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Introduction

Discrete differential geometry is an active mathematical field that concerns
the construction and understanding of discrete counterparts to notions and
concepts of classical and modern differential geometry of smooth manifolds.
It is a theory in its own right that explores structures of discrete manifolds.
Nevertheless, the relation between the continuous and the discrete theories is
of central interest. Two basic aspects of a discretization are its consistency
and convergence. The discrete objects and solutions of discrete problems or
equations should approximate their continuous counterparts. In addition, an
explicit goal of discrete differential geometry is to transfer the structure of the
continuous theory to the discrete setting. We want to construct discrete objects
that share fundamental properties and characteristics, e.g., invariance under
a transformation group, of their continuous counterparts. The development
in this field has been precipitated by its applicability in areas like computer
graphics, computational geometry, computational physics, and architectural
geometry.

This thesis deals with discrete differential geometric properties of polyhe-
dral surfaces in R3. We develop a description of the curvatures of polyhedral
surfaces based on a generalization of the shape operator, and we construct
discretizations of the (strong form of the) Laplace–Beltrami operator and of
the Willmore energy. The focus of our analysis is on approximation properties
of the introduced discretizations. In particular, we show that the generalized
shape operators can be used to approximate the classical shape operator of a
smooth surface, and we prove the consistency of the discrete Laplace–Beltrami
operators and the discrete Willmore energies. In addition, we consider a prob-
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lem in geometry processing: the fairing of polyhedral surfaces. We develop a
scheme for fairing under spatial constraints.

Metric structure of polyhedral surfaces

This thesis is divided into four chapters. The first chapter concerns the approx-
imation of metric properties of a smooth surface from corresponding properties
of a nearby polyhedral surface and the construction of Lebesgue and Sobolev
function spaces on polyhedral surfaces. The results presented in this chap-
ter provide the basis for the subsequent chapters. Many of them are taken
from [64, 106].

We begin the chapter by reviewing basic structures of a polyhedral sur-
face Mh in R3. In particular, we equip Mh with a differentiable structure and
a metric tensor field. The problem is that Mh is a topological, but (in general)
not a differentiable submanifold of R3. However, as a consequence of Munkres’
work [82, 83] on differentiable structures on topological manifolds, there is a
unique differentiable structure on Mh that is compatible with the topology
on Mh induced by R3. In Section 1.2, we explicitly construct charts that form
an atlas of this differentiable structure on Mh. Then we can define tensor fields
on Mh. The metric tensor field induced by R3 is flat in the interior of the tri-
angles and edges and has cone singularities at the vertices. Hence it is a cone
metric.

The approximation of metric properties of a smooth surface M by a nearby
polyhedral surface Mh is treated in Sections 1.5 and 1.6. To quantitatively
compare objects, like the normal vector fields, the metric tensor fields, and the
area forms of the surfaces, we use the orthogonal projection πM onto M to
construct a map between the surfaces. Then we pullback the objects from Mh

to M and use appropriate norms on M (L∞-norms in our case) to measure
the distance between corresponding objects. Using the orthogonal projection
onto M for this purpose is common practice [44, 64, 80, 66]. In [64], it was
shown that if a sequence of polyhedral surfaces converges to M in the Haus-
dorff distance, then the following are equivalent: the convergence of the normal
vectors, the convergence of the area forms, and the convergences of the metric
tensors. In Section 1.6, we slightly extend this convergence result by deriv-
ing explicit upper bounds on the distances of the metric tensors and the area
forms. The estimates are linear in the Hausdorff distance and quadratic in the
distance of the normal vector fields. Asymptotically, these bounds agree with
estimates for the approximation of the surface area derived by Morvan and
Thibert [81].

In Section 1.3, we review basics of the theory of the Sobolev spaces W 1,p on
polyhedral surfaces that was developed in [106]. This theory forms the ana-
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lytic foundation for the generalization of the shape operator and the Laplace–
Beltrami operator in the following chapters. An important property is that the
pullback of functions via the orthogonal projection establishes an isomorphism
of the Sobolev spaces W 1,p on Mh and M . In addition to functions on a smooth
or polyhedral surface M, we consider vector fields in TMR3, the restriction
toM of the tangent bundle of R3. Since this is a trivial bundle, the definitions
of the Lebesgue and Sobolev function spaces on M directly generalize to cor-
responding spaces XLp(M) and XW 1,p(M) of vector fields in this bundle. In
Section 1.3.1, we introduce these spaces and define the divergence and curl of
vector fields in XW 1,p(M).

Generalized shape operators

Curvature is a central concept in the study of geometric properties of surfaces
in R3 and appears in many interesting geometric and physical problems. Ex-
amples are the study and construction of surface with constant mean curvature
and the analysis and integration of curvature flows. The estimation of curva-
tures of a smooth surface from an approximating discrete surface is important
for the numerical treatment of such problems and for various applications in
engineering and computer graphics.

In classical differential geometry, the curvatures of a smooth surface M in R3

are represented by the shape operator S, a tensor field on the tangent bundle
of M . Since the definition of S involves second derivatives of the embedding
of the surface, it does not apply to polyhedral surfaces. Consequently, there
are different approaches for describing the curvatures of polyhedral surfaces.
An overview will be given later in this introduction. Here, we follow a func-
tional analytic approach. We introduce two generalized shape operators that
are functionals on an appropriate Sobolev space of weakly differentiable vector
fields and can be defined rigorously on polyhedral surfaces.

To motivate the construction, let us consider the two tensor fields

S̄ : X 7→ S(X>)−HN 〈X,N〉 and Ŝ : X 7→ S(N ×X),

on the bundle TMR3, where H and N denote the mean curvature and surface
normal field of M and X is a vector field in TMR3 with tangential part X>.
What makes the two tensor fields interesting for us is that they satisfy the
(vector-valued) integral equations∫

M
S̄ X dvol =

∫
M
N divX dvol and

∫
M
Ŝ X dvol = −

∫
M
N curlX dvol,

and that the right-hand sides of both equations can be evaluated on polyhedral
surfaces. We define the generalized shape operators on a smooth or polyhedral
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surface M as the vector-valued continuous functionals

Σ̄ : X 7→
∫
M
N divX dvol and Σ̂ : X 7→ −

∫
M
N curlX dvol

on XW 1,1(M). In contrast to the classical shape operator, the generalized oper-
ators describe the curvatures in the sense of distributions and, therefore, cannot
be evaluated at a single point of the surface. Nevertheless, Lemma 2.3 shows
that on a smooth surface, the tensor fields S̄ and Ŝ are the only continuous
tensor fields that satisfy

Σ̄(X) =

∫
M
S̄ X dvol and Σ̂(X) =

∫
M
Ŝ X dvol

for all X ∈ XW 1,p(M).

Approximation results

In Sections 2.2-2.5, we establish two types of approximation results: the approx-
imation of the generalized shape operators in the operator norm and pointwise
approximation of the classical shape operator of a smooth surface.

The approximation in the operator norm guarantees that the generalized
shape operators of a smooth surface can be approximated by their counter-
parts on a nearby polyhedral surface. It could be called approximation of the
curvatures in an integrated sense, since it implies that integrals of S̄ or Ŝ over a
smooth surface can be approximated. To compare the generalized shape oper-
ators of a smooth surface M and a nearby polyhedral surface Mh, we pullback
the operator of Mh to M via the orthogonal projection. The isomorphy of the
spaces XW 1,p guarantees that the pullback is a continuous functional. Hence,
the distance of the generalized shape operators can be measured in the corre-
sponding operator norm. We show that it is bounded by a constant times the
sum of the Hausdorff distance and the distance of the normal vector fields.

Our approach for constructing pointwise approximations of the shape oper-
ator is to test the generalized shape operators with certain vector fields whose
support is localized around a point. For this, we introduce the concept of r-
local functions. If, for a r ∈ R+, a function ψ is r-local at a point y, then its
support is contained in the geodesic ball of radius r around y. In addition, ψ
is positive, has unit L1-norm, and its W 1,1-norm satisfies a certain bound that
depends on r. For the first step of our construction, we employ such a function
to build the tensor S̄ψ, which is the (1, 1)-tensor on R3 that, with respect to
the standard basis {e1, e2, e3} of R3, has the components

(S̄ψ)ij =
〈
ei, Σ̄(ψ ej)

〉
R3 .

If Mh is near M and ψ is r-local at y ∈ Mh, then S̄ψ approximates the ten-
sor S̄(x), where x = πM (y) ∈ M . For the second step, we use S̄ψ and the
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surface normals of Mh to construct a tensor Sψ, which approximates the shape
operator S(x) of M at x. We prove the bound∥∥∥S(x)− Sψ

∥∥∥ ≤ C (r +
δ

r
),

where δ denotes the sum of the Hausdorff distance of the surfaces and the dis-
tance of the surface normal fields and C is a constant. The estimate assumes
no correlation between r and δ. To get convergence, r has to be asymptotically
larger than δ. The optimal choice is r =

√
δ, which results in an approxima-

tion order of
√
δ. For a certain type of r-local functions, the bound improves

to C (r2 + δ
r ). Then r = δ

1
3 yields an approximation order of δ

2
3 . In the last two

sections of the chapter, we discuss the construction of r-local functions, and
we present numerical experiments that confirm our approximation estimates.

Discrete Laplace–Beltrami operators

The Laplace–Beltrami operator of a Riemannian manifold is the counterpart on
a curved manifold to the Laplace operator of a flat Euclidean space. According
to Berger [15], the study of this operator and the associated heat and wave
equations on a general Riemannian manifold has started rather recently in
late 1940s. Evaluating the operator of a smooth function at a point of the
manifold involves derivatives of the metric. Therefore, the classical definition
(of the strong form) of the operator does not extend to polyhedral surfaces
in R3. However, to formulate second-order equations, like Poisson’s equation,
only the weak form of the Laplace–Beltrami operator is needed. In contrast to
the strong form, the weak form does not require derivatives of the metric and
can be defined on polyhedral surfaces. In [64], it was shown that for a sequence
of polyhedral surfaces that converge to a smooth surface in Hausdorff distance,
the convergence of the weak Laplace–Beltrami operators in the operator norm
is equivalent to the convergence of the surface normals.

A natural finite element space on a polyhedral surface is the space Sh of
continuous functions that are linear in each triangle. In Section 3.3, we review
a discretization of the weak Laplace–Beltrami operator with these elements.
As shown in [91], the resulting discrete operator can be described using the
cotangents of the inner angles of the triangles of the polyhedral surface. There-
fore, it is often referred to as the cotan Laplacian. The weak Laplace–Beltrami
operator can be used to discretize second-order boundary value problems on
polyhedral surfaces. Convergence of solutions of the discrete Dirichlet problem
of Poisson’s equation was shown by Dziuk [44].

This raises the question of whether one can construct a consistent discretiza-
tion of the strong Laplace–Beltrami operator, i.e., a discretization that con-
verges pointwise. Based on the cotan weights, various constructions of discrete
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Laplacians have been proposed, see [107, 74, 97, 26] and references therein.
However, pointwise convergence results for these operators could only be es-
tablished for special types of meshes [110] (e.g., meshes with certain valences)
and counter-examples to consistency have been reported [110, 64].

Consistent discrete Laplace–Beltrami operators

In Section 3.5, we present a principle for constructing consistent discretizations
of the strong Laplace–Beltrami operator. The construction involves r-local
functions as it did for the pointwise approximation of curvature in Chapter 2.

The basis of the construction is a pointwise approximation estimate, which
we derive in Section 3.4. We consider a smooth function u on a smooth sur-
face M , a polyhedral surface Mh that is inscribed to M , and a piecewise linear
function uh on Mh that interpolates u at the vertices of Mh. Then we derive
the bound

∣∣∣∣∆u(x)−
∫
Mh

〈
gradMh

uh, gradMh
ψ
〉
R3 dvolMh

∣∣∣∣ ≤ C (r +
h

r
),

where ψ is a r-local function at y ∈ Mh, x = πM (y) ∈ M , and h is the mesh
size of Mh. The integral above equals the weak Laplace–Beltrami operator
of uh applied to ψ. This means that we can approximate ∆u(x) by testing
the weak Laplace–Beltrami operator of uh with r-local functions. As for the
approximation of the shape operator, the bound improves to C (r2 + h

r ) for
certain r-local functions. The optimal choice of r yields approximation orders
of h

1
2 and h

2
3 , respectively.

The discrete operators ∆h, we want to build, are an endomorphism of Sh.
For the construction, we need a r-local function at every vertex of Mh. Then we
specify the value ∆huh takes at a vertex v by testing the weak Laplace–Beltrami
operator of uh with the function that is r-local at v. From the pointwise ap-
proximation estimates, we deduce approximation estimates for the discrete
Laplace–Beltrami operators in the L∞-norm.

Like the cotan Laplacian, the constructed discrete operators can be expressed
in terms of the cotan weights. We show that they can be represented by a
matrix that is the product of the cotan matrix and a matrix that evaluates
the r-local functions at the vertices of Mh. This representation simplifies the
implementation of the proposed operators, especially when the cotan matrix
is already implemented. Section 3.7 shows numerical experiments that confirm
the established bounds.
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Discrete Willmore energies for polyhedral surfaces

The Willmore energy of a smooth surface M in R3 is the nonlinear geometric
functional

W (M) =

∫
M
H2dvol.

W (M) agrees, modulo multiples of the total Gauß curvature
∫
M K dvol, with

the functionals ∫
M

(κ2
1 + κ2

2)dvol and

∫
M

(κ1 − κ2)2dvol. (1)

The Gauß–Bonnet theorem implies that the total Gauß curvature is constant
under variations of a surface that keep the boundary and tangent planes at the
boundary fixed. Hence, under such boundary constraints a minimizer of the
Willmore energy is also a minimizer of the other two functionals. This means
it has the least curvature (as a minimizer of the first functional in (1)) and the
least difference in the principal curvatures (second functional). In addition, the
second functional in (1) has the remarkable property that it is invariant under
Möbius transformations of R3, see [17].

In Section 3.6, we introduce a construction of discrete Willmore energies
on polyhedral surfaces, and, for inscribed polyhedral surfaces, we establish an
upper bound on the difference of the continuous and discrete Willmore energies.
The construction is based on the discrete strong Laplace–Beltrami operators.
On smooth surfaces, the Willmore energy is linked to the Laplace–Beltrami
operator through the mean curvature vector field H, which is the product
of the mean curvature H and the surface normal field. The mean curvature
vector field equals the Laplace–Beltrami operator of the embedding of the
surface, thus the Willmore energy equals the squared L2-norm of the mean
curvature vector. Since the embedding of a polyhedral surface is continuous
and piecewise linear (hence in the domain of the discrete Laplace–Beltrami
operators), the construction of the discrete Laplace–Beltrami operators extends
to a construction of discrete mean curvature vectors and discrete Willmore
energies. As a direct consequence of the consistency of the discrete Laplace–
Beltrami operators, we obtain estimates for the pointwise approximation of
the mean curvature vector field of a surface. Then we use these facts to prove
consistency of the corresponding discrete Willmore energies. The consistency
order agrees with that of the discrete Laplace–Beltrami operators.

Constraint-based fairing

The fourth chapter is concerned with fairing (or smoothing) of polyhedral
surfaces. We introduce a fairing method that allows us to prescribe a bound
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on the maximum deviation of every vertex of a polyhedral surface from its
initial position. The scheme is modeled as a constrained non-linear optimization
problem, where a discrete fairness energy (e.g., a discrete Willmore energy) is
minimized while inequality constraints ensure that the maximum deviation of
the vertices is bounded.

An important application of surface smoothing is the removal of noise from
3D laser scan data. Though a laser scanner can capture the geometry of an
object with high precision [73], the resulting data still contains noise. Surface
smoothing methods are applied, in a post process, after a surface has been
created from a number of range images. A benefit of our scheme over alternative
approaches is that it can preserve the measuring accuracy of the data while
smoothing out the noise. A second application of our scheme is the removal of
aliasing and terracing artifacts from isosurfaces, which appear when a surface
is extracted from volumetric data. Our scheme assures that the surface remains
within the domain consisting of the voxels that contain the initial surface and
their 1-neighbors. In addition, our scheme was recently applied by Váša and
Rus [104] for removing artifacts induced by quantization of the vertex positions,
which is used for mesh compression. The fairing method offers the benefit that
the vertices are kept within the cubical cells specified by the quantization.

The choice of a numerical solver focuses on two goals: the method should be
able to handle larger data sets and the running time should be comparable to
that of alternative schemes, like those that integrate Willmore flow. We solve
the problem with an active set Newton method with gradient projection.

Related work

The reader may believe that giving a complete overview of the literature on
discrete differential geometry of polyhedral surfaces is hopeless. Instead, we
focus on those developments that have had the most influence on this work.

Curvatures of polyhedral surfaces

Since the classical definition of curvatures does not apply to polyhedral sur-
faces, different concepts for describing their curvature have been introduced.
We distinguish three classes: discrete curvatures, curvature measures, and poly-
nomial surface approximation.

Discrete curvatures. Polyhedral minimal surfaces can be defined as station-
ary points of the area functional with respect to variation of the vertices and
suitable boundary conditions. This definition led to the construction of inter-
esting polyhedral minimal surfaces [91, 71, 93, 92]. In the continuous case, the
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first variation of the area functional satisfies

δV area(M) =

∫
M
〈H, V 〉R3 dvol.

Discretizing this equation by considering variations of the vertices of a poly-
hedral surface yields a discrete mean curvature vector field. Analogous to the
continuous case, the discrete mean curvature vector field agrees with the image
of the embedding of Mh under the cotan Laplacian.

Another prominent example of a discrete curvature is the discrete Gauß
curvature that is defined at any vertex v of a polyhedral surface as the angle
defect, i.e. 2π minus the sum of the angles at v of the triangles that contain v.
There are different ways to motivate this definition, see [7, 8]. One of these uses
the fact that on a smooth surface the integral of the Gauß curvature over a
small enough region equals the signed area of the Gauß image of the region in
the two-sphere S2. For polyhedral surfaces, the latter is a polygon in S2 whose
area equals the angle defect at the vertex. Another motivation is that a discrete
Gauß–Bonnet theorem can be derived based on the discrete Gauß curvature.
Local versions of the discrete Gauß–Bonnet theorem can be formulated using
an appropriate definition of geodesic curvature of polygons on a polyhedral
surface, see [96].

Recently, Bobenko, Pottmann, and Wallner [18] introduced a curvature the-
ory for discrete surfaces based on a notion of mesh parallelity. The discrete
curvatures are defined for pairs of a discrete surface and an edgewise paral-
lel Gauß image. The discrete Gauß and mean curvature are localized at the
faces and defined using the surface area, the area of the Gauß image, and
the mixed area. This curvature theory generalizes and unifies different previ-
ously defined classes of special surfaces including discrete isothermic surfaces
of constant mean curvature [21], discrete minimal surfaces constructed from
orthogonal circle patterns [20], and discrete Delaunay surfaces derived from
elliptic billiards [65].

Curvature measures. Federer [47] introduced the first curvature measures,
which generalize the kth-mean curvatures (i.e. the symmetric polynomials of
degree k in the principal curvatures) of a hypersurface of Rn. They are defined
for subsets of Rn with positive reach, a class that contains smooth submanifolds
and arbitrary convex subsets. The connection of the kth-mean curvature mea-
sures to corresponding classical curvatures can be illustrated by looking at the
curvature measure of a smooth hypersurface M . Then for k ∈ {0, 1, ..., n− 1},
the kth-curvature measure of a Borel set B ⊂ Rn is proportional to the in-
tegral of the kth-mean curvature over M ∩ B. The theory of normal cycles,
see [109, 114, 51, 80], was used to extend the class of sets for which the cur-
vature measures can be defined. The normal cycle is a generalization of the
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normal bundle of a hypersurface and can be defined for a broad class of sub-
sets of Rn that is called geometric sets and includes sets of positive reach and
arbitrary polyhedra. Based on the theory of normal cycles, Cohen–Steiner and
Morvan [32, 33] introduced a new tensor-valued curvature measure, the sec-
ond fundamental measure. A benefit of this measure is that it generalizes the
whole second fundamental form (or shape operator) and not only the scalar-
valued kth-mean curvatures. Moreover, in [33], upper bounds on the difference
(in the sense of measures) of the second fundamental measures of a smooth
hypersurface and a nearby geometric set are derived. The case of a polyhe-
dral surface that approximates a smooth surface was already treated earlier
in [32]. The approximation of curvatures in the sense of measures is similar in
spirit to our approximation of the generalized shape operators in the operator
norm. It is an interesting problem to examine the relationship between the two
concepts.

A discrete net of curvature lines in a smooth surface is a decomposition of
the surface into cells, such that every edge of the decomposition is a segment
of a curvature line of the smooth surface. Bauer et al. [10] defined discrete cur-
vatures of such a net using a local polyhedral approximation, which constructs
a 1-ring of planar triangles around any vertex of the net. They prove pointwise
convergence of discrete curvatures on a net of curvature lines, based on either
the convergence in measure of the curvature measures or the weak convergence
of the discrete mean curvature vector.

Polynomial surface approximation. Given a sampling of a smooth surface,
bivariate polynomial interpolation can be used to estimate the curvatures at
a sample point x. First, a plane P in R3 that contains x and is not parallel
to the surface normal at x (usually an estimation of the tangent plane at x)
is constructed. Locally around x, the smooth surface can be represented as a
graph over P . Then a selection of the sample points is projected onto P and
serves as nodes for a bivariate polynomial interpolation, see [77, 53, 29]. The
curvature at x of the resulting graph is used to approximate the curvature
of the smooth surface at x. Since the sampling is irregular, a problem of this
approach is that the interpolation problem may be ill-conditioned or even may
not have a unique solution, see [111] for an example.

Heine [58] uses isoparametric finite elements (with polynomials of order two
or higher) to obtain pointwise approximations of the curvatures of a smooth
surface. The isoparametric elements are constructed over a polyhedral surface
that approximates the smooth surface. In contrast to the discretizations con-
sidered in this thesis, the isoparametric element scheme requires additional
information about the smooth surface. For example, to construct quadratic el-
ements, the points of the smooth surface corresponding to the midpoints of the
edges of the polyhedral surface are used. The weak formulation of the shape
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operator used in this construction is related to one of our generalized shape
operators.

Discrete Laplace–Beltrami operators

Discrete Laplace–Beltrami operators are basic objects in discrete differential
geometry [23], discrete complex analysis [43, 78], and numerics of geometric
partial differential equations [44]. In addition, different applications in fields
like computer graphics [37, 74], geometry and image processing [97, 26], com-
putational biology [25], and neuroscience [11, 99] use discretizations of the
Laplace–Beltrami operator.

