
 

 

Tailored Analysis in Studying 

Transcriptome Landscape 
 

 

Dissertation zur Erlangung des Grades 

 eines Doktors der Naturwissenschaften (Dr. rer. nat.) 
vorgelegt von 

Xintian Arthur YOU 
 

 

 
 

 

am Fachbereich Mathematik und Informatik 

der Freien Universität Berlin 

Berlin 2015 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisor: Prof. Dr. Knut Reinert 

Second supervisor: Prof. Dr. Wei Chen 

 

Date of the viva voce/defense: 2015-12-14 



 



 

Selbststandigkeitserklärung 
 

 
 
Hiermit erkla ̈re ich, dass ich diese Arbeit selbststa ̈ndig verfasst und keine 

anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Ich 

erkla ̈re weiterhin, dass ich die vorliegende Arbeit oder deren Inhalt nicht in 

einem früheren Promotionsverfahren eingereicht habe.  

 

I hereby declare that this thesis is my own original research work and has not 

been submitted in any form for another degree of diploma at any university or 

other institute of education. Contributions from others have been clearly 

acknowledged in the text and references to literatures are given. 

 

Xintian Arthur YOU 

 2015-08-30, Berlin 



 

Preface 
 

All the results of studies presented here originated from discussions and 

collaborations with other researchers. I summarize my contributions and 

acknowledge the contributions of my collaborators in below.  

 

Chapter 2 describes a novel approach for de novo transcriptome assembly 

and is published on Genome Research [1]. The idea for building up a better 

transcriptome reference by combining the advantages of two different 

sequencing technologies was proposed by Prof. Nikolaus Rajewsky and Prof. 

Wei Chen. My contribution was developing a hybrid assembly pipeline and 

assessing the quality of assembled transcriptome. I would like to acknowledge 

contributions of Catherine Adamini, Yongbo Wang, Guido Mastrobuoni, Pinar 

Oenal, Agnieszka Rybak-Wolf, Dominic Grün, Dominic Tolle, Matthias Dodt, 

Sebastian D. Mackowiak, Andreas Gogol-Döring, Eric Ross, Alejandro 

Sanchez Alvarado, Stefan Kempa and Christoph Dieterich. 

 

Chapter 3 describes an approach for direct identification of gene transcripts in 

full-length. Parts of the results have been published in EMBO J [2] and PLOS 

One [3], and the projects are still on going. Prof. Wei Chen initiated the idea to 

sequence full-length transcripts with Pacific Biosciences (PacBio) sequencing-

based strategy. My contribution was to analyze PacBio sequencing data, 

develop computational pipeline (iPEC) to correct sequencing errors and 

characterize full-length transcripts. I would like to acknowledge contributions 

of Wei Sun, Claudia Quedenau, Sophie A. O. Armitage, Andreas Gogol-

Döring, Haihuai He, Yoshiaki Kise, Madlen Sohn, Tao Chen, Prof. Ansgar 

Klebes, and Prof. Dietmar Schmucher. 

 

Chapter 4 describes a pipeline for identification and functional validation of 

microRNAs without reference genomic sequences. Parts of the results have 

been published in Nucleic Acids Research [4]. The idea stemmed from a 

project to characterize pre-miRNAs in MCF-7 cell lines with Na Li and 



 

supervised by Prof. Wei Chen. My contribution was to develop the 

computational pipeline (miRGrep) for de novo miRNA prediction. Na Li and 

Tao Chen carried out most of the wet-lab experiments. I would like to 
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experimental contributions. Besides, I would like to thank Sebastian D. 

Mackowiak, Marc R. Friedländer, Andreas Gogol-Döring, Yuhui Hu and 

Christoph Dieterich for fruitful discussions. 

 

Chapter 5 describes the identification and functional analysis of circular RNAs 

(circRNAs). Parts of the results have been published in Nature Neuroscience 

[5]. Prof. Erin M. Schuman and Prof. Wei Chen promoted a genome-wide 

profiling of non-coding RNAs in neurons. My contribution was to develop a 

computational pipeline (acfs) for circRNA identification, annotation and 

quantification. Ana Babic made synaptosomes preparations that led to our 

discovery that circRNAs are enriched in brain synapses. Together with 

Claudia Quedenau, we demonstrated the full-length sequence identity of 

several circRNAs using PacBio technology. I would also like to acknowledge 

the contributions of Irena Vlatkovic, Tristan Will, Irina Epstein, Georgi Tushev, 

Güney Akbalik, Mantian Wang, Caspar Glock, Xi Wang, Jingyi Hou, Hongyu 

Liu, Wei Sun, Sivakumar Sambandan and Tao Chen. 

 

 

 



 

Acknowledgments 
 

I would like to thank my supervisors Prof. Wei Chen, Prof. Knut Reinert and 

Prof. Martin Vingron for their guidance and support during my PhD. I am 

grateful to Prof. Wei Chen for letting me work with so many cutting-edge 

sequencing technologies, encouraging me to participate and lead many 

research topics and providing such stimulating research environment at the 

MDC Berlin. I shall benefit from it all my life. I am grateful to Prof. Knut Reinert 

for his advice and support on both scientific research and career planning. I 

am grateful to Prof. Martin Vingron for his valuable mathematical insight and 

culturing a warm environment at the MPIMG in Berlin. I am grateful to the 

following people for proofreading my thesis: Prof. Wei Chen, Prof. Knut 

Reinert, Prof. Martin Vingron, Kun Song. I am very grateful to Verena 

Heinrich, Robert Schöpflin, Anna Ramisch and Edgar Steiger for helping me 

with the Zusammenfassung. 

 

I would like to thank Jennifer Stewart, Sabrina Deter for helping my get settled 

in Berlin, and Kirsten Kelleher and Hannes Luz for very kind assistance along 

all steps of my PhD. I thank the entire group of Prof. Wei Chen in MDC, the 

Algorithmic Bioinformatics group at Freie Universität Berlin and the 

Computational Molecular Biology group at MPIMP for fruitful collaborations, 

inspiring conversations and always-helpful feedback. I would like to thank 

Yongbo Wang for his excellent experiments that lead to my first publication. I 

would like to thank Na Li for her excellent experiments, lots of discussions 

with me and even debugging of my scripts. I would like to thank Wei Sun for 

his brilliant and innovative approaches towards difficult biological questions; 

one of them is still unsurpassable since we published it. I would like to thank 

Ana Babic for her devotion in synaptosomes that opens a door for me to 

neuroscience. I would like to thank Wei Sun, Tao Chen, Hang Du, Meisheng 

Xiao, Hongyu Liang, Zhong Wang for augmenting my biological knowledge 

through experiments and discussions. I would like to thank Mirjam Feldkamp, 



 

Claudia Langnick, Madlen Sohn, Claudia Quedenau and Anna-Maria Ströhl 

for excellent sequencing management. 

 

Finally, I would like to thank my parents and in-laws for their support. And 

especially, I want to thank my wife Dr. Xinyi Yang for her support throughout 

my thesis, who had to listen to my nonsense from cell to entropy. Their long 

lasting support and love is the foundation of all my achievements. I love you. 

 

Xintian Arthur YOU 

2015-08-30, Berlin



 

 

Table of Contents 

 

Introduction .................................................................................................... 1 

1.1 Transcriptome: center of the central dogma .............................................. 1 

1.1.1 Genome..........................................................................................................1 
1.1.2 Transcriptome ................................................................................................2 

1.1.3 Proteome........................................................................................................3 
1.1.4 The center of molecular biology .....................................................................3 

1.2 Complexity of transcriptome....................................................................... 4 

1.2.1 Protein-coding or non-coding .........................................................................4 

1.2.2 Linear or non-linear ........................................................................................4 
1.2.3 Transcriptional regulation ...............................................................................5 

1.2.4 Post-transcriptional regulation........................................................................5 

1.3 Opportunities and challenges..................................................................... 6 

1.4 Thesis objective and structure ................................................................... 7 

Objective .................................................................................................................7 
Structure..................................................................................................................8 

De novo transcriptome assembly ................................................................ 9 

2.1 Introduction ................................................................................................ 9 

2.2 Methods ................................................................................................... 10 

2.2.1 Library construction and normalization.........................................................10 
2.2.2 Sequencing protocol.....................................................................................10 

2.2.3 De novo transcriptome assembly .................................................................11 
2.2.4 Redundancy filtering.....................................................................................12 

2.3 Results ..................................................................................................... 13 

2.3.1 Sequencing and transcriptome assembly ....................................................13 

2.3.2 Enhanced sensitivity from cDNA normalization............................................15 
2.3.3 Cost-efficient hybrid assembly .....................................................................17 

2.3.4 Assembly quality evaluation .........................................................................17 
2.3.5 Transcript annotation....................................................................................19 

2.3.6 Comparison to genome-guided transcriptome assembly .............................21 



 

2.3.7 Validation using RACE.................................................................................22 

2.4 Discussion................................................................................................ 22 

Full-length transcriptome identification .................................................... 25 

3.1 Introduction .............................................................................................. 25 

3.2 Methods ................................................................................................... 26 

3.2.1 PacBio SMRT technology ............................................................................26 

3.2.2 Experimental improvement...........................................................................28 
3.2.3 Error correction.............................................................................................28 

3.2.4 Transcript clustering .....................................................................................30 

3.3 Application on drosophila Dscam gene.................................................... 33 

3.3.1 Fly Dscam gene has 38016 isoforms ...........................................................33 
3.3.2 Direct sequencing of Dscam ectodomains using PacBio .............................34 

3.3.3 Fly Dscam isoforms do not respond to immune challenge...........................36 
3.3.4 Discussion ....................................................................................................38 

3.4 Application on rat transcriptome............................................................... 38 

3.4.1 Introduction...................................................................................................38 

3.4.2 Sequencing results.......................................................................................40 
3.4.3 Error correction removed 95% of the sequencing errors..............................43 

3.4.4 Transcriptome landscape of rat CA1 hippocampus .....................................44 

3.5 Discussion................................................................................................ 47 

De novo pre-microRNA identification........................................................ 49 

4.1 Introduction .............................................................................................. 49 

4.2 Methods ................................................................................................... 50 

4.2.1 Small RNA sequencing protocols.................................................................50 

4.2.2 Normalization of sequencing library .............................................................51 
4.2.3 Small RNA sequencing reads mapping........................................................51 

4.2.4 Identification of Ago2-cleaved pre-miRNAs..................................................52 
4.2.5 Identification of miRNA editing events..........................................................52 

4.2.6 De novo prediction of pre-miRNAs...............................................................53 

4.2.7 Probabilistic scoring of pre-miRNAs.............................................................55 

4.3 Results ..................................................................................................... 56 

4.3.1 miRNA and pre-miRNA sequencing.............................................................56 
4.3.2 De novo prediction of mouse pre-miRNAs...................................................59 



 

4.3.3 Validation of novel mouse miRNAs..............................................................62 

4.3.4 Evaluation of miRGrep .................................................................................65 
4.3.5 Identification of pre-miRNA processing intermediates .................................67 

4.3.6 Identification of miRNA editing events..........................................................68 

4.4 Discussion................................................................................................ 69 

Circular RNAs identification ....................................................................... 71 

5.1 Introduction .............................................................................................. 71 

5.1.1 Circular RNAs, old acquaintance and new roles ..........................................71 
5.1.2 Challenges ...................................................................................................73 

5.2 Methods ................................................................................................... 74 

5.2.1 Sequencing protocol.....................................................................................74 

5.2.2 Sequencing data preparation .......................................................................74 
5.2.3 Fusion reads identification............................................................................75 

5.2.4 Back-splice site identification .......................................................................76 
5.2.5 Filtering.........................................................................................................77 

5.2.6 Abundance estimation..................................................................................78 
5.2.7 Conservation analysis ..................................................................................78 

5.2.8 PacBio sequencing of RT-PCR products .....................................................79 

5.2.9 MiRNA binding potential...............................................................................79 
5.2.10 RBP binding potential.................................................................................79 

5.2.11 Peptide translation potential .......................................................................79 

5.3 Results ..................................................................................................... 80 

5.3.1 Enrichment in brain ......................................................................................80 
5.3.2 Independent validations ...............................................................................85 

5.3.3 Synaptic gene origin and dendritic localization ............................................89 
5.3.4 MiRNA binding potential...............................................................................94 

5.3.5 RBP binding potential...................................................................................95 
5.3.6 Peptide translation potential .........................................................................96 

5.3.7 Conservation ................................................................................................97 
5.3.8 CircRNAs are regulated in brain during development ..................................99 

5.3.9 CircRNAs change their expression as a result of neuronal plasticity .........102 

5.4 Discussion.............................................................................................. 104 

5.4.1 Mechanisms of functions............................................................................104 
5.4.2 Other types of circular RNAs......................................................................107 



 

5.4.3 Fusion transcripts .......................................................................................107 

5.4.4 Improvements.............................................................................................108 

Summary and discussion ......................................................................... 109 

Bibliography ............................................................................................... 112 

List of Figures ............................................................................................ 122 

List of Tables.............................................................................................. 124 

Appendix A: Curriculum Vitae .................................................................. 125 

Appendix B: Zusammenfassung.............................................................. 127 

 

 



1 

 

Chapter 1 

Introduction 
 

1.1 Transcriptome: center of the central dogma 

1.1.1 Genome 

Genome, as encoded in deoxyribonucleic acid (DNA), is the complete 

instruction set for the development and function of all living organisms. Being 

able to be faithfully replicated and pass on to future generations, it is also 

referred to as the “blueprint of life”. The building blocks of DNA consist of four 

kinds of nucleotides, and therefore genetic information can be encoded on an 

array of nucleotides. The DNA sequence can be roughly partitioned into two 

groups in terms of their functions: genes and regulatory elements. The DNA 

sequences of genes instruct enzymes to synthesize RNA (ribonucleic acid) 

molecules in the nucleus. Regulatory sequences are generally not transcribed 

into RNA but are recognized by proteins such as transcriptional factors (TFs) 

to facilitate the transcription regulation of the genes either located proximal or 

distal to a gene. According to their regulatory roles, they can be further 

classified into promoters, enhancers, insulators and silencers. The sequence 

integrity of the genome is so important that even a single nucleotide alteration 

could lead to diseases [6].  

 

Genetic information can be extracted from DNA sequences, for example, the 

number of genes, the possible function of genes and the genetic variants that 

might explain the etiology of many diseases, etc. Therefore, great efforts have 

been made to identify the genome of living organisms, such as the Human 

Genome Project [7] that finished in 2004 and the 1000 Genome Project that 

launched in 2008. In comparison to the sheer number of sequences genomes, 

it has been still far from adequacy of functional interpretation of these 
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genomes in depth, and the completeness of which should shed light on better 

understanding of biology and medicine. 

1.1.2 Transcriptome 

Transcriptome constitute of RNA, which is another kind of macromolecule that 

encodes genetic information. RNA is also the genome for many viruses that 

take RNA instead of DNA as their genetic materials [8]. Although RNA can 

store as much genetic information as DNA does, it is a “mortal surrogate” of 

DNA in most cases due to the following two reasons. On one hand, RNA does 

not have the information fail-safe mechanism as DNA does. Due to the fact 

that RNA is usually single-stranded, there is no backup from which the genetic 

information could be restored. One the other hand, RNA is much less stable 

than DNA as it is more prone to hydrolysis.  

 

The biogenesis of RNA, a process known as transcription, is catalyzed by 

RNA polymerases in the fashion of scanning one strand of the DNA, namely 

the “template” strand, to produce a complementary copy. Most RNAs need to 

be modified in order to exert their biological functions. Some modifications are 

simple, requiring only one specific enzyme, such as the 2’-O-methylation of 

ribosomal RNAs (rRNAs) and the termini processing of transfer RNAs 

(tRNAs); some are carried out by an orchestrated ensemble of complexes 

named ribonucleoproteins (RNPs), such as the splicing of messenger RNAs 

(mRNAs). The mRNA splicing is a regulated process that contributes to the 

production of mature mRNA, in which the intron sequences are removed and 

the exon sequences are concatenated in cell nuclei mostly. Then the mature 

mRNAs are exported to the cytoplasm and translated into proteins. The 

removed introns, in the form of lariat, can either be degraded completely by 

exonuclease, or be processed to give rise to functional small RNAs such as 

microRNA (miRNAs) [9] or circular RNAs (circRNAs) [10].  

 

The splicing of mRNA is a highly dynamic and versatile procedure. Alternative 

processing of RNAs could yield many different transcript isoforms from the 

very same gene locus, which is a procedure named alternative splicing. The 
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proteins consequently translated from the alternative spliced mRNAs could 

have similar or antagonizing (dominant negative effect, such as the 

Homer1b/c~Homer1a pair [11]) or even unrelated (multi-ORF transcripts, such 

as Cers1/Gdf1 gene [12]) functions. Since alternative splicing could render 

multiplexed biological functions of the same gene, it greatly increases the 

diversity of proteins encoded by the genome by expanding their functions. 

Therefore, identification of a comprehensive catalog of RNA at the transcript 

level, instead of only at gene level, and measuring their cellular abundance in 

different tissues/developmental stages is of utmost importance to understand 

the molecular mechanism of development and diseases. With the drastic 

improvement of massive parallel sequencing techniques, including both next-

generation sequencing (NGS) and third-generation sequencing (Single-cell/-

Molecule Real-Time sequencing, or SMRT), we are able to profile the 

transcriptome landscape in an unbiased and cost-effective manner. The 

increasing knowledge of transcriptome would greatly facilitate the advance of 

biology and medicine.  

 

1.1.3 Proteome 

Proteins are macromolecules consist of amino acid residues in chains. They 

are synthesized by ribosomes in a way that up to 20 different kinds of amino 

acids are sequentially linked by peptide bonds, the order of which is coded in 

the mRNAs. Proteins are the final functioning units in all forms of life, as they 

contribute to the production, modification, transport and turnover of DNA, RNA 

and proteins themselves.  

 

1.1.4 The center of molecular biology 

 “DNA makes RNA and RNA makes protein” is one simplified version of the 

central dogma of molecular biology. As DNA does not catalyze biochemical 

reactions and proteins do not encode genetic information, RNA stands in the 

middle and serves as the bridge between the “blueprint” and the “workforce”. 

The fact that the diversity of transcriptome expands and evolves much faster 
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than that of genome further indicates that transcriptome stands in the center 

of molecular biology [13]. 

 

1.2 Complexity of transcriptome  

1.2.1 Protein-coding or non-coding  

Transcripts can be categorized in different ways owning to their great diversity 

on different aspects. Out of many ways of looking at transcription products, 

the ability to instruct protein synthesis can be one straightforward 

classification. In the sequence of protein coding genes (mRNAs), the region 

between the start codon (AUG in eukaryotes) and the stop codon (UAG, UAA 

or UGA) is called the coding region (CDS) as its sequence is decoded by 

ribosomes and translated into proteins. Due to the importance that they make 

proteins, mRNAs were once considered to be the only informative part of the 

genome, and the rest of the genome was viewed as “junk DNA” [14], [15] . 

Since the discovery of tRNAs in 1970s, more and more functional non-coding 

genes (ncRNAs) have been identified, such as signal recognition particle RNA 

in 1982 [16], antisense RNA in 1984 [17], microRNAs in 2001 [18], piwi-

interacting RNA (piRNA) in 2006 [19], long intergenic non-coding RNA 

(lincRNA) [20] and most recently circRNAs in 2012 [21] . There are roughly 

20,000 coding and 10,000 non-coding genes in the human genome. Although 

the cellular abundance of coding genes are in general higher than that of non-

coding genes, increasing volume of studies shows that the functional 

importance of non-coding genes is no less than that of coding genes. 

