CAROLIN KIRSCHNER

Charakterisierung und Differenzierung humanpathogener Mikroorganismen mittels schwingungsspektroskopischer Techniken

DISSERTATION

zur Erlangung des Grades Doktor der Naturwissenschaften im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

Berlin 2003

Betreuer und Gutachter der Arbeit: PROF. DR. D. NAUMANN Zweiter Gutachter der Arbeit: PROF. DR. F. HUCHO Tag der mündlichen Prüfung: 12. März 2004

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung		1
	1.1	Zusam	mensetzung und chemische Struktur von mikrobiellen Zellen	1
		1.1.1	Die prokaryotische Zelle	1
		1.1.2	Die eukaryotische Zelle	3
		1.1.3	Methoden zur Identifizierung von Mikroorganismen	4
	1.2	Wirku	ngsweise von β -Lactam- und Glykopeptidantibiotika	11
	1.3	Schwin	ngungsspektroskopische Techniken	15
		1.3.1	FTIR-FOURIER Transform Infrarot Spektroskopie	16
		1.3.2	RAMAN-Spektroskopie	22
	1.4	Auswe	rteverfahren zur Charakterisierung und Identifizierung	31
		1.4.1	Clusteranalyse	32
		1.4.2	Faktoranalyse	34
		1.4.3	Künstliche Neuronale Netze (ANN's)	35
2	\mathbf{Ziel}	setzun	g der Arbeit	39
3	Mat	terial		41
	3.1	Mikro	organismen	41
		3.1.1	Bakterien	41
		3.1.2	Vancomycin-resistente und Vancomycin-sensitive E. faecium Stäm	-
			me	43
		3.1.3	Methicillin-resistente und Methicillin-sensitive S. aureus Stämme	44
		3.1.4	Hefen	46
		3.1.5	Chemikalien	47
4	Met	thoden		49
	4.1	FTIR-	Spektroskopie	49
		4.1.1	Probenpräparation der Bakterienfilme	49
	4.2	FTIR-	Mikrospektrometrie	50
		4.2.1	Probenpräparation der mikrobiellen Mikrokolonien	53
		4.2.2	Die Abstempelvorrichtung	54
	4.3	FT-RA	AMAN Spektroskopie	55
		4.3.1	Probenpräparation für die RAMAN-Messungen	55
	4.4	Spektr	renauswertung	56
		4.4.1	Spektrenqualität \ldots	56

		$\begin{array}{c} 4.4.2 \\ 4.4.3 \\ 4.4.4 \end{array}$	Ableitungen	56 57 57
5	Erg	ebnisse		61
-	5.1	Spezies	differenzierung innerhalb der Gattung <i>Enterococcus</i>	61
	5.2	Spezies	differenzierung innerhalb der Gattung <i>Candida</i>	75
	5.3	FTIR-I	Mikrospektrometrie	79
		5.3.1	Signal/Rausch-Verhältnis und Heterogenität von Mikrokoloni-	
			en verschiedener Größen	79
		5.3.2	Aufbau einer spektralen Datenbank auf der Basis von Mikro-	
			$koloniespektren\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	84
		5.3.3	Training und Validierung der mikrobiellen Datenbank mit künst-	
			lichen neuronalen Netzen $\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots$	90
		5.3.4	Identifizierung von positiven Blutkulturen mit der FTIR-Mi-	
			krospektrometrie	94
	5.4	Unters	uchungen zum Antibiotika-Empfindlichkeitsverhalten	97
		5.4.1	Antibiotika-Empfindlichkeitsverhalten von VRE/VSE-Stämmen	
			per se	97
		5.4.2	Antibiotika–Empfindlichkeitsverhalten von MRSA/MSSA-Stäm-	101
		549	men per se	101
		0.4.3	Das F IIR-spectroskopische verhalten von sensitiven und resis- tenten Zellen unter Zugebe eines typischen & Leetern Antibie	
			tenten Zehen unter Zugabe eines typischen β -Lactam-Antibio-	106
				100
6	Dis	kussion		111
	6.1	6.1 Korrelation der spektroskopischen, phänotypischen und genotypischen		
		Ergebn	iisse	111
	6.2	Verglei	ch der Speziesdifferenzierung innerhalb der Gattung Candida .	114
	6.3	.3 Auswahl der optimalen Mikrokoloniegröße		116
	6.4 Vergleich der mikrospektrometrischen Methode mit den konventionel-			
		len Me	${\rm thoden} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	117
	6.5	Differen	nzierbarkeit zwischen sensitiven und resistenten Zellen $\ .\ .\ .$	119
		6.5.1	Differenzierbarkeit von VRE/VSE-Stämmen per se auf Basis	
			ihrer FTIR-Spektren	119
		6.5.2	Differenzierbarkeit von MRSA/MSSA-Stämmen per se auf Ba-	
		— –	sis ihrer FTIR-Spektren	121
	6.6	Der Ei	nfluss von Oxacillin auf sensitive und resistente Zellen	124
7	Aus	sblick		127
8	Zusammenfassung 14		147	

