Fξ1(Y ) for every
(Y, αi) ∈ C. Since X is connected, we can choose, for every i, a path τi from ai
to bi and a path σi from ai to ξ1, that are natural isomorphisms of functors

τi : Fai → Fbi and σi : Fai → Fξ1 .

We notice that αi ∈ Hom(Fai(Y ), Fbi(Y )) can be written as

αi = τi ◦ gi for some gi ∈ Aut(Fai(Y )).

Hence, we can define the action ρi of i-th copy of Z on Fξ1(Y ) as

ρi(1) = σi ◦ gi ◦ σ−1
i .

To prove that F̃ξ1 induces an equivalence of categories, we construct a quasi-
inverse functor. Given an object (S, ρ1, . . . , ρr, ρξ1) ∈ Z?r ? πét

1 (X, ξ1)-FSets,
there exists a finite étale cover Y of X such that

Fξ1(Y ) ' (S, ρξ1).

Thus, we can define the following functor:

Gξ1(S, ρi, ρξ1) = (Y, τi ◦ σ−1
i ◦ ρi(1) ◦ σi).

From the construction it is easy to see that Gξ1 and F̃ξ1 are quasi-inverse functors.

Inductive step: N − 1 =⇒ N .
We fix C1 an irreducible component of X such that the geometric point ξ

does not lie in C1 and such that X \ C1 is connected. We denote by (a1
i , b

1
i ) the

pairs of points of C1 identified to a singular point x1
i of C1 and we denote by I1

the set of these pairs. We set r1 = |I1| ≥ 0, then by the base case we conclude
that

πét
1 (C1, ξ1) ' Ẑ?F r1 ?F πét

1 (C1, ξ1).

Let XN−1 be the complement of C1 in X. We denote by (aN−1
i , bN−1

i ) the
pairs of points of XN−1 identified to a singular point xN−1

i of X, and we denote
by IN−1 the set of these pairs. Moreover, we set XN−1 to be the curve obtained
from XN−1 identifying the pairs in IN−1. By construction, XN−1 is a connected
projective semi-stable curve with N − 1 irreducible components. Hence, by the
inductive hypothesis,

πét
1 (XN−1, ξ) ' Ẑ?F rN−1 ?F π

ét
1 (C2, ξ2) ?F · · · ?F πét

1 (CN , ξN ),

where rN−1 = pa(X) −
∑N
i=2 pa(Ci). Note that by [Liu02, Prop. 10.3.18] we

have
rN−1 = |IN−1| − (N − 1) + 1 = |IN−1| −N + 2.

Finally, we denote by I1,N−1 the set of pairs (a1
i , b

N−1
i ), with a1

i a point of C1

and bN−1
i a point of XN−1, that are identified in the remaining singular points
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of X. We fix a pair (a1
0, b

N−1
0 ) ∈ I1,N−1. Note that I1,N−1 6= ∅ because X is

connected. Let X ′ be the curve obtained from gluing C1 and XN−1 along the
pair (a1

0, b
N−1
0 ) ∈ I1,N−1. We define C0 to be the category whose objects are of

the form
(Y1, YN−1, α0) ∈ C′, with

• Y1 a finite étale cover of C1,

• YN−1 a finite étale cover of XN−1,

• α0 : Fa10(Y1)→ FbN−1
0

(YN−1) isomorphism of sets,

and whose morphisms

(Y1, YN−1, α0)→ (Z1, ZN−1, β0)

are given by a pair (ϕ1, ϕN−1) with

• ϕ1 : Y1 → Z1 a morphism of C1-schemes,

• ϕN−1 : YN1
→ ZN−1 a morphisms XN−1-schemes,

such that the following diagram commutes

Fa10(Y1)
α0−−−−→ FbN−1

0
(YN−1)

Fa0 (ϕ1)

y yFb0 (ϕN−1)

Fa10(Z1)
β0−−−−→ FbN−1

0
(ZN−1) .

Clearly C0 is equivalent to the category of finite étale coverings of X ′.
We claim that C0 is equivalent to πét

1 (C1, ξ1)?πét
1 (XN−1, ξ)-FSets, the category

of finite sets with a continuous πét
1 (C1, ξ1) ? πét

1 (XN−1, ξ)-action. If the claim is
true, then we can conclude that

πét
1 (X ′, ξ) ' Ẑ?F r1+rN−1 ?F π

ét
1 (C1, ξ1) ?F · · · ?F πét

1 (CN , ξN ).

To prove the claim, we show that the functor F̃ξ1(Y1, YN−1, α0) := Fξ1(Y1)
induces the wanted equivalence of categories.

As in the base step, we first define the actions of πét
1 (C1, ξ1) and πét

1 (XN−1, ξ)
on Fξ1(Y1). Since πét

1 (C1, ξ1) = Aut(Fξ1), clearly πét
1 (C1, ξ1) acts on Fξ1(Y1).

Furthermore, the schemes C1 and XN−1 are connected, so we can choose the
paths

σ1 : Fa10 → Fξ1 and σN−1 : FbN−1
0
→ Fξ.

We call ρ the action of πét
1 (XN−1, ξ) ' Aut(Fξ) on Fξ(YN−1) and we define, for

every g ∈ Aut(Fξ),

τ(g) = (σN−1 ◦ α0 ◦ σ−1
1 )−1 ◦ ρ(g) ◦ (σN−1 ◦ α0 ◦ σ−1

1 ).

Then τ is an action of Aut(Fξ) on Fξ1(Y1).
To prove that F̃ξ1 induces an equivalence of categories we construct a quasi-

inverse functor. Given (S, ρ1, ρN−1) ∈ πét
1 (C1, ξ1) ? πét

1 (XN−1, ξ)-FSets, there
exists a finite étale cover Y1 of C1 such that

Fξ1(Y1) ' (S, ρ1),
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and a finite étale cover YN−1 of XN−1 such that

Fξ(YN−1) ' (S, ρN−1).

Thus, we can define the functor

Gξ1(S, ρ1, ρN−1) = (Y1, YN−1, σ
−1
N−1 ◦ IdS ◦ σ1).

From the construction it is easy to see that Gξ1 and F̃ξ1 are quasi-inverse functors.
So far we have computed the étale fundamental group of X ′, now we finally

compute the étale fundamental group of X.
We observe that a finite étale covering of X corresponds to the datum of a

finite étale covering Y of X ′ and the isomorphisms αi : Fa1i (Y )→ FbN−1
i

(Y ) for
every remaining pair of points {a1

i , b
N−1
i } ∈ I1,N−1. Using the same argument

of the base step, where we replace X with X ′, we conclude that

πét
1 (X, ξ) ' Ẑ?F |I1,N−1|−1 ?F π

ét
1 (X ′, ξ).

Hence, we obtain that

πét
1 (X, ξ) ' Ẑ?F r1+rN−1+|I1,N−1|−1 ?F π

ét
1 (C1, ξ1) ?F · · · ?F πét

1 (CN , .ξN ).

Moreover, by [Liu02, Prop. 10.3.18],

r = r1 + rn−1 + |I1,n−1| − 1 = |I| −N + 1 = pa(X)−
N∑
i=1

pa(Cj).

Remark 1.3.12. The statement of the proposition does not depend on the
choice of ξj , only the construction of the isomorphism does. Indeeed, since Cj
are connected, if εj is another geometric point of Cj then we have

πét
1 (Cj , ξj) ' πét

1 (Cj , εj).

In the next chapters the construction of the isomorphism will not matter, thus
we will not specify the choice of geometric points ξj and we will often write
instead

πét
1 (X, ξ) ' Ẑ?F r ?F πét

1 (C1) ?F · · · ?F πét
1 (CN ).

Lemma 1.3.13 ([SGA 1], Exp I, Cor. 8.4). Let X be a locally Noetherian
connected scheme, Xred its associated reduced subscheme and ξ a geometric point
of X then

πét
1 (Xred, ξ) ' πét

1 (X, ξ)

The previous lemma let us generalize Lemma 1.3.11 to normal crossing curves.
Corollary 1.3.14. Given X a connected projective normal crossing curve over
an algebraically closed field F and ξ a geometric point of X, for j = 1, . . . , N
let Cj be the irreducible components of X, Cj their normalization and fix a
geometric point ξj for every Cj, then

πét
1 (X, ξ) ' Ẑ?F |I|−N+1 ?F π

ét
1 (C1, ξ1) ?F · · · ?F πét

1 (CN , ξN ),

where I is the set of singular points of X and Ẑ?F |I|−N+1 is the coproduct in the
category of pro-finite groups of |I| −N + 1 copies of Ẑ.
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Proof. By Lemma 1.3.13 we have

πét
1 (X, ξ) ' πét

1 (Xred, ξ).

Since, by definition of normal crossing curve, Xred is a semi-stable curve and it
is projective and connected by assumption, we can apply Lemma 1.3.11 and we
get

πét
1 (X, ξ) ' πét

1 (Xred, ξ) ' Ẑ?F r ?F πét
1 (C1, ξ1) ?F · · · ?F πét

1 (CN , ξN ),

where r = pa(Xred)−
∑N
i=1 pa((Cj)red) is the difference of the arithmetic genera.

Hence, we conclude by [Liu02, Prop. 10.3.18], which implies that

|I| −N + 1 = pa(Xred)−
N∑
i=1

pa((Cj)red).

The pro-étale fundamental group is associated with the category of geometric
coverings, described in Definition 1.2.8. Hence, to prove an analogous result
for the pro-étale fundamental group we need first to show that finite surjective
morphisms are morphisms of effective descent for geometric coverings.
Proposition 1.3.15 ([Ryd10], Thm. 5.19). An universally closed surjective
morphism of finite presentation g : X ′ → X is a morphism of effective descent
for étale algebraic spaces.
Corollary 1.3.16. Let g : X ′ → X be a proper surjective morphism of finite pre-
sentation, then g is a morphism of effective descent for étale separated schemes.

Proof. This follows from the previous proposition and [Ryd10, Thm. 5.4].

Remark 1.3.17. Geometric coverings of X are étale X-schemes that satisfy the
valuative criterion of properness (see Definition 1.2.8), so they are, in particular,
separated étale schemes over X. Let g be as in Corollary 1.3.16, then a geometric
covering Y ′ of X ′ with descent data relative to g descends to a separated étale
X-scheme Y . Moreover, since g is proper, Y ′ satisfies the valuative criterion of
properness if and only if Y does. Hence, g is a morphism of effective descent for
geometric coverings.

Furthermore, we need a notion of coproduct of Noohi groups.

Definition 1.3.18. Given two Noohi groups G and H, we define CG,H to be the
category of triples (S, ρG, ρH), where S ∈ Sets and ρG and ρH are continuous
actions of G and H on S, and we set FG,H(S, ρG, ρH) = S to be the forgetful
functor. By [BS15, Example 7.2.6], (CG,H , FG,H) is an infinite tame galois
cateogory. We define the coproduct of G and H in the category of Noohi groups
as the Noohi group G ?N H := Aut(FG,H).

Remark 1.3.19. The topological free product of two discrete groups is their
abstract free product endowed with the discrete topology. Since by Example
1.1.10 discrete groups are Noohi groups, using the universal property of the
coproduct it is easy to see that the coproduct of two discrete groups in the
category of Noohi groups coincides with their topological free product.
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We give now an alternative description of the coproduct in the category of
Noohi groups. In what follows, given two topological groups G and H, we denote
by G ? H their topological free product constructed in [Gra48].

Lemma 1.3.20. For two Noohi groups G and H with a basis of open neighbor-
hoods of 1 given by open subgroups, we set B to be the collection of open subsets
of G ? H of the form

x1Γ1y1 ∩ · · · ∩ xnΓnyn,

with n ∈ N, xi, yi ∈ G?H and Γi ⊆ G?H open subgroups of G?H. If we restrict
the topology on G?H to the topology induced by B, we obtain a topological group
G?BH with a basis of open neighborhoods of 1 ∈ G?H given by open subgroups.

Proof. Given x, y ∈ G?H and Γ ⊂ G?H an open subgroup, (z1, z2) ∈ m−1(xΓy)
implies that

yz−1
2 z−1

1 x = (x−1z1z2y
−1)−1 ∈ Γ.

Hence, the multiplication is continuous because we have, for every x, y and Γ,

(z1, z2) ∈ xΓyz−1
2 × z−1

1 xΓy ⊂ m−1(xΓy).

Let i be the inverse morphism, then y−1Γx−1 ⊂ i−1(xΓy), for every x, y and
every Γ, thus G ?B H is a topological group.

To conclude, it suffices to show that every set xΓy ∈ B such that 1 ∈ xΓy
contains an open subgroup of G ?B H. The condition 1 ∈ xΓy implies that
x−1y−1 ∈ Γ. The set y−1Γy is, by definition, an open subgroup of G ?B H.
Moreover, we see that y−1Γy ⊂ xΓy because, given δ ∈ y−1Γy, we have, for
some γ ∈ Γ,

δ = y−1γy = x(x−1y−1)γy ∈ xΓy.

Corollary 1.3.21. Let G and H be two Noohi groups with a basis of open
neighborhoods of 1 given by open subgroups, then the coproduct in the category of
Noohi groups G ?N H is isomorphic to the Raîkov completion of the topological
group G ?B H, defined above.

Proof. By Lemma 1.3.20, G ?B H has a basis of open neighbourhoods of 1 given
by open subgroups. Hence, by Proposition 1.1.9, it suffices to prove that the
categories G ?N H-Sets and G ?B H-Sets are equivalent.

By the universal property of the free topological product, G ?N H - Sets
and G ? H-Sets are equivalent categories. Furthermore, the identity induces a
continuous morphism G ? H → G ?B H, which corresponds to a fully faithful
functor G ?B H-Sets → G ? H-Sets. As we will see in Lemma 2.3.4, an action
ρ of G ?T H on a set S is continuous with respect to the discrete topology
on S if and only if the corresponding map ρ : G ?T H → Aut(S) is continuous
with respect to the compact-open topology on Aut(S). By definition, a basis
of open neighborhoods of 1 ∈ Aut(S) is given by stabilizers of finite subsets of
S, hence every inverse image of an open neighborhoods of 1 ∈ Aut(S) contains
an open subgroup. This implies that also the map ρ : G ?T ′ H → Aut(S) is
continuous, and hence that the functor induced by the identity is an equivalence
of category.
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Before we generalize Lemma 1.3.14 for the pro-étale fundamental of normal
crossing curves we prove the analogue of Lemma 1.3.13.
Lemma 1.3.22. Let X be a locally Noetherian connected scheme, Xred its
associated reduced subscheme and ξ a geometric point of X, then

πproét
1 (Xred, ξ) ' πproét

1 (X, ξ).

Proof. By [SGA 1, Exp. I, Thm. 8.3] the category of schemes that are étale over
X is equivalent to the category of schemes that are étale over Xred. Thus, it
suffices to prove that an étale scheme Y over X satisfies the valuative criterion
of properness if and only if Y ×X Xred = Yred does.

Let R be any discrete valuation with fraction field F , then any morphism
Spec(F )→ Y factors through Yred and similarly any morphism Spec(R)→ X
factors through Xred. Hence, it is clear that, for any diagram of the form

Spec(F ) −−−−→ Yy y
Spec(R) −−−−→ X,

there exists a unique map Spec(A)→ Y that makes the diagram commutative if
and only if there exist a unique map Spec(A)→ Yred that makes the diagram
between the associated reduced schemes commutative.

Proposition 1.3.23. Given X a connected projective normal crossing curve over
an algebraically closed field F and ξ be a geometric point of X, for j = 1, . . . , N
let Cj be the irreducible components of X, Cj their normalization and fix a
geometric point ξj for every Cj, then

πproét
1 (X, ξ) ' Z?|I|−N+1 ?N πét

1 (C1, ξ1) ?N · · · ?N πét
1 (CN , ξN ),

where I is the set of singular points of X and Z?|I|−N+1 is the free product of
|I| −N + 1 copies of Z.

Proof. By Lemma 1.3.22, we can assume that X is reduced and hence that it is
a connected projective semi-stable curve. By Remark 1.3.16, the normalization
is a morphism of effective descent for geometric coverings. Thus, using the same
reasoning of Lemma 1.3.14, we can conclude that

πproét
1 (X, ξ) ' Z?r ?N πproét

1 (C1, ξ1) ?N · · · ?N πproét
1 (CN , ξN ),

where r = |I| −N + 1. Morevoer, since Cj are normal, by Proposition 1.2.20 we
have

πproét
1 (Cj , ξj) ' πét

1 (Cj , ξj).

Remark 1.3.24. As for the étale case, we will not specify the choice of the
geometric points of Cj and we will simply write

πproét
1 (X, ξ) ' Z?|I|−N+1 ?N πét

1 (C1) ?N · · · ?N πét
1 (CN ).