 

1.2.2 Linear or non-linear 

Another way of categorizing transcripts is to see whether the RNA molecule 

has termini. Most of the RNA molecules are linear, with distinct 5’ and 3’ 

termini. They can fold into secondary and ternary structure. Although folding 

could render some resistance to RNA turnover, linear RNAs can be degraded 

from the two ends by exoribonucleases. Circular transcripts (circRNAs), 

however, are largely immune to exoribonucleases such as RNase R thanks to 
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the closed structure. They are transcribed linear, but the 5’ and 3’ termini are 

then covalently linked together post-transcriptionally. Recent studies have 

shown that splicing aided by inverted repeat elements in the upstream and 

downstream region contributes to the biogenesis of circRNAs [22], yet the 

exact mechanism remains to be determined. 

 

1.2.3 Transcriptional regulation 

Gene expression regulation at transcriptional level contains many key steps. 

First, an open chromatin structure must be present to make DNA accessible 

to RNA polymerase. The DNA accessibility can be regulated by modulating 

the extent of CpG methylation on DNA and the combination of various 

chromatin modifications. Second, transcription factors bind to promoter region 

of the DNA (such as TATA box) to recruit RNA polymerase for transcription, or 

to enhancer region to augment the transcription activity, or to silencer region 

to block RNA transcription. Different promoter binding sites could give rise to 

several 5’ sequences of transcripts, especially in the case of first exon, and 

the variable sequences harboring regulatory elements might further contribute 

to post-transcriptional processing and translational efficiency [23]. Third, 

topoisomerases modulate the overwinding or underwinding of the DNA that is 

crucial for transcriptional elongation [24]. Fourth, alternative splicing could not 

only generate transcript isoforms that encode different proteins, but also 

influence the fate of transcripts via inclusion or exclusion of regulatory 

elements [25]. Fifth, alternative transcription termination generates transcripts 

with different regulatory elements in their 3’ untranslated region (3’ UTR). 

Those elements, upon being bound by various trans-factors such as miRNAs 

or RBPs, can modulate the stability of the transcripts in post-transcriptional 

regulation [26], [27]. 

 

1.2.4 Post-transcriptional regulation 

Post-transcriptional regulation is the modulation of gene expression on the 

level of RNA transcripts, including mechanisms involving ncRNAs and RNA 
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binding proteins (RBPs). MicroRNAs can guide the RNA-induced silencing 

complex (RISC) to the target transcripts in order to repress the translation 

efficiency and RNA stability [28]. Small interfering RNAs (siRNAs) can guide 

RISC to the target RNA to degrade it [29]. PiRNAs can lead PIWI proteins to 

transposable elements and modulate their expression [30]. RNA editing 

enzymes (such as cytidine and adenosine deaminase) could alter the function 

and stability of RNAs by changing specific nucleic acid residues [31]. Various 

RNA binding proteins can alter the stability or localization of their targets in an 

allosteric manner. For example, cytoplasmic poly(A)-binding protein (PABPC) 

can bind to the poly(A) tail thus facilitates the protein translation and increases 

the transcript stability [32]. Zip code binding protein (ZBP) binds to zip-code 

sequence in the 3’ UTR of transcripts and directs the transport of the target 

RNAs to distal dendrites [33]. Staufen proteins bind to the double-stranded 

structure of RNAs (either intra-RNA or inter-RNA) and mediate the decay of 

the non-translating RNAs [34]. NcRNAs can regulate the stability of mRNAs 

by competing for the cofactors via various mechanisms. For example, Pten-

p1, one pseudogene of mRNA Pten, can decoy the miRNAs targeting Pten 

due to their sequence similarity. Augmentation of Pten-p1 abundance leads to 

increased Pten mRNA stability and its protein expression [35]. CircRNAs can 

sponge and/or transport miRNAs and RBPs due to the circular structure and 

innate stability. For example, Cdr1_as can sequester about 74 miR-7 

molecules [36], [37]. Moreover, the interaction among coding genes, non-

coding genes and RBPs can form a multi-layer regulatory network.  

 

1.3 Opportunities and challenges  
The advance of massive parallel sequencing technology in the past decade 

not only enables the genomic identification of thousands of organisms, it also 

allows us to profile the more complex transcriptome of any given cell 

population in a cost-effective yet unbiased manner. With much-anticipated 

prospects, many fundamental questions remain to be answered:  (1) How 

many genes are there in the genome of human (or any other organism of 

interest) and what are they? (2) What are the full-length sequences of each 
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and every of transcripts in the genome? (3) How many functional isoforms are 

there per gene locus? (4) What are the differences among those transcript 

isoforms in terms of coding and regulatory potential? (5) Are there more types 

of ncRNAs? (6) What are the regulatory mechanisms of the ncRNAs and what 

are their cofactors? (7) How does the transcriptome, including coding and 

non-coding RNAs, change dynamically during development or exposure to 

stimuli? (8) To what extent the expression variation allows robustness other 

than pure noise? (9) What is the architecture of the gene regulatory network 

containing layers of DNA, RNA and protein? (10) What is the capacity of the 

regulatory network and how will it react when challenged? (11) How can we 

translate the knowledge learnt from the regulatory network to medical 

applications? 

 

To address these questions, we first need to have a comprehensive 

understanding of the transcriptome landscape, as in my belief that all 

phenotypes should have distinct manifestations in transcriptome. More 

specifically, we need to scrutinize every aspect in the RNA biology, with 

customized tools for specific questions. Only after that, a unified framework 

could be established for data integration, information extraction and 

hypothesis testing, and is scalable and fit to biological questions.  

 

1.4 Thesis objective and structure 

Objective 

With the advance of sequencing technology and the general research interest 

on gene expression regulation, the number of genome-wide studies keeps 

increasing. Due to the different nature of each individual study, customized 

analysis has been in much demand to draw proper conclusions, which 

requires a constant bidirectional communication between experimental and 

computational parts throughout the study. The general goal of this thesis is to 

present examples in which tailor-made analysis reveals biological insights 

either by developing new tools or by scaffolding a pipeline that makes better 
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use of the existing tools. Furthermore, the approaches developed in those 

case-by-case studies can be used in conjunction in order to shed light on a 

more comprehensive understanding of biological phenomena. 

 

Structure 

Chapter 2 describes a hybrid approach to assemble the transcriptome. This 

pipeline bridges two different types of datasets and two assembly techniques. 

 

Chapter 3 describes an approach to directly characterize gene transcripts in 

full-length. The highlight of this approach lies in the fact that the detailed 

information of the transcript, including the exact sequences of 5’ UTR, 3’ UTR 

and the combination of alternative exons, can be experimentally determined 

instead of being estimated as in methods described in Chapter 2. 

 

Chapter 4 describes a method for miRNA identification and validation 

independent of reference genome sequences. Rich information regarding to 

the biogenesis and post-transcriptional processing of miRNAs can be 

extracted from the parallel sequencing approach. 

 

Chapter 5 describes a framework for the identification and functional analysis 

of circular RNAs. We further demonstrate that circRNAs are enriched in brain 

and their functional relevance is examined. 
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Chapter 2 

De novo transcriptome assembly 
 

2.1 Introduction 
A catalogue of RNA transcripts of organisms is the most important resource in 

molecular biology nowadays. Only a handful of eukaryotic organisms, 

including human and C. elegans, have high-quality transcriptome reference, 

whilst the genomic sequences of the vast majority of organisms are still in a 

rather immature state, leaving their often-predicted transcriptome models 

even more error-prone. A flatworm named Schmidtea mediterranea (hereafter 

refereed to as Smed) is one of the organisms with many spectacular features 

and biomedical implications (such as having a strong regeneration potential) 

and yet the study of which has been impeded for years due to the lack of 

high-quality transcriptome reference. The current gene annotation in the 

Smed genome is far from complete, and is largely based on computational 

predictions complemented with partial supporting evidence from EST libraries 

[38]. In the Smed genome database (SmedGD, 

http://smedgd.neuro.utah.edu/), 30,930 ‘‘MAKER’’ transcripts from 30,333 

genome loci were predicted [39]. Many of these gene transcripts await further 

validation, and the number of missing transcripts in SmedGD is unknown. 

 

In order to provide a much-needed high-quality resource of the Smed 

transcriptome annotation, we developed a general strategy for sequencing 

and assembling of a complex transcriptome without relying on the availability 

of the genome sequence. The strategy described here is of great practical 

importance for decoding the transcriptome of complex organisms since 

genomes are known to be extremely difficult to assemble. The major reasons 

of these difficulties are polyploidy and low complexity. Recently, first attempts 

have been made to sequence and assemble the transcriptomes of animals 
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such as the butterfly [40], coral [41], and whitefly [42]. However, in all cases 

the mean length of assembled transcripts (197 nt for butterfly, 266 nt for 

whitefly, and 440 nt for coral) was substantially shorter than the estimated 

average mRNA length (>1000 nt). We demonstrated that the assembly 

performance can be improved with the following two strategies: (1) the 

combination of complementary sequencing technologies that provide either 

long and relatively few sequencing reads (454 Life Sciences [Roche] 

technology), or short and magnitudes more sequencing reads (for example, 

Illumina technology); (2) the efficient normalization of cDNA libraries prior to 

sequencing. Transcripts of high abundance occupy the majority of sequencing 

capacity, limiting the detection sensitivity for rare but functional important 

transcripts. This bias can be solved to a large extent by normalizing the cDNA 

libraries before sequencing. The combination of both strategies leads to the 

success of the mRNA transcriptome characterization of Smed for the first time 

in a genomic information-independent fashion. 

 

2.2 Methods 

2.2.1 Library construction and normalization 

The construction of normalized full-length-enriched cDNA libraries works in 

three steps: (1) the synthesis of double strand cDNA via RACE (Rapid 

Amplification of cDNA Ends) technique, (2) the removal of poly(A/T) tails 

followed by the ligation of a DNA adapter, and (3) the normalization of the 

resulting cDNA library using duplex-specific nuclease (DSN). The DSN 

normalization method is based on the denaturation–reassociation of double-

stranded (ds) DNA coupled with the preferential degradation of the ds-DNA 

fraction formed by abundant transcripts [43].  

 

2.2.2 Sequencing protocol 
The 454 sequencing library was prepared from 5 µg normalized cDNA library, 

and then sequenced by 200 cycles on a 454 GS FLX sequencer per 

manufacturer’s instructions. Five micrograms of normalized cDNA library was 
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used to construct the single-end Illumina sequencing library, which was then 

sequenced by 36 cycles on the GAIIX per manufacturer’s protocols. In 

parallel, 300 ng of poly(A) RNA was used to construct paired-end Illumina 

sequencing library, which was then sequences by 2x76 cycles on the GAIIX 

per manufacturer’s protocols. 

 

After sequencing, the PCR primer sequences have to be trimmed off for both 

454 and Illumina reads, otherwise they would be treated as part of the RNA 

transcripts and would lead to false assembly. Since the 5’ and 3’ PCR primers 

for the 454 full-length cDNA library are different, the position and the 

sequence of the recognized primers can be used to determine the strand 

information of the read and assembled transcript. A small portion (0.8%) of 

the 454 sequencing reads were discarded as the PCR primer sequences were 

detected in the middle of reads and therefore likely to be the PCR artifacts. 

 

2.2.3 De novo transcriptome assembly 
There are two general methods for sequence assembly: (1) Overlap Layout 

Consensus (OLC) method and (2) De Bruijn Graph (DBG) method. As the 

name suggests, the OLC assemblers work in three steps. First, short 

overlapping sub-strings are located in an all-against-all comparison, with a 

hashing indexing method to increase the efficiency. Using the index 

information, reads can be grouped into different bundles, where a bundle 

consists of reads that overlap and only overlap within the bundle consistently. 

A layout is then generated for each bundle by weighted voting. Second, 

layouts are optimized through all-against-all comparison, breaking into 

contiguous parts (contigs) at repetitive or common regions, re-joining of 

contigs using contigs-overlapping reads (guaranteeing read coherence) and a 

quality control step (with minimal length and number of supporting reads). 

Finally, a consensus sequence (isotig) is generated for each of the refined 

layouts, representing one RNA transcript.  

 

The OLC method works well for sequencing datasets of high quality, low-to-
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medium throughput and long read length. Due to the all-against-all 

comparison, it would become computational unfeasible as the number of input 

sequences increases [44]. On the contrary, the DBG based assembly method 

suits better for the high-throughput sequencing datasets.  

 

The DBG assembly works in the following steps. First, all sequencing reads 

were split into substrings of a given length (k-mers) and added to a de bruijn 

graph, with each edge represents a k-mer that connects the two nodes 

representing k-1-mer prefix and suffix. For example, an edge of “ABC” 

connects node “AB” and “BC”. Then, a Eulerian trail of the graph can be found 

in linear time, which might represent one RNA transcript. Last, all possible 

Eulerian trails of the same DBG are compared and some trails satisfying 

certain criteria, such as parsimoniousness, are reported as transcript sets for 

a gene locus. While DBG can easily scale up with large number of input 

sequences, it has a drawback of loss of the read coherence, which might lead 

to false assembly for complex gene loci. 

 

We established a hybrid strategy that integrated two assembly methods 

designed for different types of sequencing data. In practice, the Illumina 

paired-end and single-end reads were first assembled into contigs using 

SOAPdenovo [45] (a DBG method, with parameters tuned best for Smed: 

max_rd_len=100, agv_ins=200, reverse_seq=0, asm_flags=3, 

re_len_cutoff=3, pair_num_cutoff=3, map_len=25, K=25). Then, the contigs 

longer than 100 nt (with an expectation of median length of 1000 nt in mind) 

from the Illumina assembly were combined together with 454 reads for the 

final assembly using Newbler (a OLC method, version 2.3, Roche; with 

parameters tuned best for Smed: -cdna -it 100 -ig 500 -icc 100 –icl 3). 

 

2.2.4 Redundancy filtering 

In order to remove redundant transcripts and retain a set of potentially unique 

isoforms, the following procedure was applied: The mutual overlap of 

candidate transcripts was determined by running BLAT [46] with default 
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parameters on all possible pairs. From each pair, the shorter of the two 

transcripts was discarded if the number of nonaligned nucleotides fell below a 

threshold of 35 nt (corresponding to shorter than 95% of all exons) and if the 

longer one was not discarded previously.  

 

2.3 Results 

2.3.1 Sequencing and transcriptome assembly 

We established a hybrid strategy that finalized a polished transcriptome 

reference based on the integration of two independent assembly methods 

designed for different sequencing technologies (Figure 2.1). At first, poly(A) 

RNA extracted from Smed worms was used to constructed a full-length cDNA 

library, which was then normalized using a duplex-specific nuclease. We 

sequenced the normalized library on 454 GS FLX platform and obtained 

1,370,473 reads with a median length of 340 nt that passed the 454 quality 

filter (Table 2.1). 

 
Figure 2. 1 Scheme of hybrid sequencing and assembly 

Full-length cDNA
library construction

DSN normalization and
efficiency evaluation

cDNA fragmentation

Roche 454 sequencing

RNA fragmentation

Random primed
 cDNA systhesis

Illumina single-/pair-end
sequencing

De novo transcriptome assembly

Independent validation

Poly(A)+ RNA extraction
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 454 Illumina Paired-End (PE) Illumina Single-End (SE) 

 454 Rep1 Rep2 Norm Non-norm  

Number of 

reads 

1,370,473 29,009,277 27,560,500 9,043,682 11,204,306 

Read length Median 340 

nt 

76 nt 

Insert size of 

200 nt 

76 nt 

Insert size of 

200 nt 

36 nt 36 nt 

Table 2. 1 Summary of sequencing results 

After trimming off the 454 sequencing adapters and the cDNA PCR primers, 

strand information of all 454 reads was determined and 454 reads were used 

as input for the Newbler assembler, a 454 proprietary software distributed 

together with the 454 sequencing machine. The majority of reads (83.99%) 

was successfully used for assembly and resulted 24,630 contigs with a 

median length of 953 nt and a maximum length of 7,009 nt (Table 2.2). Due to 

the low efficiency of the reverse transcription (RT) efficiency for long 

transcripts, the assembled transcripts longer than 6 kb were under-

represented in our full-length cDNA library. To compensate for this, we 

constructed another cDNA library, in which random priming was used to 

reverse transcribe the fragmented poly(A) RNA (Figure 2.1), at the cost of 

losing the strand information. To increase the effective length of the 

sequencing reads, we sequenced from both ends of this library using the pair-

end sequencing method. We obtained 28 million read pairs, each consisting 

of two reads of length of 76 nt (Table 2.1). Using the SOAPdenovo software, 

these read pairs together with 20 million single-end sequencing reads from 

the full-length cDNA library were corrected for sequencing errors using a k-

mer frequency method prior to assembly. In total, we obtained 41,501 contigs 

that are longer than 100 nt, with the median and maximum length of 252 nt 

and 14,628 nt respectively. To expand the 454-only assembly, we used 454 

reads together with processed Illumina contigs as input for a final assembly 

using Newbler (Figure 2.1). This hybrid assembly transcript set (hereafter 

referred to as “HA transcripts”) consisted of 26,669 contigs (from 14,793 loci) 

with a drastically enhanced median length of 1,107 nt. Although the maximum 

length of 14,740 nt (partial Titin transcript, note that the complete Titin 



15 

transcript in human is of length of 65535 nt) indicates that the some of the 

longest transcripts are still missing in the assembly, it matches with the 

expected length of the full-length cDNA library. Identifying the full-length 

sequences of the extremely long transcripts would be more suited to carry out 

in a gene/transcript-specific fashion to ensure the quality. 

 
 Number of 

transcripts 

Mean length (nt) Median length 

(nt) 

Max. length (nt) 

454 26,904 1,048 953 7,009 

Illumina 41,501 451 252 14,628 

454 + Illumina 26,669 1,300 1,107 14,740 

HA transcripts 

(Final assembly) 
18,618 1,228 1,078 14,740 

Table 2. 2 Summary of de novo assembly results 

 

2.3.2 Enhanced sensitivity from cDNA normalization 

To demonstrate that library normalization dramatically increases the 

probability of identifying lowly expressed transcripts, we did simulations to 

examine the percentage of the HA transcripts that could be recovered from 

the non-normalized and normalized cDNA libraries. The abundance of the HA 

transcripts represented in the non-normalized and normalized library was 

estimated form the single-end Illumina sequencing of the two libraries. Out of 

18,618 HA transcripts, 16,734 with measurable expression (RPKM > 1) in 

both the non-normalized and normalized library were used for simulation. A 

simulated cDNA pool was first generated containing a total of 10 million 

molecules for each library, where the number of molecule per transcript is 

proportional to its RPKM value. Simulated 454 read pools then were 

generated by sampling cDNA fragments from each cDNA pool. 

 

We then randomly sampled 0.5, 1, 1.5 and 1.95 M (million) reads from the 

read pool for assembly. The assemblies were then aligned to the HA 

transcripts to see how well they could recover HA transcripts, at minimum 
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percentages of transcript length of 50%, 75% and 90% (Figure 2.2). The 

assembly generated from the normalized datasets recovered much more HA 

transcripts than those from the non-normalized datasets (Figure 2.2). For 

example, at the depth of 1.5 M simulated 454 reads, an additional 60% of HA 

transcripts can be assembled at almost full length (>=90%) with the 

normalized library compared to the non-normalized library. It suggests that 

transcriptome assembly benefits greatly from normalization strategy. 

 
Figure 2. 2 Library normalization enhances transcript recovery. X-axis represents the 

number of simulated 454 reads used in the assembly simulation. Y-axis marks the 

number of HA transcripts that can be recovered at certain minimum percentage (red 

for 50%, blue for 75% and black for 90%) from the normalized (solid line) or non-

normalized (dashed line) cDNA libraries. 
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2.3.3 Cost-efficient hybrid assembly 
It is an important and yet difficult question to find the optimal mixture of the 

two sequencing technologies, considering the length and the number of 

sequencing reads and the available budget. Simulation assembly using 

subsets of our 454 and Illumina sequencing data demonstrated that long read 

length is crucial to the completeness of assembled transcripts (Table 2.3). 

However, the cost of one 454 run is similar to that of two Illumina lanes. Of 

note, the most efficient strategy depends on the landscape of the expressed 

transcripts in different organisms, therefore there might not exist a single best-

balanced combination. 

