
4 View–Based Access Control

This chapter presents and discusses a declarative access control language designed to meet the
manageability requirements introduced in the previous chapters. The language builds on the
earlier publications [Brose, 1999], [Brose and Löhr, 1999], [Brose, 2000].

Section 4.1 presents the concepts and syntax of the View Policy Language (VPL), which is
used to specify and manage access control in CORBA environments. The main contributions of
this language are the introduction of views and schemas as language concepts and the definition
of model constraints. These concepts and the access control model underlying the language are
discussed and explained in more detail in section 4.2. A formalization of this access control
model is given separately in chapter 5.

4.1 The View Policy Language

This section introduces the View Policy Language (VPL) with which policy designers define
an application policy. This policy is delivered and deployed together with the application.
The subsequent management of the access policy in the target environment uses the same
abstractions. This section is intended to give an informal introduction to the language and its
syntax, details are discussed in section 4.2. The complete grammar of the language can be
found in appendix A.

4.1.1 Policy

VPL policies contain role declarations as well as view definitions and schemas. These concepts
are introduced and discussed in subsequent sections. Figure 4.1 shows a simple example policy
that gives a first impression of the language. In VPL, access control policies are introduced by
the keyword policy. The policy is defined for a two–dimensional grid object and defines two
roles ValueReader and ValueAdmin. The access operations to determine the size of the
grid are width() and height(), the operations set() and get() access grid cells. The example policy
defines authorizations in two views, Getting and Setting, which are initially assigned to
the two roles ValueReader and ValueAdmin.

55



4 View–Based Access Control

policy Grid
{

roles
ValueReader holds Getting on Grid
ValueAdmin holds Setting on Grid

view Getting controls Grid
{

allow
height
width
get

}

view Setting: Getting
restricted_to ValueAdmin

{
allow

set
}

}

Figure 4.1: An example policy.

4.1.2 Roles

Roles are the language concept to represent principals and correspond directly to UML actors.
The concrete VPL syntax for declaring a role in a policy definition is a roles clause as
illustrated in figure 4.1. Another example is shown in figure 4.2, which defines roles such as
lecturer, student, or examiner for a hypothetical policy in a university setting and for a policy
in a publishing house.

Roles clauses declare role names and optionally role constraints and initial authorizations.
The notation Head: Examiner in figure 4.2 means that the Head role is a sub role of the
Examiner role, i.e., its function is a specialization of the Examiner role. This implies that the
sub role inherits the super role’s authorizations. A role can have more than one super role.
A roles clause can also assign views to a role using the keyword holds. The assignment of
this view on the extension of the object type listed after the keyword on is performed when
the policy is initially deployed in a system; during the lifetime of a policy in a running system
these assignments are subject to change.

A maximum cardinality constraint is defined with the keyword maxcard, which is used
here to restrict the President role to a single member subject. The analog keyword mincard
can be used to specify the minimum number of subjects that must be assigned to a role. The
keyword excludes denotes a mutual exclusion between roles, whereas requires is used

56



4.1 The View Policy Language

policy University {
roles

Examiner holds Examining
Head: Examiner // head is a sub role of examiner
President maxcard 1
Lecturer
Candidate excludes Examiner

}

policy Publisher {
roles

Staff
Author
Secretary: Staff
Assistant: Staff requires Secretary
Reviewer: Staff
Editor: Staff
Manager: Staff

}

Figure 4.2: Role declarations.

to define a prerequisite constraint. Mutual exclusion is a symmetric relation between roles, but
it is not required that both roles’ clauses mention the constraint. In the example, no subject may
be assigned to both the Candidate and the Examiner role, and Assistants must have previously
been assigned to the Secretary role. These constraints are explained in more detail in section
4.2.3.2.

4.1.3 Views

The main contribution of the model presented here is the language concept of a view with which
policies can be written and understood in terms of coherent sets of related authorizations. A
view is a named set of access rights, which are either permissions or denials for operations
on objects. While access decisions are made based on individual rights, views are the units of
description and authorization assignment. Figure 4.3 shows an example of a view definition in
VPL that defines rights for accesses to document objects.

Views are defined as authorizations for objects of a single IDL interface, which is refer-
enced in the controls clause of the view definition. In the example, the view Reading
controls the IDL type Document, which is defined in figure 4.4. This means that this view can
only be assigned on objects of this type or one of its subtypes. The type in the controls
clause is called the controlled type. Permissions are listed after the keyword allow, denials
would be introduced by deny. In the example, only operations to read the document and
to find words within the document are allowed. A view can be restricted to certain roles so

57



4 View–Based Access Control

view Reading
controls Document
restricted_to Staff, Author

{
allow

read
find

}

Figure 4.3: A view definition.

interface Document {
readonly attribute string title;
void read(out string text);
void write(in string text);
void append(in string text);
void annotate(in long where, in string text);
void insert(in string text, in long where);
void delete(in long from, in long to);
void find(in string text);

};

Figure 4.4: The Document interface.

that it is not possible to assign the view to any roles except the ones explicitly listed in the
restricted_to clause or their subroles. The Reading view can only be assigned to the
roles Staff, Author, and their subroles.

The access model underlying VPL is an access matrix with roles as rows, objects as
columns, and views in matrix entries. Because of the emphasis on type–specific rights
there is an apparent similarity between views and capabilities [Dennis and Horn, 1966]
[Wulf et al., 1974], [Linden, 1976], [Levy, 1984], [Tanenbaum et al., 1986]. However, views
are not capabilities. First, a view does not reference an object but only describes access rights;
second, views will generally not be implemented in a distributed fashion — an ACL represen-
tation or a centralized representation are in fact more likely. Third, capabilities are runtime
entities that have no static language definition and do not support the definition of structural
relationships between them, such as extension or requirements.

4.1.3.1 View extension

Like object types, views may be related through extension so that definitions can be reused in
views intended for more specific access situations. The intuition here is that an extending view
allows at least as much as the view that is extended, but that it might be assignable only to a

58



4.1 The View Policy Language

subset of the objects and roles to which the base view is assignable.

An extending view inherits all its base view’s rights — both permissions and denials — and
may also add new rights. These added rights can only increase the permissions in the view. It
is not possible to declare any denials in an extending view. The semantics of view extension is
thus one of monotonically adding permissions, just like interface inheritance adds operations
to interfaces and never removes them. As a result, whenever a principal holds both the base
view and an extending view on a given object, the extending view is substitutable for the base
view. For an access decision function, this means that only the most derived views, i.e., the
views farthest down the extension hierarchy, need to be checked for access permissions.

view Appending view Updating: Appending {
controls Document allow
restricted_to Staff delete

{ insert
allow }

append
}

Figure 4.5: View extension.

In VPL, extension is expressed by listing a set of base view names after a colon. In the
example in figure 4.5, the view Updating extends Appending, so it inherits the permission
for the operation append and additionally permits the operations listed in its own definition.
View extension also has an influence on the controlled type and the role restriction of the
extending view. Note that Updating does not have either an explicit controls or re-
stricted_to clause — both are implicitly defined through extension and are simply the
same as in the extended view Appending. However, an extending view may redefine both
clauses by narrowing the controlled object type or the role restriction. Both these kinds of
narrowing make the view “less assignable”, i.e., they serve to restrict the number of objects
and roles that it may be assigned to:

Narrowing the controlled type means defining a controlled type that is a subtype of the con-
trolled type in the extended view. Effectively, this means that the extending view is assignable
on a smaller set of objects because the potential target objects must be members of the exten-
sion of the controlled type, and this type extension is smaller for subtypes.

Narrowing the role restriction means that each role in the more restricted role set must be a
subrole of the roles in the role set of the base view’s role restriction or the new role set must be
a strict subset of the role set of the base view. A combination is also possible: the narrowed role
set can be both smaller than the original one, and some of the roles may be subroles of roles
in the original role set. In all these cases, the new role constraint is more restrictive because
fewer roles qualify as recipients of this view.