Among the different discretizations of the Laplace–Beltrami operator on
polyhedral surfaces, the cotan Laplacian, is probably the most prominent. Sev-
eral modifications of this discrete operator have been proposed. Based on an
intrinsic Delaunay triangulation of a polyhedral surface, Bobenko and Spring-
born [24] propose a modified cotan Laplacian that has non-negative weights.
This implies that the discrete operator satisfies a maximum principle, which,
in general, is not satisfied by the cotan Laplacian. For an example of a cotan-
discrete minimal surface that does not satisfy the maximum principle, we refer
to [95]. Wardetzky et al. [108] analyze structural properties of discrete Laplace–
Beltrami operators. Building on the continuous setting, they propose a set of
desirable properties for discrete Laplace–Beltrami operators and prove a the-
oretical limitation: discrete Laplacians cannot satisfy all the properties. For
example, the cotan Laplacian satisfies all but one of the properties, namely
the maximum principle. In addition to the analysis, they introduce a construc-
tion of discrete Laplace–Beltrami operators that uses the outer differential of
discrete 1-forms. A discrete Laplace–Beltrami operator is obtained by specify-
ing an L2-product on the space of discrete 1-forms. An extension of this idea
is used by Alexa and Wardetzky [3] to define discrete Laplacians on surfaces
with arbitrary polygonal faces, which may even be non-planar and non-convex.
For extensions of the discrete Laplace–Beltrami operators to discrete Laplace–
de Rham operators that act on discrete k-forms, we refer to [94, 38, 106, 5, 66]
and references therein. Discrete anisotropic Laplace–Beltrami operators were
introduced in [31, 59] in the context of feature preserving surface fairing. Dem-
low [36] constructs discrete Laplace–Beltrami operators using higher-order fi-
nite elements and proves consistency and convergence of the discrete operators.
Similar to the method of Heine for curvature approximation, a piecewise poly-
nomial approximation of a smooth surface is used, where the polynomials are
defined over a polyhedral surface.

To our knowledge, only one other consistent discretization of the strong
Laplace–Beltrami operator on polyhedral surfaces has been proposed besides
our approach. It is called the mesh Laplacian and was introduced by Belkin
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et al. [13]. The construction is based on a discretization of the heat kernel and
is related to graph Laplacians used in data analysis and machine learning [57,
12]. Similar to our approach, the value of ∆u at a point of a smooth surface
is approximated by an integral over a region on a polyhedral surface. The
diameter of the region depends on the size of the heat kernel that is used.
To get convergence, the size of the heat kernel must be asymptotically larger
than the mesh size. The consistency results for the mesh Laplacian have been
generalized by Belkin et al. [14] to point clouds in Rd and by Dey et al. [40] to
convergence of the spectrum of the Laplace–Beltrami operator. In Section 3.5.2,
we discuss this construction and show that the consistency order we obtain
improves the rates established for the mesh Laplacian.

Willmore energy

Boundary value problems for the Willmore energy are of fourth order, which
makes discretizing the Willmore energy and the associated flow on polyhedral
surfaces a difficult task. Based on a discretization of the mean curvature vec-
tor, Hsu, Kusner, and Sullivan [67] introduced a discrete Willmore energy for
polyhedral surfaces and used Brakke’s Surface Evolver [27] to compute mini-
mizers with different genus. Bobenko [19] proposed a discrete Willmore energy
for polyhedral surfaces that preserves the Möbius symmetry of the continu-
ous energy. In [22] the flow of this discrete energy is studied. The question of
whether these discrete energies approximate their smooth counterparts is still
open. Dziuk [45] introduced a consistent discretization of the Willmore energy
for polyhedral surfaces that are inscribed to a smooth surface. However, this
discretization differs from the discrete energies considered in this work. Evalu-
ating the energy requires derivatives of the embedding of the smooth surfaces,
so it cannot be evaluated if only the polyhedral surface is known.

Clarenz et al. [30] use a weak form of the Willmore flow equation for a fi-
nite element discretization. To discretize the fourth-order equation with piece-
wise linear elements over a polyhedral surface, they use a mixed finite element
method with position and mean curvature vector as variables. For alternative
finite element discretizations of the Willmore flow with piecewise linear ele-
ments, we refer to Dziuk [45], Barrett et al. [9], and Olischläger and Rumpf
[88]. A discretization of the Willmore flow with higher-order finite elements
was introduced by Hari et al. [56] and a level set method was used by Droske
and Rumpf [41]. Convergence results for the discretization of the Willmore
flow have been established by Deckelnick and Dziuk [34] for the special case
of surfaces that are graphs over a domain in the plane. For the general case of
parametrized surfaces, such results are still missing.
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Surface fairing

Many methods for surface fairing are based on a parabolic differential equation
that is integrated over a time interval. The length of the integration interval is
a parameter that controls the strength of the fairing effect. Different kinds of
equations have been used, ranging from the linear diffusion of the embedding
of a surface [101] to geometric flows, like the second-order mean curvature
flow [39] and the fourth-order Willmore flow [113, 30, 22, 107]. Anisotropic
geometric diffusion schemes [31, 100, 6, 59, 68] preserve or even enhance fea-
tures, like sharp corners or edges, by locally suppressing or intensifying the
diffusion depending on the principal curvatures and directions. Anisotropic ge-
ometric diffusion derives from the Perona–Malik filter [90] in image processing.
A related technique, the bilateral filter [102], has been transferred to surface
smoothing by Fleishman et al. [49] and Jones et al. [69]. Several extension
and adjustments of the basic bilateral filtering of surfaces have been proposed,
see [112, 16] and references therein. Comparable results can be achieved by
methods based on Wiener filtering [89, 55, 2].

In contrast to schemes that integrate a parabolic equation, constraint-based
fairing methods solve an optimization problem. Weak constraints are used for
the least-square meshes [98, 84] that minimize a weighted sum of two quadratic
energies: the biharmonic energy and a weighted sum of the squared distances of
each vertex to its initial position. Extending this approach, Volodine et al. [105]
present a scheme to compute minimizers of the biharmonic energy under the
constraint that the sum of the squared distances is less than a prescribed value.
Hard constraints have been considered for reducing aliasing effects in isosur-
faces extracted from binary volume data [52, 86]. Similar to our method, these
schemes minimize a fairness energy subject to hard constraints. However, there
are differences. They focus on isosurfaces extracted from a regular grid. For
example, the formulation of the constraints involves the volume grid. Further-
more, they use simpler fairness energies. In [52], a spring energy with zero rest
length is used. As a result, the minimizers are of low regularity, e.g., sharp
bendings appear where the surface touches the constraints. Additionally, the
solvers they apply seem to be less efficient than the solver we propose to use.

Summary of the main achievements

• Since a polyhedral surface has planar triangles, its curvatures are concen-
trated at the edges and vertices. Hence, roughly speaking, they cannot be
described by functions but by distributions. In Chapter 2, we implement
this idea by introducing generalized shape operators that can be defined
rigorously for smooth and polyhedral surfaces.
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• The definition of the generalized shape operators as elements of normed
spaces is chosen such that the distance between the operators of a smooth
and nearby polyhedral surface can be measured. We prove estimates for
the approximation in the operator norm and for the pointwise approxi-
mation of the classical shape operator. To our knowledge, these are the
first pointwise approximation results for the shape operator of a smooth
surface from a nearby polyhedral surface in this generality.

• A construction of consistent discrete strong Laplace–Beltrami operators
on polyhedral surfaces based on the weak Laplace–Beltrami operator is
introduced. Our consistency order largely improves the order that was
established for an alternative approach, the mesh Laplacian.

• Based on the discrete Laplacians, we define a discrete Willmore energy
for polyhedral surfaces and prove its consistency. To our knowledge, this
is the first consistency result for a discrete Willmore energy on polyhedral
surfaces in this generality.

• Our fairing method provides control over the maximum deviation of the
resulting smoothed surface from the input surface. It allows us to re-
move noise from measured surface data while preserving the measuring
accuracy of the data.

Publications

The results presented in this thesis are published in the refereed articles [60],
[61], and [62]. The latter received the Best Paper Award (1st prize) at the
ACM Siggraph/Eurographics Symposium on Geometry Processing 2011. More-
over, results of Chapters 2 and 3 were presented at the Oberwolfach workshop
Discrete Differential Geometry in July 2012 and are summarized in the Ober-
wolfach report [63].

Open problems

Before closing the introduction, we want to mention some open questions and
problems related to this thesis.

• The pointwise approximation results in Chapter 2 and 3 hold for any
choice of a r-local function. We show that the approximation order im-
proves (from h

1
2 to h

2
3 ) if a certain class of r-local functions (those that

have the r2-property) is used. Furthermore, the constant in our estimates
depends on the W 1,1-norm of the r-local function. However, it is unclear
what particular choice of a r-local function yields the best approximation.
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• Are the bounds for the pointwise approximation of the shape operator
and the Laplace–Beltrami operator sharp? In particular, for r-local func-
tions that have the r2-property, our experiments indicate that it may be
possible to prove an approximation order of h.

• We introduce a consistent discretization of the Willmore energy. This
motivates the question of whether convergence of solutions to boundary
value problems for the discrete Willmore energy can be established. More-
over, it would interesting to use the discrete strong Laplace–Beltrami
operators to discretize other fourth-order problems.

• Another interesting question is whether our construction of discrete Will-
more energies could be transferred to a Möbius invariant setting.

• Concerning the fairing of surfaces, an interesting problem is to develop a
strategy for estimating the accuracy of scan data. Combining this with
our fairing method could help to automate the smoothing process.
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1
Polyhedral surfaces in R3

1.1 Topological and simplicial structures

The discrete manifolds we consider are polyhedral surfaces in R3. They carry
a topological and a simplicial structure. The building blocks of a polyhedral
surface are simplices.

Definition 1.1 (simplex) A k-dimensional simplex (or k-simplex) σ in Rn
is the convex hull of a set P of k + 1 affinely independent points in Rn. Any
simplex spanned by a subset of P is called a face of σ.

There are special names for low-dimensional simplices: we call a 2-simplex
a triangle, a 1-simplex an edge, and a 0-simplex a vertex. By gluing together
simplices, we can construct a simplicial complex. We restrict our attention to
finite simplicial complexes.

Definition 1.2 (simplicial complex) A simplicial complex K in Rn is a
finite collection of simplices in Rn satisfying the following conditions:

1. If a simplex is in K, then all its faces are in K.

2. If σ, τ ∈ K are simplices, then σ ∩ τ is a face of σ and of τ .

The dimension of a simplicial complex is the maximum dimension of its
simplices. The (closed) star of a simplex σ in a simplicial complex K is defined
as

star(σ,K) = {τ ∈ K | ∃υ ∈ K that has σ and τ as a face}.
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The underlying space U of a simplicial complex K is the set formed by the
union of all simplices of K equipped with the subspace topology induced from
Rn. A simplicial decomposition of a subspace U of Rn is a simplicial complex K
in Rn such that U is the underlying space of K.

Definition 1.3 (polyhedral surface) A polyhedral surface in Rn is a topo-
logical 2-submanifold of Rn furnished with a simplicial decomposition.

Notation 1.4 Throughout the text, M will denote a smooth and Mh a poly-
hedral surface in R3. Both surfaces are assumed to be compact, connected, ori-
ented, and without boundary. For statements that refer to both types of surfaces
we use the calligraphic letter M to denote the surface.

1.2 Metric and smooth structures

By definition, polyhedral surfaces in R3 are topological submanifolds; but,
in general, they are not smooth submanifolds. Therefore, results of classical
differential geometry are not directly applicable to them. However, polyhedral
surfaces exhibit interesting geometric structures and possess counterparts to
many differential geometric properties of smooth surfaces.

The goal of this section is to equip a polyhedral surface with two differential
geometric structures, namely a smooth structure and a metric tensor field. Let
us begin with a notion of distance between points on the surface. Let M be
a smooth or polyhedral surface in R3. A curve in M is a continuous map γ
from an interval toM; we say that γ is admissible if it is rectifiable as a curve
in R3.

Definition 1.5 (intrinsic distance) The intrinsic distance between two points
x and y in M is

dM(x, y) = inf
γ

length(γ), (1.1)

where the infimum is taken over all admissible curves in M that connect x
and y.

The pair (M, dM) is a metric space, a so-called length space [54]. The intrin-
sic distance of a length space takes the role of the Riemannian distance of a
Riemannian manifold. IfM is a smooth submanifold, the intrinsic distance and
the Riemannian distance coincide. Local isometries of Riemannian manifolds
are usually characterized as diffeomorphisms that preserve the Riemannian
metric. The following lemma shows that they can alternatively be described
as maps that preserve the Riemannian distance function. For a proof we refer
to [28].
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Lemma 1.6 (isometries) A map between two open subsets of Riemannian
manifolds is a diffeomorphism and preserves the Riemannian metric if and
only if it preserves the Riemannian distance.

A minimizing geodesic inM is an admissible curve γ : I 7→ M that satisfies

dM(γ(s), γ(t)) = length(γ|[s,t])

for all s, t ∈ I, where I is an interval in R. The following lemma is a direct
consequence of the Hopf–Rinow theorem for locally-compact length spaces,
which can be found in the book of Gromov [54], and our assumption that M
is compact and connected.

Lemma 1.7 (minimizing geodesics) Any pair of points inM can be joined
by a minimizing geodesic.

Now, we show how to construct an atlas of a smooth (even complex) struc-
ture for a polyhedral surface Mh. The construction follows Troyanov [103]. The
standard cone with angle θ is the set

Cθ = {(r, φ) | r ≥ 0, φ ∈ R/θZ}/
(0,φ)∼(0,φ̃)

equipped with the cone metric ds2 =dr2+r2dφ2. The metric is flat if θ equals 2π
and otherwise has a singularity at the center. The cone Cθ is isometric to C
with the metric ds2 = |z|2β |dz|2, where β = θ

2π − 1. Explicitly, the isometry is
given by

F : Cθ 7→ C

(r, φ) 7→
(
θ

2π
r eiφ

) 2π
θ

.

Every point of Mh has a neighborhood that is isometric to a neighborhood
of the center of a cone Cθ with a certain angle θ. For every vertex v of Mh,
the angle θ of the cone equals the sum of the angles at v of the triangles
incident to v; for all other points, the angle θ of the cone equals 2π. For
any point x ∈ Mh, the concatenation of the local isometry and the map F
establishes a chart for a local neighborhood around x. The transition functions
between the charts around two distinct points are holomorphic maps since
they are compositions of holomorphic functions of the form z 7→ a z + b and
z 7→ zγ , where the domains of functions of the second type do not include
the origin. Hence, we can use these charts to construct an atlas of a smooth
(even complex) structure on Mh. This smooth structure is compatible with the
topology on Mh induced by R3. In fact it is the only smooth structure with
this property. This follows from the work of Munkres [82, 83], who showed that
smooth surfaces that are homeomorphic are also diffeomorphic.



24 1. Polyhedral surfaces in R3

By construction, each of the charts of the atlas is an isometry with respect
to the metric tensor ds2 = |z|2β |dz|2 on C. Therefore, the transition functions
between any pair of charts are isometries (where the values of β and hence the
metrics ds2 on C may be different for the two charts). For any chart, we can
pullback the metric tensor field from the image to the domain, which provides
us with a metric tensor field in local neighborhoods on the polyhedral surface.
Since the transition functions between the charts are isometries, the locally
defined tensor fields consistently describe a metric tensor field gh on Mh. This
metric is flat in the interior of all triangles and edges and has conical singu-
larities at the vertices. Therefore, we call gh the cone metric. The distance
function on Mh derived from this metric tensor agrees with the intrinsic dis-
tance on Mh. Furthermore, for every point in the interior of a triangle, this
tensor agrees with the restriction to the plane of the triangle of the standard
scalar product of R3.

1.3 Lebesgue and Sobolev spaces

The operators that we consider in the following chapters act on Sobolev spaces
of once weakly differentiable functions or vector fields. To be able to define these
operators on a polyhedral surface, we need a theory of Sobolev spaces W 1,p

on polyhedral surfaces. Such a theory was developed by Wardetzky in his
dissertation [106]. In this section, we define the Lebesgue space Lp and Sobolev
spaces W 1,p on polyhedral surfaces, and then extend the construction to spaces
of vector fields.

The area form dvolMh
, induced by the cone metric gMh

, is a Borel regular
measure on Mh. Thus, we can define the function space of Lebesgue-integrable
functions on polyhedral surfaces in the same way as on smooth surfaces. LetM
denote a smooth or polyhedral surface. For any positive integer p < ∞, we
define Lp(M) as the space of measurable functions on M whose pth power is
Lebesgue-integrable, where, as usual, we identify two functions in Lp if they
are equal almost everywhere (a.e.) on M. Equipped with the Lp-norm

‖u‖Lp =

(∫
M
|u|p dvolM

) 1
p

(1.2)

Lp(M) is a Banach space. When p = 2, the space L2(M) is a Hilbert space,
and the scalar product is

〈u, v〉L2 =

∫
M
u v dvolM.

A measurable function u is essentially bounded on M if there exists a con-
stant c for which |u| < c holds a.e. on M. The greatest lower bound of such a
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constant c is called the essential supremum of u, which we abbreviate by ess
supx∈Mh

|u(x)| . The space L∞(M) consists of classes of essentially bounded
functions, where again functions are identified if they agree a.e. on M. The
functional

‖u‖L∞ = ess sup
x∈M

|u(x)| (1.3)

defines a norm on L∞(M) and makes it a Banach space.
The smooth structure, derived in the last section, equips Mh with a tangent

bundle TMh and a notion of smooth tangential vector fields on Mh (the singu-
larities are only visible in the metric, not in the differentiable structure). We
denote by XLp(M) the space of integrable tangential vector fields X on M
whose pointwise norm

√
gM(X,X) is in Lp(M), and we define the norm

‖X‖Lp =
∥∥∥√gM(X,X)

∥∥∥
Lp

on XLp(M). Now, we define a space of test vector fields X(M). For this, we
distinguish between the case whenM is smooth and the case whenM is poly-
hedral. On a smooth surface M , let X(M) be the space of smooth tangential
vector fields. Following [106], we impose additional assumptions on the test
vector fields on Mh, which are needed to control the influence of the cone sin-
gularities. We define X(Mh) to be the space of continuous vector fields on Mh

that are smooth outside the cone singularities and whose pointwise norm and
divergence (both classically defined almost everywhere on Mh) is in L∞(Mh).

Definition 1.8 (Sobolev spaces) For any positive integer p <∞, let W 1,p(M)
be the space of all functions u ∈ Lp(M) for which there exists a vector field
gradu ∈ XLp(M), called the weak gradient of u, that satisfies∫

M
gM(gradu,X) dvolM =

∫
M
u divX dvolM

for all X ∈ X(M). If p = 2, we write H1(M) = W 1,2(M).

The norms and semi-norms on the spaces W 1,p(M) are

|u|W 1,p = ‖gradu‖Lp

and

‖u‖W 1,p =
(
‖u‖pLp + |u|p

W 1,p

) 1
p .

For properties of the weak gradient and the Sobolev space on polyhedral sur-
faces (including the uniqueness of the weak derivative, Rellich’s compactness
lemma, and Poincaré’s inequality) we refer to [106].
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On a smooth surface M , we additionally consider the spaces Ck(M) of k-
times continuously differentiable functions. On C1(M) and C2(M) we define
the semi-norms

|u|C1 = ‖gradu‖L∞ and |u|C2 = ‖hessu‖∞ ,

where hessu denotes the Hessian of u and

‖hessu‖∞ = ess sup
x∈M

max
v,w∈TxM

‖v‖g=‖w‖g=1

|hessu(v, w)| .

Furthermore, on C0(M), C1(M), and C2(M) we consider the norms

‖u‖C0 = ‖u‖L∞ ,

‖u‖C1 = ‖u‖C0 + |u|C1 , and

‖u‖C2 = ‖u‖C1 + |u|C2 .

Then the pairs {C0(M), ‖ ‖C0}, {C1(M), ‖ ‖C1}, and {C2(M), ‖ ‖C2} are Ba-
nach spaces.

1.3.1 Vector fields

In addition to vector fields in the tangent bundle TM, we consider vector
fields in TMR3, the restriction to M of the tangent bundle of ambient R3.
This bundle is trivial and we identify it with M × R3. Then a vector field
in this bundle is a map M 7→ M× R3 that is the identity in the first com-
ponent. To simplify notation, we omit this first component, thus we identify
vector fields in TMR3 with maps from M to R3. For any such vector field X,
we denote by Xi = 〈X, ei〉R3 its components with respect to the standard
basis {e1, e2, e3} of R3. We define XLp(M) and XW 1,p(M) to be the spaces
of vector fields in TMR3 with all three component functions in Lp(M) and
W 1,p(M), respectively. An example of a vector field in TMR3 is the surface
normal field N :M 7→ R3. On a smooth surface M , the components of N are
smooth; on a polyhedral surface Mh, the components of N are constant over ev-
ery triangle and discontinuous at the edges and vertices. For any X ∈ XLp(M),
we denote by X⊥ = 〈X,N〉R3 N the normal component and by X> = X−X⊥
the tangential component of X. Both components, X⊥ and X>, are vector
fields in XLp(M). We denote the subspaces of XLp(M) consisting of vector
fields with vanishing normal or tangential component by X>Lp(M) and X⊥Lp(M),
respectively.

Let I :M 7→ R3 be the embedding of M in R3. Then dI maps vector fields
in TM onto tangential vector fields in TMR3. On a smooth surface M , dI
maps smooth vector fields in TM to smooth vector fields in TMR3. Since the
embedding of a polyhedral surface is only Lipschitz continuous, this is not the
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case for polyhedral surfaces. For example, the image dI(X) of a continuous
vector field X in TMh is, in general, not continuous in TMhR3. However, for
polyhedral and for smooth surfaces, dI is an isometry of the spaces XLp(M)
and X>Lp(M). This implies that the image dI(gradu) of the weak gradient
of a function u ∈ W 1,p(M) is in X>Lp(M). For simplicity, we will identify the
spaces XLp(M) and X>Lp(M); in particular, we will treat the weak gradient of a
function as an element of X>Lp(M). Furthermore, for any point x ∈M at which
the normal vector is defined, we will identify the tangent space TxM with its
image dI(TxM), which is the subspace of R3 that is orthogonal to N(x). We
call the orthogonal complement of TxM in R3 the normal space T⊥xM.

Next, we define the divergence and curl of vector fields in XW 1,p(M).

Definition 1.9 (divergence and curl) The divergence and the curl are the
linear operators

div,curl : XW 1,p(M) 7→ Lp(M)

given almost everywhere on M by

divX =
3∑
i=1

〈gradXi, ei〉R3 (1.4)

and

curlX =
3∑
i=1

〈gradXi × ei, N〉R3 , (1.5)

where × is the cross product of R3 and p <∞ is a positive integer.