Tabellenverzeichnis

1.1	Zusammensetzung von Pro- und Eukaryoten	1
1.2	Zuordnung von einigen Banden, die häufig in den RAMAN-Spektren von biologischen Proben auftreten	28
1.3	Zuordnung von einigen Banden, die häufig in den FTIR-Spektren von biologischen Proben auftreten	29
31	Liste der verwendeten <i>Enterococcus</i> Spezies	41
3.2	Liste der verwendeten Bakterien Spezies	42
3.3	Liste der verwendeten VRE/VSE-Stämme aus Werningerode (Daten-	
	satz 1)	43
3.4	Liste der verwendeten VRE/VSE-Stämme aus Rotterdam (Datensatz 2)	43
3.5	Liste der verwendeten MRSA/MSSA-Stämme aus Les Chesnay (Da-	
	tensatz 1)	44
3.6	Liste der verwendeten MRSA/MSSA-Stämme aus Les Chesnay (Da-	
	tensatz 2) \ldots \ldots \ldots \ldots \ldots \ldots \ldots	44
3.7	Liste der verwendeten isogenen S. aureus Stämme (MRSA/MSSA)aus	
	Werningerode (Datensatz 3)	45
3.8	Liste der verwendeten Candida Spezies	46
5.1	Identifizierung der fünf nicht eindeutig typisierten Enterococcus Stäm-	
	me basierend auf phänotypischen, genotypischen und schwingungsspek-	
	troskopischen Daten	67
5.2	Trainingsparameter für die einzelnen Netze und die Klassifizierungs-	
	ergebnisse der Daten im Validierungsdatensatz für die Identifizierung	01
۳۹	von Bakterien.	91
5.5	argebnisse der Daten im Velidierungsdatengetz für die Identifizierung	
	der Candida Spezies	92
5.4	Ergebnisse der <i>leave-one-out</i> -Evaluierung des hierarchischen Netzes zur	52
0.1	Identifizierung von Bakterien, basierend auf den Stämmen in der Re-	
	ferenzdatenbank.	93
5.5	Ergebnisse der <i>leave-one-out</i> -Evaluierung des hierarchischen Netzes zur	
	Identifizierung der <i>Candida</i> Spezies, basierend auf den Stämmen in der	
	Referenzdatenbank	94

Tabellenverzeichnis

5.6	Vergleich der phänotypischen und der infrarot-mikrospektrometrischen-	
	Identifizierungsergebnisse der Patientenproben, die in der prospektiven	
	Studie enthalten sind.	96
5.7	Klassifizierungsergebnisse der in dem Trainings-, Validierungs- und Test-	
	datensatz enthaltenen Spektren.	100
5.8	Klassifizierungsergebnisse der in dem Trainings-, Validierungs- und den	
	beiden Testdatensätzen enthaltenen Spektren	105

Abbildungsverzeichnis

1.1	Schematische Darstellung der Zellhülle von GRAM-positiven und GRAM-	
	negativen Bakterien	2
1.2	Strukturformel des Grundbausteins von Penicillinen.	14
1.3	Aufbau und Funktionsweise eines MICHELSON-Interferometers	20
1.4	FTIR- und FT-RAMAN-Spektren der makromolekularen Hauptbestand- teile, die in biologischen Proben vorhanden sind.	26
1.5	Bandenzuordung für die Hauptbestandteile, die in den FTIR- und FT- RAMAN-Spektren von intakten mikrobiellen Zellen ($E.$ faecalis) auftre-	
	ten	27
4.1	Technische Zeichung des (A) automatisierten Multiküvettensystems, das für die FTIR-Messungen an den Bakterienfilmen eingesetzt wur- de und (B) der RAMAN-Messküvette, die aus einem Probencup aus Edelstahl, der mit einem CaF_2 -Fenster und einem O-Ring verschlos-	
	sen wird, besteht	50
4.2	Aufbau der Stempelapparatur (a) mittels der ortsgetreue Stempel- abdrücke von Mikrokolonien (50 - 80 µm) auf Infrarot-transparente-	
4.3	ZnSe-Scheiben (b) übertragen werden können	51
4.4	von <i>S. aureus</i> , <i>E. coli</i> und <i>C. albicans</i>	52
	modus am IRscope II der Firma BRUKER	53
4.5	Aufbau eines typischen 3-schichtigen <i>multilayer perceptrons</i>	58
5.1	Dendrogramm der Clusteranalyse nach WARD der FTIR Spektren der zwei <i>Enterococcus</i> Spezies <i>E. casseliflavus</i> und <i>E. gallinarum</i>	62
5.2	Mittelwertsspektren der vektornormierten ersten Ableitungen von zwei	69
59	<i>Enterococcus</i> Spezies <i>L. jaecium</i> und <i>L. jaecuits</i>	05
0.5	<i>Enterococcus</i> Spezies	64
5.4	Klassifikationsschemata basierend auf den FTIR-Spektren der sechs verschiedenen <i>Enterococcus</i> Spezies	66
5.5	Typische RAMAN-Originalspektren der sechs verschiedenen Enterococ-	
	cus Spezies	69