In the case of multiple base views, the controlled object type must be a common subtype
of all the controlled types in the base view so that, when compared with all its base views,

59



4 View–Based Access Control

the controlled type of the extending view is always more specialized. In the case of extending
multiple base views, it is possible to infer the controlled type of the extending view automati-
cally by determining the most general type that is a common subtype of all views’ controlled
types or rejecting the definition if no such type exists. However, policy specifications would be
less intelligible with only implicitly represented controlled types, so we require that they are
explicitly listed in the view definition.

With multiple base views, the role restriction of an extending view must also be at least
as restrictive as each of the base views’ role restrictions. With the same justification as for
controlled types, the role restriction must be defined explicitly.

4.1.4 Implicit Authorizations, Denials, and Conflict Resolution

An implicit authorization [Rabitti et al., 1991] is one that is implied by other authorizations
whenever a grouping construct is used for assignment. For example, if a view v on an object is
assigned to a role r, this implies assigning v to all subroles of r. While it is more convenient
to specify general access rules implicitly than to assign each of the implied authorizations
individually, it must also be possible to express exceptions to general assignments, e.g., that
one particular role is denied one particular operation on an object.

4.1.4.1 Denials

Because the absence of a permission cannot be used to override an existing permission, it is
necessary to define a means by which negative authorizations [Stiegler, 1979] or denials can
be specified. Denials are not only required to express exceptions, they can also be used to
explicitly specify constraints in an access policy. Consider a high–level policy that states that
“students must not have access to color laser printers”. If an access policy does not contain any
permissions that would allow students such an access, it complies with the high–level policy.1

An explicit representation of this statement in the access policy in the form of a denial is thus
redundant, but it has two positive effects. First, it is easier to reconstruct the overall intention
of the higher–level policy from a more explicit lower–level representation. Second, the denial
can be interpreted as an additional constraint on access model configurations and thus help
detecting inadvertent violations of the original policy, which could happen through the addition
of views by uninformed administrators. This is not compatible with a policy that generally
permits conflicts, however, but a variation of this model could require that policies are entirely
conflict–free and do not even contain exceptions. Such a policy would reject the assignment of
a view to a principal if the assignment contains a conflict with views that are already present,
which would be detected by checking the additional constraint. In the model presented here
such an inadvertent policy violation would only be detected if the resulting conflict is not
statically guaranteed to be resolvable according to the rules in the next subsection.

1 Assuming it is a closed policy, where accesses that are not allowed are forbidden.

60



4.1 The View Policy Language

4.1.4.2 Conflicts and Priorities

If it is possible to define both permissions and denials, conflicts can arise. Some of these
conflicts, however, arise because of incomplete or contradictory policy designs rather than as
a consequence of deliberately specified exceptions. Because exceptions are legitimate and
add to the expressiveness of the language, it is necessary to define which cases are regarded
as inconsistencies and how they are detected and treated. For this purpose, we describe a
strategy that determines whether, in a given conflict situation, the denial or the permission
takes precedence. This resolution strategy should be sufficiently intuitive for policy designers
to be practically useful. Situations that cannot be resolved by this strategy are regarded as
inconsistent and must be statically detected and rejected.

The conflict resolution strategy relies on the extension relation between views and on ex-
plicit priorities in view definitions. Priorities in our model can only take one of two values:
strong or weak. As in [Rabitti et al., 1991], the intention of marking a right as “strong” is
that it should never be possible for another right to override the strong right in case of con-
flicts. Marking an explicit denial for student laser printer access as strong guarantees that no
permission can override the denial, so the corresponding policy statement cannot be violated,
regardless of other views that might need to be evaluated for runtime conflict resolution.

view BaseView controls T view DerivedView: BaseView
{ {

allow allow
op_1 op_4
op_2 strong op_3 // incorrect

deny }
strong op_3
op_4

}

Figure 4.6: Denials and explicit priorities.

As an example for explicit priorities, consider figure 4.6. In the definition of the view
BaseView, the keyword strong marks the denial for operation op_3 and the permission
for the same operation in DerivedView as “strong”; all remaining rights in both views are
weak. To control how extending views may redefine inherited rights, we add a restriction to
the definition of extending views: An extending view may only redefine weak rights. Strong
rights may not be redefined, so the definition of DerivedView in figure 4.6 is found to be
incorrect because the strong denial of op_3 in BaseView cannot be redefined.

Conflicts between a permission and a denial for an operation op can arise if both apply
to the same object. Because a single view is free of conflicts, this situation requires that a
principal holds two views A and B on the same object, as illustrated in figure 4.7. This is
possible only in two cases, both of which require that the object types S and T are either equal
or related.

61



4 View–Based Access Control

view A: C controls T { view B: D controls S {
allow // inherits a denial for

op // op from its ancestors
} }

Figure 4.7: Potentially conflicting views.

Conflict resolution for related views

The first case is that the views A and B are related by extension. Two views are related by
extension only if one view is directly on the path along the extension hierarchy from the other
view to the root of the hierarchy. Otherwise, these views are unrelated even if they have a
common ancestor. In figure 4.7, A is related to B if A’s ancestor C is a subview of B or if B’s
ancestor D is a subview of A, but it is not related to B if C extends D.

In the case of related views, the more derived view takes precedence, so if A is more
derived, the conflict would be resolved in favor of the permission defined in A, which simply
overrides the denial in its indirect base view B. Because derived views may not contain denials,
an overriding right can only be a permission.

Conflict resolution for unrelated views

In the second case the conflicting views are not related and the conflict is introduced through
the polymorphism supported by the object–oriented data model: a view defined to control a
type can also be assigned on objects of a subtype, for which further views may exist that need
not be related to the views for the supertype. Here, conflict resolution can rely on priorities
only: the priorities of the permission and the denial are evaluated and the stronger right takes
precedence. To guarantee that such a resolution is always possible at runtime, situations where
both rights’ priorities are equal must be either be excluded or require special treatment. Figure
4.8 illustrates a potential conflict between two strong rights in unrelated views.

view A controls T { view B controls T {
allow deny

strong op strong op
} }

Figure 4.8: Conflict between strong rights.

It can be argued that both cases, conflicts between two weak or two strong rights, should
be excluded by a language rule. However, a static type checker can only detect potentially
conflicting definitions and will thus exclude more cases than actually necessary. In order to be
less restrictive, we allow conflicts between weak rights in unrelated views and simply let the

62



4.1 The View Policy Language

denial take precedence, which will err on the conservative side if the conflict actually arises
at runtime. Such an approach is not possible for conflicts between two strong rights because
it would violate the semantics of strong. Consequently, potential conflicts between strong
rights must be detected and rejected by static analysis of view definitions.

For the data model defined by OMG IDL, it is possible to statically detect view definitions
with potentially inconsistent rights definitions. A type checker can reject specifications or emit
warnings if two potentially conflicting definitions are both strong. For two unrelated views,
runtime conflicts between rights definitions are only possible if their controlled object types
are either equal, as in figure 4.8, or related by inheritance. This is the only situation in which
two identical operation names can refer to the same operation in an IDL interface. A type
checker can detect such a situation and reject the policy specification, thus guaranteeing the
semantics of strong priorities.

T

S
op() op()op()

U

S T

T

S

U V

op()
a) b) c)

Figure 4.9: Types and the inheritance of operations.

Note that this situation can be detected because of a restriction inherent in the data model,
which prevents interfaces inheriting operations with the same name from different, unrelated
supertypes: case c) in figure 4.9 is illegal in IDL. This case is problematic because two unre-
lated views for the two types S and T that define a strong permission and a strong denial for op()
could be assigned on the same object of type U because the two types’ extensions overlap in U.
This would result in a violation of the semantics of strong that cannot be caught statically
— unless the IDL type hierarchy is checked for occurrences of c). Relying on such a check
is also problematic because it means that even simple extensions of the type hierarchy that
do not modify any existing type definitions can break the VPL policy and would necessitate
recompilation of all policies. Since this is not practical, the exclusion of case c) is necessary to
statically guarantee that a strong right cannot be overridden.

This restriction is not present in other languages, however. In Java, e.g., a class can inherit
the definition of an operation op() from two unrelated interfaces. This is legal because mul-
tiple inheritance is allowed for interfaces in Java, so there can only be one implementation of
that operation to which calls are dispatched. If Java was used as the target object model for
VPL, case c) in figure 4.9 would be legal and a type checker would not be able to guarantee
that a strong right cannot be overridden.