On a polyhedral surface Mh, eqs. (1.4) and (1.5) are defined only in the
interior of the triangles. However, this suffices to get well-defined operators div
and curl on XW 1,p(Mh).

Lemma 1.10 The operators div and curl are continuous with operator norm
less or equal to one.

Proof. For any X ∈ XW 1,p(M),

‖divX‖Lp =

∥∥∥∥∥
3∑
i=1

〈gradXi, ei〉R3

∥∥∥∥∥
Lp

≤
3∑
i=1

‖gradXi‖Lp ≤ ‖X‖W 1,p

and

‖curlX‖Lp =

∥∥∥∥∥
3∑
i=1

〈gradXi × ei, N〉R3

∥∥∥∥∥
Lp

≤
3∑
i=1

‖gradXi‖Lp ≤ ‖X‖W 1,p .

This proves the lemma. �
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To motivate the definition, let us consider a smooth surface M and a smooth
vector field X ∈ TMR3. Using the orthogonal projection πM onto M (see
Section 1.5), this field can be extended to a smooth vector field X̃ on a (small
enough) open neighborhood of M in R3 by setting

X̃(x) = X(πM (x)).

Then the classical divergence and curl of X̃ in R3 agree with the divergence
and curl of X for all points of M :

divX =

3∑
i=1

〈gradXi, ei〉R3 =

3∑
i=1

〈
gradR3 X̃i, ei

〉
R3

= divR3 X̃

and

curlX =
3∑
i=1

〈gradXi × ei, N〉R3 =
3∑
i=1

〈
gradR3 X̃i × ei, N

〉
R3

=
〈

curlR3 X̃,N
〉
R3
.

Here we use the property that X̃ is constant along any straight line that
meets M normally. Hence, gradXi = gradR3 X̃i. The extrinsic definitions of
divergence and curl of vector fields in TMR3 are consistent with the intrinsic
definitions of divergence of vector fields in TM in the sense that for any Y ∈
TM , the divergence and curl of Y agree with the divergence and curl of the
corresponding field dI(Y ). Since we identify Y and dI(Y ), we also use the same
notation for the intrinsically defined and the extrinsically defined divergence.
We want to remark that the extrinsic definition of a divergence of vector fields
in TMR3 is also known as the tangential divergence, see [46].

The contribution of the normal component of a vector field X to the diver-
gence has a simple geometric interpretation

divX⊥ = 〈grad 〈X,N〉R3 , N〉R3 + 〈X,N〉R3 divN = −H 〈X,N〉R3 , (1.6)

where H is the mean curvature of M (see Section 1.4). Furthermore, on smooth
surfaces the divergence and the curl of X are related by

curlX = div (X ×N). (1.7)

This implies that the curl of a normal vector field vanishes,

curlX = curlX>. (1.8)

In Lemma 2.5, we establish error estimates for the approximation of divergence
and curl of a smooth surface by the divergence and curl of polyhedral surfaces.
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1.4 Shape operator of smooth surfaces in R3

Let D denote the flat connection of R3. Since the surface normal field N of
a smooth surface M has constant length and points in the normal direction,
for every tangential vector field X ∈ X>(M), the derivative DXN is again
a tangential vector field. The shape operator (or Weingarten map) S is the
tensor field

S : X>(M) 7→ X>(M) (1.9)

X 7→ −DXN.

A basic property of the shape operator is that for every x ∈ M , S(x) is
self-adjoint with respect to the scalar product on TxM inherited from R3.
The eigenvalues and eigendirections of S(x) are the principal curvatures κi(x)
and the principal curvature directions of M at x, and we call κmax(x) =
max{|κ1(x)| , |κ2(x)|} the maximum curvature at x. Furthermore, the trace
and the determinant of S(x) are called the mean curvature and the Gauß
curvature of M at x and are denoted by H(x) and K(x).

In the following chapter, we will consider vector fields that are not necessarily
tangential. Then it is convenient to consider an extended shape operator that
is defined on X (M). For simplicity of presentation, we denote both operators
by S and rely on the context to make the distinction. The extended shape
operator is defined by

S : X (M) 7→ X (M)

X 7→ −DX>N.

The extended operator agrees with the classical operator for tangential vector
fields, and normal vector fields are in its kernel.

1.5 Polyhedral surfaces near smooth surfaces

In the previous sections, we constructed a metric tensor and function spaces
on polyhedral surfaces. In this section, we consider a polyhedral surface that
approximates a smooth surface and analyze relations between corresponding
metric properties and function spaces. First, we use the orthogonal projection
onto the smooth surface to obtain a bi-Lipschitz mapping between the surfaces.
Considering this map for comparing two surfaces, where one of them is smooth,
is common practice, see [44, 64, 80, 66]. Using this map, we pullback the metric
tensor gMh

of the polyhedral surface to the smooth surface. The difference
between the two metric tensors on M can be described by a symmetric tensor
field, the metric distortion tensor. In Section 1.5.5, we follow [64] and derive a
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FIGURE 1.1. An illustration of the correspondence between the smooth and the poly-
hedral surface is shown. The correspondence is obtained by restricting the orthogonal
projection onto M to the surface Mh.

closed form representation of the this tensor in terms of the Hausdorff distance,
the normal distance, and the curvature of M . Again following [64], we show
in Section 1.5.6 that the pullback of functions via the orthogonal projection
induces an isomorphism of corresponding function spaces Lp and W 1,p on the
two surfaces.

1.5.1 Orthogonal projection onto M

Let M be a compact smooth surface in R3. The distance function δM : R3 7→
R+

0 is defined as

δM (y) = inf
x∈M
‖x− y‖R3 . (1.10)

Since M is compact, for every y ∈ R3 there is at least one point x ∈ M that
attains the minimum distance to y. Then the straight line passing through x
and y meets M orthogonally; therefore, x is called an orthogonal projection of y
onto M . In general, x is not unique with this property; however, there exists an
open neighborhood UM of M in R3, such that every point of UM has a unique
orthogonal projection onto M . The induced projection map πM : UM 7→ M is
smooth, a proof of this is contained in a note by Foote [50].

1.5.2 Reach of a surface

The reach of M is the supremum of all positive numbers r such that the
orthogonal projection onto M is unique in the open r-tube around M , where
an open r-tube around M is the set of all points y in R3 that fulfill δM (y) < r.
Locally around a point x ∈M , the reach equals the reciprocal of κmax(x). As
a consequence, the reach of M is bounded above by

reach(M) ≤ inf
x∈M

1

κmax(x)
. (1.11)
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The inequality is strict, e.g. equality holds if M is a sphere in R3, but in general
the reach additionally depends on global properties of the surface. Still, every
embedded compact smooth surface has positive reach. For a general treatment
of sets with positive reach we refer to the book of Federer [48].

1.5.3 Differential of the projection map

Let y be a point in the open reach(M)-tube around M and let x = πM (y) be
the projection of y onto M . The signed distance of y to M is

σM (y) = 〈y − πM (y), N(x)〉R3 . (1.12)

Differentiating this equation at y into a direction v ∈ R3 yields

dyσM (v) = 〈N(πM (y)), v〉R3 , (1.13)

where we apply the fact that the images of DN and dπM are orthogonal to N
and y − πM (y) is parallel to N . Using the signed distance function, we can
represent the projection πM as

πM (y) = y − σM (y) N(πM (y)). (1.14)

Differentiation of this equation yields

dyπM (v) = v − dyσM (v)N(x)− σM (y) DdyπM (v)N.

Using the definition of the shape operator (1.9) and equation (1.13), we get

(Id− σM (y)S(x))dyπM = Id− 〈N(x), ·〉R3 N(x). (1.15)

The right-hand side of this equation describes the orthogonal projection in R3

onto the tangent plane TxM .

1.5.4 Normal graphs

Let us consider a polyhedral surface Mh that approximates a smooth surface M
and use the orthogonal projection onto M to construct a map between the
surfaces.

Definition 1.11 (normal graphs) A polyhedral surface Mh is a normal graph
over a smooth surface M if Mh is a subset of the open reach(M)-tube around M
and the restriction of the projection map πM to Mh is a bijection. We denote
the restricted projection map by Ψ. Furthermore, we denote by Φ the inverse
map of Ψ, which parametrizes Mh over M .
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The parametrization Φ of any normal graph Mh over M can be written as

Φ(x) = I(x) + φ(x)N(x),

where I is the embedding of M and

φ(x) = σM (Φ(x)).

We will use the map Φ to pullback functions, vector fields, and tensors from Mh

to M . We will add the subindex “Mh” to objects defined on Mh and the
subindex “h” to the pullback to M of such an object. For example, we denote
the surface normal of M by N , the surface normal of Mh by NMh

, and the
pullback to M of NMh

by Nh = NMh
◦ Φ.

Let x ∈ M be a point such that Φ(x) is in the interior of a triangle of Mh.
Then Nh(x) is well-defined, and TxM and TΦ(x)Mh are the subspaces of R3

orthogonal to N(x) and Nh(x), respectively. As a tool in the proofs in this
chapter, we will use the following projections

PNh(x) : TxM 7→ TΦ(x)Mh (1.16)

PNh(x)(v) = v − 〈v,Nh(x)〉R3 Nh(x)

and

PN(x) : TΦ(x)Mh 7→ TxM (1.17)

PN(x)(w) = w − 〈w,N(x)〉R3 N(x).

By the definition of normal graphs, N(x) and Nh(x) are never orthogonal.
Thus, both maps have full rank and the inverse maps

P−1
Nh(x) : TΦ(x)Mh 7→ TxM (1.18)

P−1
Nh(x)(w) = w −

〈w,N(x)〉R3

〈N,Nh(x)〉R3

Nh(x)

and

P−1
N(x) : TxM 7→ TΦ(x)Mh (1.19)

P−1
N(x)(v) = v −

〈v,Nh(x)〉R3

〈N,Nh(x)〉R3

N(x)

exist.

Lemma 1.12 The map Ψ is a homeomorphism of Mh and M , and for every
triangle T ∈ Mh the restriction of Ψ to the interior of T is a diffeomorphism
onto its image.
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Proof. We first show that Ψ is a homeomorphism. Ψ is continuous, because it is
the restriction to Mh of the smooth map πM , and Ψ is bijective by assumption.
Now we only need to show that Ψ is a closed map. Since Mh is compact, a
closed subset A of Mh is compact; and since Ψ is continuous, Ψ(A) is compact
in M and hence Ψ(A) is closed.

To prove the second part of the lemma, consider a point y in the interior of
a triangle T of Mh with corresponding point x = Ψ(y). The differential of Ψ
at y equals the restriction of dyπM to TyMh. From equation (1.15) we get

dyΨ(v) = (Id− φ(x) S(x))−1PN(x)(v), (1.20)

for any v ∈ TyMh. As stated above, PN(x) has full rank and Id−σM S has full
rank by equation (1.11). This means that dyΨ has full rank, and consequently,
the restriction of Ψ to the interior of T is a diffeomorphism onto its image. �

1.5.5 Metric distortion

Let us consider a polyhedral surface Mh that is a normal graph over a smooth
surface M . Using the bijection Φ, we can compare the metrics g of M and gMh

of Mh. For this, we pullback the metric gMh
to M , i.e., we consider the metric

gh(X,Y ) = gMh
(dΦX,dΦY ) = 〈dΦX,dΦY 〉R3 , (1.21)

which is defined almost everywhere on M . Then there exists a uniquely defined
(almost everywhere on M) g-symmetric tensor field A, that satisfies

gh(X,Y ) = g (AX,Y ) = 〈AX,Y 〉R3 a.e. (1.22)

for all tangential vector fields X,Y on M . We call this tensor field the metric
distortion tensor A. The following theorem describes a representation of the
tensor in terms of the pointwise distance of the surfaces, the shape operator
of M , and the projections PN and PNh . This representation will be a basic
ingredient for the proofs of bounds on the approximation of metric properties
of a smooth surface by those of a polyhedral normal graph.

Theorem 1.13 (distortion tensor) Consider a polyhedral surface Mh that
is a normal graph over a smooth surface M . Then the metric distortion tensor
satisfies

A = (Id− φS)(PN ◦ PNh)−1(Id− φS) (1.23)

almost everywhere on M , and there are (possibly different) orthonormal frames
in which Id− φS and PN ◦ PNh are represented by the matrices(

1− φκ1 0
0 1− φκ2

)
and

(
〈N,Nh〉2R3 0

0 1

)
, (1.24)

respectively.
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Proof. Equation (1.20) implies

dΦ = P−1
N (Id− φS) a.e.,

where P−1
N is defined in (1.19). From the explicit representations of the inverse

of P−1
Nh

and P−1
N , see (1.18) and (1.19), we get

〈
P−1
N X,P−1

N Y
〉
R3 =

〈
P−1
N X,Y −

〈Y,Nh〉R3

〈N,Nh〉R3

N

〉
R3

=
〈
P−1
N X,Y

〉
R3 −

〈Y,Nh〉R3

〈N,Nh〉R3

〈
P−1
N X,N

〉
R3

=

〈
P−1
N X −

〈
P−1
N X,N

〉
R3

〈N,Nh〉R3

Nh, Y

〉
R3

=
〈
P−1
Nh

(
P−1
N X

)
, Y
〉
R3
.

=
〈
(PN ◦ PNh)−1X,Y

〉
R3 .

Using the fact that Id and S are self-adjoint yields

〈dΦX,dΦY 〉R3 =
〈
P−1
N (Id− φS)X,P−1

N (Id− φS)Y
〉
R3

=
〈
(PN ◦ PNh)−1(Id− φS)X, (Id− φS)Y

〉
R3

=
〈
(Id− φS)(PN ◦ PNh)−1(Id− φS)X,Y

〉
R3

= 〈AX,Y 〉R3 .

The matrix representation of Id − φS follows directly from the definition of
the principal curvatures. The length of PNNh satisfies

‖PNNh‖2R3 = 〈Nh − 〈Nh, N〉R3 N,Nh − 〈Nh, N〉R3 N〉R3

= 1− 〈N,Nh〉2R3 .

Then

PN ◦ PNh(X) = PN (X − 〈X,Nh〉R3 Nh)

= X − 〈X,Nh〉R3 Nh − 〈X − 〈X,Nh〉R3 Nh, N〉R3 N

= X − 〈X,Nh〉R3 Nh − 〈X,N〉R3 N + 〈X,Nh〉R3 〈Nh, N〉R3 N

= X − 〈X,Nh〉R3 (Nh − 〈Nh, N〉R3 N)

= X − 〈X,Nh − 〈Nh, N〉R3 N〉R3 (Nh − 〈Nh, N〉R3 N)

= X − 〈X,PNNh〉R3 PNNh

= X − (1− 〈N,Nh〉2R3)

〈
X,

PNNh

‖PNNh‖R3

〉
R3

PNNh

‖PNNh‖R3

.
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Hence, the matrix representation of PN ◦ PNh in the frame { PNNh
‖PNNh‖R3

, N ×
PNNh

‖PNNh‖R3
} has the above-stated form. �

The area distortion is measured by a function α that is given almost every-
where on M by

dvolh = α dvol. (1.25)

Corollary 1.14 (area distortion) The area distortion α satisfies

α =
1− φH + φ2K

〈N,Nh〉R3

(1.26)

almost everywhere on M .

Proof. The area distortion equals the determinate of the metric distortion,

α =
√

detA.

Thus, (1.26) follows from

detA =
det(Id− φS)2

det(PN ◦ PNh)
,

where we use the representation of A derived in Theorem 1.13. �

1.5.6 Isomorphy of function spaces

The pullback of functions (via orthogonal projection onto M) allows us to pull-
back functions on Mh to M . In this section, we show that this map establishes
an isomorphism between the function spaces Lp and W 1,p on M and Mh. Let
us start with a definition.

Definition 1.15 (isomorpic spaces) A continuous linear operator L : V 7→
W between to Banach spaces is an isomorphism if it is bijective and the inverse
is continuous. If there exits an isomorphism between two Banach spaces, then
they are called isomorphic.

Lemma 1.16 (isomorphy of Lebegues spaces) Let Mh be a normal graph
over M , and let Ψ be the restriction to Mh of the orthogonal projection onto M .
Then the pullback of functions, u 7→ u ◦ Ψ, is an isomorphism of Lp(M)
and Lp(Mh) for 1 ≤ p <∞.

Proof. Let u be in Lp(M). Since Ψ is continuous, u◦Ψ is measurable. The Lp-
norm of u ◦Ψ can be expressed using the metric distortion tensor

‖u ◦Ψ‖Lp(Mh) =

(∫
M
|u|p α dvol

) 1
p

. (1.27)
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Then, using equation (1.27) and Hölder’s inequality, we get

‖u ◦Ψ‖pLp(Mh) =

∫
M
|u|p α dvol

≤ ‖α‖L∞
∫
M
|u|p dvol

= ‖α‖L∞ ‖u‖
p
Lp(M) .

Thus the pullback is a well-defined and continuous operator from Lp(M) to
Lp(Mh). The inverse of the pullback is the operator that maps v to v ◦Φ. Since
Φ is continuous, v ◦ Φ is measurable for any v ∈ Lp(Mh). Furthermore,

‖u ◦Ψ‖pLp(Mh) =

∫
M
|u|p α dvol

≥ 1

‖α−1‖L∞

∫
M
|u|p dvol

=
∥∥α−1

∥∥−1

L∞
‖u‖pLp(M) .

Thus, the inverse operator is well-defined and continuous. �
We omit a proof of the next lemma and refer to [106] instead.

Lemma 1.17 (isomorphy of Sobolev spaces) Let Mh be a normal graph
over M , and let Ψ be the restriction to Mh of the orthogonal projection onto M .
Then the pullback of functions, u 7→ u ◦ Ψ, is an isomorphism of W 1,p(M)
and W 1,p(Mh) for 1 ≤ p <∞.

The gradients of a function u ∈ W 1,p(M) with respect to the metrics g
and gh are related by

gradh u = A−1gradu.

Furthermore, for any point x ∈M such that Φ(x) is in the interior of a triangle
of Mh, gradu at x and gradMh

(u ◦Ψ) at Φ(x) satisfy

gradMh
(u ◦Ψ)(Φ(x)) = dxΦ gradh u(x)

= dxΦA−1gradu(x) (1.28)

= PNh(x)(Id− φ(x)S(x))−1gradu(x).

Then for any function u ∈W 1,p(M), the W 1,p-norm of u ◦Ψ is given by

‖u ◦Ψ‖p
W 1,p(Mh)

= ‖u ◦Ψ‖pLp(Mh) +
∥∥gradMh

(u ◦Ψ)
∥∥p
Lp(Mh)

=

∫
M
|u|p α dvol +

∫
M

∥∥PNh(Id− φS)−1gradu
∥∥p
R3 α dvol

=

∫
M
|u|p α dvol +

∫
M

〈
A−1 gradu, gradu

〉 p
2

R3 α dvol.
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Lemma 1.18 (equivalence of Sobolev semi-norms) Let 1 ≤ p < ∞ and
u ∈W 1,p(M). Then

cW |u|pW 1,p ≤ |u ◦Ψ|p
W 1,p(Mh)

≤ CW |u|pW 1,p , (1.29)

where cW =
∥∥α−1

∥∥−1

L∞
‖A‖−

p
2∞ and CW = ‖α‖L∞

∥∥A−1
∥∥ p2
∞.

Proof. The semi-norm of u ◦Ψ is

|u ◦Ψ|p
W 1,p(Mh)

=
∥∥gradMh

(u ◦Ψ)
∥∥p
Lp(Mh)

. (1.30)

Using Hölder’s inequality, we get

∥∥gradMh
(u ◦Ψ)

∥∥p
Lp(Mh)

=

∫
M

〈
A−1 gradu, gradu

〉 p
2

R3 α dvol

≤ ‖α‖L∞
∥∥A−1

∥∥ p2
∞

∫
M
〈gradu, gradu〉

p
2

R3 dvol

= ‖α‖L∞
∥∥A−1

∥∥ p2
∞ ‖gradu‖pLp

and ∥∥gradMh
(u ◦Ψ)

∥∥p
Lp(Mh)

=

∫
M

〈
A−1 gradu, gradu

〉 p
2

R3 α dvol

≥
∥∥α−1

∥∥−1

L∞
‖A‖−

p
2∞

∫
M
〈gradu, gradu〉

p
2

R3 dvol

=
∥∥α−1

∥∥−1

L∞
‖A‖−

p
2∞ ‖gradu‖pLp .

�

Remark 1.19 Isomorphy of the spaces XLp(M) and XW 1,p(M) and their re-
spective counterparts XLp(Mh) and XW 1,p(Mh) directly follows from isomorphy
of the functions spaces.

1.6 Approximation of the metric tensor

After having introduced the metric distortion tensor in the last section, we now
define quantitative measures for the metric distortion, the area distortion, the
distance of the surfaces and their normal vector fields. Then in Section 1.6.3,
we derive explicit upper bounds on the metric distortion, the area distortion,
and a third term (which, as we will see in Chapter 3, is the norm of the
difference of weak Laplace–Beltrami operators of M and Mh). The estimates
are a quantitative version of convergence results derived in [64].



38 1. Polyhedral surfaces in R3

1.6.1 Spatial distance of M and Mh

Since Mh is a normal graph over M , the height of Mh over M , given by
supx∈Mh

δM (x), is a canonical measure for the spatial distance of M and Mh.
This is confirmed by the following lemma, which states that the height agrees
with the Hausdorff distance and the Fréchet distance of M and Mh.

Lemma 1.20 (equivalence of distances) Let Mh be a normal graph over
a smooth surface M and let δH(M,Mh) and δF (M,Mh) denote the Hausdorff
distance and the Fréchet distance of M and Mh. Then we have

δH(M,Mh) = δF (M,Mh) = sup
x∈Mh

δM (x).

Proof. Since Ψ is a homeomorphism of Mh and M , we have

δF (M,Mh) ≤ sup
x∈Mh

δM (x).

By definition, the Hausdorff distance of M and Mh is the maximum of

sup
x∈Mh

δM (x) and sup
x∈M

inf
y∈Mh

‖x− y‖R3 .

Hence, we have
sup
x∈Mh

δM (x) ≤ δH(M,Mh).

Furthermore, the Hausdorff distance of two surfaces is smaller than their
Fréchet distance,

δH(M,Mh) ≤ δF (M,Mh).