 
Data No. of 

isotigs 

Median 

Length 

Max 

Length 

Recover 

50% 

Recover 

75% 

Recover 

90% 

Recover 

95% 

454  
1-lane 13460 797 4810 53.53% 37.06% 24.09% 16.03% 

454  
2-lanes 18987 917 5410 74.43% 60.91% 45.96% 36.13% 

454  
3-lanes 23585 982 6352 87.67% 80.11% 71.03% 63.44% 

Illumina 
 2-lanes 52906 206 6774 67.55% 41.95% 17.68% 8.68% 

454  
1-lane  

+ 
Illumina  
2-lanes 

18494 850 6770 76.17% 61.41% 41.55% 27.81% 

454 
2-lanes  

+ 
Illumina  
2-lanes 

22155 951 6770 88.45% 80.40% 65.55% 53.02% 

Table 2. 3 Influence of sequencing depth on transcript recovery 

 

2.3.4 Assembly quality evaluation 

We aligned the HA transcripts to the draft reference sequences of the Smed 

genome using Blastn [47]. The transcripts covered 7.37% of the genome 

references and 154 (0.6%) of them cannot be aligned to the draft genome. We 

then aligned all Illumina reads to the HA transcripts (as the transcriptome) and 

the genome references in parallel. Combining the two biological replicates, 
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there were 33.4 and 27.9 million PE reads aligned to the assembled 

transcripts and genome reference, respectively (Table 2.4). There were 3.0 

million PE reads that can be aligned to the draft genome but not aligned to the 

transcriptome. We speculated that this small proportion (10.72%) of reads 

were likely to originated from lowly expressed genes as well as the intronic 

and intergenic regions, as a similar percentage is also found in RNA-Seq 

studies in human [48] or mouse [5]. On the other hand, 8.5 million of the PE 

reads were transcriptome specific, which can contribute to the transcribed 

regions that are absent in the current draft genome reference.  

 
 PE rep1 PE rep2 SE rep1 SE rep2 

Number of 
Reads passed 

filter 

22,081,765 21,134,818 7,629,531 10,502,913 

Number of 
Mapped to 

genome 

14,325,352 13,631,467 4,301,018 5,833,220 

Percentage of 
Mapped to 

genome 

64.87% 64.50% 56.37% 55.54% 

Number of 
Mapped to 
transcripts 

17,127,363 16,290,632 4,681,661 6,235,694 

Percentage of 
Mapped to 
transcripts 

77.56% 77.08% 61.36% 59.37% 

Table 2. 4 Comparison of HA transcripts with the draft genome reference 

 

Moreover, 1% of the transcriptome-specific PE reads readily revealed un-

characterized genomic sequences since one end of the pair were aligned to 

both HA transcripts and the current genome reference while the other end 

could only be aligned to our HA transcripts (Figure 2.3). As an example, we 

visualized the relationship between one HA transcript that encodes PIWI2 

protein and the draft genome reference contigs (Figure 2.4). There were not 

only gaps in the genomic contigs, but also duplications likely owing to the 

incomplete genome assembly. 
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Figure 2. 3 HA transcripts expand the genome reference. Venn diagram to the left 

marks the number of pair-end reads aligned only to genome reference (3.0 million), 

or only to HA transcripts (8.5 million) or both (24.9 million). Pie chart to the right 

shows the classification of the 8.5 million pair-end reads according to the alignments 

of both ends: 1% (green) have one end mapped to HA transcripts and the other to 

genomic reference; 38% (blue) have both end mapped only to HA transcripts; the 

rest (red) have only one end mapped to HA transcripts and the other end unmapped. 

 

 
Figure 2. 4 An example of HA transcripts that connect genome scaffolds. The query 

track on top marks the HA transcript for Piwi2, which could be aligned to 11 genomic 

locations of Smed. 

 

2.3.5 Transcript annotation 

We annotated the HA transcripts according to their sequence homology to 

proteins identified in other organisms. Using Blastx at a threshold of 1E-10, 

11,542 assembled transcripts could be aligned to NCBI non-redundant protein 

database (nr), with 2,101 additional ones could be further annotated when 

lowering the threshold to 1E-3. To assess the quality of HA transcripts 

3.0M 24.9M 8.5M
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regarding to whether they could code full-length proteins, we calculated a C 

value (for Completeness) for each assembled transcript as the ratio between 

the length of predicted coding region and the length of the homologous protein 

(Figure 2.5). The majority of the HA transcripts are of relative high C value, 

indicating near complete assembly at least in terms of the coding sequences. 

Notably, not all these annotated assembled transcripts represent protein-

coding genes, since they can be pseudogenes and processed transcripts that 

are highly similar to the homologous coding genes in sequence.  

 
Figure 2. 5 The completeness of HA transcripts. The histogram of the C value (on x-

axis) of HA transcripts indicates the majority of the HA transcript can code full-length 

annotated proteins. 

 

To estimate the contribution of non-coding transcripts in our assembly, we 

computationally translated the transcripts into peptides. The coding potential 

of each transcript could be estimated by the ratio (denoted as P) between the 

length of the longest ORF and the length of the transcript (Figure 2.6). The 

higher this ratio is, the more potential a certain transcript could code a protein. 

There are 1828 transcripts with P value < 0.3, and therefore they are likely 

non-coding transcripts. Interestingly, there are about 1000 transcripts that are 

of > 0.9 P value but no homologue can be found in the NCBI nr database, 

which could be a set of Smed-specific protein coding genes. Interestingly, 

HA transcripts 

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
15

0
30

0
45

0
60

0



21 

transcripts with P value very close to one might suggest for either short UTRs 

or incomplete assembly. 

 
Figure 2. 6 The coding potential of HA transcripts. The histogram of the P value of 

HA transcripts indicates that about 10% of the HA transcripts are non-coding 

transcripts while the majority code for proteins. 

 

2.3.6 Comparison to genome-guided transcriptome assembly 

To further evaluate the accuracy of the de novo transcriptome assembly, we 

compared HA transcripts to a conventional genome-guided transcript 

assembly. First, all sequencing reads were aligned to the genome reference 

sequences using TopHat [49] (version 1.2.0). Then, Cufflinks [49] (version 

0.9.3) was used to assemble transcripts using default parameters. A total of 

32,235 transcripts (hereafter referred to as “Cufflinks transcripts”) were 

obtained, with a mean length of 903 nt and a maximum length of 18,510 nt 

(Table 2.5). We then aligned the HA transcripts with to Cufflinks transcripts in 

a mutually manner using BLAT and regarded those as similar if the two are of 

>90% sequence similarity over >80% of the shorter transcript length. With 

these criteria, 17,000 HA transcripts have counterparts with 24,443 Cufflinks 

transcripts. 1,619 and 7,792 transcripts remain to be HA and Cufflinks 

specific. Compared with HA transcripts, Cufflinks set contained much more 

shorter contigs.  
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 Number of 

transcripts 

1stQ 

Length (nt) 

Median 

Length (nt) 

Mean 

Length (nt) 

3rdQ 

Length (nt) 

Max 

Length (nt) 

HA 18,619 643 1,078 1,228 1,625 14,740 

Cufflinks 32,235 370 654 903 1,163 18,510 

Common-in-
HA 

17,000 683 1,123 1,335 1,670 14,740 

Common-in- 
Cufflinks 

24,443 422 766 1,018 1,333 18,510 

HA- 
specific 

1,619 483 631 792.7 993 4,077 

Cufflinks- 
specific 

7,792 288 450 543.7 679 6,271 

Table 2. 5 Comparison of HA transcripts with Cufflinks transcripts 

 

2.3.7 Validation using RACE 

To validate the quality of our hybrid assembly with regard to the complete 5’ 

and 3’ ends of the transcripts, we performed 5’ and 3’ RACE on 24 randomly 

picked HA transcripts of high, moderate and low abundance, respectively. The 

majority (22 out of 24) of RACE products were successfully sequenced by 

conventional Sanger method. We confirmed that these 22 HA transcripts have 

complete or nearly complete 5’ and 3’ ends (at most 50 nt shorter than RACE 

products). For the remaining two, both 3’ ends were validated by RACE but 

the 5’ ends failed, which could be explained by the mild 5’ bias in the cDNA 

cloning protocol [48]. In addition to the completeness of 5’ and 3’ ends, we 

also estimated the sequence accuracy of HA transcripts. Out of a total of 

16,520 nt that can be aligned with our transcripts, we identified substitutions 

for 116 nt, and deletions/insertions affecting 9/24 nt and therefore the overall 

error rate is around 0.90%. With independent experimental validation, we 

demonstrated that the HA transcripts we assembled is of high quality. 

 

2.4 Discussion 
Genome annotation is traditionally based on sequencing cDNA libraries. The 

procedures of the traditional and yet still gold standard Sanger sequencing is 

both laborious and cost prohibitive for large sets of targets. Nowadays RNA-
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Seq, as the second-generation technology, has mostly been applied to 

quantify the expression level of already annotated loci and to identify 

differentially expressed genes. RNA-Seq has also been used to refine 

annotated gene structures such as alternative splicing, alternative 5’ and 3’ 

ends, or to even build up gene models in a de novo manner [50]. However, all 

of these tasks rely on knowledge of genomic sequences, which, in many 

situations, is not available or very difficult to obtain. Here, we present an 

elegant method to obtain a high-quality characterization of a complex animal 

transcriptome without using genomic sequences. Foreseeable development 

and application of this approach could be: 1) use cDNA derived from specific 

cell types and development stages; 2) polish both 5' and 3' ends of the 

transcripts with special datasets designed for UTR analysis, since the UTRs 

harbor many regulatory elements that are important for post-transcriptional 

regulations and 3) augment the current transcript catalogue by identifying 

more comprehensive isoform sets, instead of only the dominant ones as 

achieved in the present study. 

 

With the rapid improvement of Illumina sequencing technology, transcriptome 

assembly in DBG method is more popular. Many tools have bee developed 

recently, such as Oases [51], Trinity [52] and Scripture [53]. At the time of this 

study, Velvet [54] and AllPath [55] were tested for possible substitutes for 

SOAPdenovo, but they performed poorly (resulting in too many short and 

unconnected fragments) since they were designed for small genome 

assembly. PCR bias, highly similar domain and repetitive regions would lead 

to over-assembly. Moreover, it is difficult to de novo assemble complex gene 

loci, such as the Dscam gene that has theoretically 38,016 isoforms. 

Sequencing technologies that render long read length, such as Roche 454, 

PacBio and Nanopore, are therefore naturally better means in resolving 

transcripts that are long and complex. Roche 454 is the state-of-the-art and 

the only high-throughput long read-length sequencing technology available at 

the time of the project. Now, as Pacbio sequencing can sequence DNA as 

long as 30kb, it should be wise to replace 454 sequencing technique with it. In 
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fact, Pacbio sequencing can fully assembly the genome of a microbial [56]. It 

could be expected that in the near future long read-length sequencing 

methods would be widely used for transcriptome structure profiling, especially 

in the fields of cancer biology and neuroscience, where the exact sequence 

identity sometimes matters more than the quantity. 
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Chapter 3 

Full-length transcriptome identification 
 

3.1 Introduction 
As transcriptome-wide studies have become pivotal in understanding 

biological processes, stark importance emerges on the task of cataloging a 

complete set of full-length transcripts in different cell types and conditions. 

Variants in both coding and non-coding regions affect the stability and 

functionality of the mRNA via post-transcriptional regulatory pathways. 

Cloning followed by Sanger sequencing works well for short single-isoform 

transcripts, as done traditionally a decade ago. For transcripts longer than 3 

kb, it is still technically challenging to capture both 5’ and 3’ ends 

simultaneously. With special protocols such as SMARTer (Clontech), the 

power to capture full-length transcripts is greatly enhanced, with high-quality 

RNA as starting materials and applying 5’ RACE and 3’ RACE in conjunction. 

Yet, quantification of multiple isoforms from the same gene locus remains 

elusive using microarrays or shotgun sequencing due to the combinatorial 

problem. Many computational tools have been developed to tackle this 

combinatory problem, applying various heuristics. Cufflinks reports a minimum 

number of isoforms per gene locus that can best explain all the reads that are 

aligned to a reference genome [57]. Trinity reports a set of all possible 

isoforms supported by reads independent of reference genome sequences 

using de bruijn graph [52]. However, the performance drop significantly in the 

situation that there are more than one isoform transcripts [58]. Hybrid 

sequencing strategy (as described in Chapter 2) could render more reliable 

results when given additional information, comparing to current strategies 

based on single sequencing method. Given the noise introduced during the 

RNA extraction, library prep, shotgun sequencing and/or assembly 

procedures, the aforementioned methods could at the best estimate the 
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dominant transcripts. Single molecule sequencing is the only method, to date, 

that establishes proof instead of estimation of the full-length sequence of RNA 

transcripts. Single Molecule Real-Time (SMRT) sequencing technique 

developed by PacBio provides the sequencing capacity of over 3kb on 

average thus allowing direct characterization of full-length transcripts. 

 

Nevertheless, PacBio technology also bears some innate pitfalls aside from 

its advanced design for sequencing long reads. First, although the long 

sequencing length allows the identification of full-length transcripts for many 

genes theoretically, error rate as high as 15% forbids its direct application to 

transcriptome profiling in practice. Second, the cloning efficiency is biased 

among transcripts of different lengths during reverse transcription, PCR 

amplification and sequencing step. Furthermore, due to the limited throughput 

(150,000 reads per sequencing run), transcripts of lower abundance are less 

likely to be detected, in sharp contrast to Illumina RNA-Seq (which provides 

100-fold more coverage at the same cost). Therefore, optimizations in both 

experimental and computational analysis should be made to fully exploit the 

advantages of long read-length sequencing technologies. 

 

3.2 Methods 

3.2.1 PacBio SMRT technology 

The PacBio sequencing is similar with Illumina RNA-Seq in the sense of 

sequencing-by-synthesis, but the implementation is vastly different as PacBio 

operates on a single DNA molecule whilst Illumina operates on a cluster of 

thousands identical DNA molecules [Table 3.1].  
Platform Illumina HiSeq2000 PacBio RS 

Sequence depth ~150,000,000 150,000 
Sequence length /nt <= 150 <= 30,000 
Insert size /nt <= 800 <= 10,000 
Cost per run/lane/Euro ~1000 ~100 
Error rate < 0.5% ~ 13% 
Starting material /ng 50 1000 

Table 3. 1 Comparison of the performance between PacBio and Illumina sequencing 

technology 



27 

In brief, PacBio sequencing works in four steps (Figure 3.1). First, DNA 

template is prepared. The DNA template could be fragmented genomic DNA, 

or targeted DNA PCR products, or RT-PCR products of RNA samples. 

Second, the DNA library is generated by ligation of hairpin-shaped SMRTbell 

adapters to both termini of a double-stranded DNA (the resulting single-strand 

DNA circular molecule is named as SMRTbell). Third, sequencing primers are 

added to the cDNA library together with DNA polymerase. At last, once the 

polymerase binds to the sequencing adapter on a SMRTbell, it starts to 

extend the primer by synthesis in a rolling cycle fashion (images modified 

from the company website), emitting light that is recorded and analyzed to 

determine the nucleotide sequence. Here, nucleotides labeled with different 

fluorophores were incorporated into the newly synthesized DNA strand and 

the fluorescence is monitored by a two-photon CCD camera. The signal 

intensity, duration of the fluorescent pulse and the interval between pulses are 

measured to determine the DNA base identity. As the recording of the 

fluorescence is at real time, currently at 100 frames per second, the length of 

a stretch of the same nucleotides can be determined with high confidence. 

 

 
Figure 3. 1 Schematic workflow of PacBio sequencing 
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3.2.2 Experimental improvement 
Due to the fact that RNA transcripts are of various abundance spanning over 

seven orders of magnitudes, a few highly abundant transcripts will saturate 

the sequencing capacity. Despite the potential influence of transcript length, 

the 100 most abundant genes constitute 15%~20% of the transcriptome. In 

order to increase the representation of the lowly abundant transcripts, we 

employed the DSN (Duplex-Specific Nuclease, see Chapter 2) normalization 

method to our full-length cDNA library.   

 

Moreover, another modification in our experiment is made associated with 

different length of the transcripts, since it also influences the sequencing 

outcome. The longer the transcript is, the more difficult it is to be amplified in 

full-length during both RT and subsequent PCR due to a higher possibility that 

reaction enzymes drop off the templates. Furthermore, shorter cDNA are 

easier to be loaded into the sequencing well than the longer ones in practice. 

Therefore, unlike Illumina RNA-Seq, it is challenging for PacBio to sequence 

all transcripts at the same efficiency. In order to identify as many different 

transcripts as possible, we separate cDNAs into several groups according to 

their length so that the bias of length is reduced. We size-selected cDNAs on 

electrophoresis gel in the following four ranges: 0.3~1k, 1~2k, 2~3k and >=3k 

bps and sequenced them in parallel. 

 

3.2.3 Error correction 

In order to make direct usage of PacBio long reads, random errors introduced 

during the sequencing should be minimized to the extent below the thresholds 

as required in specific applications. For example, in the gap closure step in 

genome assembly, the error rate should be less than 5% where the PacBio 

long reads are used as scaffolds to bridge the assembled contigs [59].  

 

There are currently two major computational approaches for error correction. 

The PacBio-alone method exploits the rolling-cycle amplification nature of the 

PacBio sequencing to reduce the randomly distributed errors. By generating 
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short DNA libraries (~400nt as recommended by the manufacturer), PacBio 

reads the DNA molecule back and forth several times during sequencing. 

Computing multiple sequence alignments between passes (the sequence 

between two adjacent SMRTbell adapters) followed by consensus calling 

could drastically reduce the error rate. This method is implemented in HGAP, 

and has been proved useful for bacterial genome assembly [56]. However, 

the performance relies on the number of passes. In this sense, the advantage 

on exceptional long reads sequencing is traded for higher accuracy.  

 

The other approach that keeps the long reads advantage reduces the 

sequencing errors by using additional information as implemented in 

PacBioToCA [59], LSC [60] and LoRDEC [61]. These methods take 

advantage of the much higher quality and depth of the RNA-Seq reads. By 

aligning the short reads (from RNA-Seq, such as Illumina) to long reads (from 

PacBio), high quality local alignments can be made and then piled up to vote 

for a consensus. PacBioToCA is both slow and resource demanding due to 

the fact that it uses a modified version of blast for alignment and generates 

all-to-all alignments. LSC, as one of the tools dedicated to PacBio error 

correction, compresses the homopolymers before the alignment of short to 

long reads, based on the observation that most of the errors in PacBio is 

insertions and deletions. If an indel takes place within a homopolymers, LSC 

can easily spot it and correct it. However, if it happens on a nucleotide outside 

of homopolymer, or the indel is of several different nucleotides 

(heteropolymers), the region might not be corrected due to the difficulty in the 

alignment. LoRDEC builds a de bruijn graph using short reads first, then finds 

all possible paths that best support the long reads, finally reports the best path 

corresponding to the correct sequence. LoRDEC is much faster than 

PacBioToCA, but is still slow when dealing with complex transcriptomes. 

Therefore, none of these present tools could meet the demand of efficient 

error correction for PacBio sequencing on higher eukaryotes. 

 

Here, we present a prototype of error correction pipeline named iPEC 
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(acronym “Illumina Pacbio Error Correction”). IPEC follows one very 

straightforward strategy: erroneous bases can only be corrected if they are 

covered by high quality alignments. The length of alignment is the most 

important determinant of the alignment quality. The long PacBio reads can be 

viewed as concatenations of good regions and bad regions, where the good 

ones have low error rates (<= 2% that can be tolerated by most aligners) and 

the bad ones bear higher error rates. The good regions can be locally aligned 

with short reads, supported by tools such as Bowtie and BWA. Because of the 

ambiguity of the borders between good and bad regions, alignments to the 

good region often cover part of the adjacent bad regions. Consolidations of 

the local alignments can correct not only the errors in the good regions, but 

also those belonged to the bad ones, thereby effectively shrinks the size of 

bad regions. Iteratively doing so could expand the good region to the whole 

long read. The rational behind this iterative correction is that, through prior 

rounds of correction, the error-free regions are expanded so that they can 

serve as longer seeds for subsequent alignment, in which the neighboring 

erroneous regions can be covered and thus be corrected. IPEC aligns all 

short reads (from Illumina) directly to long reads (from PacBio) and then retain 

only the local alignments of upper-quartile scores. The alignments are piled 

up to vote for consensus sequences. These consensus sequences, whose 

error-free regions are extended, are subjected to further rounds of correction. 