63



4 View–Based Access Control

4.1.5 Dynamic rights changes

A system’s protection state is usually not constant. Objects, roles, and groups are added to
or deleted from a system and views may be assigned or removed for administrative reasons,
for the purposes of delegation of responsibility, or as part of an application–specific security
policy. A general distinction can be made between explicit operations on the protection state,
which only specifically authorized callers may perform, and implicit changes of the protection
state as reactions to specific system events. Both kinds of changes are discussed in this section.
The discussion focuses on rights changes here, adding or removing objects or principals is
described in section 5.4 of the next chapter.

A related topic that is not discussed again here is delegation. As explained in section
3.1.3 of chapter 3, delegation occurs during the course of an operation invocation when a
target object becomes an intermediate and delegates the call to another object. This kind of
delegation does not change the actual access rights in the matrix, however, but defines who
may use whose authorizations.

4.1.5.1 Explicit Assignment: Assignable Views

Explicitly entering or deleting views from the access matrix may have far–reaching conse-
quences and therefore requires special authority. Such authority is usually given to policy
managers, who are responsible for monitoring the evolving policy and may need to modify it
in response to specific conditions, such as lack of authorizations for a role. If the role needs
these authorizations to perform its tasks and should therefore be authorized, managers need to
add the necessary views.

A second kind of explicit assignment or removal of views that is not restricted to admin-
istrators is related to policies that are based on Discretionary Access Control (DAC). It occurs
when a principal explicitly calls an assignment or removal operation on the access matrix in
order to pass on one of its views to another principal. Until now, principals were only roles,
but for dynamic discretionary assignment it is necessary to also support individual subjects
as principals, not only entire roles. A subject is an individual principal entity rather than an
aggregational concept. This distinction will be discussed in more detail in section 4.2.1.

Views can only be passed on if their definition was marked as assignable. To allow for
explicit, discretionary assignment the view PublicReviewing in the example in figure
4.10 is marked with the modifier assignable. In the example, the PublicReviewing
view is intended to be initially assigned to the Reviewer role, but subjects in this role may
freely pass on this view, e.g., to get outside input to help them with reviewing. The operations
allowed by this view are annotate(), read() and find(). The last two permissions are inherited
from the Reading view. Also inherited is the controlled type Document. The role restriction
is narrowed to Staff only and prevents a principal from assigning the PublicReviewing
view to roles other than Staff or one of its subroles, i.e., it excludes Author which was
listed in the role restriction of the base view Reading.

64



4.1 The View Policy Language

assignable view PublicReviewing: Reading // on Documents
restricted_to Staff

{
allow

annotate
}

Figure 4.10: An assignable view.

By default, views are not assignable, and without explicitly adding this modifier to a view
definition no discretionary assignment is possible. Unlike role restrictions or controlled types,
the assignable modifier expresses no constraint or restriction on the matrix entries that
contain the view. There is no relationship between assignability and view inheritance, which
was stated informally as “adding permissions for more special (and thus more restricted) sit-
uations”. Consequently, assignability is not inherited by an extending view. Each view that
is to take part in discretionary assignment must be marked individually — there is no implicit
assignability.

Discretionary assignment of views requires that a principal who wants to pass on a view
must have received this view with the assign option set, i.e., he must have been allowed to
further assign the view. This boolean option is the exact equivalent of SQL’s grant option
and also found in systems like SPKI [Ellison et al., 1999b]. A principal can prevent further
propagation of his views by assigning them without the assign option. A final constraint is
due to the fact that views can contain both permissions and denials, so assigning a view with
denials could effectively reduce the recipient’s permissions if the recipient cannot refuse to
accept the view. To avoid such discretionary “denial of service” assignments, views assigned
in this way may only contain permissions. This constraint can be statically verified by a VPL
compiler which checks that the definitions of assignable views do not contain denials.

4.1.5.2 Implicit Assignment: Schemas

The term implicit assignment (or implicit removal) of views refers to changes in the protection
state that are not caused by an explicit change operation on the matrix but happen as a reaction
to an application event. This kind of rights change is particularly important in order to express
state–based policies like Chinese Walls [Brewer and Nash, 1989]. The kinds of events that are
of interest here are operation invocations, so implicit assignments are automated assignment
actions that occur as a reaction to an operation invocation and can be compared to triggered
SQL statements. More precisely, implicit assignments are triggered by a successful return from
an operation.

To describe the conditions for implicit assignments and removals of views VPL offers the
schema language construct, which is the second major contribution of this work. Schemas
define a set of assignment and removal statements for views on objects. These assignments or

65



4 View–Based Access Control

removals are triggered by operations on all objects of a given type in the policy domain if a
schema is defined on that type. There is no provision to attach schemas only to some objects,
so schemas are generally coarser–grained than views. As an example, we describe how an
owner status is assigned to the subject calling a factory object’s create() operation. For this
example, the IDL interface DocumentFactory in figure 4.11 is used.

interface DocumentFactory {
Document create();

};

Figure 4.11: Interface DocumentFactory.

Figure 4.12 lists the view definition Managing that extends the Updating view on Doc-
ument objects to add permissions to copy or to destroy the document, and to make it assignable
to other principals. Because this view transitively extends Appending, potential receivers of
this view are limited to the role Staff and its subroles. The view Creating allows the
create() operation on DocumentFactory objects.

assignable view Managing: Updating {
allow

copy
destroy

}

view Creating controls DocumentFactory {
allow

create
}

schema DocumentManaging
observes DocumentFactory

{
create

assigns
PublicReviewing on result to caller

with assign option
assigns

Managing on result to caller
with assign option

removes
Creating on this from caller

}

Figure 4.12: Views and schema for document creation.

66



4.1 The View Policy Language

To describe the dynamic rights changes upon returning from the create() operation on
DocumentFactory objects, a schema DocumentManaging observing operations on the Doc-
umentFactory type extension is defined. To give owner–like status for an object to the principal
invoking create(), the schema has an assigns clause for the create() operation. This clause
specifies that the views PublicReviewing and Managing on the result object are to
be assigned to caller. Both views are assignable and passed with the assign option so that
the recipient may pass them on using discretionary assignment. It is not required that a view
be marked as assignable to be allowed to appear in a schema clause. If the view that is to
be assigned is already present in the recipient’s matrix entry for the target object, the assign-
ment operation has no effect. The effects of schema operations are discussed in more detail in
section 4.2.6.

At runtime, the reserved identifiers result and caller are bound to the result of the
operation and the calling subject. Views can alternatively be assigned to role principals instead
of the calling subject by listing one or more role names. Schema rules can also refer to out
or inout parameters of the operation in case it is necessary to modify views on objects passed
to the caller this way. In these cases, the schema can use the name of the formal parameter,
which is unique in the operation context. To illustrate removals the schema also contains a
removes clause, which specifies that a Creating view is to be removed from the caller,
thereby removing his right to call the create() operation again. The remove operation has no
effect if the view that is to be removed is not present in the matrix entry.

The syntax in the assigns and removes clauses requires as arguments a list of view
names, a list of role names or the keyword caller, and an object identifier (such as a pa-
rameter name, or the keywords result or this) or a type name. The example illustrates
assignment and removal of a view to and from a subject principal — the caller — and on spe-
cific objects — the target and the result of the call, respectively. Instead of referring to the
calling subject, it would have been possible to give a role name. Also, instead of referencing
objects the schema clause could have specified a type name, so the assignment or removal
would have been applied to all objects of that type in the domain.

To allow for additional constraints that help to control the effect of schema definitions more
closely, the view modifier static is introduced. This modifier expresses the constraint that
a view so marked may only be assigned to roles, and not to subject principals. Effectively,
such a view is “more static” because the assignments of views to roles are expected to change
much less frequently than those of views to individual subjects. A static view is thus easier
to track and to control. The static modifier blends well with inheritance and is inherited
by view extension: if this keyword is present in a base view, it cannot be undefined again
in extending views, so every more derived view is also implicitly static. A type checker can
statically verify the definition constraint that schemas do not define implicit assignments of
static views to individual subjects, i.e., to caller. The static modifier also combines
with the modifier assignable. In this combination it disallows discretionary assignments
to individual subject principals.

