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Deutsche Zusammenfassung

Diese Arbeit besteht aus zwei Teilen. Im ersten Teil analysieren wir das Messen, Kontrol-
lieren und Stabilisieren von Quantenverschränkung. Wir nehmen ein einfaches System,
bestehend aus zwei gekoppelten Qubits, als Grundlage, um die Quantenverschränkung als
die fundamentale Einheit der Quanteninformationstheorie einzuführen. Diese Einführung
dient sogleich der Entwicklung des mathematischen Formalismus.

Auf ähnliche Weise führen wir dann Quantenmessungen als eine weitere fundamen-
tale Säule der Quantentheorie ein. Ausgehend von einer axiomatischen Definition en-
twickeln wir eine physikalische Theorie für Messungen in der Quantenwelt, die auf dem
von-Neumann-Formalismus beruht.

Mit beiden Werkzeugen ausgerüstet präsentieren wir eine Modellarchitektur, um den
beeinflussenden Charakter von Quantenmessungen zur Generation und Kontrolle von
Quantenverschränkung auszunutzen. Wir zeigen wie ein elekronisches Mach-Zehnder In-
terferometer einzustellen ist um die Parität zweier an die jeweiligen Arme gekoppelten
Qubits zu messen. Es zeigt sich, dass die Messung der Parität dabei zur Verschränkung
beider Qubits führt. Die mikroskopische Einstellung des Mach-Zehnder Interferometers
führt allerdings zu einem internen Dephasing im geraden Partitätsunterraum. Um dieses
Dephasing, das der Verschränkung entgegenwirkt, zu kontrollieren, führen wir eine Rück-
koplungsschleife ein, die das am Ende des Mach-Zehnder Interferometer aufgenommene
Signal ausnutzt, um die Fluktuationen im geraden Unterraum auszugleichen.

Um die Quantenverschränkung beider Qubits auch gegen externe Einflüsse zu schützen,
zeigen wir wie eine zweite Rückkopplungsschleife in das System integriert werden kann.
Diese zweite Schleife beruht auf einer zweiten Messung und erlaubt durch ihren Bayesis-
chen Charakter die Quantenverschränkung zwischen beiden Qubits auch gegen externe
Einflüsse zu stabilisieren.

Im zweiten Teil dieser Arbeit nutzen wir den Boltzmann Formalismus um die An-
näherung eines angeregten Elektronensystems an ein neues Gleichgewicht zu untersuchen.
Wir führen die Boltzmann Gleichung mit den relevanten Kollisionsintegralen ein, um
sowohl das Streuen von Elektronen an Störstellen im Gitter, als auch die Effekte von
Interaktionen zwischen Elektronen, sowie die Kollisionen von Elektronen mit Phononen
zu beschreiben.

Aus der Boltzmann Gleichung, mit dem Kollisionsintegral für das Stoßen an Störstellen,
leiten wir eine Differenzialgleichung her, die die Entwicklung von ballistischem zu diffu-
sivem Transport beschreibt. Diese Gleichung lässt sich analytisch lösen.

Weiterhin untersuchen wir die Thermalisierung der Elektronen im Energieraum unter
Hinzunahme des Elektron-Elektron Kollisionsintegrals. Die resultierende Gleichung lösen
wir semi-analytisch, sodass die zeitliche Entwicklung über viele Größenordungen verfolgt
wird und somit die Annäherung an ein neues Quasi-Gleichgewicht gezeigt werden kann.

Diese Entwicklung nutzen wir dann, um das Zwei-Temperatur-Model, das die Inter-
aktion zwischen Elektron- und Phonontemperatur beschreibt, weiterzuentwickeln. Wir
zeigen dabei, dass die Thermalisierung des Elektronensystems zu einem verzögerten En-
ergieaustausch mit dem Gitter führt.
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English summary

The content of this thesis involves two main topics. In the first part we analyze the
measurement, control and stabilization of entanglement. We introduce the concepts of
entanglement as the fundamental unit of quantum information theory with a focus on a
coupled two qubit system. Using this system we present a mathematical formalism of
entanglement.

In a similar manner we introduce quantum measurements as another fundamental
building block of quantum theory. From an axiomatic definition we derive a physically
accessible theory of quantum measurements based on von Neumann measurements.

With both formalisms developed, we present a model architecture to use the interfering
nature of quantum measurements to create and control quantum entanglement. We show
how to tune an electronic Mach-Zehnder interferometer that is coupled to two qubits so
that it acts as a parity meter. The measurement of parity is shown to be able to create
entanglement between both qubits. As the use of a Mach-Zehnder interferometer as a
parity meter introduces intrinsic dephasing within the even subspace, we create a feedback
loop based on the outcome of the parity measurement that counters this dephasing.

To also stabilize the created entanglement against external influences, we proceed
to introduce a second feedback loop based on a second joint measurement. The Bayesian
nature of this feedback is shown to allow for the stabilization against external noise sources.

In the second part of this thesis, we employ the semi-classical Boltzmann formalism
to analyze the approach of equilibrium by an excited electron system. We introduce the
Boltzmann equation and the relevant collision integrals to account for impurity scattering,
collisions between electrons and interactions between the electron bath and the surround-
ing phonon bath.

From the Boltzmann equation, enhanced with impurity scattering, we derive a differ-
ential equation that describes the transition from ballistic to diffusive transport. We show
the analytical solution to this equation.

Including electron-electron interactions into the Boltzmann equation the thermaliza-
tion of electron bath in energy space is analyzed. We solve the resulting equation semi-
analytically so that the time evolution for many orders of magnitude can be derived and
the approach to a new quasi-equilibrium is shown.

With the dynamics of this approach at hand, we extend the two temperature model
that describes the interaction between electrons and lattice temperatures. Including the
thermalization of electrons in the derivation leads to a delayed interaction between electron
bath and phonon bath.
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Preface

This work consists of two parts. In the first we present the creation and
control of entanglement between two qubits. We introduce the electronic
Mach-Zehnder interferometer as a parity meter to create entanglement and
show how the addition of feedback loops can be used to stabilize the created
entanglement against dephasing.

In the second part we present a semi-classical approach to equilibration
based on the Boltzmann equation. We show that with the inclusion of im-
purity scattering the transition from ballistic to diffusive transport can be
described while the electron-electron interactions lead to the thermalization
of the electron system. The obtained dynamics are then used to derive an
model for the exchange of energy between electron and phonon systems.
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Chapter 1

Introduction

While the advocates of any new technology tend to foretell the dawn of a
technological revolution, the advent of quantum computational devices is
associated with a particular abundance of superlative prophecies. Providing
quantum supremacy over classical computers the prospect of exploiting quan-
tum phenomena excites scientists and laymen alike, letting the economist
rejoice: "The era of quantum technology is almost here." [1]

What is to be understood by the word almost, however, is up for debate
and leaders of the field tend to be reluctant to make predictions [2, 3]. This
hesitation is by no means due to a lack of enthusiasm, but rather gives
credit to the elusiveness of quantum technologies’ fundamental currency:
entanglement.

Challenging fights have to be fought at multiple fronts: the creation,
control and manipulation, and finally the readout of entanglement all present
open fields of research. It turns out that the peculiarities of quantum physics
on the one hand provide the prospect of novel application, but complicate the
development on the other hand. In particular it is impossible to measure a
quantum system without distorting it. In the extreme case the measurement
leads to a total collapse of the system’s wave function and the loss of all phase
coherence.

In the present text we, however, present a setup that uses the collapsing
mechanism of a quantum measurement to create entanglement. The locality
of the measurement has to be abandoned and a joint measurement of two
systems is put in place instead [4, 5, 6, 7, 8, 9, 10, 11]. In the present context
the parity of a two qubit system is measured and it is well known that with a
properly initialized two qubit state the resulting parity eigenstates are fully
entangled Bell states [12].

The implementation of a parity measurement has been proposed and
realized in different experimental architectures, most notably in the realm of
circuit quantum electron dynamics [13, 14], using superconducting qubits [15,
16], in three and two-dimensional architectures [17]. On the other hand the
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16 CHAPTER 1. INTRODUCTION

creation of an electronic Mach-Zehnder interferometer [18, 19, 20] coupled
to two double dot qubits has been proposed to realize a parity meter in the
domain of quantum transport [21].

To use a Mach-Zehnder interferometer as a parity meter it has to be tuned
in a way that it only distinguishes two resulting sub-spaces, spanned by the
even and odd parity states. However, it has been predicted theoretically and
confirmed in experiments that a Mach-Zehnder interferometer that is fine
tuned to match the parity conditions necessarily brings about an intrinsic
dephasing within the even subspace that prevents the creation of entangled
states. While such a parity meter does create fully entangled odd Bell states
and the creation is traceable due to the parity meter outcome, this outcome
is stochastic and on average half the cases have to be discarded.

In the present work we analyze the microscopic transport problem of
individual electrons traveling through the Mach-Zehnder interferometer [22]
to understand the origin of the mentioned dephasing. Its source is traced
back to a continuous measurement-outcome-dependent back action in the
form of a fluctuating phase induced by the passing electrons. The details
of these fluctuations are lost in a macroscopic account of the measurement
process leading to an averaged dephasing.

Having singled out the nature of the unwanted dephasing process we pro-
pose a feedback mechanism that employs the microscopic relation between
measurement outcome and fluctuating phase so that said stochasticity is
cancelled in real time and the corresponding dephasing is avoided. We name
this feedback Markovian to emphasize its dependency only on the momen-
tary stochastic measurement outcome [23, 24, 25].

However, the employed continuous weak measurement does not acquire
information about any external sources of dephasing such as noise from a
coupling to the environment or the initialization of the qubits. To stabilize
the double qubit system and thus the created entanglement against such ex-
ternal influences we analyze the implementation of a second feedback loop
based on a second measurement. As this feedback is based on probabilis-
tic information acquired by the weak measurement it is named Bayesian
feedback [26, 27].

We show that with the combination of both feedback loops a determinis-
tic creation and the subsequent stabilization of entanglement against external
influences is achieved even for environmental dephasing of the order of the
measurement rate. The stabilized partial entanglement can in principle be
used to distill fully entangled qubits in more elaborate architectures based
on future developments [28, 29, 30].

In the following we start by introducing the concept of quantum entan-
glement to the unfamiliar reader in chapter 2. The concept is explained first
heuristically and then by the development of several ideas on how to quan-
tify entanglement, the entanglement measures. In chapter 3 we turn then
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to the second main ingredient of the present text, quantum measurements.
Here we take the opposite approach and start from an axiomatic definition
of a quantum measurement only to introduce more physical aspects later.
With the necessary tools at hand we then combine both entanglement and
measurement by introducing a way of creating entanglement with quantum
measurements in chapter 4. We introduce the architecture of an electronic
Mach-Zehnder interferometer to act as a parity meter between two qubits
systems and propose and simulate the inclusion of two feedback loops to
stabilize the created entanglement.





Chapter 2

Entanglement

2.1 Introduction to entanglement

When the new theory of quantum mechanics emerged in the beginning of the
20th century it was able to solve many of the open questions in fundamen-
tal physics that were baffling physicists at the time. The new phenomena
and their implications, however, interfered with the physical intuition that
scientists developed over the course of the history of the field, so that the
theory was confronted with an seemingly unfair distrust. The most striking
of these new phenomena, that have no direct classical counterpart and have
kept puzzling the physics community ever since, certainly is the notion of
entanglement. For this reason Schrödinger not only listed is as one but as
the most fundamental concept of quantum mechanics.

“When two systems, of which we know the states by their
respective representatives, enter into temporary physical interac-
tion due to known forces between them, and when after a time
of mutual influence the systems separate again, then they can no
longer be described in the same way as before, viz. by endowing
each of them with a representative of its own. I would not call
that one but rather the characteristic trait of quantum mechan-
ics, the one that enforces its entire departure from classical lines
of thought. By the interaction the two representatives [...] have
become entangled.”

Now we would like to interpret entanglement as a subjective characteristic
of a system. However, we are better off by thinking of it as a state of the
system. To use the words of Schrödinger, of a system being entangled.

Nonetheless a certain notion of quantification of entanglement is neces-
sary to make it not only a source of bafflement but a physical characteristic or
quantity of a system. Here quantification shall be taken to have the classical
meaning of “attaching a number to it”.

19



20 CHAPTER 2. ENTANGLEMENT

In the following we start to introduce the simplest entangled system, the
connection of two two-level systems. This is not just a very easily accessible
model system but has direct application in quantum information analysis
where a two level system is called a qubit, the quantum mechanical equivalent
of the classical fundamental unit of signal processing, the bit.

Incidentally two entangled qubits also play a prominent role in the fol-
lowing analysis when we present a way to physically create and stabilize such
a system with the help of another fundamental ingredient to the theory of
quantum physics, quantum measurement.

2.2 Entanglement measures

Having introduced the notion of entanglement, or rather the possibility of
quantum systems to be entangled, the direct follow up question comes nat-
urally: Is entanglement quantifiable or is it a dichotomous characteristic of
a quantum state. Can it be compared in mathematical treatment to the po-
tential energy of a classical system, that can take any value on a continuous
spectrum (that might be bounded). Or is its nature of a more fundamental
kind, like charge, in the sense that a particle either is charged or it is not
(notwithstanding that a collection of charges can then again be counted).

With this in mind it is necessary first to notice that not all quantum
systems are entangled. And in fact is is quite straightforward to come up
with unentangled ones. Take for example a system comprised of two sub-
systems (system one |�1i and system two |�2i) that do not have to have any
further characteristics. In the literature, systems of this nature are often
referred to as bipartite and we make due use of this term.

The state of the complete system is then the tensor product of both
states | i = |�1i |�2i. Imagine now a measurement of an observable A of
system one. We turn to a more complete theory of quantum measurements in
chapter 3 so for now the standard notion of a measurement being connected
to an observable and the outcome of a measurement being connected to the
corresponding eigenvalue, leaving the system in the eigenstate, does suffice.
An operation that measures an observable on system one1 and does nothing
on system two thus casts the complete system into the state | 0i = |ai |�2i.

Now although a measurement was performed and the state of the first
system changed (maybe quite dramatically), the second system is untouched
and remains in the same state as before the measurement. We may therefore
separate both systems and continue to treat them as independent. Any
system that has this features is called separable. The notation we used
(| i = |�1i |�2i), that implicitly assumes the (tensor)-product between both
states gives rise to another name for the same thing, a product state.

1The measurement operator in this case takes the form
P

a a |ai ha| leaving the system
in an eigenstate |ai corresponding to the measurement outcome and eigenvalue a.
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As this measurement here takes the role of the forces that Schrödinger
imagined to act between the combined system, and we can still separate the
systems after the measurement, the total system can not be entangled by
the understanding of entanglement we have given so far. This allows for a
first definition of entanglement:

Definition: A bipartite state | i is unentangled if and only if it
is separable.

By this definition we have a means to transfer the somewhat weary descrip-
tion of two systems influencing each other and no longer being able to be
called independent to the common mathematical description of a system’s
state as a state in a Hilbert space. Unentangled states (and for that matter
entangled states) are therefore a certain subclass of states in Hilbert space.
The definition above is rather unsatisfactory, however, as it allows us to
identify some states as being unentangled but does not provide any means
for testing a general state as to its entanglement. In particular, just because
a separation of a bipartite state seems not to be possible, we can not know
for sure. We therefore need to dig further to obtain a meaningful definition
of entanglement of bipartite systems.

2.2.1 Schmidt decomposition

We have introduced the first connection between the loosely defined term
“entangled” and the language that is used in quantum mechanics, namely
states and Hilbert spaces. To progress further along these lines we need to
introduce some formal tools that help dealing with the bipartite systems at
hand. Let us introduce here then the Schmidt decomposition, a decomposi-
tion that will turn out to be of substantial help when dealing with composite
systems. Here we loosely follow Ekert et al. [31].

As already introduced we start with two systems A and B that are de-
scribed or associated with the two Hilbert spaces HA and HB. Without
limiting the applicability we limit the treatment to Hilbert spaces of the
same dimension dim HA = dim HB = n. The composite or total system
encompassing both A and B is then connected to a Hilbert space formed by
the tensor product HA ⌦ HB. As both separate Hilbert spaces have their
own bases choosing two orthonormal ones {|ii} and {|ji} we can write any
state of the composite system as

| i =

X

i,j

ai,j |ii |ji . (2.2.1)

Again the tensor product sign between the two ket vectors is implied. The
number of terms in this sum can obviously be up to n2

= dim

2 HA, the square
of the dimension of either part. The aim of the Schmidt decomposition is
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now to show that for a suitably chosen basis |i0i of the second space we can
reduce the terms in the expansion to a maximum of n as

| i =

X

i

pi |ii |i0i . (2.2.2)

To prove this we expand the matrix (ai,j) via singular value decomposition
(ai,j) = UPV ⇤ . The properties of the singular value decomposition state
that here U and V ⇤ are unitary matrices while P is a diagonal matrix with
elements that are non-negative. The state (2.2.1) can therefore be rewritten
as

| i =

X

i,j,k

UikPkkV
⇤
kj |ii |ji =

X

k

Pkk

 

X

i

Uik |ii
!

0

@

X

j

V ⇤
kj |ji

1

A

=

X

k

Pkk |ki |k0i . (2.2.3)

As the unitarity of U and V ⇤ preserves the nature of the bases {|ii} and {|ji}
we recovered the decomposition (2.2.2) where the expansion coefficients pi
turn out to be the singular values.

The first observation that reveals the use of the Schmidt decomposition in
the treatment of entangled bipartite systems springs readily in sight. When
there is only one singular value (zero valued entries on the diagonal of P
do not constitute singular values) the system clearly is a product state and
separable and thus unentangled. The number of non-zero singular values
can therefore be a (admittedly rather crude) measure of entanglement in a
bipartite system. To give this notion more gravitas the number is also coined
the Schmidt number. We make note: A bipartite system is entangled if it
has a Schmidt number larger than one.

The singular value decomposition therefore constitutes an operational
procedure to determine if a bipartite system is entangled or not. We write
the state in the Schmidt decomposition and count the number of terms. Any
more than one and the state is entangled in some sense of the word.

As the Schmidt decomposition makes use of bases of the two sub-Hilbert
spaces HA and HB it is also of quite some use in the density matrix formal-
ism. The density matrix of our bipartite state (2.2.2) in the basis {|ii |i0i}
takes the form

⇢ = | i h | =

X

i,j

pipj |ii |i0i hj| hj0| , (2.2.4)

where we remember that the coefficients pj are real and non-negative. This
density matrix represents the full system. While in the state vector formalism
there is no direct way to separate a sub-system from the other, in the case
of a density matrix we may trace out any one of the sub-systems and are
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then left with a so-called reduced density matrix pertaining to the remaining
system. Tracing over the degrees of freedoms of the second we thus arrive at

⇢1 = tr2⇢ =

X

i

p2i |ii hi| , (2.2.5)

as the basis {|i0i} is orthonormal. Again the expansion coefficients of the
Schmidt decomposition appear, albeit here as squares. In the present case
they constitute the eigenvalue of the reduced density matrix pertaining to
the sub-system at hands. As they are non-negative and real the reduced den-
sity matrix also uniquely determines these coefficients and we may equally
well define the Schmidt number as the number of non-zero eigenvalues of the
reduced density matrix after tracing out any one sub-system. This method
therefore constitutes another operational way of obtaining the Schmidt num-
ber of a bipartite system.

To shed a little practical light on the rather theoretical introduction let us
take an example bipartite system that is made up of two spin-1/2 particles.
In the most general case such a system consists of a linear combination of
all spin-up and spin-down combinations

| i = ↵ |00i + � |01i + � |10i + � |11i (2.2.6)

where we used the common notation of ones and zeros for spin-up and spin-
down particles. The coefficients ↵ to � are complex so with the restriction of
normalization there are seven variables to fill. So let us restrict the current
analysis to a simpler set of states, namely

| (s)i = cos (s) |01i � sin (s) |10i , s 2 [0, 2⇡] . (2.2.7)

Now for values of s that are a multiple of ⇡/2 the state | i clearly is a
product state where one of the particles is in state spin-up and the other in
spin-down. A measurement along the spin axis of any single particle always
returns the same outcome in this case. A value of s = ⇡/4 constitutes the
familiar spin singlet state |singleti = 1/

p
2 (|01i � |10i), that is obviously

not separable. A continuous change of the parameter s therefore changes
the state | (s)i from an unentangled product state to an entangled singlet.
It is remarkable here that only the exact multiples of ⇡/2 are unentangled
states while all other values of s result in some sort of entangled state. For
any (small) " > 0 an entangled state | (")i can be turned into a product
state by changing the variable by �". On the other hand no state around
s = ⇡/4 can be unentangled by a change of �".

While the notion of entanglement has until now been treated in a rather
dichotomous fashion a notion of distance of an entangled state from the prod-
uct state emerges readily. The remainder of the section is devoted to finding
a formal definition of this heuristic notion of the “amount” of entanglement.
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First, however, we calculate the reduced state of the first spin system
that is obtained by tracing out the second’s degrees of freedom. The full
density matrix of state (2.2.7) reads

⇢ =

0

B

B

@

0 0 0 0

0 cos

2
(s) � sin (s) cos (s) 0

0 � sin (s) cos (s) sin

2
(s) 0

0 0 0 0

1

C

C

A

(2.2.8)

so that the reduced state of the first is given by

⇢1 =

✓

cos

2
(s) 0

0 sin

2
(s)

◆

(2.2.9)

and as expected we have two non-zero eigenvalues for any entangled state.
Here we may notice that a single non-zero eigenvalue, or a Schmidt number of
one, corresponds to a pure state of the sub-system while an entangled state
corresponds to a mixed state of the subsystem. In particular the singlet
state with s = ⇡/4, that we earlier identified heuristically as the farthest
away from the unentangled state, here corresponds to the fully mixed state

⇢1 (singlet) =

✓

1
2 0

0

1
2

◆

. (2.2.10)

In this sense the degree that the density matrix of the subsystems is mixed
can be regarded as a measure of the degree of entanglement between the two
subsystems. As the mixedness of a density matrix can by quantified by the
quantum entropy it is only natural to proceed along these lines to also find
a measure of entanglement.

2.2.2 von Neumann entropy

We established the connection between an entangled bipartite state and the
mixedness of the reduced density matrix of the sub-systems. To quantify the
degree to which a density matrix can be called mixed we now introduce the
notion of quantum entropy in the form of the von Neumann entropy S that
is defined via the density matrix ⇢ of a state

S (⇢) = �tr (⇢ log2 ⇢) . (2.2.11)

For normalization purposes we take the logarithm to be of base two here.
In the case of a singlet we have calculated the reduced density matrix of a
sub-system (2.2.10) so that the entropy reads

S (⇢1) = �tr (⇢1 log2 ⇢1) = �
X

i

p2i log2 p2i = 1. (2.2.12)
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Figure 2.2.1: The entropy of the reduced density matrix that is obtained
by tracing over one of the sub-systems of state (2.2.7). It ranges from zero
corresponding to a product state to one for a maximally entangled singlet
state. Both the von Neumann entropy and its approximation, the linear
entropy, are shown.