The combination of the three inequalities proves the lemma. �
For our purposes, we prefer to use, instead of the height, the relative height

of Mh over M
δ(M,Mh) = sup

x∈Mh

(δM (x)κmax(Ψ(x))) , (1.31)

which measures the height relative to the curvature of M . The resulting state-
ments do not lose generality, since for any smooth surface M , the relative
height of every normal graph Mh over M is bounded by a constant times its
height,

δ(M,Mh) ≤ ‖κmax‖L∞ sup
x∈Mh

δM (x), (1.32)

where ‖κmax‖L∞ < ∞ since M is compact. The converse inequality does not
hold in general, e.g., the relative height of two parallel planes vanishes whereas
the height can be arbitrarily large. The relative height has some more prop-
erties: since Mh is in the open reach(M)-tube around M , we have δM (x) <
(κmax(Ψ(x)))−1 for all x ∈ Mh, which implies δ(M,Mh) ∈ [0, 1). Further-
more, δ(M,Mh) is invariant under scaling of M and Mh.
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1.6.2 Distances of vectors and tensors on M

To compare objects on M and Mh, like vector fields or tensor fields, we pullback
the object from Mh to M . Our convention is to denote the pullback of the
object with a subscript “h” (see Section 1.5.4). Then the distance between the
objects can be measured with an appropriate norm on M . We call the distance

‖N −Nh‖L∞

the normal distance of M and Mh. For any (sufficiently regular) (1, 1)-tensor
field T on M , we define

‖T‖∞ = ess sup
x∈M

max
v∈TxM
‖v‖g=1

‖T v‖g .

Then the norm of A − Id is a measure for the metric distortion between M
and Mh

‖A− Id‖∞ = ess sup
x∈M

max
v∈TxM
‖v‖g=1

‖(A− Id) v‖g

= ess sup
x∈M

max
v,w∈TxM

‖v‖g=‖w‖g=1

|g((A− Id) v, w)|

= ess sup
x∈M

max
v,w∈TxM

‖v‖g=‖w‖g=1

|g(Av,w)− g(v, w)|

= ess sup
x∈M

max
v,w∈TxM

‖v‖g=‖w‖g=1

|gh(v, w)− g(v, w)| .

Similarly, ‖α− 1‖L∞ measures the area distortion between M and Mh

‖α− 1‖L∞ = ess sup
x∈M

max
v,w∈TxM

‖v‖g=‖w‖g=1

|dvol(v, w)− dvolh(v, w)| .

1.6.3 Bounds on the metric distortion

Now that we have defined measures for the metric and area distortion the
spatial and normal distance on the surfaces, we can formulate bounds on the
on the metric and area distortions in terms of the relative height of the surfaces.

Definition 1.21 (ε-normal graph) A polyhedral surface Mh is an ε-normal
graph over a smooth surface M if Mh is a normal graph over M and satis-
fies δ(M,Mh) < ε and ‖N −Nh‖L∞ <

√
2ε.

Theorem 1.22 (approximation of metric tensor) Let M be a smooth sur-
face in R3. Then for every ε ∈ (0, 1) there exists a constant C such that for



40 1. Polyhedral surfaces in R3

every polyhedral surface Mh that is an ε-normal graph over M , the estimates

‖A− Id‖∞ ≤ C (δ(M,Mh) + ‖N −Nh‖2L∞), (1.33)

‖α− 1‖L∞ ≤ C (δ(M,Mh) + ‖N −Nh‖2L∞), and (1.34)∥∥αA−1 − Id
∥∥
∞ ≤ C (δ(M,Mh) + ‖N −Nh‖2L∞) (1.35)

hold. The constant C depends only on ε.

Proof. From Theorem 1.13, we know that A can be constructed from the
tensors (Id − φS) and (PN ◦ PNh)−1. Let us consider these two tensors first.
The estimate

‖φS‖∞ ≤ δ(M,Mh)

follows directly from the definition of δ(M,Mh). At any point of M where Nh

is defined, the eigenvalues of (PN ◦ PNh)−1 are 1 and 〈Nh, N〉−2
R3 . By our as-

sumption that ‖N −Nh‖L∞ <
√

2ε, we have

〈N,Nh〉R3 =

(
1− 1

2
‖N −Nh‖2R3

)
>
(
1− ε2

)
.

Then ∥∥(PN ◦ PNh)−1 − Id
∥∥
∞ =

∥∥∥1− 〈Nh, N〉−2
R3

∥∥∥
L∞

≤
∥∥∥〈Nh, N〉−2

R3

∥∥∥
L∞

∥∥∥1− 〈N,Nh〉2R3

∥∥∥
L∞

≤
(
1− ε2

)−2 ‖(〈Nh, N〉R3 + 1)(〈Nh, N〉R3 − 1)‖L∞
≤ 2

(
1− ε2

)−2 ‖〈Nh, N〉R3 − 1‖L∞
≤
(
1− ε2

)−2 ‖N −Nh‖2L∞ ,

where we use
‖N −Nh‖2R3 = 2(1− 〈N,Nh〉R3)

in the last step. Now, we prove the first estimate

‖A− Id‖∞ =
∥∥(Id− φS)(PN ◦ PNh)−1(Id− φS)− Id

∥∥
∞

=
∥∥(Id− φS)((PN ◦ PNh)−1 − Id)(Id− φS) + (Id− φS)2 − Id

∥∥
∞

≤ ‖Id− φS‖2∞
∥∥(PN ◦ PNh)−1 − Id

∥∥
∞ +

∥∥(Id− φS)2 − Id
∥∥
∞

≤ C (δ(M,Mh) + ‖N −Nh‖2L∞),

where C is a constant that depends only on ε.
To verify the second estimate, we use the representation (1.26) of α. Our

assumptions directly imply

‖φH‖L∞ < 2 δ(M,Mh),
∥∥φ2K

∥∥
L∞
≤ δ(M,Mh)2 < ε δ(M,Mh)
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and we get

‖α− 1‖L∞ =

∥∥∥∥1− φH + φ2K

〈N,Nh〉R3

− 1

∥∥∥∥
L∞

≤
∥∥∥〈N,Nh〉−1

R3

∥∥∥
L∞

(
‖1− 〈N,Nh〉R3‖L∞ +

∥∥φH + φ2K
∥∥
L∞

)
(1.36)

≤ 1

1− ε2

(
1

2
‖N −Nh‖2L∞ + (2 + ε)δ(M,Mh)

)
.

The inverse of A is defined in the interior of the triangles and is given by

A−1 = (Id− φS)−1PN ◦ PNh(Id− φS)−1.

By construction of the projections PN and PNh , the map PN ◦ PNh satisfies

‖PN ◦ PNh‖∞ ≤ 1.

At any point of M , the map (Id − φ(x)S(x))−1 has the same eigenvectors as
the shape operator S(x), and the corresponding eigenvalues are

λi(x) =
1

1− φ(x)κi(x)
.

This implies ∥∥(Id− φS)−1
∥∥
∞ ≤

1

1− ε

since, by our assumptions, |φ(x)κi(x)| < ε for all x ∈M and ε < 1. Using the
representation of A−1 and the two estimates, we get∥∥A−1

∥∥
∞ ≤

∥∥(Id− φS)−1
∥∥2

∞ ‖PN ◦ PNh‖∞

≤
∥∥(Id− φS)−1

∥∥2

∞ ≤
(

1

1− ε

)2

.

Now, we can verify the third estimate∥∥αA−1 − Id
∥∥
∞ ≤ ‖α ‖L∞

∥∥A−1 − Id
∥∥
∞ + ‖α − 1‖L∞

≤ ‖α ‖L∞
∥∥A−1

∥∥
∞ ‖A− Id‖∞ + ‖α − 1‖L∞

≤ C (δ(M,Mh) + ‖N −Nh‖2L∞).

In the last step, we use the estimates established above. This completes the
proof. �
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1.7 Inscribed polyhedral surfaces

In this section, we specialize the approximation estimates to polyhedral sur-
faces whose vertices lie on the smooth surface M , the so-called inscribed poly-
hedral surfaces. The resulting bound depends on the mesh size of Mh instead
of the relative height and the normal distance of the surfaces.

Definition 1.23 (inscribed surfaces) We call a polyhedral surface Mh in-
scribed to a smooth surface M if Mh is a normal graph over M and all vertices
of Mh are on the surface M .

For a triangle Th of a polyhedral surface Mh, let rcirc(Th) and rin(Th) denote
the circumradius and the inner radius of Th. We define the mesh size h and
the shape regularity ρ of Mh as

h = max
Th∈Mh

rcirc(Th) and ρ = max
Th∈Mh

rcirc(Th)

rin(Th)
.

For inscribed polyhedral surfaces, the relative height, δ(M,Mh), and the ap-
proximation of the normals, ‖N −Nh‖L∞ , can be bounded above in terms of
the mesh size h, the shape regularity ρ, and properties of M , compare [85, 4,
81, 80]. We summarize this in the following lemma.

Lemma 1.24 (approximation of normals) Let M be a smooth surface in R3.
Then there exists an h0 ∈ R+ such that, for every polyhedral surface Mh that
is inscribed to M and satisfies h < h0, the inequalities

δ(M,Mh) ≤ C h2 (1.37)

and
‖N −Nh‖L∞ ≤ C h (1.38)

hold, where the constant C depends only on M , h0, and ρ.

For inscribed polyhedral surfaces, we can formulate the bounds on the metric
distortion in terms of the mesh size h instead of δ(M,Mh) and ‖N −Nh‖L∞ .

Lemma 1.25 (approximation of metric tensor) Let M be a smooth sur-
face in R3. Then there exists a h0 ∈ R+ such that for every polyhedral sur-
face Mh that is inscribed to M and has mesh size h < h0, the estimates

‖A− Id‖∞ ≤ C h
2, (1.39)

‖α− 1‖L∞ ≤ C h
2, and (1.40)∥∥αA−1 − Id

∥∥
∞ ≤ C h

2 (1.41)

hold, where the constant C depends only on M , h0, and ρ.

The lemma directly follows from combining Theorem 1.22 and Lemma 1.24.
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Generalized shape operators

2.1 Definition of the generalized shape operators

In classical differential geometry, the curvature of a surface in R3 is described by
the shape operator. While the metric tensor is characterized by first derivatives
of the embedding of the surface, the shape operator requires second derivatives.
Since polyhedral surfaces in R3 are only Lipschitz submanifolds, the classical
shape operator is not defined for them. In this section, we introduce two gen-
eralized shape operators that can be defined on polyhedral surfaces. They
describe the curvatures of a surface in the sense of distributions. Hence, we
can not evaluate the generalized shape operators at a single point, but we can
test them with certain functions. However, as we will see in Section 2.4, the
generalized shape operator on a polyhedral surface can be used to approximate
the classical shape operator of a nearby smooth surface.

Definition 2.1 (generalized shape operators) We define the generalized
shape operators Σ̄ and Σ̂ on a smooth or polyhedral surface M to be the linear
operators

Σ̄ : XW 1,1(M) 7→ R3 X 7→
∫
M
N divX dvol

and

Σ̂ : XW 1,1(M) 7→ R3 X 7→ −
∫
M
N curlX dvol.

The next lemma shows that Σ̄ and Σ̂ are elements of the normed space
L(XW 1,1(M),R3) of continuous linear maps from XW 1,1(M) to R3.
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Lemma 2.2 The operators Σ̄ and Σ̂ are continuous.

Proof. Consider a vector field X ∈ XW 1,1 . Using Hölder’s inequality we have

∥∥Σ̄(X)
∥∥
R3 =

∥∥∥∥∫
M
N divX dvol

∥∥∥∥
R3

≤ ‖N‖L∞ ‖divX‖L1 ≤ ‖X‖W 1,1

and ∥∥∥Σ̂(X)
∥∥∥
R3

=

∥∥∥∥∫
M
N curlX dvol

∥∥∥∥
R3

≤ ‖N‖L∞ ‖curlX‖L1 ≤ ‖X‖W 1,1

which proves the lemma. �
To motivate the definition, we consider a smooth surface M and discuss the

connection of the generalized shape operators to the classical shape operator.
For this we consider the two (1, 1)-tensor fields S̄, Ŝ : X (M) 7→ X (M) given
by

S̄ : X 7→ S(X>)−HN 〈X,N〉 (2.1)

and

Ŝ : X 7→ S(N ×X). (2.2)

The tensor S̄ agrees with the shape operator S for tangential vector fields,
and it multiplies the normal part of a vector field by the negative of the mean
curvature. Applying the tensor field Ŝ to a vector field equals first removing
the normal part, then rotating the remaining tangential vectors by π

2 in the
corresponding tangent planes and applying the shape operator S to the result.
At a point x ∈ M , let b1 and b2 be unit vectors that point into the principal
curvature directions in TxM . Then in the basis {b1, b2, N} of R3, the matrix
representations of S̄(x) and Ŝ(x) areκ1(x) 0 0

0 κ2(x) 0
0 0 −H(x)

 and

 0 −κ2(x) 0
κ1(x) 0 0

0 0 0

 .

The tensors have the property that if at a point x ∈M , the surface normalN(x)
and either of S̄(x) or Ŝ(x) is known, one can construct the shape operator S(x)
by simple algebraic operations. This property will be important when we dis-
cuss the pointwise approximation of the shape operator.

The following lemma reveals a connection of the tensors S̄, Ŝ and the oper-
ators Σ̄, Σ̂.

Lemma 2.3 The tensor field S̄ is the only continuous (1, 1)-tensor field in TMR3

that satisfies ∫
M
S̄ X dvol = Σ̄(X) (2.3)
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for all X ∈ X (M) and Ŝ is the only continuous (1, 1)-tensor field in TMR3

that satisfies ∫
M
Ŝ X dvol = Σ̂(X) (2.4)

for all X ∈ X (M).

Proof. To show that the tensor field S̄ fulfills equation (2.3), we apply the
divergence theorem and use equation (1.6)∫

M
S X> dvol = −

∫
M

DX>N dvol =

∫
M
N divX> dvol

=

∫
M
N divX dvol +

∫
M
〈HN,X〉R3 N dvol.

To show that the tensor field Ŝ fulfills equation (2.4), we apply the divergence
theorem and use equation (1.7)∫

M
Ŝ X dvol =

∫
M
S (N ×X) dvol =

∫
M
N div(N ×X) dvol

= −
∫
M
N curlX dvol.

To prove the uniqueness of the solution, let us assume that the tensor fields S̄
and T are solutions of (2.3) for all X ∈ X (M). It follows that∫

M
(S̄ − T )X dvol = 0

holds for all X ∈ X (M), which, by the fundamental lemma of calculus of
variations, implies that S̄ equals T . An analogous argument will show the
uniqueness of Ŝ. �

2.2 Approximation of the generalized shape operators

In this section, we derive error estimates for the approximation of the general-
ized shape operators of a smooth surface M by the generalized shape operators
of a polyhedral surface Mh that is a normal graph over M . To compare the
generalized shape operators of Mh and M , we pullback the operators Σ̄Mh

and
Σ̂Mh

from Mh to M . More explicitly, we consider the operators Σ̄h and Σ̂h

given by

Σ̄h : XW 1,1(M) 7→ R3

Σ̄h(X) = Σ̄Mh
(X ◦Ψ)
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and

Σ̂h : XW 1,1(M) 7→ R3

Σ̂h(X) = Σ̂Mh
(X ◦Ψ).

Since the pullback of vector fields induces an isomorphism of XW 1,1(Mh) and
XW 1,1(M), Σ̄h and Σ̂h are continuous operators and therefore elements of
L(XW 1,1(M),R3). We use the operator norm ‖ ‖Op to measure the distance
between corresponding operators.

Theorem 2.4 (approximation of generalized shape operators) Let M
be a smooth surface in R3. Then for every ε ∈ (0, 1), there exists a constant C
such that for every polyhedral surface Mh that is an ε-normal graph over M ,
the estimates ∥∥Σ̄− Σ̄h

∥∥
Op
≤ C (δ(M,Mh) + ‖N −Nh‖L∞) (2.5)

and ∥∥∥Σ̂− Σ̂h

∥∥∥
Op
≤ C (δ(M,Mh) + ‖N −Nh‖L∞) (2.6)

hold. The constant C depends only on ε.

Before we prove the theorem, we establish the following estimates for the
divergence and curl. The pullbacks of the divergence and curl of Mh to M are
the operators

divh : XW 1,1(M) 7→ L1(M) and curlh : XW 1,1(M) 7→ L1(M)

given by

divh(X)(x) = divMh
(X ◦Ψ)(Φ(x)) and curlh(X)(x) = curlMh

(X ◦Ψ)(Φ(x))

for almost all x ∈M .

Lemma 2.5 (approximation of div and curl) Let M be a smooth surface
in R3 and ε ∈ (0, 1). Then for every polyhedral surface Mh that is an ε-normal
graph over M , the estimates

‖div− divh‖Op ≤
(
‖Nh −N‖L∞ +

1

1− ε
δ(M,Mh)

)
and

‖curl− curlh‖Op ≤
(
‖Nh −N‖L∞ +

1

1− ε
δ(M,Mh)

)
hold. Here ‖ ‖Op is the operator norm on L(XW 1,1(M), L1(M)).
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Proof. Let X ∈ XW 1,1(M) be a vector field with ‖X‖W 1,1 = 1, and let Xi

be the components of X with respect to the standard basis {e1, e2, e3} of R3.
From the definition of the divergence, see (1.4), and (1.28) we obtain

divhX =
3∑
i=1

〈
PNh(Id− φS)−1 gradXi, ei

〉
R3 .

We can represent (Id− φS)−1 as

(Id− φS)−1 = Id+R, (2.7)

where the map R is given by

R = φS (Id− φS)−1. (2.8)

This can be easily verified using the eigenbasis of S. Then

divhX =
3∑
i=1

〈PNh(Id+R) gradXi, ei〉R3

= divX −
3∑
i=1

〈gradXi, Nh〉R3 〈Nh, ei〉R3 +

3∑
i=1

〈PNhR gradXi, ei〉R3 .

This yields an upper bound on the L1-norm of the difference of the divergence
operators

‖divX − divhX‖L1 ≤

∥∥∥∥∥
3∑
i=1

〈 gradXi, Nh〉R3 〈Nh, ei〉R3

∥∥∥∥∥
L1

(2.9)

+

∥∥∥∥∥
3∑
i=1

〈PNhR gradXi, ei〉R3

∥∥∥∥∥
L1

≤
∥∥∥N>h ∥∥∥

L∞
+ ‖R‖∞ ≤ ‖Nh −N‖L∞ + ‖R‖∞ ,

where we use∥∥∥N>h ∥∥∥2

R3
= ‖Nh − 〈Nh, N〉R3 N‖2R3 = 1 + 〈Nh, N〉2R3 − 2 〈Nh, N〉2R3

= 1− 〈Nh, N〉2R3 = (1 + 〈Nh, N〉R3) (1− 〈Nh, N〉R3)

≤ 2 (1− 〈Nh, N〉R3) = ‖Nh −N‖2R3
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Now, let us consider the curl

curlhX =
3∑
i=1

〈PNh(Id+R) gradXi × ei, Nh〉R3

=
3∑
i=1

〈( gradXi − 〈 gradXi, Nh〉R3 Nh + PNhR gradXi)× ei, Nh〉R3

= curlX +

3∑
i=1

〈 gradXi × ei, Nh −N〉R3 +

3∑
i=1

〈PNhR gradXi × ei, Nh〉R3 ,

where we use
〈〈 gradXi, Nh〉Nh × ei, Nh〉R3 = 0

in the last step. Then we get the same upper bound on the L1-norm of the
difference of the curl operators as on the L1-norm of the difference of the
divergence operators:

‖curlX − curlhX‖L1 (2.10)

≤

∥∥∥∥∥
3∑
i=1

〈 gradXi × ei, Nh −N〉R3

∥∥∥∥∥
L1

+

∥∥∥∥∥
3∑
i=1

〈PNhR gradXi × ei, Nh〉R3

∥∥∥∥∥
L1

≤ ‖Nh −N‖L∞ + ‖R‖∞ .

It remains to establish a bound on the term ‖R‖∞. At any point x ∈M , R(x)
has the same eigenvectors as the shape operator S(x), and the eigenvalues λi(x)
of R(x) are given by

λi(x) =
φ(x)κi(x)

1− φ(x)κi(x)
. (2.11)

By the definition of δ(M,Mh)

φ(x)κi(x) ≤ δ(M,Mh)

for all x ∈M , and since Mh is an ε-normal graph over M,

|1− φ(x)κi(x)| ≥ 1− ε

for all x ∈M . This implies

‖R‖∞ ≤
1

1− ε
δ(M,Mh). (2.12)

Combining this with (2.9) and (2.10) yields

‖div− divh‖Op ≤
(
‖Nh −N‖L∞ +

1

1− ε
δ(M,Mh)

)
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and

‖curl− curlh‖Op ≤
(
‖Nh −N‖L∞ +

1

1− ε
δ(M,Mh)

)
.

This concludes the proof of the lemma. �
Now, we prove the theorem.

Proof of Theorem 2.4. Let X ∈ XW 1,1 be a vector field with ‖X‖W 1,1 = 1.
Using Hölder’s inequality, we have∥∥Σ̄X − Σ̄hX

∥∥
R3 =

∥∥∥∥∫
M

(N divX −Nh divhX α)dvol

∥∥∥∥
R3

(2.13)

≤ ‖(N − αNh)divX ‖L1 + ‖αNh(divX − divhX) ‖L1

≤ ‖N − αNh‖L∞ ‖divX ‖L1 + ‖α‖L∞ ‖div− divh‖Op
≤ ‖1− α‖L∞ + ‖N −Nh‖L∞ + ‖α‖L∞ ‖div− divh‖Op .

Then Theorem 1.22 and Lemma 2.5 imply that there is a constant C, which
depends only on ε, such that∥∥Σ̄− Σ̄h

∥∥
Op
≤ C(δ(M,Mh) + ‖N −Nh‖L∞).

A similar argumentation proves the second estimate. �

2.3 r-local functions

The tool we use to obtain pointwise approximation estimates from the esti-
mates in the operator norm are functions whose support becomes more and
more localized while their L1-norm remains constant and the growth of the
W 1,1-norm is bounded.

Definition 2.6 (r-local functions) LetM be a smooth or polyhedral surface
in R3, and let CD be a positive constant. For any x ∈M and r ∈ R+, we call
a function ϕ :M 7→ R r-local at x (with respect to CD) if the criteria

(D1) ϕ ∈W 1,1(M),

(D2) ϕ(y) ≥ 0 for all y ∈M,

(D3) ϕ(y) = 0 for all y ∈M with dM(x, y) ≥ r,

(D4) ‖ϕ‖L1 = 1, and

(D5) |ϕ|W 1,1(M) ≤
CD
r

are satisfied.