Chapter 1. Fundamental groups of normal crossing curves 29

Remark 1.3.25. With the same argument of Proposition 1.3.23, one can prove
the analogous result for the enlarged fundamental group, defined by Grothendieck
in [SGA 3, Exp.X]. Given G and H two pro-discrete groups, we set their
coproduct in the category of pro-discrete group to be the pro-discrete completion
of G ? H and we denote it by G ?D H. Then, under the assumptions of the
previous proposition, we find that

πSGA3
1 (X, ξ) ' Z?|I|−N+1 ?D πét

1 (C1) ?D · · · ?D πét
1 (CN ).

Corollary 1.3.26. Let F be an algebraically closed field and X be a degenerate
stable curve over F , then

πproét
1 (X) ' Z?r,

where r = pa(X).

Remark 1.3.27. If X is a degenerate stable curve over an algebraically closed
field F , then by Proposition 1.2.19 and the previous corollary we have

πproét
1 (X) ' πSGA3

1 (X).

As shown in Deligne’s counterexample (see [BS15, Example 7.4.9]), if X is not
degenerate this is no longer true. Remark 1.3.25 emphasizes that this is because
the Noohi completion is, in general, not pro-discrete.
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Algebraic hulls

The goal of this chapter is to define, using Tannakian duality, the topological
algebraic hull of a topological group and to describe its properties. This notion
will be used in the next chapters to define the specialization homomorphism.

2.1 Tannakian categories

In this section we give a brief overview on Tannakian categories.

Definition 2.1.1. Given T a category and ⊗ : T × T → T a functor, let I be
an object of T and e an isomorphism e : I → I ⊗ I, then we say that the pair
(I, e) is an identity object for ⊗ if the functors X 7→ X ⊗ I and X 7→ I⊗X are
equivalences of categories.

Definition 2.1.2. A tensor category is a pair (T ,⊗) given by a category T and
an associative and commutative functor ⊗ : T × T → T , for which there exists
an identity object.

Definition 2.1.3. Given (T ,⊗) and (T ′,⊗′) two tensor categories, a tensor
functor between them is a pair (F,ϕ), given by a functor F : T → T ′ and a
functorial isomorphism ϕX,Y : F (X)⊗′ F (Y )→ F (X ⊗ Y ) that is compatible
with associative and commutative constraints and such that if (I, e) is an identity
object for ⊗ then (F (I), F (e)) is an identity object for ⊗′.

Definition 2.1.4. Let (T ,⊗) and (T ′,⊗′) be two tensor categories and F ,
G two tensor functors from (T ,⊗) to (T ′,⊗′), then a morphism of functors
λ : F → G is a morphism of tensor functors if, for all finite families (Xi)i∈I of
objects of T , the following diagram is commutative⊗

i∈I F (Xi) F (
⊗

i∈I Xi)

⊗
i∈I G(Xi) G(

⊗
i∈I Xi) .

⊗iλXi λ⊗iXi

Definition 2.1.5. A tensor category (T ,⊗) is rigid if for every object X of T
there exists an object X∨ of T and morphisms ev : X⊗X∨ → I, δ : I→ X⊗X∨,

30
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such that the compositions

X
X⊗δ−−−−→ X ⊗X∨ ⊗X ev⊗X−−−−→ X.

X∨
δ⊗X∨−−−−→ X∨ ⊗X ⊗X∨ X∨⊗ev−−−−−→ X∨.

are the identity.

Definition 2.1.6. A tensor category (T ,⊗) is abelian if T is an abelian category
and ⊗ is a bi-additive functor.

Definition 2.1.7. Given a field F , a neutral Tannakian category over F is a
rigid abelian tensor category (T ,⊗) such that End(I) = F and such that it
admits an exact F -linear tensor functor ω : T → VecF , which is called fibre
functor.

Since we will deal only with neutral Tannakian categories, we will sometimes
drop the adjective neutral.

Example 2.1.8. Let G be an affine group scheme over a field F , RepF (G) the
category of its finite dimensional representations and ωG : RepF (G)→ VecF the
forgetful functor, then (RepF (G), ωG) is a neutral Tannakian category.

In fact, by the theorem of Tannakian duality, all neutral Tannakian categories
will be of this form. Moreover, the tensor functors between them will be
characterized by the corresponding group morphisms.

Definition 2.1.9. Let T be a neutral Tannakian category over a field F and ω
a fibre functor of T , then we define the functor Aut⊗(ω) : F -Alg→ Grp on an
F -algebra R to be the set Aut⊗(φR ◦ ω) of automorphisms of the tensor functor
φR ◦ ω, where φR : VecF → ModR is the functor V 7→ V ⊗F R.

Theorem 2.1.10 ([DM82], Thm. 2.11). If T is a neutral Tannakian category
over a field F and ω is a fibre functor of T , then

• the functor Aut⊗(ω) is represented by an F -Hopf algebra B, i.e., by an
affine group scheme G = Spec(B) over F ,

• the functor ω defines an equivalence of category between T and RepF (G),
the category of representations of G.

Definition 2.1.11. Let T be a neutral Tannakian category over a field F and ω
a fibre functor, then the group scheme over F that represents Aut⊗(ω) is called
Tannakian fundamental group of (T , ω) and it is denoted by π(T , ω).

Proposition 2.1.12 ([DM82], Cor. 2.9). Let G and G′ be two affine F -group
schemes, RepF (G) and RepF (G′) the neutral Tannakian categories of their
representations, ω and ω′ the forgetful functors, and F : RepF (G)→ RepF (G′)
a tensor functor such that ω′ ◦ F = ω, then there exists a unique homomorphism
f : G′ → G such that

F (V, ρ) = (V, ρ ◦ f) for every (V, ρ) ∈ Repk(π(T , ω)) ' T .

Proposition 2.1.13 ([DM82], Prop. 2.21). Let T and T ′ be two neutral Tan-
nakian categories over a field F , ω and ω′ fibre functors for T and T ′, G : T → T ′
a tensor functor such that ω′ ◦G = ω and g : π(T ′, ω′)→ π(T , ω) the correspond-
ing morphism of group schemes over F , then
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• g is faithfully flat if and only if G is fully faithful and, for every X ∈ T ,
every subobject of G(X) is isomorphic to the image of a subobject of X,

• g is a closed immersion if and only if every object of T ′ is isomorphic to a
subquotient of an object of the form G(X), for some X ∈ T .

2.2 Representations of abstract groups

We define, in this section, the algebraic hull of an abstract group and we present
some examples that are relevant for the next chapters.

Definition 2.2.1. Given F a field and G an abstract group, let RepF (G) be the
category of finite dimensional F -linear representations of G and ωG the forgetful
functor, then RepF (G) is a neutral Tannakian category over F and ωG is a fibre
functor. We define the algebraic hull of G over F as the affine group scheme
Galg := π(RepF (G), ωG).

An explicit example is given by the following well known result.

Lemma 2.2.2. Let G be a finite group, then its algebraic hull Galg over a given
field F is isomorphic to the constant group scheme over F associated with G.

Proof. SinceG is finite, the category of finite dimensional F -linear representations
RepF (G) is equivalent to the category of finitely generated F [G]-modules, where
F [G] is the F -Hopf algebra generated by the elements of G. Let FG be the dual
F -Hopf algebra of F [G], then RepF (G) is equivalent to the category of finitely
generated FG-comodules. This implies that Galg = Spec(FG) and hence, by
[Wat79, §2.3], Galg is the constant group scheme associated with G.

Remark 2.2.3. If G is an infinite abstract group, the previous statement does
not hold. Indeed, if G is infinite, the constant group scheme over F associated
with G is not quasi-compact, as it is an infinite disjoint union of Spec(k). Thus,
it is not isomorphic to the affine group scheme Galg.

In general, it is difficult to compute explicitly the algebraic hull of an abstract
group. The next result shows that if F is a perfect field of characteristic p > 0,
then the algebraic hull over F of any abstract group is reduced.

Definition 2.2.4. Let A be a ring of characteristic p > 0. We say that Spec(A)
is a perfect scheme if A is a perfect ring, i.e., if the absolute Frobenius FA : A→ A
is an isomorphism.

Note that if Spec(A) is a perfect scheme then it is, in particular, reduced.

Lemma 2.2.5. If F is a perfect field of characteristic p > 0 and G is an abstract
group, then the algebraic hull of G over F is a perfect scheme.

Proof. The argument we will use is similar to the one in [San07, Thm. 11], but
our case is much simpler.

Let Galg = Spec(B), we denote by Galg(1)
= Spec(B(1)) the Frobenius twist

of Galg and by F (1) : Galg → Galg(1) the relative Frobenius. Since F is perfect,
proving that Galg is perfect is equivalent to proving that F (1) is an isomorphism.
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Let V be a finite dimensional F -vector space, we define V (1) to be the F -vector
space whose underlying additive group is V and whose scalar multiplication is
given by λ · v = µv, for the unique µ ∈ F such that µp = λ.

By Theorem 2.1.10, a G-representation on V corresponds to a B-comodule
structure ρ : V → V ⊗F B. With a G-representation ρ on V we can associate
also a B(1)-comodule structure on V (1). Namely, we can define

ρ(1) : V (1) → (V ⊗F B)(1) ' V (1) ⊗F B(1),

as the map ρ between the underlying additive groups, which is F -linear because

ρ(1)(λ · v) = ρ(µv) = µρ(v) = λ · ρ(1)(v).

We set (−)(1) : RepF (G)→ RepF (Galg(1)
) to be the functor that associates to

every representation ρ the corresponding ρ(1), which clearly is an equivalence of
categories.

Given (V, ρ) ∈ RepF (G), we define its Frobenius twist as

Ft(V, ρ) = (V (1),Ft(ρ)),

where Ft(ρ) is the B-comodule structure defined as the composition

V (1) ρ(1)−−−−→ V (1) ⊗F B(1) id⊗F (1)

−−−−−→ V (1) ⊗F B.

In terms of representations, if we fix a base of V such that ρ : G → Aut(V )
is defined by ρ(g) = (aij(g)), then Ft(ρ)(g) is defined by the matrix whose
coefficients are given by

Ft(ρ)(g) = (apij(g)) ∈ Aut(V (1)).

With this second description it is easy to see that, since F is perfect, the Frobenius
twist is an equivalence of categories.

Furthermore, by construction, the following diagram is commutative

RepF (Galg(1)
)

RepF (G) RepF (G) .

F (1)(−)(1)

Ft

Hence, the functor induced by the relative Frobenius F (1) is also an equivalence
of categories. Since the relative Frobenius is F -linear, this implies, by Prop.
2.1.13, that the corresponding F -group schemes Galg and Galg(1) are isomorphic.

Note that, instead, the functors (−)(1) and Ft are not F -linear.

2.3 Representations of topological groups

Another example of Tannakian categories is the category of continuous repre-
sentations of a topological group. In this section we study the properties of the
affine group scheme associated with this category.
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Definition 2.3.1. Given a field F and a topological group G, we call continuous
F -linear representation of G a pair (V, ρ) given by a finite dimensional F -vector
space V and an F -linear action ρ : G×V → V that is continuous with respect to
the discrete topology on V . We denote by Repcts

F (G) the category of continuous
F -linear representations of G.

It is easy to see that the category Repcts
F (G) is a neutral Tannakian category

and that the the forgetful functor, denoted by ωG, is a fibre functor.

Definition 2.3.2. Let F be a field and G a topological group, then the
topological algebraic hull of G over F is defined as the affine group scheme
Gcts := π(Repcts

F (G), ωG).

Remark 2.3.3. Let F be a field and G be an abstract group endowed with the
discrete topology, then it is clear that Gcts = Galg.

The following lemma is a well-known elementary result in topology theory.
We recall it here as it will be the starting point for the construction of the
specialization functor.

Lemma 2.3.4. Given F a field, V a finite dimensional F -vector space and
ρ : G× V → V an F -linear G-action on V , the following are equivalent:

(a) ρ is continuous with respect to the discrete topology on V ,

(b) the group morphism ρ̃ : G → Aut(V ), induced by ρ, is continuous with
respect to the compact-open topology on Aut(V ),

(c) the group morphism ρ̃ : G → Aut(V ), induced by ρ, is continuous with
respect to the discrete topology on Aut(V ).

Proof. We recall that a basis of open neighbourhoods of Id ∈ Aut(V ) for the
compact-open topology is given by the stabilizers UF of finite subsets F ⊂ V.

Condition (a) is satisfied if and only if for every v ∈ V the set

A{v} := {(g, w) ∈ G× V | ρ(g, w) = v} ⊂ G× V

is open in G× V . For every v, w ∈ V , let U{w} ⊂ Aut(V ) be the stabilizer of w,
then we have

Bv,w := {g ∈ G| ρ(g, w) = v} =

{
∅ if v is not in the orbit of w
g · ρ̃−1(U{w}) for g ∈ Bv,w, otherwise .

Hence, if condition (b) is satisfied, the set Bv,w is open in G for every v, w ∈ V .
Since

A{v} =
⋃
w∈V

(Bv,w × {w}) ⊂ G× V,

it is clear that (b) implies (a).
On the other hand (b) is satisfied if and only if for every finite subset F ⊂ V

ρ̃−1(UF ) ⊂ G is open. By condition (a), the set

AF := ρ−1(F ) = {(g, w) ∈ G× V | ρ(g, w) ∈ F}
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is open. Hence, in particular, for every v ∈ F the set AF ∩ (G× {v}) is open.
Let p1 : G× V → G be the first projection, then

ρ̃−1(UF ) = {g ∈ G|ρ(g, v) ∈ F , for every v ∈ F} =
⋂
v∈F

p1(AF ∩G× {v}).

Since p1 is an open map, it follows that (a) and (b) are equivalent.
It remains to prove that (b) and (c) are equivalent. Let us choose a basis

{e1, . . . , en} of V , then the singleton

{Id} = U{e1} ∩ · · · ∩ U{en} ⊂ Aut(V )

is open for the the compact-open topology on Aut(V ). Hence, for every automor-
phism ϕ ∈ Aut(V ) the singleton {ϕ} is open for the the compact-open topology
on Aut(V ). This implies that the compact-open topology on Aut(V ) coincides
with the discrete topology, so, clearly, (b) and (c) are equivalent.

In the next statement we describe the topological algebraic hull of a pro-finite
group. This will be later applied to compute the topological algebraic hull of
the étale fundamental group of a scheme.
Lemma 2.3.5. Let F be a field and π = lim←−i πi a complete pro-finite group with
surjective transition maps, then πcts, the topological algebraic hull of π over F ,
is isomorphic to F - group scheme

lim←−
i

(πi)F ,

where (πi)F are the constant group schemes over F associated with the finite
quotients πi.

Proof. Since πi is finite, πcts
i = πalg

i and hence, by Lemma 2.2.2, πcts
i is the

constant group scheme over F associated with πi, which we denote by (πi)F .
The natural map pri : π → πi induces a tensor functor between the categories

of continuous representations

Fϕi : Repcts
F (πi)→ Repcts

F (π), Fϕi(V, ρ) := (V, ρ ◦ pri)

and, by Proposition 2.1.12, it induces, for each i, a morphism of F -group schemes

ϕi : π
cts → (πi)F .

Hence, there exists a natural morphism of F -group schemes

ϕ : πcts → lim←−
i

(πi)F ,

which corresponds to a functor

Fϕ : RepF (lim←−
i

(πi)F )→ RepF (πcts) ' Repcts
F (π).

By hypothesis, the maps pri are surjective and this implies that the functor
Fϕi is fully faithful. Furthermore, it is easy to show that Fϕi satisfies the criterion
of Proposition 2.1.13.(i). Thus, the corresponding morphism of F -group scheme
ϕi is faithfully flat and, in particular, it is surjective.
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Let us set πcts = Spec(A) and (πi)F = Spec(Bi). Since (πi)F is reduced, the
affine morphism ϕi corresponds to an injective morphism of F -Hopf algebras
ϕi : Bi ⊂ A. Then the induced map lim−→i

Bi → A, which corresponds to the
morphism ϕ, is injective because filtered colimits of rings are left exact. By
[Mil12, VI,Thm 11.1], we can conclude that ϕ is faithfully flat, and hence by
Proposition 2.1.13.(i), Fϕ is fully faithful.

It remains to show that Fϕ is essentially surjective. By Lemma 2.3.4, given an
object (V, ρ) ∈ Repcts

F (π), the map ρ̃ : π → Aut(V ), induced by ρ, is continuous
with respect to the discrete topology on Aut(V ). Thus, ρ̃ factors through a finite
quotient of π, say πi. This means that there exists a group morphism

ρ̃i : πi → Aut(V ) such that ρ̃i ◦ pri = ρ̃.

In particular, this implies that the πcts-action on V corresponding to ρ, which,
by abuse of notation, we denote again by ρ, factors through the (πi)F -action ρi
induced by ρ̃i.