The last equation also points out that the entropy of any pure density ma-
trix is zero, as it has only one entry on the diagonal, that is unity. The
corresponding unentangled state of the bipartite system therefore leads to a
vanishing entropy. To visualize this correspondence between entanglement
and entropy of the sub-system, the entropy of state (2.2.9) is plotted in
figure 2.2.1 with respect to the variable s. It shows a smooth function that
monotonically increases from zero for the product state to one for the singlet.
As the von Neumann entropy is bound between zero and one we therefore
conclude that indeed the singlet constitutes a maximally entangled state.
In the sub-set spanned by the two vectors |01i and |10i the von Neumann
entropy therefore serves as a measure for the entanglement between the two
sub-systems. As it turns out it is indeed a useful measure of entanglement
for all bipartite composite systems.

The von Neumann entropy therefore gives an operational measure of
entanglement of a bipartite system. However, it does not reveal any in-
sights to the physical nature of entanglement itself. Before we introduce
a measure of entanglement that is rooted in such a physical interpretation
we draw attention to yet another connection between the von Neumann en-
tropy and the mixedness of the reduced state. Expanding the logarithm in
equation (2.2.11) we have

S (⇢) ⇡ 1 � tr⇢2
| {z }

linear entropy

+

1

2

tr
⇣

⇢ (⇢� 1)

2
⌘

. (2.2.13)
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The first order in this expansion, constituting the first two terms, is called
linear entropy and we will denote is by SL (⇢). Demanding that the maxi-
mally mixed state gives an entropy of one, with the proper normalization we
may take this as a measure of entanglement as well. Given this direct corre-
spondence between entanglement and entropy it is easy to mistake both as
being the same. If one speaks of the entropy of a system in this context one
always means, however, the entropy of the reduced density matrix. Keeping
this distinction in mind we may use both terms interchangeably. The lin-
ear entropy of our sample state (2.2.7) then gives the corresponding linear
entanglement

EL = 2

�

1 � trA⇢2A
�

= 2

�

1 � cos

4
(s) � sin

4
(s)
�

(2.2.14)

where ⇢A denotes the reduced density matrix after tracing out system B.
Both linear and full entropy may therefore serve as a measure of entangle-
ment. As shown in figure 2.2.1 both measures do not fully coincide. This
ambiguity is somewhat irritating when thinking of entanglement as a physical
property of the system but is rooted in the technical approach to the matter.
It turns out, however, that the von Neumann entropy is naturally connected
to a more physical interpretation of entanglement, that is connected with
the distillation of entanglement.

Coining the term distillation, Bennet et al. [28] devised a method to
concentrate entanglement. Concentration here is to be understood in the
following way. Imagine a set of n bipartite states; for simplicity they shall
consist of two two-level systems as above. These n copies of the bipartite
states | i are taken to be partially entangled, meaning that their entan-
glement entropy is somewhere between one and zero. Each of these states
is physically separated in the same way where the first part is taken care
of by an agent called Alice and the second by an agent called Bob. As de-
scribed above, the entanglement of each system is given by the von Neumann
entropy S of its parts.

Bennet et al. now devised a procedure by which from these n partially
entangled bipartite states m fully entangled singlets can be distilled by oper-
ations that are done locally by Alice and Bob. Both participants may further
communicate classically. Such operations are therefore labeled LOCC, for
local operations and classical communication.

For a large number of shared states n the fraction of fully entangled
singlets that can be distilled by this procedure approaches the von Neumann
entropy S

m

n
! S (| i) . (2.2.15)

Therefore the entropy of the sub-systems is not only a convenient measure
that is operationally accessible. It is also a very natural way to quantify
entanglement. In this way the singlet is a basic unit for the quantification
of entanglement.
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With these ideas we now have a fully applicable system to quantify the
entanglement of a bipartite quantum state. This is applicable if the knowl-
edge about the state is complete, in the sense that the state is a pure state.
If information about the state is incomplete we speak of the system as be-
ing in a mixed state. Another way of thinking about mixed states is as an
ensemble of states; however, it should be always kept in mind that also a
single state of a system can be mixed.

We already encountered mixed states arising as the left-over part of a
composite state when the other part is traced out. The entanglement be-
tween the two parts turns into mixedness of the single system as we have
seen. This is yet another way to think of mixed states, where here the miss-
ing knowledge is due to the locally invisible connection to a different system,
the entanglement.

To complete this introduction to entanglement we now turn to the prob-
lem of defining entanglement for a mixed state, so that we are able to treat
all possible configurations of bipartite states in the following.

2.2.3 Entanglement of formation

The entanglement of pure states of a bipartite system can be naturally de-
scribed by the von Neumann entropy of its parts. The applicability of this
procedure is limited in two ways. Firstly a bipartite state may not be in a
pure state but in a mixed state. Secondly a system may have more than two
parts, sometimes being described as being multipartite.

The quantification and even the interpretation of entanglement in a com-
posite system consisting of more than two parts is an open field of discussion
and research [32, 33].

Here we limit the presentation to mixed bipartite states. The entangle-
ment of low-dimensional bipartite systems, such as a two qubit system, has
been well understood and documented [34]. As the present work is concerned
with exactly such a system, composed of two qubits, we limit the presen-
tation to such systems. While several approaches exist, we here present
one that is connected to the physical interpretation of entanglement given
above, the connection between the von Neumann entropy and the distillation
of entanglement.

As mentioned in the previous section a set of partially entangled states
can be used to create a subset of fully entangled singlets by a procedure
called entanglement distillation. As this process is reversible, with the given
number of singlets an ensemble of partially entangled states can be created
as well, again by only using local operations and classical communication.
The final state here is a pure state. With the singlet as the basic unit of
entanglement the number of singlets needed to form the desired ensemble
can therefore be thought of as the amount of entanglement that is needed
to form such an ensemble. This notion of entanglement -as a quantity that’s
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inserted into an ensemble to create it- gives rise to the name entanglement
of formation [35]. This concept can be used to quantify the entanglement of
mixed states.

To understand the usefulness and need of these concepts let us see how
the entanglement of a mixed state may be calculated. A mixed state ⇢ can
be thought of as an ensemble of pure states, each pure state composing a
certain fraction of the ensemble

⇢ =

X

i

pi | ii h i| . (2.2.16)

Knowing the procedure for quantification of entanglement of a pure state
we may calculate the entropy for every term in the sum E (| ii). Now this
entanglement equals to the fraction n/m of n singlets that are needed to
create m copies of the state | ii

ni = miE (| ii) . (2.2.17)

Equivalently we need
nipi
mi

= piE (| ii) (2.2.18)

singlets to create the fraction pi of states | ii. The total number of singlets
to create an ensemble of pure states, each represented by a fraction pi, is
therefore

total # singlet =

X

i

piE (| ii) . (2.2.19)

As in this ensemble each state | ii is represented by a fraction pi, this also
gives the probability to end up with the state | ii when drawing a random
state from the ensemble. In other words we have thus created an ensemble
that exactly corresponds to the mixed state ⇢ of equation (2.2.16).

Dividing the total number of singlets necessary for this creation (2.2.19)

by the total number of created states

total # states =

X

i

mi (2.2.20)

gives a measure for the entanglement that was needed in the formation. The
keen eye immediately spots a problem with this approach, however. The
expansion (2.2.16) is not uniquely defined. For example, the state

⇢ =

1

2

(|00i h00| + |11i h11|) (2.2.21)

is clearly a mixture of separable pure states and should therefore not be
considered entangled. No singlet therefore is needed in the creation of such
a state. But the ambiguity of expansion allows for a different form to express
this state:
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⇢ =

1

2

[(|00i + |11i) (h00| + h11|) + (|00i � |11i) (h00| � h11|)] (2.2.22)

using two states that are fully entangled (the states used are part of the
three triplet states). As every pure state in this expansion is entangled we
have to conclude that also their weighted sum is entangled. In this case
it seems that we have to spend singlets to create such a state. As the final
state is the same, however, and nature should not be bothered by the specific
notation, we conclude that we could spent singlets in the formation of such
state but we don’t have to. Including these thoughts in the analysis amounts
to defining

E (⇢) = min

X

i

piE (| ii) . (2.2.23)

The entanglement of a mixed state shall be the minimum of all possible
expansions (2.2.16).

While physically this is satisfactory, as it again defines entanglement as
the amount of singlets needed to create the entangled state, we can not rejoice
unrestrictedly as again we are left with a definition that does not permit
easy calculation. Calculating the entanglement of all possible expansions is
hardly a convenient method.

If we give up the physicality of entropy as a measure of entanglement we
may, however, turn to the entanglement concurrence as a way to quantify
entanglement of mixed states via an operational procedure.

2.2.4 Entanglement concurrence

The introduction of entanglement of formation as a measure of entanglement
of mixed states came naturally through the interpretation of entanglement
already used for pure states. However, it lacked an operationally feasible
procedure. Hill and Wooters [36, 37] devised a method to calculate the en-
tanglement of formation of a two qubit system using a quantity that has
little physical interpretation but is closely connected to the entanglement of
formation. They coined the term concurrence. The entanglement concur-
rence can be calculated by standard operations on the composite state. We
present here the method for a general two qubit system ⇢.

1. Given the state ⇢ calculate the so called spin-flipped state.

⇢̃ = (�y ⌦ �y) ⇢
⇤
(�y ⌦ �y) ,

where ⇢⇤ is the complex conjugate of ⇢ in the standard basis and �y is
the second Pauli matrix.

2. Calculate the eigenvalues µi of the product ⇢⇢̃.
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3. Calculate the square-roots of these eigenvalues, �i =

p
µi.

4. The concurrence C is then defined as

C (⇢) = max

 

0,�1 �
4
X

i=2

�i

!

, (2.2.24)

where �1 is the maximum of {�i}.

The concurrence is a monotonically increasing function between zero and
one, zero denoting a separable state and no entanglement and one for a fully
entangled state that incidentally has to be pure. As such it is suited to serve
as a measure for entanglement in is own right.

However, as mentioned above, the concurrence is also connected to the
entanglement of formation E (⇢), the formula being

E (⇢) = H

 

1 +

p
1 � C2

2

!

, (2.2.25)

with the function H (x) = �x log2 x � (1 � x) log2 (1 � x).
In this short introduction to quantum entanglement we have now pre-

sented physical interpretations of entanglement and operational methods for
its quantification for both pure and mixed two qubit systems. Next we turn
to another fundamental topic of quantum theory, the measurement.



Chapter 3

Quantum measurements

In the previous chapter quantum entanglement was introduced as proba-
bly the essence of quantum theory. A close runner up in this category are
quantum measurements. In the present chapter we therefore introduce the
mathematical background of the measurement process in quantum theory.
While in this case there is of course an analogous classical concept of a mea-
surement, the nuances introduced by quantum theory are at the same time
subtle and fundamental. To emphasize this novelty we introduce quantum
measurement on a similarly formal basis as quantum entanglement.

3.1 General measurements

Fundamentally, a measurement in quantum theory is a change of state that
results in a certain gain of information. The particularity of this change of
state is so fundamental to quantum theory that in an axiomatic formulation
of quantum mechanics the measurement process is introduced as a postulate.
We quote the measurement postulate here from Nielsen and Chuang [38]

Measurement postulate

“Quantum measurements are described by a collection {Mm}
of measurement operators. These are operators acting on the
state space of the system being measured. The index m refers to
the measurement outcomes that may occur in the experiment. If
the state of the quantum system is | i immediately before the
measurement then the probability that result m occurs is given
by

p (m) = h |M †
mMm| i , (3.1.1)

and the state after the measurement is

Mm | i
q

h |M †
mMm| i

. (3.1.2)

31
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The measurement operators satisfy the completeness relation,
X

m

M †
mMm = 1.” (3.1.3)

The measurement postulate provides us with a formalism that can be applied
to any measurement. We therefore use the term general measurement to refer
to such a collection {Mm} of measurement operators.

3.1.1 Projective measurements

While an axiomatic basis is welcome to bolster the theoretical construct
quantum theory is build on, it is somewhat hard to relate to. Even a for-
mal introduction to quantum theory tends to skip the formalism of general
measurements and introduces a related concept instead, the projective mea-
surement. Here we introduce projective measurements as a subset of general
measurements.

In the previous section we introduced general measurement as a set of
operators {Mm} acting on a state | i with properties (3.1.2) and (3.1.3).
Imagine now two subsequent measurements of the same kind. The first Mm

with outcome m leaves the system in the state | 0i = Mm | i /p (m). Mea-
suring this resulting state again, this time with the outcome m0, yields

| 00i =

Mm0
p

p0 (m0
)

| 0i =

Mm0
p

p0 (m0
)

Mm
p

p (m)

| i (3.1.4)

where the probability for the second measurement outcome m0 has to be
updated to take the form

p0
�

m0�
= h 0|M †

m0Mm0 | 0i . (3.1.5)

Up to now these are just two general measurements performed one after the
other. We now make an important assumption about the set of measurement
operators {Mm}. On the one hand we take them to be hermitian, so M †

m =

Mm. And on the other hand we take them to form an orthogonal set

Mm0Mm = �mm0Mm. (3.1.6)

This immediately results in a drastic simplification of the second measure-
ment. The outcome probability now reduces to

p0
�

m0�
=

(

1 m = m0

0 else
(3.1.7)

so that the result of the second measurement is already determined by the
outcome of the first. From a classical viewpoint this seems rather unspec-
tacular. Performing a measurement on the same system twice should better
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return the same outcome twice. And once the system is determined by the
first measurement the second has no choice but to concur.

The quantum world, however, generally leaves open a door for ambiguity
even in such a seemingly clear cut case. The simplest case is measuring the
spin of a particle. Let the first measurement, say along the ẑ-axis, determine
the spin to be pointing upwards along that axis. A second measurement
along another axis, for instance pointing along x̂-axis is again completely
undetermined.

In the present case not only is the result of the second measurement
determined by the first, but also the state is not affected by the second mea-
surement, | 00i = | 0i. We may therefore think of the initial state collapsing
into a state | mi with the outcome m and refusing to change afterwards.
This final state also only depends on the measurement outcome and not
on the initial state. Mathematically the system’s state is projected onto a
final state, so that we speak of projective measurements and introduce the
corresponding projection operators ⇧.

The projection onto a state | mi is given by ⇧m = | mi h m|. This
already hints to a close relation between projections and observables. Re-
membering that observables of a system are represented by hermitian oper-
ators ˆO. We use the spectral decomposition to write

ˆO =

X

m

m |mi hm| =

X

m

m⇧m, (3.1.8)

where the projection operators involve the eigenstates of the observable.
Notice also that the set of projection operators {⇧m} satisfies the restrictive
assumptions we made about measuring operators in this section. As they are
related to the eigenstates of an observable they are automatically mutually
orthogonal. And as the observable is hermitian also the projection operators
are.

We have therefore found that projective measurements in the usual for-
mulation known from introductory quantum mechanics classes are a sub-
set of general measurements. Their intimate relation to observables of the
system makes them natural to use. Also, projective measurements can be
applied to a vast variety of physical measuring processes. However, there are
a number of important experimental setups where projective measurements
fail to provide the necessary formalism. For instance a projection is always
connected to the same Hilbert space and cannot be used in contexts where
particles are created or destroyed.

Consider for example the measurement of a photon. Measuring the pho-
ton itself necessarily leads to its destruction, the resulting state is the vac-
uum. It is hardly of any sense to try to measure the vanished photon again
and of even less sense to expect the same result as before. A projective
measurement may be thought of as collapsing the state to the vacuum in
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this case. But the repeatability of projective measurements that was a key
ingredient to the formulation is lost in this interpretation.

We conclude therefore that projective measurements are, due to their
straightforward mathematical applicability, convenient where they can be
used. But they have to be supplemented by the formalism of general mea-
surements to be able to treat all physical measurement processes.

3.1.2 General measurements as projections

In the previous section projective measurements were introduced. As al-
ways in mathematical formulations, the orthogonality of these projective
measurements provides a considerably easier treatment of the measurement
process. On the other hand the connection to a measurement result, as just
the eigenvalue of an observable in the final eigenstate the system collapses
upon, admitted the most painless approach to this unintuitive matter.

However, it was pointed out that projective measurements cannot be ap-
plied to all experimental setups and general measurements have to be kept
around. This statement can be softened somewhat [38]. Projective measure-
ments are a sub-set of general measurements in the same Hilbert space, so
that an expansion of the set of measurement operators generalizes from pro-
jective to general measurements. We now proceed in the different direction
and show that every general measurement can be performed with projective
measurements, albeit now on an enlarged Hilbert space. So from projective
to general measurements we therefore extended the set of measurement oper-
ators and from general to projective measurements we extend the dimension
of Hilbert space.

A general measurement was defined as a set of operators acting on a state
in some Hilbert space. Let this state be labeled by | i and the encompassing
Hilbert space by H. The measurement operators shall again be called {Mm}.
We have seen that this set of measurement operators can not be represented
by projective operators in the same Hilbert space H, so the idea is to enlarge
the space the projections operate on. Take therefore a separate Hilbert space
of dimension n that we call V . This Hilbert space is spanned by a basis and
as there are as many basis vectors as dimensions each basis vector can be
labeled in correspondence with a measurement operator so that we denote
this basis of V as {|mi}. Up to now this extra space has only auxiliary status
so that it is often called ancilla. In the proceedings we will discover, however,
that a physical interpretation can be attached to this ancilla. In the same
way as the system is in an initial state | i we assume the ancilla to be in
some specific state |�i. With these prerequisites we define an operator U
that acts on a state of Hilbert space H only

U | i =

X

m

Mm ⌦ 1V | i |�i . (3.1.9)
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Here the tensor product between both states is implicitly assumed. This
operator defines a map U : H ! H ⌦ V that preserves the inner product

h 0|U †U | i =

X

mm0

h 0| hm0|
⇣

M †
m0 ⌦ 1V

⌘

(Mm ⌦ 1V) | i |mi

=

X

mm0

h 0| M †
m0Mm | i hm0|mi

=

X

m

h 0|M †
m0Mm| i = h 0| i (3.1.10)

of the space H, where we have used the completeness of the set of measure-
ment operators in the last equality. While U in this definition is taking a
state from space H to the enlarged space H ⌦V we can extend the operation
to be a unitary endomorphism on the space H ⌦ V . We continue to denote
this operation as U because the actions on H coincide and therefore both
can not be distinguished.

Consider now an action that is complementary to the previously defined,
acting only on the ancilla and leaving the space H untouched. In particu-
lar the action on the ancilla shall be a projection, as anticipated. A thus
enhanced projection operator takes the form

⇧m = 1H ⌦ |mi hm| . (3.1.11)

This projection can be applied1 to the evolved composite state U | i |�i so
that we have

| i = U | i |�i ! | 0i =

⇧m

p (m)

U | i |�i , (3.1.12)

where we introduced

p (m) = h | h�| U †
⇧mU | i |�i

=

X

m0m00

h |U †
m00Um0 | i hm00|mi hm|m0i

= h |U †
mUm| i (3.1.13)

which turns out to be exactly the probability (3.1.1) connected to the mea-
surement outcome m of the general measurement {Mm}. The resulting state
after the projection (3.1.12) then takes the form

| 0i =

⇧m

h |U †
mUm| i

U | i |�i =

Mm | i
h |U †

mUm| i
| {z }

system

|mi . (3.1.14)

1When applying a projection it is common to emphasize the non unitary nature of the
operation by connecting initial and final state by an arrow.
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As suggested in the last equality the resulting state is a product state. The
part of the system is in a state that coincides with the resulting state of a
general measurement in the original Hilbert space H as defined in (3.1.2).
And the probability of the resulting state is connected to the measurement
operator Mm and thus to the measurement outcome m. It is again exactly
the postulated probability (3.1.1). Both operations U and ⇧m were defined
only by the general measurement operators {Mm}. We have therefore pre-
sented how projectively measuring an auxiliary system that is artificially
introduced can mimic general measurement on the original system. This
may seem to be of rather academic use but notice the resulting state of the
ancilla. It is exactly in the basis state that corresponds to the measurement
outcome |mi so that by observing the ancilla and determining its state all
necessary information about the original system can be obtained.

This notion of using an auxiliary system to gain information about an
otherwise inaccessible system is at the core of every scientific process. Usually
the ancilla is then called a detector or measurement device. In the next
section we expand this interpretation to give a physical description of the
measurement process with the help of an auxiliary system.

3.2 Von Neumann measurements

In the previous introduction to quantum measurements we focussed on a
rather mathematical formulation of the matter. This technical approach is
indeed quite useful to begin with, as one is less tempted to mix mathemati-
cal postulates of quantum theory and a mental picture of physical processes.
Without being restricted by descriptive thinking one can make use of the
powerful machinery of the mathematical formulation to create a solid foun-
dation of quantum theory.

Once this objective is achieved, however, the need to bridge the math-
ematical and the physical world becomes more urgent. Peres succinctly
phrased it as

“Quantum phenomena do not occur in a Hilbert space. They
occur in a laboratory.”

A. Peres

The first mathematical description of the newly developed quantum theory
was given by von Neumann in his groundbreaking treatise “Mathematische
Grundlagen der Quantenmechanik.” [39]. Even at this early stage von Neu-
mann tried to give not just a physical interpretation of the measurement
process but also developed a formulation according to such a physical inter-
pretation. He introduced a second system that served as a detector. This
detector should be thought of as an intermediary between the quantum world
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of a Hilbert space and the every-day world of a laboratory, with all the de-
vices that physicists use. In this sense the detector should be describable
by a Hamiltonian on the one hand and have a (quasi)-classical state on the
other.

Take an isolated system with Hamiltonian H0 that is in a known state
| i. The measurement is connected to an observable with the hermitian
operator ˆA that acts on the system state. We may thus write the system
state in the eigenbasis of the measurement observable

| i =

X

a

↵a |ai , (3.2.1)

where ˆA |ai = a |ai and ↵a = ha| i, or in other words a is the eigenvalue
pertaining to the eigenstate |ai and ↵a the overlap of the system state and
the eigenstate |ai. The measuring device on the other hand was said to be
of such fashion that it could be “read out” by the physicist operating the
laboratory. To this end it is modeled as a many-body system with a single
degree of freedom, in this case taken to be position in space.