67



4 View–Based Access Control

4.1.6 Conditional and Virtual Views

To provide a flexible way of expressing access rights that depend on a combination of views,
a new requires clause for views is introduced. In the example in figure 4.13, holding a
SafeOpening view on an object is not sufficient to be allowed to open the safe. Principals
that want to do so need to hold other views, viz. FirstKey, SecondKey, and ThirdKey.
These views are all declared as virtual and have no bodies. Virtual views are the only views
that permit empty bodies. Note that a required view does not have to be virtual.

The views in the example are also declared assignable so that key holders can cooperate
by discretionary assignment. When a principal tries to open a Safe object, the access decision
function checks that the principal holds a view that lists open() as allowed. It also verifies
the constraint that the principal possesses all views that are listed as required by the view that
permits the access. If it does not possess all these views, the principal’s access will be denied
and the principal will have to obtain the missing views, e.g., by having other principals assign
them.

view SafeOpening
controls Safe
requires FirstKey, SecondKey, ThirdKey

{
allow

open
}

virtual assignable view FirstKey
controls Safe
restricted_to KeyHolder

virtual assignable view SecondKey
restricted_to KeyHolder

virtual assignable view ThirdKey
controls Safe
restricted_to KeyHolder

Figure 4.13: Conditional access rights.

By declaring a view as virtual, actual operations in interfaces are decoupled from access
rights: a virtual view does not refer to operations, its only function is to enable an authorization
in combination with other views. Because a virtual view defines no rights for operations, it need
not be typed at all. In figure 4.13, the view SecondKey does not have a controls clause
and can thus be assigned on any object. However, it can still be useful to define a controlled
type for documentation purposes, so virtual views may have a controls clause. If they
have no such clause, the controlled type is implicitly defined to be CORBA::Object. Virtual

68



4.2 A Discussion of the View–Based Access Model

views are similar to generic rights in that they do not have any inherent meaning. Rather, that
meaning depends on their interpretation in a concrete context. Unlike generic rights, however,
virtual views can be restricted to certain roles and may even require other views themselves.
A virtual view can be extended like any other view but it can only extend other virtual base
views. Otherwise, it would actually inherit rights and thus no longer be virtual.

4.2 A Discussion of the View–Based Access Model

This section revisits the concepts introduced in section 4.1 and discusses them in more detail.
In particular, it discusses the notion of principals, explains the matrix model underlying VPL,
and introduces constraints. The section also examines how the language concepts meet the
requirements identified in the previous chapters of this dissertation.

4.2.1 Principals and Roles

As argued in chapter 2, principals are used to describe a caller’s role — its function in the
interaction with the target — because this interpretation integrates well with the notion of an
actor as it is used in requirements analysis. From the perspective of a developer, roles aggregate
and abstract from individual callers, which are generally not known at development time. By
statically assigning authorizations to a role, a developer groups these for a specific use case or
task. From the perspective of an administrator, roles are job functions and support abstracting
from concrete applications and their required authorizations.

Restricting the assignment of authorizations to role principals is not practical for discre-
tionary access control, as already mentioned in section 4.1.5.1. For these cases, it is necessary
to refer to individual entities, not only to abstract, aggregational constructs like roles. While
it is possible to integrate individual subjects into a role–only model by creating a specific, ex-
clusive role for each subject, this does not combine with the interpretation of roles as actors:
Role authorizations are based on function, whereas subject authorizations are based on identity.
Rather than sacrificing the actor interpretation of roles, a second, non–role principal notion is
added, viz. that of a subject.

A subject is an active entity that can make requests to objects and has its own set of creden-
tials, including a unique identity. Within a system, the only entities that can initiate requests are
processes, so subjects are either identifiable processes, such as named services, or represented
by processes which are acting on their behalf. Using the terminology of [Lampson et al., 1992]
again, the general form of request statements in this model is thus:

C says S says request

where C is a channel and S is a subject. If the receiver of the request can verify that the
channel speaks for the subject, i.e., C ⇒ S, it can accept the request as originating from
S. Subjects can directly make such requests on channels because a subject is assumed to be
able to establish a channel and make it speak for himself, which roles alone cannot do. Roles

69



4 View–Based Access Control

can thus only make requests in conjunction with a subject that is authorized to speak for the
roles, i.e., as a compound principal. In this model, roles allow subjects to accumulate task–
specific authorizations. A compound principal’s statement will be checked using the union of
the combined principals’ authorizations. The form of request statements made by a channel
for a compound principal is:

C says (S as r1 ∧ ... ∧ rn) says request

where S is the subject and the ri are roles. The receiver of the request must verify that S is
a member of all these roles by checking that S ⇒ r1 ∧ ... ∧ S ⇒ rn. Note that as in this
interpretation is only syntactically different from ∧ , the meaning is that S and all its roles
make a joint request statement. For each individual request, a subject may choose if and for
which roles it wants to speak, so it can select a subset of the roles for which it is entitled to
speak. These roles are the subject’s active roles for the access. Alternatively, the subject that is
the immediate source of a request may quote other compound principals as making the request.
Quoting other subjects means that the request is a delegated call. Such a request has the form

C says (S | B as r1 ∧ ...rn) says request

where S quotes (“|”) B in a number of roles as making the request statement. Note that S

does not appear in a role himself but simply forwards a request it received on behalf of B as
r1 ∧ ...rn. A receiver of such a request needs to determine whether it trusts that S is acting on
B’s behalf and accepts the request as if made by B as r1 ∧ ...rn. Without an infrastructure for
controlled delegation that lets B restrict S’s authority to act on its behalf to specific requests,
this will only be the case if S ⇒ B, i.e., if B has previously delegated authority to S to speak
for him regarding any statement with the “handoff” statement B says S ⇒ B. The verifier
must be able to retrieve evidence for this statement by B before it can accept the delegated
request. The implementation in chapter 7 does not support delegation because the required
CORBA protocol CSIv2 is not yet implemented.

4.2.1.1 Roles

Roles are visible to both application policy designers and managers, so the textual VPL syntax
for roles is complemented with a graphical syntax in a management tool. Management tools
are presented in chapter 7.

The role model defined for the purposes of this thesis does not introduce original features.
Rather, the novel point here is the application of the actor interpretation to the concepts of
role–based access control (RBAC) [Sandhu et al., 1996] and the replacement of the generic
privileges of these models with views. To emphasize the task–centric approach, roles are given
the following definition: A role is a logical function of an initiator in the interaction with one
or more targets. For further integration with use case modeling, role inheritance is supported
as defined by UML, i.e., as a behavioral rather than a structural notion. The semantics of role
inheritance is that an inheriting role can participate in the same interactions as its base roles.

For the purposes of credentials management based on organizational structure, roles are

70



4.2 A Discussion of the View–Based Access Model

RoleAssignment

isSubGroupOf

GroupAssignment

isSubRoleOf

Principal

name:String

RoleGroupSubject

Figure 4.14: Groups and Roles.

complemented with a group concept. Groups are not principals, rather they are used to facil-
itate the collective assignment of subjects to roles and can be hierarchically organized using
a subgroup relation. This indirection was introduced for management purposes and does not
affect the design of policies, which refer to principals (subjects and roles) only. Groups are dis-
cussed together with the implementation of principals through credentials, both of which are
part of the role management infrastructure discussed in chapter 7. Figure 4.14 illustrates the
user and credentials management concepts described above and their relationships as a UML
class diagram.

4.2.2 A typed matrix model

To explain the details of the VPL concepts introduced above, it is necessary to refer to the
underlying access model. The access model proposed here is based on the classical access
matrix model of [Lampson, 1974]. Unlike Lampson’s matrix or the standard CORBA access
model [OMG, 1999a], matrix entries in the new model do not contain simple generic rights but
named sets of rights, i.e., views. Relying on typed views rather than generic and unstructured
rights allows for a number of useful model constraints, which are examined in section 4.2.3.
Matrix rows in the model correspond to principals, so a matrix entry represents the authoriza-
tions assigned to a principal for the particular object denoted by the matrix column. This is
illustrated in table 4.1. Role principals are represented in the upper part of the matrix, subjects
in the lower.