Let pi : lim←−i π
cts
i → πcts

i be the natural morphism of F - group schemes, then,
by construction, the following diagram commutes.

lim←−i π
cts
i

πcts πcts
i .

piϕ

ϕi

Hence, we have

Fϕ(V, ρi ◦ pi) = (V, ρi ◦ pi ◦ ϕ) = (V, ρi ◦ ϕi) = (V, ρ).

Remark 2.3.6. The group scheme lim←−i(πi)F is often denoted in the literature
as πF , even though it is not the constant group associated with π over F . We
will also follow this notation.

Remark 2.3.7. We can generalize the previous lemma to pro-discrete groups.
Namely, we can prove that, if π = lim←−i πi is a complete pro-discrete group with
surjective transition maps, then its topological algebraic hull over a given field
F is isomorphic to the F -group scheme

lim←−
i

πalg
i .

Indeed, by Lemma 2.2.5, the group schemes πalg
i are reduced and hence we can

apply the same argument of the previous lemma.

The argument of Lemma 2.2.5, can be easily translated in terms of topological
algebraic hulls and we find the following result.

Lemma 2.3.8. Let F be a perfect field of characteristic p > 0 and G a topological
group, then the topological algebraic hull of G over F is a perfect scheme. In
particular, Gcts is reduced.
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2.4 Free product of algebraic hulls

We are interested in studying the topological algebraic hull of the pro-étale
fundamental group of a projective semi-stable curve. As saw in the previous
chapter, this essentially consists in studying the topological algebraic hull of a
free product of topological groups. In this section we introduce the notion of free
product of affine group schemes and we show that the free product of topological
algebraic hulls is compatible with the free product of topological groups.

Definition 2.4.1. Given T1 and T2 two neutral Tannakian categories over a
field F and ω1, ω2 respectively fixed fibre functors, we set T1 ×F T2 to be the
category whose objects are given by triples (V, ρ1, ρ2), with

• V ∈ VecF ,

• ρ1 : π(T1, ω1)→ GLV an F -linear π(T1, ω1)-action,

• ρ2 : π(T2, ω2)→ GLV an F -linear π(T2, ω2)-action,

and whose morphisms from (V, ρ1, ρ2) to (W, τ1, τ2) are given by F -linear mor-
phisms ϕ : V →W that are π(T1, ω1)-equivariant and π(T2, ω2)-equivariant.

We call T1 ×F T2 the Tannakian product category of T1 and T2 over F .
If for i = 1, 2 ω̃i : Ti → RepF (π(Ti, ωi)) is the equivalence of categories

induced by ωi, we call projections the functors

pi : T1 ×F T2 → Ti, pi(V, ρ1, ρ2) = ω̃−1
i (V, ρi),

where ω̃−1
i is the quasi-inverse of ω̃i.

Remark 2.4.2. Given (T1, ω1) and (T2, ω2) two neutral Tannakian categories
over a field F , it is easy to check that their Tannakian product category over
F , T1 ×F T2, is a rigid abelian tensor category. Moreover, the forgetful functor
forg(V, ρ1, ρ2) = V is a fibre functor, hence T1 ×F T2, is a neutral Tannakian
category.

The following lemma explains the universal property that the Tannakian
category (T1 ×F T2, forg) satisfies.

Lemma 2.4.3. Let (T1, ω1) and (T2, ω2) be two neutral Tannakian categories
over a field F , then, for every neutral Tannakian category (T , ω) over F and
every pair of tensor functors

G1 : T → T1 and G2 : T → T2

such that
ω = ω1 ◦G1 = ω2 ◦G2,

there exists a tensor functor, unique up to natural isomorphisms,

G : T → T1 ×k T2
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such that, for i = 1, 2 pi ◦G ' Gi and, up to these natural isomorphisms, the
following diagram commutes,

T

T1 ×F T2 T1

T2 VecF .

G2

G1

G

p1

p2 ω1

ω2

Proof. For i = 1, 2 and (V, ρ1, ρ2) ∈ T1 ×F T2, we set

qi(V, ρ1, ρ2) = (V, ρi) ∈ RepF (π(Ti, ωi)) and forgi(V, ρi) = V ∈ VecF .

By Theorem 2.1.10 and Proposition 2.1.12, to prove the statement it is equivalent
to check that, for every pair of tensor functors (G1, G2)

G1 : RepF (π(T , ω))→ RepF (π(T1, ω1))

G2 : RepF (π(T , ω))→ RepF (π(T2, ω2))

such that for i = 1, 2
forg = forgi ◦Gi,

there exists a unique tensor functor

G : RepF (π(T , ω))→ T1 ×F T2

such that the following diagram commutes

RepF (π(T , ω))

T1 ×F T2 RepF (π(T1, ω1))

RepF (π(T2, ω2)) VecF .

G2

G1

G

q1

q2 forg1

forg2

If we set, for (V, ρ) ∈ RepF (π(T , ω)),

(V1, ρ1) := G1(V, ρ) and (V2, ρ2) := G2(V, ρ),

then we get for i = 1, 2

V = forg(V, ρ) = forg ◦ G̃i(V, ρ) = Vi.

Thus, the functor G : RepF (π(T , ω))→ T1 ×F T2 has to be

G(V, ρ) := (V, ρ1, ρ2).
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Definition 2.4.4. Given G1 and G2 two affine group schemes over a field F ,
we define the free algebraic product of G1 and G2 over F as the affine group
associated with the Tannakian product category RepF (G1)×F RepF (G2). We
denote the free algebraic product of G1 and G2 over F by G1 ?F G2.

Lemma 2.4.5. Let F be a field and G1, G2 two abstract groups, then the
algebraic hull over F of their free product G1 ? G2 is isomorphic to Galg

1 ?F G
alg
2 ,

the free algebraic product of the algebraic hulls of G1 and G2 over F .

Proof. By the properties of the free product of abstract groups, the category
RepF (G1 ?G2) is equivalent to the category T whose objects are given by triples
(V, ρ1, ρ2) with

• V ∈ VecF ,

• ρ1 : G1 → GL(V ) a G1-action,

• ρ2 : G2 → GL(V ) a G2-action,

and whose morphisms from (V, ρ1, ρ2) to (W, τ1, τ2) are given by F -linear maps
ϕ : V →W that are both G1-equiviariant and G2-equiviariant.

By Definition 2.2.1, for i = 1, 2, RepF (Gi) is equivalent to RepF (Galg
i ). Thus,

it is clear that T is equivalent to the category RepF (Galg
1 )×F RepF (Galg

2 ) and
the conclusion follows by Theorem 2.1.10.

Lemma 2.4.6. Let F a field and G1, G2 two topological groups, then the
topological algebraic hull over F of their topological free product is isomorphic
to Gcts

1 ?F G
cts
2 , the free algebraic product of the topological algebraic hulls of G1

and G2 over F .

Proof. The statement follow from Definition 2.3.2 and the same argument of
Lemma 2.4.5.



Chapter 3

Descent of sheaves with
meromorphic data

Notation. The following notation will be used throughout all these last two
chapters.

• We fix k an algebraically closed of characteristic p > 0,

• we set A to be a complete discrete valuation ring of characteristic p with
residue field k,

• we denote by K the fraction field of A and we set S = Spec(A).

The goal of this chapter is to construct, given a projective semi-stable curve X
over S, a functor from Repcts

K (πproét
1 (X0)), the category of continuous K-linear

representations of the pro-étale fundamental group of X0, to Coh(XK), the
category of coherent sheaves on the generic fibre XK of X. The main idea is to
associate with a continuous representation of πproét

1 (X0, ξ) a coherent sheaf with
meromorphic descent data, which will be defined following [Gie73], and then
prove that this sheaf descends to a coherent sheaf on XK .

3.1 Meromorphic descent data

In this section we introduce the notion of coherent sheaves with meromorphic
descent data and we state [Gie73, Prop. 1], which holds for a stable curve with
degenerate closed fibre. In the next sections we will prove analogous results for
projective semi-stable curves with smooth generic fibre.

The setting of [Gie73] is based on the construction illustrated in [Mum72,
pg. 41], where given S as above and X a stable curve over S with degenerate
closed fibre X0, the author constructs the universal covering Y0 of X0. For our
purposes the computational description of Y0 in [Mum72, §3] and [Mum72, pg.
41] is not relevant, its geometrical description will instead play a very important
role in the thesis. After illustrating the main properties of Y0, we will prove a
lemma that justifies the adjective universal used by Mumford.

40
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Proposition 3.1.1 ([Mum72], Step I-V). Given X a stable curve over S with
degenerate closed fibre X0, there exists an X0-scheme Y0 such that

1. Y0 → X0 is an étale surjective morphism;

2. Y0 is a connected infinite union of P1
k;

3. pa(Y0) = 0;

4. the group Aut(Y0|X0) is a free group with r = pa(X0) generators, i.e.

Aut(Y0|X0) ' Z?r.

Remark 3.1.2. If X0 is a degenerate stable curve over the field k, by Corollary
1.3.26 and Remark 1.3.27, we have that

πproét
1 (X0) ' πSGA3

1 (X0) ' Z?r.

Since πproét
1 (X0) is a discrete group, the left regular πproét

1 (X0, ξ)-action on the
set S = πproét

1 (X0, ξ) is continuous with respect to the discrete topology on S.
Thus, the set πproét

1 (X0, ξ), endowed with the left regular action, is an object of
the category πproét

1 (X0, ξ)-Sets.

The following lemma gives us a geometrical interpretation of Y0.
Lemma 3.1.3. If X is a stable curve over S with degenerate closed fibre X0

and ξ is a geometric point of X0, then the scheme Y0, given by the previous
proposition, is a geometric covering of X0. Moreover, it corresponds, via the
equivalence

CovX ' πproét
1 (X0, ξ)-Sets,

to the set πproét
1 (X0, ξ) endowed with the left regular action.

Proof. From Proposition 3.1.1.(1)-(2) it follows that Y0 satisfies the conditions of
Definition 1.2.8 and thus it is a geometric covering of X0. Since Y0 is connected,
it corresponds to a set S with a transitive action ρ of πproét

1 (X0, ξ).
As explained in Remark 3.1.2, the set πproét

1 (X0, ξ) endowed the regular
representation is an object of the category πproét

1 (X0, ξ)-Sets. Fixing an element
s ∈ S, we can define the surjective πproét

1 (X0, ξ)-equivariant map

ϕs : πproét
1 (X0, ξ)→ S, ϕs(g) = ρ(g)(s).

By Corollary 1.2.16, the set πproét
1 (X0, ξ) endowed with the regular action

corresponds to a geometric cover Z0 of X0 and ϕs corresponds to a map of
X0-scheme ϕ̃s : Z0 → Y0. By construction, Z0 is étale over Y0 and ϕ̃s satisfies
the valuative criterion of properness, hence Z0 is a geometric covering of Y0.

On the other hand, by Proposition 3.1.1.(3) and Proposition 1.3.23, we can
conclude that

πproét
1 (Y0) = 1.

Thus, every geometric covering covering of Y0 is isomorphic to a disjoint union
of copies of Y0. Since by construction Z0 is connected, it follows that ϕ̃s is an
isomorphism ofX0-schemes, and hence ϕs is an isomorphism of πproét

1 (X0, ξ)-Sets.
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Definition 3.1.4. If X is a stable curve over S with degenerate closed fibre
X0, we call the universal cover of X0 the geometric covering Y0 of X0 that
corresponds to the set πproét

1 (X0, ξ) endowed with the regular action.
By the previous lemma, the universal cover of X0 is isomorphic to scheme

constructed by Mumford, hence the notation is not ambiguous.

Remark 3.1.5. The left regular action on S = πproét
1 (X0, ξ) is continuous with

respect to the discrete topology on S if and only if the group πproét
1 (X0, ξ) is

discrete. By Proposition 1.3.23, this condition is satisfied if and only if all the
normalizations of the irreducible components of X0 have trivial étale fundamental
group, that is, if and only if X0 is degenerate. Thus, if X0 is not degenerate
πproét

1 (X0, ξ) is not an object of the category πproét
1 (X0, ξ)-Sets, and hence we

can not define Y0 as in Lemma 3.1.3.

Before defining coherent sheaves with meromorphic descent data we recall
how to associate with a geometric covering of X0 a formal étale scheme over X̂,
the completion of X along X0.

Proposition 3.1.6 ([SGA 1], Exp. IX Prop 1.7). Let X be an S-scheme and X̂
the completion of X along its closed fibre, then category of étale schemes over the
closed fibre X0 and the category of étale formal schemes over X̂ are equivalent.

Note that [SGA 1, Exp. IX, Prop 1.7] does not require the étale morphisms
to be finite. In particular, for any geometric covering Y0 of X0 there exists an
étale formal scheme Y, unique up to X̂-isomorphisms, which reduces to Y0.

Definition 3.1.7. Let X be an S-scheme, X0 its closed fibre and X̂ the com-
pletion of X along X0, then we denote by EtX̂ the category of formal schemes
that are étale over X̂. We define CovX̂ to be the full subcategory EtX̂ given by
the essential image of CovX0

via the equivalence in Proposition 3.1.6. We call
the objects of CovX̂ formal geometric coverings of X̂.

Remark 3.1.8. It is important to note that, while the category of finite étale
X0-schemes is equivalent to the category of finite étale X-schemes, the categories
CovX0

and CovX are not equivalent.
A counterexample is given by stable curves over S with smooth generic

fibre and degenerate closed fibre. Indeed, if X is such a curve, then, by [Liu02,
Prop.10.3.15 (c)], X is a normal scheme. Hence, by Proposition 1.2.20,

πproét
1 (X) ' πét

1 (X)

and, in particular, πproét
1 (X) is profinite. On the other hand, by Proposition

1.3.23, πproét
1 (X0) ' Z?r, with r = pa(X0) ≥ 2. Thus, the groups πproét

1 (X) and
πproét

1 (X0) are non isomorphic Noohi groups and, by Proposition 1.2.14, this
implies that the categories CovX0

and CovX are not equivalent.

Remark 3.1.9. Let Y be a formal geometric covering of X̂, then Y is a S-
scheme via the map Y → X̂ → X → S, and the composition Y → S = Spec(A)
corresponds to a morphism A→ Γ(Y,OY). Hence a coherent OY -module is a
sheaf of A-modules.



Chapter 3. Descent of sheaves with meromorphic data 43

Definition 3.1.10. Let X be an S-scheme, Y a formal geometric covering of
X̂ and F a coherent sheaf on Y , then meromorphic descent data on F are given
by a collection of elements

hg ∈ H0(Y,HomOY (F , g?F)⊗A K), g ∈ Aut(Y|X̂)

that satisfy:

• g?hg′ ◦ hg = hg′◦g for every g, g′ ∈ Aut(Y|X̂),

• hId = IdF⊗AK .

Definition 3.1.11. Let X be an S-scheme and Y a formal geometric covering of
X̂ then, given {F , hg} and {G, kg} two coherent sheaves on Y with meromorphic
descent data, a morphism of meromorphic descent data from {F , hg} to {G, kg}
is given by an element

f ∈ H0(Y,HomOY (F ,G)⊗A K)

such that for every g ∈ Aut(Y|X̂)

kg ◦ f = g?(f) ◦ hg.

We denote by Cohm(Y) the category of coherent sheaves on Y with mero-
morphic descent data.

Proposition 3.1.12 ([Gie73], Prop. 1). Let X be a stable curve over S with
degenerate closed fibre and smooth generic fibre, Y0 the universal covering of X0

and Y the formal geometric covering of X̂ corresponding to Y0, then Cohm(Y)
is equivalent to the category Coh(XK) of coherent sheaves on XK .
Theorem 3.1.13. If X is a stable curve over S with degenerate closed fibre and
smooth generic fibre, then there exists a functor

RepK(πproét
1 (X0, ξ))→ Coh(XK).

Proof. Let Y0 be the universal covering of X0, Y the formal geometric covering
of X̂ corresponding to Y0 and ρ : Aut(Y|X̂)→ GLn(K) be a representation of
Aut(Y|X̂). Since, for every g ∈ Aut(Y|X̂), we have g?OY = OY , we can define
meromorphic descent data {hρg} on OnY as follows

OnY(U)⊗A K ∼= OY(U)⊗A Kn
hρg−−−−→ OY(U)⊗A Kn ∼= OnY(U)⊗A K

f ⊗ v −−−−→ f ⊗ ρ(g)(v) .

Clearly, we have that g?hρg′ ◦ hρg = hρg′◦g and hId = IdOnY⊗AK . Thus, we can set

F ′(ρ) := {OnY , hρg} ∈ Cohm(Y).

Let ϕ : (Kn, ρ)→ (Km, τ) a morphism of representations. By construction
F′(ρ) = {OnY , hρg} and F′(τ) = {OmY , hτg}, then we define F′(ϕ) as follows:

OY(U)⊗A Kn F′(ϕ)−−−−→ OY(U)⊗A Km

f ⊗ v −−−−→ f ⊗ ϕ(v) .
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Since ϕ is a morphism of representations, we get

hτg ◦ F
′(ϕ) = g?F′(ϕ) ◦ hρg.