When both systems, the state to be measured and the measuring device,
are brought into close vicinity they interact and evolve together. For a
Hamiltonian that is continuous in time the evolution of the composite system
is unitary and the common Hamiltonian is taken to be

H (t) = H0 + H
detector

+ H
int

= H0 +

p̂2

2m
+ �g (t) ˆA ⌦ p̂. (3.2.2)

To first order the Hamiltonian is therefore split into a system Hamiltonian H0

that can be time-dependent in principle, a detector Hamiltonian H
detector

and the interaction Hamiltonian H
int

. Notice that in this formulation all
Hamiltonians act on the composite Hilbert space of system and detector
but H0 and H

detector

only concern the degrees of freedom of system and
detector, respectively. Whenever the dimensionality of an operator seems
to be amiss we shall read it amended with the fitting tensor product. So
in equation (3.2.2) the first term in fact reads H0 ⌦ 1

detector

. For the sake
of clarity the above notation of equation (3.2.2) is used when no ambiguity
demands otherwise. As we are only interested in a physical description of the
measurement process, we ignore the inherent evolution of the measurement
device and take H

detector

= 0, having a comparatively heavy device in mind.
The whole measurement process is governed by the interaction Hamilto-

nian H
int

that couples the two Hilbert spaces. Its particular effect is to con-
nect the observable ˆA with the degree of freedom of the detector. The Hamil-
tonian is supplemented with a parameter � to denote the interaction strength
and a time dependence g (t) with compact support that starts at t = 0 and
ends at the measurement time ⌧m.
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In general, an observable may have an intrinsic time-dependence and
could thus evolve during the measurement process. Here we assume that
the time-scales of observable and measurement process can be separated so
that we have

h

H0, ˆA
i

= 0 while the measurements lasts. In the interaction
picture [40] the evolution of the composite state of system and detector under
the measurement is due to the evolution operator

U (t) = exp



� ı

~

Z t

0
dt0 H

int

�

= exp



� ı�

~

Z t

0
dt0 g
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t0
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ˆA ⌦ p̂

�

= exp
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~
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�

, (3.2.3)

if the time t is to be taken after the measurement time ⌧m. With the spectral
decomposition of the observable

ˆA =

X

a

|ai a ha| (3.2.4)

the evolution operator then takes the form

U (t) =

X

a

|ai exp



� ı�a

~ p̂

�

ha| . (3.2.5)

Having understood how the composite system evolves under the measure-
ment process we need a quantum mechanical description of the measurement
device. As the detector is modeled as a single degree of freedom, the quan-
tum mechanical uncertainty suggests to view it as a (gaussian) wave packet
in position space. Taken its expectation value to be x0 initially, the whole
composite system takes the form | i = | i ⌦ |� (x0)i and evolves under the
evolution operator (3.2.5)

| (t)i = U (t) | i ⌦ |� (x0)i

=

X

a

|ai exp



� ı�a

~ p̂

�

ha|
 

X

a0

↵a0 |a0i ⌦ |� (x0)i
!

=

X

a

exp



� ı�a

~ p̂

�

↵a |ai ⌦ |� (x0)i . (3.2.6)

As p̂ acts on the detector space and serves as a generator of translation it
shifts every wave packet in the sum by �a

| (t)i =

X

a

↵a |ai ⌦ |� (x0 � �a)i . (3.2.7)

Due to the common evolution the system and the detector have therefore be-
come entangled. The end of the measurement process amounts to removing
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the detector from the vicinity of the measured system so that any further
interaction between system and measurement device is due to the entangled
nature of the composite state.

Once the device is separated from the system the next step can be taken,
that is the “reading out” of the detector. If the system is traced out, the
detector is in a mixed state while unobserved. When we now imagine the
laboratory assistant taking a look at the detector to determine its precise
location the result is a collapse of its wave function to the eigenstate cor-
responding to the observed location. Here the attentive reader might feel
cheated as we began the section with the promise of a mathematical de-
scription of the physical process. Only to now somehow have shifted the
magical measurement from the measured system to a different system called
“measuring device”. And the final step from quantum state to classical mea-
surement result, the crux of the whole formalism, is muffled into the coy
words “reading out”. Fundamentally this objection is correct and the reason
why the measurement postulate is indeed a postulate of quantum theory. It
can not be circumvented.

However, all is not lost. We might not have at hand a formalism that
sheds light on the measurement postulate itself, but the above description did
separate the measured system from the measurement process. We are now
free to make some assumptions about the measurement device to help the
interpretation. For example we take it to be quasi-classical and therefore
possessing quantum and classical features. All these assumptions do not
concern the measured system and are therefore in a certain sense universal.

To proceed with the formalism we therefore have to put “reading out” of
the measurement device into quantum language. This brings us back to the
projection of a state onto an eigenstate with the corresponding eigenvalue as
measurement result. Observing the device at position q̄ therefore projects
the state (collapses the wave function) onto state |q̄i. The corresponding
projection operator that only operates on the detector space is

⇧q̄ = 1 ⌦ |q̄i hq̄|
p

p (q̄)
, (3.2.8)

with the probability p (q̄) of a certain detector outcome q̄. To apply the
projection onto the detector state we write |� (x0 � �a)i as a Gaussian wave
packet as discussed above. To ease notation we assume the detector to be
initially centered at x0 = 0:

⇧q̄ | i =

X

a

↵a |ai ⌦ 1
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↵a exp
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|ai ⌦ |q̄i

= | 0
(q̄)i ⌦ |q̄i , (3.2.9)
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where the width of the Gaussian wave packet is given by its standard devia-
tion �. The final state of system and detector (3.2.9) is obviously a product
state so that system and measurement device can henceforth be regarded
as separate. The system is now in a superposition similar to the initial
state (3.2.1) only that now the eigenstates are additionally weighted by an
exponential factor depending on the measurement outcome q̄. Furthermore,
the probability distribution of the measurement outcome is linked to the
initial state via the spectral decomposition

p (q̄) = tr (⇧q̄ | i h |) =

1p
⇡�2

X

a

|↵a|2 exp

"

�(q � �a)

2

�

2

#

. (3.2.10)

Using the probability distribution of q̄ to calculate the expectation value of
the measurement device’s position after the measurement we notice that it
is connected to the expectation value of the observable ˆA via

hq̄i =

Z

dq̄ q̄p (q̄) = �
D

ˆA
E

. (3.2.11)

It is only through this relation that the information we obtain from reading
out the detector reveals information about the initial state of the system.
A single measurement is bound to give no information about the measured
system due to the stochastic nature of quantum measurement processes.
Repeating the above procedure on many copies of a system in the initial
state | i the resulting detector outcomes q̄ spread according to the probabil-
ity distribution (3.2.10) and we may determine the average, that coincides
with the expectation value, with increasing precision.

3.2.1 Measurement strength

There are two parameters left undefined in the above formalism. On the
one hand we introduced an interaction strength � that was already named
measurement strength and on the other hand the Gaussian wave packet that
is used to describe the quantum state of the measurement device prior to
the measurement has a width �. Indeed both parameters are related to
the strength of the measurement. Here the measurement strength should be
understood as the impact the measurement has on the measured system, in
other words, the strength of the back-action. After the detector is removed
we have seen the system to be in the final state

| 0
(q̄)i /

X

a

↵a exp

"

�(q̄ � �a)

2

2�

2

#

|ai . (3.2.12)
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In the strong measurement limit ��a � �

2 for any measurement result q̄
only one exponential factor is non-zero. The resulting state therefore is the
corresponding eigenstate |ai. The measurement of the observable ˆA leads to
a collapse of the systems state onto one of the eigenstates of ˆA: We have
described a projective measurement.

In the opposite case of a weak measurement, characterized by the width of
the Gaussian peaks in (3.2.10) greatly exceeding their separation � � ��a,
the exponentials in the final state (3.2.12) have approximately the same value
so that the change to the state is negligible. The measurement therefore has
no (or a very small) effect on the system.

Another useful way to think about the relation between � and � is from
the point of view of the measurement device. The measurement strength �
relates the expectation value of the measured observable with the shift of
the position of the detector (3.2.11). All things equal the measurement of
two states with a different expectation value for ˆA cause a different average
shift of the detector. The measurement strength � is therefore amplifying
the difference of both states by translating it into a large shift of detector
expectation value. This larger shift, however, has to be put in relation to the
general uncertainty of the detector position, here given by the width of its
wave packet �. If the measurement of two states with different expectation
values for an observable results in a detector shift clearly discernible despite
the positional uncertainty we speak of a strong measurement. Or in this
context of a measurement strong enough to distinguish both states.

3.3 Continuous measurements

In the previously presented formalism the duration of the measurement was
not taken into account. We assumed that the measurement device was
brought into contact with the system, the composite system evolved, and
the measurement device was read out, all within a timeframe that was taken
to be short compared to any dynamic of the system. The result of the mea-
surement was a single point in space, the position of the detector after the
measurement. In practice, however, most measuring devices return constant
information about the measured system, think of an Ampere-meter for in-
stance.

Therefore we present here a treatment of a continuous measurement of
a two level system [41, 42]. We model this two level system as a double
quantum dot that is occupied by an electron.3 The electron occupying each
of the dots represents the basis states |0i and |1i. The system is placed

2Here �a is the maximum distance between two consecutive eigenvalues. This dis-
tance has to be small compared to the width of the gaussian distributions, so that the
distributions are overlapping strongly.

3Incidentally this system is of academic interest, but is also used in the application of
the following chapter.
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in the vicinity of a low transmission quantum point contact (QPC) with
a current I (t) flowing through. The potential of the tunnel junction is
modulated by the occupational state of the quantum double dot, so that
the resulting current carries information about the two level system. In this
sense the tunnel junction is a detector with the continuous measurement
result I (t).

The composite system is governed by the second-quantized Hamiltonian,

H = H
DD

+ H
QPC

+ H
int

(3.3.1)

with the double dot Hamiltonian H
DD

=

"
2

⇣

c†1c1 � c†0c0
⌘

+�

⇣

c†1c0 + c†0c1
⌘

,

where ci
⇣

c†i
⌘

is the annihilation (creation) operator for the qubit state |ii.
Both states are therefore separated by an energy splitting " while the sec-
ond part allows for tunneling between both operational states. In the fol-
lowing we first ignore this tunneling to later include it in the formalism.
The quantum point contact is modeled by two reservoirs with tunneling
between them, H

QPC

=

P

r Era
†
rar +

P

l Ela
†
l al +

P

r,l T
⇣

a†ral + a†l ar
⌘

.
The interaction between double dot and quantum point contact then is
the modulated tunneling based on the occupational state of the double
dot H

int

=

P

r,l�Tc†1c1
⇣

a†ral + a†l ar
⌘

. The tunneling between the leads has
an amplitude of T , if the electron occupies state |0i, and an amplitude T+�T
when occupying state |1i. This difference in tunneling amplitude translates
into different average currents

I0 = 2⇡T 2⇢r⇢l
e2V

~ (3.3.2)

I1 = 2⇡ (T +�T )

2 ⇢r⇢l
e2V

~ = I0 +�I (3.3.3)

where ⇢i is the density of states in the i-lead and V the bias voltage across
the junction.

To describe the continuous nature of the measurement we assume that
information gain is low and therefore the back-action on the double dot
system due to the measurement is also low. In other words it takes a long
time until the measurement result is conclusive and the double dot state
collapses to one of the operational states. Many electrons should therefore
pass through the tunneling junction so that we can average over timespans
that allow for interpretation of a passing current.

For the resulting current this assumption amounts to a current difference
between the two states that is small compared to the average current

�I = I1 � I0 ⌧ ¯I ⌘ I0 + I1
2

. (3.3.4)

If the information of the detector current is discarded the tunneling junction
is nothing more than an environment of the double dot system that leads to
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decoherence of the double dot state. A pure state therefore loses coherence
at the rate[42]

�d =

�p
I0 � p

I1
�2

2e
⇡ (�I)

2

8e¯I
=

(�I)

2

4SI
(3.3.5)

where SI = 2eI is the Schottky shot noise of the tunneling junction. If the
intrinsic evolution of the double dot is set aside, the density matrix of the
measured system therefore only loses its coherence and thus

⇢ (t) =

✓

⇢00 ⇢01e��dt

⇢10e��dt ⇢11

◆

. (3.3.6)

When the measurement result is, however, not discarded but recorded
we must use the gained information to infer the evolution of the measured
system. In the classical case where there is no tunneling between the two
states (� = 0) the occupation has a purely probabilistic nature. The diag-
onal entries of the density matrix reflect the probabilistic knowledge about
the system while the off-diagonal terms are zero. This situation amounts to
the electron decisively occupying one of the states, although, we do not know
which state it is. The situation is classical in the sense that while the state
of the system is unknown to the observer, it is not in principle unknowable.

Now the current I (t) is a highly fluctuating quantity and as a measure-
ment result we therefore use the time averaged current over the measurement
time ⌧ . Assuming this time is long enough to encompass many electrons
passing the tunneling junction we have

hIi =

1

⌧

Z ⌧

0
dt I (t) . (3.3.7)

This averaged current serves as the measurement output at any given time.
Assume now the electron is occupying the lower dot. The probability distri-
bution for an outcome hIi thus is

P0 (hIi , ⌧) =

1p
2⇡D

exp

"

�(hIi � I0)
2

2D

#

(3.3.8)

where the width of the distribution is related to the shot noise and the
measurement duration ⌧ via

D =

SI

⌧
. (3.3.9)

The longer the measurement the narrower the distribution becomes, as ex-
pected. For an electron occupying the higher dot the distribution is analo-
gous, but centered around I1.
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The aggregate probability distribution for the current when only proba-
bilistic information about the occupational state of the electron is available
then reads

P (hIi , ⌧) =

⇢00p
2⇡D

exp

"

�(hIi � I0)
2

2D

#

+

⇢11p
2⇡D

exp

"

�(hIi � I1)
2

2D

#

. (3.3.10)

As the probability distribution of the measurement result hIi therefore de-
pends on the state of the electron, the result reveals information about the
system that has to be used to update the probabilities via the standard Bayes
formalism of posterior probabilities [43].

The posterior probability that an event A occurs provided the evidence X
is a conditional probability that is defined as

P (A|X) ⌘ P (A)

P (X|A)

P (X)

(3.3.11)

where P (A) is the probability of the event A and P (X) analogously for X.
In the present case this translates to the occupational probabilities

⇢00 (⌧) = ⇢00 (0)

P0 (hIi , ⌧)

P (hIi , ⌧)

⇢11 (⌧) = 1 � ⇢00 (⌧) . (3.3.12)

So far we have only analyzed the system when treated classically. When the
system is in a quantum state the off-diagonal terms of the density matrix
are non-zero. If the state, however, is fully coherent and thus a pure state
the off-diagonal terms relate to the diagonal ones via

|⇢01 (0)| =

p

⇢00 (0) ⇢11 (0). (3.3.13)

While the diagonal term still represent the occupational probabilities the
off-diagonal term are not directly accessible. We have, however, the upper
limit

|⇢01 (⌧)| 
p

⇢00 (⌧) ⇢11 (⌧). (3.3.14)
Let us compare this with the decoherence of a double dot due to an external
noise source or environment (3.3.6). For this let us calculate the effect of the
measurement averaged over many realizations of the system. Averaging over
many realizations here amounts to averaging over the measurement output
so that the upper bound for the off-diagonal terms becomes
Z

d hIi P (hIi , ⌧)
p

⇢00 (⌧) ⇢11 (⌧) =

p

⇢00 (0) ⇢11 (0) exp

"

�(�I)

2

4SI
⌧

#

.

(3.3.15)
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Comparison with (3.3.6) shows that this gives the same decoherence rate
as an external noise source so that we conclude that the only source of
decoherence is due to the loss of measurement information. Keeping track
of the current hIi and updating the state via equations (3.3.12) therefore
does not affect the purity of the state so that it remains pure during the
measurement.

Above we have presented the evolution of a qubit under measurement
(given a measurement outcome hIi) over a time period of ⌧ . We took this
measurement time to be long enough so that in the given example of a
tunneling junction enough electrons would pass through to be able to treat
the flow as a current. In other words we implement a low pass filter that
averages the effect of individual electrons passing through

⌧ � e2

SI
. (3.3.16)

This ensures suppression of the quantum noise in the treatment of the current
by treating the detector as an ampere meter and thus measuring current. The
time interval can be taken to be arbitrarily small.

In a weak coupling regime the information gained within this timeframe
is small and therefore the back action on the measured system is small as
well. We may linearize the evolution to deduce a dynamic equation. In
practice this amounts to the iteration of

1. Start with a system ⇢ (0).

2. Draw a random instantaneous current hIi from the distribution (3.3.10).

3. Calculate the evolved system ⇢ (⌧) from the current via (3.3.12).

4. Repeat from 1. with updated system ⇢ (⌧).

On the other hand we have[41]
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SI

�hIi � ¯I
�

⌧. (3.3.17)

The continuous limit with the instantaneous current I (t) is then

˙⇢00 = �⇢00 (0) (1 � ⇢00 (0))

2�I

SI

�

I (t) � ¯I
�

. (3.3.18)

This equation now serves as the evolution equation of a qubit under mea-
surement.
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In the derivation above we disregarded the internal evolution of the qubit
due to its Hamiltonian H

DD

=

"
2

⇣

c†1c1 � c†0c0
⌘

+ �

⇣

c†1c0 + c†0c1
⌘

. This is
applicable when the dynamics that governs this evolution is slow compared
to the tunneling of electrons through the barrier. In practice we can assume
the qubit to be frozen for every instantaneous current hIi, or in other words

p
"2 + 4�

2

~ ⌧ SI

e2
, (3.3.19)

and [44, 41] the resulting stochastic differential equations become

˙⇢00 = � ˙⇢11 = � 2�

~ Im(⇢01) � ⇢00 (0) (1 � ⇢00 (0))
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˙⇢01 =
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� (⇢00 � ⇢11)
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⇢01. (3.3.21)

These describe the evolution of the qubit for any continuously measured
detector outcome I (t). Notice here that for proper determination of the
qubit state the whole history of I (t) has to be known and taken into account.

Having now introduced the various mathematical descriptions of the mea-
surement process we next turn to make the information gained during the
measurement process useful. In particular we present two approaches on how
the continuously acquired knowledge about a system can by used to control
and stabilize its dynamical evolution.

3.4 Measurement control

In the preceding section of the chapter we have been concerned with find-
ing information about a certain system. This acquiring of information is
formally done in a measurement process and we have presented several de-
scriptions of the details of measurement procedures. While obtaining the
desired information can be reward enough in itself, it can also be used to
control the measured system by changing its parameters depending on the
measurement outcome.

The loop of measurement and parameter control is so natural that we
hardly notice applying it every day for instance in measuring the temperature
of a room (by feeling cold or warm) and adjusting its parameters (by tuning
up the heating or opening a window). As control of a system constitutes the
core of any engineering problem a depth of formalism has been developed.
In the following we therefore just briefly introduce two approaches, the well
known classical feedback and its maybe not so well know analog for quantum
systems.



3.4. MEASUREMENT CONTROL 47

3.4.1 Markovian Feedback

To introduce the simplest feedback loop it is appropriate to use the most
basic system. Take a temperature bath that is connected to a heat sink and
a heat source. A thermometer measures the bath’s temperature T (t) and
we assume control over the heat source, i.e., we may control the amount of
heat �Q

in

(t) that is transferred into the system at any given moment.
To keep the bath at a desired fixed temperature T0 the amount of heat

lost in the sink has to be countered by an equal amount of heat inserted
from the source. Having no knowledge about the sink’s dynamics but only
of the current measured temperature T (t) we quickly find a linear relation
between measurement outcome and required heat

�Q
in

(t) = C (T0 � T (t)) , (3.4.1)

where the proportionality factor is the heat capacity of the system. With
this relation we may connect the heat source with the measurement device
and the system stays at constant temperature without further ado.

In the present context we coin the name Markovian feedback for the
above situation. This is to emphasize the classical nature of the system
that can be applied to quantum systems as well [23, 24, 25]. The only
uncertainty is the random change of heat dissipation through the sink. But
as the measurement device precisely follows this dissipation the control loop
can pick up any movements. At any given point the system therefore is in a
well known state. This neat feature of classical systems only carries over to
the quantum realm in the case of quantum non demolition measurements [26]
so that in the general case we have to be more creative.

3.4.2 Bayesian Feedback

In the previous section we focussed on stabilizing a system under external
influences via feedback control. The general idea was to adjust the driving
parameters based on a continuously updated knowledge about the state of
the system.

The basic prerequisites for this approach are on the one hand that we are
able to monitor the system precisely, so that in any instance we have a com-
plete knowledge about its state. Or at the very least a complete knowledge
about the part of the system that is subject to the feedback stabilization. On
the other hand we assumed that the effect of changing the system’s external
parameters, the process we call feedback, has a one to one correspondence
with the reaction of the system. While some relation is of cause necessary
to speak of control of the system we particularly assumed a linear relation
between the discrepancy of actual and desired state of the system vs. the
action taken in feedback control.
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These two assumptions are valid for a vast number of systems that are
subject to feedback control. The linear relation between discrepancy and ac-
tion in particular allows for an electronic implementation of stabilizing loops
so that these controls can be incorporated into the devices themselves. As
the origin of the theory of feedback control [45] lies in the realm of engineer-
ing it is of no surprise that its tools are tailored to be applied to classical
systems.

For quantum systems we have a stochastic uncertainty build in the foun-
dations of the theory so that we are compelled to reexamine the above as-
sumptions. As it has been established well enough, not least in this chap-
ter, in the process of a quantum measurement the gathering of information
about the system is necessarily associated with back-action on the measured
system. The strength of this back-action is correlated with the decisive-
ness of the gathered information, peaking in the extreme case of complete
knowledge with a total collapse of the wave function. The projective na-
ture of this back-action contradicts the idea of continuous measurement and
simultaneous feedback control. Being therefore limited to continuous weak
measurements, as for instance introduced in section 3.3, the theory has to
be expanded to cover these new type of cases where the measurement is the
driving force of the evolution of system. This starkly contrasts the classical
case where the measurement follows the evolution of the system.

To introduce these new concepts we follow Ruskov et al. [46] in presenting
the continuous measurement of a qubit. This feedback has been studied
and implemented in solid state qubits [47, 27] as well as in a cirquit QED
environment [48]. Above we have coined the update of the density matrix by
information gathered through a continuous measurement as “Bayesian”. To
emphasize the use of these techniques we continue to use this term to refer
to the feedback control mechanisms that are incorporated into the coming
analysis.

To reduce the problem to the fundamental concepts at hand we assume a
qubit Hamiltonian H = �

⇣

c†1c0 + c†0c1
⌘

corresponding to H = ��x in qubit
space. The evolution of the unmeasured qubit therefore is a rotation around
the x-axis, while the weak measurement in z-direction returns information
about the qubit’s “position” along that axis. As mentioned, the measure-
ment process is inherently invasive so that at the same time as it returns
information about the state it also serves as another driver of rotation. The
important difference is evident already in this simple setup. While the rota-
tion per time interval ⌧ due to the Hamiltonian is determined strictly by �,
the back-action due to the measurement depends not only on the measure-
ment result I (t) but also on the qubit state ⇢ (t). This extra dependency
prohibits any kind of direct feedback control as introduced in the preceding
section so that a more elaborate scheme has to be implemented.