A function that is r-local at x ∈M can be used to approximate the function
value at x of a function f through the integral

∫
M f ϕ dvol. This means that r-

local functions are approximations of the delta distribution.
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Lemma 2.7 Let ϕ ∈ L1(M) satisfy properties (D2), (D3), and (D4) of Defi-
nition 2.6 for some x ∈M and r ∈ R+, and let f ∈ C1(M). Then the estimate∣∣∣∣f(x)−

∫
M
f ϕ dvol

∣∣∣∣ ≤ ‖grad f‖L∞ r (2.14)

holds.

Proof. Since ϕ is non-negative and has a unit L1-norm, we have∣∣∣∣f(x)−
∫
M
f ϕ dvol

∣∣∣∣ =

∣∣∣∣∫
M

(f(x)− f)ϕdvol

∣∣∣∣
≤ sup

y∈Br(x)
|f(x)− f(y)| .

For any y in the geodesic ballBr(x) around x, let γ be a (unit-speed parametrized)
minimizing geodesic that connects x and y. Then

|f(x)− f(y)| =
∣∣∣∣∫
γ
g(grad f(γ(t)), γ̇(t))dt

∣∣∣∣
≤ ‖grad f‖L∞ length(γ) ≤ ‖grad f‖L∞ r.

This implies supy∈Br(x) |f(x)− f(y)| ≤ ‖grad f‖L∞ r, which concludes the
proof. �

Certain functions ϕ even exhibit a higher approximation order.

Definition 2.8 (r2-property) Let M be a smooth surface, and let CQ be a
positive constant. For any x ∈ M and r ∈ R+, we say that a function ϕ has
the r2-property at x (with respect to CQ) if for every f ∈ C2(M) the estimate∣∣∣∣f(x)−

∫
M
f ϕ dvol

∣∣∣∣ ≤ CQ ‖f‖C2 r
2 (2.15)

holds.

We will discuss the construction of r-local functions and functions with the
r2-property in Section 2.6.

2.4 Pointwise approximation of the shape operator

In this section, we derive estimates for the pointwise approximation of the
shape operator of a smooth surface M in R3. They follow from an estimate on
the pointwise approximation of the tensor field S̄. For brevity, we restrict our
considerations to the tensor field S̄ and leave the tensor field Ŝ aside. Still, an
analogous statement to Lemma 2.9 holds for the approximation of the tensor
field Ŝ as well.
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2.4.1 Pointwise approximation of S̄

Let ψ be r-local at the point y ∈ Mh. Then, we define S̄ψMh
to be the tensor

on R3 that has the components

(S̄ψMh
)ij =

〈
ei, Σ̄Mh

(ψ ej)
〉
R3 . (2.16)

We will show that S̄ψMh
approximates S̄(Ψ(y)). To measure the distance be-

tween S̄ψMh
and S̄(Ψ(y)), we use the operator norm

‖T‖max = max
v∈R3,‖v‖R3=1

‖Tv‖R3

on the space of linear maps T : R3 7→ R3. Here, we use the subscript max
instead of op to distinguish this norm from the operator norm on the space
L(XW 1,1(M),R3) used in the previous sections.

Lemma 2.9 (approximation of S̄) Let M be a smooth surface in R3 and
ε ∈ (0, 1). For every pair consisting of a polyhedral surface Mh that is an ε-
normal graph over M and a function ψ that is r-local at a point y ∈ Mh, the
corresponding tensor S̄ψMh

satisfies the estimate∥∥∥S̄(x)− S̄ψMh

∥∥∥
max
≤ C(r +

δ(M,Mh) + ‖N −Nh‖L∞
r

), (2.17)

where x = Ψ(y) is the orthogonal projection of y onto M . If ψ ◦ Φ has the
r2-property, the bound improves to∥∥∥S̄(x)− S̄ψMh

∥∥∥
max
≤ C(r2 +

δ(M,Mh) + ‖N −Nh‖L∞
r

). (2.18)

The constants C depend only on M , ε, and CD (see Definition 2.6) and in the
second estimate additionally on CQ (see Definition 2.8).

Proof. Let ϕ = ψ ◦Φ be the pullback to M of ψ, and let i, j ∈ {1, 2, 3}. Then(
S̄ψMh

)
ij

=
〈
ei, Σ̄h(ϕej)

〉
R3 , (2.19)

where Σ̄h is the pullback to M of Σ̄Mh
. Using (2.3) and (2.19), we get∣∣∣(S̄(x)− S̄ψMh

)ij

∣∣∣ =
∣∣(S̄(x))ij −

〈
ei, Σ̄h(ϕej)

〉
R3

∣∣ (2.20)

≤
∣∣∣∣(S̄(x))ij −

∫
M
ϕ (S̄)ij dvol

∣∣∣∣+
∣∣〈ei, (Σ̄− Σ̄h)(ϕej)

〉
R3

∣∣ . (2.21)

In the following, we derive bounds for both summands in (2.21). We start with
the second. The equivalence of the Sobolev norms implies

‖ϕ‖W 1,1 ≤ C ‖ψ‖W 1,1(Mh) .
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From the explicit representation of C in terms of the metric and area distortion
(Lemmas 1.16 and 1.18), it follows that C depends only on ε. Using this, we
get ∣∣〈ei, (Σ̄− Σ̄h)(ϕej)

〉
R3

∣∣ ≤ ‖ϕ‖W 1,1

∥∥Σ̄− Σ̄h

∥∥
Op

≤ C ‖ψ‖W 1,1(Mh)

∥∥Σ̄− Σ̄h

∥∥
Op
≤ CCD

r

∥∥Σ̄− Σ̄h

∥∥
Op
.

Furthermore, in Theorem 2.4 we established the bound∥∥Σ̄− Σ̄h

∥∥
Op
≤ C (δ(M,Mh) + ‖N −Nh‖L∞).

To derive a bound on the first summand in (2.21), we set

ϕ̄ =
ϕ

‖ϕ‖L1

and split the summand in two parts∣∣∣∣(S̄(x))ij −
∫
M
ϕ (S̄)ij dvol

∣∣∣∣ (2.22)

≤
∣∣∣∣(S̄(x))ij −

∫
M
ϕ̄ (S̄)ij dvol

∣∣∣∣+
∣∣〈ei, Σ̄((ϕ̄− ϕ) ej)

〉
R3

∣∣ . (2.23)

We start with the first part. The function ϕ̄ clearly satisfies (D2) and (D4) of
Definition 2.6. Since the support of ψ is contained in the geodesic ball Br(y),

the support of ϕ̄ is contained in geodesic ball or radius ‖A‖1/2∞ , where A denotes

the metric distortion tensor. As a consequence of Theorem 1.22, ‖A‖1/2∞ can
be bounded by a constant CA that depends only ε. Hence, ϕ̄ satisfies property
(D3) for the point x and the value CAr. Then Lemma 2.7 implies that there
is a constant C depending on M and ε such that∣∣∣∣(S̄(x))ij −

∫
M
ϕ̄ (S̄)ij dvol

∣∣∣∣ ≤ C r.
The second part of (2.23) satisfies∣∣〈ei, Σ̄((ϕ̄− ϕ) ej)

〉
R3

∣∣ =

∣∣∣∣∫
M

(ϕ̄− ϕ) (S̄)ij dvol

∣∣∣∣ (2.24)

=

∣∣∣∣(1− ‖ϕ‖L1)

∫
M
ϕ̄ (S̄)ij dvol

∣∣∣∣ ≤ |‖ϕ‖L1 − 1|
∥∥(S̄)ij

∥∥
L∞

.

Using Theorem 1.22, we see that there is a constant C depending only on ε
such that

|‖ϕ‖L1 − 1| =
∣∣∣∣∫
M

(1− α)ϕdvol

∣∣∣∣ ≤ ‖α− 1‖L∞
∥∥α−1

∥∥
L∞

≤ C (δ(M,Mh) + ‖N −Nh‖2L∞).
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If ϕ satisfies the r2-property (with respect to CQ), then the bound on the
term (2.22) improves: there is a constant C depending on M and CQ such that∣∣∣∣(S̄(x))ij −

∫
M
ϕ (S̄)ij dvol

∣∣∣∣ ≤ C r2.

By collecting the bounds derived above, we prove the estimates (2.17) and (2.18).
The term δ(M,Mh)+‖N −Nh‖2L∞ , which is part of the bound on (2.24), does
not appear in estimate (2.17) because

δ(M,Mh) + ‖N −Nh‖2L∞ < C

(
r +

δ(M,Mh) + ‖N −Nh‖L∞
r

)
.

Either, r > 1, which implies δ(M,Mh) + ‖N −Nh‖2L∞ < 3 r by our as-
sumptions, or r ≤ 1 and hence δ(M,Mh) + ‖N −Nh‖2L∞ ≤ (δ(M,Mh) +√

2ε ‖N −Nh‖L∞)/r. �

2.4.2 Pointwise approximation of the shape operator

From the tensor S̄ψMh
, which approximates S̄(x), we can construct an approxi-

mation of S(x). The principle of the construction is to remove the normal part

of S̄ψMh
. In the case of a smooth surface, the definition of S̄(x) directly implies

S(x) = (Id−N(x)N(x)T )S̄(x)(Id−N(x)N(x)T ), (2.25)

where N(x)T denotes the transpose of N(x). This motivates the definition of
the tensor

SψMh
= (Id−NMh

(y)NMh
(y)T )S̄ψMh

(Id−NMh
(y)NMh

(y)T ). (2.26)

Since the piecewise constant normal of the polyhedral surface is discontinuous
at the edges and vertices, NMh

(y) is not well-defined if y lies on an edge or

a vertex of Mh. To get a well-defined tensor SψMh
, we specify what NMh

(y)
means in this case: we set NMh

(y) to be the normalized sum of the normals
of all triangles that are adjacent to the edge or vertex on which y lies. An
alternative would be to assign a triangle to each vertex and each edge and to
use the normal of that triangle. For our purposes here, all such constructions
yield the same asymptotic estimates.

Theorem 2.10 (pointwise approximation of shape operator) Let M be
a smooth surface in R3 and ε ∈ (0, 1). For every pair consisting of a polyhedral
surface Mh that is an ε-normal graph over M and a function ψ that is r-local
at a point y ∈Mh, the tensor SψMh

satisfies the estimate∥∥∥S(x)− SψMh

∥∥∥
max
≤ C(r +

δ(M,Mh) + ‖N −Nh‖L∞
r

),
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where x = Ψ(y). If ψ ◦ Φ has the r2-property, the bound improves to∥∥∥S(x)− SψMh

∥∥∥
max
≤ C(r2 +

δ(M,Mh) + ‖N −Nh‖L∞
r

).

The constants C depend only on M , ε, and CD (see Definition 2.6) and in the
second estimate additionally on CQ (see Definition 2.8).

Proof. For simplicity of notation, we leave out the point, x, where the ten-
sor and vector fields are evaluated, i.e., we write S, S̄,N, and Nh instead
of S(x), S̄(x), N(x), and Nh(x). Using equations (2.25) and (2.26), we get∥∥∥S(x)− SψMh

(y)
∥∥∥

max

=
∥∥∥(Id−NNT )S̄(Id−NNT )− (Id−NhN

T
h )S̄ψMh

(Id−NhN
T
h )
∥∥∥

max

=
∥∥(NhN

T
h −NNT )S̄(Id−NNT ) + (Id−NhN

T
h )S̄(NhN

T
h −NNT )

+(Id−NhN
T
h )(S̄ψMh

− S̄)(NhN
T
h −NNT )

+(Id−NhN
T
h )(S̄ − S̄ψMh

)(Id−NNT )
∥∥∥

max

≤ 2
∥∥NhN

T
h −NNT

∥∥
max

∥∥S̄∥∥
max

+ (1 +
∥∥NhN

T
h −NNT

∥∥
max

)
∥∥∥S̄ − S̄ψMh

∥∥∥
max

.

Combining this with Lemma 2.9 and the estimate∥∥NhN
T
h −NNT

∥∥
max
≤
∥∥(Nh −N)NT

∥∥
max

+
∥∥Nh(NT

h −NT )
∥∥

max

≤ 2 ‖(Nh −N)‖L∞

proves the theorem. �
The estimates in Lemma 2.9 and Theorem 2.10 depend on r and δ(M,Mh)+
‖N −Nh‖L∞ , and both quantities are independent. The following corollary
shows how to choose r to get the optimal approximation order in δ(M,Mh) +
‖N −Nh‖L∞ .

Corollary 2.11 Under the assumptions of Theorem 2.10 and the additional
assumption

r =
√
δ(M,Mh) + ‖N −Nh‖L∞ , (2.27)

we obtain the estimate∥∥∥S(x)− SψMh

∥∥∥
max
≤ C

√
δ(M,Mh) + ‖N −Nh‖L∞ .

If ψ ◦ Φ has the r2-property and

r = (δ(M,Mh) + ‖N −Nh‖L∞)
1
3 , (2.28)

we get ∥∥∥S(x)− SψMh

∥∥∥
max
≤ C (δ(M,Mh) + ‖N −Nh‖L∞)

2
3 .
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Proof. The corollary immediately follows from Theorem 2.10 and the assump-
tions (2.27) and (2.28), respectively. �

2.5 Inscribed polyhedral surfaces

In this section, we specialize the approximation estimates for the shape opera-
tor to inscribed polyhedral surfaces. Using Lemma 1.24, we can formulate ap-
proximation estimates that depend on h instead of δ(M,Mh) and ‖N −Nh‖L∞ .

Lemma 2.12 (approximation of generalized shape operator) Let M be
a smooth surface in R3. Then there exists an h0 ∈ R+ such that for every poly-
hedral surface Mh that is inscribed to M and satisfies h < h0, the inequalities

∥∥Σ̄− Σ̄h

∥∥
Op
≤ C h and

∥∥∥Σ̂− Σ̂h

∥∥∥
Op
≤ C h

hold, where C depends only on M, h0 and the shape regularity of Mh.

Proof. To prove the lemma, we combine the estimates (2.5) and (2.6) of The-
orem 2.4 with (1.37) and (1.38) and choose h0 and C accordingly. �

Furthermore, specializing Theorem 2.10 to inscribed meshes yields estimates
on the pointwise approximation that depend on the mesh size h.

Lemma 2.13 (pointwise approximation of shape operator) Let M be a
smooth surface in R3. Then there exists an h0 ∈ R+ such that for every pair
consisting of a polyhedral surface Mh that is inscribed to M and satisfies h < h0

and a function ψ that is r-local at a point y ∈ Mh with r =
√
h, the corre-

sponding tensor SψMh
satisfies the estimate

∥∥∥S(x)− SψMh

∥∥∥
max
≤ C

√
h, (2.29)

where x = Ψ(y). If ψ ◦ Φ has the r2-property and r = h
1
3 , the error bound

improves to ∥∥∥S(x)− SψMh

∥∥∥
max
≤ C h

2
3 . (2.30)

The constants C depend only on M , h0, ρ, and CD and in the second estimate
additionally on CQ.

Proof. The lemma immediately follows from combining Theorem 2.10 with
Lemma 1.24. �
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2.6 Examples of r-local functions

In this section, we discuss the construction of r-local functions and functions
with the r2-property first on smooth and then on polyhedral surfaces. By a
family of r-local functions at x ∈M , we mean a family (ϕr)r∈(0,ρ) such that for
all r ∈ (0, ρ), ϕr is r-local at x with respect to a fixed constant CD. We consider
a family of r-local functions on R2 and use the Riemannian exponential map to
construct a family of r-local functions on M . For functions that have a certain
symmetry, this construction yield functions that satisfy the r2-property. As
an example, we consider the geodesic hat functions and an approximation of
them, the extrinsic hat functions. Both hat functions can be constructed on
polyhedral surfaces, as well.

2.6.1 Construction of r-local functions

Let φ ∈W 1,1(R2) be a non-negative function that vanishes in the complement
of the open unit ball in R2 and satisfies ‖φ‖L1(R2) = 1. Then (φr)r∈R+ defined
by

φr(·) =
1

r2
φ(
·
r

)

is a family of r-local functions on R2 at the origin 0, and the constant CD
assumes the value |φ|W 1,1(R2).

We denote by expx the Riemannian exponential map at a point x ∈ M
and by i(M) the injectivity radius of M . Since the surface M is compact, the
injectivity radius i(M) of M is a strictly positive number. For any r < i(M),

expx : Br(0) ⊂ TxM 7→M

is a diffeomorphism of Br(0) and expx(Br(0)) = Br(x), where Br(x) and Br(0)
denote the open geodesic balls of radius r around x ∈M and 0 ∈ TxM .

Lemma 2.14 (construction of r-local functions) Consider a point x ∈
M and a positive ρ < i(M). Then for any family (φr)r∈(0,ρ) of r-local functions
on TxM at 0, the family (ϕr)r∈(0,ρ) given by

ϕr(y) =

{
1

‖φr◦exp−1
x ‖L1(M)

φr ◦ exp−1
x (y) for y ∈ Bi(M)(x),

0 for all other y,
(2.31)

is a family of r-local functions at x.

Proof. The properties (D2) and (D4) of Definition 2.6 are clearly satisfied,
and (D3) holds since expx is a radial isometry. Since the restriction of expx to
Bi(M)(0) is a diffeomorphism, (D1) follows from properties of Sobolev spaces
under smooth coordinate transformations, see [1, Theorem 3.35]. To show that
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(D5) holds, we use expx : Bi(M)(0) 7→M as a parametrization of M around x.
Since the support of ϕr is contained in expx(Bi(M)(0)) for all r ∈ (0, ρ), we
can calculate ‖ϕr‖W 1,1 using only the chart expx. Analogous to our discussion
on the metric distortion introduced by the cone metric of a polyhedral sur-
face (see Section 1.5), we can represent the metric distortion induced by expx
through a metric distortion tensor Aexpx and the distortion of the area form

by a function αexpx =
√

det(Aexpx). On the compact set Bρ(0), αexpx and the
eigenvalues of Aexpx are bounded above and below, and since expx is a dif-
feomorphism, the lower bounds are strictly larger than zero. Then there are
constants c and C such that

c ‖u‖L1(M) ≤
∥∥u ◦ exp−1

x

∥∥
L1(R2)

≤ C ‖u‖L1(M) (2.32)

holds for all u ∈ L1(M) whose support is contained in Bρ(0), and there are
constants c̃ and C̃ such that

c̃ |u|W 1,1(M) ≤
∣∣u ◦ exp−1

x

∣∣
W 1,1(R2)

≤ C̃ |u|W 1,1(M) (2.33)

holds for all all u ∈ W 1,1(M) whose support is contained in Bρ(x). Because

the support of ϕr is contained in the compact set Bρ(x), we have∣∣φr ◦ exp−1
x

∣∣
W 1,1(M)

≤ C̃ |φr|W 1,1(R2) (2.34)

and ∥∥φr ◦ exp−1
x

∥∥
L1(M)

≥ c ‖φr‖L1(R2) = c (2.35)

for all r ∈ (0, ρ). It follows that the estimate

|ϕr|W 1,1(M) ≤
C̃ |φr|W 1,1(R2)

c |φr|L1(R2)

≤
C̃ |φ|W 1,1(R2)

c

1

r
(2.36)

is satisfied for all r ∈ (0, ρ). This means (D5) holds as well. �

2.6.2 The r2-property

After having introduced a construction of r-local functions, we will now discuss
the construction of functions that have the r2-property (Definition 2.8). First,
we consider the case of functions on domains in R2.

Lemma 2.15 For any positive ρ ∈ R+, let Bρ(0) be the open ball of radius ρ
around the origin in R2. Moreover, let φr be a r-local function at 0 such that r <
ρ and

φr(y) = φr(−y) (2.37)



58 2. Generalized shape operators

for all y ∈ R2. Then the estimate∣∣∣∣∣f(0)−
∫
Bρ(0)

f φr dvol

∣∣∣∣∣ ≤ |f |C2 r
2 (2.38)

holds for all f ∈ C2(Bρ(0)).

Proof. From Taylor’s theorem, we know that

f(y) = f(0) +
〈
gradR2f|0, y

〉
R2 + Rem(y) (2.39)

and that the remainder Rem satisfies

|Rem(y)| ≤ |f |C2 ‖y‖2R2 (2.40)

for all y ∈ Bρ(0). Plugging (2.39) into the left side of (2.38), we get∣∣∣∣∣f(0)−
∫
Bρ(0)

f φr dvolR2

∣∣∣∣∣
=

∣∣∣∣∣f(0)−
∫
Bρ(0)

(f(0) +
〈
gradR2f|0, ·

〉
R2 + Rem)φr dvolR2

∣∣∣∣∣
=

∣∣∣∣∣
∫
Bρ(0)

(
〈
gradR2f|0, ·

〉
R2 + Rem)φr dvolR2

∣∣∣∣∣ .
In the last step, we used properties (D2) and (D4) of φr.

The property (2.37) of φr implies that for any linear functional l on R2,∫
Bρ(0)

l φr dvolR2 = 0. (2.41)

Since
〈
gradR2f|0, ·

〉
R2 is a linear functional, we get∣∣∣∣∣f(0)−
∫
Bρ(0)

f φr dvolR2

∣∣∣∣∣ =

∣∣∣∣∣
∫
Bρ(0)

Remφr dvolR2

∣∣∣∣∣
≤ sup

y∈Br(0)
|Rem(y)| ≤ |f |C2 r

2

Here, we used (2.40) in the last step. �
In Lemma 2.14, we have seen how r-local functions on M can be obtained

from r-local functions on R2. In the following lemma, we combine this con-
struction with the last lemma to get functions with the r2-property on M .
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Lemma 2.16 (r2-property) Consider a point x ∈ M and a positive ρ <
i(M). Let φr : TxM 7→ R be a r-local function at 0 that satisfies r < ρ
and φr(y) = φr(−y) for all y ∈ TxM , and let ϕr be constructed from φr
as described in Lemma 2.14. Then there is a constant C depending only on M
and ρ such that ∣∣∣∣f(x)−

∫
M
f ϕr dvol

∣∣∣∣ ≤ C ‖f‖C2 r
2

for all f ∈ C2(M).