Hence, F′(ϕ) is a morphism of meromorphic data. This implies that F′ defines a
functor

F′ : RepK(Aut(Y|X̂))→ Cohm(Y).

Moreover, by Proposition 3.1.1, we have that

Aut(Y|X̂) ' Aut(Y0|X0) ' Z?r ' πproét
1 (X0, ξ).

Let γ : πproét
1 (X0) → Aut(Y|X̂) be such an isomorphism, then pre-composing

with γ induces an equivalence of categories

γ̃ : RepK(πproét
1 (X0, ξ))→ RepK(Aut(Y|X̂)).

Hence, we can define the following functor

F′ ◦ γ̃ : RepK(πproét
1 (X0, ξ))→ Cohm(Y).

Finally, by composing this functor with the equivalence of categories in Proposi-
tion 3.1.12 we obtain the desired functor.

The aim of the next sections is to generalize this result to any projective
semi-stable curve over S with smooth generic fibre.

3.2 Coverings associated with representations
From this section on, given S = Spec(A) as before, we set X to be a projective
semi-stable curve over S and we denote by X0 its closed fibre and by XK its
generic fibre.

The first obstacle we encounter while trying to generalize the argument of
Theorem 3.1.13 to projective semi-stable curves is that if the closed fibre X0 is
not degenerate we can’t construct its universal covering, as explained in Remark
3.1.5. We overcome this first issue by associating with each representation a
specific geometric covering of X0.

We start by analyzing the category Repcts
K (πproét

1 (X0, ξ)) of continuous repre-
sentation of πproét

1 (X0, ξ), defined as in Definition 2.3.1.
Lemma 3.2.1. Given G a topological group with a basis of open neighborhood of
1 given by subgroups and ĜR its Raîkov completion, there exists an equivalence
of categories

Repcts
K (ĜR)→ Repcts

K (G).

Proof. As in Example 1.1.8, we see that there exists a continuous morphism
σ : G → ĜR, whose image is dense in ĜR and that σ induces a fully faithful
functor

σ̃ : Repcts
K (ĜR)→ Repcts

K (G).

Let (V, ρ) be a representation of G, then, by Lemma 2.3.4, ρ induces a
morphism ρ : G → Aut(V ) that is a continuous with respect to the discrete
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topology on Aut(V ). As remarked in Example 1.1.10, groups with discrete
topology are Noohi complete and hence, by [AT08, Prop. 3.6.12], ρ admits an
extension to ρ̂ : ĜR → Aut(V ) such that ρ̂ ◦ σ = ρ. This implies that σ̃ is also
essentially surjective.

Corollary 3.2.2. Let ξ be a geometric point of X0 and, for i = 1, . . . , N , let
Ci be the irreducible components of X0 and Ci their normalizations, then there
exists an equivalence of categories

Repcts
K (πproét

1 (X0, ξ)) ' Repcts
K (Z?|I|−N+1 ? πét

1 (C1) ? · · · ? πét
1 (CN )).

Proof. By Proposition 1.3.23, we have that, for r = |I| −N + 1,

πproét
1 (X0, ξ) ' Z?r ?N πét

1 (C1) ?N · · · ?N πét
1 (CN ).

Moreover, by Corollary 1.3.21, Z?r ?N πét
1 (C1)?N · · ·?N πét

1 (CN ) is isomorphic
to the Raîkov completion of Z?r ?Bπét

1 (C1)?B · · ·?Bπét
1 (CN ), defined as in Lemma

1.3.20. Thus, Lemma 3.2.1 implies that

Repcts
K (πproét

1 (X0, ξ)) ' Repcts
K (Z?r ?B πét

1 (C1) ?B · · · ?B πét
1 (CN )).

Futhermore, as in Corollary 1.3.21, we see that the identity induces an
equivalence of categories

Repcts
K (πB) ' Repcts

K (Z?r ? πét
1 (C1) ? · · · ? πét

1 (CN )).

Remark 3.2.3. With the same reasoning of Lemma 3.2.1, one can show that, if
G is a given topological group and ĜD is its pro-discrete completion, then there
exists an equivalence of categories

Repcts
K (ĜD)→ Repcts

K (G).

By Proposition 1.2.19, the pro-discrete completion of πproét
1 (X0, ξ) is isomor-

phic to πSGA3
1 (X0, ξ), hence it follows that

Repcts
K (πproét

1 (X0, ξ)) ' Repcts
K (πSGA3

1 (X0, ξ)).

Note that this equivalence of categories holds even in the cases, presented for
example in [BS15, Example 7.4.9], where πproét

1 (X0, ξ) and πSGA3
1 (X0, ξ) are not

isomorphic as topological groups.

We proceed by associating with a continuous K-linear representation of
πproét

1 (X0, ξ) a geometric covering of X0. The notation that we introduce will
be used repeatedly in this chapter and in the following one.

Let us fix an element (Kn, ρ) ∈ Repcts
K (πproet

1 (X0, ξ)). By Corollary 3.2.2 and
Lemma 2.3.4, ρ corresponds to a K-linear representation

ρ : Z?r ? πét
1 (C1) ? · · · ? πét

1 (CN )→ GLn(K),

which is continuous with respect to the discrete topology on GLn(K).
Thus, by the universal property of the free product, (Kn, ρ) corresponds to

the data
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• ρdis
i : Z→ GLn(K) for i = 1, . . . , r,

• ρét
j : πét

1 (Cj)→ GLn(K) for j = 1, . . . , N ,

where ρdis
i and ρét

j are group morphisms that are continuous with respect to the
discrete topology on GLn(K).

By construction, each morphism ρét
j factors through the finite quotient of

πét
1 (Cj) given by Gj = πét

1 (Cj)/U , where U = ρét
j
−1

(Id). Hence, we have the
following commutative diagram

Gj

πét
1 (Cj) Gln(K) .

ρ̃j
étqj

ρétj

In particular, (Kn, ρ) induces to the following data

• ρdis
i : Z→ GLn(K) for i = 1, . . . , r,

• ρ̃jét : Gj → GLn(K) for j = 1, . . . , N ,

which correspond, by the universal property of the free product, to a K-linear
representation

ρ : Z?r ? G1 ? · · · ? GN → GLn(K),

which is continuous with respect to the discrete topology on GLn(K).
Clearly, Z?r ?G1 ? · · ·?GN is a quotient of Z?r ?πét

1 (C1)? · · ·?πét
1 (CN ). Since

it is a discrete group, by [AT08, Prop. 3.6.12] it is also a quotient of πproét
1 (X0, ξ)

and we denote the quotient map by

q : πproét
1 (X0, ξ)→ Z?r ? G1 ? · · · ? GN .

By Proposition 1.2.14, the set Z?r ? G1 ? · · · ? GN , endowed with the action
given by q, corresponds to a connected geometric covering of X0, which we
denote by Y ρ0 .

Definition 3.2.4. We set Yρ to be the geometric covering of X̂ that corresponds
to the geometric covering Y ρ0 of X0 defined above.

By construction, we see that

Aut(Yρ|X̂) ' Aut(Y ρ0 |X0) ' (Z?r ? G1 ? · · · ? GN )op. (3.2.5)

Similarly, we can endow the set G1 × · · · ×GN with a πproét
1 (X0)-action, by

composing the map q with the quotient map

α : Z?r ? G1 ? · · · ? GN → G1 × · · · ×GN .

Hence, we can associate with G1 × · · · ×GN a finite étale cover Zρ0 of X0.

Definition 3.2.6. We set Zρ to be the finite étale covering of X̂ that corresponds
to the finite étale covering Zρ0 of X0 defined above.
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We can observe that

Aut(Zρ|X̂) ' Aut(Zρ0 |X0) ' (G1 × · · · ×GN )op. (3.2.7)

Moreover, Yρ → X̂ factors through q : Yρ → Zρ and we have

Aut(Yρ|Zρ) ' Aut(Y ρ0 |Z
ρ
0 ) ' ker(α)op. (3.2.8)

Remark 3.2.9. Since this thesis focuses on the categories of continuous represen-
tations of the above groups, the isomorphisms in Equation 3.2.5, Equation 3.2.7
and Equation 3.2.8 will not play a role, hence we will treat them as equalities.

It is instead important to distinguish the left and right multiplication in
the groups, so we use two different notations. We denote the multiplication
in ker(α)op by w ◦ w′, while when we do not write any symbol (i.e., ww′), we
refer to the concatenation in ker(α). We will use the analogous notation for
(Z?r ? G1 ? · · · ? GN → G1 × · · · ×GN )op and (G1 × · · · ×GN )op.

Remark 3.2.10. The group ker(α) is torsion free. Indeed, by the properties of
the free product, if w ∈ ker(α) is a torsion element, then it is of the form

w = vgjv
−1 for some v ∈ Z?r ? πét

1 (C1) ? · · · ? πét
1 (CN ), gj ∈ Gj .

Since α(w) = (1, . . . , 1, , gj , 1, . . . , 1) and w ∈ ker(α), we conclude that gj = 1
and hence w is the neutral element of Z?r ? πét

1 (C1) ? · · · ? πét
1 (CN ), which is the

empty word.

3.3 Infinite descent

In the previous section we have constructed, for a projective semi-stable curve
X over S, the formal geometric coverings Yρ and Zρ of X̂ associated with a
given representation (Kn, ρ) ∈ Repcts

K (πproét
1 (X0, ξ)). The aim of this section is

to prove that coherent sheaves on Yρ with meromorphic descend data descend
to coherent sheaves on Zρ.

Definition 3.3.1. Given X an S-scheme, Y and Z two formal geometric cover-
ings of X̂, qY/Z : Y → Z an X̂-morphism and F a coherent sheaf on Y, we call
meromorphic descent data relative to Z on F a collection of elements

hg ∈ H0(Y,HomOY (F , g?F)⊗A K), g ∈ Aut(Y|Z)

that satisfy:

• g?hg′ ◦ hg = hg′◦g for every g, g′ ∈ Aut(Y|Z);

• hId = IdF⊗AK .

We define morphisms of meromorphic descent data relative to Z as in
Definition 3.1.11 and we denote by Cohm(Y|Z) the category of coherent sheaves
on Y with meromorphic descent data relative to Z.
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Definition 3.3.2. Given X an S-scheme, Y , Z and qY/Z : Y → Z as above, let
{F , hw}w∈Aut(Y|Z) be a coherent sheaf on Y with meromorphic descent data
relative to Z. We say that {F , hw}w∈Aut(Y|Z) descends to a coherent sheaf on
Z if there exists G ∈ Coh(Z) such that

{F , hw}w∈Aut(Y|Z) ' {q?Y/ZG, h
q
w}w∈Aut(Y|Z),

where hqw : q?Y/ZG → w?q?Y/ZG are the natural isomorphisms.

In this section we work mainly with meromorphic descent data on Yρ relative
to Zρ, where Yρ and Zρ are the coverings of X̂ associated with ρ constructed in
Definition 3.2.4 and Definition 3.2.6.

The following proposition is a generalization of [Gie73, Prop.1].
Proposition 3.3.3. Given X a projective semi-stable curve over S and a co-
herent sheaf {F , hw}w∈Aut(Yρ|Zρ) with meromorphic descent data relative to Zρ,
there exists a coherent sheaf {F ′, kw}Aut(Yρ|Zρ) with meromorphic descent data
relative to Zρ that is isomorphic to {F , hw}w∈Aut(Yρ|Zρ) and such that

kw ∈ H0(X,HomOYρ (F ′, w?F ′)).

Proof. As in [Gie73, Prop.1], it suffices to show that for any Aut(Yρ|Zρ)-invariant
open U ⊂ Yρ there exists a quasi-compact open V of Yρ such that

• V is not contained in U ,

• V ∩ wV ⊆ U for all w ∈ Aut(Yρ|Zρ), w 6= IdYρ .

By Proposition 1.3.23, an irreducible component of Yρ corresponds to an
orbit of the left Gj-action on Z?r ? G1 ? · · · ? GN , for some j ∈ {1, . . . , N}.
Given a word s ∈ Z?r ? G1 ? · · · ? GN , we denote Yjs the irreducible component
of Yρ corresponding to the Gj-orbit of s. Since the action of ker(α)op on
Z?r ? G1 ? · · · ? GN is defined by right concatenation, given Yjs an irreducible
component of Yρ and w ∈ ker(α)op, w 6= IdYρ , we have

w(Gjs) = Gjsw 6= Gjs and w(Yjs ) = Yjsw 6= Yjs .

Hence, the action of ker(α)op on the set of irreducible components of Yρ is free.
Let us suppose that we are given an open Aut(Yρ|Zρ)-invariant set U ⊂ Yρ,

then for the construction of V there are two possible cases.
First case: there exists x ∈ Yρ \ U that is a non-singular point.

We set Yx to be the irreducible component of Yρ containing x, Ix to be the
set of the singular points of Yx and we define V = Yx \ Ix. By construction,
V is not contained in U . Since ker(α)op acts freely on the set of irreducible
components, for all w ∈ ker(α)op, w 6= IdYρ , we have

V ∩ wV = ∅ ⊂ U.

Second case: Yρ \ U ⊂ I, where I is the set of singular points of Yρ.
Let x ∈ Yρ \ U , then x belongs to exactly two irreducible components of Yρ,

say Yis and Y lt . Let Ix be the set of singular points of Yis ∪ Y lt different from x,
then we set V = (Yis ∪Y lt) \ Ix. Clearly, V is not contained in U . Since ker(α)op



Chapter 3. Descent of sheaves with meromorphic data 49

acts freely on the set of irreducible components, for any non-trivial w ∈ ker(α)op

we have
V ∩ wV = ((Yis ∩ Y ltw) ∪ (Y lt ∩ Yisw)) \ {sing. pts}.

Thus, there are three possibilities:

• Y ltw 6= Yis and Yisw 6= Y lt , that implies V ∩ wV = ∅ ⊂ U ,

• Y ltw = Yis and Yisw 6= Y lt , that implies V ∩wV = Yis\{sing. pts of Yis} ⊂ U ,

• Y ltw 6= Yis and Yisw = Y lt , that implies V ∩wV = Y lt \{sing. pts of Y lt} ⊂ U .

Note that the case where Y ltw = Yis and Yisw = Y lt does not occur because it
would imply that w2 = IdYρ , which is not possible because by Remark 3.2.10
ker(α)op is torsion free.

Remark 3.3.4. The action of (Z?r ? G1 ? · · · ? GN )op on the set of irreducible
components of Yρ is not free. Indeed, if ∅ is the empty word and Yj∅ is the
irreducible component of Yρ that corresponds to Gj ⊂ Fξ(Yρ), then for every
gj ∈ Gj ,

gj(Yj∅) = Yjgj = Yj∅ .

The following theorem generalizes [Gie73, Prop.2].
Theorem 3.3.5. Any coherent sheaf {F , hw}w∈Aut(Yρ|Zρ) on Yρ with meromor-
phic descent data relative to Zρ descends to a coherent sheaf on Zρ.

Proof. As in [Gie73, Prop.2], it suffices to prove that there exists a quasi-compact
open subscheme T of Yρ such that its Aut(Yρ|Zρ)-translates cover Yρ.

We fix a non-trivial word w ∈ ker(α)op. Note that the irreducible components
of the form Yjs′ with α(s′) = α(s), defined as in the previous thereom’s proof, are
ker(α)op-translates of Yjws. Indeed, the word t = s−1w−1s′ ∈ ker(α)op satifies

t(Yjws) = Yjwst = Yjs′ .

Given an element g = (g1, . . . , gN ) ∈ G1 × · · · ×GN , we denote by σ(g) the
word g1 · · · gN ∈ Z?r ? G1 ? · · · ? GN with letters gi ∈ Gi and we define the map

σ : G1 × · · · ×GN → Z?r ? G1 ? · · · ? GN , σ(g1, . . . , gN ) = g1 · · · gN .

We denote by 1i the word whose only letter is the element 1 ∈ Z belonging to
the i-th copy of Z. Then we set

TG =

N⋃
j=1

⋃
g∈G1×···×GN

(
Yjwσ(g) ∪

r⋃
i=1

Yj1iwσ(g)

)
.

and we define IG to be set of points of TG that are intersection points with
irreducible components of Yρ not contained in TG. Finally, we set

T = TG \ IG.

By construction, T is an open quasi-compact sub-scheme of Yρ, so it suffices
to prove that its ker(α)op-translates cover Yρ.
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Given s ∈ Z?r ? G1 ? · · · ? GN , we set gs := α(s). Since α(s) = α(wσ(gs)),
there exists t ∈ ker(α)op such that

t(Yjwσ(gs)
) = Yjs .