We have seen that a given density matrix of a qubit that is measured
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by a nearby QPC has to be updated via the equations (3.3.20, 3.3.21) for
any measured current I (t). While a direct feedback mechanism fails to
incorporate the dependency on the current qubit state ⇢ (t) we thus use
these equations to calculate the system state at any given time. Without
measurement the unperturbed qubit follows a rotation governed by

˙⇢00 = � ˙⇢11 = �2�

~ Im⇢12 (3.4.2)

˙⇢12 = ı
�

~ (⇢00 � ⇢11) , (3.4.3)

so that, with the condition of positive diagonal entries of the density matrix,
we have

⇢00 (t) =

1

2

✓
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✓

2�

~ t

◆◆

(3.4.4)

⇢12 (t) =
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2�

~ t

◆

. (3.4.5)

The phase �0 (t) = 2�t/~ (mod2⇡) of the unperturbed motion has to be
compared to the actual phase

� (t) = arctan

✓

2

Im⇢12
⇢00 � ⇢11

◆

(3.4.6)

of the measured system. On the momentary phase difference �� (t) now a
direct feedback can be applied by changing the rotation frequency � pro-
portionally

�

0

�

= 1 + F �� (t) , (3.4.7)

with the dimensionless proportionality factor F to control the feedback
strength. Ruskov et al. show via numerical simulations that for a feed-
back factor approaching unity the asymptotic amplitude of oscillations also
saturates essentially at one.

This short introduction to the control of a continuously measured system
concludes the present chapter of quantum measurements. In the following we
apply the previously presented ideas by combining the concepts of quantum
entanglement and quantum measurement in a physical setup to create and
stabilize entanglement via a quantum measurement.





Chapter 4

Measurement and

entanglement

As announced we now present the creation and stabilization of fully entan-
gled two qubit states. In the preceding chapters we introduced the general
formalism of quantum entanglement and quantum measurements including
feedback loops, so that we are now in a position to apply these concepts to
a given system. As a proof on concept we focus on the entanglement of two
qubits. The means of creating entanglement here is a parity measurement
on both. The necessary concepts are presented in the following sections first
briefly theoretically (4.1) and then within an experimentally feasible context
of a Mach-Zehnder interferometer (4.2).

We continue to analyze the dephasing that is present intrinsically due
to the special architecture of the Mach-Zehnder interferometer and the ad-
ditional dephasing mechanisms present in any experimental context. The
study of these dephasing mechanism readily admits the inclusion of a feed-
back loop to stabilize the intrinsic dephasing (4.4) as well as the external
one (4.5).

Including both feedback loops in the measurement process then leads to
stable maximally entangled Bell-states that are the fundamental building
blocks of any quantum computational setup.

4.1 Parity measurements

The expression parity has a wide range of meanings in physics so that we
are bound to give a proper definition for the system at hand. As mentioned
in the introduction the present chapter is concerned with the creation of
entanglement between two qubits so that the given Hilbert space it spanned
by the states

H = span {|""i , |"#i , |#"i , |##i} . (4.1.1)

51
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Here " and # denote the spin polarization along the z-axis. We de-
fine those states that are a linear combination of the basis states with
both spins pointing in the same direction as even. Thus the even subspace
of H is spanned by {|""i , |##i} leaving the odd subspace to be spanned
by {|#"i , |"#i}. The corresponding observable shall be denoted by ˆP and as
both subspaces are two dimensional the eigenvalues pertaining to the even
and odd parity are degenerate. With the given definition of even and odd
subspaces it is readily verified that the operator ˆP = �z ⌦ �z, where �z de-
notes the Pauli matrix, incorporates the given subspaces as eigenspaces to
its eigenvalues one and minus one.

4.1.1 Bell states

Until now we have described the two qubit system with the computational
basis. This is straightforward and intuitive as each computational basis
state can be created by local operations on each qubit. In the following we,
however, deal with the two qubit system in the context of entangled states.
One immediate consequence is that the states involved are no longer locally
producible so the computational basis tends to loose its favorability. Instead
we now introduce four different basis states, the Bell states

| ±
e

i =

1p
2

(|""i ± |##i) (4.1.2)

| ±
o

i =

1p
2

(|"#i ± |#"i) . (4.1.3)

Notice first that all of the Bell states are fully entangled. This is verified
by calculating, for instance, the von Neumann entropy (cf. chapter 2.2.2) of
their reduced states. Incidentally, the state | +

o

i is exactly the singlet state
already introduced. As these Bell states are fully entangled they serve as the
ideal results of any apparatus that claims to create entanglement between
two qubits.

Another thing to notice is that the Bell states are again eigenstates of
the parity operator. Indeed we have

ˆP | ±
e

i = | ±
e

i (4.1.4)
ˆP | ±

o

i = � | ±
o

i , (4.1.5)

so that the subscript e/o is duly justified. As eigenstates of the parity oper-
ator the Bell states remain intact under parity measurements. Conversely, a
parity measurement can thus also be used to create such a Bell state. Now
the parity operator has degenerate eigenvalues so the parity measurement
of an arbitrary state does not necessary result in a Bell state but just in a
superposition of either even or odd Bell states.
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Take, however, the initial state

| i =

1p
2

(|"i + |#i) ⌦ 1p
2

(|"i + |#i) (4.1.6)

=

1

2

(|""i + |"#i + |#"i + |##i)

that obviously is a product state and thus can be prepared locally. Applying
the parity operator to | i projects the state to

| 0i =

ˆP | i =

1p
2

�| +
e

i � | +
o

i� (4.1.7)

so that each parity eigenvalue corresponds to a unique eigenstate. The parity
measurement thus creates a determined fully entangled Bell state for both
measurement outcomes.

A simple Hamiltonian for the qubits of the form H =

P

i=1,2
"
2�

i
z, where �iz

mark the Pauli matrices for the respective qubits, leads to a free evolution
of the projected state

| 0
(t)i =

1

2

⇣

e�
ı"t
~ |""i + |"#i + |#"i + e

ı"t
~ |##i

⌘

(4.1.8)

=

1p
2

✓

cos

"t

~ | +
e

i + sin

"t

~ | �
e

i + | +
o

i
◆

. (4.1.9)

A measurement resulting in an even outcome thus projects the initial state | i
onto the even Bell state | +

e

i and the evolution of the system results in a sub-
sequent oscillation between both even Bell states. If the measurements give
back an odd result the state is frozen, however, in the odd Bell state | +

o

i
and no oscillation occurs. While the Bell states are fully entangled, the
knowledge of the measurement outcome is crucial to determine the state of
the system. In the next section we therefore define a new type of entangle-
ment measure to incorporate this necessary knowledge into the entanglement
measure.

4.1.2 Conditional concurrence

In the previous section we introduced the parity measurement as a means to
create a maximally entangled Bell state. With the right initial state any given
outcome of the parity measurement resulted in a uniquely determined Bell
state. For any single measurement the entanglement is therefore maximal.
In an experiment or simulation, however, this single measurement procedure
is repeated many times to form an ensemble, any analysis has so be done
regarding this statistical ensemble of states, hence its density matrix. Here,
however, we run into a problem with the parity measurement given above.
For the initial state (4.1.6) the outcome of each measurement result is of
equal probability, the statistical ensemble after the measurement therefore
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consists of even Bell states | +
e

i and odd Bell states | +
o

i of equal propor-
tion. It is easy to verify that this amounts to a fully mixed final ensemble.
With the definition of entanglement of mixed states, the entanglement con-
currence, given in the previous chapter 2 this results in zero entanglement
in the ensemble.

The problem here is that the knowledge of the single measurement results
was discarded in the averaging process. To include this knowledge in the
analysis we define the conditional concurrence as the concurrence of the
statistical ensemble postselected on the measurement result. In practice this
means that for every repetition of the measurement the result is collected
into one of two bundles depending on the measurement outcome. All states
with a measurement outcome of even parity are then averaged together to
form the statistical ensemble ⇢e and all state with an odd measurement
outcome form the statistical ensemble ⇢o. Averaging over both ensembles
again gives the original full ensemble. In the postselected density matrices
the knowledge of the measurement result is now included, however, and the
entanglement of both is nonzero.

For the present case of projective measurements this method seems to
be somewhat artificial but once the measurement procedure is simulated in
detail via a weak von Neumann measurement the conditional concurrence
serves as a valuable tool to describe the entanglement created with the mea-
surement outcome included in the analysis.

Having now introduced the parity measurement as a means to create
fully entangled Bell states and having further expanded the definition of
entanglement to incorporate the measurement results we now turn to an
experimental setup to actually perform a parity measurement on two qubits.

4.2 Electronic Mach-Zender interferometer

The physical implementation of a parity measurement has been achieved in
various architectures. In the framework of three-dimensional circuit quan-
tum electrodynamics a continuous parity measurement of two superconduct-
ing qubits has been accomplished by Riste et al. employing phase-sensitive
parametric amplification [14, 49, 50]. The advantage of this approach is the
relatively easy extension of the protocol to architectures involving macro-
scopic separation of the qubits [51]. On the other hand the possibility of
surface coding can be employed in the realization of parity measurements in
two dimensional planar circuit quantum electrodynamics [17].

But transport-based setups can also act as a parity meter. Already the
simultaneous measurement of two adjacent double quantum dot qubits by
a quantum point contact can distinguish Bell states of different parity and
thus serves as a proto-parity meter [12]. Operating, however, two quantum
point contacts to form a Mach-Zehnder interferometer [52, 53] allows for the
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|1i |2i |3i|4i

f

(b) I3

Figure 4.2.1: The Mach-Zehnder interferometer is established with two quan-
tum point contacts acting as beam splitters. The electrons are injected in
lead |1i and read out in lead |3i. The two charge qubits Q1 and Q2 are
controlled by a feedback loop that continuously adjusts their bias energies.
Figure from [22].

creation of a true parity meter [21, 54]. The excellent coherence proper-
ties [19, 55, 56, 57, 58] make the electronic Mach-Zehnder interferometer an
ideal candidate for a quantum detector [54, 59]. In the following we briefly
review this architecture qualitatively as it forms the basis of our further
analysis.

4.2.1 Physical model

This electronic equivalent of the well known optical Mach-Zehnder interfer-
ometer is formed by a two dimensional electron gas operated in the quantum
Hall regime. The quantized motion is effectively limited to one-dimensional
chiral edge states corresponding to the arms of the traditional interferome-
ter. Quantum point contacts are used to split the incoming particle beam
and recombine both paths on the other side.

The electrons traveling through the arm i = 1, 2 gain a phase �i due to
the different effects of the interferometer [21]

�1 = k (d � L) + ✓
up

+��1
1 � �̂1z

2

�2 = k (d � L) + ✓
down

+��2
1 + �̂2z

2

. (4.2.1)

Firstly the length of the arms d, assumed to be equal for both arms, leads to
a phase of kd and we subtract the part of the arm L where the electron is in
range of the interaction potential of the double dots as the phase acquired in
this section depends on the occupation of the double dots. These occupation-
dependent phases hence lead to the last terms in (4.2.1) where �̂iz is the Pauli
matrix of the double dot connected to arm i. The strength of the coupling
between arms and double dots is incorporated into the parameters��i. Note
therefore that these can be readily tuned by adjusting the individual coupling
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strengths. Finally the magnetic flux threading the sample induces another
phase difference ✓

up

� ✓
down

= 2⇡�/�0 with �0 = e/h the flux quantum.
Depending on the occupation of the double dots the phase difference ��

acquired between the two arms takes four different values corresponding to
the four computational states (4.1.1) of

��"" = 2⇡�/�0 ���2

��#" = 2⇡�/�0 +��1 ���2

��"# = 2⇡�/�0

��## = 2⇡�/�0 +��1. (4.2.2)

As the current I measured in output lead 3, as depicted in figure 4.2.1,
of the second quantum point contact is proportional to the transmission
probability [21] from lead 1 to lead 3

T31 = TLRR + TRRL + 2

p

TLRRTRRL cos�� (4.2.3)

the four different phase differences (4.2.2) lead to four different average cur-
rents as detector output. Remembering that a parity meter shall only distin-
guish between the parity subspaces and yield the same output for any linear
combination of states within one subspace we mark the first parity condition

��1 = ��2 = ��. (4.2.4)

As mentioned above this can be achieved by tuning the coupling strength
between interferometer arms and double dots. With this condition met the
current reduces to three possible values as depicted in the first panel of
figure 4.2.1.

While the odd subspace indeed is represented by only one detector out-
come the measurement result still distinguishes between different states in
the even subspace. Tuning the magnetic flux threading the sample, however,
so that the odd detector outcome coincides with the maximum (or minimum)
possible outcome

2⇡�/�0 = 0 mod 2⇡, (4.2.5)

as shown in the second panel of figure 4.2.1, the resulting current for both
even states now coincide. Thus a true parity meter with only the two possible
detector outcomes I

o

and I
e

, corresponding to the odd and even parity space,
emerges.

It is worth noting already at this stage that with this realization of a
parity meter there is an intrinsic difference between the measurement of
both parity subspaces. The first parity condition ensures that all electrons
acquired the same phase information in both arms for any state of the odd
subspace. As they carry no such information difference there is no principle
way of using them to distinguish between states of the odd subspace.
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I2

� � �� � � + ��

Ie

Io

Figure 4.2.2: Fulfilling the two parity conditions (4.2.4) and (4.2.5) leads
to only two values for the average current I (t) corresponding to the parity
subspaces even and odd. The first parity condition leads to three remaining
currents as shown in the left panel. Only if the flux � = 2⇡�/�0 is tuned
so that it coincides with an extremum, as demanded by the second parity
condition, two resulting possibilities for the current emerge and a parity
meter is established.

The measurement for the even states, however, is achieved slightly differ-
ently. Here we make use of the cyclic nature of the transmission probability
on the phase difference between both arms. Indeed for the two different even
states a different phase is acquired by electrons traveling along both arms.
Due to the fine-tuning of the interferometer’s parameters these phase differ-
ences, however, do not correspond to different detector currents. In simple
terms this means that the phase information is discarded.

To discard information that is in principle available leads to a decoher-
ence, as was presented in chapter 2, and we therefore expect a dephasing
of states within the even subspace. This dephasing was indeed confirmed
experimentally [14] and the following analysis is based mainly on the hope
to use a feedback mechanism to counter this dephasing. The mechanism to
do so is to use the knowledge of acquired phase difference within the even
subspace by explicit calculation.

We therefore proceed to develop a microscopic model to describe the
passing of individual electrons through the Mach-Zehnder interferometer.

4.3 Microscopic model

Part of the material presented in the following was already published by the
author under the title “On-demand maximally entangled states with a parity
meter and continuous feedback” [22].

In the previous section we introduced the Mach-Zehnder interferometer
as an implementation of a parity measurement of a two qubit system. In
this section we now combine the formalism of quantum measurement theory
presented in chapter 3 with the current physical setup. In particular we
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devise a microscopical model of single electrons passing through the arms of
the Mach-Zehnder interferometer and interacting with the double dot qubits
on the way. The collection of single electrons passing allows for a description
as a current so that we make the transition from a von Neumann type of
measurement protocol to the formalism of continuous measurements.

As presented above the electrons moving through the arms of the Mach-
Zehnder interferometer acquire a phase depending on the flux through the
interferometer. While this phase is static in the sense that it applies to
every electron regardless of the state of the qubits, there is another phase
contribution due to the capacitive coupling of the double dots to the Mach-
Zehnder interferometer arms. Each injected electron therefore acquires an
additional phase that depends on the charge configuration of the double dot
qubits |ss0i and the path the electron travels. We write

�'(ss0)
u , �'(ss0)

d (4.3.1)

for the phase acquired by an electron traveling through the upper (u) or
lower (d) arm, that we leave undefined for the moment. The precise ex-
pressions are calculated via the Hamiltonian that describes the interaction
between the charge of the double dot qubits (or the electron occupying the
double dot) and the charge of the Mach-Zehnder interferometer arm as pre-
sented in the previous section 4.2.1. The double qubit system |ss0i is spanned
by the single qubit computational basis states via s, s0 2 {", #}. While the
state of the passing electron is described by the exit node where it is de-
tected. In practice the detection is executed only at one output port as
particle conservation gives the corresponding number for the other.

4.3.1 Single electron passing

As mentioned, the passing electron acquires a phase depending on the state of
the double qubit so that it serves as a detection mechanism (or rather serves
as one component of the measurement process). The state of the detector is,
however, only characterized by the number of electrons detected. We now
proceed to show that this number of detected electrons indeed depends on
the additional phase acquired by the passing of electrons and thus indirectly
depends on the double qubit state. Before the measurement process the
detector |�

det

i and the double qubit system are just in a product state as
no interaction has been taken place:

| i =

⇣

↵("") |""i + ↵("#) |"#i + ↵(#") |#"i + ↵(##) |##i
⌘

⌦ | 
det

i . (4.3.2)

Each state being normalized we have
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With the first electron that passes through the Mach-Zehnder interferometer
and acquiring a state dependent phase the double qubit system and the
detector become entangled (alas only weakly) [4, 8, 21]. As presented above,
the detector has the physical form of an electron counter situated at the
output leads of the Mach-Zehnder interferometer. The state of an electron
passing through the interferometer and arriving at the detector is therefore
spanned by the two possible output states {|3i , |4i} . The entangled state of
electron at the output nodes and double qubit system then reads

| 1i =

X

ss0

↵(ss0) |ss0i
⇣

C(ss0)
3 |3i + C(ss0)

4 |4i
⌘

(4.3.4)

where the coefficients Ci are given by the system parameters and incorporate
the phases acquired by the electron [22]

C(ss0)
3 =

p

R
L

R
R

eı2⇡�/�0eı�'
(ss0)
u

+

p

T
L

T
R

eı�'
(ss0)
d (4.3.5)

C(ss0)
4 = ı

✓

p

R
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R

eı2⇡�/�0eı�'
(ss0)
u �

p

T
L

R
R

eı�'
(ss0)
d

◆

. (4.3.6)

Here first we notice the term that is due to the well known Aharonov-Bohm
flux 2⇡�/�0. This is induced by the vector potential that threads the sample.
The second terms are the above mentioned extra phases that depend on the
individual configuration of the double dot qubits. For ease of calculation we
assume symmetric qubits that on the one hand result in R

R

= R
L

=

1
2 and

on the other hand lead to a maximization of output signal strength as found
experimentally [19, 52, 55]. The coefficients therefore take the form

C(ss0)
3 =

1

2

✓

eı2⇡�/�0eı�'
(ss0)
u

+ eı�'
(ss0)
d

◆

(4.3.7)

C(ss0)
4 =

ı

2

✓

eı2⇡�/�0eı�'
(ss0)
u � eı�'

(ss0)
d

◆

. (4.3.8)

Before generalizing to the passing of n electrons and treating them as a cur-
rent we briefly discuss the parameter settings needed for the Mach-Zehnder
interferometer to serve as a true parity detector.

4.3.2 Parity meter conditions

As presented above, the Mach-Zehnder interferometer is set up to serve as
a parity detector. To this end the output has to have a distinct value for
the even and odd subspaces, while no distinction can be made within each
subspace. This is to demand that the probability to find the double qubits
in an even state P

e

or the odd state P
o

is the same for both even and odd
states

|h"# | 1i|2 = |h#" | 1i|2 = P
o

(4.3.9)

|h## | 1i|2 = |h"" | 1i|2 = P
e

, (4.3.10)
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where V is the bias voltage applied across the interferometer. These two
probabilities translate into different mean currents in the output

I
o

=

2e2V

h
P

o

, I
e

=

2e2V

h
P

e

. (4.3.11)

To satisfy these parity conditions (4.2.4) and (4.2.5) in the present setting
we have to tune the capacitive coupling between the interferometer arms and
the double dots to obtain

�'u = �'d ⌘ �', (4.3.12)

on the one hand, and to adjust the Aharonov-Bohm flux to yield [21]

2⇡
�

�0
= 0 mod⇡, (4.3.13)

on the other hand. While these two conditions allow for the interferometer to
act as a parity meter we need to make further assumptions or rather demands
as to the strength of the measurement. In particular the implementation of
a continuous feedback loop can only be achieved if the detector is run in the
weak measurement regime. The weak measurement strength ensures a weak
measurement back-action so that the information gathered in the meantime
can be used to adjust the feedback parameters without the system collapsing
too much.

As in the previously introduced weak continuous measurement we operate
the detector such that

�I = I
o

� I
e

⌧ I
o

, I
e

. (4.3.14)

In the same manner we assume weak coupling between qubits and interfer-
ometer, and therefore the detector, to assume a detector output noise that
is independent of the qubit states

S
II

=

So

II

+ Se

II

2

, (4.3.15)

whth the detector shot noise So/e
II

= 2e3V/hT o/e
31

⇣

1 � T o/e
31

⌘

that is associated
with the transmission probability of an electron that injected into lead one
and detected in lead three, when the double qubits are in an even or odd
state. Remember here again that the probabilities within one parity subspace
are equal as the parity condition demands. The detector shot noise directly
relates to the measurement rate [41] of the device

�

m

=

(�I)

2

4S
II

. (4.3.16)

Notice also that a quantum limited parity meter, i.e., an ideal detector, ac-
quires measurement information at the same rate as the system collapses. In
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the present case this amounts to a measurement rate equal to the dephasing
rate between both parity subspaces �

eo

= �

m

. To obtain an analytical ex-
pression for the dephasing rate between the parity subspaces we now extend
the passing of a single electron to the flux and detection of a large number.

4.3.3 Continuous electron detection

Previously we have deduced an expression for the entangled state of the
double qubit system and an electron that passed through the interferometer.
When a bias voltage V is applied across the interferometer a flux of electrons
is prompted through the interferometer. Monitoring this flux for a time ⌧
that is large compared to the passing time of a single electron

⌧ � h

eV
(4.3.17)

ensures that a large number N � 1 of independent electrons pass through
and are detected on the output where the detector is situated. As the elec-
trons are independent their order does not matter and only the total count
of detecting n of the injected N electrons define the final state | 

N

i via

| 
N

i =

N
X

n

X

(ss0)

✓

N
n

◆

↵(ss0)C(ss0)n
3 C(ss0)(N�n)

4 |n; N � ni |ss0i , (4.3.18)

where we introduced the notation |n; N � ni for the detection of n elec-
trons in lead |3i and conversely N � n in output lead |4i. Notice here that
the chirality of the edge states ensures that indeed every electron that is
injected into lead |1i exits through either |3i or |4i. Applying the central
limit theorem onto (4.3.18) for a large number N � 1 converts the binomial
distribution to a normal one so that for the detection of a current

I3 =

ne

⌧

in lead |3i we have to project the state (4.3.18) onto the state |n; N � ni
and obtain a final state
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(4.3.19)

where the width of the normal distribution D that is centered around the
average values for the even and odd currents is given by

D =

S
II

⌧
(4.3.20)
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and therefore connected to the detector shot noise. As expected the width
of the distributions shrinks with time as more information is gathered about
the systems state. When this width is small compared to the difference�I =

I
o

� I
e

, the measurement outcome can be attributed to one of the two parity
subspaces so that indeed the measurement works as a parity meter.