The matrix in table 4.1 represents a system’s protection state as a set of authorizations, and
thus describes which accesses are currently allowed and forbidden. The set of transitions that
control how the state evolves — operations on the matrix that insert or delete view, principals,
and objects or types — is called scheme. An access policy is a description of a protection state
(a matrix) and a scheme. The authorization schemes that can be defined for this model are
described in section 5.4 of the next chapter.

71



4 View–Based Access Control

Object f: Folder chapter: Document contract: Document
Principal

Secretary Lookup Reading Reading

Author Lookup Reading Reading
Appending Updating

Editor Listing Reading Reading
Appending
Removing

Manager Lookup Reading Updating

Reviewer Lookup Reading
PublicReviewing

Paul Reading

Ringo Reading
PublicReviewing

Table 4.1: An access matrix with views.

To determine the effective views of a compound principal for an access, the views for all
its constituent principals must be combined, i.e., the views for the initiating subject and one
or more active roles. In the situation in table 4.1, the views on the Folder object f for the
compound principal Paul as (Secretary ∧ Editor) are Lookup, Listing, Appending
and Removing. These views are consulted to determine whether the access is allowed or not.
This approach contrasts with systems were decisions are based on a single entry that is selected
from a set, e.g., as in the UNIX file system. In UNIX, file permissions are checked in a specific
order (owner, groups, other), and the first matching set of permissions is chosen — but always
only a single set.

The central contribution of this thesis is this model and the corresponding policy language
VPL, which is sufficiently descriptive to be manageable at a high level of abstraction. How-
ever, even the most manageable model is still useless in practice if it is not also possible to
implement it efficiently and if it does not support expressive and flexible policies. The central
task is thus to find a compromise that delivers good results in all of these areas, manageability,
expressiveness, and efficiency.

4.2.3 Constraints

There is an essential conflict between the expressive power of an access control
model and tractability of safety analysis. [...] Safety is undecidable for most
policies of practical interest. [Sandhu, 1992]

72



4.2 A Discussion of the View–Based Access Model

The general meaning of safety in the context of protection is that no access rights can
be leaked to an unauthorized principal. As shown in [Harrison et al., 1976], safety is only
decidable in very restricted cases that generally do not allow the definition of realistic security
policies, even considering recent advances such as [Soshi, 2000]. While this has not been
explicitly proven, role–based models such as the one presented in this thesis are expected to
fall outside the set of decidable cases.

Rather than restricting the expressiveness of a model such that in can be verified to be
safe in general, such as lattice–based models like [Bell and LaPadula, 1973], an alternative ap-
proach is to extend the model with a language that supports the specification of constraints.
Constraints can be used in the definition of a policy to restrict the potential configurations in
such a way that breaches of the policy are either impossible or at least constrained to specific
cases. Constraints directly express safety requirements and thus support reasoning about the
safety of a policy even though the underlying security model does not a priori preclude un-
safe configurations. Enforcing separation of duty between individuals is a typical example of
such a constraint. As argued in [Tidswell and Jaeger, 2000], this approach shifts the burden
of safety analysis to the evaluation of constraints and implies that constraint languages must
be carefully designed such as to a) support efficient evaluation, and b) allow policy designers
to directly express their security requirements. From a manageability perspective, the use of
a constraint language has the additional advantage of making security–relevant assumptions
explicit [Anderson, 1994], which would otherwise remain implicit in the underlying security
model.

In principle, constraints can apply to all components of a model and to arbitrary relation-
ships between these, so constraint evaluation can become arbitrarily complex. Obviously, it is
important to provide suitable language concepts for constraints, which is not only a question
of efficient implementations but also a language design responsibility.

4.2.3.1 Classifying Constraints

Typically, constraints are classified as either static or dynamic [Kuhn, 1997],
[Simon and Zurko, 1997], based on the time at which these constraints are checked.
Static constraints are checked when authorizations are assigned, dynamic constraints apply
at runtime when accesses are made. If constraints can be checked statically and the system
guarantees that they cannot be violated dynamically then no further run time checks are
necessary. Examples for static constraints include static mutual exclusion of two roles,
which means that no principal may be assigned to both of these roles at the same time. This
constraint can be used to express and enforce static separation of duty between these roles.
Alternatively, dynamic separation of duty would allow a principal to be assigned to both roles,
but would dynamically check that no principal may activate both roles at the same time. While
enforcing the same policy, this dynamic constraint is less restrictive than its static counterpart
but requires more verification effort. Some practically useful dynamic constraints apply not
just to model configurations, but to histories of configurations. As an example, consider
policies like Chinese Walls [Brewer and Nash, 1989] that prevent principals from accessing

73



4 View–Based Access Control

one set of objects after they accessed objects from a conflicting set.

The distinction between static and dynamic constraints is not suitable for the constraints
of this model because the overall life cycle of model elements has more than just two stages.
Moreover, the term “static” suggests that constraints are not checked at runtime of the system,
which is misleading. Static constraints are indeed independent of the runtime of applications,
but they may very well be performed at runtime. Therefore, the following categories are pro-
posed and used for a general classification of constraints:

1. Definition constraints are language rules that restrict the set of valid concept definitions
that can be used for the specification of individual policies, such as roles, views, and
object types. Constraints in this class include both syntactic and semantic rules and are
checked by compilers or other language tools. An example of a definition constraint is
that an extending view may not define denials.

2. Configuration constraints are checked on operations that modify the configuration of the
access model, i.e., a policy. These operations may either be explicit administrative ac-
tivities or implicitly triggered changes that happen during the course of an application’s
lifetime. These kinds of constraints are defined both through predefined, general model
properties and through constraint definitions supported by the policy language. As an
example, configuration constraints can prevent entering a role–restricted view in a row
of the access matrix for an incompatible role.

3. Operational constraints apply at the time access decisions are made. Examples are
checks for the presence of required views before using a conditional view in an access
decision. Strictly speaking, these constraints do not determine whether a given model
configuration is valid but rather serve to dynamically mask out those parts of the con-
figuration that are not applicable for the current access. For example, conditional views
are only usable in combination with certain other views. Since these views might be
available in other contexts, masking out unusable views does not imply that these parts
of the configuration are permanently invalid and should be removed.

4.2.3.2 Principal Constraints

The principal concepts to which a policy in our model can refer are roles and subjects. Since
groups are not principals, policies cannot make assumptions about them and can also not define
constraints on groups and their relationships with roles and subjects. This is not to say that
group constraints may not be useful in the context of principal management. For example, a
principal manager might want to ensure that an individual removed from a group can never
become a member of that group again, so an exclusion constraint could be defined to prevent
reassignment of the subject to the group. However, this aspect of principal management is
considered to be part of modeling the organizational environment of a policy rather than part
of the definition of application access policies. Group constraints are thus not discussed here.

74



4.2 A Discussion of the View–Based Access Model

Potential constraints on subjects are subject–subject exclusion to prevent two subjects from
ever being assigned to the same role or subject–role exclusions that prevent a specific subject
from being assigned to a specific role. However, the general approach for policy modeling
here is abstracting from individual subjects because these are not yet known during policy
development and before deployment. Policies should therefore not rely on rules that refer
to specific subjects. For similar reasons as for groups, it may be useful to express subject
constraints for principal management purposes, but these are not regarded as part of the access
policy.

The role model in [Sandhu et al., 1996] defines three types of constraints that restrict the
assignment of subjects to roles. First, cardinality constraints are introduced as predicates on
the number of subjects that can be assigned to a role. For example, there can be a maximum
cardinality defined for a particular role to prevent the assignment of more than one subject
to the role. While arbitrary predicates on cardinality are possible, we limit this discussion
to minimum cardinality constraints and maximum cardinality constraints because these are
regarded as the most useful. Minimum cardinality constraints can be used, e.g., to express that
a given role must always have at least one subject assigned to it — or at least ten, as in figure
4.15.

roles
ProjectMember
Developer: ProjectMember mincard 10
TestEngineer requires ProjectMember excludes Developer

Figure 4.15: Role declarations.