This iterative correction halts when either every base of the long read is 

covered or no more base covering could be made.  

 

3.2.4 Transcript clustering 

With long reads of improved quality, one can directly characterize transcripts. 

Instead of depending on likelihood inference, as done in the past decade on 

short-read sequencing data, now we can identify full-length transcripts by 

simply sorting and clustering the processed PacBio long reads. There are in 

general two approaches: genome-guided clustering and de novo clustering. 

De novo transcriptome clustering is the preferred option when there are no 

available genome reference sequences or the existing reference sequences 
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are of impoverished quality. The first step of de novo clustering is the 

assignment of the long reads into groups, where each group should 

corresponds to one gene locus or one gene family. This can be achieved by 

either performing an all-to-all alignment of long reads or using the short reads 

alignment information learnt from the error correction. It is advisable to do all-

to-all mapping when the number of long reads is relatively small, otherwise, 

the memory consumption and the run time would be too much to be practically 

feasible. Pairwise alignments exceeding minimum thresholds of length and 

score are selected, and a greedy algorithm can be used to separate reads 

into groups. On the other hand, existing alignment between short reads and 

long reads (intermediate products of the error correction step) can be used to 

infer the grouping of the long reads. One long read can be represented by a 

set of non-redundant aligned short reads. Two long reads are classified to the 

same group if the overlap between their representative short reads is large 

enough and larger than all overlaps with other groups using a greedy 

algorithm. Noticeably, it is crucial to use the alignment of non-redundant short 

reads here, otherwise the results could be wrong due to the over-counting of 

the same sequences.  

 

The second step of de novo clustering is to extract representative reads from 

the multiple sequence alignments within each group. To prepare for multiple 

sequence alignments, all reads from the same group should be checked for 

strandedness using the poly(A) tail or the stranded RNA-Seq information. 

Reads should be reverse-complemented if they are not of the sense strand. 

Highly similar reads were not reported if there were no difference in the 

internal sequence and the tandem difference at the 5’ or 3’ end was less than 

an arbitrary threshold such as 50 nt. External evidence such as the 3P-Seq 

for the exact 3’ end or CAGE data for the 5’ exact end can be added into this 

step in order to get a comprehensive and reasonable transcript sets. 

 

Alternatively, genome-guided transcript clustering would be a better choice 

when the available genome reference sequences are of decent quality, 
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because of the simple fact that pairwise alignment is much easier to compute 

than multiple sequence alignments. Corrected long reads are aligned to the 

genome using splice-aware aligners, such as GMAP [62], and both the 

genomic coordinates and the exon structures are determined. Long reads are 

simultaneously separated into stranded, non-overlapping groups 

corresponding to gene loci. Identification of representative reads within each 

group can be done using either of the two following notions: intron notion or 

exon notion. In the intron notion, two reads represent two different isoforms if 

there is a different intron (marked by a pair of splicing junction sites). All 

alternative splicing events, including different 5’ or 3’ usage of internal exons, 

exon skipping and intron retention, are easily reflected on the set of splicing 

junctions one read contains. However, additional information must be taken 

into account to distinguish isoforms where tandem first exon (from alternative 

promoters) or last exon (alternative PAS) is used. On the contrary, exon 

notion does not have this problem, as both 5’ and 3’ of every single exon of 

each read are recorded. Reads with different sets of exon boundaries 

naturally represents different isoforms, although downstream analysis of 

alternative splicing would be less intuitive than using the intron notion. In 

either of these two notions, a read can be viewed as an ordered binary string 

of all possible coordinate pairs (junctions in intron notion or exon boundaries 

in exon notion) within the gene locus. After assigning the read with the highest 

number of non-zero elements in its string representation as the first isoform, a 

greedy algorithm can assign the new coming read either to a new isoform, or 

to one of the existing isoforms where all the elements are continuously 

matched. Special care is necessary for the terminal exons, where a minimum 

difference threshold should be set to report reasonable results. According to 

the study of alternative polyadenylation using 3P-Seq [63], the minimal 

distance between two adjacent PASs is about 50nt. It is reasonable to argue 

that a difference larger than 50nt in either 5’ site of the first exon or 3’ site of 

the last exon originated from different transcription events, and therefore they 

should be treated as two different isoforms. 
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3.3 Application on drosophila Dscam gene 

3.3.1 Fly Dscam gene has 38016 isoforms 
The Dscam gene (Down syndrome cell adhesion molecule) encodes a family 

of transmembrane proteins that play profound roles in both neuronal 

patterning and pathogen recognition. In human, the gene locates in the Down 

Syndrome critical region of chromosome 21 [64] and its over-expression 

contributes to the physiological defects in Down Syndrome [65]. Whilst the 

human copy of Dscam encodes only three transcript isoforms, its homolog in 

Drosophila melanogaster (fruit fly) could theoretically encode a maximum of 

38,016 isoforms. The isoform diversity of the Dscam gene locus is huge, 

bearing in mind that there are merely 17,321 genes in the entire fly genome 

(Flybase version 6.02). As shown in Figure 3.2, out of 115 exons contained in 

the Dscam gene locus, 20 are constitutive, and the rest 95 are separated into 

the following four clusters. Twelve variable exons make up exon cluster-4, 48 

for cluster-6, 33 for cluster-9 and 2 for cluster-17. Exon cluster 4, 6, and 9 

encode three ectodomains (immunoglobulin domains with specific binding 

capacity) and cluster 17 encodes a transmembrane domain. Assuming a 

mutually exclusive splicing pattern within the ectodomains, every isoform 

contains only one of the variable exons from each exon clusters, leading to a 

combination of 19,008 different ectodomains. Furthermore, exon skipping can 

contribute to at least four additional isoforms [66]. Chemoaffinity experiment 

demonstrated that the identities of the ectodomains are crucial for neuronal 

self-recognition, as each isoform binds to itself but only rarely to other 

isoforms [67]. Genetic experiments have shown the importance of maintaining 

a sufficient number of isoforms for synaptogenesis and neuronal guidance 

[68].  

 
Figure 3. 2 Structure of Dscam gene. Each vertical bar represents one of the 115 

exons, with color grey represent constitutive exons; and color red, yellow, green and 

blue for exon-4, exon-6, exon-9 and exon-17 respectively. 

1 12 1 48 1 1233

Exon4 Exon6 Exon9 Exon17
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The full configuration of Dscam splicing pattern has been under scrutiny since 

2001. Single-strand conformation polymorphism followed by Sanger 

sequencing [69] and customized microarray [70] were employed to study the 

single exon usage. However, the major limitation is that the usage of exon4, 6 

and 9 cannot be measured simultaneously. Instead, the abundance of each 

isoform was inferred based on the assumption that the alternative splicing 

occurs independently at each exon cluster. As a result, the conclusion of 

“stochastic yet biased expression of Dscam splice variants” [70] is merely a 

reflection of this assumption. Microarray can be substituted by standard short-

read NGS, but again, the sequencing length of NGS is not long enough to 

identify the combination of exon4, exon6 and exon9. To address the issue in 

an unbiased manner, we developed two methods characteristic of full-length, 

high-throughput profiling of massive Dscam splicing variants. 

 

3.3.2 Direct sequencing of Dscam ectodomains using PacBio 
The long read length feature of PacBio technology enables direct sequencing 

of the variable ectodomain part of Dscam cDNA, as the sequence from exon4 

to exon9 is about 2 kb in length. The cDNA product, hereafter referred to as 

2kb-cDNA, can be generated as illustrated in Figure 3.3 and directly 

sequenced using PacBio RS system.  

 
Figure 3. 3 PacBio sequencing of Dscam ectodomain. The scaled Dscam mRNA is 

depicted at the top, omitting the poly(A) tail to the right. The 2kb-cDNA is generated 

Random RT

 Gene specific PCR 

 2kb-cDNA

mRNA
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by random primed reverse transcription followed by gene specific PCR, the primers 

of which targets exon3 and exon10. 

 

The PacBio reads can be aligned to reference sequences to identify the 

combinations of the alternative exons in cluster 4, 6, and 9. As the minimum 

sequence difference among the exons from the same exon clusters is 18%, a 

read could only be confidently assigned to its true origin if the error rate is less 

than 9%. For example, assume Read-1 is actually originated from Isoform-1 

with an error rate of 15% and there exists an Isoform-2 with an error rate of 

20% compared to Isoform-1. After aligning Read-1 to all 19,008 possible 

isoforms, we found the error rate is 15% between Read-1 and Isoform-1 but 

only 10% between Read-1 and Isoform-2. Therefore Read-1 could be 

erroneously assigned to Isoform-2. CCS (circular consensus) reads satisfy the 

requirement on error rate (median of 2.7%) whilst the raw reads do not 

(median error rate of 11%). To compensate for the loss of non-CCS reads, we 

performed 10 PacBio sequencing runs for the S2 cell culture. The CCS reads 

were aligned to Dscam exon references using BLAT with a very sensitive 

parameter setting (tileSize = 8; stepSize = 5; oneOff = 1; minScore = 20; 

minIdentity = 70). After the alignment, high quality reads were selected using 

the following criteria: 1. Exon4, exon6 and exon9 can all be unambiguously 

identified; 2. Each exon (from exon3 to exon10) appears at most once and 

their order in the read is the same as that in the Refseq mRNA.  

 

A total of 137,676 high-quality PacBio reads support 4,666 isoforms in S2 

cells. The dynamic range of the abundance of the isoforms spans over three 

orders of magnitudes, where top 100 isoforms accounts for 25% of all reads. 

Some alternative exons were used more frequently than others. For example, 

more than half of the isoforms contain exon9.6, which is consistent with early 

single-exon studies [68]. Now, the hypothesis of the independent splicing 

choice among exon clusters can be tested by comparing the observed 

frequency to the expected frequency. Noticeably, a great advantage of the 

PacBio technology applied here over both array-based and standard NGS 
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technologies is that PacBio technology strictly renders uniform coverage 

along transcripts, which is an important yet often violated assumption for the 

other technologies. Assuming independent splicing choice among exon 

clusters, the expected frequency of one particular isoform can be calculated 

as the product of the expected frequencies of its exon4, 6 and 9. As shown in 

Figure 3.4, the independent hypothesis is strongly supported by the fact that 

the variance in expected frequency can explain 83% of the variance in the 

observed frequency (p-value < 2.2E-16 in a paired Pearson correlation test).  

 
Figure 3. 4 PacBio sequencing supports independent splicing model. Each circle 

represents one Dscam ectodomain isoform. The value on X-axis marks the observed 

isoform frequency from PacBio sequencing data, and the value on Y-axis marks the 

expected frequency assuming independent splicing model. The grey line marks the 

diagonal, and the linear regression results are shown in the bottom-right corner. 

 

3.3.3 Fly Dscam isoforms do not respond to immune challenge 
As one of the proposed functions of Dscam being pattern recognition receptor 

in the immune system, Dscam was shown to be upregulated and its isoforms 
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were differentially expressed upon exposure to parasites [71]. Loss of Dscam 

resulted in the deficiency of uptake of pathogenic bacteria [72]. However, 

there is little evidence that the specificity of Dscam isoforms contribute to the 

immune response. We therefore repeated the study in order to measure the 

possible differential isoform regulation upon immune challenge. Here, adult 

flies were exposed to E. coli for 18 hrs and showed immune activation, since 

the gene expression of antibacterial peptide (AMP) was elevated, serving as a 

molecular marker for immune activation. However the expression of Dscam 

remained largely unchanged (Figure 3.5 A). Similar phenomena were also 

observed on S2 cells treated with E. coli for 12 or 18 hrs (Figure 3.5 B). Then 

what about the relative representation of each individual isoforms? With more 

than 30,000 sequencing reads per sample, a total of 3,885 different isoforms 

can be detected. As shown in Fig 3.5 C, there was no significant difference 

between the control and the treated samples. Admittedly, the sequencing 

depth is too low to capture all isoforms, however, it is still sufficient to test 

whether the isoform distribution changed between the control and treated 

groups. Therefore, we concluded that the stimulation of E. coli in flies did not 

lead to elevated Dscam gene expression or a detectable change in 

alternatively spliced exons or isoforms. 

 
Figure 3. 5 Dscam isoforms do not respond to immune challenges. (A) At 18 hours 

after challenging with E. coli to living flies, Diptericin increased drastically, whilst 

Drosomycin and Dscam remained largely unchanged. Biological replicates n=2, each 

with 20 flies. (B) At 12 and 18 hours after challenging with E. coli to S2 cells, both 



38 

Diptericin and Drosomycin increased substantially, whilst Dscam remained 

unchanged. Biological replicates n=3. Error bar denotes standard error. (C) Pairwise 

comparison of Dscam isoform abundances between control (12hr), treated (12hr), 

control (18hr) and treated (18hr) in the left-lower parts. Pearson correlation 

coefficients are shown on the right-upper parts. 

 

3.3.4 Discussion 

Direct identification of the Dscam ectodomains by PacBio sequencing 

demonstrated that, as proof of principle, the splicing choice between 

alternative exon clusters is largely independent. However, the sequencing 

depth was not enough to profile all isoforms, detecting less than 25% of 

19,008 possibilities. The limitation mostly came from the relative high cost of 

current PacBio technology. To quantify Dscam isoforms more precisely, we 

then developed a highly cost-effective customized method, namely CAMSeq 

(Circularization Assisted Multi-Segment Sequencing), which sequences 

exon4, 6 and 9 simultaneously using Illumina GAII. Unlike direct sequencing 

using PacBio, CAMSeq is indirect in the sense that it requires manipulation of 

cDNA (circularization) before sequencing, which could introduce noise such 

as intermolecular chimeras (at an average rate of 0.97% estimated by the 

embedded barcode system). However, CAMSeq is tailor-designed for Dscam 

gene locus that focusing only on the combination of the three mutually 

exclusive exon clusters and therefore not suitable for genome-wide transcript 

profiling. On the contrary, with the capability of rendering much longer read 

length, PacBio is the promising technology that allows a genome-wide full-

length transcriptome profiling. 

 

3.4 Application on rat transcriptome 

3.4.1 Introduction 

As a pilot task in a still on-going project on gene regulation in brain using rat 

as a model organism, we would like to first improve the transcriptome 

annotation using sequencing data. The current rat annotation is in such an 
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impoverished status that often the exon sequences registered in the RefSeq 

annotation do not agree with the genome reference. It is shown that there are 

over 2500 mRNA species in the dendrites [73], serving as a potent RNA 

transcript pool poised to maintain philological synaptic functions and respond 

to stimuli. Although this rich dataset is already a great step forward since the 

discovery of dendritic local translation [74], detailed functional analysis of the 

majority of those 2500 mRNAs is hindered by the lack of knowledge of the 

exact sequences and isoform variants. It has been reported that different 

isoforms originated from the same gene locus can exert diverse or even 

counteractive functions [11]. Alternative splicing could lead to inclusion or 

exclusion of functional domain(s) of a transcript and therefore alter its 

functions [75]; alternative use of poly-adenylation sites could lead to inclusion 

or exclusion or regulatory elements in the 3’ UTR and thus alter the sub-

cellular localization, translational efficiency and turnover efficiency of the 

transcript [76].  

 

Since PacBio technology allows capturing RNA transcripts in their full-length, 

assembly of transcriptome is no longer needed (see discussion of Chapter 2). 

However, there are two challenges that come with the PacBio sequencing 

technology: low throughput and high error rate. Therefore we developed a 

customized analysis pipeline that reports high quality transcripts in full- or 

near full-length (Figure 3.6). First, we addressed the low throughput limitation 

by optimization of transcript representation in the sequencing library. By 

efficient normalization of cDNA library and separate processing of cDNA with 

different size ranges, we are able to detect as many different transcripts as 

possible at a given sequencing budget. Second, to reduce the sequence 

errors, we resort to the Illumina sequencing featured with high throughput and 

high accuracy. Using the Illumina reads derived from the same RNA samples, 

we can correct most of the random errors introduced in the PacBio 

sequencing. Together, we developed a computational pipeline named iPEC 

(Illumina to PacBio Error Correction), the workflow of which is shown in Figure 

3.6. 
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Figure 3. 6 Workflow of hybrid sequencing and iPEC 

 

3.4.2 Sequencing results 

Using PacBio technology, we sequenced full-length cDNA libraries of four 

different size ranges obtained from the hippocampus CA1 region of rat brains. 

We obtained in total 4 million long reads from 95 sequencing runs (Table 3.2). 

The sequencing length of cDNA libraries match with the intended size ranges 

(Figure 3.7). The distribution of length of polymerase extension is similar for 

all sequencing libraries (Figure 3.7), indicating that the sequencing procedure 

is not biased to libraries at any particular length.  
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Figure 3. 7 Summary of PacBio sequencing length. (A) The distribution of the size of 

cDNA of four libraries, with the major peak centered in the range corresponding to 

the selection size. The left-shoulder on the profiles of the longer libraries, especially 

for the longest library (red curve), can be explained by the leftover of the shorter 

cDNA resulted from an imperfect size selection. (B) The robustness and the capacity 

of PacBio technology, with over half of the polymerase extension beyond 5 kb. 

 

After aligning the PacBio reads to rat RefSeq gene annotation, 71% (13,090 

out of 18,436) of the RefSeq genes could be detected, which is similar to most 

current RNA-Seq studies [5]. Based on the independent Illumina sequencing 

results, the abundance of those gene loci spans seven orders of magnitudes 

(Figure 3.8). In contrast, their representation in PacBio sequencing results 

spans only four magnitudes (Figure 3.8). The three-fold reduction of global 

dynamic range demonstrated that our approach of cDNA normalization and 

size fractionation could efficiently address the low-throughput issue. 
Libraries <= 1kb 1~2 kb 2~3 kb >= 3 kb Total 

No. of sequencing run 23 21 20 31 95 
No. of reads 568,636 777,440 1,034,557 1,694,533 4,075,166 

No. of Refseq genes (partial) 9,961 10,923 11,453 11,706 13,090 
No. of Refseq genes (3’ 

complete) 
8,684 9,616 10,450 10,876 12,298 

No. of Refseq genes (FL) 1,091 3,712 5,558 6,253 7,283 

Table 3. 2 PacBio sequencing statistics of rat hippocampus 
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Figure 3. 8 Normalization of PacBio library. (A) The histogram of the dynamic range 

measured by RNA-Seq. (B) The histogram of the dynamic range of the normalized 

cDNA library measured by PacBio. (C) The normalization effect for each gene (grey 

dot), with the average effect shown in red (LOWESS curve) 

 

Then we went on to estimate the extent to which the Refseq genes can be 

recovered in terms of 5’ and 3’ completeness. From the 13,090 Refseq gene 

loci that were at least partially covered by the PacBio reads, 10,876 genes 

could be recovered when requiring their 3’ termini are covered. This number 

appeared to be counter-intuitively low since the cDNA was generated from the 

3’ ends (poly(A) tail) of the transcripts and therefore should, in theory, cover 

all the 3’ ends. However, the incomplete generation of cDNA and/or the 

sequencing limit could lead to sequencing reads corresponding to partial 

transcripts, especially for long transcripts. Moreover, this could also be 

explained by the impoverished RefSeq annotation in rat. RefSeq tends to 

annotate the most abundant or longest isoform of a gene locus, neglecting 

isoforms with shortened 3’ UTR that would otherwise appear to be 3’ 

incomplete.  