4.3.4 Dephasing mechanisms

Having derived the state of the double qubit based on a measured current
at lead |3i in equation (4.3.19) one feature of the result immediately raises
further need of investigation. The resulting state | 

out

i does depend on the
measured current in two ways. On the one hand the exponential factor shifts
the weight between even and odd states as is expected as the natural back-
action of a parity measurement. On the other hand there is a measurement
dependent phase difference build up in the even subspace. No equivalent
phase is present in the odd subspace, however. It becomes evident here that
the two parity subspaces have a fundamental difference that arises due to
the specific experimental realization of the Mach-Zehnder interferometer.

The measurement dependent phase difference within the even subspace
coincidentally is proportional to part of the Hamiltonian. Before we exploit
this fact via the introduction of a feedback mechanism we quickly derive the
dephasing rates. While a four dimensional system is naturally connected
with six dephasing rates in the present case of a parity meter these reduce
to three. These are the dephasing within each subspace and the dephasing
between the two subspaces.

The individual dephasing rates are readily obtained via the magnitude
of the corresponding density matrix elements after averaging over many re-
alizations.
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As expected there is no extra dephasing in the odd subspace. As the par-
ity meter is operated in such a way that a passing electron acquires the
same phase for both odd states |"#i and |#"i there are no fluctuating (mea-
surement dependent) contributions to the phase within that subspace. For
a mathematical parity meter the same argument could be applied to the
even subspace. As the measurement only distinguishes between the sub-
spaces no extra back-action should be present within any subspace. How-
ever, the particular architecture of the present problem does distinguish
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between the two even states |""i and |##i by introducing the extra phase
difference 2⇡ (I3 � I1) ⌧/e. An electron traveling through the interferometer
therefore gains information about the even subspace so that the flip side is
an additional dephasing.

Finally, we note that the dephasing rate between the two parity sub-
spaces is the rate by which a superposition of even and odd states is pushed
into an even or odd final state. In other words, this dephasing rate is the
rate at which coherence between both measurement outcomes is destroyed.
For an ideal detector this rate coincides with the rate of information gain,
the measurement rate. Here the intrinsic dephasing rate within the even
subspace is four times the decoherence rate. Any build-up of entanglement
through the parity measurement is circumvented in the even subspace. In
the following we therefore make use of the previously mentioned fact that
the intrinsic phase difference in the even subspace is proportional to part
of the double qubit Hamiltonian to devise an improved protocol, allowing
creation of entanglement also in the even subspace.

4.4 Markovian feedback

Having introduced the formalism of a parity meter realized by a fine tuned
Mach-Zehnder interferometer we noticed that extra dephasing is present in
the even subspace. This dephasing is due to a measurement dependent, and
therefore fluctuating, phase difference between the two even states. We now
show that these phases can be dealt with by continuously fine tuning the
Hamiltonian.

As both qubits are independent the Hamiltonian generating their free
evolution is just the sum of each individual Hamiltonian

H
qb

=

X

i=1,2

"i
2

�iz +�i�
i
x (4.4.1)

with the bias energies "i and the tunneling energies �i of the qubits i =

1, 2 and their Pauli matrices �x and �z. For simplicity we again assume
symmetric bias energies "i = " and no tunneling �i = 0 so that the parity
is conserved

h

H
qb

, ˆP
i

= 0 and indeed the measurement of parity marks a
quantum-non-demolition measurement.1

Comparing equation (4.3.19) and equation (4.1.8) we notice that the mea-
surement dependent back-action on the double qubit state is proportional to
the effect of a tunneling-free Hamiltonian. By adjusting the Hamiltonian’s
energy bias " we can therefore implement a direct feedback that counters the

1Notice that a small tunneling rate is worked against by the separating effect of the
parity measurement. The collapse due to the measurement leads to a freezing of the state
in a quantum Zeno type of effect. [41, 60]
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fluctuating part via

" (t + ⌧) = " (t) + f⇡ (I3 (t) � I1)
~
e
, (4.4.2)

with the feedback parameter f . At any time therefore the adjustment works
against the previously induced fluctuating part so that it is (partly) cancelled.
As this feedback procedure does not require knowledge about the state itself
but can be applied just based on the continuously measured detector outcome
it is a direct feedback. To emphasize the absence of any memory effect and
to contrast this type of feedback with the Bayesian feedback introduced in
chapter 3.4.2 we coin the name Markovian feedback.

The feedback strength can be adjusted via the feedback parameter f
that indeed represents the only free parameter of the feedback loop. This
assumes the simultaneous change of bias energy in both qubits. Although
in principle an individual feedback for each qubit could be implemented a
different bias energy "i in both qubits leads to an additional fluctuating part
in the odd subspace and thus to dephasing that would not be present without
the feedback loop.

As suggested by the adjustment equation (4.4.2) the optimal value for the
feedback parameter is f = 1 that leads to an exact cancellation of the mea-
surement induced fluctuations. Figure 4.4.1 shows the oscillating even and
stable odd Bell states without feedback and with optimal feedback strength.
Without feedback the even states decay quickly, as expected.

While the optimal feedback parameter strength is suggested by equa-
tion (4.4.2) and confirmed in the simulation in chapter 4.6 it can also be
calculated via an analytical model based on the Langevin type of dynamics
that the fluctuating phase exhibits. The phase difference that the double
qubit system acquires during the time ⌧ in the even subspace is given by

� (t + ⌧) � � (t) = �"⌧~ + (1 � f)

⌧2⇡

e
(I3 � I1)

= �"⌧~ + (1 � f)

⌧2⇡

e

p
D⇠ (t) , (4.4.3)

where in the last equation we introduced the fluctuating variable ⇠ (t) =

(I3 � I1) /
p

D that is governed by a white noise spectrum h⇠ (t) ⇠ (t0)i =

2� (t � t0) . The phase difference is thus brought into a Langevin type form
with a random variable ⇠ so that after taking the limit of ⌧ ! 0 we have

˙� (t) = � "

~ + (1 � f)

2⇡

e

p
D⇠ (t) . (4.4.4)

Starting from the Langevin form a Fokker-Planck equation for the un-
derlying probability distribution P (�, t) of the phase � can be readily de-
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Figure 4.4.1: The amplitudes of the four Bell states as defined in section 4.1.1.
For symmetric bias energies the even Bell states oscillate while the odd ones
stay stable. Enveloping the oscillations the intrinsic dephasing within the
even subspace leads to a decay of coherence if no feedback (f = 0, dashed
lines) is present. Including the Marcovian feedback at optimal strength (f =

1, solid lines) cancels the intrinsic dephasing so that stable oscillations are
achieved. Cf. [22]
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rived [61],

d

dt
P (�, t) = (1 � f)

2
✓

2⇡

e

◆2

D
d2

d�2
P (�, t)

=

(1 � f)

2
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eo

⌧
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ee

(f)

⌧

d2

d�2
P (�, t) . (4.4.5)

Here we have used the previously derived dephasing rate (4.3.22) and derived
the diffusion coefficient �

ee

(f) /⌧ for the phase difference within the even
subspace given a fluctuating detector outcome I3 that induces the Langevin
dynamics. As mentioned above the dephasing rate between even and odd
subspace is the same as the rate in which entanglement is created. We
therefore make the rate �

eo

the unit to measure �
ee

against so that for
optimal feedback we have to require that

�

ee

(f)

�

eo

= 4 (1 � f)

2 ! 0. (4.4.6)

As expected from the preceeding analysis a feedback parameter of f = 1 leads
to a vanishing dephasing rate in the even subspace while switching off the
feedback mechanism via f = 0 recovers the original dephasing rate (4.3.22) .
With the optimal feedback parameter identified a Markovian feedback loop
can be introduced in the Mach-Zehnder interferometer measurement based
on these calculations alone. In experimental situations it seems, however,
more practical to exploit the proportional feature of this direct feedback to
tune the feedback strength to give optimal results. This is particularly useful
as the dephasing rate approaches zero quadratically with f approaching one
so that an arbitrarily long coherence time can be reached for close to optimal
feedback parameter f .

With the introduction of the Markovian feedback loop we have now pre-
sented a scheme to implement a true parity meter with a Mach-Zehnder
interferometer where the mathematically induced additional measurement
back-action is taken care of. However, there are plenty of other sources of
dephasing mechanisms such as the initialization of the qubits, external influ-
ences and the fluctuations induced by constantly changing the bias energies
of the qubit in the feedback loop. In the following we therefore address these
additional sources of dephasing that may lead to a mixing of both parity sub-
spaces by the means of employing a second measurement that drives a second
feedback loop. As the dephasing is now not necessarily directly related to
the measurement outcome but there is a more complicated relationship we
turn to use Bayesian feedback as introduced in chapter 3.4.2 and expand this
notion to the measurement of parity.
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4.5 Bayesian feedback

In the previous analysis we have turned the Mach-Zehnder interferometer
into a true parity meter without architecture-dependent extra dephasing in
the even subspace. But there is an abundance of other sources of noise that
do not directly link to the specific nature of a Mach-Zehnder interferometer.
To stabilize a maximally entangled Bell state, or to at least stabilize a state
with a decent amount of entanglement, we have to find a way of dealing with
these sources of noise or the desired state will not exist for long.

As explained above the tunneling components of the Hamiltonian can be
ignored as a sufficiently strong parity measurement suppresses the mixing of
parity states due to the Hamiltonian in a quantum Zeno effect type of way.
The same can be said about noise in the parameter �. The effect of this
noise can be split into a fluctuating mixing of parity spaces, that again is
dealt with by a suitable measurement strength �

eo

� �/~, and fluctuations
within each parity subspace.

On the other hand the Markovian feedback introduced in the previous
section amounts to continuously changing the bias energies of the qubits so
that necessarily some noise is induced here as well. The noise due to this
initialization can be lumped together with the tunneling noise within the
parity subspaces to effectively give one noise source per qubit

H
qb

=

X

i=1,2

⇣"i
2

+ ⇠i (t)
⌘

�iz, (4.5.1)

where we assume non-symmetric bias energies as also the noise of each qubit
in this case is independent. Notice that the back-action we dealt with in
the previous section affected both qubits symmetrically due to the specific
tuning of the Mach-Zehnder interferometer as a parity meter.

We introduced the noise of the system in the form of a fluctuating pa-
rameter ⇠i (t) with i = 1, 2 that is drawn from a white noise distribution of
width D⇠ assumed to be equal for both qubits. Consequently the additional
noise sources lead to an additional dephasing within each subspace that is
characterized by the dephasing rate �⇠.

Now this dephasing obviously destroys any entanglement that is present
in the system and therefore counteracts the creation of Bell states under the
parity measurement. It is important to notice that this dephasing mechanism
does not just cancels the entangling effect of the parity measurement but
rather destroys the phase coherence of the qubits themselves so that Bell
states can no longer be created via parity measurement.

The fact that the noise indeed does not affect the parity as we still
have [H

qb

, P ] = 0 is already a hint that the parity measurement result is
not enough to create a feedback loop that cancels this type of dephasing.
We therefore have to turn away from the Markovian feedback used up to
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now and employ the technically more challenging but at the same time more
powerful Bayesian feedback as introduced in chapter 3.4.2.

As mentioned, the parity measurement does not infer any information
about the decoherence within each qubit. To employ a Bayesian feedback
loop we therefore introduce another measurement of the form

Px = �x ⌦ �x (4.5.2)

that gathers information about the fluctuating motion of each qubit. Indeed
this operator can be used to distinguish between the states within each parity
subspace while having the useful property of commuting with the parity
itself [P, Px] = 0 so that the newly introduced measurement does not interfere
with the parity measurement and the creation of entanglement.

This commutativity also makes possible an implementation of the second
measurement without the addition of another detector in the Mach-Zehnder
interferometer. One can pulse the parity measurement and rotate the qubits
about ⇡/2 between all pulses so that the parity current alternates between
measuring P andPx.

As the additional measurement does not mix the parity subspaces the
density matrix elements of the double qubit system connecting different par-
ity states decay on the scale of the measurement time 1/�

eo

so that the state
of the system is characterized by the two phases

�
e

= arctan

Re⇢"",##
Im⇢"",##

(4.5.3)

�
o

= arctan

Re⇢"#,#"
Im⇢"#,#"

, (4.5.4)

where ⇢ss0,ss0 is the double qubit density matrix spanned by the computa-
tional basis of the two qubits s, s0 =", #. This phase is the equivalent of
the feedback phase (3.4.6) derived in the above introduction to Bayesian
feedback 3.4.2. While in the formalism of chapter 3.4.2 one phase described
the state of the qubit here we have two phases describing the state of the
system. We proceed to show, however, that a joint feedback mechanism
can be devised that incorporates both these phases and therefore cancels
the dephasing in both subspaces simultaneously. One might object that for
any single measurement the parity detection leads to a decay of the density
matrix elements pertaining to the even or odd parity subspaces, depending
on the measurement outcome. Any single measurement is therefore char-
acterized by only one of these phases. Notice, however, that the dephasing
introduced by the additional noise of (4.5.1) leads to a decoherence of the
qubits even before the parity states are clearly separated. Any meaningful
feedback mechanism therefore has to be employed from the beginning of the
measurement and therefore need to include both phases.
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As presented above we continue to compare the phases (4.5.3, 4.5.4) with
the optimal values of a free evolution

��
e

(t) = ("1 (t) + "2 (t)) ⌧ � �
e

(t)

��
o

(t) = ("1 (t) � "2 (t)) ⌧ � �
o

(t) . (4.5.5)

Here we have to understand the bias energies "1 (t) and "2 (t) as having the
Markovian feedback (4.4.2) already included. Additionally to this Markovian
adjustment the bias energies then have to be tuned in the Bayesian fashion
to counter the discrepancy (4.5.5) via

"1 (t) ! "1 (t) + fx
�

e

(t) + �
o

(t)

2

(4.5.6)

"2 (t) ! "2 (t) + fx
�

e

(t) � �
o

(t)

2

. (4.5.7)

The Bayesian feedback mechanism can therefore be included with only one
feedback parameter fx. This greatly simplifies the implementation while it
still remains experimentally challenging.

With the inclusion of Bayesian feedback into the measurement any de-
sired maximally Bell state can by synthesized and stabilized. In the following
we simulate these procedures with the help of numerical implementation of
a von Neumann measurements.

4.6 Numerical simulations

In the previous section we introduced the Mach-Zehnder interferometer tuned
as a parity meter to produce maximally entangled Bell states from two pre-
viously unentangled qubits. The specifics of the measurement architecture
and the naturally occurring noise sources were shown to lead to a break down
of these functionalities and were countered by the inclusion of a direct feed-
back (section 4.4) to address the architecture specific intrinsic dephasing and
a Bayesian type of feedback (section 4.5) to address the general experimental
noise sources.

In the present section we now simulate the measurement and the pre-
sented feedback loops numerically. To implement these simulations we start
by incorporating the parity measurements. The inclusion of the feedback
mechanisms then is straightforward. We start by considering two consecu-
tive points in time (labeled i � 1 and i) separated by the time ⌧ that fulfills
the condition (4.3.17), so that in particular the measurement back-action
onto the state is described by equation (4.3.19), while still small compared
to the measurement time 1/�

eo

, so that quasi continuous feedback is pos-
sible. After the time ⌧ the system changes due to the free evolution of its
Hamiltonian and a measurement result Ii3 is read out from the detector. This
read-out of the detector is simulated by drawing a random value for Ii3 from
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the probability distribution of I3. The drawing of this value amounts to a
projection of the detector state so that the resulting state of the double qubit
system is now described by equation (4.3.19). Depending on the choice of
Hamiltonian, i.e., the choice of which noise source to include, at this point
the feedback loops can be included.

4.6.1 Markovian feedback

We begin by dealing with the unavoidable intrinsic dephasing. As after draw-
ing a random measurement outcome Ii3 the new system state is determined
the bias energies are now adjusted via the Markovian feedback so that

"i+1 = "i + f⇡
�

Ii3 � I1
� ~

e
, (4.6.1)

the discretized version of equation (4.4.2), becomes the bias energy for the
next circle. As in the present case the measurement operator ˆP commutes
with the Hamiltonian, the evolution and the measurement can be treated
consecutively. Notice, however, that in the case of a general Hamiltonian
(with tunneling within the qubits for instance) this assumption still holds
for ⌧ ! 0.

Figure 4.4.1 shows the amplitudes of all Bell states without feedback and
with optimal feedback strength. The odd states are stable as expected while
the even states decay over time if the dephasing is not prevented by the
Markovian feedback loop. While an optimal feedback strength cancels the
intrinsic dephasing exactly any inclusion of feedback delays the dephasing
as shown in figure 4.6.1. Operating the feedback loop close to the optimum
therefore guarantees arbitrarily long coherence. Figure 4.6.2 then shows that
for any finite dephasing

�

ee

(f)

�

eo

= 4 (1 � f)

2 (4.6.2)

the creation of entanglement peaks at a finite time and subsequently the
loss of coherence within the qubits prohibits any further entanglement. As-
suming now optimal feedback to cancel the intrinsic dephasing we next turn
to the additional dephasing mechanisms presented in section 4.5 and the
implementation of a corresponding feedback loop.

4.6.2 Bayesian feedback

As introduced in section 4.5 to work against the dephasing within each sub-
space due to fluctuating parts in the Hamiltonian we implement a Bayesian
feedback loop based on an additional measurement of the operator Px =

�x ⌦ �x. As this operator commutes with the parity operator we simulate
this measurement directly after the parity measurement. The measurement



4.6. NUMERICAL SIMULATIONS 71

0 5 10 15 20

Measurement time t/[1/�eo]

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

A
m

p
l
i
t
u
d
e

o
f
 

± e

f = 0.0

f = 0.5

f = 0.75

f = 1.0

Figure 4.6.1: The decaying amplitudes of the oscillating Bell states within the
even subspace (cf. section 4.1.1) are shown for different values of the feedback
parameter f . No feedback leads to a quick loss of coherence while the optimal
feedback of f = 1 stabilizes the oscillation given that no other source of
noise or decoherence is present. The different dephasing times translate into
different amounts of entanglement created as presented in figure 4.6.2. The
time is measured in units of the measurement time 1/�
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. Cf. [22]
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Figure 4.6.2: The amount of entanglement measured as the conditional con-
currence is plotted for the even (solid lines) and odd (dashed lines) subspace.
While creation of entanglement in the odd subspace is independent on the
inclusion of a feedback loop the even subspace fails to stabilize entanglement
without feedback. As the feedback parameter f approaches the optimal
value f = 1 the amount of created entanglement increases. However, only
the optimal feedback parameter stabilizes the entanglement indefinitely. The
time is measured in units of the measurement time 1/�
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. Cf. [22]
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is simulated again by a von Neumann type of measurement procedure with
a coupling parameter �x and a detector noise Dx. The measurement rate of
this second measurement therefore is given by �x = �2x/Dx [50].

The measurement procedure hence amounts to drawing a random vari-
able from the distribution pertaining to the parity measurement, updating
the state accordingly, then drawing another random variable pertaining to
the Px measurement and finally again updating the state.

After both measurements are performed, the phases (4.5.3, 4.5.4) are cal-
culated and the bias energies are adjusted to incorporate both Markovian
and Bayesian feedback via

"i+1
1 ! "i1 + f⇡

�

Ii3 � I1
� ~

e
+ fx

�i
e

+ �i
o

2

(4.6.3)

"i+1
2 ! "i2 + f⇡

�

Ii3 � I1
� ~

e
+ fx

�i
e

� �i
o

2

. (4.6.4)

This loop is continued until the parity measurement clearly distinguishes
both parity spaces. After postselection based on the parity measurement
result the system is averaged over many realizations. This postselection
allows one to track the average creation of entanglement in both subspaces.

As mentioned in section 4.5, the relevant dephasing is characterized by
the dephasing rate �⇠. While the qualitative features of Bayesian feedback
saturate with a feedback parameter fx ⇡ 1 the strength of the measure-
ment plays a significant role [46]. Figure 4.6.3 therefore shows the created
entanglement (given by the conditional concurrence) for different measure-
ment rates �x and for several noise strengths �⇠. While the absence of noise
in the Hamiltonian renders the second feedback loop obsolete for any finite
dephasing a finite amount of entanglement is still created and, importantly,
stabilized. Surprisingly even for significant dephasing of the order of the
parity measurement rate the implementation of a Bayesian feedback loop se-
cures an decent amount of entanglement. This partial entanglement can then
be used via the entanglement distillation protocol introduced in chapter 2.

Importantly, the implementation of both Markovian and Bayesian feed-
back loops allows for the on-demand creation of entangled states as for any
parity measurement outcome a stable state is produced. Figure 4.6.4 shows
that even and odd subspaces are indeed on equal footing as the amount of en-
tanglement created is the same for any strength of dephasing. This amounts
to a fidelity of theoretically 100% so that the effectivity of a parity meter to
create entanglement is greatly improved.
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Figure 4.6.3: Deterministic creation of stable entangled states in the presence
of external noise. The asymptotic conditional concurrence Ce is plotted for
various measurement strengths given by the measurement rate �x normal-
ized by the dephasing/measurement rate �

eo

. Different strength of external
noise �⇠ are shown, again normalized by the parity measurement rate. For no
external noise the Markovian feedback, that is included in all measurements,
is sufficient to create fully entangled Bell states and no Bayesian feedback
is necessary (blue line). For any finite environmental noise the Bayesian
feedback loop allows for the creation and stabilization of partially entangled
states. Cf. [22]
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a significant amount of entanglement can be
stabilized with the inclusion of the presented Bayesian feedback. Both parity
subspaces are on equal footing due to the prior inclusion of a Markovian
feedback. Cf. [22]





Chapter 5

Summary and conclusions

We have presented the implementation of a parity measurement between two
quantum bits to create entanglement. The specific architecture used was an
electronic Mach-Zehnder interferometer that is capacitively coupled to two
double quantum dots that form the qubits. It was previously shown that the
interferometer can be tuned in such a way that the flux of electrons through
its arms constitutes a parity measurement. With a properly chosen initial
product state the resulting parity eigenstates are fully entangled Bell states.
It was predicted theoretically and confirmed experimentally, however, that
this specific architecture of a parity meter induces intrinsic dephasing within
the even parity subspace. The creation of entanglement is therefore limited
to the odd parity subspace so that the fidelity can maximally reach 50%.

Here we have shown that the underlying dephasing mechanism is closely
connected to the parity measurement outcome so that a feedback loop can
be implemented that counters said dephasing. We proved analytically and
confirmed with subsequent numerical simulations that the incorporation of
this feedback loop indeed leads to the creation of full entangled Bell states
in both parity subspaces so that the theoretical fidelity is increased to 100%.
It is important to notice that only with the inclusion of the presented feed-
back mechanism the Mach-Zehnder interferometer can be indeed tuned to
represent a true parity meter.