A second constraint is the prerequisite constraint between roles which prevents the as-
signment of a subject to a role if that subject is not also assigned to another role, e.g., role
TestEngineer might require that any subjects are first assigned to a ProjectMember role. While
the effect of this constraint with respect to the tasks and authorizations of the subject is the
same as if TestEngineer was a subrole of ProjectMember, the constraint enforces that subjects
are assigned to both roles individually and in a predefined order.

The final constraint mentioned in [Sandhu et al., 1996] is mutual exclusion, which means
that a subject can never be assigned to two mutually exclusive roles at the same time. This
constraint can be used to express separation of duty requirements, e.g., that a TestEngineer
may not also be a Developer. These three simple constraints are adopted using the syntax
introduced in section 4.1.2. All three kinds of constraints, if used in a policy definition, are
enforced by the role management component of an overall infrastructure, not by an access
control mechanism. Enforcement is done at the time managers assign subjects to roles.

It should be noted again that principals are generally under the control of a management
role other than policy management. Thus, an access policy must either rely on principal man-
agers to correctly enforce constraints on principals or repeatedly re–verify its constraints. The

75



4 View–Based Access Control

role constraints examined here are generally enforced by checking every operation that changes
any of the involved data structures, i.e., assigns subjects to roles (via groups) or adds a new
constraint to exiting subjects and roles. These constraints are thus configuration constraints.

Both the exclusion constraint and the prerequisite constraint could alternatively be checked
when a principal tries to access an object, i.e., as operational constraints. An operational ex-
clusion constraint could then be used to enforce dynamic separation of duty. An operational
prerequisite constraint would enforce that a given role is only used as an element of a com-
pound principal and together with certain other, required roles. For language design reasons,
these more fine–grained operational constraints are not included in this model. Defining syn-
tax for both configuration and operational constraints necessitates additional keywords and
also requires designers to understand the distinctions between the two kinds of exclusions and
prerequisites. To keep the language simple, only configuration constraints are adopted.

4.2.4 Views and Matrix Constraints

The introduction of views as a language concept is motivated by the observation that generic
rights such as “read”, “write”, and “execute” are not adequate for describing authorizations
in large–scale systems comprised of typed objects. Generic or uninterpreted rights are simple
and flexible, but they are inadequate for application–level access policies in large–scale object
systems because they exhibit neither external structure nor inherent semantics. Generic rights
are hard to manage because they provide no ways to impose external structure by defining
relationships or constraints. The rights families introduced by the CORBA Security Service are
an attempt at providing structure by grouping rights, but this structure does not actually provide
a useful abstraction mechanism that would support rights management, e.g., relations between
rights families. Managing large numbers of rights without any abstractions soon becomes
unwieldy.

This is in fact the reason why the CORBA Security Service discourages the definition of
new rights families and recommends using the standard family. Effectively, the number of
different rights in the system is restricted in order to avoid these management problems. This
approach leads to modeling problems in the design of access policies because it is very difficult
to capture the rich semantics of operations in object–oriented systems with just a very small set
of generic rights. The root of this problem is simply that such a restricted set of rights exhibits
only very limited expressiveness.

Generic rights are by their very nature untyped, i.e., there are no constraints that would
restrict the relationship between a right and the actual access modes (operations) provided by
the target object. The mapping between an operation and the authorization required to invoke
it is arbitrary — there is no inherent semantics. This can be problematic because the designers
of a policy may decide to require a right, such as “write”, for an operation in a way that is not
compatible with the way this right is used in other cases. An example for such a situation was
given in chapter 3.

76



4.2 A Discussion of the View–Based Access Model

4.2.4.1 Constraints on Matrix Entries

An important property of views is that they are typed by the object interface they control.
It is therefore possible to impose a type constraint on the access matrix, which ensures that
each view entered into the matrix is actually applicable to the type of the target object in the
matrix column. By detecting type errors at view assignment time, this configuration constraint
helps to catch a class of simple administrative errors that could severely compromise security.
Typing views not only prevents assignment errors, it also plays an important role in a definition
constraint that helps to statically detect errors in view definitions because it is now possible to
check that all operations listed in a view do in fact belong to the same interface. Ill–formed
views can thus be detected at definition time by the type checker. As a simple example, consider
the two object types Folder and Document, which both provide an append() operation.

Because appending to a directory–like folder is different than appending to a document,
we assume an example policy that wants to express that a particular role may append to the
folder but not the document, such as the Editor role in table 4.1. The matrix typing constraint
guarantees that no operation on the matrix can enter a Folder–typed view with an append right
in a Document object’s column, which would allow append access to the document and violate
the intended policy.

The type constraint is based on the types of the objects in the matrix column. An analog
configuration constraint can be applied to matrix rows: Using role restrictions, views can be
defined such that they can only be assigned to certain principals. Like the object type constraint,
this constraint limits the potential for administrative error and helps enforcing the need–to–
know principle. It also documents the intended policy semantics more closely. This constraint
can only restrict view assignments to specific roles and not to individual subjects because
subjects cannot be referenced statically in view definitions.

Unlike the type constraint, this role restriction does not help to catch general errors in the
definitions of views. However, a role–restricted view that is entered in a subject’s matrix entry
entails an operational constraint: Whenever a subject’s permission for an access depends on a
role–restricted view, it can be checked whether the subject has currently activated the role to
which the view is restricted. If the role is not active the view is ignored in the access decision,
so even if the view cannot be prevented from being entered in that matrix entry, it can be
prevented from being used without the appropriate active role.

4.2.5 Explicit Discretionary Assignment and Removal

An important general concept in many systems is delegation of authority. Delegation of the au-
thority to assign authorizations means that someone in charge of assigning authorizations, e.g.,
a system administrator, allows someone else to assign a subset of these authorizations. Usually,
this is done for decentralization and division of labour purposes. If this authority leaves the
small circle of appointed administrators and is passed on to regular users, it is called discre-
tionary access control — the assignment of some authorizations is now left to the discretion of
privileged users rather than kept under system control.

77



4 View–Based Access Control

In many systems, the concept of resource ownership is used for this privileged user. In
the UNIX file system, the creator of a file also becomes its owner and may grant or revoke
rights on this file to other users. While the owner may give up ownership of a file to other
users, there is always just a single owner for any file. Consequently, there is only a single
potential grantor or source of granted rights at any time for any given file — if we disregard the
omnipotent UNIX super user for the moment.2 Grantees can only further grant their rights to
other users if they have also been given ownership; revocation of granted rights from specific
users is straightforward.

Similarly, the creator of a database table in the SQL security model [ISO/IEC, 1992] be-
comes the owner of the table and can now grant rights on this resource to other principals.
In addition to simply granting the right, the owner may choose to grant rights with the grant
option. A grantee who receives a right with grant option may further grant this right to other
principals. In this case, there are potentially multiple sources for granted rights, although
there is a single root source, viz. the owner. Since granted rights may have propagated
through any number of users, revocation of a single right might lead to a cascading revoca-
tion [Griffiths and Wade, 1976], [Fagin, 1978] of this right from all users that were transitively
granted this right through the first grantee. The model presented here does not have a built–in
ownership concept, but this concept can be modeled by assigning a special set of views to the
principal who creates an object and by allowing this principal to pass on these views as he
deems appropriate.

4.2.5.1 Assignable Views

Assignable views are similar to capabilities in that holding a view on a particular object in-
cludes the right to pass this view on this object on to others, provided that the view was received
with the assign option set. However, as pointed out above, views are not capabilities. Unlike
in typical capability schemes, assignable views can be directly removed again, and their prop-
agation can be statically restricted to specific roles. When a role–restricted view is assigned
to an individual subject rather than a role, it would also be possible to check that the subject
is a member of that role or one of its subroles. However, this restriction is stricter than neces-
sary and would also require that role–restricted views are removed again when the subject is
removed from the role. A simpler but sufficient restriction is to guarantee that role–restricted
views that are assigned to subjects are not usable when the roles to which they are restricted
are not activated by the principal. Thus, as explained in section 4.2.4.1, role restrictions also
constitute operational constraints.