Abbildungsverzeichnis

5.6	Dendrogramm der Clusteranalyse der ersten Ableitungen der RAMAN-	
	Spektren der sechs verschiedenen Enterococcus Spezies unter Einbezie-	
	hung des spektralen Bereichs von 400–1800 cm ⁻¹	70
5.7	Spektraler Vergleich der RAMAN-Spektren des E. casseliflavus Stamm	
	16 und des $E.$ faecalis Stamm 11	71
5.8	Spektraler Vergleich der RAMAN-Spektren der beiden <i>E. hirae</i> Stämme	
	2 und 6	72
5.9	Struktur von β -Carotin, einem typischen Carotinoid	73
5.10	Dendrogramm der Clusteranalyse der ersten Ableitungen der RAMAN-	
	Spektren nach Durchführung der Wellenlängenselektion	74
5.11	Typische zweite Ableitungen der sieben verschiedenen Candida Spezies	76
5.12	Klassifikationsschemata der sieben verschiedenen Candida Spezies	78
5.13	Dendrogramm der Clusteranalyse der ersten Ableitungen der FTIR	
	Spektren, die durch das lineare (x,y-Richtung) Mappen einer 100 µm	
	(Å) und einer 200 µm (B) großen Mikrokolonie von S. aureus CIP 4,83	
	erhalten wurden.	81
5.14	Mittelwertsspektren der ersten Ableitungen einer 100 µm und einer	
	200 µm Kolonie von S. aureus CIP 4,83 gemessen im Zentrum und an	
	der Peripherie der Kolonie.	82
5.15	Dendrogramm der Clusteranalyse der ersten Ableitungen der FTIR-	
	Spektren, die durch das lineare (x,y-Richtung) Mappen von zwei ver-	
	schiedenen 100 µm großen Mikrokolonien von S. aureus CIP 4,83 und	
	ATCC 6538 erhalten wurden.	83
5.16	Typische FTIR-Spektren der Mikrokolonien von GRAM-positiven (S. au-	
	reus, E. faecalis) und GRAM-negativen (E. coli, P. aeruginosa) Bak-	
	terien	85
5.17	Spektroskopischer GRAM-Test.	87
5.18	Dendrogramm der Clusteranalyse von sechs <i>Candida</i> Spezies	88
5.19	Schematische Darstellung des hierarchisch organisierten neuronalen Net-	
	zes zur Identifizierung von Bakterien.	89
5.20	Schematische Darstellung des hierarchisch organisierten neuronalen Net-	
	zes zur Identifizierung von <i>Candida</i> Spezies	90
5.21	Dendrogramme der Clusteranalysen der ersten Ableitungen der FTIR	
	Spektren der zwei Enterococcus Datensätze (A: 1. Datensatz; B: 2. Da-	
	tensatz), die jeweils 10 glykopeptidresistente <i>E. faecium</i> (VRE) Stämme	
	und 10 glykopeptidsensitive <i>E. faecium</i> (VSE) Stämme umfassen	99
5.22	Typische zweite Ableitungen der 15 Methicillin-sensitiven und -resistenter	ı
	S. aureus Stämme (Datensatz 1)	102
5.23	Dendrogramm der Clusteranalyse der ersten Ableitungen der FTIR-	
	Spektren des MRSA/MSSA-Datensatzes 1, der 10 Methicillin-resistente	
	S. aureus (MRSA) Stämme und 5 Methicillin-sensitive S. aureus (MS-	
	SA) Stämme umfasst	103
5.24	Dendrogramme der Clusteranalysen der ersten Ableitungen der FTIR-	
	Spektren der MRSA/MSSA-Datensätze 2 und 3 (isogene Stämme)	104