While the intrinsic dephasing was shown to be a direct consequence of the
specific measurement architecture, additional noise sources are present in any
experimental setup. To stabilize the creation of entanglement also in such
general noisy environments we implemented a second feedback loop. This
feedback loop is based on the Bayesian update through information about
the system acquired by a second measurement. Simulations done including
both feedback mechanisms show that indeed entanglement can be created
and stabilized for any realization of the measurement setup.

As an appropriate measure for the amount of created entanglement, we
introduced the conditional entanglement concurrence that makes use of the
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parity measurement outcome. In a noisy environment the stabilized en-
tanglement is not maximal and decreases with increasing noise strength.
However, even a partially entangled pair of qubits is of great use from a
quantum informational point of view, as from an ensemble of partially en-
tangled qubit pairs a subset of fully entangled pairs can be distilled with well
known protocols.

We conclude therefore that we have presented a proof-of-concept for the
fundamental building block of a quantum computational system. While
experimental realization remains challenging, the introduced concepts can
be applied and expanded to different solid-state architectures.
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Ultrafast thermalization and
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Chapter 6

Introduction

Much like psychologists distressing their subjects to study the genuine re-
actions of human nature, physicists learn about the behavior of matter by
exciting it out of its equilibrium state. The subsequent return to a steady
configuration, the relaxation process, then shines light on the equilibrium
itself as well as the interactions governing its approach.

With the development of ultra-fast pulse lasers in the femto second regime
a whole new world of relaxation processes emerged to be explored. In par-
ticular electron-electron and electron-phonon scattering processes could be
studied in real time [62, 63, 64, 65] and the ultra-fast dynamics of magneti-
zation became experimentally accessible [66, 67, 68, 69]. The newly achieved
access to ultra-fast phenomena was of particular interest as the time-scale
for establishment of quasi-equilibria tends to be of the order of femto to pico
seconds. This allows for a deeper examination of non-equilibrium effects
and the connected establishment of equilibrium. Furthermore the scattering
time of a particle with impurities in a typical metal is of the order of several
ten femto seconds as well. A transport analysis of a propagating excita-
tion within the ultra-fast time scale therefore gives insights into the different
involved transport mechanisms.

In the present work we apply the Boltzmann formalism to study the
ultra-fast relaxation processes of a quasi-particle excitation due to impurity
scattering, electron-electron interactions and collisions with the surrounding
phonon bath. The Boltzmann approach is of particular use in this context
as it allows for rather simple separation of the different contributing effects.
For instance a dimensional approximation regarding the symmetry of the
sample can readily be included. In the present text we focus on thin strip
architectures that are translationally invariant in two directions, effectively
reducing the transport into one dimension.

An excited quasi-particle pair is created by lifting a quasi-particle from an
energy state below the Fermi energy to above and thus leaving a correspond-
ing hole below the surface. In the first approximation of Fermi liquid theory
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this excitation is treated as moving independently. However, the created ex-
citation then starts to scatter with impurities, such as lattice imperfections,
so that the initial directional momentum is smoothed out. The quasi-particle
changes its type of transport from initially unperturbed ballistic motion to
diffusive expansion.

We show that the impurity scattering is the main driving force of this
transition and defines its timescale. While the analysis of anomalous dif-
fusion does of course include super-diffusive (and sub-diffusive) behavior,
the diffusion exponent is typically assumed to be constant [70]. Here we
present a simple model to describe the dynamic change of the diffusion ex-
ponent from ballistic to linear diffusive behavior. Importantly the derived
ballistic-diffusive equation allows for an analytical solution of the transition
previously only described by ab-initio calculations [69].

As the elastic collisions mediate the transition between ballistic and diffu-
sive transport, but do not affect the distributions energy space, we continue
to include electron-electron scattering in the Boltzmann formalism. An ex-
citation scatters with an electron below the Fermi sea and transfers energy
due to the electron-electron collisions. The gain of energy by the collision
partner lifts the particle above the Fermi level as well, creating a second exci-
tation. The subsequent cascade of excited particles losing energy by exciting
further particles from the Fermi sea leads to the asymptotic establishment
of a new thermal distribution. Being interested in this equilibration within
energy space we derive a coupled differential equation for the energy distri-
bution that describes the thermalization of a non-equilibrium distribution.
Discretizing energy space we reduce the equation to an eigenvalue problem
that can be solved in a quasi-analytical manner.

For the analysis of equilibration of electron and phonon baths the two
temperature model showed to be of great use [64, 65]. It has been applied,
among others, to noble metals [71, 72, 73, 74], heavy fermion compounds [75]
and magnetic thin films [66].

In its wake, Kaganov et al. calculated the energy exchange between
electron and phonon systems, each at their respective temperatures, and
Anisimov et al. used these findings to develop the two temperature model
itself [76, 77]. The free electron model assumption of Kaganov et al. was
relaxed by the treatment of Allen [78].

However, this take on the two temperature model presupposes both baths
to be in quasi-equilibrium. This assumption is weary at best, as electron-
electron relaxation rates are of similar order of magnitude as the equilibration
time between electron and phonon baths [73, 79, 80].

Several extensions and refinements have thus been suggested. On one
hand, the two temperature model can be extended by including a non-
thermal electron distribution [81] within a relaxation time approximation [71,
82]. The implicit assumption is for the main part of the electron distribution
to stay in quasi-equilibrium while the modulating non-thermal behavior is
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limited to a fraction of the full distribution. On the other hand, a full so-
lution of the coupled system using the Boltzmann formalism can be used to
incorporate electron-electron scattering at the same time as electron-lattice
relaxation processes [83]. While this requires less rigorous approximations,
the phenomenological simplicity of the two temperature model is lost.

Here we extend the two temperature model by making use of the solu-
tion obtained from analyzing the equilibration of the electron system. We
fit the distribution during thermalization and include the dynamics of the
equilibration into the derivation of the two temperature model. Assuming
that the interaction between electrons and phonons does not change the dy-
namics of the thermalization, but only acts as an effective energy drain from
the higher electronic temperature to the lower phonon temperature, the ex-
tended two temperature model reflects the thermalization effects in a delayed
interaction between electron and phonon bath. This delay recovers prior re-
sults obtained by a solution of the full Boltzmann problem [83] while still
retaining the phenomenological simplicity of the two temperature model.

As the weapon of choice in the following chapters is the Boltzmann equa-
tion, we start by introducing the formalism in Chapter 7. Examples of single
and two particle collisions and the corresponding collision integrals are pre-
sented with a focus on generality. Equipped with the necessary background
we continue to include the scattering off impurities in Chapter 8 to derive a
ballistic-diffusive equation. The formalism is then extended in the following
Chapter 9 by adding electron-electron interactions. The resulting energy-
space equation describes the dynamics of thermalization. Introducing the
two temperature model in the last Chapter 10 we are provided with an ap-
proachable way to illustrate electron-phonon equilibration. Subsequently, we
use the previously derived dynamics of thermalization to extend this model
to include initial non-equilibrium evolution as well.





Chapter 7

Boltzmann equation

Before we start with the on hands calculation of any given problem the
necessary tools have to be supplied. In the present part of this work we labor
with the Boltzmann formalism. It is now therefore the time to introduce
at least those parts that turn later out to be useful for our analysis. As
there are countless introductions to the Boltzmann equation we also limit
ourselves to these necessary technical details and refer the reader to the
standard literature [84, 85, 86, 87, 88]. For the familiar reader the present
chapter will probably have hidden nothing too exciting.

7.1 Classical part

Fundamentally the Boltzmann equation has two sides, the classical and the
quantum, that can be discussed quite separately. The classical part of the
Boltzmann equation can be considered to be sort of a continuity equa-
tion [89]. The space it adheres to is the single particle phase space and
the solution it considers is the phase space density f (r,p). In the following
we show the derivation of the Boltzmann equation from this generalized con-
tinuity equation. We denote the six dimensional phase space vector (r,p)

as xµ, so that the phase space density is f (xµ) and the flux in phase space
ẋµf (xµ). In integral form the continuity equation states that, for any vol-
ume of phase space V , the change of particles within this volume is due to
a flux through its surface are. Or formally

@

@t

Z

V
dxµ f (xµ) = �

Z

@V
dxµ (ẋµf (xµ)) · n̂, (7.1.1)

where n̂ denotes the unit vector normal to the surface @V , pointing outwards
(hence the minus sign in front). Applying the Gaussian divergence theorem
to the right hand side we have the continuity equation in integral form

@

@t

Z

V
dxµ f (xµ) = � @

@xµ

Z

V
dxµ (ẋµf (xµ)) . (7.1.2)
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As this equation must hold for any volume V . This restriction, or rather
universality leads to the differential form

@

@t
f (xµ) +

@

@xµ
(ẋµf (xµ)) = 0. (7.1.3)

Now the second term is a divergence in the six dimension of phase space and
with the usual rules of differentiation r · (cb) = (r · b) c+(rc)b we rewrite

@

@t
f + ẋµ

@

@xµ
f +

✓

@

@xµ
ẋµ

◆

f = 0. (7.1.4)

Remembering the definition of xµ and applying now our knowledge of clas-
sical Hamilton mechanics1 we see that the last term of equation (7.1.4) van-
ishes. In particular we have

@

@xµ
ẋµ =

✓
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@r
,
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◆

· (

˙r, ˙p) =

@

@r
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@p
+

@

@p

✓

�@H

@r

◆

= 0. (7.1.5)

Keeping now the separation of space and momentum variables we arrive at
what can be called the classical part of the Boltzmann equation

@

@t
f (r,p) +

˙r · @
@r

f (r,p) +

˙p · @

@p
f (r,p) = 0. (7.1.6)

The connection to Hamilton mechanics already points to the role of p as
being the canonical momentum conjugate to r. In the common case of ex-
ternal forces independent of the velocity ˙r the canonical momentum is the
same as the kinetic one and we can identify ˙p = F. But in the case of
velocity dependent forces, as in the presence of a magnetic field, canonical
momentum differs from kinetic momentum. It turns out, however, that in
this particular case the phase space volume dpdr is the same for canonical
and kinetic momentum. As the particle number has to be equal as well,
we may identify phase space density of canonical and kinetic momentum
and thus arrive at the same equation as (7.1.6) for the kinetic momentum.
Including thus the important special case of magnetic field we write as the
commonly used classical part of the Boltzmann equation

@

@t
f (r,p) +

˙r · @
@r

f (r,p) + F · @

@p
f (r,p) = 0. (7.1.7)

This classical part, as is presented below, is also the left hand side of the full
Boltzmann equation that includes instantaneous changes of the phase space
density due to what is summarized in the physically appealing concept of
collisions. Before we introduce the collision mechanisms in detail we quickly
shed light on a fundamental approximation of the distribution itself, the so
called two term approximation.

1ṙ = @H
@p and ṗ = � @H

@r with the Hamilton function H (r,p) .
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7.2 Two term approximation

With classical and collision parts included, the Boltzmann equation is no-
toriously difficult to solve as it is an integro-differential equation of seven
dimensions, three of each space and momentum and one of time. This has
lead to extensive advance in approximative treatments as it was discovered
that many significant results can be obtained by these simpler approaches.
Here we make two essential assumptions about the system at hand. First
the spacial dependency is reduced to effectively one dimension, in particular
the z-direction, by treating the other two as translationally invariant. This
is the typical approximation of a thin film geometry. The translational sym-
metry of space then directly hints at the second approximation concerning
the momentum space. With respect to this we expand the distribution func-
tion in spherical harmonics while only keeping the two lowest terms in the
expansion, naming them the isotropic and the anisotropic part respectively.
Treating the approach of an excited system towards equilibrium we separate
the equilibrium distribution function such that

f(k, r, t) ⇡ f eq

(k, z, t) + �f0
(k, z, t) + cos ✓ �f1

(k, z, t), (7.2.1)

where ✓ denotes the angle between velocity and z-axis, and the translational
invariance has been included. The above approximation is commonly known
as the two term approximation, although often the isotropic part is equated
with the equilibrium distribution. In the present text we are concerned with
systems that are not subject to any external field so that F = 0. Plug-
ging in this and the two term approximation into the classical Boltzmann
equation (7.1.7) we have

@

@t
�f0
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@
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(k, r, t)

+v cos ✓
@

@z
�f0

(k, r, t) + v cos

2 ✓
@

@z
�f1

(k, r, t), = 0 (7.2.2)

for the left hand side as the Boltzmann equation vanishes for the equilibrium
distribution. As hinted the right hand side contains the so called collision
terms that lead to a instantaneous and non-continuous change of phase space
density. In the following we introduce the main processes we are concerned
with in the present text.

7.3 Collision part

Up to now we considered a classical single particle system with the help
of its phase space density. The governing physics of this system was re-
stricted by the continuity of phase space volume. While this description is
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rather cumbersome for purely classical systems it has the advantage that
we may now easily introduce enhancements, using a common language, that
are connected to very different physical processes. Mathematically these en-
hancements amount to an instantaneous change of phase space density that
is not due to external forces. We are therefore adding sources (and sinks) to
the phase space.

This rather abstract concept has a very accessible physical interpretation,
that is collisions. Thinking of these instantaneous changes of phase space
density in the concept of collisions already points to the first restriction in
these changes. To conform with common conception of a collision we demand
that these changes happen at a defined point in physical space, i.e. at a
fixed r, the very nature of a collision is two distinct object finding each other
occupying the same location in space. This restriction, that all instantaneous
cause and effect shall be placed at the same location, is commonly referred
to as the locality principle of nature and we shall make no exception to this
fundamental law of nature in this work.

Other common concepts as number, momentum and energy conservation
all can be readily applied to the language of collisions. And with a little
flexibility in the interpretation on what processes can be considered colli-
sions also the interaction between different types of (quasi)-particles can be
included.

We write these changes due to sources and sinks in phase space on the
right hand side of the Boltzmann equation that has previously conveniently
been left empty. As the exact nature of these processes still has to be clarified
a place holder will do for now. The Boltzmann equation in its most general
form than reads
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f (r,p) +

˙r · @
@r

f (r,p) + F · @

@p
f (r,p) =

✓

@f

@t

◆

coll

, (7.3.1)

and the approximations of the previous section can be applied. As the notion
of collisions is introduced to be applied to several different types of quasi-
particle interactions it is of some use to see how these can be classified.

7.3.1 Single particle collisions

Let us first consider a process that involves moving phase space density from
one point (r,p) to another (r,p0

). This surly changes the density at both
points. If this change is the only change due to the considered process and
only depends on the coordinates p and p0, we speak of a single particle
collision. The physical concepts that lead to single particle collisions are for
instance scattering off impurities or particles of a different phase space.

Before diving into the details of actual single particle processes that we
intend to consider later on, let us make some general remarks. Most im-
portantly, any processes involving collisions shall be regarded only in the



7.3. COLLISION PART 89

stochastical mean. This allows us to speak meaningfully of a rate of change
of the density f (p).2 The rate of change is then proportional to the target
volume element dp0 as well as the density at the original point f (p) dp.
Again we may drop the real space part dr as it is kept constant. As we con-
sider single particle collisions here the proportionality factor only depends
on p and p0 so that the rate of change for a particle being scattered from p
to p0 is

� w
�

p0,p
�

f (p)

dp

(2⇡~)3
dp0

(2⇡~)3
, (7.3.2)

where we introduced the common phase space volume factor (2⇡~)3 to keep
f dimensionless. The minus sign emphasizes that the density at point p is
reduced. Turning the reasoning above around, the equivalent rate of change
for a particle being scattered from a point p0 to the element around p is
readily obtained as

w
�

p,p0� f
�

p0� dp

(2⇡~)3
dp0

(2⇡~)3
. (7.3.3)

So that the total change of particles in the phase space volume dp
(2⇡~)3 is given

by

� dp

(2⇡~)3
Z

dp0

(2⇡~)3
⇥

w
�

p0,p
�

f (p) � w
�

p,p0� f
�

p0�⇤ (7.3.4)

and the change of phase space density, what we earlier kept as a place holder,
can finally be written as
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f (p) � w
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p,p0� f
�

p0�⇤ . (7.3.5)

The integral involved justifies the common denomination of the above: col-
lision integral. In the present work single particle collisions manifest in two
events. The scattering of electrons off impurities inside the crystal, e.g., lat-
tice imperfections, and the emission or absorption of a phonon by an electron.
We introduce both cases in the following.

7.3.1.1 Impurity scattering

The first and simplest scattering process we consider is the collision of elec-
trons with impurities of the surrounding crystal. Now in the section above
we considered a general phase space of quasi-particles. To specify the na-
ture of these quasi-particles to be electrons (in a periodic crystal potential)
demands some changes to the general single particle collision integral (7.3.5)

that we derived above. On the one hand electrons have a spin that should
2As the principle of locality restricts all physics that is involved in a collision to occur

at the same space point, we drop the real space dependence for now.
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be reflected in the distribution function. As we, however, only treat interac-
tions that do not involve change of spin state in this work, we disregard the
spin altogether. This amounts to treating each spin direction to belong to a
different pseudo band with no interaction between bands.

The other particularity of electrons that comes to mind and shall be
included in our treatment right away is the fact that electrons are Fermions.
The Pauli exclusion principle prohibits two electrons to occupy the same
state and as we disregarded spin this amounts to occupying the same position
in phase space. In the derivation of single particle collisions above we asserted
that the rate of change from a phase space point p should be proportional
to the density at said point. While this is still valid, the exclusion principle
introduces a further restriction with regard to the final state. In particular
it shall not be occupied. To cut a long story short: An electron can only be
scattered from a state that is occupied and only scattered into a state that
is unoccupied.

The rate of change thus has to be augmented with a factor (1 � f (p0
))

so that the collision integral takes the form
✓
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. (7.3.6)

For elastic scattering this can be further simplified when taking advantage
of the then symmetric collision probability w (p0,p) = w (p,p0

) so that we
have the compact form
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We now assume that the scattering conserves energy and the energy disper-
sion is isotropic in momentum. It immediately follows that the magnitude
of momentum is conserved in the process

p = p0 (7.3.8)

and expanding the distribution function in moments as in the two term
approximation

f (p) ⇡ f0
(p) + cos ✓pf

1
(p) , (7.3.9)

gives the form
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, (7.3.10)
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that is frequently employed in literature under the name relaxation time
approximation. The corresponding relaxation time being

1

⌧
=
Z

dp0

(2⇡~)3
w
�

p0,p
� ⇥

1 � cos ✓p0
⇤

. (7.3.11)

However, the approach is usually taken from the opposite side by assuming
that scattering drives the system that is not far from equilibrium back to its
equilibrium state. Hence the collision integral is written as
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coll

= �f � f eq

⌧
(7.3.12)

that reduces to equation (7.3.10) if we identify the zero moment f0 with the
equilibrium distribution f eq. The above procedure of expanding the distri-
bution function around the equilibrium is called linearization and is almost
universally applied in treating collision integrals. The naming becomes more
striking and the following examples when the assumption that the deviation
from equilibrium, and hence also the magnitude of f1, is small allows for
disregarding any terms of higher order in f1.

Above we treated a process that changes the electronic distribution func-
tion due to external influences such as defects in the lattice. Next we bring
the lattice itself to life by letting it create its own excitations or quasi-
particles, the phonons.

7.3.1.2 Phonon scattering

A locally dislocated lattice ion can be treated in the above formalism of an
impurity that leads to a scattering of conduction electrons. This implicitly
assumes that the ion is shifted from its “normal” position but fixed in time.
The lattice ions of a crystal at finite temperature, however, also have de-
grees of freedom regarding their dynamic shifting around their equilibrium
position: the lattice vibrates. Indeed this is the main reason we may speak
of the crystal to be at a certain temperature. This deviation of lattice ions
from their crystal structure again leads to scattering of electrons. Before we
can treat these scattering processes, however, we first start to introduce the
formalism of lattice vibrations themselves.

Phononic vibrations We introduce a set of suitable coordinates for the
description of the lattice vibrations, where we restrict ourselves to crystals
with one atomic basis. This part follows rather closely [90]. The results can
then be easily generalized to crystals with multi-atomic base. But as the
derivational difference is a mere notational one we stick to one atom here.

The position of each lattice site can be written as

Rl = Xl + ul, (7.3.13)
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where Xl denotes the equilibrium position of the lattice site and ul the dis-
placement. For the ease of notation we refrain from emphasizing the vector
nature of these terms by printing them in bold. The total potential energy
of the distorted lattice can thus be expanded and the lattice Hamiltonian
reads

H =

X

l

p2i
2m

+
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2

X

i,j

ui · @2V
@ui@uj

· uj =
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2m
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1

2

X

i,j

ui · Gij · uj , (7.3.14)

where we omitted the constant equilibrium energy and pi = mu̇i . We
continue to define the operators3 as
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Plugging these new operators in the Hamiltonian 7.3.14 we get
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where we have used the familiar relation
1
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X

l

eı(q�q0)Xl
= �qq0 . (7.3.17)

We now observe that the operator Gll0 = G(Xl � Xl0) is translationally in-
variant in the sense that it only depends on the distance between two lattice
sites. This means that we may write the Hamiltonian in the form
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X

q
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where

p⇤q = p�q; u⇤
q = u�q; E(q) =

X

l

e�iq·XlG(Xl). (7.3.19)

3Notice that these operators are only defined up to a reciprocal lattice vector G as
eıG·Xl = 1.
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Notice here that we sum over the lattice site numbers l and therefore interpret
a shift in these numbers l0 ! l + l0 with a corresponding shift of site vectors
Xl0 ! Xl + Xl0 .

With the ansatz u↵q = m� 1
2
exp(ı!qt)e↵q and the Hamiltonian equations

we have
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and see that this ansatz indeed is a valid solution, if we choose the !2
q in a

way to make vanish the determinant det(

1
mE↵�

q �!2
q�↵�). In other words we

solve the eigenvalue problem 1
mE↵�

q e�q = !2
qe
↵
q . As E is real and symmetric,4

it can be diagonalized, each separate eigenvalue !2
q,� being non-degenerate

and thus having a different eigenvector given by its components e↵q,�. These
eigenvectors form an orthonormal system such that

e⇤q,� · eq,�0 = ��,�0 . (7.3.20)

These vectors form a basis and are called normal coordinates. Using this
basis to express the displacement and momentum vectors via
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diagonalizes also E and we can rewrite the Hamiltonian (7.3.18) in these
new coordinates as
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We continue in the line of second quantization by interpreting p and u as
quantum mechanical operators from now on and consequently introducing

4As can be seen by the following transformation
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the ladder operators know from the harmonic oscillator
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so that the momentum and displacement in normal coordinates may be ex-
pressed as
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The Hamiltonian then finally receives the familiar form
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In real space this consequently translates to
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Adiabatic principle The translationally invariant potential that is due
to a static lattice of ions does not lead to scattering of electrons. This is
the central result of Blochs Theorem. If locally the ions move away from
their equilibrium position this translational symmetry is broken locally and
electrons can scatter by the produced effective local electrostatic potential.