The right to assign a view is in fact a meta–right and not modeled as a view itself or as a
permission or denial in the assignable view. Assigning a view corresponds to the enter com-
mand in matrix models such as [Harrison et al., 1976], [Sandhu, 1992]. A principal holding an
assignable view that he received with the assign option may further assign this view to other
principals, with or without the assign option.

2 Files may have different owners at different times because file ownership can be transferred in UNIX.

78



4.2 A Discussion of the View–Based Access Model

Explicitly Removing Assignable Views

By assigning a view to a role or a subject, an assigner acquires the right to remove that view
again at his discretion, which potentially leads to further, cascading revocations if the recipient
has passed on the view. Cascading revocations are necessary to prevent a principal from im-
mediately obtaining a removed view again by having another recipient assign the view back to
him. If the recipient already holds this view, the attempted assignment has no effect. Other-
wise, the assigner would receive a remove right and could thus remove all those views that both
the assigner and the recipient possess: the assigner could simply assign views that the recipient
already holds, thus acquiring the right to remove them again without actually becoming the
source of these views.

If a principal removes a view for which it has a remove right, the principal loses his re-
move right for that view. Otherwise, the principal could always remove that same view if it
is later reassigned from a different source, e.g., directly by an administrator. For the same
reason, the remove right is lost when a view that was assigned using discretionary assignment
is removed by other means, e.g., implicitly as explained in the next section, or explicitly by an
administrator.3

4.2.6 Implicit Assignment and Removal

The concept of implicit assignments (and removals) of views is essential for expressing
application–oriented access policies where rights changes occur regularly as part of the ap-
plication logic. As an example, consider workflow or CSCW–style applications where objects
are shared between principals and undergo different processing stages, each associated with
different use cases and access modes. An application example illustrating such a situation is
presented in chapter 6. If changing access rights between processing stages regularly required
administrator actions, these applications would not be practical. Implicit assignments auto-
mate these changes and support expressive policy specifications that capture these application
features in static descriptions.

The remainder of this subsection discusses VPL schemas in more details, in particular
the consistency checks based on definition constraints that are necessary to prevent ill–formed
schemas with conflicting clauses. Note that schemas are isomorphic to IDL interfaces, so the
state changes that are described by schemas could in principle also be described in an extended
interface notation, or as IDL annotations. A separate language construct was chosen because
this permits the representation of policy concepts in a single language and also does not rely
on an extended IDL compiler.

3 Note that a cascading revocation must also be performed in these cases of removals. Otherwise, any views that
were assigned further by the original grantee could not be removed.

79



4 View–Based Access Control

Effects of Schema operations

The assigns and removes clauses in schemas describe an operation’s effect on the pro-
tection state of the system, so they can be regarded as operation postconditions with respect
to the protection state. An implicit precondition is that a principal must have the authoriza-
tion to invoke the operations that triggers the schema activity, i.e., that it has a view allowing
the operation and no denial in another view overrules this permission. This precondition is
not introduced by schemas, however, and if it is false no schema activity for that operation is
triggered.

When a schema tries to assign a view, it is possible that the view is already present in
the matrix entry, either because of previous schema activities or because of discretionary as-
signments. If the schema were to perform the assignment again, a number of subtle questions
arise as to what the effect of this assignment would be. In particular, the possible interactions
between assign options and remove rights would lead to complex rules. For example, if the
assignments differ with respect to the assign option, it is not clear what the combined effect
should be. If the view that is already present has the assign option set and was assigned to
further principals by its holder, overwriting it without this option could interfere with a co-
operation protocol between principals. Also, if a schema were to overwrite a view that was
assigned by another principal, it would become the new source of the view and would thus
have to remove that principal’s remove right. Otherwise, it would be unclear which views
should be removed in case of a later, recursive removal of the view from the original recipient.

Because these interactions lead to complex and unintuitive behavior, multiple assignment
and removal attempts should not have a combined effect; all interferences between multiple
sources of assignments should be prevented. In section 4.2.5.1, an explicit, discretionary as-
signment was defined to have no effect to prevent the assigning principal from obtaining the
remove right. Consequently, a view assigned by a schema blocks any subsequent attempts of
discretionary assignment of the same view. Likewise, schema assignments may only be per-
formed if the view is not already present. Otherwise, the assignment has no effect. Whichever
source of views performs the assignment first thus blocks assignments of the views from other
sources.

For removals, the situation is similar — the first removal attempt simply removes the view.
Removals do not interfere with each other because the effect is always the same: the view and
all associated information such as the assign option or the remove right is no longer present;
if the view was assigned further through discretionary assignments, it must be recursively re-
moved from these recipients. The only potential interference of different removals is temporal,
i.e., with multiple schemas — and potentially principals — attempting removals, a view might
be removed earlier than expected.

If a compound principal holds a view both in his subject matrix entries and by virtue of
being assigned to one or more roles, then the effect of a removes clause that only removes
that view from one matrix entry is not sufficient to prevent that principal from accessing the
target object. Because the absence of a view in one entry — one of the role entries and the

80



4.2 A Discussion of the View–Based Access Model

subject entry — cannot override permissions in another, the only way of reliably blocking an
access for a principal is by assigning denials for that access. If policy designers are careful to
define views with strong denials for this access, assigning such a view to a subject prevents
the access. Assigning the denying view to the role might result in blocking too many other
principals and is not guaranteed to achieve the desired effect since the principal might have
activated a different role set which does not contain such a denial. Views in the subject matrix
entries, however, will always be checked, so the denial is guaranteed to be effective.

Conflicts in Schema clauses

The effect of schema clauses for an operation potentially consists of multiple view assignments
or removals. To make these effects predictable, it is important to guarantee that effects are
deterministic, which means that, given the same access matrix, the invocation of an application
operation always produces the same effect on the protection state. To be able to make effects
deterministic, it is necessary to define rules for dealing with conflicts in schema clauses.

A schema clause has conflicts if it specifies that the reaction to an operation comprises both
the assignment of view V to role R on an object or a type T and the removal of the same view
on the same object or type from the same role. The effect of executing the removal first and the
assignment second would be that view V is present in the matrix entry. Executing the assign-
ment first and then the removal would have no observable effect on the matrix entry, however.
Generally, conflicts can be managed by either excluding conflicting clauses a priori or by defin-
ing conflict resolution rules that determine the order of operations, e.g., that assignments are
always executed before any removals.

Schemas are a powerful and flexible concept, but they do increase the complexity of poli-
cies, so it is desirable not to increase this complexity further by defining elaborate conflict
resolution rules. In designing language rules, the general approach taken in this thesis is to
facilitate management as much as possible and shift complexity from the manager towards the
designer of a policy wherever possible. Therefore, static analysis should verify that schemas
are free of conflicts. If this verification is not possible or if it fails, schema definitions con-
tain potentially conflicting clauses and must be rejected. Naturally, the goal is to reject only
the smallest possible set of schema definitions and to accept all cases that can be verified as
conflict–free.

An actual conflict occurs if the same view on the same object is to be both entered and
removed from the same matrix entry. Schema clauses that affect different views or operate on
different matrix entries, or that only assign or only remove, are free of conflict. Figure 4.16
shows an example schema that can be statically verified as conflict–free.

The schema in figure 4.16 defines two potentially conflicting clauses. The first potential
conflict is between the assignment and removal of V2. However, the assignment applies to
role R1 and the removal to role R2, so the two changes affect different matrix entries and thus
do not conflict. Hierarchical relationships between roles do not lead to conflicts because the
assignment of a view to a role is only recorded in a single matrix entry and not directly assigned

81



4 View–Based Access Control

schema ConflictFree observes S
{

op1
assigns

V1, V2 on T to R1

assigns
V3 on this to caller

removes
V2 on this from R2

removes
V3 on T from R1

}

Figure 4.16: A conflict–free schema.

to all its subroles. In the example, the two changes also operate on different matrix columns
because the assignment affects the matrix column for a type T and the removal the column
for an individual object, viz. this. These columns are distinct regardless of the IDL type
hierarchy and whether the type S of this is related to T or not. The second potential conflict
in figure 4.16 is between the assignment and removal of V3, but again the target principals —
caller and R1 — are not identical.