Proof. We consider the function f ◦ expx that is smooth on Bρ(0) ⊂ TxM .
From Taylor’s theorem we know that there is a remainder function Rem such
that

f ◦ expx(y) = f ◦ expx(0) +
〈
gradR2(f ◦ expx)|0, y

〉
R2 + Rem(y) (2.42)

for any y ∈ Bρ(0). Moreover, there is a constant C, which depends on M and ρ,
such that

|Rem(y)| ≤ C ‖f‖C2 ‖y‖2R2 (2.43)

for all y ∈ Bρ(0). Let αexpx denote the area distortion on Bρ(0) induced by the
exponential map. Using (2.31) and (2.42), we get∣∣∣∣f(x)−

∫
M
f ϕr dvol

∣∣∣∣
=

∣∣∣∣∣f(x)− 1∥∥φr αexpx

∥∥
L1(Bρ(0))

∫
Bρ(0)

f ◦ expx φr αexpxdvol

∣∣∣∣∣
=

∣∣∣∣∣f(x)− 1∥∥φr αexpx

∥∥
L1(Bρ(0))

∫
Bρ(0)

(f ◦ expx(0)

+
〈
gradR2(f ◦ expx)|0, ·

〉
R2 + Rem)φr αexpxdvol

∣∣∣
We derive bounds for all summands of the last expression. Since ϕr is positive
and ‖ϕr‖L1(M) = 1, we get∣∣∣∣∣f(x)− 1∥∥φr αexpx

∥∥
L1(Bρ(0))

∫
Bρ(0)

f ◦ expx(0)φr αexpxdvol

∣∣∣∣∣ = 0.

The area distortion αexpx satisfies the bound∣∣αexpx(y)− 1
∣∣ < C r

for all y ∈ Br(0). This follows directly from the representation of the metric
tensor in geodesic polar coordinates, which can be found in [72, p. 288]. Using



60 2. Generalized shape operators

this estimate and (2.41), we have∣∣∣∣∣ 1∥∥φr αexpx

∥∥
L1(Bρ(0))

∫
Bρ(0)

〈
gradR2(f ◦ expx)|0, ·

〉
R2 φr αexpxdvolR2

∣∣∣∣∣
=

∣∣∣∣∣ 1∥∥φr αexpx

∥∥
L1(Bρ(0))

∫
Bρ(0)

〈
gradR2(f ◦ expx)|0, ·

〉
R2 φr (αexpx − 1)dvolR2

∣∣∣∣∣
≤
∥∥∥α−1

expx

∥∥∥
L∞(Bρ(0))

sup
y∈Br(0)

∣∣∣〈gradR2(f ◦ expx)|0, y
〉
R2 (αexpx(y)− 1)

∣∣∣
< C ‖f‖C1 r

2.

To get a bound for the remaining term, we use (2.43)∣∣∣∣∣ 1∥∥φr αexpx

∥∥
L1(Bρ(0))

∫
Bρ(0)

Remφr αexpxdvol

∣∣∣∣∣ ≤ sup
y∈Br(0)

|Rem(y)| < C ‖f‖C2 r
2.

Altogether, we established the bound∣∣∣∣f(x)−
∫
M
f ϕr dvol

∣∣∣∣ ≤ C ‖f‖C2 r
2,

which proves the lemma. �

2.6.3 Geodesic and extrinsic hat functions

As an example of the presented construction of r-local functions, let us con-
sider the function φ(·) = 3

π max{0, 1 − ‖·‖R2} on R2 (resp. on TxM). We call
the corresponding functions ϕr on M geodesic hat functions, since they decay
linearly with the geodesic distance to x. Explicitly, ϕr is given by

ϕr =
ϕ̃r
‖ϕ̃r‖L1

, where ϕ̃r(y) = max{0, 1− dM (x, y)

r
}. (2.44)

Since the function φ has the symmetry (2.37), Lemma 2.16 implies that the
functions ϕr have the r2-property.

To keep computations simple, one can employ the extrinsic distance of points
in R3 instead of the geodesic distance. The extrinsic hat function ψr is defined
as

ψr =
ψ̃r∥∥∥ψ̃r∥∥∥

L1

, where ψ̃r(y) = max{0, 1−
‖x− y‖R3

r
}. (2.45)

As before, we focus on the properties of ψr for small values of r. We fix a small ρ
and consider only ψr with r ∈ (0, ρ). Then the ψrs satisfy the properties of r-
local functions, except that we need to modify property (D3): the support of ψr
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is not contained in Br(x), but there is a constant C depending only on M and
ρ such that supp(ψr) ⊂ BCr(x). Our approximation estimates hold for these
functions, as well. However, the additional constant appears in all the bounds.

In addition to being r-local, the extrinsic hat functions have the r2-property.
This is shown in the next lemma.

Lemma 2.17 (extrinsic hat functions) Consider a point x ∈ M and a
positive ρ < min {i(M), reach(M)}. For any r < ρ, the extrinsic hat func-
tion ψr at x satisfies

∣∣∣∣f(x)−
∫
M
f ψr dvol

∣∣∣∣ < C ‖f‖C2 r
2

for all f ∈ C2(M). The constant C depends only on M and ρ.

Proof. The foundation of the proof is that locally the approximation of the
geodesic distance by the extrinsic distance is of third order. Explicitly, in [13,
Lemma 3.2] the estimate

|dM (x, y)− ‖x− y‖R3 | ≤
4

3 reach(M)2
‖x− y‖3R3 . (2.46)

is shown for any pair x, y ∈M with ‖x− y‖R3 <reach(M)/2.
For x ∈ M and r < ρ, let ϕr,ϕ̃r,ψr, and ψ̃r be the corresponding functions

defined in (2.44) and (2.45). Then, (2.46) implies

∥∥∥ϕ̃r − ψ̃r∥∥∥
L∞
≤ 4

3 reach(M)2
r2. (2.47)

We use this estimate to prove the lemma. For a first step, we have

∣∣∣∣f(x)−
∫
M
f ψr dvol

∣∣∣∣ ≤ ∣∣∣∣f(x)−
∫
M
f ϕr dvol

∣∣∣∣+

∣∣∣∣∫
M
f (ϕr − ψr) dvol

∣∣∣∣ .
Lemma 2.16 implies that the first summand on the right hand side is bounded
by C ‖f‖C2 r2. To get a bound on the second summand, we use Hölder’s in-
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equality and the reverse triangle inequality∣∣∣∣∫
M
f (ϕr − ψr) dvol

∣∣∣∣ ≤ ‖f‖L∞ ‖ϕr − ψr‖L1

≤ ‖f‖L∞

∥∥∥∥∥∥ ϕ̃r
‖ϕ̃r‖L1

− ψ̃r∥∥∥ψ̃r∥∥∥
L1

∥∥∥∥∥∥
L1

≤ ‖f‖L∞

∣∣∣∣∣∣
∥∥∥ψ̃r∥∥∥

L1
− ‖ϕ̃r‖L1∥∥∥ψ̃r∥∥∥
L1

∣∣∣∣∣∣+

∥∥∥ϕ̃r − ψ̃r∥∥∥
L1∥∥∥ψ̃r∥∥∥

L1


≤ 2 ‖f‖L∞

∥∥∥ϕ̃r − ψ̃r∥∥∥
L1∥∥∥ψ̃r∥∥∥

L1

≤ 2
area(supp(ψ̃r))∥∥∥ψ̃r∥∥∥

L1

‖f‖L∞
∥∥∥ϕ̃r − ψ̃r∥∥∥

L∞

≤ C ‖f‖L∞
∥∥∥ϕ̃r − ψ̃r∥∥∥

L∞
.

Combining this bound with (2.47) proves the lemma. �

2.6.4 Hat functions on polyhedral surfaces

The constructions of the hat functions, (2.44) and (2.45), can be transferred
to polyhedral surfaces, where the geodesic distance on M is replaced by the
geodesic distance on Mh. If Mh is a normal graph over M and

r = (δ(M,Mh) + ‖N −Nh‖L∞)
1
3 ,

which is the optimal choice of r in the second estimate of Corollary 2.11, then
the difference between the extrinsic distances on M and Mh is bounded by

|‖x− y‖R3 − ‖Ψ(x)−Ψ(y)‖R3 | ≤ 2 ‖κmax‖L∞ δ(M,Mh) ≤ 2 ‖κmax‖L∞ r
3.

This is the same order as the approximation of the geodesic distance on M by
the extrinsic distance on M , see (2.46). Based on this property, one can show

that for r = (δ(M,Mh) + ‖N −Nh‖L∞)
1
3 , the pullback ψr ◦ Φ to M of the

extrinsic distance ψr on Mh has the r2-property. The proof is similar to that
of Lemma 2.17. This result is confirmed by our experiments.

For computations, it is convenient to work with continuous and piecewise
linear functions on Mh, e.g. with the interpolants of a function. The gradient of
such a function is constant in each triangle and one can evaluate the generalized
shape operators by summing over the triangles in the support of the function.
In the experiments, we use a piecewise linear approximation of the extrinsic
hat functions.
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FIGURE 2.1. Mean curvature (middle) and Gaussian curvature (right) computed using
the generalized shape operator Σ̂ and an r-local function on a 3D-scanned model. Color
coding from white (negative) to red (positive).

2.7 Experiments

In this Section, we show the results of three experiments concerning the error
and the convergence rate of the pointwise approximation of the shape opera-
tor. In the first example, we approximate the tensors S̄(x) and Ŝ(x) at a point
x on the unit sphere in R3 using inscribed polyhedral surfaces with decreas-
ing mesh size h. On each polyhedral surface Mh we consider two functions, ψ
and ψ∗. Both functions are continuous and linear on the triangles and hence
are determined by their values at the vertices of Mh. The function ψ is an
approximation of the extrinsic hat function, see (2.45), and we get ψ∗ by dis-
turbing ψ. The disturbance is chosen such that ψ∗ is still r-local around x but
does not have the r2-property anymore. At any vertex v of Mh, the functions
take the values

ψ(v) = max{1−
‖x− v‖R3√

h
, 0} (2.48)

and

ψ∗(v) = max{1−

∥∥∥x+
√
h

20 e− v
∥∥∥
R3√

h
, 0}, (2.49)

where h is the mesh size of Mh and e is a fixed unit vector in R3.
Using ψ and ψ∗, we construct the tensors S̄ψMh

and ŜψMh
with components

(S̄ψMh
)ij =

〈
ei, Σ̄Mh

(ψ ej)
〉
R3

‖ψ‖L1(Mh)

and (ŜψMh
)ij =

〈
ei, Σ̂Mh

(ψ ej)
〉
R3

‖ψ‖L1(Mh)

(2.50)
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h ‖S̄(x)− S̄ψMh
‖ eoc ‖S̄(x)− S̄ψ

∗

Mh
‖ eoc

0.0744108 0.0684689 − 0.0828663 −
0.0304109 0.0275034 1.00 0.0409642 0.79
0.0102627 0.0092561 1.00 0.0197543 0.67
0.0030374 0.0027360 1.00 0.0096611 0.59
0.0008309 0.0007480 1.00 0.0048014 0.54
0.0002176 0.0001959 1.00 0.0023992 0.52
0.0000557 0.0000501 1.00 0.0012003 0.51
0.0000146 0.0000132 1.00 0.0006122 0.50

h ‖Ŝ(x)− ŜψMh
‖ eoc ‖Ŝ(x)− Ŝψ

∗

Mh
‖ eoc

0.0744108 0.0114370 − 0.0181622 −
0.0304109 0.0045876 1.00 0.0101977 0.65
0.0102627 0.0015431 1.00 0.0055643 0.56
0.0030374 0.0004560 1.00 0.0029508 0.52
0.0008309 0.0001247 1.00 0.0015321 0.51
0.0002176 0.0000326 1.00 0.0007826 0.50
0.0000557 8.36× 10-6 1.00 0.0003958 0.50
0.0000146 2.20× 10-6 1.00 0.0002030 0.50

TABLE 2.1. Approximations of the tensors S̄(x) and Ŝ(x) at a point x on the unit
sphere are analyzed. The approximation error and experimental rate of convergence
are shown.

and the tensors S̄ψ
∗

Mh
and Ŝψ

∗

Mh
with components

(S̄ψ
∗

Mh
)ij =

〈
ei, Σ̄Mh

(ψ∗ ej)
〉
R3

‖ψ∗‖L1(Mh)

and (Ŝψ
∗

Mh
)ij =

〈
ei, Σ̂Mh

(ψ∗ ej)
〉
R3

‖ψ∗‖L1(Mh)

. (2.51)

Table 2.1 lists the approximation errors of the four tensors (measured in the
norm ‖ ‖max) for inscribed polyhedral surfaces with decreasing mesh size h.
In addition, the table shows the experimental order of convergence. Let ehi
and ehi+1

be the approximation errors of some quantity for the decreasing
mesh sizes hi and hi+1. Then the experimental order of convergence (eoc) of

FIGURE 2.2. Some of the surfaces used for the experiments are shown.



2.7 Experiments 65

h ‖S̄(x)− S̄ψMh
‖ eoc ‖S(x)− SψMh

‖ eoc

0.0442741 0.0175626 − 0.0155477 −
0.0241741 0.0095546 1.00 0.0084655 1.00
0.0102634 0.0040565 1.00 0.0035977 1.00
0.0035994 0.0014209 1.00 0.0012606 1.00
0.0010920 0.0004308 1.00 0.0003822 1.00
0.0003030 0.0001195 1.00 0.0001060 1.00
0.0000800 0.0000315 1.00 0.0000280 1.00
0.0000206 8.11× 10-6 1.00 7.19× 10-6 1.00

h ‖Ŝ(x)− ŜψMh
‖ eoc ‖S(x)− SψMh

‖ eoc

0.0442741 0.0027184 − 0.0036529 −
0.0241741 0.0014769 1.00 0.0020020 0.99
0.0102634 0.0006264 1.00 0.0008539 0.99
0.0035994 0.0002193 1.00 0.0002998 1.00
0.0010920 0.0000665 1.00 0.0000910 1.00
0.0003030 0.0000184 1.00 0.0000252 1.00
0.0000800 4.87× 10-6 1.00 6.66× 10-6 1.00
0.0000206 1.25× 10-6 1.00 1.71× 10-6 1.00

TABLE 2.2. The table shows the approximation error and experimental rate of conver-
gence of approximations of the shape operator at a point x on the torus of revolution.

the quantity is defined as

eoc(hi, hi+1) = log
ehi
ehi+1

(
log

hi
hi+1

)−1

. (2.52)

All four approximations converge, but the order of convergence differs depend-
ing on which function, ψ or ψ∗, we use. The experimental order of convergence
of S̄ψ

∗

Mh
and Ŝψ

∗

Mh
is 1

2 . This confirms the sharpness of the estimate (2.29) of
Lemma 2.13 (resp. the first estimate in Theorem 2.10). For the second esti-
mate (2.30) of Lemma 2.13, the situation is different. The function ψ leads
to an eoc of 1 in our experiments, even if we add normal noise (of order h2)
and even stronger tangential noise to the vertex positions of the polyhedral
surfaces. This indicates that it may be possible to improve the bound (2.30).

However, when
√
h is replaced by h

1
3 in (2.48), we get the expected eoc of 2

3 .
The second example is concerned with the approximation of the classical

shape operator of a smooth surface. We consider a point x on a torus of rev-
olution (with radii 1 and 2) and polyhedral surfaces that are inscribed to the
torus. On each polyhedral surface we use the function ψ, see (2.48), to com-

pute the tensors S̄ψMh
and ŜψMh

, similar to the first example. In this example,
we additionally construct approximations of the normal of M at x. For every
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h ‖S(x)− SψMh
‖ eoc ‖S(x)− SψMh,noise

‖ eoc

0.0385465 0.0009560 − 0.0014489 −
0.0260549 0.0006113 1.10 0.0014966 −0.08
0.0141667 0.0003216 1.10 0.0004560 2.00
0.0060853 0.0001362 1.00 0.0001497 1.30
0.0021316 0.0000476 1.00 0.0000687 0.74
0.0006460 0.0000144 1.00 0.0000194 1.10
0.0001791 3.99× 10-6 1.00 5.22× 10-6 1.00

h ‖S(x)− Sψ̃Mh
‖ eoc ‖S(x)− Sψ̃Mh,noise

‖ eoc

0.0385465 0.0002335 − 0.0047959 −
0.0260549 0.0000971 2.20 0.0165850 −3.20
0.0141667 0.0000249 2.20 0.0062470 1.60
0.0060853 4.01× 10-6 2.20 0.0213477 −1.50
0.0021316 8.96× 10-7 1.40 0.0053238 1.30
0.0006460 7.97× 10-8 2.00 0.0132693 −0.76
0.0001791 6.00× 10-9 2.00 0.0204679 −0.34

TABLE 2.3. The table shows the error and the experimental rate of convergence for
the approximation of the shape operator at a point on the helicoid. The columns on
the right show results computed from polyhedral surfaces that are corrupted with
noise.

polyhedral surface Mh, we set

N ψ̃
Mh

=
1∥∥∥∫Mh

NMh
ψ̃ dvolh

∥∥∥
R3

∫
Mh

NMh
ψ̃ dvolh,

where ψ̃ is the continuous and piecewise linear function on Mh that takes the
values

ψ̃(v) = max{1−
‖x− v‖R3

2h
, 0} (2.53)

at the vertices v. We use N ψ̃
Mh

instead of evaluating NMh
(Φ(x)) to avoid the

need to compute the point Φ(x). Using the estimated normal, we construct the
following two approximations of S(x): the first is defined, analogously to (2.26),
by

SψMh
= (Id−N ψ̃

Mh
N ψ̃
Mh

T )S̄ψMh
(Id−N ψ̃

Mh
N ψ̃
Mh

T ), (2.54)

and the second (denoted by a calligraphic letter) is given by

SψMh
= ŜψMh

C
N ψ̃
Mh

, (2.55)

where

C
N ψ̃
Mh

=


0 (N ψ̃

Mh
)3 −(N ψ̃

Mh
)2

−(N ψ̃
Mh

)3 0 (N ψ̃
Mh

)1

(N ψ̃
Mh

)2 −(N ψ̃
Mh

)1 0


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is the matrix representation of the cross product with the vector −N ψ̃
Mh

. In

our experiments, both tensors, SψMh
and SψMh

, converge to S(x) with the same

order as S̄ψMh
and ŜψMh

converge to S̄(x) and Ŝ(x), see Table 2.2.
The third example is concerned with the approximation of the shape oper-

ator from polyhedral surfaces that are corrupted by noise and are no longer
inscribed. We consider the shape operator at a point x on the helicoid in R3

and compute the tensor SψMh
(in the same way as in the second example)

on inscribed polyhedral surfaces. Then we disturb the polyhedral surfaces by
adding random noise of order h2 to the vertex positions and compute the op-
erator again. We denote the operator computed from the distorted surface
by SψMh,noise

. In our experiments, we found the same order of convergence for
both operators, see Table 2.3. In addition, the table lists approximation er-

rors and eoc for the tensors Sψ̃Mh
and Sψ̃Mh,noise

which were computed on the

same surfaces but using the function ψ̃, see (2.53), instead of ψ. The main

difference between SψMh
and Sψ̃Mh

is that the regions on the surfaces that is

used to compute SψMh
and SψMh,noise

is larger than the regions used to estimate

Sψ̃Mh
and Sψ̃Mh,noise

; the support of ψ is of order
√
h and the support of ψ̃ is

of order h. When computed from the surface without noise, the tensor Sψ̃Mh

converges to S(x) (even with order 2 in our experiments), but when computed

from the corrupted surface, the tensor Sψ̃Mh
does no longer converge.
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3
Laplace–Beltrami operator and
Willmore energy

3.1 Strong and weak form of the Laplace–Beltrami
operator

The Laplace–Beltrami operator is a linear second-order differential operator
on a Riemannian manifold. We distinguish between two forms of the operator,
the strong (or classical) form and the weak form. For simplicity, we denote
both, the strong and the weak Laplace–Beltrami operator, by ∆ and rely on
the context to make the distinction. The strong Laplace–Beltrami operator on
a smooth surface M is defined by

∆ : C2(M) 7→ C0(M)

u 7→ div gradu.

Since evaluating ∆u at a point of M involves derivatives of the metric, the
definition of the strong form of ∆ does not hold for polyhedral surfaces. In
contrast, the weak form requires less regularity of the surface and can be defined
on polyhedral surfaces.

The weak Laplace–Beltrami operator on a smooth or polyhedral surface M
is the continuous linear operator that maps any u ∈ H1(M) to the distribu-
tion ∆u, which lies in H1(M)′, the (topological) dual space of H1(M), and is
given by

〈∆u|ϕ〉 = −
∫
M
g(gradu, gradϕ) dvol (3.1)

for all ϕ ∈ H1(M). Here 〈·|·〉 denotes the pairing of H1(M)′ and H1(M).
The weak form is a generalization of the strong form in the sense that for any
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u ∈ C2(M), the strong Laplace–Beltrami operator of u is the unique continuous
function ∆u that satisfies∫

M
∆uϕdvol = −

∫
M
g(gradu, gradϕ) dvol

for all ϕ ∈ H1(M).

3.1.1 A Dirichlet problem

Poisson’s equation on a smooth surface M is

−∆u = f, (3.2)

where u ∈ C2(M) and f ∈ C0(M). The mean value ū of a function u is

ū =

∫
M
u dvol. (3.3)

Since the mean value of ∆u vanishes for all u, a necessary condition on the
existence of a solution to (3.2) is that the mean value of f vanishes. The
weak form of the Dirichlet problem of Poisson’s equation can be formulated
for polyhedral surfaces: for any f ∈ L2(M) with vanishing mean value, find
a u ∈ H1(M) such that

− 〈∆u|ϕ〉 = 〈f, ϕ〉L2 (3.4)

holds for all ϕ ∈ H1(M). Since the constant functions are in the kernel of ∆,
we additionally impose the condition

ū = 0.

Then the Dirichlet problem has a unique solution u for any f that satisfies the
assumptions mentioned above. For a proof and an analysis of the problem on
polyhedral surfaces, including regularity and stability of the solution, we refer
to [106].

3.2 Approximation of the weak Laplace–Beltrami operator

In [64], it was shown that if a sequence of polyhedral normal graphs converges
to a smooth surface in the Hausdorff distance, then convergence of the normal
vectors is equivalent to the convergence of the weak Laplace–Beltrami opera-
tors. Based on this result, we derive explicit approximation estimates for the
weak Laplace–Beltrami operator in the operator norm.

Let us consider a polyhedral surface Mh that is a normal graph over a smooth
surface M . From Section 1.5, we know that the pullback of functions is an
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isomorphism of the Sobolev spaces H1(M) and H1(Mh). Thus, we can pullback
the operator ∆Mh

to M by setting

〈∆hu|ϕ〉 = 〈∆Mh
u ◦Ψ|ϕ ◦Ψ〉

for any ϕ ∈ H1(M). By means of the metric distortion tensor A and the area
distortion α, the operator ∆h can be represented as

〈∆hu|ϕ〉 = −
∫
M
g(A−1gradu, gradϕ)α dvol. (3.5)

This follows from the relation of the weak gradients of M and Mh discussed in
Section 1.5. The distance of ∆ and ∆h in the norm of the space of continuous
linear operators from H1(M) to H1(M)′ is

‖∆−∆h‖Op = sup
u,ϕ
|〈(∆−∆h)u|ϕ〉| ,

where the supremum is taken over all u, ϕ ∈ H1(M) with ‖u‖H1 = ‖ϕ‖H1 = 1.
Using the representation (3.5) of ∆h, we get

‖∆−∆h‖Op = sup
u,ϕ

∣∣∣∣∫
M
g((αA−1 − Id)gradu, gradϕ) dvol

∣∣∣∣
≤
∥∥αA−1 − Id

∥∥
∞ .