 

More stringently, 6,253 genes could be recovered in their full length, from 5’ 

end to 3’ end. Following the same argument as above, this number is likely 

also underestimated. Two factors could influence the transcript recovery. The 

first one is the length of the transcripts, since longer transcripts are obviously 

more difficult to be converted to full-length cDNA and subsequently be 
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sequenced in full-length. Refseq transcripts longer than 5 kb are rarely 

represented as “full-length” in our PacBio sequencing result, whilst the 

majority of the transcripts that is shorter than 1kb could be identified end-to-

end (Figure 3.9 A). The second factor affecting the transcript recovery is the 

abundance of transcripts. After considering all transcripts that are shorter than 

5 kb in length, it appears that it is less likely for lowly abundant transcripts to 

be sequenced in an end-to-end manner compared to the highly abundant 

ones (Figure 3.9 B). For the most highly expressed genes, more than 95% of 

them were at least partially covered, 90% were sequenced with complete 3’ 

ends and 65% were sequenced in full-length.  

 
Figure 3. 9 PacBio sequencing covers most of RefSeq genes. (A) The effect of 

transcript length on gene recovery. Refseq genes are grouped by length (on X-axis), 

and the height of each colored bar (drawn from 0 on Y-axis) denotes the number of 

RefSeq transcripts identified according to different criteria, as shown in the inset. (B) 

The effect of transcript abundance on gene recovery. RefSeq genes are grouped by 

abundance (RPKM, on X-axis), and it shows the percentage of the genes (on Y-axis) 

that can be identified according to different criteria, as shown in the inset. 

 

3.4.3 Error correction removed 95% of the sequencing errors 

After applying IPEC to our PacBio reads, the error rate is drastically reduced 

from 11.5% down to 0.25% (Figure 3.10 A). Moreover, there are over 10 

thousand additional reads that could be aligned to the rat genome references 

only after error correction. The major issue affecting the iPEC performance is 
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the coverage of the corresponding transcripts in the Illumina sequencing 

dataset. This is evident when we compare the sequence accuracy for 

transcripts of different abundance before and after error correction. The 

accuracy of the raw PacBio reads is quite equal (around 88%) for transcripts 

with different abundance, however, the accuracy of the iPEC corrected reads 

for highly abundant transcripts increased significantly more than that for the 

lowly abundant ones (Figure 3.10 B). For rare transcripts (RPKM < 1, 

corresponding to roughly one molecule per cell), iPEC cannot improve the 

sequence accuracy due to the lack of high-quality Illumina reads. 

 
Figure 3. 10 Performance of iPEC. (A) The histogram of sequence accuracy that can 

be aligned to genome before (blue) and after (red) error correction. (B) For 

transcripts belonging to different expression bin (X-axis), the accuracy (Y-axis) is 

shown for raw reads (grey) and corrected reads (red). Whiskers show extreme data 

points no more than 1.5 times the interquartile range. 

 

3.4.4 Transcriptome landscape of rat CA1 hippocampus 
After evaluating the performance of our pipeline on transcript recovery and 

error correction, we sought to characterize the landscape of transcript 

isoforms in the CA1 region of rat hippocampus. To be sure to report full-length 

transcripts, we used only full-pass reads which are characterized by having 

Clontech SMART PCR primer sequences at both ends and containing a 

stretch of poly(A) or poly(T) on one end according to PacBio sequencing 

strategy. There are about 1.1 million full-pass reads combining all SMRT 
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libraries, and as expected, the percentage of the full-pass reads dropped with 

increasing size range (Table 3.3). More than 60% of the sequences could be 

recognized as full-length transcripts (as full-pass) from cDNA libraries shorter 

than 1 kb, the percentage dropped below 15% for reads from cDNA libraries 

longer than 3 kb. The low percentage of full-pass read is the bottom-neck of 

our non-assembly transcriptome profiling and should be alleviated with the 

improvement of both cDNA generation protocol and sequencing technology. 

As depicted in Figure 3.11, it is unlike to identify transcripts longer than 5kb 

solely on the current dataset and without probability based end extension. 
Libraries <= 1kb 1~2 kb 2~3 kb >= 3 kb Total 

No. of sequencing run 23 21 20 31 95 
No. of reads 568636 777440 1034557 1694533 4075166 

No. of full-pass reads 358016 230111 279336 296698 1164161 
Percentage of full-pass 

reads (%) 
62.96 29.60 27.00 17.51 28.57 

Table 3. 3 Summary of PacBio full-pass reads 

 
Figure 3. 11 Length distribution of PacBio full-pass reads. Few full-pass reads are of 

length longer than 5000 nt. The three peaks at around 300, 1000 and 2000 nt are 

likely artifacts resulting from the size selection step. 

 

Since several full-pass reads could potentially correspond to the same RNA 
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transcript, sequence similarity can be used to deduce a representative set of 

references via transcript clustering. Transcript clustering, in brief, selects a 

minimal set of the distinct sequences that could represent all full-pass reads. 

The longer sequence is selected from the two if the shorter one is a substring 

of the longer one, and the only difference between them is at the 5’ end, 

considering the potential falloff of reverse transcriptase towards 5’ end of 

transcripts. After transcript clustering, we obtained 74 thousand transcripts 

derived from 12 thousand gene loci. The full-pass transcript set is of length 

distribution similar to that of the annotated gene in mouse, although 

transcripts longer than 5000 nt were under-represented (Figure 3.12). 

 

 
Figure 3. 12 Length distribution of iPEC transcripts. (A) The histogram of the length 

distribution of iPEC transcripts. (B) The histogram of the length distribution of 

expressed RefSeq transcripts (grey) and those with supporting full-length iPEC 

transcripts (purple). For RefSeq transcripts longer than 5k nt, few full-length iPEC 

transcripts were identified. 

 

Out of 74,011 iPEC transcripts, only 10,774 were annotated “as is” in the 

RefSeq database and the rest are different transcript isoforms of the known 

gene loci or novel gene loci (Figure.3.13 A). The lack of transcript isoform 

diversity is not restricted to RefSeq annotation in rat. Most of the rat gene loci 

are annotated in both RefSeq and Ensembl with only one transcript isoform, 

whilst the majority of iPEC transcripts and mouse Ensembl gene loci have 
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multiple isoforms (Figure 3.13 B). The iPEC transcripts greatly enrich the 

complexity of existing gene annotation in rat.  

 

 
Figure 3. 13 Annotation of iPEC transcripts. (A) The annotation pie chart of iPEC 

transcripts. The proportion of iPEC transcripts identical to RefSeq transcripts is 

shown in red, transcript from novel loci in blue, transcript with novel splicing events in 

green, transcripts with novel alternative poly-adenylation sites (PAS) in purple, and 

transcript with combinations of splicing events different from RefSeq transcripts in 

orange. (B) Cumulative distribution of the number of isoforms per gene locus is 

shown for iPEC transcript (red dots), RefSeq annotation in rat (green dots), Ensembl 

annotation in rat (blue dots) and Ensembl annotation in mouse (blue triangles). The 

complexity of iPEC transcripts identified here from one type of tissue (brain) is even 

higher than that of mouse Ensembl annotation that contains several of tissue types 

and developmental stages. 

 

3.5 Discussion 
The past decade witnesses the increasing understanding towards the 

complex transcriptome landscape, which has revolutionized many views of 

molecular biology, including the “one gene-one enzyme” hypothesis. Now we 

know that over 95% of human multiexon genes have multiple transcript 

isoforms that are of potentially diverse functions [25]. As a proxy of human 

biology, we would expect no less in transcriptome complexity in mouse [77] or 
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rat or many other potential organisms. There are many studies focusing on 

several areas of transcriptome, from alternative splicing (AS) [25], alternative 

transcription start site (aTSS) [78] and alternative poly-adenylation site (aPAS) 

[76] to RNA secondary structure [79] and RNA-editing [31]. However, not 

much is known on the full-length transcriptome profile, where the 

aforementioned processing events are linked together and with resolution at 

single molecule level. In fact, many concurrent studies start out with over-

simplified situations. For example, in the studies of genome-wide post-

transcriptional regulation mediated by miRNAs, the miRNA binding sites 

analyzed are almost always restricted to the 3’ UTR of RefSeq genes [80]. 

RefSeq gene contains the least number of transcript isoforms comparing to all 

other gene annotations, especially when considering the diversity of 3’ UTR. 

Therefore studying genome-wide miRNA-mRNA interaction based on a more 

comprehensive set of full-length would render better results. 

 

Here we demonstrate that PacBio technology can be used to characterize full-

length transcripts. The experimentally determined full-length transcripts can 

not only greatly improve the transcriptome annotation, but also directly shed 

light on the interactions of the mechanisms of various RNA processing events. 

As an example, we confirmed the independent splicing choice of the 

ectodomains of Dscam gene, which underwent extensive debates in the past 

ten years. More importantly, we developed a computational framework that 

reports high-quality transcript references of the sample of interest with or 

without the reference genome. It would be useful to identify molecular markers 

for clinical diagnosis, especially in the cases of cancer, where the genomic 

sequences could be very different from the reference. Unbiased identification 

the global profile of transcriptome landscape, including the aberrant ones [81] 

will help us to learn more about the underlying mechanisms of various 

physiological or pathological processes from embryonic development to 

cancer, which will in turn lead us towards better diagnosis and potential 

treatment as true precision medicine. 
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Chapter 4 

De novo pre-microRNA identification 
 

4.1 Introduction 
MicroRNAs constitute an important class of small non-coding RNAs that 

regulate gene expression at the post-transcriptional level through sequence-

specific base pairing. Most miRNA genes are transcribed by the RNA 

polymerase II to generate primary miRNA (pri-miRNA) transcripts. 

Alternatively, pre-miRNAs can be generated from debranched short introns 

with hairpin-forming potential (mirtron) by the spliceosome complex, or can be 

derived from other non-coding RNAs such as snoRNAs. After being 

transported into the cytoplasm by the exportin-5 complex, pre-miRNAs are 

further processed by an enzyme named Dicer into double stranded mature 

miRNA duplexes (miRNA-5p:miRNA-3p, or historically miRNA:miRNA*), one 

strand of which is preferentially incorporated into the RNA-induced silencing 

complex (RISC)  and bind to the target mRNAs. In mammals, at least 1/3 of 

protein-coding genes are thought to be under miRNA regulation [82]. 

 

Sanger sequencing was first used to identify miRNA genes [18]. It does not 

allow a global profiling of miRNAs since it is both biased (towards the highly 

abundant ones) and resource prohibitive. With the introduction of RNA-Seq 

technology, the detection sensitivity has been dramatically improved. Using 

sequencing data, currently a total of 28,645 miRNAs from 223 organisms 

have been registered and annotated in a database named miRBase [83]. 

 

In contrast to the analysis of mature miRNAs, attempts to systematically 

characterize pre-miRNAs are limited, despite more functional and regulatory 

information can be learned from the latter. The precise sequences of most, if 

not all, pre-miRNA sequences are not determined by experiments. Instead, 

they are often inferred from the sequences of the corresponding mature 
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miRNA pair, therefore ambiguity could arise if one of the pair was not 

identified. To date, the expression patterns of known pre-miRNAs are 

analyzed by using northern blot, in situ hybridization and qPCR. Again due to 

the laborious procedure, such experiments are seldom done at the global 

level.  

 

In order to gain a deeper understanding of mammalian miRNAs, we 

sequenced in parallel miRNAs and pre-miRNAs derived from ten different 

tissues of adult mice. We developed a computational pipeline, miRGrep 

(miRNA Genome Reference free Prediction, available at 

https://github.com/arthuryxt/miRGrep), to search for genuine miRNA genes 

solely based on sequencing datasets, without using genomic sequences. 

Using miRGrep, 239 known mouse pre-miRNAs could be recovered and 41 

novel ones were predicted with high confidence. Similar to the well-studied 

miRNAs, the mature miRNAs derived from most of these novel loci showed 

reduced abundance following Dicer knockdown. Moreover, Argonaute2 

immunoprecipitation (Ago2 IP) experiment confirmed that novel miRNAs could 

bind to Ago2/RISC complex, strongly indicating their functional roles as 

miRNAs. Evaluation on another dataset obtained from C. elegans 

demonstrated that miRGrep could be widely used for miRNA discovery in 

metazoans, especially in the absence of a reference genome. Moreover, we 

observed several new aspects of processing and modification of mouse 

miRNAs, including Ago2 cleaved pre-miRNAs, new editing events and 

exclusively 5' tailed mirtrons. These new insights are not only valuable to a 

better understanding of miRNA biology but also might serve as diagnostic 

biomarker of various diseases. 

 

4.2 Methods 

4.2.1 Small RNA sequencing protocols 

Small RNA sequencing libraries (10-40nt fraction and 50-100nt fraction) were 

prepared using Illumina small RNA library preparation kits. Note, for 50-100nt 



51 

fraction RNAs, the denaturation temperature is elevated to 98°C in order to 

disrupt the hairpin structure of the pre-miRNAs. Small RNA (10-40nt fraction) 

libraries were sequenced for 36 cycles using Illumina GAIIx. Ago2 IP RNA 

library was sequenced for 50 cycles using Illumina HiSeq2000. Normalized 

small RNA (50-100nt) libraries were sequenced for 100 cycles using Illumina 

HiSeq2000. 

 

4.2.2 Normalization of sequencing library 

The small RNA (50-100nt fraction) sequencing library was normalized by 

using Duplex specific Nuclease (DSN, Evrogen) per manufacturer’s 

instructions (as in Chapter 2).  

 

4.2.3 Small RNA sequencing reads mapping 

First, 3’ adapter sequences were removed from the sequencing reads using a 

custom Perl script. The reads of length between 17 and 30 nt from small RNA 

10-40 nt fraction were retained. The reads from mouse and C. elegans 

samples were mapped to genome reference sequences (UCSC genome 

browser mm9 and ce6) and known pre-miRNA sequences deposited in 

miRBase (mouse and C. elegans, version 16.0) (http://www.mirbase.org/) [83] 

without allowing any mismatch using soap1 and soap.short [84], respectively. 

To be considered as a known miRNA, the 5’ and 3’ ends of a sequencing read 

should be within 1nt and 3nt from the 5’ and 3’ ends of the miRNA annotated 

in miRBase, respectively. For the small RNA 50-100nt fraction, the 

sequencing reads of length between 40 and 94 nt were aligned to genome 

reference sequences (UCSC genome browser mm9 and ce6) allowing 2 

mismatches using soap2 [85]. To determine the mouse reads derived from 

full-length pre-miRNAs, we mapped the first 40nt to the mouse pre-miRNA 

sequences deposited in miRBase allowing 2 mismatches using soap2 and 

then further extended the alignment to the 3’ end. The 5’ and 3’ ends of 

mouse pre-miRNAs in miRBase were manually annotated based on the 

secondary structure if one of the miRNA pair is not identified. Reads regarded 
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as full-length pre-miRNAs should satisfy the following criteria:  
1) The 5’ and 3’ end of the alignment were within 2 and 5 nt from 5’ and 

3’ end of the pre-miRNA, respectively; considering alternative processing 

events on pre-miRNAs. 

2) No more than five mismatches were found in the alignment, 

considering higher error rates towards the end of long sequencing reads. 

 

4.2.4 Identification of Ago2-cleaved pre-miRNAs 

After aligning the sequencing reads of length between 40 and 94 nt on known 

mouse pre-miRNA sequences as above, we applied the following filters to 

extract the reads derived from potential ac-pre-miRNAs according to [86]:  
1) When aligning a read to pre-miRNA annotations, if one end of the read 

matches to one end of pre-miRNA, the other end of the read should be 9-

12 nt shorter than the annotation; 

2) The truncated part pair extensively to the other arm (at least 8 nt); 

3) No bulge is allowed within 4 nt from the potential cleavage site; 

4) Ac-pre-miRNA candidates should be supported by at least two reads. 

 

4.2.5 Identification of miRNA editing events 

To examine the mouse miRNA editing events, we mapped the non-genome-

mapping reads from mouse small RNA (10-40 nt) libraries to mouse reference 

miRNA sequences, allowing one mismatch. The uniquely mapped reads with 

one mismatch at least 1nt away from the 3’ or 5’ end of known miRNAs were 

retained. For each of the mismatches identified in these reads, we calculated 

the fraction of certain mismatch at one position as the number of reads 

bearing that mismatch divided by the number of all reads containing 

mismatches at the same position. We obtained a set of highly confident A-I 

(conversion from Adenosine to Inosine) editing sites by searching for A-G 

changes that could pass the following filters (modified from [31]):  
1) The fraction was higher than 90%; 

2) The change was found in at least 10 reads; 

3) The same change was found in at least one pre-miRNA read, and the 
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sequencing quality score of that base was higher than 30; 

4) The same change was not annotated as a SNP in dbSNP (build 128).  

Editing frequency was calculated as the number of reads containing the edited 

A-G change divided by the total number of reads mapped to the same miRNA. 

 

4.2.6 De novo prediction of pre-miRNAs 

In order to predict miRNAs based on the sequencing reads obtained from the 

two small RNA fractions corresponding to potential miRNAs and pre-miRNAs, 

we mapped the sequencing reads of length between 17 and 30 nt on the 

sequencing reads of length between 40 and 94 nt using soap.short without 

allowing any mismatch. We selected the 40-94nt (long) reads as potential pre-

miRNAs on which the mapping pattern of 17-30nt (short) reads was 

compatible with Dicer processing in the following four steps. 

 

Step-1. Define read clusters. 

On one long read, a cluster of mapped short reads is defined as a complete 

set of overlapping short reads while the maximal distance between the start 

position of any two reads within the cluster does not exceed 14nt, a length 

learned from known miRNAs. If the long and short reads were originated from 

genuine precursor and mature miRNAs, the short reads should form at most 

three clusters at the 5’ end, 3’ end and the middle of the long read, 

corresponding to the miRNA/miRNA* and the loop, respectively. Also, it is 

reasonable to expect that the 5’ and 3’ end clusters contain more short reads 

than the middle cluster, since the middle cluster correspond to the loop region 

of the hairpin structure and is fast degraded. Furthermore, given the length 

distribution of canonical mature miRNAs, the majority of short reads from 5’ 

and 3’ end clusters should be of length between 17 and 25nt, according to 

well-accepted size range of mature miRNAs. Therefore, based on these rules, 

long reads are discarded if they exhibit any of the following patterns: 
1) Number of clusters exceeded 3; 

2) The minimal distance between any two reads in different clusters is 

shorter than 5 nt; 
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3) The number of reads in the middle cluster exceeded that in the 5’ end 

and 3’ end cluster; 

4) Less than 66% of distinct/non-redundant short reads or less than 90% 

of all short reads from 5’ and 3’ end cluster were of length between 17 

and 25 nt.  

 

Step-2. Require Dicer compatibility. 

After filtering out the obvious non-Dicer compatible reads, we further selected 

the potential pre-miRNA reads. For each remaining long read, we first 

identified the most abundant distinct/non-redundant short reads from the 5’ 

and 3’ end clusters. The long reads were retained only if the most abundant 

short reads start or end less than 5nt away from the 5’ or 3’ end of the long 

read respectively. We then counted the number of short reads that start at 

most 1nt away from the 5’ end of the most abundant reads in the 5’ and 3’ end 

clusters. The term “Sharpness” denoted the percentage of these reads out of 

all short reads mapped on the same long read. Because most short reads that 

mapped to a genuine pre-miRNA should origin from the miRNA duplex, we 

selected long reads with a sharpness value above the threshold of 0.75 

(corresponding to 95% of known miRNAs). The selected reads were then 

clustered if: 
1) The most abundant distinct/non-redundant short reads mapped on 

their 5’ and 3’ clusters were identical; 

2) Their length differed less than 5 nt in length; 

3) Their sequence similarities were above 90%. One representative read 

with the highest abundance from each cluster was selected. 

 

Step-3. Predict 2nd structure 

We predicted the secondary structures of the selected long reads using 

RNAfold (parameters: -p –d 2 –noLP) [87] and randfold  (parameter: -d 199) 

[88], respectively. Only the long reads which could fold into unbifurcated 

hairpin structures were retained. 