In the general case, static analysis can verify freedom from conflicts in all cases where
either the views, the principals, or the target types in the clauses differ. Moreover, all cases
where one target of an assignment or removal is an object and the target in another clause is
a type are guaranteed to be conflict–free. As explained above, inheritance relations between
views, types, or roles do not complicate matters here. Conflicts are obvious if two clauses refer
to the same view, to the same role (or both refer to caller), and to the same type extension
or same object, i.e., both refer to this or result.

schema Conflicts observes R
{

op1
assigns

V2 on result to R1

assigns
V3 on S to caller

removes
V2 on this from R1

removes
V3 on T from caller

}

Figure 4.17: Potential conflicts in a schema.

82



4.2 A Discussion of the View–Based Access Model

One case is statically undecidable, however. Because of aliasing and polymorphism, it
cannot be guaranteed that two clauses do not refer to the same object if the target objects are
this in one clause and result in the other. The types of these references are statically
known, but even in the case of two unrelated types S and T is it possible that a reference of
a common subtype U is bound to both this and result. Therefore, those assignment and
removal clauses must be rejected that only differ in these object identifiers. Figure 4.17 shows
a schema definition with assignments and removals that apply to the same views and principals.
The schema must be rejected by the verifier because the assignment of V2 and the removal of
the same view cannot be guaranteed to affect different matrix columns.

Multiple Schemas

It is possible that more than one schema reacts to an operation. This can happen if a schema is
assigned to a type extension T and another schema to the extension of type S, which is a subtype
of T. Operations on objects of type S are now observed by both schemas. This is illustrated in
figure 4.18. Also, multiple schemas can be defined to observe the same type. However, this is
only a syntactical convenience and is equivalent to splitting up a single schema definition into
smaller, more manageable pieces. Conceptually, multiple schemas observing the same type
form a single schema.

Policy Domain

T

S

���������
	���
����� ������� ���

�
�������

�

� ��������	"!
����� ������� �$#

�
���%���

�

A

objects
type extensions

���������
	��'&
����� ������� ���

�
�������

�

Figure 4.18: Multiple Schemas.

If multiple schemas are assigned to the extensions of types that are in a subtyping relation
and if they define clauses for overlapping sets of operations, they can introduce the same kinds
of conflicts that were excluded for a single schema above. To prevent conflicts, any schema
definition for a type S must be statically compared with all other schema definitions for S’s
supertypes. If a schema observing S defines a clause for an operation that is also listed in
another schema, the union of the two schemas’ clauses is checked for conflicts as described

83



4 View–Based Access Control

above. If a schema for S conflicts with any other schema applicable to objects of type S, it is
rejected by the verifier.

A Discussion of Schemas

A number of points require discussion here. The first issue is the increase in complexity intro-
duced by schemas. At first sight, the expressiveness of the schema concept seems to make the
evolution of the protection state much less predictable and intuitive. However, schemas should
simply be seen as listeners that react to event notifications; the assignments or removals of
views that are performed by schemas must be regarded as administrator responses that would
be performed anyway. Another point that needs to be stressed is that schemas do not introduce
either new views or new authorization conflicts. Thus, resolvability of all potential conflicts
between rights is still preserved. Moreover, schema definitions can be statically checked for
conflicts and for violations of the type and role constraints on views. This is possible because
the types of all objects that can be referenced in a schema definition are statically known, as is
the controlled type of any view that can be referenced in a schema.

The role restrictions of all views referenced in the schema are also known statically. How-
ever, these restrictions can only be checked statically in schema assignments if the assigns
clause refers to a role name. If a view is to be assigned to an individual subject, then the set of
roles that the caller may activate is not known at definition time. In some cases, a role inference
algorithm could prove statically that the role restriction of the view that is to be assigned to the
caller is not violated. However, the algorithm is not practically useful because it requires that
all views that allow the triggering operation are actually role–restricted, which is too strong an
assumption in the general case. Moreover, view–role assignments can change after the schema
was checked, so additional dynamic checks are still required.

Relying on runtime checks is unproblematic because, as argued in the previous section,
role restrictions can be enforced at runtime if the security service simply disallows the use of
role–restricted views if none of the roles to which a view is restricted is activated. Rather than
defining definition constraints that statically reject schemas that cannot be proven to comply
to role restrictions, all schema definitions with assignments to subject principals are simply
accepted and the assignments to subjects are performed. This liberal approach is feasible
because views that are assigned to subjects that are not members of the roles to which the view
is restricted are unusable because of the operational constraints for role–restricted views. Thus,
they do not permit breaches of the policy. The only drawback of not being able to statically
detect these cases is that designers are not warned if schema definitions contain assignments
that may have no effect, but this does not appear to be a serious problem.

A final point in this discussion of schemas is that an implementation of this concept must be
able to undo the effects of the assigns and removes clauses if they occur in an invocation
context that is later aborted, e.g., because of lack of permissions for a subsequent operation
invocation or because of an exception. Consider the following scenario: A principal invokes
an operation op on an object which delegates the invocation to n other objects, which are called

84



4.2 A Discussion of the View–Based Access Model

sequentially. The implementation of op has successfully made the first i invocations, and these
have triggered a number of assignments and removals of views because of the presence of
schema definitions. The protection state might be inconsistent if the original invocation of op

is aborted at this stage and does not return successfully but the postconditions of the first i

delegations were to persist. Effectively, an operation must be atomic with respect to its effects
on the protection state and thus contained within a transaction.

4.2.7 Conditional and Virtual Views

The access control model presented here closely relates the concepts of operation and access
right because access rights defined in views must have the same name as the operations that
they allow or deny. Since operations are atomic units, so are access rights. While this model
is more appropriate for object–oriented systems than approaches which separate access rights
from operations, it lacks the flexibility offered by the option of combining more abstract access
rights to obtain a certain privilege. As an example, consider the access control policy for the
safe with multiple locks, again. The safe can only be opened when a certain number of key
holders cooperate. Accessing the safe should require multiple views which correspond to the
key holders’ keys. A single key view by itself does not authorize anything. Without the addi-
tional concept of conditional views, however, we cannot express conditions on operations that
require the caller to possess further authorizations than just the one that permits the operation.

The requires clause used in VPL to define conditional views actually represents yet
another constraint on the access matrix: it is now possible to express a requirement on the
state of the matrix entry itself, not just on the object in the matrix column or the subject or
role in the matrix row. Unlike the role restriction or the type constraint, the requires clause
is not a configuration constraint that would prevent assignments of views to principals, but
an operational constraint that must be checked before a view can be considered in an access
decision. Figure 4.19 illustrates all three types of matrix constraints.

Like other constraints, the requires clause is inherited by extending views. The ex-
tending view can define its own requires clause that is implicitly appended to any inherited
restriction. Again, this serves to make an extending view “less applicable” by defining stricter
context requirements. If a view inherits multiple requires clauses, the resulting clause is
the conjunction of the individual view requirements in the base views and potentially the ex-
tending view itself. A conditional view must not depend on itself, so cycles in the dependency
graph must be prevented.

The policy for opening the safe is similar to general threshold or quorum policies, where
the presence of at least n out of k privileges is required for an access. Cooperative access
policies like these can also be described in terms of threshold subjects [Ellison et al., 1999a]
or compound principals, neither of which is supported by this model, however. In such a
setting, the individual key holders would cooperate by authorizing one of them to speak for the
others or for a compound principal, all of which would require the creation and management
of appropriate credentials. The preferred approach here is to rely on discretionary granting and

85



4 View–Based Access Control

�����������
	

���� �����

��������������������� ��!�"�#�$�%�&�')(

configuration constraint

operational constraint

�������+*�,�-�&�.�/�&�0�!�0�1
243�5 ��� 3 ��687���9��
�4��64����� 2 ���4:�;<� 3>= ,�0�,�1�&�"
�4�4?���������6@��!�"�#�$�%�&�'BA

C4C4CD

Figure 4.19: Matrix restrictions.

conditional views for cooperation policies as described above.

86