This implies that
Yρ =

⋃
t∈ker(α)op

t(TG).

To conclude, it suffices to prove that for every x ∈ IG there exist y ∈ T and
t ∈ ker(α)op such that t(y) = x. A point x ∈ IG is, by definition, an intersection
point of an irreducible component of TG and an irreducible component of Yρ
not contained in TG. We assume that x ∈ Yjwσ(g) ∩ Y

k
s′ for some j, k = 1, . . . , N ,

s′ ∈ Z?r ?G1 ? · · ·?GN and g ∈ G1×· · ·×GN . We recall that Yjwσ(g) corresponds
to the Gj-orbit

Gjwσ(g) ⊂ Fξ(Yρ) = Z?r ? G1 ? · · · ? GN ,

while Yks′ corresponds to the Gk-orbit

Gks
′ ⊂ Fξ(Yρ) = Z?r ? G1 ? · · · ? GN .

Hence, the point x corresponds to the identification of two words of the form

wxj = hjwσ(g) ∈ Gjwσ(g) and wxk = hks
′ ∈ Gks′.

However, by Proposition 1.3.23, the identification of the points in the different
orbits is given either by the identity or by the action of Z?r on Z?r ?G1 ? · · ·?GN .
Hence, there are only two possibilities:

1. wxk = wxj , which implies hks′ = hjwσ(g),

2. there exists i such that wxk = 1iwxj , which implies hks′ = 1ihjwσ(g).

Let a ∈ X̂ be the singular point over which x lies and set g′ = α(hjwσ(g)),
then we define y ∈ Fa(Yρ) to be the point corresponding, via a chosen path from
ξ to a, to the word

wy = wσ(g′) ∈ Gjwσ(g′) ⊂ Fξ(Yρ).

Since α(wy) = α(wxj ), there exists t ∈ ker(α)op such that t(wy) = wxj , which
implies t(y) = x. It remains to prove that y ∈ T .

If 1. is satisfied, the word wy is identified to the word wσ(g′) ∈ Gkwσ(g′)
and we have

y ∈ Yjwσ(g′) ∩ Y
k
wσ(g′) ⊂ T.

If 2. is satisfied, the word wy is identified to the word 1iwσ(g′) ∈ Gkwσ(g′)
and we have

y ∈ Yjwσ(g′) ∩ Y
k
1iwσ(g′) ⊂ T.

The case where x is an intersection point of two irreducible components of
the form Yj1iwσ(g) ∩ Y

k
s′ follows by the same argument.
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Lemma 3.3.6. Let {F , hw}w∈Aut(Yρ|Zρ) and {F ′, h′w}w∈Aut(Yρ|Zρ) be two coher-
ent sheaves on Yρ with meromorphic descent data relative to Zρ and assume that
they descent to the coherent sheaves G and G′ on Zρ, then we have the following
group isomorphism

HomOZρ (G,G′)⊗A K ' Hom({F , hw}, {F ′, h′w}).

Proof. The result follows by the same reasoning of [Gie73, Prop.2].

Proposition 3.3.7. Given W a finite étale covering of X and W → X̂ the
corresponding finite étale covering of X̂, let CohK(W) be the category whose
objects are coherent sheaves on W and whose morphisms are defined by

HomCohK(W)(F ,G) := HomOW (F ,G)⊗A K.

Let WK = W ×S SK be the generic fibre of W , then CohK(W) is equivalent to
the category Coh(WK).

Proof. By Grothendieck’s existence theorem [EGA III, Cor.5.1.6], the category
CohK(W) is equivalent to the category CohK(W ), whose objects are coherent
sheaves on W and whose maps are given by

HomCohK(W )(F ,G) := HomOW (F ,G)⊗A K.

Denoting j : WK → W the open immersion, it suffices to show that the
functor

j? : CohK(W )→ Coh(WK)

is an equivalence of categories.
By flat base change [Liu02, p. 5.2.27], for every coherent sheaf F on W and

for any p ≥ 0,
Hp(W,F)⊗A K ∼= Hp(WK , j

?F).

Applying this for p = 0 to the sheaf HomOZ (F ,G), for every F and G coherent
sheaves, we get that j? is a fully faithful functor.

Moreover, since W is proper over S, we can apply [EGA I, Thm. 9.4.8] and
deduce that the functor j? is essentially surjective.

Theorem 3.3.8. Given (Kn, ρ) ∈ Repcts
K (πproét

1 (X0, ξ)), let Zρ be the finite étale
covering of X corresponding to Zρ and ZρK = Zρ ×S K its generic fibre, then
the category Cohm(Yρ|Zρ) of coherent sheaves on Yρ with meromorphic descent
relative to Zρ is equivalent to the category Coh(ZρK) of coherent sheaves on ZρK .

Proof. By Theorem 3.3.5 and Lemma 3.3.6, it follows that Cohm(Yρ|Zρ) is
equivalent to the category CohK(Zρ), whose objects are coherent sheaves on Zρ
and whose morphisms defined by

HomCohK(Zρ)(F ,G) := HomOZρ (F ,G)⊗A K.

Moreover, by Proposition 3.3.7, the category CohK(Zρ) is equivalent to the
category Coh(ZρK).
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3.4 Finite descent
In this section, given (Kn, ρ) a continuous πproét

1 (X0, ξ)-representation, we con-
struct meromorphic descent data on the trivial sheaf OnYρ . Assuming that the
generic fibre of X is smooth, we prove that the coherent sheaf on ZρK that
corresponds to this descend data, via the equivalence in Theorem 3.3.8, further
descends to a coherent sheaf on XK .

Note that, as explained in Remark 1.3.7, if the generic fibre is smooth then
X is normal. This property will be crucial in Theorem 3.4.5.

Definition 3.4.1. Given (Kn, ρ) ∈ Repcts
K (πproét

1 (X0, ξ)), set

γ : Aut(Yρ|X̂)→ Z?r ? G1 ? · · · ? GN

to be the composition of the isomorphism in Equation 3.2.5 and the inversion
and set ρ̃ := ρ ◦ γ, then we define the meromorphic descent data on OnYρ induced
by ρ as the collection {hρw}w∈Aut(Yρ|X̂), where the morphisms hρw are given by

OYρ ⊗A Kn hρw−−−−→ OYρ ⊗A Kn

f ⊗ v −−−−→ f ⊗ ρ̃(w)(v) .

Definition 3.4.2. Let (Kn, ρ) a continuous πproét
1 (X0, ξ))-representation that

factors through Z?r ? G1 ? · · · ? GN , then for every j ∈ {1, . . . , N} we define the
group morphism

sj : Gop
j → (Z?r ? G1 ? · · · ? GN )op,

which sends an element gj ∈ Gj to the word that consists of the letter gj .

Lemma 3.4.3. Given (Kn, ρ) ∈ Repcts
K (πproét

1 (X0, ξ)), j ∈ {1, . . . , N}, gj ∈ Gj ,
let {OnYρ , k

gj
w }w∈Aut(Yρ|Zρ) be the sheaf with meromorphic descend data relative

to Zρ given by

OYρ ⊗A Kn k
gj
w−−−−→ OYρ ⊗A Kn

f ⊗ v −−−−→ f ⊗ ρ̃(sj(gj) ◦ w ◦ sj(gj)−1)(v) ,

where sj is defined as above. If the sheaf {OnYρ , h
ρ
w}w∈Aut(Yρ|Zρ) with meromor-

phic descent data relative to Zρ induced by ρ descends to the coherent sheaf F
on Zρ, then {OnYρ , k

gj
w }w∈Aut(Yρ|Zρ) descends to gj?F .

Proof. If {OnYρ , h
ρ
w}w∈Aut(Yρ|Zρ) descends to the coherent sheaf Fon Zρ, there

exists an isomorphism

ψ : q?Y/ZF ⊗A K → OYρ ⊗A K
n

such that for every w′ ∈ ker(α)op the following diagram commutes

q?Y/ZF ⊗A K
ψ−−−−→ OYρ ⊗A Kn

id

y yhρw′
w′?q?Y/ZF ⊗A K = q?F ⊗A K

w′?ψ−−−−→ OYρ ⊗A Kn .

(3.4.4)
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Moreover, we observe that, for every gj ∈ Gop
j ,

gj ◦ qY/Z = qY/Z ◦ sj(gj).

The proof of this identity is obvious when one translates it in terms of the
corresponding maps of sets between Z?r ? G1 ? · · · ? GN and G1 × · · · ×GN .

Thus, we can define the isomorphism of sheaves

sj(gj)
?q?Y/ZF = q?Y/Zgj

?F ⊗A K
sj(gj)

?ψ−−−−−−→ OYρ ⊗A Kn.

The Equation 3.4.4 applied to w′ = sj(gj) ◦w ◦ sj(gj)−1 for every w ∈ ker(α)
tells us that the following diagram commutes

q?Y/ZF ⊗A K
ψ−−−−→ OYρ ⊗A Kn

id

y ykgjw
q?Y/ZF ⊗A K

(sj(gj)◦w◦sj(gj)−1)?ψ−−−−−−−−−−−−−−−→ OYρ ⊗A Kn .

Then applying sj(gj)? to the previous diagram, we get that the following diagram
commutes

sj(gj)
?q?Y/ZF ⊗A K

sj(gj)
?ψ−−−−−−→ OYρ ⊗A Kn

id

y ykgjw
sj(gj)

?q?Y/ZF ⊗A K
w?sj(gj)

?ψ−−−−−−−→ OYρ ⊗A Kn .

Hence, sj(gj)?ψ induces an isomorphism of meromorphic descent data be-
tween {q?Y/Zgj

?F}w∈Aut(Yρ|Zρ) and {OnYρ , k
gj
w }w∈Aut(Yρ|Zρ) and this proves that

{OnYρ , k
gj
w }w∈Aut(Yρ|Zρ) descends to gj?F on Zρ.

Let Zρ be the finite étale cover of X̂ associated with (Kn, ρ) that we con-
structed in Section 3.2. We denote by Zρ the corresponding finite étale covering
of X and by ZρK the generic fibre of Zρ.
Theorem 3.4.5. Given X a projective semi-stable curve over S with smooth
generic fibre and (Kn, ρ) ∈ Repcts

K (πproét
1 (X0, ξ)), let FK be the coherent sheaf

on ZρK that corresponds, via the equivalence in Theorem 3.3.8, to the sheaf
{OnYρ , h

ρ
w}w∈Aut(Yρ|Zρ) with meromorphic descent data induced by ρ, then FK

descends to a coherent sheaf on XK .

Proof. The idea of the proof is to break the argument in N steps and proceed
by induction. First let us define the intermediate steps.

We set ZN = Zρ and ZNK = ZρK . By definition,

Aut(Zρ|X) = Aut(ZN |X̂) = (G1 × · · ·GN )op.

For i = 1, . . . , N − 1, we define qN−i to be the projection

qN−i : Gi ×Gi+1 × · · · ×GN → Gi+1 × · · · ×GN ,

while
q0 : GN → 1 and qN := α.
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For i = 0, . . . , N − 1, the set Gi+1 × · · · ×GN , is endowed with a πproét
1 (X0, ξ)-

action, via the map

αN−i = qN−i ◦ · · · ◦ qN−1 ◦ qN : Z?r ? G1 ? · · · ? GN → Gi+1 × · · · ×GN .

Thus, it corresponds to a finite étale coverings ZN−i0 → X0. We define ZN−i to
be the corresponding finite étale covering of X̂.

Furthermore, if ZN−i is the finite étale cover of X corresponding to ZN−i,
then we set ZN−iK to be its generic fibre. By construction,

Aut(ZN−i|X) = Aut(ZN−i|X̂) = (Gi+1 × · · ·GN )op,

Aut(ZN−i+1|ZN−i) = Aut(ZN−i+1|ZN−i) = Gop
i ,

Aut(Yρ|ZN−i) = ker(αN−i)op.

We claim that, for i = 0, . . . , N − 1,

Aut(ZN−i|X) ' Aut(ZN−iK |XK). (3.4.6)

Applying the pullback along the open immersion XK → X we get a natural
morphism

Aut(ZN−i|X)→ Aut(ZN−iK |XK).

Since, if two automorphisms of ZN−i coincide on the open ZN−iK they coincide
on the all ZN−i, then the above morphism is injective. It remains to show that
it is surjective. As seen in Remark 1.3.7, X is a normal scheme. Hence ZN−i is
also normal and applying [LM99, Lem. 4.11] to the model ZN−i, we see that an
automorphism f ∈ Aut(ZN−iK |XK) can be extended to the scheme ZN−i. Thus,
the morphism Equation 3.4.6 is an isomorphism.

Similarly, we see that

Aut(ZN−i+1
K |ZN−iK ) ' Aut(ZN−i+1|ZN−i) = Gop

i .

Hence, to construct descent data for the sheaf FK relative to the finite
étale map qN−1 : ZNK → ZN−1

K , it suffices to construct, for every g1 ∈ Gop
1 ,

isomorphisms
hN−1
g1 : FK → g1

?FK

satisfying the co-cycle condition.
The sheaf with meromorphic descent data {OnYρ , k

g1
w }w∈Aut(Yρ|Zρ), defined

in Lemma 3.4.3, descends to g1
?F on ZN so, by Theorem 3.3.8, we need to

construct

hN−1
g1 ∈ HomO

ZN
K

(FK , g1
?FK) = Hom({OnYρ , h

ρ
w}, {OnYρ , k

g1
w }).

Let s1 be as in Definition 3.4.2, then we set, for every g1 ∈ G1,

OYρ ⊗A Kn
hN−1
g1−−−−→ OYρ ⊗A Kn

f ⊗ v −−−−→ f ⊗ ρ̃(s1(g1))(v).



Chapter 3. Descent of sheaves with meromorphic data 55

and we get that the following diagram commutes

OYρ ⊗A Kn
hN−1
g1−−−−→ OYρ ⊗A Kn

hρw

y ykg1w
OYρ ⊗A Kn −−−−−→

w?hN−1
g1

OYρ ⊗A Kn

because

ρ̃(s1(g1)◦w◦s1(g1)−1)◦ρ̃(s1(g1)) = ρ̃(s1(g1)◦w◦s1(g1)−1◦s1(g1)) = ρ̃(s1(g1)◦w).

Hence, {hN−1
g1 } are isomorphisms of descent data. Since by construction they

satisfy the co-cycle condition, they induce the isomorphisms we wanted. This
shows that FK descends to a coherent sheaf FN−1

K on ZN−1
K .

By construction, if FN−1 is the sheaf on ZN−1 corresponding to FN−1
K , then

{F , hN−1
g1 }g1∈Gop

1
descends to FN−1 as sheaf with meromorphic descent data, i.e.,

there exists an isomorphism ψN−1 such that, for every g1 ∈ Gop
1 , the following

diagram commutes

q?N−1FN−1 ⊗A K
ψN−1−−−−→ F ⊗A Ky hN−1

g1

y
q?N−1FN−1 ⊗A K

g?1ψN−1−−−−−→ s1(g1)?F ⊗A K .

We want now to construct descent data for the sheaf FN−1
K relative to the

finite étale map qN−2 : ZN−1
K → ZN−2

K . In order to do this, we need first to find
a sheaf with meromorphic data on Yρ that descends to FN−1.

For i = 1, . . . , N , the following sequence of groups is exact

1→ ker(αN−i+1)op → ker(αN−i)op → Gop
i → 1

and the map si : G
op
i → ker(αN−i)op, defined as in Definition 3.4.2, induces a

section. Thus, ker(αN−i)op is the semi-direct product of ker(αN−i+1)op and Gop
i .

In particular, any word w ∈ ker(αN−1)op can be written as

w = w′ ◦ s1(g1) with w′ ∈ ker(αN )op = ker(α)op, g1 ∈ Gop
1 .

Given w = w′ ◦ s1(g1), we set, for f ⊗ v ∈ OnYρ ⊗A K,

hN−2
w (f ⊗ v) := s1(g1)?hρw′ ◦ h

N−1
g1 (f ⊗ v) = f ⊗ ρ̃(w)v.

By construction, {OnYρ , h
N−2
w }w∈ker(αN−1)op is a sheaf with meromorphic descent

data on Yρ relative to ZN−1.
Moreover, the following diagram commutes:

q?q?N−1FN−1 ⊗A K
q?ψN−1−−−−−→ q?F ⊗A K

ψ−−−−→ OYρ ⊗A Kny q?hN−1
g

y hN−1
g

y
q?q?N−1FN−1 ⊗A K

q?g?1ψN−1−−−−−−−→ s1(g1)?q?F ⊗A K
s1(g1)?ψ−−−−−−→ OYρ ⊗A Kn

Id

y Id

y s1(g1)?hw′

y
q?q?N−1FN−1 ⊗A K

s1(g1)?q?ψN−1−−−−−−−−−−→ s1(g1)?q?F ⊗A K
s1(g1)?w′?ψ−−−−−−−−→ OYρ ⊗A Kn
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where for simplicity we wrote q = qY/Z . The upper left square commutes because
F descends to FN−1 on ZN−1; the upper right by construction of hN−1

g ; the
lower left square commutes because gj ◦ q = q ◦ sj(gj); while the lower right
commutes because {OYρ , hw} descends to F .