However, a single electron is not just influenced by this change due to the
new ionic potential but also by the behavior of the other electrons that form
a plasma that reacts to the ionic motion. This direct effect is particularly
strong for quickly oscillating ions, when the phonon wavelength is of the
order of screening length of the plasma.

The adiabatic Born-Oppenheimer approximation is employed to separate
the time-scales of electronic and ionic movement. The whole problem has a
Hamiltonian of
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where X represents the position of all ions X = X 1, . . . , XN . Here V is the
potential energy stored in the construction and deformation of the lattice,
excluding the energy resulting from the subsequent distortion of the elec-
tronic system, as this is already included in the electronic part U . The
Born-Oppenheimer approximation now takes the electronic part to be solv-
able separately to give (i.e., we solve the eigenvalue equation and find a
configuration of electronic states such that)

X

i

p2i
2m

+

X

i

U(ri; X ) +

X

i<j

e2

|ri � rj | ⌘ EX . (7.3.30)

Substituting this back in the full problem we may solve for the lattice system
separately. This assumes that the lattice vibration are largely independent
on the exact electronic configuration. This can be justified by noting that

• The majority of the electrons are occupying the same states in every
possible configuration, due to Fermi statistics, and only a small fraction
of thermally excited electrons are “free” to change their states.

• It is not the absolute value of EX that enters in the solution for the lat-
tice vibrations but rather the second derivative with respect to lattice
distortions, the effect thus should be small indeed.

The approximation above gives a satisfactory account for the energy of the
system. For any dynamics, however, the terms that change lattice and elec-
tronic structure at the same time become significant. While still maintaining
the adiabatic approximation picture these terms can be tought of as the two
separate systems interaction with each other. We will follow this line of
thought while remarking that:

• The interaction effect should be small in size compared to the static
physics of the problem, so the separation into sub-systems is still valid.
This on the same time permits for the inclusion of these interaction
terms in a perturbative manner.

• The collective effect of the plasma is a renormalization of the inter-
action between individual electrons and lattice as well as a change of
lattice frequency. This plasma effect can thus be disregarded at first
analysis.

Electon-phonon interaction Above we introduced the adiabatic approx-
imation to separate the time-scales of electron and lattice movements. By
constructing the full Hamiltonian (7.3.29) we defined V(X ) to be the poten-
tial energy of the lattice and its vibrations while separating its effect on the
electrons. This is included into U(ri; X ) and is precisely the electron-phonon
interaction that we turn to now. Separating time-scales allows us to solve
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the electronic Hamiltonian (7.3.30) for a fixed lattice configuration.5 Bloch’s
theorem greatly simplifies the treatment of electrons in a periodic potential.
While the lattice exhibits this periodicity in equilibrium, the distortion due
to phonons prohibits the employment of the theorem for T > 0. However,
if we assume the contribution to the potential energy due to the lattice dis-
tortions to be small compared to the equilibrium term, we may reasonably
expect to be able to treat these in the framework of perturbation theory.
For this to apply we first have to separate the full potential energy into an
equilibrium part and a perturbation part such as6

U(ri; R) = U0(ri; X ) + �U(ri; u) =

X

l

[U0(ri � Xl) + �U(ri � Xl � ul)] ,

(7.3.31)
where u is the collection of lattice displacements ul. Realizing that the
perturbative nature of �U is based on the assumption that every single dis-
placement ul is small we may expand

�U(ri; u) =

X

l

�U(ri � Xl � ul) ⇡
X

l

ul · @U0(ri � Xl � ul)

@ul

�

�

�

�

ul=0

. (7.3.32)

Notice that the total potential energy that the electronic system gains from
the displacement of the lattice can be split into the contribution due to
each lattice ion at position Xl + ul onto each electron at ri, we may thus
continue in a one electron picture and drop the electron index i from now on
until needed again. This Hamiltonian is still written in real space while the
perturbation theory is most conveniently written in second quantized form.
As the interaction between an electron and a phonon is a one particle process
in the electronic system we write

h
el-ph

=

Z

d3r †
(r)�U(r; u) (r) =

1

V

X

k,k0

c†k+k0�Uk0ck (7.3.33)

with  (r) being the electronic field operators, ck the creation operator in
momentum space and �Uk =

R

d3re�ık·r�U(r; u). Inserting equation (7.3.32)

5Configuration here means the position and movement of the ions. However, as the
lattice is seen as frozen from the point of view of the electrons, every phonon just con-
tributes its distortion to the interaction, while its dynamic part is omitted here. Hence
we continue to write U(ri; R) without any reference to Ṙ.

6This is also called the rigid ion approximation.
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and equation (7.3.33) yields

h
el-ph

=

1

V

X

k,k0

c†k+k0ck

Z

d3re�ık0·rX

l

ul · @U0(r � Xl)

@ul
(7.3.34)

= � 1

V

X

k,k0

c†k+k0ck
X

l

ul ·
Z

d3re�ık0·r @U0(r � Xl)

@r
(7.3.35)

= � 1

V

X

k,k0

c†k+k0ck
X

l

X

q,�

s

~
2!q,�mNV

eıq·Xl

⇣

aq,�+a†�q,�

⌘

⇥ eq,� ·
Z

d3re�ık0·r @U0(r � Xl)

@r
(7.3.36)

= � 1

V

X

k,k0

c†k+k0ck
1p
V

X

q,�

⇣

aq,�+a†�q,�

⌘

s

~
2!q,�mN

X

l

eıq·Xl

⇥ eq,� ·
Z

d3re�ık0·r @U0(r � Xl)

@r
(7.3.37)

=

1

V

X

k,k0

1p
V

X

q,�

V el-ph

�

k, k0, q,�
�

c†k+k0ck
⇣

aq,�+a†�q,�

⌘

(7.3.38)

Where here the second quantized matrix element of the electron-phonon
interaction is given by

V el-ph

�

k, k0, q,�
�

= �
s

~
2!q,�mN

eq,� ·
X

l

eıq·Xl

Z

d3re�ık0·r @U0(r � Xl)

@r

= �
s

~N
2!q,�m

Z

d3re�ık0·req,� · @U0(r)

@r
| {z }

U

= �
s

~N
2!q,�m

U. (7.3.39)

In the last transformation we approximated the integral over the lattice
deviations to be constant.

The electronic collision integral again involves the transition rates be-
tween different electronic states. As now the creation or annihilation of a
phonon is part of the process, the transition can happen in two ways, by
absorbing or emitting said phonon:

wabs

(p + ~q,p)=
2⇡

~
�

�V el-ph

�

�

2
� (Ep+~q � Ep � ~!q�)

=Wp+~q,pnq,�� (Ep+~q � Ep � ~!q�)

wem

(p + ~q,p)=Wp+~q,p (nq,� + 1) � (Ep+~q � Ep + ~!q�) (7.3.40)
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with the transition amplitude Wp+~q,p,� =

⇡NU2

!q,�m
, and the phonon oc-

cupation function nq,�. The total transition rate is then the sum of both
possible processes w = wabs

+ wem and plugging this into (7.3.6) gives the
electron-phonon collision integral

✓

@f

@t

◆

el-ph

coll

= �
Z

dq

(2⇡~)3
X

�

(

Wp+~q,p,�
h

nq,�f (p) (1 � f (p+~q))

� (nq,� + 1) f (p+~q) (1 � f (p))

i

+ Wp,p�~q,�
h

(nq,� + 1) f (p) (1 � f (p�~q))

� nq,�f (p�~q) (1 � f (p))

i

)

. (7.3.41)

This now is the collision integral for the change of electronic states due to
the emission or the absorption of a phonon. Consequently the same process
can be view from the point of the phonon bath where we analogously have
a similar collision integral of the form

✓

@n

@t

◆

ph-el

coll

= �
Z

dp

(2⇡~)3
Wp+~q,p,�

h

nq,�f (p) (1 � f (p+~q))

� (nq,� + 1) f (p+~q) (1 � f (p))

i

. (7.3.42)

This concludes the two examples of single particle collisions and we turn to
the next level of interactions where the state of not just one but the state of
two particles7 is changed.

7.3.2 Two particle collisions

Above we considered scattering events that only depend on two points in
phase space. Accordingly we spoke of single particle collisions. The naming
already hints to the existence of scattering processes that involve more than
one particle. Incidentally the only process of higher order that commonly
treated is the next order, meaning a collision of two particles. Again we
stick to the principle of locality that restricts everything to a single point
in real space so that we again restrict the nomenclature to momenta. In
complete analogy to the preceding section we deduce the rate of change of
the phase space density at some point p. Now besides p0 two other phase
space points p1 and p0

1 are involved so that the rate of change becomes

w
�

p0,p0
1;p,p1

�

f (p) f (p1)
dp1

(2⇡~)3
dp0

1

(2⇡~)3
dp0

(2⇡~)3
, (7.3.43)

7As above the counting is meant to be within the bath of a single type of particles. In
this sense the electron-phonon scattering is a single particle process as only one electron
(and conversely one phonon) is involved.
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where now also the density at the second initial point p1 enters. The full
collision integral includes the processes where one of the final states involves
the phase space point p so that we arrive at

✓

@f

@t

◆

coll

= �
Z

dp1

(2⇡~)3
dp0

1

(2⇡~)3
dp0

(2⇡~)3
h

w
�

p0,p0
1;p,p1

�

f (p) f (p1) .

� w
�

p,p1;p
0,p0

1

�

f
�

p0� f
�

p0
1

�

i

(7.3.44)

The typical physical processes of these form are collisions of two (quasi)-
particles of the same type. In the present work this involves electron-electron
scattering and thus we turn a closer look on these collisions in the following.

7.3.2.1 Electron-electron scattering

As the quasi-particle of interest in the present text is the electron, we present
now the fundamental two particle interactions of electrons, the electron-
electron scattering. While the Coulomb interaction is the source of all ele-
mentary interactions in a solid state system, in the case of electron-electron
collision it is also the direct mediator. In the formalism of second quantiza-
tion the two particle Hamiltonian takes the form

H2 =

1

2V

X

k1,k2,q
a†k1+qa†k2�qUqak2ak1 ,

where Uq =

R

drU(r)e�ıqr denotes the Fourier transform of the Coulomb
potential and ak

⇣

a†k
⌘

is the annihilation (creation) operator of an electron
with wavevector k. Again we, as previously done, dropped the spin depen-
dence. To simplify the calculation we assume a constant matrix element
Uq that amounts to a strongly localized screened potential. Assuming, as
above, that elastic scattering is dominated by anisotropic impurity scatter-
ing, qualitatively new phenomena are to be expected by the introduction
of an isotropic scattering mechanism. And as inelastic scattering is to be
expected to be the less dominant mechanism in general, we take only its
isotropic part [84].

With the two term approximation the linearized collision integral then
takes the form

I
inel

= � 1

⌧ 0 (k)

�f0
(k) �

Z

dk0 �f0
(k0

)

⌧ (k, k0
)

= � 1

⌧ (E)

�f0
(E) �

Z

dE0 �f0
(E0

)

⌧ (E, E0
)

, (7.3.45)

where we switched into energy space. Note here that we continue to use
the notation of 1/⌧ to denote coupling constants. This honors the common
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notational convention, however, the interpretation of the off-diagonal terms
as scattering rates or live times is rather awkward as they may become nega-
tive. As collisions conserve quasi-particle number N =

R

d3r
R

d3k f (r,k, t)
we can deduce a relation between the diagonal part of (7.3.45) and its off-
diagonal rates.

Having
Z

d3r

Z

d3k I
inel

= 0, (7.3.46)

or

Z

dk k2

✓

�(k0 � k)

⌧(k0
)

+

1

⌧(k, k0
)

◆

= 0 (7.3.47)

⌫ (E0
)

⌧(E0
)

+

Z

dE
⌫ (E)

⌧(E, E0
)

= 0, (7.3.48)

where the density of states is given by

⌫ (E) =

3

2

n

p
E

E
3
2
F

.

Equivalently the total energy of the system E =

R

d3r
R

d3k Ekf (r,k, t) is
conserved as well, leading to

E0 ⌫ (E0
)

⌧(E0
)

+

Z

dE E
⌫ (E)

⌧(E, E0
)

= 0. (7.3.49)

The above conservation laws allow for the calculation of the diagonal terms 1/⌧ (E)

from the off-diagonal ones that are given by

1

⌧ (E, E0
)

=

m⇡

32~3
|U |2
(2⇡)

4

✓

2m

~2

◆2

⌧
el

Z

d✏p
E

(7.3.50)
(
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E, E0, ✏
� ⇥

f (E)
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1 � f (E + ✏) � f
�

E0 � ✏
��

+ f (E + ✏) f
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E0 � ✏
� ⇤

H� �E, E0, ✏
� ⇥

f (E + ✏)
�

1 � f
�

E0
+ ✏
�� f (E)

�

+ f
�

E0
+ ✏
�

f (E)

⇤

)

,

where f (E) is the Fermi distribution and we introduced the auxiliary func-



7.3. COLLISION PART 101

tions
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=
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(7.3.51)

H�
=

8

>

<

>

:

2

p

min (E, E0
) ✏ > 0

2

p

min (E, E0
) + ✏ � min (E, E0

) < ✏ < 0

0 else
.

The electron-electron collision integral (7.3.45) leads to a thermalization of
the excited out of equilibrium distribution as we present in the following
chapters. This concludes the introduction to the formalism of the Boltzmann
equation. We are now well equipped to take the theory to action and apply
the different scattering mechanisms to analyze dynamics non-equilibrium
distribution functions.





Chapter 8

Ballistic-diffusive crossover

8.1 Introduction

In the present chapter we begin to apply the Boltzmann approach introduced
above. This semi-classical treatment of electrons in a crystal is well suited
to describe a variety of situations and it tends to excel in particular at prob-
lems regarding transport of electrons or quasi-particles in general. As also
presented in the previous chapter, the Boltzmann equation is too complex to
allow for a direct treatment so that appropriate approximation are required.

The approximations that are applied to the various components consti-
tuting the Boltzmann equation depend on the specific situation that we want
to describe. And therefore the most common approach is the definition of a
certain physical situation first to then choose the various possible approxi-
mations and collisions that might describe said situation.

As the title suggests, and the introduction specified, the present work
is concerned with the time evolution of a quasi-particle excitation and the
successive approach of equilibrium. A quasi-particle excitation in the con-
text of the Boltzmann equation is hence precisely an excess density that
deviates from the equilibrium distribution. This excitation can be formed
spontaneously but is usually studied by driving it with a pump laser.

Formally the specific excess density, however, is introduced into the prob-
lem as the boundary (or initial) condition of the Boltzmann equation. The
first task therefore is to adapt the general and overwhelming Boltzmann
equation to the problem at hand. On the one hand we limit our analysis to
a bulk material with two translationally invariant axes opposed to a third
axis (in our case that will be the z-axis) that is observed for transport effects.
The physical architecture this setup resembles would be a thin metal film.

The geometry thus introduced allows for the application of the two term
approximation as presented in section 7.2. While this reduces the dimen-
sionality of the problem and simplifies the left hand side of the Boltzmann
equation, the collision part is still unspecified. Assuming that the quasi-

103
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particle excess density is excited with an initially directional momentum the
quasi particles continue to travel in that direction until perturbed. In the
Boltzmann formalism these perturbations take the form of collisions and the
simplest is the impurity scattering. Before analyzing more complex scatter-
ing processes it is therefore worthwhile to see where the simple application
of the relaxation time approximation takes us.

8.2 Ballistic-diffusive equation

As introduced above the collision integral for the present section is formed
by impurity scattering (7.3.10) taking the form of the relaxation time ap-
proximation

I
el

[f(p, z, t)] = � cos ✓
�f1

(p, z, t)

⌧
el

. (8.2.1)

The life time ⌧
el

, or relaxation time, can be estimated via Fermi’s Golden
Rule as presented above (7.3.11). However, experimental data suggests val-
ues of the order of 10 femto seconds [91, 92]. The full Boltzmann equation
in the present context therefore takes the form

@

@t
�f0

(k, z, t) + cos ✓
@

@t
�f1

(k, z, t) (8.2.2)

+v cos ✓
@

@z
�f0

(k, z, t) + v cos

2 ✓
@

@z
�f1

(k, z, t) = � cos ✓
�f1

(k, z, t)

⌧
el

.

Integrating the now established Boltzmann equation over moments, i.e.,
performing the operation

R

d✓ cos

n ✓, we obtain two coupled differential equa-
tions

n = 0 :

@
@t�f

0
+

v
3
@
@z �f

1
= 0 (8.2.3)

n = 1 :

@
@t�f

1
+ v @

@z �f
0

= ��f
1

⌧
el

. (8.2.4)

Notice that the two functions �f0 and �f1 still depend on the wave vector k.
But as the applied impurity scattering is elastic in nature and therefore con-
serves magnitude of momentum we drop the dependency. Equations (8.2.3)

and (8.2.4) can be decoupled to yield the ballistic-diffusive equation

@2

@t2
�f0

+

1

⌧
el

@

@t
�f0 � v2

3

@2

@z2
�f0

= 0, (8.2.5)

that governs the dynamical evolution of the isotropic density distribution.
As we are mainly interested in the general properties and dynamics of the
equation, it is of use to switch to dimensionless parameters. This amounts
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to measuring time in units of the scattering time ⌧
el

and space in units of
the mean free path l = vF ⌧el :

t/⌧
el

=

˜t ! t (8.2.6)
z/vF ⌧el = z̃ ! z. (8.2.7)

As we are treating isotropic cases in momentum space we use the energy
representation E =

1
2mv2 to obtain

@2

@t2
�f0

+

@

@t
�f0 � 1

3

E

EF

@2

@z2
�f0

= 0. (8.2.8)

Equation (8.2.8) can be solved via separation of variables, as presented below,
and governs the full evolution of any quasi-particle density with energy E and
hence describes the ballistic and diffusive transport as well as the transition
between both.

Both diffusion equation and wave equation (governing ballistic motion)
are limiting cases of (8.2.8) for ⌧

el

⌧ dt and ⌧
el

! 1, respectively.

8.3 Diffusion and wave equations

When speaking about transport, the categories of ballistic and diffusive mo-
tion are frequently used. Ballistic motion is associated with a propagation
that is unhampered by disruptions such as collisions. The governing equation
is the wave equation, here in the one-dimensional version

@2

@t2
�f0

= v2
@2

@z2
�f0. (8.3.1)

The dynamics of the system before scattering sets in is effectively described
by a diverging relaxation time

⌧
el

! 1. (8.3.2)

Inserting this in the ballistic-diffusive equation (8.2.5) recovers the wave
equation immediately. With the initial condition �f0

(t = 0) = � (z) =

1
2⇡

R

dz exp (ıkz) the solution of the wave equation reads

�f0
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◆
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✓

z � vp
3
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◆�

(8.3.3)

so that the mean square displacement1 reads

�2 (t) =

Z

dz z2�f0
(z, t) =

v2

3

t2 (8.3.4)

1Technically the mean square displacement involves also an integration over
momentum-space. As this is dependence is delta-like in the elastic case, we omit it here.
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and thus is quadratic as expected for ballistic motion.
To extract the diffusive limit [84] that is characterized by the case that

the particles scatter many times in an observed dynamic interval dt and
hence

⌧
el

⌧ dt, (8.3.5)

we rewrite the Boltzmann equation (8.2.5)

1

⌧
el
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@t

✓

⌧
el
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@t
�f0
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◆

� v2

3
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@z2
�f0

= 0. (8.3.6)

Omitting the first term in the brackets we obtain the diffusion equation

@
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�f0 � v2

3

⌧
el

| {z }
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@2

@z2
�f0

= 0. (8.3.7)

Solving this via separation of variables and the initial condition �f0
(t = 0) =

� (z) gives

�f0
(z, t) =

1

2⇡

Z

dk exp

⇥

ıkz � Dk2t
⇤

(8.3.8)

and a linear mean square displacement

�2 (t) = 2Dt. (8.3.9)

These two limiting cases for ballistic and diffusive transport are entrenched
in the ballistic-diffusive equation, so that we now turn to derive a dynamic
equation for the mean square displacement.

8.4 Mean square displacement

Above we already looked at the mean square displacement as a convenient
way to classify the type of transport state. A linear mean square displace-
ment corresponds to a diffusive behavior while an exponent larger than one in
general refers to super-diffusive expansion. This culminates in collision-less
ballistic transport for a quadratic mean square displacement.

Both limits have been shown to naturally arise from the ballistic-diffusive
equation (8.2.8). We may, however, integrate this equation to form from it
a differential equation that governs the complete dynamic evolution of the
mean square displacement and thus the change of transport type. In general
the mean square displacement is given by

�2 (t) =

Z

dE0 ⌫
�

E0�
Z

dz z2�f0, (8.4.1)

with a density of state ⌫ (E) so that the ballistic diffusive equation (8.2.8)
becomes
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@t2
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⌧
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3

E

EF
= 0, (8.4.2)
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Figure 8.4.1: The evolution of the diffusion exponent ↵ is plotted against
time. Here the time is measured in terms of the elastic scattering rate ⌧

el

.
An exponent of two defines a ballistic motion and dominates the transport
for times below the impurity scattering time. With increasing scattering
processes the transport changes from ballistic to diffusive, denominated by
an exponent of one, recovering previous ab-initio results [93].

where we took
R

dE0 ⌫ (E0
) E0 R dz �f0

= E. This takes the energy depen-
dence to be delta like. In the general case of a non-trivial energy dependence
of the quasi-particle distribution this gives the average energy as used below.
The solution is straightforwardly obtained to be
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e�t � 1
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. (8.4.3)

The evolution of the type of transport from ballistic to diffusive is best
described by a (time dependent) transport exponent [93, 70] ↵ via �2 (t) / t↵,
with

↵ =

@
@t�

2
(t)

�2 (t)
t =

t
�

et � 1

�

1 + et (t � 1)

, (8.4.4)

where ↵ = 2 denotes ballistic and ↵ = 1 diffusive transport as presented in
figure 8.4.1.

With common approximative approaches to treat the Boltzmann problem
we have thus given an analytical expression for the crossover between ballistic
to diffusive transport of an excited quasi-particle density. This crossover
is characterized by the mean square displacement. However the ballistic-
diffusive equation can also be solved directly to give the dynamical evolution
of the distribution function at any point in space.

8.5 Solution to the ballistic-diffusive equation

In the previous sections we took different looks on the ballistic-diffusive equa-
tion (8.2.8). We discussed how the wave equation and diffusion equation are
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natural limits for collision-less transport and the opposite case where colli-
sions completely randomized the directional properties of initial momentum.
We derived an equation for the evolution of the mean square equation that
conveniently allows for the dynamical classification of the type of transport.