 

Step-4. Estimate 2nd structure stability 
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The remaining long reads satisfying the following criteria were selected as 

potential pre-miRNA candidates. The values of the threshold correspond to 

95% of known miRNAs. The rest were used as “background” in the 

probabilistic scoring of potential pre-miRNA candidates. 
1) The randfold p-value was smaller than 0.2; 

2) More than 60% of the nucleotides in the “mature” part (the most 

abundant distinct/non-redundant short reads from 5’ or 3’ end clusters) 

were base paired. 

 

4.2.7 Probabilistic scoring of pre-miRNAs 

We scored the potential pre-miRNA candidates using a Naïve Bayesian 

classifier with six features: 

€ 

f1: Minimal folding free energy calculated by RNAfold divided by 

the sequence length; 

€ 

f2 : Randfold p-value 

€ 

f3 : Number of unpaired nucleotides at 5’ end 

€ 

f4 : Length of 3’ overhang (number of unpaired nucleotides at 3’ 

end minus that at 5’ end) 

€ 

f5 : Average length of the most abundant distinct/non-redundant 

short reads from the 5’ and 3’ end cluster that corresponded to 

potential miRNA/miRNA* 

€ 

f6 : Length of candidate pre-miRNA 

The “positive training dataset” was pre-miRNAs from miRBase. We calculated 

the probability of a given potential pre-miRNA candidate to be a genuine pre-

miRNA using the following formula: 

€ 

Pr(pre | data) =
P(data | pre) *P(pre)

P(data | pre) *P(pre) + P(data /non) *P(non)
 

where 

€ 

P(data | pre) = P( f i | pre)
i=1

6

∏  

and 



56 

€ 

P(data | non) = P( fi | non)
i=1

6

∏  

€ 

P(pre)  is the prior probability that a long read was a genuine miRNA 

precursor. 

€ 

P(non)  is the prior probability that a long read was non-miRNA 

background stem-loop and was equal to 

€ 

1− P(pre). Both 

€ 

P(pre) and 

€ 

P(non)  

are set to 0.5 by default, but could be changed based on the expected pre-

miRNA sequences in the deep sequencing samples. 

€ 

P( fi | pre)  denotes the probability that a miRBase pre-miRNA has the value of 

€ 

fi, where 

€ 

i∈{1...6} 

€ 

P( fi | non) denotes the probability that a non-miRNA background stem-loop-

like sequence has the value of 

€ 

fi, where 

€ 

i∈{1...6} 

 

4.3 Results 

4.3.1 miRNA and pre-miRNA sequencing 

We sequenced small RNA (10-40nt) libraries from 10 different mouse tissues 

and obtained 167 million reads between 17 and 30 nt in length (hereafter 

referred to as “short reads”). Of these, 75.2% aligned to the mouse genome 

without mismatch and 52.8% derived from known mouse miRNA loci (Figure 

4.1). In parallel, we sequenced pre-miRNAs. To characterize as many pre-

miRNAs as possible, we pooled the total RNA from the 10 mouse tissues 

equally and extracted small RNA between 50 and 100 nt in length. After 

library normalization, we obtained over 57 million reads between 40 and 94 nt 

in length (hereafter referred to as “long reads”), of which 86.7% could be 

mapped to the mouse genome. In stark contrast to that of short reads, only 

0.80% of the long reads were originated from known pre-miRNA loci (Figure 

4.1). 



57 

 
Figure 4. 1 Parallel sequencing of miRNAs and pre-miRNAs. The pie charts 

represent the genomic origins of the short reads and the long reads, respectively. 

 

We identified 887 known mouse miRNAs originated from 568 pre-miRNAs 

from the short reads. 687 miRNA from 481 pre-miRNAs were expressed (with 

RPM more than 1; RPM: Reads Per Million total miRNA reads) in at least one 

tissue (Figure 4.2). In comparison, only 281 known pre-miRNAs are identified 

using the long reads. The distribution of length and RNA secondary structure 

of these 281 pre-miRNAs are similar to that of all mouse pre-miRNAs 

deposited in miRBase, indicating that our detection of pre-miRNAs was not 

biased towards any particular subset of pre-miRNAs. 278 out of 281 detected 

pre-miRNAs had the corresponding miRNA present in at least one tissue. As 

shown in Figure 4.3, miRNAs with their precursors detected were expressed 

at a significant higher level than those without (two-sided Wilcox rank-sum 

test, P < 2.2e-16), whereas the correlation between the abundance of a 

certain miRNA and that of its precursor was low (R2=0.1501). Such low 

correlation might be explained by the fact that pre-miRNAs are RNA 

intermediates that undergo fast processing. 

55.8%
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Figure 4. 2 Relative expression of 687 expressed miRNAs in ten mouse tissues 

 

 
Figure 4. 3 Abundance of miRNAs and pre-miRNAs. (A) The histogram depicts the 

abundance of miRNAs whose pre-miRNAs were detected (red) are in general much 

higher than that of those whose pre-miRNAs were not detected (blue). (B) The 
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scatter plot shows the poor correlation between the abundance of miRNAs and the 

corresponding pre-miRNAs. 

 

4.3.2 De novo prediction of mouse pre-miRNAs 

Since the long reads datasets (corresponding to pre-miRNAs) greatly reduce 

the search space for miRNAs, and obtaining them is much more cost-efficient 

than establishing high quality genome reference sequences for most 

organisms, we developed a computational pipeline for miRNA Genome 

reference free prediction (miRGrep) solely relying on short and long reads. In 

brief, potential pre-miRNA sequence candidates are extracted by selecting the 

long reads that could form stable hairpins and exhibit a mapping pattern of 

short reads that is compatible with Dicer processing. These pre-miRNA 

candidates are then scored with a Naive Bayesian classifier and finally a short 

list of highly confident candidates are reported. 

 

We applied miRGrep to predict mouse miRNAs on our sequencing data set. In 

total, 155,760,811 short reads were perfectly mapped to 5,789,406 distinct 

long reads. The vast majority (5,524,656) of the long reads were discarded 

because the mapping position of short reads did not fit with the model of Dicer 

processing. The remaining 264,750 long reads were then merged into 

131,207 clusters and one representative read from each cluster was selected 

to predict the secondary structure. Out of these, 1,277 long reads that could 

form stable hairpin structures were selected for the probabilistic scoring. As a 

result, 538 long reads were scored higher than 0.95, of which 324 with at least 

five supporting short reads were retained as pre-miRNA candidates. One 

example is shown in Figure 4.4. 
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Figure 4. 4 An example of novel pre-miRNAs in mouse. This novel pre-miRNA 

locates within an intron of the gene Camk2a, the sequences of 5p- and 3p- mature 

miRNAs are shown in red and green, respectively. 

 

Among these 324 pre-miRNA candidates, 245 corresponded to 239 known 

mouse pre-miRNAs. Although the nominal false negative rate is nearly 15%, 

some pre-miRNAs discarded by miRGrep could as well be true negatives 

owing to false annotation in miRBase. For instance, miR-1944 and miR-715, 

which were not reported by miRGrep, have been recently removed in 

miRBase v18.0. Moreover, three out of the 41 novel pre-miRNA candidates 

have been recently registered in miRBase v18.0. From these novel pre-

miRNAs, 66 mature miRNAs were supported by short reads. Compared to 

known miRNAs, these novel miRNAs were expressed at a much lower level 

(Figure 4.5), suggesting the importance of deep sequencing on charting a 

comprehensive miRNA landscape.  

Scale
chr18:

--->

Camk2a

20 bases mm9
61113520 61113530 61113540 61113550 61113560 61113570 61113580 61113590 61113600

C T CA C CT G TGC C CT AG GT G A GC T C TT GG TA CC TT GG C GA CA A G AA GG T GA GC CC AG GA A C AA G GT C T CA GT CCG A GG GC AG GG T GG CT T T

RefSeq Genes

GGTGAGCTCTTGGTACCTTGGCGACAAGAAGGTGAGCCCAGGAACAAGGTCTCAGTCCGA  
((((((..((((...(((.(((.((......))..))).)))..))))..))))..))..   len  reads 
GGTGAGCTCTTGGTACCTTG          20   2
GGTGAGCTCTTGGTACCTTGG           21   28
GGTGAGCTCTTGGTACCTTGGC          22    103
 GTGAGCTCTTGGTACCTTGG           20   1                                          
 GTGAGCTCTTGGTACCTTGGC          21   3
             CCAGGAACAAGGTCTCAGTCCGA   23   2   

     --    CU    GUA   U   G-  AA
   GG  TGAG  CUUG   CCU GGC  AC  G
   ||  ||||  ||||   ||| |||  ||  A      
   CC  ACUC  GAAC   GGA CCG  UG  A
 AG  UG    UG    AA-   C   AG  -G  

Novel_mir_1 : mouse (mm9) chr18:61,113,527-61,113,586 (+)

    Novel_mir_1
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Figure 4. 5 Abundance of novel and known miRNAs. The abundance of novel 

miRNAs (red) is in general much lower than that of known miRNAs (blue). 

 

Regarding to the genomic locations, 34 novel pre-miRNAs identified in this 

study located to introns of protein coding genes (Table 4.1). Among them, 13 

are distant to splicing sites, i.e. both 5’ and 3’ ends are at least 10nt away 

from the ends of the hosting introns. Of the remaining 21 intron-containing 

pre-miRNAs, whereas four had the ‘nearly’ exact boundary as the hosting 

introns and thus resembled canonical mirtrons, 17 had only one end 

generated by spliceosome while the other end likely matured through Drosha 

independent trimming [89]. Interestingly, all the pre-miRNAs from the latter 

category were 5’ tailed mirtrons, which shared only their 3’ ends with the 

hosting introns. Indeed, we also found the long reads possibly derived from 

the intermediate tailing products for several tailed mirtrons. To check whether 

the tailed mirtrons in mouse were exclusively 5’ tailed, we analyzed the 

boundary of known mouse pre-miRNAs located in introns and found that all 21 

known tailed mirtrons are tailed from 5’ end. In contrast to our findings in 

mouse, the tailed mirtrons identified so far in drosophila are all from 3’ end 

[90]. It awaits further investigation whether the inconsistence between the two 

organisms is due to the difference in underlying processing mechanisms such 

as more efficient usage of 5’-3’ (mouse) versus 3’-5’ (fly) exoribonuclease 
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after splicing.  

 

Genomic location Number of novel pre-miRNAs 
LINE, SINE 2 
Intergenic region 3 
Exons 2 
Introns : mirtron 4 
Introns : tailed-mirtron 17 
Introns : other 13 

Table 4. 1 Genomic annotation of novel miRNAs 

 

4.3.3 Validation of novel mouse miRNAs 

We validate the authenticity of the miRGrep novel miRNAs using three 

independent approaches.  

 

First, to investigate whether the novel miRNAs were indeed dependent on 

Dicer for expression, we used RNA interference to knockdown Dicer in a 

mouse N2a cell line. RT-qPCR showed that the level of Dicer mRNA 

transcripts in cells treated with siRNA was significantly decreased by 85% 

(Figure 4.6 A). After sequencing the small RNAs from unperturbed and siRNA 

treated cells, we compared the abundance of different non-coding RNA 

derived transcripts between the two samples. Comparing to the controls, both 

rRNAs and tRNAs showed a median increase of 21% and 19% after silencing 

Dicer, whereas both known and novel miRNAs decreased in abundance with 

a median reduction of 32% and 55%, respectively (Figure 4.6 B-E). Using 

TaqMan assay we confirmed that the expression level of one novel miRNA 

(miR-Novel-2) decreased after Dicer knockdown, similar to that of one known 

miRNA (Figure 4.6 F). These results demonstrated that the novel miRNAs 

identified in this study were enriched in Dicer dependent small RNAs. 
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Figure 4. 6 Novel miRNAs depend on Dicer for expression. (A) The abundance of 

Dicer mRNA decreased to 15% in Dicer knockdown (KD) compared to scramble 

knockdown (Control). (B-E). The log2 fold-change of small RNAs abundance after 

Dicer knockdown for known miRNAs (B), novel miRNAs (C), tRNAs (D), and rRNAs 

(E). (F) The abundance of novel miRNA miR-Novel-2 decreased by 40% after Dicer 

knockdown, similar to that of miR-137. Error bars represent standard deviation. 

 

Second, miRNAs mediate target mRNA silencing by directly bind to Ago2 

proteins. To further confirm the functionality of our miRNA candidates, we 

isolated and sequenced Ago2 associated RNA in N2a cells by Ago2 IP. A 

total of 49 novel miRNAs derived from 37 candidate pre-miRNAs could be 

detected in IP sample. The novel miRNAs showed a similar Ago2 binding 

profile as that of known miRNAs, whereas both tRNAs and rRNAs showed 

significant depletion (Figure 4.7 A). The enrichment of miR-137 and one novel 

miRNA was further validated by TaqMan assay (Figure 4.7 B). These results 

showed that our novel miRNAs were indeed incorporated into Ago2/RISC 

complex, indicating their potential functionality. 
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Figure 4. 7 Novel miRNAs bind to Ago2. (A) Each point in the scatter plot represents 

one gene: known miRNAs (light blue), novel miRNAs (red), tRNAs (black) and rRNAs 

(dark blue). Value on X- and Y- axis denote the log10 RPM of Ago2-IP RNA and total 

RNA, respectively. (B) TaqMan assay validation of Ago-2 association, the values on 

Y-axis mark the cycle value. The novel miRNA miR-Novel-2 are enriched in Ago2-IP 

RNA, similar to that of miR-137; while as a negative control, snoRNA-202 is depleted 

in the Ago2-IP RNA. 

 

Third, two most abundant novel pre-miRNAs loci were chosen for further 

experimental investigation. First, we demonstrated the presence of novel 

miRNAs using northern blotting (Figure 4.8 A-B). Then we further investigated 

whether the processing of the two pre-miRNA candidates was dependent on 

Dicer. When we incubated the in vitro transcribed and 32P-labeled pre-

miRNAs with recombinant Dicer, both pre-miRNA transcripts were efficiently 

processed into mature miRNAs (Figure 4.8 C-D). Most importantly, we 

showed that both novel miRNAs could significantly repress the target mRNAs 

as other canonical miRNAs using in vitro luciferase assay (Figure 4.8 E). 
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Figure 4. 8 Novel miRNAs have miRNA-like functions. (A-B) Northern blot of two 

novel miRNAs reveals specific bands (marked by asterisk sign) corresponding to 

mature miRNAs. (C-D) Efficient in vitro rDicer processing of pre-miRNAs (marked by 

“<” sign) in to mature miRNAs (marked by asterisk sign). Lane marked by “+” or “-” 

sign denote RNAs are incubated with or without rDicer. (E) The luciferase assay of 

the two novel miRNAs. Sequences complementary to novel miRNAs (Target) or 

scrambled sequences (Scramble) were inserted into the 3'UTR of Renilla gene. 

Comparing with scramble controls, inclusion of Target sequences resulted in 

substantial decrease of protein production. Experiments were done in triplicates, and 

error bars represent standard deviation. 

 

Taken together the results of three independent approaches, we successfully 

demonstrated that the novel miRNAs identified by miRGrep are bona fide 

miRNAs. 

 

4.3.4 Evaluation of miRGrep 

Most miRNA discovery tools rely on the alignment of sequencing reads to 

reference genome sequences [91]–[93]. Obviously, these tools are of limited 

applicability in the study of organisms whose genome has not been 

sequenced. Other tools that do not depend on genome sequences take 

advantage of evolutionary conservation while neglecting lineage-specific ones 

[94]. In contrast to these tools, miRGrep takes advantage of parallel 

sequencing of potential mature and precursor miRNAs. Of 438 known mature 

miRNAs recovered by miRGrep, 11% (48) are not conserved in other species 

and could not be identified only by homology search. It demonstrates that 
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miRGrep can discover not only the conserved miRNAs, but also lineage 

specific ones. 

 

In probabilistic scoring of pre-miRNA candidates, the known mouse miRNAs 

are used to estimate the model parameters. To investigate the potential bias 

arguably introduced by over-trained using known mouse miRNAs, we trained 

our model again using known miRNAs in human, fruit fly and C. elegans, 

respectively. As illustrated in Table 4.2, the predictions based on known 

miRNAs from different organisms were nearly identical, indicating that the 

features included in our model represent the miRNA characteristics common 

to all metazoans.  

 

 Specific to mouse 
training set 

Common Specific to other 
training set 

Human 8 316 13 
C. elegans 21 303 11 

Fruit fly 14 310 9 
Table 4. 2 miRGrep models conserved features of miRNAs. The values denote the 

number of miRNAs predicted only using mouse training set (1st col), common to two 

trains sets (2nd col), only using human or C. elegans or fly training sets (3rd col). 

 

Furthermore, to assess whether miRGrep could be applied to other 

metazoans, we chose another well-studies organism, C. elegans, for 

validation. We applied our parallel sequencing approach to RNAs extracted 

from adult C. elegans, and miRGrep identified 108 pre-miRNA candidates. 

Ninety-eight of them corresponded to 88 known C. elegans pre-miRNAs, 

which covered 50% of all miRNAs identified along all developmental stages in 

the past decade. One of the 10 newly identified pre-miRNAs is shown in 

Figure 4.9 as an example. 
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Figure 4. 9 An example of novel pre-miRNAs in C. elegans. This novel pre-miRNA 

locates within the 3'UTR of the protein-coding gene F35G12.2. The 5p- and 3p- 

miRNAs are colored in red and green, respectively. 

 

4.3.5 Identification of pre-miRNA processing intermediates 

Half of the long reads originated from known miRNA loci are not full-length 

pre-miRNA transcripts, likely representing processing intermediates or 

degradation products of pre-/pri-miRNAs. For example, long reads with 

truncation in one arm of the hairpin structure resemble endogenous 

processing intermediates resulted from Ago2-mediated endonucleolytic 

cleavage, termed as Ago2-cleaved pre-miRNAs (ac-pre-miRNA) [86]. In our 

data, we identified eight potential ac-pre-miRNAs in mouse (Table 4.3), out of 

which seven originated from let-7 family. Importantly, 3’ end uridylation events 

were observed for all the ac-pre-miRNAs, which further indicates that ac-pre-

miRNAs are bona fide pre-miRNA processing intermediates.  