In particular, also the external square commutes and this implies that the
sheaf {OnYρ , h

N−2
w }w∈ker(αN−1)op descends to FN−1 on ZN−1.

For every g2 ∈ G2, let {OnYρ , k
g2
w }w∈ker(αN−1)op be defined by

OYρ ⊗A Kn kg2w−−−−→ OYρ ⊗A Kn

f ⊗ v −−−−→ f ⊗ ρ̃(s2(g2) ◦ w ◦ s2(g2)−1)(v).

As in the proof of Lemma 3.4.3, we find that {OnYρ , k
g2
w } descends to the

sheaf g2
?FN−1 on ZN−1. Then, repeating the argument of the base step, we

find that the maps

OYρ ⊗A Kn
hN−2
g2−−−−→ OYρ ⊗A Kn

f ⊗ v −−−−→ f ⊗ ρ̃(s2(g2))(v)

induce isomorphisms of meromorphic descent data between {OnYρ , h
N−2
w } and

{OnYρ , k
g2
w }. Moreover, by Theorem 3.3.8

hN−2
g2 ∈ Hom({OnYρ , h

N−2
w }, {OnYρ , k

g2
w }) = Hom(FN−1

K , g2
?FN−1

K ).

By construction hN−2
g2 satisfy the co-cycle condition, hence they induce descent

data for FN−1
K relative to the finite étale map ZN−1

K → ZN−2
K .

By induction on N , the proof is complete.

Remark 3.4.7. Let {OnYρ , h
ρ
w}w∈Aut(Yρ|Zρ) and FK as above, then we showed

that FK descends to a coherent sheaf GρK on XK . Let Gρ be the coherent sheaf on
X̂ that corresponds to GρK via the equivalence in Proposition 3.3.7, then it is clear
from the construction that {OnYρ , h

ρ
w}w∈Aut(Yρ|X̂), the sheaf with meromorphic

data induced by ρ, descends to Gρ on X̂ in the sense of Definition 3.3.2, i.e.,
there exists a morphism of meromorphic descent data

{OnYρ , h
ρ
w}w∈Aut(Yρ|X̂) ' {q

?
Y Gρ, hqw}w∈Aut(Yρ|X̂),

where qY : Yρ → X̂ is the structure map of Yρ and hqw : q?Y Gρ → w?q?Y Gρ are the
natural isomorphisms.

Theorem 3.4.8. Given X a projective semi-stable curve over S with smooth
generic fibre, associating with (Kn, ρ) ∈ Repcts

K (πproét
1 (X0, ξ)) the coherent sheaf

{OnYρ , h
ρ
w}w∈Aut(Yρ|X̂) with meromorphic descent data induced by ρ defines a

functor
F : Repcts

K (πproét
1 (X0, ξ))→ Coh(XK).
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Proof. Given (Kn, ρ) ∈ Repcts
K (πproét

1 (X0, ξ)), we defined in Definition 3.4.1
{OnYρ , h

ρ
w}w∈Aut(Yρ|X̂) and proved in Theorem 3.3.5 and Theorem 3.4.5 that it

corresponds to a coherent sheaf FρK on XK . Then we can set

F(Kn, ρ) = FρK .

Hence, it suffices to define F(ϕ) for every morphism of continuous repre-
sentations ϕ : (Kn, ρ)→ (Km, τ). Assume that ρ factors through the quotient
Z?r ? G1 ? · · · ? GN and τ factors through Z?r ? H1 ? · · · ? HN , then we denote
by Yρ and Yτ the formal geometric coverings of X̂ associated with ρ and τ , as
in Definition 3.2.4.

We consider now the set

Z?r ? (G1 ×H1) ? · · · ? (GN ×HN ).

Since, for every j, there exists a quotient map

βj : πét
1 (Cj)→ Gj ×Hj ,

the map

β : πproét
1 (X0, ξ)→ Z?r ? (G1 ×H1) ? · · · ? (GN ×HN ),

induced by βj on the letters in πét
1 (Cj) and by the identity on the letters in

Z?r is a continuous group morphism. Hence, it defines a πproét
1 (X0, ξ)-action

on Z?r ? (G1 ×H1) ? · · · ? (GN ×HN ) and we can associate with it a geometric
covering of X̂, which we call Yρ,τ . By construction, there exist X̂-morphisms

pρ : Yρ,τ → Yρ and pτ : Yρ,τ → Yτ .

We set

ρ′ : Z?r ? (G1 ×H1) ? · · · ? (GN ×HN )→ GLn(K)

to be the unique group morphism such that

• ρ′(w) = ρ(w) for every w ∈ Z?r,

• ρ′(gi, hi) = ρ(gi) for every (gi, hi) ∈ Gi ×Hi, i = 1, . . . , N .

Similarly, we define τ ′. Then we have that

p?ρ{OnYρ , h
ρ
w} = {OnYρ,τ , h

ρ′

w } and p?τ{OmYτ , h
τ
w} = {OmYρ,τ , h

τ ′

w }.

By construction, the sheaf {OnYρ,τ , h
ρ′

w }w∈Aut(Yρ,τ |X̂) descends to a coherent

sheaf Fρ on X̂, which corresponds via the equivalence in Proposition 3.3.7 to
F (ρ) on XK and, similarly, {OmYρ,τ , h

τ ′

w } descends to a coherent sheaf Fτ on X̂,
which corresponds to F (τ) on XK .

By Proposition 3.3.7, in order to define F (ϕ), it suffices to construct a
morphism

Fρ ⊗A K → Fτ ⊗A K.
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However, by Theorem 3.3.5 and Theorem 3.4.5, such a morphism corresponds to
a morphism of meromorphic descent data

αϕ : {OnYρ,τ , h
ρ
w}w∈Aut(Yρ,τ |X̂) → {O

m
Yρ,τ , h

τ
w}w∈Aut(Yρ,τ |X̂).

We set
OYρ,τ ⊗A Kn αϕ−−−−→ OYρ,τ ⊗A Km

f ⊗ v −−−−→ f ⊗ ϕ(v) ,

then αϕ is the wanted morphism of meromorphic descent data. Indeed, since
ϕ is a morphism of representations, for every w ∈ Aut(Yρ,τ |X̂) the following
diagram commutes

OYρ,τ ⊗A Kn hρw−−−−→ w?OYρ,τ ⊗A Kn

αϕ

y yw?αϕ
OYρ,τ ⊗A Km −−−−→

hτw
w?OYρ,τ ⊗A Km .

Remark 3.4.9. If X is a stable curve over S with smooth generic fibre and
degenerate closed fibre, then the functor constructed in the previous lemma
coincides with the functor constructed in Theorem 3.1.13.



Chapter 4

The specialization functor

Given S and K as in the previous chapter, K a fixed algebraic closure of K and
X a projective semi-stable over S with smooth generic fibre, the goal of this
chapter is to construct a tensor functor from the category Repcts

K
(πproét

1 (X0, ξ))

of continuous K-linear πproét
1 (X0, ξ)-representations to the category Strat(XK)

of stratified bundles on the geometric generic fibre XK . By Tannakian dual-
ity, this functor will induce morphism of group schemes from πstrat(XK) to
(πproét

1 (X0, ξ))
cts.

In analogy with the previous chapter, stratified bundles with meromorphic
data will play a crucial role in the construction of the functor.

4.1 Stratified bundles with meromorphic descent
data

In this section we recall the definition of stratified bundles and we state the
properties of the group scheme associated with the Tannakian category that
they form. These properties will be the starting point for the study of the
correlation between the specialization functor that we construct and the usual
étale specialization map. We conclude by introducing the notion of stratified
bundles with meromorphic descent data.

Given F a field of positive characteristic p > 0 and T a smooth scheme
of finite type over F , we denote by T (i) the i-th Frobenius twist of T and by
F iT/F : T (i) → T (i+1) the i-th relative Frobenius over F .

For our purposes it would, in fact, be sufficient to consider T = XK , the
geometric generic fibre of a projective semi-stable curve X.

Definition 4.1.1. Let T be a smooth scheme of finite type over a field F of
positive characteristic, then an F-divided sheaf on T is given by a sequence
(Ei, σi)i≥0, where Ei are bundles on T (i) and σi : F iT/F

?Ei+1 → Ei are OT (i) -linear
isomorphisms.

Definition 4.1.2. Given T as above and (Ei, σi),(Gi, τi) two F-divided sheaves
on T , a morphism of F-divided sheaves from (Ei, σi) to (Gi, τi) is defined as
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a sequence of OT (i)-linear maps, α = {αi : Ei → Gi}, such that the following
diagram is commutative

F iT/F
?Ei+1

F iT/F
?
αi+1

−−−−−−−→ F iT/F
?Gi+1

σi

y yτi
Ei

αi−−−−→ Gi .

Definition 4.1.3. Let T be a smooth scheme of finite type over a field F and
DT/F the quasi coherent OT -module of differential operators defined in [EGA 4,
Section 16], then a stratified bundle on T is a locally free OT -module of finite
rank endowed with a OT -linear DT/F -action extending the OT -module structure
via the inclusion OT ⊂ DT/F . A morphism of stratified bundles is a morphism
of DT/F -modules.

Theorem 4.1.4 (Katz’s theorem, [Gie75], Thm. 1.3). Let T be a smooth
scheme of finite type over a field F of characteristic p > 0, then the category of
stratified bundles on T and the category of F-divided sheaves on T are equivalent.

Since they are equivalent, we identify these two categories and we use the
term stratified bundles for both definitions. Moreover, we denote by Strat(T )
the category of stratified bundles on T .
Proposition 4.1.5 ([SR72], Section. VI.1). Let T be a smooth scheme of finite
type over a field F of characteristic p > 0, then the category Strat(T ) of stratified
bundles on T is a rigid abelian tensor category. Moreover, if T has a rational
point x ∈ T (F ), the functor

ωx : Strat(T )→ VecF , ωx(Ei, σi) = x∗E0

is a fibre functor and Strat(T ) is a neutral Tannakian category over F .

Definition 4.1.6. Let T a smooth scheme of finite type over a field F of
characteristic p > 0 and suppose that T has a rational point x ∈ T (F ), then we
denote by πstrat(T, x) the affine group scheme associated with (Strat(T ), ωx) via
Tannakian duality (Theorem 2.1.10).

Definition 4.1.7. Given E ∈ Strat(T ) we denote by 〈E〉⊗ the full subcategory
of Strat(T ) whose objects are subquotients of objects of the form P (E , E∨), with
P (x, y) ∈ N[x, y].

The category 〈E〉⊗ is the smallest Tannakian subcategory of Strat(T ) that is
closed under subquotients and contains E .

Definition 4.1.8. Suppose that T is a smooth scheme of finite type over a field
F of characteristic p > 0 and that it has a rational point x ∈ T (F ), we define
the monodromy group of E ∈ Strat(T ) to be the affine group scheme associated
with the Tannakian category (〈E〉⊗, ωx|〈E〉⊗) and we denote it by G(E , x).

Definition 4.1.9. Under the above assumptions, we say that E ∈ Strat(T ) has
finite monodromy if the group scheme G(E , x) is finite over K.

To check if a stratified bundle has finite monodromy, we can use the following
criterion.



Chapter 4. The specialization functor 61

Lemma 4.1.10 ([EL13], Lem. 1.1). If F is an algebraically closed of char-
acteristic p > 0 and T is a smooth scheme of finite type over F , then given
E ∈ Strat(T ) the following are equivalent

• E has finite monodromy,

• there exists a finite étale cover p : T ′ → T such that p?E is trivial in
Strat(T ′).

Analysing the category Strat(T ) one finds even more information about the
group scheme πstrat(T, x).

Theorem 4.1.11 ([San07], Thm. 11). If F is an algebraically closed of charac-
teristic p > 0, T is a smooth scheme of finite type over Fand x ∈ T (F ), then
the group scheme πstrat(T, x) is perfect. In particular, it is reduced.

Corollary 4.1.12 ([Kin14], Thm. 2.9). Let F an algebraically closed field of
characteristic p > 0, T a smooth scheme of finite type over F and x ∈ T (F ),
then if a stratified bundle E on T has finite monodromy, its monodromy group
G(E , x) is a constant group scheme over F .

The following description of the pro-finite completion of the group scheme
πstrat(T, x) will be very important for the next sections.

Proposition 4.1.13 ([Kin14], Prop. 2.15). Given F an algebraically closed of
characteristic p > 0, T a smooth scheme of finite type over F and x ∈ T (F ), let
πét

1 (T, x) = lim←−i πi be the étale fundamental group of T , then

(i) if a stratified bundle E on T has finite monodromy, its monodromy group
G(E , x) is isomorphic to the constant group scheme over F associated with
a finite quotient of πét

1 (T, x),

(ii) for every finite quotient πi of πét
1 (T, x) there exists a stratified bundle E such

that G(E , x) ' (πi)F , where (πi)F is the constant group scheme over F
associated with πi.

In particular, there exists a morphism of group schemes over F

πstrat(T, x)→ lim←−
i

(πi)F .

Remark 4.1.14. In analogy with Remark 2.3.6, the group scheme lim←−i(πi)F is
denoted as πét

1 (T, x)F .

We return now to our original notation, where A, S and K are as in the
previous chapter and we fix a projective semi-stable curve X over S with smooth
generic fibre. We proceed defining stratified bundles with meromorphic descent
data.

Definition 4.1.15. Given Y a formal geometric covering of X̂, a coherent sheaf
F on Y is called meromorphic bundle if there exists a locally free sheaf E on Y
such that F ⊗A K ∼= E ⊗A K.

We denote by Y(i) the i-th Frobenius twist of Y and by F iY/S : Y(i) → Y(i+1)

the i-th relative Frobenius over S.
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Remark 4.1.16. If X is a projective semi-stable curve over S with smooth
generic fibre, then so are its Frobenius twists X(i).

Indeed, since X is projective over S, by base change also X(i) is projective
over S. Moreover, by [Liu02, Prop. 10.3.15.(a)], X(i) is a semi-stable projective
curve over S(i). The generic fibre of X(i) is given by (X(i))K ∼= (XK)(i), which is
smooth by base change, and the closed fibre of X(i) is (X(i))0

∼= (X0)(i). Hence,
the fibres of X(i) are geometrically connected, as we required in Definition 1.3.5.

Furthermore, given a geometric covering Y0 of X0 and Y the corresponding
formal geometric covering of X̂, we see that, since k is perfect,

Aut(Y0|X0) ' Aut(Y (i)
0 |X

(i)
0 ) ' Aut(Y(i)|X̂(i)) ' Aut(Y|X̂).

We will identify the above groups, treating these isomorphisms as equalities.

Definition 4.1.17. Given Y a formal geometric covering of X̂, a stratified bundle
with meromorphic descent data on Y is a sequence {{Ei, hiw}w∈Aut(Y|X̂), σi}i≥0,
with

• {Ei, hiw}w∈Aut(Y|X̂) meromorphic bundle on Y(i) with meromorphic descent
data

hiw : Ei ⊗A K → w?Ei ⊗A K,

• σi isomorphisms of meromorphic descent data

σi : {F iY/S
?Ei+1, F

i
Y/S

?
hi+1
w }w∈Aut(Y|X̂) → {Ei, h

i
w}w∈Aut(Y|X̂).

To simplify the notation, we will denote a stratified bundle with meromorphic
descent data by {Ei, hiw, σi} or by {Ei, hiw}, when the isomorphisms σi are clear.

Definition 4.1.18. Given Y a formal geometric covering of X̂, a morphism of
stratified bundles with meromorphic descent data from {Ei, hiw, σi} to {Gi, kiw, τi}
is given by a sequence {αi}i≥0 of morphisms of meromorphic descent data on
Y(i) such that the following diagram is commutative

F iY/S
?{Ei+1, h

i+1
w }w∈Aut(Y|X̂)

F iY/S
?
αi+1

−−−−−−−→ F iY/S
?{Gi+1, k

i+1
w }w∈Aut(Y|X̂)

σi

y yτi
{Ei, hiw}w∈Aut(Y|X̂)

αi−−−−→ {Gi, kiw}w∈Aut(Y|X̂) .

We denote by Stratm(Y) the category of stratified bundle with meromorphic
descent data on Y.