In the present section we now turn back to the ballistic-diffusive equation
itself to solve it analytically. The partial differential equation (8.2.8) can be
solved by a separation of variables ansatz

�f0
(z, t) = a (t) b (z) . (8.5.1)

The solutions of the individual equations then are given by

a (t) / exp

"

� t

2

 

1 ±
r

1 � 4E

3EF
k2

!#

(8.5.2)

b (z) / exp [±ıkz] , (8.5.3)

and the general solution is obtained by plugging these into (8.5.1). With
the general solution given we can now turn to the specific physical situation
at hand. Here we model the quasi-particle excitation as a initial excitation
on the z-plane, that is normally distributed with a standard deviation � in
space and isotropic in k-space. This gives as first initial condition

�f0
(z, t = 0) =

1p
2⇡�2

e�
x2

2�2
=

1
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Z

dk eıkze�
�2z2

2 . (8.5.4)

And as there are no anisotropic contributions at time t = 0 equation (8.2.3)

gives the second initial condition

@�f0
(z, t = 0)

@t
= 0, (8.5.5)

that translates to the demand A(k)+B(k) = 1. Plugging both in we obtain
a full solution of
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(8.5.6)

This gives the full dynamical evolution of a initially ballistic transport
that turns into a diffusive expansion after the first couple of collisions. Fig-
ure 8.5.1 shows the density of such an excitation propagating through the
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Figure 8.5.1: The density of a localized excitation that propagates through
the bulk. The fast moving ballistic contributions is diminished by impurity
scattering and makes way for a diffusive expansion.

material and depicts how collisions lead to a decrease in ballistic density while
more weight is shifted into a normal distribution that expands diffusively.

In the present chapter we were concerned with the spacial propagation
of a localized quasi-particle excitation. The geometry of the problem leads
to a directed transport of excess density that interacts with the material via
impurity scattering. As this impurity scattering is elastic in nature there
is no mechanism present that relaxes the kinetic energy of the excitation.
In the next chapter we therefore introduce electron-electron collisions as a
means of inelastic scattering that leads to a relaxation of the excitation not
only in real space but also in momentum or energy space.





Chapter 9

Thermalization

9.1 Introduction

As introduced before, the Boltzmann equation is an equation for the quasi-
particle distribution. This distribution is in general a function of seven de-
grees of freedom, three spacial ones, three in momentum space and the time
axis. The whole previous chapter was concerned with the evolution of this
quasi-particle distribution in its spacial degrees of freedom. The means of
this evolution were the combination of classical deterministic phase space
evolution and a collisions with the environment mediated by impurity scat-
tering. This impurity scattering then lead to any directional momentum
to be evened out so that an initially ballistic motion slowly turns into an
isotropic diffusive transport.

As the impurity scattering is elastic in nature, the collision integral only
connected phase space volume elements of equal magnitude of momentum
and an excitation could be treated as living freely without regard to the rest
of the conduction electrons. In reality, however, a quasi-particle excitation
is created by providing an electron that is situated below the Fermi surface
in momentum space with enough energy to “lift” it above the Fermi surface.
On the one hand this leaves a hole below the Fermi surface, a fact that
we ignored in the treatment of the previous chapter. And on the other
hand it becomes clear by this view of an excitation that the approach of a
new equilibrium necessary includes the interaction with this excitation and
the rest of the electron sea. By colliding with an electron near the Fermi
surface inelastically energy is transferred from the initially excited electron
to its collision partner which is in turn lifted above the Fermi surface. This
effectively leaves two excitations, each at its respective energy level.

In a first order approximation these two excitations can be treated inde-
pendently so that their subsequent interaction with the Fermi sea is again
described by the same formalism as the initial collision. In practice the colli-
sion integral that is employed here is the one of electron-electron scattering.
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As we are interested in the relaxation of energy we integrate the distribution
function over space and reduce the problem thus to two dimensions, energy
and time.

The first collision leaves the system with two particle-hole excitations
and subsequent collisions keep exchanging energy with the Fermi sea un-
til a new equilibrium is reached. This approach of equilibrium is usually
coined thermalization as the reaching of a new equilibrium allows again to
describe the system with a temperature that is now adjusted to incorporate
the additional energy of the initial excitation.

9.2 Thermalization of the electron system

As we have started the analysis of the previous chapter with the collision in-
tegral for impurity scattering we start the present one with the corresponding
one pertaining to electron-electron scattering. The linearized collision inte-
gral for inelastic electron-electron scattering (7.3.45) reads

I
inel

= � 1

⌧ (E)

�f0
(E) �

Z

dE0 �f0
(E0

)

⌧ (E, E0
)

, (9.2.1)

where we again take the energy state representation and the energy depen-
dent collision rates 1/⌧ (E) and 1/⌧ (E, E0

) are given by equations (7.3.50)

and (7.3.49).
The Boltzmann equation now becomes an partial-integro-differential equa-

tion whose naming already points at the cumbersomeness of its solution pro-
cess. As we are concerned only with the evolution in energy space we restrict
the analysis to the energy space density G(E) =

R

dz �f0. Integrating there-
fore the Boltzmann equation leaves us with treating the simpler coupled
system

@

@t
G(E) +

Z

dE0
✓

�(E0 � E)

⌧(E0
)

+

1

⌧(E, E0
)

◆

G(E0
) = 0, (9.2.2)

which diagonalization, after discretizing energy space, amounts to an eigen-
value problem that given algorithms are willing to solve.

It is of particular importance that the solution of (9.2.2) is obtained not
by iterative methods but by eigenvalue decomposition. This allows for a
semi-analytic solution, where only the eigenvalues and coefficients are calcu-
lated with the help of a machine, the solution itself, however, has an analytic
expression. Because of this semi-analytic nature of the solution it yields ap-
plicable results for all time scales, spanning from the first few femto seconds
up to reaching a new equilibrium. This crucially admits for an analysis of
the transient behavior and, as we show below, its characterization in terms
of a quasi-equilibrium.
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To analyze the relaxation of energy in an excited system out of equilib-
rium1 we take a single particle-like excitation that leaves a hole below the
Fermi level by moving the taken particle to an energy level above at time
t = 0. This quasi-particle scatters with quasi particles in the Fermi sea ex-
citing an additional density above the Fermi level. This process, also called
electron cascade [94], then is repeated until an equilibrium is reached between
the excess density of particles above the Fermi level and of holes below. This
amounts to a Fermi distributed system at a new (higher) temperature. The
new temperature and thus the final state can also be calculated from the
amount of additional energy induced into the system �u.

In particular the temperature dependent total internal energy u of a
system is given by means of the Sommerfeld expansion

u =

3

5

nEF +

⇡2

4

(kBT )

2

EF
= u0 +

⇡2

4

(kBT )

2

EF
, (9.2.3)

with n being the particle density, kB the Boltzmann constant and EF the
Fermi energy. So the final temperature can be expressed via

T =

s

T 2
0 +

12E2
F

5⇡2k2
B

�u

u0
, (9.2.4)

where the added energy �u is given in units of the zero temperature internal
energy u0 and T0 is the initial temperature taken to be at room temperature.
The final state has then the simple form Geq

(E) = f eq

(E, T ) � f eq

(E, T0).
With the new temperature T given by (9.2.4).

The approach of said equilibrium is governed by the Boltzmann equa-
tion (9.2.2) and the solution is depicted in figure 9.2.1. In principle this
approach is an asymptotic process but as depicted in the figure after the
initial excitation scattered around 1000 times a new equilibrium is estab-
lished. On the other hand the prominent signature of the initial excitation
looses its non-continuous shape, as shown in figure 9.2.2, within the first few
scattering events and a continuous excitation density is established. In the
next section we therefore analyze how this distribution develops to finally
form the new equilibrium.

9.3 Approaching the equilibrium

We can distinguish two phases of this approach of equilibrium. In phase one
the excited quasi-particle collides with the Fermi sea and looses its energy.

1The system is assumed to be “not-far” from equilibrium, this hand-wavy demand can
be concretized in terms of our analysis. Excluding non-linear behavior in the collision
integral we implicitly assume the quasi-particle density involved in the excitation to be
small compared to the rest of the Fermi sea.
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Figure 9.2.1: The approach of a new equilibrium final state is mediated via
electron-electron collisions. Between the initial state that is clearly out of
equilibrium and the establishment of a final state, the system undergoes a
cascade of quasi-equilibrium like states that can be described by a fraction
of a system in equilibrium at a higher temperature (cf. section 9.3). The
non-equilibrium state defined here as a non-continuous distribution decays
on a short timescale of a few femto seconds and a new continuous transient
distribution is established.
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Figure 9.2.2: The non-equilibrium distribution interacts with the Fermi sea.
After the first few collisions the strong non-continuous peaks of the initial
quasi-particle excitation makes way to a transient continuous distribution.
As predicted by Fermi liquid theory the electron-electron scattering dynamics
subsequently slow down for particles around the Fermi surface.
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Figure 9.3.1: An interim temperature T (t) can be defined by approximating
the system as a fraction of a larger system with said temperature T . The
solution to the Boltzmann equation (9.2.2) is fitted with the model (9.3.1)

at different times approaching the new equilibrium.

This amounts to a diminishing of the singular non-equilibrium peak and a
building up of an continuous excitation density. This phase ends once the
particle density reaches a continuous state. As depicted, this is the case
already before 10 ⌧ . This phase is the phase of strong non-equilibrium and
has to be treated as such by the full theory presented so far.

The second stage, however, beginning with the establishment of a contin-
uous particle density up to the new equilibrium distribution, can be described
by a dynamic quasi equilibrium. A fit of the form

G (E, t) = � (t) [f eq

(T (t)) � f eq

(T0)] , (9.3.1)

with the fitting parameter � (t) and T (t) suggests that the transient system
at any time t behaves as it were a fraction � (t) of a larger system at temper-
ature T (t), where � approaches unity while T approaches T0. Demanding
as a sentient control for the fit that the internal energy stays constant we
arrive at a relation between both parameters of

� (t) =

12E2
F
�u
u0

5⇡2k2
B

⇣

T (t)2 � T 2
0

⌘

=

T 2
final

� T 2
0

T (t)2 � T 2
0

, (9.3.2)

shown in figure 9.3.1.
This interpretation contrasts earlier work [71, 82] that treats the transient

regime as a system separated into main bath in (quasi)-equilibrium and an
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non-equilibrium part that exponentially decays in time. This decay amounts
to an energy transfer from non-equilibrium part to quasi-equilibrium part.
The prefix “quasi” then is justified as the influx of energy leads to a change
of equilibrium temperature. It is this rising temperature that the literature
adhering to said model usually coins transient temperature [95].

However, our analysis proves the concept of any transient temperature or
even the establishment of a quasi-equilibrium on electron-electron scattering
time scales to be weary. The solution to the Boltzmann equation (9.3.1)

does indeed contain a dynamic parameter T (t) that mathematically resem-
bles a temperature. However, the interpretation of the physicality of the
transient regime is remarkably different. Instead of viewing the system as
a main part that is always in quasi-equilibrium and a non-equilibrium part
our analysis suggest the interpretation of two separate systems, one at the
original temperature T0 and one hot system, also in quasi-equilibrium, that
cools down quickly following the temperature dynamics given by T (t) . The
weight between both systems is mediated by the function � (t) so that it is
suggestive to write the dynamics of the whole system as

f (t) = (1 � � (t)) f eq

(T0) + � (t) f eq

(T (t)) , (9.3.3)

to show the shifting of weight between both fictitious subsystems. It is
important to take care with interpreting these result physically, however.

None-the-less the solution (9.3.3) can be used, together with the fitted
dynamics for the variable T (t) shown in figure 9.3.1, to analyze the inter-
action of the electron system with its environment. Making use of the solu-
tion (9.3.3) allows for a simpler treatment of the electron-phonon interaction
without the need of solving the fully coupled system. Next we therefore
investigate how the above insights can be incorporated into the two temper-
ature model that proved useful to describe the interaction of a thermalized
electron system with its environment.





Chapter 10

Two temperature model

The two temperature model [76, 77, 78] (TTM) has been well established to
describe the exchange of energy between an electron system and a phonon
bath, both in equilibrium internally but at different temperatures [63, 64, 65].

As the temperatures are the only defining parameter in these equilib-
rium systems, the model analyzes their dynamics. The change in lattice
temperature is due to the flux of energy from the (hotter) electron system.

In the present chapter we use the two temperature model to describe the
interaction of an thermalized electron system with its environment, namely
the surrounding phonon bath. Once the model is established we turn to
incorporate the dynamics of electron thermalization derived in the previous
chapter.

The internal energy of the electron system is given by

u
el

=

Z

d" " ⌫ (") f (", t) , (10.0.1)

where ⌫ (") is the density of states and f (", t) is the electronic distribution
function. In equilibrium this is just the Fermi distribution.

To describe then the equilibration between electron and phonon system
we formally introduce the concept of a quasi-equilibrium. This assumes the
electron system1 to be describable by a Fermi function with a time dependent
temperature T

el

(t) with the further restriction that this temperature change
should be adiabatic. We thus have

f eq

(", T
el

(t)) =

1

1 + exp

h

"�"F
kBT

el

(t)

i (10.0.2)

and a corresponding internal energy of

u [T
el

(t)] =

Z

d" " ⌫ (") f eq

(", T
el

(t)) . (10.0.3)

1We continue to speak of the electron system in the present derivation, but the same
insights naturally apply to the phonon bath as well.
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The general dynamics of this quasi-equilibrium distribution is governed by
electron-phonon scattering and described by the Boltzmann equation. We
continue to use the partial derivative to denote the temporal change even
though this change is not explicit, but via the change of temperature. The
implicit time dependence of temperature results in conservation of particle
number but not of energy. The driver of this change of distribution function,
and thus of the change of temperature, are the electron-phonon collisions.
We therefore write

@f (", t)

@t
=

@f eq

(", T
el

(t))

@t

=

✓

@f eq

@t

◆

el-ph

. (10.0.4)

Now the change of distribution also amounts to a change of energy so
that by differentiation of equation (10.0.1) in time we obtain

@u
el

@t
=

Z

d" " ⌫ (")
@f (", t)

@t
. (10.0.5)

Or again taking the electron system in quasi-equilibrium we may insert the
electron-phonon collision integral, as in equation (10.0.4), to describe the
change due to electron-phonon scattering. The evaluation of the integrals [76,
78] then gives
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(10.0.6)

=  (T
ph

(t) � T
el

(t)) . (10.0.7)

Here we used that electrons and phonons constitute a closed system so
that energy conservation requires

@u
el

@t
= �@u

ph

@t
. (10.0.8)

Notice that the assumption of quasi-equilibrium means that the change of
electron distribution function is only driven by the change of temperature
on first sight. The underlying mechanism is, however, the drain of energy
from the electron system. The change of a system’s energy is connected to
the change of its temperature via the heat capacity C that is typically split
into a linear electronic and a cubic lattice contribution part [96],

@u

@t
= C (T )

@T

@t
. (10.0.9)
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Au Ru Units
 2.3 185 10

10 W cm�3 K�1

C
el

0.021 0.12 J cm�3 K�1

C
ph

2.5 2.9 J cm�3 K�1

⌧
el-ph

918 62 fs

Table 10.1: Electron-phonon coupling constant  and the electronic C
el

and
lattice C

ph

contribution to the heat capacity at room temperature for gold
and ruthenium. From these quantities a electron-phonon relaxation time as
defined in equation (10.0.12) can be derived [82, 87, 97, 98]. We choose
here gold and ruthenium as example materials as the differ in their strength
of electron-phonon coupling by two orders of magnitude. This then allows
for the analysis of electron-phonon coupling strength on the equilibration
dynamics.

After collecting equations (10.0.7), (10.0.8) and (10.0.9) we finally arrive at
the two temperature model
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(t)) . (10.0.10)

These coupled differential equations describe the equilibration between elec-
tron and phonon bath and are well established in theoretical and experi-
mental literature. In theory the coupling parameter  can be calculated
microscopically but in practice determining it experimentally is more prac-
ticable.

In equation (10.0.10) the heat capacity of electron and phonon bath is
taken to be temperature dependent. While this is true in general and one of
the fundamental results of developing the theory of the free electron Fermi
gas in the early days of condensed matter theory [87], here we assume to
be in the perturbative regime where T

el

u T
ph

so that the change of heat
capacity is negligible. With constant heat capacities the two temperature
model (10.0.10) can be solved directly, giving for the electron temperature

T
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with the relaxation time

⌧
el-ph

=

C
el

C
ph

(C
el

+ C
ph

)
. (10.0.12)

Table 10.1 gives values for selected materials.
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The two temperature model assumes both the electron and the phonon
system to be in quasi-equilibrium. As we have presented in the previous sec-
tion the thermalization time of an isolated electron system is of the order of
pico seconds. For a quasi instantaneous excitation of the electron system the
thermalization and the exchange of energy with the phonon bath therefore
are of the same order of magnitude. It is therefore necessary to include the
non-equilibrium effects of the dynamics of thermalization into account. In
the next section we therefore use the fitted thermalization model (10.1.1) to
extend the usual two temperature model.

10.1 Extension of the two temperature model

As the thermalization of the electron system and the coupling of electrons
with the phonon bath are of a similar time-scale, both effects have to be taken
into account for more detailed description of the relaxation process [73, 79,
82, 83]. In the previous section we derived a model for the equilibration of
the electron system by the means of electron-electron interaction.

f (", t) = (1 � � (t)) f eq

(", T
el,initial

) + � (t) f eq

(", T (t)) . (10.1.1)

We therefore now turn to incorporate the thermalization dynamics of the
electron system into the two temperature model (10.0.10) above. The so-
lution (10.1.1) suggests an interpretation of the transient regime to consist
of two baths, one at initial temperature T

el,initial

and the other at the tran-
sient temperature T (t) that asymptotically approaches the final tempera-
ture T

el,final

. So that we have

T (t) = T
el,final

+

˜T (t) , with ˜T (t) ! 0. (10.1.2)

Both temperature baths are modulated by the shifting weight factor � (t)
that describes the electron-electron interaction dynamics.

We assume now that this interaction dynamics is not directly effected
by the electron-phonon coupling. Instead the two respective temperature
baths couple directly to the phonon system via their base temperature. The
change of energy of the electron system is therefore given by
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, (10.1.3)

where the omission of time derivatives of � (t) amounts to ignoring the effect
of electron-phonon scattering on the dynamics of electron-electron collisions.
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Plugging in the two temperature model calculation (10.0.7) then yields
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Now, as the only physical temperatures are the base temperatures T
el,initial

and T
el,final

, we assume that the drain of energy affects the electron bath only
via a change of these base temperatures, omitting any effect of the dynamical
temperature ˜T (t) that represents the approach of a new quasi-equilibrium
via electron-electron collisions. We therefore have

C
el

[T
el,final

]

@

@t
T

el,final

= � (t)
⇣

T
ph

� T
el,final

� ˜T (t)
⌘

(10.1.6)

C
el

[T
el,initial

]

@

@t
T

el,initial

=  (1 � � (t)) (T
ph

� T
el,initial

) (10.1.7)

for the dynamics of the electron bath under electron-phonon scattering and
with the conservation of energy the corresponding phonon temperature is
governed by the analogous relation
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The weigh factor � is then given by

� (t) =

T 2
el,final

� T 2
el,initial

⇣
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el,final
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˜T (t)
⌘2 � T 2
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Equations (10.1.6) to (10.1.8) now incorporate the dynamics of electron
thermalization into the evolution of energy exchange between electron and
phonon bath. Notice that as the time approaches the thermalization time
t ! ⌧

therm

where the electronic quasi-equilibrium is established we have

� (t) ! 1 (10.1.10)
˜T (t) ! 0, (10.1.11)

and the extended two (three) temperature model approaches the conven-
tional one for times greater than the thermalization time. As � (t) is a
smooth function increasing from zero at t = 0 to one over the time of ther-
malization (cf. figure 9.3.1) the change of temperatures at t = 0 should
also be vanishing. This slows down the initial dynamics of the two tem-
perature equilibration compared to the original model (10.0.10) as shown in
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Figure 10.1.1: The inclusion of thermalization dynamics in the two tem-
perature model leads to a delayed interaction between electron and phonon
bath. Here we compare the interaction of an excited electron bath with its
surroundings. Before the excitation is induced at t = 0 both systems are
in equilibrium at room temperature (T = 300K). The conventional model
assumes an established quasi-equilibrium of the electron system and the en-
ergy drain from electron bath to phonon bath sets in immediately. This
interaction is delayed in the extended model as the hot electrons in the non-
equilibrium electron distribution do not interact with the phonon bath.

figure 10.1.1. Here we used the heat capacities and electron-phonon coupling
parameters for gold and ruthenium (cf. table 10.1) .

Figure 10.1.1 also shows that this delay of electron-phonon interaction
prior to thermalization is much more apparent in a material such as ruthe-
nium where the time-scales electron-phonon interaction ⌧

el-ph

is two orders
of magnitude smaller that for instance in gold. However, in both cases the
change of phonon temperature is less effected due to the small contribution
of the lattice to the overall heat capacity. None-the-less a delay in electron-
phonon energy exchange is present, recovering the result of a full numerical
solution of the coupled Boltzmann problem [83].
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Summary and conclusions

In this part, we have presented the application of the Boltzmann formalism
to electron relaxation processes on the ultra-fast time scale in a solid-state
architecture. We show the treatment of three dominant scattering mecha-
nisms: collisions of electrons with lattice imperfections and impurities, the
interaction between electrons and the energy exchange of electrons with the
surrounding lattice, represented by a phonon bath.

The experimental setup in mind is a thin film geometry of a generic
metal. The film is excited with a laser uniformly in two dimensions, leaving a
spacial variation to the third dimension. This effectively reduces the problem
to one spacial dimension and the distribution function can be expanded into
moments.

Including impurity scattering in the relaxation time approximation, we
derived a ballistic-diffusion equation for the excited particle distribution.
This equation not only describes the transport of a locally created excita-
tion but allows for the classification of transport as well. To this end, we
analyzed the mean square displacement and derived an expression for the
dynamic change of the diffusion exponent from ballistic transport initially
to a diffusive expansion after many scattering events.

The elastic impurity scattering was then supplemented with the inelas-
tic electron-electron collision integral to describe the relaxation of a non-
equilibrium distribution in energy space. A particle-hole pair was shown to
excite particles from the Fermi sea in an energy cascade until a new equilib-
rium is established. The process can be described heuristically by introducing
a fictional superposition of two thermalized electron systems with a weight
factor shifting from the old to the new system during equilibration.

Having at hand a description of the electron thermalization process we
then turn to the equilibration of the electron system with its surrounding
phonon bath. The common description of energy exchange between an elec-
tron and phonon bath, each in quasi-equilibrium, is the two temperature
model. We incorporated the thermalization dynamics of the electron system
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to extend the two temperature model. With the equilibration dynamics of
the electrons included we observe a delayed energy exchange between elec-
tron and phonon baths, reproducing earlier results.

In conclusion, the Boltzmann formalism can by readily applied to the
ultra-fast dynamics of non-equilibrium systems. While the high dimension-
ality of the problem make strong approximations unavoidable, the resulting
equations still exhibit all expected features of the approach of equilibrium
and can be treated in an analytical or quasi-analytical manner.
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