We have already established an upper bound on the last term in Theorem 1.22.
Hence, we obtain an approximation estimate for ‖∆−∆h‖Op that we summa-
rize in the following theorem.

Theorem 3.1 (approximation of weak Laplace–Beltrami operator) Let
M be a smooth surface in R3. Then for every ε ∈ (0, 1) there exists a con-
stant C, such that for every polyhedral surface Mh that is an ε-normal graph
over M , the estimate

‖∆−∆h‖Op ≤ C (δ(M,Mh) + ‖N −Nh‖2L∞)

holds. The constant C depends only on ε.

By combining the theorem with Lemma 1.24, we obtain the following corol-
lary for the case of inscribed polyhedral surfaces.

Corollary 3.2 Let M be a smooth surface in R3. Then there exists a h0 ∈ R+

such that for every polyhedral surface Mh that is inscribed to M and has mesh
size h < h0, the estimates

‖∆−∆h‖Op ≤ C h
2

holds, where the constant C depends only on M , h0, and the shape regularity ρ
of Mh.
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3.3 Discrete weak Laplace–Beltrami operator

Let Sh denote the finite dimensional subspace of H1(Mh) consisting of all
continuous functions on Mh that are linear over each triangle. Let n be the
number of vertices of Mh, and let {v1, v2, ..., vn} be the (ordered) set of vertices.
For any function uh ∈ Sh(Mh), the vector

(uh(v1), uh(v2), ..., uh(vn)) ∈ Rn

is called the nodal vector. The mapping between functions in Sh(Mh) and
their nodal vectors is a linear isomorphism of Sh and Rn. The Lagrange ba-
sis {ψi}i∈{1,2,...,n} of Sh(Mh) consists of the functions whose nodal vectors are
the standard basis vectors of Rn.

Now, we construct a discrete weak Laplace–Beltrami operator. The idea
behind the construction is to restrict both arguments of 〈∆Mh

· |·〉 to functions
in Sh. The discrete weak Laplace–Beltrami operator is the linear map

Sh 7→ S′h

uh 7→ ∆Mh
uh|Sh ,

where S′h is the dual space of Sh and ∆Mh
uh|Sh is the restriction of the func-

tional ∆Mh
uh ∈ H1(M)′ to Sh. The matrix representation S of the negative of

the discrete operator (with respect to the Lagrange basis and the corresponding
dual basis of S′h) has the components

Sij =

∫
Mh

gMh

(
gradMh

ψi, gradMh
ψj
)

dvolMh
.

Since the support of any Lagrange basis function ψi is the star of the vertex vi,
the component Sij vanishes if vj /∈star(vi). Hence, S is a sparse matrix. Fur-
thermore, the non-vanishing entries Sij depend only on the cotangents of the
inner angles of the triangles. For this reason the discrete operator is known as
the cotan Laplacian and the matrix S as the cotan matrix. The cotan weights
appear in the work of Pinkall and Polthier [91] on the construction of discrete
minimal surfaces and earlier in the work of MacNeal [76] and Duffin [42] on
numerical solutions to partial differential equations on planar domains. Ex-
plicitly, for two vertices vi and vj that share an edge, the entry Sij is given
by

Sij = −1

2
(cotαij + cotβij),

where αij and βij are the angles opposite to the edge (vi, vj) (as illustrated in
Figure 3.1). The diagonal entries are

Sii = −
∑
j,j 6=i

Sij ,
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where the sum runs over all j such that vi and vj share an edge. The last
equation implies that for every row of S, the sum of all components vanishes.
This is a consequence of the fact that the constant functions are in the kernel
of the (weak) Laplace–Beltrami operator.

FIGURE 3.1. The definition of the angles αij and βij is illustrated.

3.3.1 Discrete Dirichlet problem

The discrete analog of the Dirichlet problem (3.4) is: for any f ∈ L2(Mh)
with f̄ = 0, find the function uh ∈ Sh that satisfies

− 〈∆Mh
uh|ϕh〉 = 〈f, ϕh〉L2 (3.6)

for all ϕh ∈ Sh(Mh) and
ūh = 0. (3.7)

The existence and uniqueness of a solution follows from the fact that the kernel
of the weak Laplace–Beltrami operator is the one-dimensional space of constant
functions. For error estimates on the approximation of the solution of the
Dirichlet problem on a smooth surface by a corresponding discrete problem on
a polyhedral surface, we refer to [44] and [64].

3.4 Pointwise approximation

In this section, we show how the weak Laplace–Beltrami operator on a polyhe-
dral surface can be used for a pointwise approximation of the strong Laplace–
Beltrami operator on a nearby smooth surface. This result is the basis for
the construction of the discrete Laplace–Beltrami operators in the next sec-
tion. Before we state the theorem, we prove an approximation estimate for the
gradient of a function by the gradient of an interpolating function.

Let us consider a polyhedral surface Mh that is inscribed to a smooth sur-
face M . As before, we denote by Ψ the restriction to Mh of the orthogonal
projection onto M and by Φ its inverse. For brevity, we denote by û = u ◦ Φ
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the pullback to M of a function u on Mh. Let Ŝh be the space that contains
any function v̂ ∈ H1(M) that is a pullback of a function v in Sh. For any
continuous function u on M , there are unique functions uh ∈ Sh and ûh ∈ Ŝh
that interpolate u at the vertices of Mh. The following lemma provides an esti-
mate for the interpolation error, which we will use later in the approximation
theorem.

Lemma 3.3 Let u ∈ C2(M) and let ûh ∈ Ŝh be the interpolant of u. Then

‖grad (u− ûh)‖L∞ ≤ C h(|u|C2 + h |u|C1), (3.8)

where the constant C depends only on M and the shape regularity of Mh.

Proof. Consider a triangle Th of Mh and let T ⊂ M be the projection of Th
onto M . Then u ◦ Ψ |Th is in C2(Th) and uh |Th is the linear function that
interpolates u at the vertices of Th. Since Th is a flat triangle, we can use
standard estimates for the approximation error∥∥gradMh

(u ◦Ψ− uh)
∥∥
L∞(Th)

≤ C h |u ◦Ψ|C2(Th) .

Furthermore,

‖grad (u− ûh)‖L∞(T )

≤ ‖A‖−
1
2∞

∥∥∥√g(A−1grad (u− ûh), grad (u− ûh))
∥∥∥
L∞(T )

= ‖A‖−
1
2∞
∥∥gradMh

(u ◦Ψ− uh)
∥∥
L∞(Th)

and it can be shown, see [44, Lemma 3] and [106, Lemma 3.3.1], that

|u ◦Ψ|C2(Th) ≤ C(|u|C2(T ) + h |u|C1(T )).

Since the estimates hold for all triangles of Mh, we have verified (3.8).
�

Our approach to obtain a pointwise approximation is to test the weak
Laplace–Beltrami operator with r-local functions, which we introduced in Sec-
tion 2.3. Slightly different from the last chapter, here we will consider r-local
functions that are elements of H1 (and not only of W 1,1). This is necessary
since we defined the weak Laplacian as an operator on H1. The construction
of r-local functions described in Section 2.6.1 can be used to construct r-local
functions that are in H1, as well. The only change in the construction is that
the function φ, which is the basis of the construction, has to be in H1 instead
of W 1,1. The explicit examples of r-local functions derived in Section 2.6.3, the
hat functions, are also in H1.
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Theorem 3.4 (pointwise approximation) Let M be a smooth surface in R3

and let u be a smooth function on M . Then there exists a h0 ∈ R+ such that
for every pair consisting of a polyhedral surface Mh that is inscribed to M and
satisfies h < h0 and a function ϕ that is r-local at a point y ∈Mh, the estimate

|∆u(x)− 〈∆Mh
uh|ϕ〉| ≤ C(r +

h

r
) (3.9)

holds, where uh ∈ Sh(Mh) is the interpolant of u and x = Ψ(y). If ϕ̂ has the
r2-property (with respect to a constant CQ), then the bound improves to

|∆u(x)− 〈∆Mh
uh|ϕ〉| ≤ C(r2 +

h

r
). (3.10)

The constants C depend only on M , u, h0, the shape regularity ρ of Mh, and
the constants CD and CQ of ϕ.

Proof. The operator ∆Mh
and the functions uh and ϕ are defined on Mh.

First, we pullback ∆Mh
, uh, and ϕ to M , add some zeros, and use the Cauchy–

Schwarz inequality to get

|∆u(x)− 〈∆Mh
uh|ϕ〉| = |∆u(x)− 〈∆hûh|ϕ̂〉| (3.11)

≤ |∆u(x)− 〈∆u|ϕ̂〉|+ |〈∆(u− ûh)|ϕ̂〉|+ |〈(∆−∆h)ûh|ϕ̂〉| .

In the following, we derive bounds for each of the three summands of the right-
hand side of (3.11). Let us start with the first summand. Since the support
of the function ϕ is contained in the geodesic ball Br(y), the support of ϕ̂ is
contained in the B‖A‖1/2∞ r

(x). It follows from Lemma 1.25 that there is a con-

stant C, which depends only on M and h0, such that ϕ̂ satisfies property (D3)
for the point x and the radius C r. Thus, ϕ̂/ ‖ϕ̂‖L1 satisfies the requirements
of Lemma 2.7 and we get

|∆u(x)− 〈∆u|ϕ̂〉|

≤
∣∣∣∣∆u(x)− 1

‖ϕ̂‖L1

〈∆u|ϕ̂〉
∣∣∣∣+

∣∣∣∣(1− ‖ϕ̂‖L1)
1

‖ϕ̂‖L1

〈∆u|ϕ̂〉
∣∣∣∣

≤ C(r + h2).

In the last step, we use the estimate

|1− ‖ϕ̂‖L1 | ≤ C h2,

which follows by combining Lemmas 1.16 and 1.25 and our assumption that
‖ϕ‖L1(Mh) = 1.

If ϕ̂ satisfies the r2-property, then using (2.15) instead of Lemma 2.7 yields

|∆u(x)− 〈∆u|ϕ̂〉| ≤ C(r2 + h2).
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To establish a bound on the second summand, we show that the bound∥∥gradMh
ϕ
∥∥
L1(Mh)

≤ C 1

r

holds for ‖grad ϕ̂‖L1 as well

‖grad ϕ̂‖L1 =

∫
M
‖grad ϕ̂‖g dvol

≤
∥∥αA−1

∥∥− 1
2

∞

∫
M

√
g(A−1grad ϕ̂, grad ϕ̂)α dvol

=
∥∥αA−1

∥∥− 1
2

∞
∥∥gradMh

ϕ
∥∥
L1(Mh)

≤ C 1

r
.

Then we apply Hölder’s inequality and Lemma 3.3 to get

|〈∆(u− ûh)|ϕ̂〉| =
∣∣∣∣∫
M
g(grad (u− ûh), grad ϕ̂) dvol

∣∣∣∣
≤ ‖grad (u− ûh)‖L∞ ‖grad ϕ̂‖L1 ≤ C

h

r
.

A bound on the third summand follows from estimate (1.41) of Lemma 1.25
and Lemma 3.3 ∣∣∣〈(∆− ∆̂h)ûh|ϕ̂

〉∣∣∣
=

∣∣∣∣∫
M
g((Id− α A−1) grad ûh, grad ϕ̂) dvol

∣∣∣∣
≤
∥∥Id− α A−1

∥∥
∞ ‖grad ûh‖L∞ ‖grad ϕ̂‖L1

≤ C h2

r
.

This bound is quadratic in h and therefore small compared to the bound on
the second summand. The combination of the bounds on the three summands
completes the proof. �

The theorem is stated in a general setting that assumes no correlation of r
and h. The following corollary shows how to choose r to get the optimal ap-
proximation order in h.

Corollary 3.5 Under the assumptions of Theorem 3.4, if r =
√
h, then

|∆u(x)− 〈∆Mh
uh|ϕ〉| ≤ C

√
h,

and if ϕ̂ satisfies (2.15) and r = h
1
3 , then

|∆u(x)− 〈∆Mh
uh|ϕ〉| ≤ C h

2
3 .
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3.5 Discrete strong Laplace–Beltrami operators

Based on the approximation results in the last section, we derive a princi-
ple for the construction of discrete Laplace–Beltrami operators on polyhedral
surfaces that are consistent discretizations of the strong Laplace–Beltrami op-
erator. Then we discuss matrix representations of the operators and compare
the consistency rates of our approach and the mesh Laplacian.

In contrast to the discrete weak Laplace–Beltrami operators, which map
functions onto functionals, the discrete strong Laplace–Beltrami operators are
endomorphisms of Sh. We will describe the discrete strong Laplace–Beltrami
operators by their action on the nodal vectors. Let {ϕi}i∈{1,2,..n} be a set of
functions such that every ϕi is r-local at the vertex vi ∈ Mh. Then we define

the discrete Laplace–Beltrami operator ∆
{ϕi}
Mh

associated to {ϕi} as

∆
{ϕi}
Mh

: Sh 7→ Sh
uh(v1)
uh(v2)
...

uh(vn)

 7→

〈∆Mh

uh|ϕ1〉
〈∆Mh

uh|ϕ2〉
...

〈∆Mh
uh|ϕn〉

 .

For each ϕi there is a constant CD,i such that (D5) of Definition 2.6 is satisfied.
In the following, we refer to the maximum of the CD,i as the constant CD
of {ϕi}. Similarly, if every ϕi◦Φ has the r2-property with respect to a constant
CQ,i, we denote by CQ the maximum of the CQ,i.

Theorem 3.6 (consistency of discrete operator) Let M be a smooth sur-
face in R3, and let u be a smooth function on M . Then there exists a h0 ∈ R+

such that for every pair consisting of a polyhedral surface Mh that is inscribed
to M and satisfies h < h0 and a set of functions {ϕi}i∈{1,2,..n} such that ev-

ery ϕi is r-local at the vertex vi ∈Mh with r =
√
h, the estimate

sup
y∈Mh

∣∣∣∆u(Ψ(y))−∆
{ϕi}
Mh

uh(y)
∣∣∣ ≤ C√h (3.12)

holds, where uh ∈ Sh(Mh) is the interpolant of u. If every ϕ̂i has the r2-property

and r = h
1
3 , then we have

sup
y∈Mh

∣∣∣∆u(Ψ(y))−∆
{ϕi}
Mh

uh(y)
∣∣∣ ≤ C h 2

3 . (3.13)

The constants C depend only on M , u, h0, the shape regularity ρ of Mh, and
the constants CD and CQ of {ϕi}.

Proof. Let v ∈ Sh and v̂ ∈ Ŝh be the interpolants on Mh and M of the func-
tion ∆u. Then the approximation error satisfies (analogously to Lemma 3.3)

‖∆u− v̂‖L∞ ≤ C h
2(|∆u|C2 + h |∆u|C1). (3.14)



78 3. Laplace–Beltrami operator and Willmore energy

Theorem 3.4 implies

|∆u(Ψ(vi))− 〈∆Mh
uh|ϕi〉| ≤ C

√
h (3.15)

for all i. Since v(vi) = v̂(vi) = ∆u(Ψ(vi)), we have∥∥∥v −∆
{ϕi}
Mh

uh

∥∥∥
L∞
≤ C

√
h. (3.16)

Combining (3.14) and (3.16) shows (3.12). A similar argumentation proves the
second estimate. �

3.5.1 Matrix representation

We show how the cotan matrix can be used to construct the matrix represen-

tation L of ∆
{ϕi}
Mh

with respect to the nodal basis. For simplicity, we assume
that the ϕi are functions in Sh. Let S denote the cotan matrix and let Φ be
the matrix with entries Φij = ϕi(vj). Then L is the sparse matrix given by

L = −ΦS. (3.17)

The number of entries of L depends on the number of vertices that are in the
support of the functions ϕi. When comparing (3.17) to the construction of
discrete Laplacians (as described in [107]), we see that Φ takes the role of the
inverse mass matrix.

In general, the matrix Φ is not symmetric. But, Φ that are symmetric can
be constructed. The matrix can be decomposed into a symmetric and an anti-
symmetric part

Φ = Φsym + Φasym =
1

2
(Φ + ΦT ) +

1

2
(Φ− ΦT ),

where ΦT denotes the transpose of Φ. For certain choices of r-local func-
tions {ϕi}, the entries of Φasym are small compared to the entries of Φsym.
For example, if we use the geodesic or extrinsic hat functions (see Section 2.6)
with the same value of r at all vertices. Then it is justified to use

L = −Φsym S,

instead of (3.17).

3.5.2 Comparison with the mesh Laplacian

An alternative to our construction of a consistent discrete strong Laplace–
Beltrami operator is the mesh Laplacian that was proposed by Belkin, Sun, and
Wang in [13]. It is based on a discretization of the heat kernel of an embedded



3.6 Willmore energy 79

surface. In [14], it is shown that under the assumption that a polyhedral surface
is an ε-sample of a smooth surface, the consistency error of the mesh Laplacian
is bounded by O( ε

t2
+ t

1
2 ). Here ε denotes the sampling density and t is a

parameter that controls the width of the heat kernels. Then the optimal choice
t = ε

2
5 yields a consistency order of ε

1
5 . Under our assumption that the shape

regularity of the polyhedral surface is bounded, ε ∼ h and the rate can be
compared to our results. We want to remark that we are only comparing the
bounds that have been proven. As far as we know, it is unclear for both discrete
operators, whether the established bounds are optimal.

3.6 Willmore energy

The Willmore energy of a smooth surface M in R3 is

W (M) =

∫
M
H2dvol, (3.18)

where H denotes the mean curvature of M . The mean curvature is connected
to the Laplace–Beltrami operator by

H = HN = ∆I, (3.19)

where I is the embedding of M in R3 and N is the surface normal field. The
vector field H N is called the mean curvature vector field. Then the Willmore
energy of M equals the squared L2-norm of ∆I. Let IMh

: Mh 7→ R3 denote
the embedding of the polyhedral surface Mh. Each of the three components
of IMh

is a function in Sh. Thus, we can define the discrete mean curvature

vector associated to a discrete Laplacian ∆
{ϕi}
Mh

analogous to (3.19) by

H
{ϕi}
Mh

= ∆
{ϕi}
Mh

IMh
.

If Mh is inscribed to M , Theorem 3.6 implies

sup
y∈Mh

‖H(Ψ(y))−H
{ϕi}
Mh

(y)‖R3 ≤ C
√
h (resp. C h

2
3 ).

We define the discrete Willmore energy of Mh and {ϕi} analogous to (3.18) as

W
{ϕi}
Mh

(Mh) = ‖H{ϕi}Mh
‖2L2(Mh).

The following theorem shows consistency of the discrete Willmore energies.

Theorem 3.7 (consistency of discrete Willmore energies) Let M be a
smooth surface in R3. Then there exists a h0 ∈ R+ such that for every pair
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consisting of a polyhedral surface Mh that is inscribed to M and satisfies h < h0

and a set of functions {ϕi}i∈{1,2,..n} such that every ϕi is r-local at the vertex

vi ∈Mh with r =
√
h, the estimate∣∣∣W (M)−W {ϕi}Mh

(Mh)
∣∣∣ ≤ C√h

holds. If every ϕ̂i has the r2-property and r = h
1
3 , then we have∣∣∣W (M)−W {ϕi}Mh

(Mh)
∣∣∣ ≤ C h 2

3 .

The constants C depend only on M , h0, the shape regularity ρ of Mh, and the
constants CD and CQ of {ϕi}.

Proof. To compare H and H
{ϕi}
Mh

, we consider the vector field H
{ϕi}
h ∈ Ŝ3

h

given by H
{ϕi}
h ◦ Ψ = H

{ϕi}
Mh

. We split the approximation error in two terms:

the first term measures the difference of H and H
{ϕi}
h , and the second term

measures the difference of the L2-norms of M and Mh∣∣∣W (M)−W {ϕi}Mh
(Mh)

∣∣∣ =
∣∣∣‖H‖2L2(M) − ‖H

{ϕi}
Mh
‖2L2(Mh)

∣∣∣
≤
∣∣∣‖H‖2L2(M) − ‖H

{ϕi}
h ‖2L2(M)

∣∣∣+ ‖1− α‖L∞(M) ‖H
{ϕi}
h ‖2L2(M)

≤ ‖H−H
{ϕi}
h ‖L∞(M)‖H + H

{ϕi}
h ‖L1(M) + C h2‖H{ϕi}h ‖2L2(M).

Here, we use Hölder’s inequality and Lemma 1.25 in the last step. By Theo-
rem 3.6, the term

‖H−H
{ϕi}
h ‖L∞(M) = sup

y∈Mh

‖∆I(Ψ(y))−∆
{ϕi}
Mh

IMh
(y)‖

is bounded by C
√
h, resp. C h

2
3 . Furthermore, Theorem 3.6 guarantees that

there are upper bounds for ‖H + H
{ϕi}
h ‖L1(M) and ‖H{ϕi}h ‖2L2(M). �

Remark 3.8 We want to remark that a similar construction of a consistent
discrete Willmore energy can be established using the trace of the pointwise
approximation of the shape operators, which is discussed in Section 2.4, to
approximate the mean curvature.