4.2 Construction of the specialization functor
In this section we explain the construction of the specialization functor. The
idea is to repeat the construction of Theorem 3.4.8 for all Frobenius twists of
X and then prove that the obtained sequence of coherent sheaves is a stratified
bundles.
Lemma 4.2.1. Given X a projective semi-stable curve over S with smooth
generic fibre, a representation (Kn, ρ) ∈ Repcts

K (πproét
1 (X0, ξ)) induces a stratified

bundle with meromorphic descent data on Yρ.
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Proof. Given a representation (Kn, ρ), we set {OnYρ , h
ρ
w}w∈Aut(Yρ|X̂) to be the

sheaf with meromorphic descent data induced by ρ, as in Definition 3.4.1.
By Remark 4.1.16, we can repeat the construction on X(i). Namely we can

define, on the sheaf On
Y(i)
ρ

, the meromorphic descent data {hρ,iw }w∈Aut(Yρ|X̂)

OY(i)
ρ
⊗A Kn hρ,iw−−−−→ OY(i)

ρ
⊗A Kn

f ⊗ v −−−−→ f ⊗ ρ̃(w)(v) ,

with ρ̃ as in Definition 3.4.1.
Hence, we get a sequence {On

Y(i)
ρ

, hρ,iw }i of meromorphic bundles with mero-

morphic descent data, and, by construction of hρ,iw , it is clear that

F iYρ/S
?{On

Y(i+1)
ρ

, hρ,i+1
w } = {On

Y(i)
ρ
, hρ,iw }.

Thus, {On
Y(i)
ρ

, hρ,iw }i is a stratified bundle with meromorphic descent data.

Definition 4.2.2. Given X a projective semi-stable curve over S with smooth
generic fibre and (Kn, ρ) ∈ Repcts

K (πproét
1 (X0, ξ)), then a stratified bundle with

meromorphic descent data on Yρ relative to Zρ is given by the data of

• {Ei, hiw}w∈Aut(Yρ|Zρ), a meromorphic bundle on Y(i)
ρ with meromorphic

descent data
hiw : Ei ⊗A K → w?Ei ⊗A K,

for each i ≥ 0,

• σi, isomorphisms of meromorphic descent data

σi : {F iYρ/S
?Ei+1, F

i
Yρ/S

?
hi+1
w }w∈Aut(Yρ|Zρ) → {Ei, hiw}w∈Aut(Yρ|Zρ).

The morphisms of stratified bundles with meromorphic descent data on Yρ
relative to Zρ are defined as in Definition 4.1.18 and we denote by Stratm(Yρ|Zρ)
the category that these objects form.

The next proposition is the analogue of Theorem 3.3.8 for stratified bundles
with meromorphic descent data.
Proposition 4.2.3. Given X a projective semi-stable curve over S with smooth
generic fibre and (Kn, ρ) ∈ Repcts

K (πproét
1 (X0)), let Zρ be the finite étale covering

of X corresponding to Zρ and ZρK = Zρ×SK its generic fibre, then the categories
Stratm(Yρ|Zρ) and Strat(ZρK) are equivalent.

Proof. By Remark 4.1.16, we can extend the results we found on X in the
previous chapter to all its Frobenius twists X(i).

In particular, given an object {Ei, hiw}i ∈ Stratm(Yρ|Zρ), by Theorem 3.3.5,
the sheaf {Ei, hiw}w∈Aut(Yρ|Zρ) with meromorphic descent data relative to Z(i)

ρ

descends to a coherent sheaf Gi on Z(i)
ρ for every i, and it corresponds via

Groethendieck’s existence theorem to a coherent sheaf G̃i on Z
(i)
ρ . Since by

[Stacks, Tag 05B2] locally free sheaves of finite rank correspond via fpqc descent
to locally free sheaves of finite rank, then, by construction, if Ei is a meromorphic
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bundle, also Gi is a meromorphic bundle on Z(i)
ρ . Moreover, as shown for example

in [Her05, Cor. 1.15] locally free sheaves on Z(i)
ρ correspond via Grothendieck’s

existence theorem to locally free sheaves on Z(i)
ρ , hence also G̃i is a meromorphic

bundle.
To simplify the notation we write F iZ = F iZρ/S , F

i
Z = F iZρ/S , and F

i
Y = F iYρ/S .

If piY/Z is the composition of piY/Z : Y(i)
ρ → Z(i)

ρ and the map Z(i)
ρ → Z

(i)
ρ , then

we have that

HomO
Z

(i)
ρ

(F iZ
?G̃i+1, G̃i)⊗A K ' HomO

Y(i)
ρ

(piY/Z
?
(F iZK

?G̃i+1), piY/Z
?G̃i)⊗A K.

Since the relative Frobenius is functorial, i.e.,

F iZ ◦ piY/Z = pi+1
Y/Z ◦ F

i
Y ,

and piY/Z
?G̃i ' {Ei, hiw}, we get

HomO
Z

(i)
ρ

(F iZ
?G̃i+1, G̃i)⊗A K ' Hom(F iY

?{Ei+1, h
i+1
w }, {Ei, hiw}).

Hence, the category Stratm(Yρ|Zρ) is equivalent to the category StratK(Zρ),
whose object are defined by sequences of meromorphic bundles {G̃i, σi} on Z(i)

ρ

with isomorphisms
σi : F

i
Z

?G̃i+1 ⊗A K → G̃i ⊗A K

and whose morphisms from {G̃i, σi} to {G̃′i, τi} are sequences {ϕi} of morphisms

ϕi : G̃i ⊗A K → G̃′i ⊗A K

that are compatible with the isomorphisms σi and τi.
On the other hand by Proposition 3.3.7, G̃i corresponds to a coherent sheaf

GiK on ZρK
(i). Since G̃i are meromorphic bundles, the sheaves GiK are locally free.

As above, by functoriality of the Frobenius, we see that

HomO
Z
ρ
K

(i)
(F iZK

?Gi+1
K ,GiK) ' HomO

Z
(i)
ρ

(F iZ
?G̃i+1, G̃i)⊗A K.

Hence, the category StratK(Zρ) is equivalent to the category Strat(ZρK).

The next proposition is the analogue of Theorem 3.4.5 for stratified bundles.
Proposition 4.2.4. Given X a projective semi-stable curve over S with smooth
generic fibre and (Kn, ρ) ∈ Repcts

K (πproét
1 (X0)), let {On

Y(i)
ρ

, hρ,iw }i≥0 be the strati-

fied bundle on with meromorphic descent data Y(i)
ρ induced by ρ, then {On

Y(i)
ρ

, hρ,iw }
descends to a stratified bundle on XK .

Proof. By Proposition 4.2.3, the stratified bundle with meromorphic descent
data {On

Y(i)
ρ

, hρ,iw }i≥0 defined by ρ descends to a stratified bundle Giρ,K on ZρK
(i).

Applying Theorem 3.4.5 to every Frobenius twists of X, we see that for every i
the sheaf Giρ,K further descends to a locally free sheaf F iρ,K on X(i)

K . Moreover,

as in Remark 3.4.7, we can see that, if F iρ is the meromorphic bundle on X̂(i)

corresponding to F iρ,K on X(i)
K via the equivalence in Proposition 3.3.7, then the
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meromorphic bundle {On
Y(i)
ρ

, hρ,iw }w∈Aut(Yρ|X̂) with meromorphic descent data

induced by ρ descends to F iρ for every i ≥ 0.
To prove that {F iρ,K} is a stratified bundle on XK it suffices to construct

the isomorphisms
σi : F

i
XK/K

?F i+1
ρ,K → F

i
ρ,K .

To simplify the notation, we write F iXK = F iXK/K , F i
X̂

= F i
X̂/S

and also

F iY = F iYρ/S . By functoriality of the Frobenius and Proposition 3.3.7, we have
that

HomOXK (F iXK
?F i+1

ρ,K ,F
i
ρ,K) ' HomO

X̂
(F i
X̂

?F i+1
ρ ,F iρ)⊗A K.

Moreover, if piY : Y(i)
ρ → X̂(i) is the structure map of Y(i)

ρ , since

F i
X̂
◦ piY = pi+1

Y ◦ F iY

and {On
Y(i)
ρ

, hρ,iw }w∈Aut(Yρ|X̂) ' p
i
Y
?F iρ, we get

HomOXK (F iXK
?F i+1

ρ,K ,F
i
ρ,K) ' Hom(F iY

?{On
Y(i+1)
ρ

, hρ,i+1
w }, {On

Y(i)
ρ
, hρ,iw }).

Hence, the identities

F iYρ/S
?{On

Y(i+1)
ρ

, hρ,i+1
w } = {On

Y(i)
ρ
, hρ,iw }

induce the isomorphisms σi that we wanted.

Proposition 4.2.5. Given X a projective semi-stable curve over S, the descent
of stratified bundles with meromorphic descent data associated to continuous
representations of πproét

1 (X0, ξ) induces a functor

spK : Repcts
K (πproét

1 (X0, ξ))→ Strat(XK).

Proof. By Proposition 4.2.4, given (Kn, ρ) ∈ Repcts
K (πproét

1 (X0)), the stratified
bundle with meromorphic descent data {On

Y(i)
ρ

, hρ,iw }i≥0 induced by ρ on Yρ
descends to a stratified bundle {F iρ} on XK . Thus, we can define

spK(Kn, ρ) := {F iρ}i ∈ Strat(XK).

Let ϕ : (Kn, ρ)→ (Km, τ) be a morphism of representations, then, using the
same argument of Proposition 3.4.8 for every Frobenius twist of X, we can define
the morphisms of sheaves Fi(ϕ),

Fi(ϕ) : {F iρ} → {F iτ}.

By construction, it is clear that the collection {Fi(ϕ)} induces a morphism of
stratified bundles from {F iρ} to {F iτ} and the statement follows.

Lemma 4.2.6. The functor spK constructed above is a tensor functor.

Proof. Let (Kn, ρ), (Km, τ) ∈ Repcts
K (πproét

1 (X0, ξ)) two continuous representa-
tion. As we saw in Section 3.2

• Yρ corresponds to a πproét
1 (X0, ξ)-set of the form Z?r ? G1 ? · · · ? GN ,
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• Yτ corresponds to a πproét
1 (X0, ξ)-set of the form Z?r ? H1 ? · · · ? HN .

As in Proposition 3.4.8, we define Yρ,τ to be the geometric covering of X̂
corresponding to the πproét

1 (X0, ξ)-set Z?r ? (G1 ×H1) ? · · · ? (GN ×HN ).
Moreover, we set

ρ′ : Z?r ? (G1 ×H1) ? · · · ? (GN ×HN )→ GLn(K)

to be the unique group morphism such that

• ρ′(w) = ρ(w) for every w ∈ Z?r,

• ρ′(gi, hi) = ρ(gi) for every (gi, hi) ∈ Gi ×Hi and every i = 1, . . . , N .

Similarly, we define τ ′. Then we can consider

ρ′ ⊗ τ ′ : Z?r ? (G1 ×H1) ? · · · ? (GN ×HN )→ GLnm(K)

and we can define the associated stratified bundle on Yρ,τ with meromorphic
descent data {On

Y(i)
ρ,τ

, hρ
′⊗τ ′,i
w }.

Let
pρ : Yρ,τ → Yρ and pτ : Yρ,τ → Yτ ,

then we have that

p?ρ{OnY(i)
ρ
, hρ,iw } = {On

Y(i)
ρ,τ
, hρ

′,i
w } and p?τ{OmY(i)

τ
, hτ,iw } = {Om

Y(i)
ρ,τ
, hτ

′,i
w }.

Hence, we can define

{On
Y(i)
ρ,τ
, hρ

′,i
w } ⊗ {OmY(i)

ρ,τ
, hτ

′,i
w } := {Onm

Y(i)
ρ,τ
, hρ

′,i
w ⊗ hτ

′,i
w }.

We immediately find that

{On
Y(i)
ρ,τ
, hρ

′

w } ⊗ {OmY(i)
ρ,τ
, hτ

′

w } ' {OnmY(i)
ρ⊗τ

, hρ
′⊗τ ′
w }.

Furthermore, by construction, we notice that {On
Y(i)
ρ⊗τ

, hρ
′

w } descends to the

stratified bundle {F iρ} = spK(ρ), {Om
Y(i)
ρ,τ

, hτ
′

w } descends to the stratified bundle

{F iτ} = spK(τ) and also that {Onm
Y(i)
ρ⊗τ

, hρ
′⊗τ ′
w } descends to the stratified bundle

{F iρ⊗τ} = spK(ρ ⊗ τ). Thus, by Theorem 3.3.8 and Theorem 3.4.5 it follows
that

spK(ρ)⊗ spK(τ) ' spK(ρ⊗ τ).

All the properties of tensor functor can be easily checked in a similar way.

Theorem 4.2.7. Given X a projective semi-stable curve over S with smooth
generic fibre, the functor spK can be extended to a tensor functor

spL : Repcts
L (πproét

1 (X0, ξ))→ Strat(XL),

where XL = XK ×K Spec(L), for every finite extension L of K.
Moreover, fixing x ∈ XK(K), it induces a morphism of group schemes

sp : πstrat(XK)→ (πproét
1 (X0, ξ))

cts.
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Proof. Let (Kn, ρ) ∈ RepK(πproét
1 (X0)), then there exists a finite field extension

K ⊂ L and (Ln, ρL) ∈ RepL(πproét
1 (X0)) such that

(Ln, ρL)⊗L K = (Kn, ρ).

We say that ρ is defined over L and we set

• AL to be the integral closure of A in L,

• SL = Spec(AL),

• XSL = X ×S SL.

By definition, AL is a complete discrete valuation ring, whose residue field is k
and whose fraction field is L. By base change, XSL is proper over SL. Moreover,
we have that

(XSL)0 = XSL ×SL Spec(k) = X ×S Spec(k) = X0,

(XSL)K = XSL ×SL Spec(K) = X ×S Spec(K) = XK .

Hence, XSL is a projective semi-stable curve with smooth generic fibre.
We can apply Proposition 4.2.5 to XSL and we can define a functor spL that

associates to (Ln, ρL) a stratified bundle on XL. Let bsL : XK → XL be the
base change, we set

sp(Kn, ρ) := bs∗L(spL(Ln, ρL)) ∈ Strat(XK).

For every morphism ϕ : (Kn, ρ)→ (Km, τ) there exists a finite extension L
of K such that ρ and τ are defined over L and there exists ϕL : (Ln, ρ)→ (Lm, τ)
such that ϕL ⊗L K = ϕ, then spL(ϕL) is a well defined morphism of stratified
bundles on XL and we can set

sp(ϕ) := bs∗L(spL(ϕL)).

Since, by Proposition 4.2.6 applied to XSL , spL is a tensor functor, for every
finite extension K ⊂ L, then also sp is a tensor functor.

Let x be the fixed point of Xx, ωx be the associated fibre functor of Strat(XK

and ωπ the fiber functor of Repcts
K

(πproét
1 (X0, ξ)) given by the forgetful functor.

We claim that ωx ◦ sp ' ωπ.
Let (Ln, ρL) ∈ RepL(πproét

1 (X0)) for some finite extension L of K such that
(Ln, ρL) ⊗L K = (K

n
, ρ), then choosing a trivialization of sp(Ln, ρL)) on a

neighborhood of x induces an isomorphism

ωx(sp(Ln, ρL)) ' Kn = ωπ(K
n
, ρ).

Given ϕL : (Ln, ρ)→ (Lm, τ) a morphism of representations, we denote by
F0
ρ and G0

τ the meromorphic bundles on XSL corresponding, via Theorem 3.3.8,
to the first term of spL(Ln, ρL) and spL(Lm, τL) respectively. We set {Ui} to be
a covering of XSL on which Fi and Gi are trivialized and we fix two trivializations
s0 : F0|Uj0 ' O

n
Uj0

, t0 : G0|Uj0 ' O
m
Uj0

on an affine open Uj0 that contains the
point x ∈ XSL(K). We notice that⋃

{Uj | Uj∩X0 6=∅}

Uj = XSL ,
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because if it was a strict inclusion, then its complement in XSL would have
non-trivial intersection with X0, which is a contradiction. Therefore, we can
assume that Uj0 ∩X0 6= ∅ and we can define Ûj0 to be the formal completion of
Uj0 along Uj0 ∩X0. By [EGA III, Cor. 5.1.3], the pullback along Ûj0 → Uj0 is a
fully faithful functor, hence the diagram

F0
ρ |Uj0 ⊗A L

sj0−−−−→ OUj0 ⊗A L
nyspL(ϕL)|Uj0

yid⊗ϕL

G0
τ |Uj0 ⊗A L

tj0−−−−→ OUj0 ⊗A L
m

commutes on XSL if and only if the corresponding diagram on X̂SL commutes.
Furthermore, by fpqc descent, the latter commutes if and only if its pullback on
Yρ,τ × Ûj0 commutes, but this follows by construction because the corresponding
diagram on Yρ,τ × Ûj0 is

On
Yρ,τ×Ûj0

⊗A L
Id−−−−→ On

Yρ,τ×Ûj0
⊗A Lyid⊗ϕL

yid⊗ϕL

Om
Yρ,τ×Ûj0

⊗A L
Id−−−−→ Om

Yρ,τ×Ûj0
⊗A L .