5.25	Schema des experimentellen Aufbaus, das zur Antibiotikaempfindlich-	
	keitsprüfung an Mikrokolonien entwickelt wurde	107
5.26	Typische zweite Ableitungen von mit Oxacillin behandelten und unbe-	
	handelten MRSA- und MSSA-Stämmen und die entsprechenden Diffe-	
	renzspektren	108
5.27	Dendrogramm der hierarchischen Clusteranalyse der ersten Ableitun-	
	gen von MRSA- und MSSA-Stämmen, die mit dem β -Lactam Antibio-	
	tikum Oxacillin behandelt wurden.	109
5.28	Dendrogramm der hierarchischen Clusteranalyse der ersten Ableitun-	
	gen von mit Oxacillin behandelten und unbehandelten MRSA- und	
	MSSA-Stämmen.	110

Abbildungsverzeichnis

A	Adenin
AE	Absorptionseinheiten
ATCC	American Type Culture Collection
ANN	artificial neural network
ATR	attenuated total reflection
C. albicans	Candida albicans
C. dubliniensis	Candida dubliniensis
C. glabrata	Candida glabrata
C. kefyr	Candida kefyr
C. krusei	Candida krusei
C. parapsilosis	Candida parapsilosis
CIP	Collection d'institute Pasteur
С	Cytosin
CCD	charge coupled device
\mathcal{CM}	Cytoplasmamembran
Da	Dalton (Einheit der relativen Molmasse, keine SI-Einheit)
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen
DFT	Diskrete FOURIER-Transformation
DNA	Desoxyribonukleinsäure
DTGS	deuterated triglycine sulfate
DR	Diffuse Reflectance
ϵ	Extinktionskoeffizient
E	Extinktion (synonym verwendet mit dem Begriff Absorption)
ELD	elderly
E. aerogenes	Enterobacter aerogenes
E. cloacae	Enterobachter cloacae
E. casseliflavus	Enterococcus casseliflavus
E. durans	Enterococcus durans
E. faecium	Enterococcus faecium
E. faecalis	Enterococcus faecalis
E. gallinarum	Enterococcus gallinarum
E. hirae	Enterococcus hirae
E. coli	Escherichia coli
FIR	fernes Infrarot
FTIR	FOURIER-Transform-Infrarotspektroskopie

Ge	Germanium
G	Guanin
HIV	human immunodeficiency virus
ICU	intensive care unit
LB	Luria Bertani
MCT	mercury cadmium telluride
MED	medical
MHK	minimale Hemmkonzentration
MIR	mittleres Infrarot
MIDAS	<u>m</u> icroorganism <u>id</u> entification and <u>antibiotic/antifungal agent suscep-</u>
	tibility testing
MLP	multilayer perceptron
MRSA	Methicillin-resistence S. aureus
MSSA	Methicillin-sensitive S. aureus
M. bovis	Mycobacterium bovis
M. smegmatis	Mycobacterium smegmatis
MspA	M. smegmatis PorinA
NIR	nahes Infrarot
NSDA	neutraler-SABOURAUD-Dextrose-Agar
LPS	Lipolpolysaccharid
OM	äußere Membran (<i>outer membrane</i>)
PBPs	Penicillinbindungsproteine
PCA	principal component analysis
PCR	polymerase-chain-reaction
PED	pediatric
Phe	Phenylalanin
PFGE	Pulsfeld-Gelelektrophorese
PG	Peptidoglykan
PP	peak to peak
\mathbf{PS}	Periplasma
P. aeruginosa	Pseudomonas aeruginosa
RAPD-PCR	random amplification of polymorphic DNA-PCR
R	resistent
RMS	root mean square
RNA	Ribonukleinsäure
rRNA	ribosomale Ribonukleinsäure
$S.\ cerevisiae$	Saccharomyces cerevisiae
S	sensitiv
ST	Serotyp
SERS	surface enhanced Raman scattering
S/N	Signal/Rausch-Verhältnis (signal to noise ratio)
S. aureus	Staphylococcus aureus
SSE	sum squared error
SUR	surgery

Т	Thymin
Trp	Tryptophan
Tyr	Tyrosin
U	Uracil
VIS	visible
VRE	Vancomycin-resistente E. faecium
VSE	Vancomycin-sensitive E. faecium
WTA	winner takes all
ZnSe	Zinkselenid