Ac-pre-miRNA Distance to 3’-end (nt) 
mmu-let-7a-1 11 
mmu-let-7b 10 

mmu-let-7c-2 12 
mmu-let-7d 10 

mmu-let-7f-1 13 
mmu-let-7i 11 

mmu-mir-98 11 
mmu-mir-30b 9 

Table 4. 3 List of pre-miRNA processing intermediates 

Scale
chrIII:

--->

F35G12.2

20 bases ce6
4571605 4571610 4571615 4571620 4571625 4571630 4571635 4571640 4571645 4571650 4571655 4571660 4571665 4571670 4571675 4571680 4571685

A T T CT TT A TT TC A CC AG A CT A TC TA GGA AA T AT TG A A CT AA TA C AA A T T TT AG TT CA A T A T AC CG GA T G GT CT GG TGA A AG C AA C AT GC G

AGACTATCTAGGAAATATTGAACTAATACAAATTTTAGTTCAATATACCGGATGGTCTGG   
(((((((((.((..((((((((((((........)))))))))))).)))))))))))..  len reads               
AGACTATCTAGGAAATATTGAACT          24  30
                                      TTCAATATACCGGATGGTCT    20  49                                     
                                      TTCAATATACCGGATGGTCTG   21  114                                     
                                      TTCAATATACCGGATGGTCTGG  22  175                                     

   Novel_mir_2

Novel_mir_2 : C.elegans (ce6) chrIII:4,571,615-4,571,674 (+)

            A  AA            UAC
   AGACUAUCU GG  AUAUUGAACUAA   A
   ||||||||| ||  ||||||||||||   A       
   UCUGGUAGG CC  UAUAACUUGAUU   A
 GG         -  A-            UUA

(single-digit reads not shown)

RefSeq Genes
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4.3.6 Identification of miRNA editing events 
RNA editing is a process that alters nucleotide(s) of RNA molecule post-

transcriptionally, most commonly observed as ‘A-to-I’ or ‘C-to-U’ base 

substitutions. The ‘A-to-I’ editing events, catalyzed by double-strand RNA 

binding enzymes named ADARs, have been reported in mammalian pre-

miRNAs, and such events can affect miRNA biogenesis as well as targeting 

[95]. Since ADAR enzymes are enriched in brain, we went on to identify A-to-I 

editing events on miRNAs using our brain data of both mature and precursor 

miRNAs. The rationale is that since ADARs bind to double-strand RNA, true 

miRNAs editing events should also be observed on precursor miRNAs. As 

shown in Figure 4.10, nine editing sites were found both in cortex and 

cerebellum, but their editing frequencies were different in the two different 

regions, suggesting potential differential regulation and functions. 11 of 15 

sites located in the seed regions of miRNAs, which would affect selection of 

mRNA targets, as previously described for the miR-376 cluster [95]. For the 

remaining 4 sites outside of seed regions, the A-to-I editing at pre-mir-497 

could affect its secondary structure by forming 'I-C' wobble base pair, thereby 

impacting the processing by Dicer. Depending on the miRNA expression level 

and their sub-cellular localization pattern, even of low editing frequency, the 

copy number of edited miRNAs can still be high enough to be biological 

relevant with altered functions. Therefore the new editing events identified 

here contribute to a better understanding of miRNA regulation and function. 
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Figure 4. 10 Relative frequency of miRNA editing events. Editing frequency in mouse 

cortex and cerebellum (in solid color and shaded color, respectively) of previously 

identified sites (in red) are in general higher that that of the newly identified ones (in 

blue). 

 

4.4 Discussion 
Comparing to mature miRNA sequencing, our pre-miRNA sequencing has 

rather limited efficiency, and further experimental improvements should make 

our pipeline more powerful. Using locked nucleic acids (LNA) to remove about 

300 species of abundant non-pre-miRNA transcripts prior to sequencing 

resulted to an even lower percentage (0.2% compared to 0.8% in this study) 

of pre-miRNA sequencing reads at a much higher cost (mainly due to the 

synthesis of LNA oligos) [96]. In comparison, a PCR based approach yields 

higher efficiency of over 50% in sequencing pre-miRNAs [97]. However, this 

method only works on known miRNAs in a gene-specific manner. To our 

knowledge, we provided the first unbiased genome-wide profiling of miRNA 

and pre-miRNAs in a cost-effective manner. 
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Since miRNAs serve as a potent gene expression regulator, the knowledge of 

the identification, biogenesis, and processing of them are of great importance 

to the understanding of miRNA-related functions. Here, the tailor-designed 

computational pipeline, namely miRGrep, allows de novo identification as well 

as expression profiling of miRNAs without relying on the availability of 

genome reference sequences. This pipeline could be widely used in the 

miRNA-related studies where the genome reference is of low quality or even 

absent. In fact, out of 223 organisms whose miRNAs are registered in 

miRBase (version 21), only half (111) have genome references sequenced, 

albeit of various quality. For the other half, the miRNA annotation is merely 

inferred from the mature miRNA sequencing experiments via sequence 

homology to the ones annotated with genome references, and is therefore 

likely of high false positive (RNA fragments or degradation products that are 

not generated by the miRNA biogenesis pathway) and false negatives 

(organism-specific miRNAs with little homology). MiRGrep could greatly 

improve the miRNA annotation for metazoans independent of genomic 

sequences, even for well-studied organisms such as mouse in this study. 

Moreover, miRGrep might prove to be useful not only to organisms without 

available genome references, but also samples where the genome sequences 

differ significantly from the reference, such as cancer. Furthermore, with novel 

insight gained from this approach, we can improve the current understanding 

of miRNA processing and modifications that are likely of potential medical 

implications. 
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Chapter 5 

Circular RNAs identification 
 

5.1 Introduction 

5.1.1 Circular RNAs, old acquaintance and new roles 

Cellular RNAs can be classified in terms of their structure: linear or circular 

form. In contrast to a linear RNA that possesses distinct 5’ and 3’ termini, 

reflecting the start and end sites of transcription, a circular RNA (circRNA) has 

no terminal. The closed structure is formed by covalently joining the 3’ end of 

the precursor to the 5’ end (Figure 5.1).  

 
Figure 5. 1 The structure of circRNAs. (A) The Scheme of normal (forward) splicing 

where the upstream exon2 connect to downstream exon3 in a 5'-to 3' manner. (B) 

The scheme of back splicing where the downstream exon3 connect to upstream 

exon2 in a 5'-to-3' manner. (C) A sequencing read that span the back-splice junction 

of a circRNA cannot be directly aligned to genomic sequences, but can be partially 

aligned in a reversed manner. 

A. Forward-splicing 

B. Back-splicing

C. CircRNA supporting reads

A circRNA supporting read
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Circular RNAs comprising exonic sequences from a few gene loci were first 

identified in eukaryotic cells more than 20 years ago [98], [99]. At that time, 

the observation of circRNAs was regarded as transcriptional artifacts or 

splicing noise [98], although some circRNAs are extremely abundant (e.g. the 

one derived from the SRY gene locus in adult testis) [99] and can represent 

the dominant form of RNA transcript derived from one specific genomic locus 

[21]. Only recently, the advance of ribosome-depleted RNA sequencing 

techniques combined with tailored computational tools enables identification 

of thousands of new circRNAs in organisms ranging from archaea to human 

[21], [37], [100]. In most cases, circRNAs comprises exonic sequences of 

protein-coding transcripts (see the discussion section of this chapter for other 

types). For many years, no clear function was attributed to any of the 

circRNAs, but it was recently demonstrated that two previously annotated 

circRNAs could serve as miRNA sponges by sequestering miRNAs and 

preventing their interactions with target mRNAs [36], [37]. Although this 

observation offers one function model for circRNAs, circRNAs represent a 

heterogeneous group of transcripts that likely also exert diverse cellular 

functions via as yet undiscovered mechanisms. In addition to miRNA 

regulation, it has been proposed that cytoplasmic circRNAs could sequester 

RNA-binding proteins (RBPs) and thereby could also regulate the intracellular 

transport of associated miRNAs, RBPs, or mRNAs [101], [102]. Nuclear 

circRNAs, on the other hand, can interact with transcription-splicing complex 

and therefore regulate the abundance of hosting transcripts [10], [103].  

 

RNA-mediated regulation of cellular function and protein translation is crucial 

for polarized cells to functionalize cellular compartments. This is particularly 

true for neurons, where the complex morphology and distal location of 

synapses mandate a high degree of local regulation [104]. Localized protein 

synthesis has been observed in both dendrites and axons, contributing by the 

localization of translational machinery and over 2000 protein coding genes in 

each compartment [73], [105]. And in other cell types, RBPs are important for 
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both RNA transport and translational regulation [106]. In recent years, other 

classes of RNA species and RNA-based regulation have been identified in 

neurons including miRNAs and lncRNAs [107], [108].  

 

In order to study the potential role of circRNAs as a novel RNA-mediated 

regulatory mechanism, we set out to characterize and profile the expression 

pattern of circRNAs in several tissues/samples from mice and rat. CircRNAs 

are found to be enriched in the brain compared to other tissues. Moreover, a 

large fraction of circRNAs is derived from genes that code synaptic proteins. 

Using PacBio Sequencing for a subset of circRNA candidates, we identified 

the rolling circle cDNA products that, for the first time, elucidate the true 

circular structure of circRNAs. Furthermore, based on the separate profiling of 

the RNA localized in neuronal cell bodies and synaptic processes (axons and 

dendrites), we found that, on average, circRNAs are more enriched in the 

distal part of neurons than their linear isoforms. Using high resolution in situ 

hybridization, circRNAs were visualized directly in the dendrites of neurons. 

Finally, the abundance of several circRNAs changes at developmental stages 

that correspond to synapse formation and also following homeostatic 

plasticity.  

 

5.1.2 Challenges 

The property of circularity and low abundance has contributed to the relative 

anonymity of circRNAs. Although the circRNA population in a cell is about 3% 

to that of mRNAs as estimated in this study, their representation in high-

throughput sequencing results is less than 0.1%. This ostensible discrepancy 

is due to the fact that most of the reads originated from circRNAs are exactly 

the same as those derived from linear transcripts, whereas only those reads 

that span the back-splice junction sites can be unambiguously assigned to 

circRNAs. Since the circRNA-specific reads cannot be directly mapped to 

genome or transcriptome, they have to be identified using partial alignment. 

Therefore to characterize circRNAs in an unbiased manner, computational 

pipelines should be designed to identify the back-spliced junction sites. 
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Furthermore, given circRNAs also undergo alternative splicing, the exact 

sequences of circRNAs should be carefully examined. We present acfs 

(acronym for Arthurian CircRNA Finder Suite), a user-friendly analysis pipeline 

that satisfies the challenges (available at https://github.com/arthuryxt/acfs). 

 

5.2 Methods 

5.2.1 Sequencing protocol 

Ribosomal RNA (including mitochondrial rRNA) is depleted from total RNA 

using the RiboZero Gold kit (Epicentre Bio-technologies). RNA-seq library is 

then generated from rRNA-depleted RNA using Illumina stranded RNA 

Sample Prep kit per manufacturer’s instruction, and is subsequently 

sequenced for 150 nt on Single-End (SE) mode on an Illumina HiSeq 2500. 

Note that at RNA fragmentation step, one should make sure that the majority 

of the resulting single-strand RNA fragments are of length larger than the 

sequencing length, otherwise it will be a waste to sequence that long and the 

possibility to detect circRNAs will decrease. 

 

5.2.2 Sequencing data preparation 

After removing the Illumina sequencing adapter at 3’ end, the reads are 

aligned to the corresponding genome reference (bdgp5 for fly, mm9 for 

mouse, rn5 for rat and hg19 for human) and annotated transcriptome 

sequences using Tophat2 [49], allowing up to six mismatches. Any other tools 

that align reads to both genome and transcriptome can also be used. Cufflinks 

[49] (v2.21) is then used to estimate the total transcriptional output based on 

Ensembl gene annotation (v5.72 for fly, v67 for mouse, v72 for rat, and v71 

for human). Genes annotated as “protein coding” or “lincRNA” are retained for 

further analysis. To compare gene expression between two samples, we 

convert the FPKM (Fragments Per Kilobase per Million) to TPM (Transcripts 

Per Million) using the following formula: TPM = FPKM * 1000000 / 

(sum_of_FPKM) [109]. Due to the back-spliced structure of circRNAs, the 

RNA-Seq reads derived from the junction sites cannot be directly mapped to 
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either genome or transcriptome references. Therefore, those unmapped reads 

are collected for the identification of circRNAs. 

 

5.2.3 Fusion reads identification 

For each sequencing data set, the unmapped reads are further aligned to the 

respective genome reference sequences by BWA [110] using local mode 

(with parameter: -mem –k 16). Maximum exact matches (MEM) are located 

using Borrows-Wheeler transformation (BWT) and the FM-index. Longer 

alignments with tolerable mismatches and/or gapes are finalized on the 

extended MEMs using Smith-Waterman (SW) algorithm. There are seven 

categories of alignment results:  
1) unmapped;  

2) only one segment is aligned but not end-to-end match;  

3) two segments aligned to the same chromosome and on the same 

strand;  

4) two segments aligned to the same chromosome but on the opposite 

strands;  

5) more than two segments aligned to the same chromosome and all on 

the same strand;  

6) more than two segments aligned to the same chromosome but on 

opposite strands;  

7) more one segments aligned to different chromosomes.  

Alignments of category 3 and 5 that satisfying the following requirements are 

retained as candidates supporting back-spliced junctions: 
1) regions on the same chromosome and no more than 1Mb away from 

each other; 

2) on the same strand; 

3) in reverse order; 

4) alignment score (AS, the Phred-sacled probability of the alignment 

being incorrect) higher than 30 for all segments to ensure 99.9% 

accuracy 

There still can be circRNA supporting reads in category 1 and 2 due to the 

requirement of alignment length and score, thus they should be re-examined 
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after circRNA identification. Alignments of category 4 and 6, where alignments 

are on opposite strand of the same chromosome, could partly be explained by 

the RNA-dependent RNA Polymerase (RDRP) activity in the library 

preparation [111]. Alignments of category 4, 6 and 7 could contribute to trans-

splicing, if the break points match the canonical splicing sites of host genes 

and the partial alignments are in the same orientation of the host genes. 

 

5.2.4 Back-splice site identification 

Due to the sequence similarity of the termini of exons, the partial alignments 

within a single back-spliced read tend to show an overlap most frequently of 

2nt, and the exact splicing site is usually located in the vicinity of the overlap 

region. To identify the splicing sites in an unbiased manner, the most probable 

sites are determined by their splicing strength, instead of just looking for one 

of the canonical configurations (GU-AG pair). The strength of potential splicing 

sites supported by these candidate back-spliced reads is estimated using 

MaxEntScan [112]. The exact junction site is then determined by selecting the 

donor and acceptor site pair with the highest splicing strength score that is 

allowed by the read. Let n be the length of a back-spliced read originated from 

a gene locus on the +strand, and for simplicity, there are only two partial 
alignments. Let 

€ 

[1,i]  mark the first alignment and 

€ 

[ j,n]  mark the second, 

where 

€ 

j <= i . Let 

€ 

S5(k) mark the strength of 5’ splicing site at the genomic 

position given by the 

€ 

k th  position of the read and

€ 

S3(k)  mark the strength of 3’ 

splicing site at the genomic position given by the 

€ 

k th  position of the read. The 

objective is to maximize the function:  

€ 

SSum(x) = S5(i − x) + S3( j + x) 

where 

€ 

0 <= x <= (i − j +1) 

For cases with more than two partial alignments, the two adjacent partial 
alignments 

€ 

[a,i]  and 

€ 

[ j,b]  are considered, where 

€ 

(0 <= a) & (b <= n) & ( j <= i)  

and the genomic coordinates 

€ 

J < B < A < I . An authentic back-splice site 

should be of SSum value higher than 10, corresponding to about 95% of all 

pairs of splice site of mouse Ensembl genes (Figure 5.2). 
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Figure 5. 2 Strength of canonical splicing sites. The empirical cumulative distribution 

of splicing strength on 5' splice site (red), 3' splice site (blue) or a pair of splice site 

(black) of Ensembl genes. 

 

5.2.5 Filtering 

Since the genome reference sequences to which back-spliced reads aligned 

are of various qualities, i.e. the genome reference for human is of high quality 

whereas that for rat is still in a rather impoverished status, the authenticity of 

the predicted back-splice sites should be carefully examined. If two exons of a 

certain gene locus exchange the order in the annotation by mistake (possibly 

owing to misassembly), then the reads originated from that locus would 

appear to match with back splicing. To filter out possible false-positives 

introduced by faulty genome assembly, the sequences of the identified back-

splice sites (upstream 50nt and downstream 50nt or shorter if the adjacent 

exon is shorter than 50nt) are extracted and aligned to the transcript database 

(Refseq RNA sequences or Nucleotide collection) using Blast. Back-splice 

sites with successful alignments of over 95% similarity are excluded, since 

they are highly likely to originate from linear transcripts. 
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5.2.6 Abundance estimation 

To estimate the abundance of circRNAs, all unmapped reads are re-aligned to 

circRNA sequences in an end-to-end fashion. As for most of the circRNAs, 

there is no direct evidence for their exact sequences; the exonic sequences 

are filled in using existing annotation. For those circRNAs containing short 

exons, the internal sequences could be fully or partially determined if the 

sequencing length is long enough. For circRNAs whose back-splice sites do 

not overlap with the exon borders of existing annotations, especially when one 

of the splicing sites locates within the intronic or intergenic region, the whole 

sequence between the back-splice sites is taken with all splice-able introns 

removed. 

 

In order to mimic the circular structure, the sub-sequence from the 5’ end of 

each circRNA candidates of length equivalent to sequencing length is 

appended to the 3’ end. RNA-Seq reads that mapped to the junction (with an 

overhang of at least 6nt as default to ensure unambiguous alignment) are 

counted for each circRNA candidate. TPM (Transcript Per Million) is 

calculated for each candidate, where the effective length was set to: 

(sequencing length  - 2 * 6). Note that the sum of TPM of all circRNAs gives 

more accurate estimation of the relative abundance of circRNAs as a group 

with regard to total RNAs. 

 

5.2.7 Conservation analysis 

The positions of rat circRNAs were converted to mouse (mm9) genome 

coordinates using the UCSC liftOver tool, then were intersected with mouse 

circRNAs using BEDTools. To examine he evolutionary conservation of the 

para-junctional sequences of mouse circRNAs, PhastCons scores for 

alignment of 29 vertebrate genomes with mouse (mm9) was downloaded from 

(http://hgdownload.soe.ucsc.edu/goldenPath/mm9/phastCons30way/vertebrat

e/). To rule out possible biases, the sequences around the splicing sites 

involved in the back-spliced junctions were compared to those not involved on 

the same gene locus. 
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5.2.8 PacBio sequencing of RT-PCR products 

The RT-PCR products obtained from the mouse brain and rat brain samples 

were directly sequenced using PacBio RS system as in Chapter 3. The 

circular consensus reads (CCS reads) obtained from the PacBio sequencing 

were aligned to custom database (consisting of sequences fro both linear 

mRNAs and circRNAs) using Blast (parameters: -evalue 1E-10 –word_size 9). 

Alignments with identity higher than 95% were reported, and can be 

subsequently inspect for rolling-cycle products. 

 

5.2.9 MiRNA binding potential 

To quantify the density of miRNA binding sites on circRNAs, the number of 

predicted miRNA binding sites (nearly fully complementary, 7mer-1A, 7mer-

8m and 8mer sites) [113] was counted for all miRNAs (deposited in miRBase 

version19). As a control, the same procedure was preformed on CDS and 

3’UTR of the protein-coding genes. 

 

5.2.10 RBP binding potential 

The RBP binding sites on circRNAs were predicted based on their sequence 

motifs deposited in RBPDB [114]. As a control, the predicted RBP binding 

sites on the circRNAs were compared to those on CDS and 3’UTR of protein-

coding genes.  

 

5.2.11 Peptide translation potential 

The translational capacity of circRNAs could be estimated from their 

association with ribosome complex. Polysome profiling was done on mouse 

brain samples and ribosome footprinting [115] was done on rat brain samples. 

Sequencing reads from five fractions of mouse brain (non-ribosome, 40S sub-

unit of ribosome, 60S sub-unit of ribosome, mono-ribosome, and poly-

ribosome) as well as Ribosome Protected Fragments of rat brain were aligned 
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to circRNAs using BWA, and the reads spanning the circular junctions were 

counted and converted to TPM as described above. 

 

To directly test the potential peptides predicted from circRNAs, a liquid 

chromatography mass spectrometry sequencing was done on total lysate 

from 21-day-old primary neurons without any pharmacological or 

electrophysiological treatment. The circRNA sequences were translated in 

three potential frames, and the position of the circRNA junction was recorded. 

This custom database was then merged together with the rat protein RefSeq 

database, and subsequently used as a template for peptide matching with 

Mascot. Peptides spanning the circular junction sites were recorded. 