Thus, we can conclude that the following diagram commutes

x?(F0
ρ ⊗A L)

x?s0−−−−→ Kn

x?spL(ϕL)

y yϕL⊗KK
x?(G0

τ ⊗A L)
x?t0−−−−→ Km ,

which implies that
ωx ' ωπ(ϕ).

Let γ be a natural transformation between ωx ◦ sp and ωπ constructed as
above, then we set

ω′π(K
n
, ρ) = γ(ωπ(K

n
, ρ)).

Hence, by [DM82, Cor. 2.9], the functor sp corresponds to a morphism of group
schemes

sp : πstrat(XK)→ π(Repcts
K

(π1proét(X0)), ω′π).

Moreover, ωπ and ω′π are naturally isomorphic, so we have that

π(Repcts
K

(π1proét(X0)), ω′π) ' (πproét
1 (X0))cts

and, composing with this isomorphism, we get a morphism of group schemes

sp : πstrat(XK)→ (πproét
1 (X0))cts.
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Corollary 4.2.8. For j = 1, . . . , N , let Cj be the irreducible components of X0

and Cj their normalizations, then the functor sp induces a morphism of group
schemes

sp : πstrat(XK)→ (Zalg)?K |I|−N+1 ?K (πét
1 (C1)K) ?K · · · ?K (πét

1 (CN )K),

where if I is the set of singular points of X, (Zalg)?Kr is the free algebraic product
of r copies of Zalg and πét

1 (Cj)K is defined as in Remark 2.3.6.

Proof. By Corollary 3.2.2,

(πproét
1 (X0, ξ))

cts ' (Z?r ? πét
1 (C1) ? · · · ? πét

1 (CN ))cts,

thus by Lemma 2.4.6 we have that

(πproét
1 (X0, ξ))

cts ' (Zcts)?Kr ?K πét
1 (C1)cts ?K · · · ?K πét

1 (CN )cts.

Moreover, since Z is discrete, by Remark 2.3.3 we have that

Zcts ' Zalg

and by Lemma 2.3.5 we have that, for every j,

πét
1 (Cj)

cts ' πét
1 (Cj)K ,

where πét
1 (Cj)K is defined as in Remark 2.3.6.

4.3 Compatibility with the étale specialization
map

In [SGA 1] Grothendieck constructed a specialization map for the étale funda-
mental group. In this section we compare the specialization functor that we
defined with Grothendieck’s construction.

Lemma 4.3.1. Let X0 be a connected noetherian scheme over k and ξ a geo-
metric point of X0, then the category Repcts

K
(πét

1 (X0, ξ)) is equivalent to a full
sub-category of Repcts

K
(πproét

1 (X0, ξ)).

Proof. By Proposition 1.2.19, the pro-finite completion of πproét
1 (X0, ξ) is iso-

morphic to the étale fundamental group πét
1 (X0, ξ). Hence, there exists a dense

continuous group morphism

c : πproét
1 (X0, ξ)→ πét

1 (X0, ξ).

This morphism induces a faithful functor

Repcts
K

(πét
1 (X0, ξ))→ Repcts

K
(πproét

1 (X0, ξ)).

Since the image of c is dense, this functor is also full.
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Given x ∈ XK(K), we denote by spSGA1 the specialization map constructed
by Groethendieck in [SGA 1]

spSGA1 : πét
1 (XK , x)→ πét

1 (X0, ξ).

By [SGA 1, Exp. X, Cor. 2.4], spSGA1 is surjective. Hence, it induces a fully
faithful functor

spSGA1 : Repcts
K

(πét
1 (X0, ξ))→ Repcts

K
(πét

1 (XK , x)).

We construct now a functor

F : Repcts
K

(πét
1 (XK , x))→ Strat(XK).

Let (Kn, ρ) ∈ Repcts
K

(πét
1 (XK , x)), by continuity and Lemma 2.3.4, ρ factors

through a finite quotient of πét
1 (XK , x) that we call Gρ.

πét
1 (XK , x)

Gρ GLn(K)

ρ

ρ̄

In particular, there exists a finite Galois cover WK of XK such that

Aut(WK |XK) = Gop
ρ .

We can define descend data {hρg}g∈Gρ for the sheaf OnWK
on WK as follows

OnWK

hρg−−−−→ OnWK

(fi) −−−−→ ρ(g)(fi) .

Since WK → XK is a morphism of effective descent for coherent sheaves,
{OnWK

, hρg} descends to a coherent sheaf E on XK that, by construction, is
locally free. As in the proof of Proposition 4.2.5, if we repeat the argument for
the Frobenius twists of XK we can associate to ρ a stratified bundle.

It remains only to define the functor on the morphisms and this is done as in
Proposition 3.4.8 and Proposition 4.2.5.

In the end, we get the following diagram

Repcts
K

(πét
1 (X0, ξ))

spSGA1−−−−−→ Repcts
K

(πét
1 (XK , x))yc yF

Repcts
K

(πproét
1 (X0, ξ))

sp−−−−→ Strat(XK) .

(4.3.2)

Proposition 4.3.3. If X is a projective semi-stable curve over S with smooth
generic fibre, the diagram (4.3.2) is commutative up to a natural transformation.

Proof. Let (Kn, ρ) ∈ Repcts
K

(πét
1 (X0, ξ)), then there exists a finite field extension

L of K and (Ln, ρL) ∈ Repcts
L (πét

1 (X0, ξ)) such that

(Kn, ρ) = (Ln, ρL)⊗K K.
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For simplicity we call ρ also the representation with coefficients in L.
By continuity and Lemma 2.3.4, the morphism ρ factors through a repre-

sentation ρ̄ of a finite quotient Gρ of πét
1 (X0, ξ). Hence, we have the following

commutative diagram

πproét
1 (X0, ξ) πét

1 (X0, ξ)

Gρ GLn(L) ,

c

ρp

ρ̄

where c is the morphism induced by the pro-finite completion.
Since Gρ is endowed with the discrete topology, the continuous morphism p

factors through the quotient Z?r ? H1 ? · · · ? HN , where

Hj = πét
1 (Cj)/p

−1
j (1Gρ),

and pj = p ◦ j, with j is the natural morphism

j : πét
1 (Cj)→ πproét

1 (X0, ξ).

We recall that in Section 3.2, given ρ ◦ c ∈ Repcts
K

(πproét
1 (X0, ξ)) we defined

Gj = πét
1 (Cj)/(ρ ◦ c ◦ j)−1(Id).

By commutativity of the diagram, ρ ◦ c ◦ j = ρ̄ ◦ p ◦ j. Since, by construction,
ρ̄ is injective, this implies that Hj = Gj . Thus, there exists a πproét

1 (X0, ξ)-
equivariant morphism

q : Z?r ? G1 ? · · · ? GN → Gρ,

such that the following diagram is commutative

πproét
1 (X0, ξ) πét

1 (X0, ξ)

Gρ GLn(L) .Z?r ? G1 ? · · · ? GN

c

ρp

ρ̄q

Let XSL be defined as in the proof of Theorem 4.2.7 and let X̂SL be the
completion of XSL along X0. Then the πproét

1 (X0, ξ)-sets Z?r ? G1 ? · · · ? GN
and Gρ correspond, via the equivalence in Corollary 1.2.16, to two geometric
coverings of X̂SL that we call Y and W and q corresponds to a X̂SL-morphism

W

Y X̂SL

pWq

pY
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By construction, sp(Ln, ρ◦c) corresponds to a sequence {F iρ} of meromorphic
bundles on X̂SL such that

p?Y{F iρ} ' {OnY(i) , h
ρ̄◦q,i
w }w∈(Z?r?G1?···?GN )op .

We observe that, if W is the finite étale covering of XSL corresponding to W
and WK is its geometric generic fibre, then, using [LM99, Lem. 4.11] as in the
proof of Theorem 3.4.5, we deduce that

Aut(WK |XK) ' Gop
ρ .

By construction of the functor F , if pWK
: WK → XK is the structure map of

WK , then
p?WK

F (spSGA1(Ln, ρ)) ' {On
W

(i)

K

, hρ̄,ig }g∈Gop
ρ
.

Hence, by Proposition 3.3.7, F (spSGA1(Ln, ρ)) corresponds to a sequence of
meromorphic bundles {Gρi } on X̂SL such that

p?WG
ρ
i ' {O

n
W(i) , h

ρ̄,i
g }g∈Gop

ρ
.

We claim that {OnY(i) , h
ρ̄◦q,i
w } descends to {OnW(i) , h

ρ̄,i
g } on W.

By construction we have Aut(Y|W) = ker(q)op, so, if w ∈ ker(q)op, then
clearly ρ̄ ◦ q is trivial on w. Hence

{OnY(i) , h
ρ̄◦q,i
w }w∈ker(q)op = {OnY(i) , Id}w∈ker(q)op ,

which implies that {OnY(i) , h
ρ,i
w }w∈ker(q)op descends to the trivial stratified bundle

{OnW(i)}. Clearly, we can identify

Hom({OnY(i) , Id}, {OnY(i) , Id})⊗ L = Hom({OnW(i)}, {OnW(i)})⊗ L.

Then we see that for every w,w′ ∈ (Z?r ? G1 ? · · · ? GN )op such that q(w) = g,
hq◦ρ̄,iw = hq◦ρ̄,iw′ and it corresponds, via the identification above, to hρ̄,ig .

This implies that

q?{OnW(i) , h
ρ̄,i
g }g∈Gop

ρ
= {OnY(i) , h

ρ̄◦q,i
w }w∈Z?r?G1?···?GN .

Hence, we find that there exists an isomorphism of stratified bundles with
meromorphic descent data on Y

ηρ : sp(c(Ln, ρ)) ' F (spSGA1(Ln, ρ)).

It remains to show that the isomorphism ηρ is functorial.
Given ϕ : (K

n
, ρ)→ (K

m
, τ) a morphism of representations, there exists a

finite extension L of K, (Ln, ρ), (K
m
, τ) ∈ Repcts

L (πét
1 (X0, ξ)) and a morphism

ϕL : (Ln, ρ)→ (Lm, τ), such that ϕ = ϕL ⊗K K. As we did before, we drop the
index L and we call both maps ϕ.

Let Gρ and Gτ be the quotients of πét
1 (X0, ξ) over which ρ and τ are defined

and set Wρ and Wτ the corresponding geometric coverings of X̂SL . Then we set
Wρ,τ :=Wρ ×X̂SL Wτ , which corresponds to the πét

1 (X0, ξ)-set Gρ ×Gτ .
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By Proposition 3.3.7 and Theorem 3.4.5, the diagram

sp(c(Ln, ρ))
ηρ−−−−→ F (spSGA1(Ln, ρ))ysp(c(ϕ))

yF (spSGA1(ϕ))

sp(c(Lm, τ))
ητ−−−−→ F (spSGA1(Lm, τ))

commutes if the corresponding diagram on X̂SL pulled back on Wρ,τ commutes,
that is, if the following diagram commutes

{OnWρ,τ
, hρ̄×Id,i
g } Id−−−−→ {OnWρ,τ

, hρ̄×Id,i
g }yϕ yFϕ

{OnWρ,τ
, hτ̄×Id,i
g } Id−−−−→ {OnWρ,τ

, hτ̄×Id,i
g } .

(4.3.4)

Since the diagram (4.3.4) clearly commutes, we conclude that the isomorphism
is functorial and hence it induces a natural transformation.

Lemma 4.3.5. If X is a projective semi-stable curve over S with smooth generic
fibre, the diagram (4.3.2) induces the following diagram of group schemes

πstrat(XK)
sp−−−−→ πproét

1 (X0, ξ)
ctsyF yc

πét
1 (XK , x)K

spSGA1−−−−−→ πét
1 (X0, ξ)K ,

(4.3.6)

where πét
1 (XK , x)K and πét

1 (X0, ξ)K are defined as in Remark 2.3.6.

Proof. We proved in Remark 4.2.7 that sp induces a morphism between the
corresponding group schemes. With the analogous argument on F , one proves
that also the functor F induces a morphism of group schemes between πstrat(XK)
and πét

1 (XK , x)cts.
Clearly spSGA1 and c are tensor functors and they commute with the forgetful

functor, hence they induce a morphism between the corresponding group schemes.
Moreover, by Lemma 2.3.5, we have that

πét
1 (XK , x)cts = πét

1 (XK , x)K and πét
1 (X0, ξ)

cts = πét
1 (X0, ξ)K

in the sense of Remark 2.3.6.

Proposition 4.3.7. If X is a projective semi-stable curve over S with smooth
generic fibre, the functor F of the diagram 4.3.2 is fully faithful and its essential
image consists of stratified bundles with finite monodromy.

Proof. Clearly the functor F is faithful, we prove now that it is also full.
Let (Kn, ρ), (Km, τ) ∈ Repcts

K
(πét

1 (XK , x)), then ρ factors through the finite
quotient Gρ, while τ factors through Gτ . Let Wρ and Wτ be the corresponding
finite étale coverings of XK and Wρ,τ := Wρ ×XK Wτ . Let ϕ = {ϕi}i≥0 be a
morphism of stratified bundles from F (Kn, ρ) to F (Km, τ). By construction
and finite étale descent, we get

Hom(F (Kn, ρ), F (Km, τ)) = Hom({On
W

(i)
ρ,τ
, hρ,ig }i≥0, {OmW (i)

ρ,τ
, hτ,ig }i≥0).
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Moreover, since the pullbacks of F (Kn, ρ) and F (Km, τ) on Wρ,τ are trivial
stratified bundles and Strat(Wρ,τ ) is a neutral Tannakian category, we find that

Hom(F (Kn, ρ), F (Km, τ)) ⊂Mmn(K).

Hence, the maps ϕi correspond to linear morphisms ϕi : Kn → Km. This implies
that

F i
W

(i)
ρ,τ |K

?
ϕi+1 = ϕi = ϕ0 ∈Mmn(K).

To prove that F is full, it suffices to show that ϕ0 is πét
1 (XK , x)-equivariant.

This follows by the fact that ϕ0 commutes with the descent data, which are
defined by ρ and τ .

It remains to analyse the essential image of F . By construction, F (Kn, ρ)
is a stratified bundle on XK trivialized on a finite étale cover of XK , then by
Lemma 4.1.10, F (Kn, ρ) has finite monodromy. Thus, it suffices to show that
all stratified bundles with finite monodromy are in the essential image.

Let E = {Ei} ∈ Strat(XK) with finite monodromy, then by Lemma 4.1.10,
there exists a finite Galois cover p : Y → XK such that p?E is trivial, i.e.,
p?{Ei} ' {OnY (i)} for some n. We set G = Aut(Y |XK)op, which, by construction,
is a finite quotient of the étale fundamental group πét

1 (XK , x). Then On
Y (i) can

be endowed with descent data {hig}g∈Gop such that {On
Y (i) , h

i
g} descends to {Ei}

on XK . Since hig ∈Mn2(K) by the above argument and they are isomorphisms,
we can set for every g ∈ G

ρ(g) = h0
g−1 ∈ GLn(K).

As in Remark 3.2.9, we denote by ◦ the multiplication in Gop and we refer to the
multiplication in G when we don’t write a symbol. Then applying the co-cycle
condition, we get

ρ(gg′)(v) = h0
g′−1g−1(v) = h0

g−1◦g′−1(v) = h0
g−1 ◦ h0

g′−1(v) = ρ(g)(ρ(g′)(v)).

Hence, ρ defines a group morphism ρ : G→ GLn(K).
By construction, it is clear that F (Kn, ρ) ' {Ei}, hence {Ei} is in the essential

image of F .

Remark 4.3.8. Note that in general a specialization morphism between the
topological groups πproét

1 (XK , x) and πproét
1 (X0, ξ) compatible with the étale

specialization map does not exist.
Assume for example that X is a stable curve over S with smooth generic fibre

and degenerate closed fibre. Since the generic fibre XK is smooth, by [Liu02,
Prop. 3.15] X is normal. Hence by Proposition 1.3.23 and Lemma 1.2.20,

πproét
1 (X0, ξ) ' Z?r and πproét

1 (XK , x) ' πét
1 (XK , x),

where r = pa(X0) is the arithmetic genus of the closed fibre.
Any continuous morphism

sp : πét
1 (XK , x)→ Z?r

factors through a finite quotient of πét
1 (XK , x), but since Z?r is a free group this

implies that sp has to be the zero map.



Chapter 4. The specialization functor 75

Under the same assumptions, the étale specialization map is surjective. Hence,
in particular, the following diagram does not commute

πproét
1 (XK , x) ' πét

1 (XK , x)
Id−−−−→ πét

1 (XK , x)

0

y yspSGA1

πproét
1 (X0, ξ) ' Z?r c−−−−→ πét

1 (X0, ξ) .
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