3.7 Experiments

In this section, we show results of experiments concerning the consistency error
and the consistency order. For a parametrized surface M , we consider inscribed
polyhedral surfaces with decreasing mesh size h and approximate the mean
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h ‖H(x)−H
ϕ 3√

h

h ‖ eoc ‖H(x)−H
ϕ√

h

h ‖ eoc

0.9907594 0.1473438 − 0.1655998 −
0.4072441 0.0718663 0.81 0.0816863 0.79
0.1376594 0.0343882 0.68 0.0439559 0.57
0.0407502 0.0151471 0.67 0.0238574 0.50
0.0111478 0.0063759 0.67 0.0126259 0.49
0.0042305 0.0033417 0.67 0.0078440 0.49
0.0015209 0.0016897 0.67 0.0047346 0.49

h ‖H(x)−H
ϕ 3√

h

h ‖ eoc ‖H(x)−Hϕh

h ‖ eoc

0.1819730 0.1159240 − 0.0681956 −
0.0615573 0.0469350 0.83 0.6798970 −2.10
0.0182239 0.0206826 0.67 0.0328904 2.50
0.0049855 0.0087871 0.66 0.5920200 −2.20
0.0018919 0.0045958 0.67 0.1372740 1.50
0.0006802 0.0023197 0.67 0.0918593 0.39
0.0002655 0.0012393 0.67 0.1451020 −0.49

TABLE 3.1. Approximation errors and the experimental orders of convergence for the
approximation of the mean curvature vector at a point of a smooth surface are shown.

curvature vector of M at a point x ∈M by Hϕr
Mh

= 〈∆Mh
IMh
|ϕr〉, where ϕr ∈

Sh is a r-local function onMh. The tables show the approximation error and the
experimental order of convergence, see (2.52). In the first example, we consider
a torus of revolution. The upper part of Table 3.1 shows the approximation

error
∥∥∥H(x)−Hϕr

Mh

∥∥∥
R3

obtained with two different types of r-local functions

and confirms both estimates of Theorem 3.4. The first function is (a piecewise
linear approximation of) the extrinsic hat function (see Section 2.6). It is given
by

ϕr =
ϕ̃r
‖ϕ̃r‖L1

, (3.20)

h W
{ϕi}
h (Mh)

∣∣∣W (M)−W {ϕi}
h (Mh)

∣∣∣ eoc

0.6181260 19.8617 2.931210 −
0.3542860 20.9932 1.799680 0.88
0.1909680 21.7347 1.058190 0.86
0.0973871 22.1986 0.594268 0.86
0.0491797 22.4605 0.332392 0.85
0.0247127 22.6066 0.186275 0.84
0.0123872 22.6876 0.105310 0.83
0.0062014 22.7327 0.060178 0.81

TABLE 3.2. Results for the approximation of the Willmore energy of a torus of revo-
lution by a discrete Willmore energy.
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where ϕ̃r is the function in Sh that at any vertex v ∈Mh takes the value

ϕ̃r(v) = max{1−
‖x− v‖R3

r
, 0}. (3.21)

We set r = h
1
3 and due to the approximate symmetry of ϕr around x, we obtain

an eoc of h
2
3 . The second function sets r = h

1
2 , and we disturb the symmetry

around x by translating the center of the extrinsic hat function (away from x)
by a random vector of length

√
h/20. The length of the vector is chosen such

that the resulting function is still r-local around x but does not have the r2-
property anymore. In the experiments we get the expected eoc of h

1
2 . This is

an experimental indication that the bound (3.9) of Theorem 3.4 is sharp. Still,
we would like to remark that in this experiment (and in many other similar

settings) the eoc is h if we set r = h
1
2 and do not translate the center of

the function. This raises the question of whether it is possible to improve the
bound (3.10) of Theorem 3.4) for a special type of functions.

In the second example, we consider polyhedral surfaces that approximate the
sphere, but the vertex positions are corrupted with random noise of order h2.
The lower part of Table 3.1 shows that for r = h

1
3 we still obtain the same eoc,

whereas for r = h there is no convergence.
In the third example, we approximate the Willmore energy of a torus of

revolution by the discrete Willmore energy that we obtain by using functions
of type (3.20) at each vertex of the polyhedral surface. Table 3.2 shows the
consistency error and the eoc.



4
Constraint-based fairing

4.1 Fairness energies

Fairness energies are an attempt to establish quantitative measures for the
fairness of a shape. Finding a commonly-accepted measure of fairness is a
delicate task due to the inherent subjectivity of rating the appearance of a
geometry as well as the specific demands of applications. Nevertheless, one can
agree on some general criteria: a fairness energy should be independent of the
parametrization of the surface, invariant under rigid motions and scaling, and
spheres should be among the minimizers of the energy.

Different measures of fairness have been proposed. These can be classified by
the order of the highest derivative of the surface needed to evaluate the energy.
A first-order quantity that is invariant under reparametrizations and rigid mo-
tions is the area of a surface. Since the area is not invariant under scaling,
Delingette [35] proposed using the isoperimetric ratio A3/V 2 as a scale invari-
ant first-order fairness measure for closed surfaces. Here A denotes the area
and V is the volume enclosed by the surface. Second-order measures relate to
curvature, such as integrals of squares of curvature terms. Prominent exam-
ples are the Willmore energy

∫
H2 dA, the total curvature

∫
(κ2

1 + κ2
2) dA, and

the energy
∫

(κ1 − κ2)2 dA (which many authors also refer to as the Willmore
energy). Here κ1 and κ2 denote the principal curvatures and H = κ1 + κ2

the mean curvature. An example of a third-order measure is the curvature
variation energy proposed by Moreton and Sequin [79]. The Euler–Lagrange
equation of this energy is of sixth order.
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For our purposes, we need a fairness energy of at least second order, otherwise
we can not expect a continuous minimizer due to the hard constraints. The
three examples of second-order energies are closely related to each other. They
differ only by a multiple of the integral of the Gauß curvature over the surface.
By the Gauß–Bonnet theorem, this integral is constant for compact surfaces
without boundary since it depends only on the topology of the surface. For
compact surfaces with boundary, the integral of the Gauß curvature is invariant
under variations that fix positions and normals at the boundary. Hence in
both cases, the three energies have the same minimizers. Either of the three
energies is a good candidate for our purposes. An alternative second-order
fairness measure would be the integral of the squared Gauß curvature. But
by Gauß’ Theorema Egregium, this energy only depends on the metric of the
surface, which rules out this energy. For example, take a piece of paper and
bend it. There is no metric distortion; Gauß curvature does not change.

For our experiments, we use the discrete Willmore energy proposed by
Wardetzky et al. [107], which can be derived using non-conforming Crouzeix–
Raviart finite elements. The energy is a sum of contributions from hinge stencils

E(M) =
∑
e∈M

3 ‖e‖2

2 Ae
cos(

θe
2

)2, (4.1)

where Ae is the combined area of the two triangles adjacent to the edge e,
and θe is the dihedral angle at e. The non-linear gradient of the energy can be
computed efficiently; for an explicit formula see [107]. The reason we do not
use the discrete Willmore energies developed in the previous chapter is that
the experiments had already been finished before the energies were developed.

4.2 Constrained optimization problem

Our fairing method is modeled as a constrained non-linear optimization prob-
lem. The constraints assure that during the smoothing process no point of the
surface deviates more than a prescribed distance from its initial position. The
definition of the constraints involves a deviation measure that takes into ac-
count the maximum deviation. We first define the discrete maximum deviation
measure, then describe the optimization problem.

For two polyhedral surfaces M and N that have the same connectivity, we
define the discrete maximum deviation measure d∞ as

d∞(M,N) = maxi ‖mi − ni‖R3 , (4.2)

where mi and ni are the vertices of M and N , respectively. The measure d∞
describes a metric on the set of all polyhedral surfaces with fixed connectivity.
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FIGURE 4.1. An original noisy scan of a Chinese lion with 1.3 m triangles and height
about 10 cm (left). The smoothed mesh (right) stays within a 0.1 mm distance from
the initial mesh. The surfaces are colored by mean curvature with colors ranging from
white (negative curvature) to red (positive curvature).

Let Bε(M) denote the closed ball with radius ε around M with respect to this
metric. Geometrically speaking, N is in the set Bε(M) if each vertex ni of N
lies in the ball of radius ε around the corresponding vertex mi of M .

Now, we can state the optimization problem.

Problem 4.1 (constrained fairing) Given a polyhedral surface M and a
positive ε, find a polyhedral surface N that minimizes the discrete Willmore
energy over all candidates Ñ ∈ Bε(M).

4.3 Minimization procedure

The constraints define a feasible region in R3 for every vertex. The shape of
the region depends on which norm on R3 we use. In the case of the standard
Euclidean norm, it is a sphere of radius ε. For the maximum norm, it is an axis
aligned cube with side length 2ε. For our experiments, we use the maximum
norm because the resulting constraints are box (or bound) constraints and there
are many specialized optimization strategies for box constraints. Active set
Newton solvers with gradient projection are among the most effective solvers
for large-scale box constrained non-linear optimization problems. For a general
introduction to active set and gradient projection methods we refer to [87].
For an analysis and discussion of solvers of this type for large-scale problems,
see [75, 70] and references therein. First, we briefly describe the general scheme.
Then, in Section 4.3.1, we discuss how to approximate the required second-
order information in an efficient and robust way.

By listing the coordinates of all the vertices, we identify a polyhedral surface
with a point in Rn where n equals three times the number of vertices. Let
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FIGURE 4.2. Noise removal from a range image. The maximum tolerance is 0.1 mm
and the height of the object is 30 cm. The right image shows the smoothed surface
colored by the distance between the initial (noisy) to the smoothed surface.

x0 ∈ Rn be the point representing the initial surface. Then the feasible set Ωx0,ε

is the n-dimensional cube with edge length ε and midpoint x0. The projection
P of a point x in Rn onto Ωx0,ε can be computed by projecting each coordinate
xi of x onto the interval [x0

i − ε, x0
i + ε], where x0

i is the ith coordinate of x0.
In the minimization process, we use so-called projected rays, which are rays
that are bent whenever they hit the boundary such that they stay within the
feasible set. The projected ray starting at a point x with initial direction v is
obtained by projecting the ray x+ t v onto the feasible set, i.e., it is given by

r(t) = P (x+ t v).

This describes a piecewise linear path that, after first hitting a face of the
feasible set, travels along the boundary.

The set of active constraints for a point x ∈ Ωx0,ε is defined as

A(x) = {i ∈ {1, 2, ..., n} |
∣∣xi − x0

i

∣∣ = ε}.

For a point away from the boundary, the active set is empty, and for a vertex
of the cube Ωx0,ε, all constraints are active. Let E : Ωx0,ε → R be our energy,
and let H(x) denote the Hessian and g(x) the gradient. The Newton direction
v(x) at a point x ∈ Ωx0,ε is

v(x) = −(H(x))−1g(x).
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FIGURE 4.3. Removing marching cubes artifacts from a human pelvis (∼ 28 cm width)
model extracted from computed tomography data. The maximum deviation of the
smoothed mesh (right) from the initial surface is 1 mm.

The active set method iterates the following two steps until a local minimum
is reached. Let xk be the current point after the kth iteration.

1. Cauchy step. Compute the gradient direction g(xk). Find a point yk along
the projected path P (xk + t g(xk)) that produces a sufficient reduction of
energy, i.e., a point yk such that

E(yk) < E(xk)− λ
〈
g(xk), yk − xk

〉
, (4.3)

where λ < 1 is a constant. In our experiments, we set λ = 0.01. A point
satisfying (4.3) is called a Cauchy point.

2. Subspace minimization step. The point yk lies in some face of the
feasible cube Ωx0,ε (which may be the cube itself). In this step, we perform
a minimization step constrained to this face. More specifically: determine the
active set A(yk) of yk and compute the reduced Hessian Hr and the reduced
gradient gr with respect to the free variables. Here, reduced means: for all
i ∈ A(yk) remove the ith column and row from H and the ith entry from g.
Then compute the reduced Newton direction vkr = H−1

r gr and lift the vector
vkr to Rn by adding zeros for the removed entries. The next iterate xk+1 is a
point on the projected path P (yk + t vkr ) that is itself a Cauchy point, i.e.,
satisfies (4.3), and has less energy than the Cauchy point computed in step 1.

In steps 1 and 2, we search along a projected ray r(t) for a point that satisfies
a descent condition. Since we can efficiently evaluate r(t) for any t, any line
search algorithm can be applied for this. We use an iterative procedure that
starting from an initial guess t = t̃, either monotonically increases or monoton-
ically decreases the value of t. It is increasing if the guessed point r(t̃) satisfies
the descent condition and is otherwise decreasing. In each iteration, the value
of t is multiplied by a factor of 2 (increasing case) or 0.5 (decreasing case). The
iteration terminates if the descent condition is no longer fulfilled (increasing
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FIGURE 4.4. Noise removal from the scanned blade model with 390 k triangles. Details
are shown on the right.

case) or if they are fulfilled (decreasing case). If the sequence is increasing,
the last value satisfying the descent condition is used. In each Cauchy and
subspace minimization step, we use the result of the previous iteration as an
initial guess for t.

4.3.1 Approximation of the Hessian

Since the Hessian of the discrete Willmore energy is not necessarily positive
definite, there is no guaranty that the Newton direction is indeed a descent
direction. One way to deal with this issue is to replace the Hessian by a positive
definite approximation. This technique is used by inexact Newton methods.

To approximate the Hessian of the Willmore energy, we use the Hessian of
the thin plate energy with the initial surface as the parameter domain. This
matrix has the form SM−1 S, where S is the usual cotan matrix, see Section
3.3, and M contains the masses, e.g., M is a diagonal matrix containing the
Voronoi areas. Since the matrix S has a kernel consisting of the constant func-
tions, we add the constant value 0.1 to all diagonal entries of S. The resulting
approximation of the Hessian is positive definite, can be written as the square
of a matrix, and decouples the x, y, and z coordinates. Therefore the linear
systems that need to be solved are better conditioned (the condition number
is only the square root of the original), have higher sparsity and are of lower
dimension. As a result, the method can be be applied to larger models. This
is demonstrated on the Chinese lion model with 1.3m triangles in Figure 4.1.

A related approximation of the Hessian of the Willmore energy has been
proposed and used to accelerate the integration of Willmore flow in [107]. One
difference between this method and ours is that the approximate Hessian we
use is a product of square matrices whereas their approximation is a product
of non-square matrices.

Efficiently solving the linear system. To compute the descent direction,
we need to solve the linear system

(SM−1 S)r vr = gr, (4.4)
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FIGURE 4.5. The bunny model (70k triangles) is shown on the left and after the
unconstrained minimization of its discrete Willmore energy on the right. We zoom in
to show the difference in size of the triangles corresponding to the region around an
ear. This demonstrates the robustness of the discrete energy.

where g is the gradient of the discrete Willmore energy (4.1). Note that we solve
only the reduced system. We do not completely solve the system, but compute
an approximate solution by performing only a few iterations of preconditioned
conjugate gradients. Such a strategy is commonly used for large-scale problems.
It proved to be more efficient to spend less effort for each iteration at the cost
of having to perform more steps. This type of method is called a Newton–CG
method. The performance of the CG solver essentially depends on the choice of
a preconditioner. We compute a sparse Cholesky factorization of S only once
as a preprocessing step and use the factorization in each iteration to build a
constraint preconditioner [87] for solving the reduced system (4.4).

4.4 Experiments

We have tested our method on laser-scanned real-world models, with the ex-
ception of the pelvis model shown in Figure 4.3 that has been extracted from
computed tomography data. No artificial noise has been added to the models;
we tested the method with the noise inherent to the scanned data. The only
exceptions are Figures 4.7 and 4.8, where artificial noise has been added to the
models in order to have a ground truth for the comparison of methods.

Noise removal from range images is shown in Figures 4.2 and 4.6. These
models have a regular quad connectivity which we triangulated in order to
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FIGURE 4.6. Noise removal from a range image of a part of a Neptune statue (height
∼ 10 cm) with a maximum deviation tolerance of 0.04 mm.

get planar faces. The two range images differ in size and resolution: the im-
age of the Caesar model has 190 k triangles with a height of 30 cm and the
Neptune model has 270 k triangles with a height of 10 cm. Accordingly, we
specified a smaller value for the maximum deviation tolerance for Neptune
than for Caesar: 0.04 mm for Neptune and 0.1 mm for Caesar. These values
are much smaller than the size of features like the eyelids or wrinkles, which
are preserved. The third image of Figure 4.2 shows the smoothed Caesar col-
ored by the distance of the initial (noisy) to the smoothed surface. The colors
seem to be randomly distributed, which indicates that mainly noise has been
removed and that few structured deviations, like shrinkage of features, have
taken place. The Figures 4.1 and 4.4 show models with clean connectivity and
filled holes. The Chinese lion model has 1.3 m triangles with a height of 10 cm
and the blade has 390 k triangles and measures about one meter in height. We
used a 0.1 mm maximum deviation tolerance for the Chinese lion and a 1 mm
maximum for the blade.

The pelvis model (Figure 4.3) suffers from aliasing and terracing artifacts
caused by a rudimentary volume-extraction method. The ε maximum deviation
for this model is 1 mm which suffices to produce a smooth model.

We compare our method to the feature-preserving anisotropic diffusion as
described in [59] on the armadillo model in Figure 4.8. Despite the larger
amount of noise used in this example, our method produces a result that comes
close to the original surface. The anisotropic diffusion focuses on preserving
the features and even enhances them, e.g., the teeth are sharper than in the
original model. On the other hand the noise is also preserved for a longer time.
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(a) (b) (c)

(d) (e) (f)

FIGURE 4.7. Comparison of the constrained optimization and the unconstrained gra-
dient flow of the Willmore energy on the Caesar model (a). The model has been
artificially corrupted by random noise with 0.2 mm maximum deviation (b), where
the height of the object is 30 cm. The constrained optimization (c) keeps all vertices
within 0.2 mm distance. The bottom row shows the gradient flow at different times.
Vertices that leave the 0.2 mm distance are colored red. The first vertices leave the
0.2 mm distance (d). When the same Willmore energy is reached (e), the maximum
distance is 2 mm and shrinkage effects appear, for example, at the eyelids. Further
time steps (f) induce more shrinkage.

At the instant when the noise is removed, the non-feature regions are already
oversmoothed. For the goal of reproducing the original shape, our method
produces visually better results.

We compare our method to the unconstrained gradient flow of the Willmore
energy on the Caesar model in Figure 4.7. The model has been corrupted by
random noise with a maximal deviation of 0.2 mm, where the height of the
object is 30 cm. The constrained optimization (top row right) keeps all vertices
within 0.2 mm distance to the noisy surface. The bottom row shows snapshots
of the unconstrained evolution. Vertices that leave the 0.2 mm distance are
colored red. The first image shows the moment when the first vertices leave the
0.2 mm distance. The model is still very noisy. When the fairness energy equals
the fairness energy of the surface produced by the constrained optimization, the
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(a) (b)

(c) (d)

FIGURE 4.8. On the armadillo model (a) that has been artificially corrupted with
random noise (b), we compare our method (c) with feature preserving anisotropic
diffusion (d). The anisotropic flow sharpens features, but regarding the reproduction
of the original model, our method produces better results.

maximum distance is already 2 mm and shrinkage effects appear in regions with
high curvature, e.g., at the eyelids. Further time steps induce more shrinkage.

Optimization procedure. The active set Newton scheme produces a rapid
decrease of energy. All presented examples, including the 1.3 m-triangle Chinese
lion model, were stopped after 10-25 iterations. The most time consuming
operation in each iteration is the computation of the Newton direction, which
requires solving a linear system. Compared to this, the procedure that finds
the new position along a projected ray r(t) is fast.

An alternative optimization procedure to the proposed Newton scheme would
be an explicit projected gradient descent, i.e., to skip the subspace minimiza-
tion step. A benefit of this is that one does not need to compute the Newton
direction, which simplifies the implementation and decreases the computational
cost of an iteration. On the other hand, it is well known that for this type of
problem, an explicit gradient descent usually requires a large number of steps.
The comparison shown in Table 4.1 demonstrates that the explicit gradient
descent is only efficient if the surface has nicely shaped triangles and the devi-
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Max. Tol. Newton Exp. Gradient
Model #T

in mm #iter cost (s) #iter cost (s)

Caesar 190 k 0.1 20 103 95 172

Caesar 190 k 0.3 20 101 > 500 > 850

Blade 390 k 1 15 216 90 364

Blade 390 k 3 15 209 > 500 > 2000

Blade* 100 k 1 15 48 250 278

TABLE 4.1. A comparison of running times of the proposed Newton scheme and an
explicit gradient descent is shown. Different values of the maximum deviation tolerance
were tested on the Caesar and the blade model. The procedures were stopped at equal
values of the energy. The last row shows running times of the methods on an irregular
mesh generated by simplifying the blade model.

ation tolerance is very small whereas the Newton scheme performs well on all
the examples. An implicit gradient descent can handle irregular meshes and
larger steps, but the computation of an implicit step itself requires solving a
nonlinear equation, cp. [107]. Even if the equation is linearized (semi-implicit
scheme), the cost of computing the gradient direction is comparable to the cost
of computing the Newton direction.
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Zusammenfassung

Die diskrete Differentialgeometrie ist ein mathematisches Gebiet, in dem dis-
krete Entsprechungen zu Begriffen und Konzepten der klassischen und moder-
nen Differentialgeometrie glatter Mannigfaltigkeiten konstruiert und analysiert
werden. Die Entwicklung in diesem Gebiet wird katalysiert durch die Anwend-
barkeit der Resultate in der Computergraphik, der Geometrieverarbeitung, der
numerischen Physik und der Architekturgeometrie.

In dieser Arbeit befassen wir uns mit polyedrischen Flächen im R3. Im ersten
Kapitel fassen wir Resultate zusammen, die die Grundlage dieser Arbeit bilden.
Insbesondere betrachten wir die Approximation des metrischen Tensors einer
glatten Fläche und die Definition von Funktionenräumen auf polyedrischen
Flächen.

Im zweiten Kapitel beschäftigt uns die Frage, wie sich Krümmungen poly-
edrischer Flächen beschreiben lassen. In der klassischen Differentialgeometrie
glatter Flächen wird dafür die Weingartenabbildung verwendet. Da polyedri-
sche Flächen im R3 nur Lipschitz–Untermannigfaltigkeiten sind, lässt sich die
klassische Definition der Krümmungen nicht anwenden. Wir führen daher eine
verallgemeinerte Weingartenabbildung ein, die ein vektorwertiges Funktional
auf einem Sobolevraum schwach differenzierbarer Vektorfelder ist und sich ri-
goros auf polyedrischen Flächen definieren lässt. Zur Rechtfertigung des Kon-
zepts zeigen wir, wie die verallgemeinerte Weingartenabbildung einer polyedri-
schen Fläche benutzt werden kann, um die klassische Weingartenabbildung
einer glatten Fläche zu approximieren.

Im dritten Kapitel beschäftigen wir uns mit diskreten Laplace–Beltrami–
Operatoren polyedrischer Flächen. Wir zeigen, wie die starke (oder klassische)
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Form des Laplace–Beltrami–Operators konsistent diskretisiert werden kann.
Darüber hinaus betrachten wir die Willmore–Energie, ein wichtiges geometri-
sches Funktional, und führen eine konsistente Diskretisierung der Willmore–
Energie auf polyedrischen Flächen ein.

Im vierten Kapitel entwickeln wir ein Verfahren zur Glättung verrauschter
Flächen. Die Besonderheit dieses Verfahrens ist, dass die maximale Abweichung
jedes Punktes von seiner gemessenen Position beschränkt werden kann.
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