 

5.3 Results 

5.3.1 Enrichment in brain 

To systematically examine the possibility of tissue-specific expression pattern 

of mammalian circRNAs, ribosomal RNA (rRNA) depleted total RNA samples 

from different mouse tissues, including brain, liver, lung, heart and testes, 

were subject to RNA-Seq. Both sequencing depth and mappability were 

similar in all biological replicates (Table 5.1). Reads that map directly to 

reference genome sequences or canonical exon-exon junctions can be 

derived from either linear mRNAs or circRNAs and therefore were used to 

estimate the expression of the total transcriptional output (hereafter referred to 

as TTO) of the corresponding gene loci. To specifically identify circRNAs, we 

used the remaining reads that spanned the 5’ and 3’ splicing sites of exon(s) 

of individual genes; but in reverse order (Figure 5.1). From the five tissues, we 

detected a total of 10641 unique circRNAs.  
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Samples No. total reads No. mapped reads No. circRNAs 
Brain rep1 19794174 18765595 6186 
Brain rep2 19164999 18283420 5664 
Heart rep1 16507635 14636897 989 
Heart rep2 19876852 19049052 1315 
Liver rep1 21001677 20195781 912 
Liver rep2 19056514 18322339 816 
Lung rep1 20390058 19595737 1556 
Lung rep2 18406517 17282775 1320 

Testes rep1 19940919 18802286 2943 
Testes rep2 20222389 19198630 3093 

Table 5. 1 Summary of circRNA sequencing results 

 

Although circRNAs were identified in all tissues we examined, their 

abundance was clearly highest in brain (Figure 5.3 A), where 20% of the 

protein-coding genes produced circRNA (Figure 5.3 B). Two factors 

contributed to the higher abundance of circRNAs in brain. First, many 

circRNA-hosting genes were expressed exclusively in brain (Figure 5.3 C). 

Second, on average, when a host gene was expressed in brain as well as 

other tissue(s), the proportion of transcription output that is directed to 

biogenesis of circRNA is significantly higher in brain than in other tissue(s). To 

examine the second factor, we compared the relative contribution of circRNAs 

(defined as the ratio of TPM values between a circRNA and the TTO of its 

hosting gene) between samples (Figure 5.3 D). 
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Figure 5. 3 Mouse circRNAs are enriched in brain. (A) The percentage of circular 

junction reads from all mapped reads (both genomic and transcriptomic) is shown for 

the five tissues, with the highest in brain. (B) The percentage of circRNA-hosting 

genes from all genes is shown for the five tissues, with the highest in brain. (C) The 

number of tissue-specific genes that host circRNAs is shown for the five tissues, with 

the highest in brain. (D) The relative contribution of circRNA to TTO of the same gene 

locus is significantly higher in brain compared to all other tissues. Error bars 

represent standard deviation. 

 

The observation that there are three, on average, sequencing reads per 

circular junction would lead to questioning the robustness of the estimation of 

such enrichment. Indeed, there are many factors at play, including 

sequencing depth, sequencing read length and the threshold for calling an 

expressed circRNA. As sequencing read length clearly has a positive 

contribution to the detection of circRNAs, we did simulations with various 

thresholds and sub-sampled datasets. As shown in Figure 5.4, the relative 

contribution of circRNAs in brain is consistently and significantly larger than 
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those in other tissues.  

 
Figure 5. 4 Simulation of sequencing depth and thresholds. The caption “15m R1” 

stands for “sub-sampling down to 15 million reads” and “requiring at least 1 circular 

junction read”, and alike. The relative contribution of circRNAs is shown as box plot 

for the five tissues. 

 

We re-analyzed published RNA-Seq datasets from various tissues of rats. 

Although the sequencing length (50nt) is much shorter in this datasets, which 

drastically reduce the chance to detect circRNAs, we observed a similar 

enrichment of circRNAs in brain (Figure 5.5).  
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Figure 5. 5 Rat circRNAs are enriched in brain. (A) The number of mapped reads is 

shown for the five tissues. (B) Relative abundance of circRNA reads is shown for the 

five tissues. (C) The frequency of circRNA hosting genes is shown for the five 

tissues. (D-G) The relative contribution of circRNAs is significantly higher than that of 

heart (D), hung (E), liver (F) and testes (G). 

 

In the study of fly samples, we also found that circRNAs were more abundant 

in brain compared to the body (Figure 5.6), which is consistent with a recent 

report [116]. We further make suggestions for future sequencing studies of 

circRNAs: sequencing in single-end mode with at least 100 nt and 20 million 

reads per sample. 
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Figure 5. 6 Fly circRNAs are enriched in brain. Each circle represents one fly 

circRNA, with the values on X- and Y-axis represent the abundance (TPM) in brain 

and body of the fly, respectively. 

 

5.3.2 Independent validations 

We validated the authenticity of circRNAs predicted in our study by three 

independent methods. First, as circRNAs do not possess a poly(A) tail, their 

representation should be depleted in a poly(A)-enriched sequencing library. 

Compared with rRNA-depleted total RNA sequencing library, poly(A)-enriched 

RNA sequencing library from the same sample produced a much lower 

number of reads originated from circRNA population (Figure 5.7). Of note, this 

protocol cannot completely erase the representation of circRNAs, since the 

oligo(dT) probes used for poly(A)-enrichment can still capture or even enrich 

some of the circRNAs whose sequences contain a stretch of As. 
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Figure 5. 7 CircRNAs are depleted in a poly(A) library. Each circle represents one 

mouse circRNA. Values on X- and Y-axis denote the abundance (TPM) of circRNAs 

in Ribo(-) and PolyA(+) library, respectively. Inset shows that circRNAs are 

significantly depleted in the PolyA(+) library. 

 

Second, since circRNAs benefit from the closed structure that endows strong 

resistance to the exonucleases such as RNase R, they should be more stable 

than the linear transcripts upon such treatment. We therefore quantified the 

RNase R resistance of 20 circRNA candidates, and all of them exhibited 

stability at least five-fold higher than their linear counterparts (Figure 5.8). The 

increase of abundance for some circRNAs after RNase R treatment suggests 

that they are more resistant to RNase R than the well accepted control 5S 

rRNA. 
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Figure 5. 8 CircRNAs are resistant to RNase R. CircRNAs from mouse (A) and rat (B) 

are at least 5-fold more resistant to RNase R compared to their hosting linear 

transcripts. 

 

Third, we sequenced the RT-PCR products derived from 12 circRNA 

candidates using the PCR primers that anchor on the circular junctions. 

Expected PCR products were detected for all 12 candidates. Moreover, for 11 

of them, we observed the PacBio sequencing reads corresponding to the 

rolling circle RT products (Figure 5.9).  
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Figure 5. 9 Rolling cycle products of circRNAs. Each grey ring stands for one 

circRNA, the red vertical bar for the back-spliced junction, two blue arcs for the PCR 

primers, and the red spirals outside of circRNAs for the RT-PCR products that were 

deep sequenced using PacBio technology. The asterisk, upward and downward 

triangle symbols on the gel image denote the 0-, 1- and 2-cycle RT-PCR products, 

respectively. 

 

For the only one circRNA candidate without detected rolling circle RT-product 

(circMyst4), we speculated that the RT process would be difficult to complete 

even one rolling circle, since the estimated length of the circRNA is about 3 

kb. As a control, we also did PacBio sequencing for the PCR products of the 

linear transcripts of the same 12 gene loci using poly(A)-enriched RNA. From 

the control sequencing results, we found only expected PCR products from 

the linear transcripts, without a single read that can be unambiguously 

attributed to circRNAs. This observation serves as direct evidence for the 

circular nature of the circRNA structure and, to our knowledge, is the first time 

that the full-length sequences of circRNAs have been identified. Notably, for 

two circRNAs (circDtnb and circEzh2), in addition to the “canonical” forms that 
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encompass all of the annotated exons between the two back-splicing sites, 

we also observed circular isoforms that consisted of the same junction 

sequences, but with one internal exon skipped (circDtnb) or one unannotated 

exon inserted (circEzh2). As observed in our study and previous reports, 

multiple circRNAs with different back-splicing junctions could be produced 

from the same gene loci. The identification of circRNA isoforms with the same 

back-splicing junction, but different internal sequences, adds another layer to 

circRNA diversity and possibly regulatory functions. The fact that the internal 

exon composition cannot be simply predicted using back-splicing junctions 

necessitates the experimental determination of full-length sequence of a 

circRNA before further functional investigations. 

 

5.3.3 Synaptic gene origin and dendritic localization 

The observation of brain circRNAs enrichment prompts the question on the 

potential selected production of circRNAs: Is there a positive correlation 

between the relative contribution of a circRNA and the function of its host 

gene? To address it, we conducted a Gene Ontology analysis for the genes 

that give rise to circRNAs in brain. Interestingly, several functional groups 

related to synaptic functions such as synapse, presynaptic active zone and 

postsynaptic density were significantly enriched categories in the neuronal 

circRNA population (Figure 5.10). 

 
Figure 5. 10 GO analysis of brain circRNAs. Functional groups related to synaptic 

functions are overrepresented in the genes that host brain circRNAs. 
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Given the enrichment of host genes with synapse relate functions, we next 

examined whether the circRNAs are enriched in synaptic tissue. To address 

it, we prepared synaptosomes, a biochemically purified preparation that is 

enriched in synapses [117] or microdissected the synaptic neuropil from the 

hippocampus, a brain structure that exhibits robust synaptic plasticity and is 

important for learning and memory [118]. We then compared the abundance 

of circRNAs in these compartments (synaptosomes or neuropil) to that in a 

whole hippocampal homogenate or a microdissected layer comprising 

primarily hippocampal neuronal somata.  We found that most circRNAs are 

indeed enriched in the synaptic fractions examined (Figure 5.11 A, B) and the 

overlap between the two synaptic fractions was statistically significant (p-

value < 2.2E-16, Fisher Exact Test). The same pattern of results was obtained 

when the tissue was obtained from rat (Figure 5.11 C) and there was 

substantial overlap between the circRNAs identified in mouse and rat (Figure 

5.11 D-F). 

 
Figure 5. 11 Brain circRNAs are enriched in synapse. (A-C) The abundance of 

circRNAs and TTO of protein-coding gene loci (TPM) were compared between the 

synaptosomes (X-axis) and whole brain (Y-axis) in mouse (A); neuropil (X-axis) and 

somatic layer (Y-axis) of the hippocampus in mouse (B); or neuropil (X-axis) and 
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somatic layer (Y-axis) of the hippocampus in rat (C). Inset shows that the abundance 

of circRNAs, but not TTO, was significantly higher in the synaptic fractions. (D) The 

overlap of circRNAs identified in mouse synaptosomes and neuropil layer. (E) The 

overlap of circRNAs identified in mouse neuropil and rat neuropil. (F). Cumulative 

distribution of circRNA abundance shown in (E), in which circRNAs identified in both 

mouse and rat neuropil layer are of higher abundance than the others. 

 

Moreover, we directly visualized the circRNAs using high-resolution in situ 

hybridization [73]. In cultured hippocampal neurons, we detected circRNA 

particles distributed in the cell body as well as in the dendrites, visualized 

using an antibody against a dendritic marker (anti-MAP2) (Figure 5.12). 

Similarly, we demonstrated via in situ hybridization that there are substantial 

expression of circRNAs in both somata and neuropil layers of CA1 

hippocampal region (Figure 5.13). 

 
Figure 5. 12 Visualization of circRNAs in cultured neurons. CircRNA-positive particles 

(green) are apparent in the cell bodies (blue, nuclei stained with DAPI) and in the 

dendritic processes, which is illustrated via an antibody to MAP2 (red). As a negative 

control, a control exon probe designed to detect non-contiguous region of two exons 

that do not form a back splicing junction yielded few background particles (left panel). 

Scale bars represent 20 microns. 
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Figure 5. 13 Visualization of circRNAs in hippocampal slices. CircRNA-positive 

particles (green) are apparent in the cell bodies (blue, nuclei stained with DAPI) and 

in the dendritic processes, which is illustrated via an antibody to MAP2 (red). As a 

negative control, no signal was detected when no probe was used for hybridization 

(left panel). Scale bars represent 50 microns. 

 

We validated the specificity of our circRNA in situ hybridization by comparing 

the signal intensity of circRmst, circKlhl2 and circGigyf2 in brain, liver and lung 

(Figure 5.14 A). Consistent with the RNA-Seq data, the in situ hybridization 

data revealed only background levels of expression of circRmst and circKlhl2 

in liver and lung, in comparison to their evident enrichment in hippocampal 

neurons. In contrast, circGigyf2 was expressed in all examined tissues as 

expected from RNA-Seq data (Figure 5.14 B). To test whether the circRNA 

localization can mimic that of its host transcript, we performed in situ 

hybridization of circRims1 and its host mRNA Rims1 in cultured hippocampal 

neurons. Although signals for the circRNA and mRNA were apparent in both 

cell body and dendrites, they clearly did not co-localize (Figure 5.14 C). Given 

the anticipated diversity of circRNA populations, however, one must be open 

to counterexamples of co-localization of circRNA and mRNA when more 

cases are examined. 



93 

 
Figure 5. 14 Validation of circRNA localization. (A) Validation of abundance of 

circRNAs in brain, liver and lung using in situ hybridization. No probe control 

indicates background level of fluorescence. Nuclei were stained by DAPI (blue), 

circRNAs in situ hybridization punctae were shown in green, antibody staining (MAP2 

for dendrites in brain, Albumin for liver and Hemo-Oxygenase 1 for lung) is shown in 

red. Scale bar = 20 microns for brain and 10 microns for liver and lung. (B) 

Abundance (TPM) of three circRNAs in brain, liver and lung based on RNA-Seq 

measurement. (C) In situ hybridization of circRims1 (purple) and linear Rims1 

transcript (green) in the same neuron shows lack of co-localization. Whole image and 

zoom-in of soma and dendrites are shown. Scale bar = 20 microns for the whole 

image and 10 microns for zoom-in. 
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5.3.4 MiRNA binding potential 

Recent studies of two individual circRNAs suggested that they function as 

miRNA “sponges”, sequestering miRNAs [36], [37]. By searching the potential 

miRNA binding sites, we estimated the potential of the brain circRNA 

population to serve as miRNA sponges. Although there are many cases that 

circRNAs possess several miRNA binding sites, the brain circRNAs as a 

group do not exhibit a greater capacity to serve as miRNA sponges than 

linear mRNAs (Figure 5.15), consistent with recent analysis from other groups 

[119]. However, it should be noted that in order to function as miRNA sponge, 

circRNAs do not have to outcompete the linear transcripts with regard to 

binding density, their extraordinary stability and localization pattern could 

render strong regulatory effect at a specific niche and/or upon specific 

stimulations. 
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Figure 5. 15 MiRNA binding potential of circRNAs. The density of miRNA binding site 

of fully complementary targets (A), 7mer-8m targets (B), 8mer targets (C) and 7mer-

1A (D). Based on nucleotide sequences, circRNAs (red) as a population do not 

possess a higher density of miRNA binding sites than that of either 3' UTR (black) or 

CDS (coding sequence, yellow) of the mRNAs. This trend remains when circRNAs of 

different abundances are examined. 

 

5.3.5 RBP binding potential 
We also examined the possibility that circRNAs might function to bind or 

sequester RBPs. Here, we predicted the binding sites of 38 RBPs based on 

the binding sequence motifs deposited in the RBPDB. CircRNAs possess a 

lower RBP binding density, when compared to either the coding sequences or 

the 3’ UTR of protein-coding genes (Figure 5.16). This trend is consistently 
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observed for circRNAs with different abundances.  

 
Figure 5. 16 RBP binding potential of circRNAs. CircRNAs (red) have a lower density 

of RBP binding sites than that of either 3' UTR (black) or CDS (coding sequence, 

yellow) of the protein coding genes. This trend remains when circRNAs of different 

abundances are examined. 

 

5.3.6 Peptide translation potential 

Given the fact that neuronal circRNAs were mostly composed of protein-

coding exons, we investigated their potential to be translated into peptides 

with three independent approaches. Using a large mass spectrometry (MS) 

dataset obtained from hippocampal neurons, we searched for peptides 

predicted by circular junctions but without any success. The inability to detect 

a circRNA-derived peptide, however, could be a result of the well-known low 

detection sensitivity of MS-based shotgun proteomics approaches. Thus, we 

further studied the association of circRNAs with ribosomes. We performed 

ribosome profiling on rat brain samples in order to find the footprints of 

ribosome on circRNAs. Similar to what was recently reported for circRNAs 

from a human cell line [119], we did not detect a single ribosome protected 

fragments (RPF) that overlap with circular junctions. This negative 

observation could be resulted from the short read length of RPFs and the 

possibility that ribosome might bind to sequences outside of circular junctions. 
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To circumvent this limitation, we performed polysome profiling on mouse brain 

samples. In contrast to mRNAs, circRNAs were enriched in the non-ribosomal 

RNA fraction and strongly depleted in the ribosome/polysome-bound RNA 

fractions (Figure 5.18). Together, these results indicate that circRNAs as a 

group are unlikely to be translated into peptides. 

 

 
Figure 5. 17 CircRNAs associate less with ribosomes. (A) CircRNAs are enriched in 

the non-ribosome fraction and are drastically depleted from the mono-/poly-ribosome 

fraction. Values on the Y-axis denote the percentage of circRNAs in the RNA 

fractions marked on the X-axis. (B) CircRNAs (red) are enriched in the non-ribosome 

fraction, whilst protein-coding genes (black) are enriched in the poly-ribosome 

fractions. Classical non-coding RNAs such as snRNAs and snoRNAs are shown in 

blue. The inset shows that circRNAs are of significantly less associations with 

ribosomes that that of classical non-coding RNAs. 

5.3.7 Conservation 
As functionally important elements are often evolutionarily conserved, we 

examined the exonic sequence conservation around the mouse circRNA 

junctions. Compared with splicing sites of the same host gene those are not 

involved in forming back-splicing junctions, the exonic sequences around the 

back-splicing junctions are more conserved (Figure 5.19). Moreover, for 

circRNAs that are conserved in both mouse and rat, their para-junctional 

sequences are on average 10% more conserved than that of the non-

conserved circRNAs, almost reaching the maximum PhastCons scores. 

A B



98 

Moreover, we analyzed the overlap of circRNAs detected in rat and mouse, 

and found 23.6% of the circRNAs identified in mouse neuropil were also 

expressed in rat neuropil (Figure 5.19). This observation is consistent with a 

recent study in which 20% of mouse circRNAs were detected in human cell 

lines [119], but it was higher than the estimation in another study in which only 

4% of the mouse circRNAs were identified in human samples [37]. The 

difference might be explained by different sampling depths, as most identified 

circRNAs were expressed at low levels and might therefore ‘stochastically’ 

escape detection. Indeed, the circRNAs detected in both mouse and rat 

samples were clearly of much higher abundance than those detected in only 

one sample (Figure 5.19). This further suggests that circRNAs are conserved, 

and our observation of a 23% overlap between mouse and rat circRNAs may 

prove to be an underestimate. Together with the para-junctional sequence 

conservation, the conservation of circRNAs expression strongly suggests 

functional relevance. 

 
Figure 5. 18 CircRNAs are evolutionarily conserved. The exonic sequences around 

the splicing sites (left, splicing acceptor; right, splicing donor) involved in the 

formation of mouse circRNA back-spliced junctions (red) are more conserved than 

those from the same gene locus but not involved (blue). Values on Y-axis denote the 

average PhastCons score, values on X-axis denote the distance to the splicing site 

(negative and positive values means upstream and downstream, respectively). 

Importantly, the para-junctional sequences common in mouse and rat (green) are 

even more conserved, almost reaching the maximum PhastCons score. 
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5.3.8 CircRNAs are regulated in brain during development 

The development of the CNS and brain involves neuronal maturation, neurite 

outgrowth and synaptogenesis. Non-coding RNAs such as miRNAs and 

lncRNAs have emerged as important components for regulating these 

developmental processes [107], [120]. To determine whether the expression 

of circRNAs is developmentally regulated in brain, we profiled the circRNA 

population in the hippocampus over several stages: embryonic (E18), early 

postnatal (P1), postnatal at the beginning of synapse formation (P10) and late 

postnatal hippocampus following the establishment of mature neural circuits 

(P30). There was a clear shift in the circRNA expression pattern associated 

with the onset of synaptogenesis at P30 (Figure 5.20 A). Notably, the 

circRNAs that were consistently upregulated during hippocampal development 

were produced from the gene loci that also code for proteins enriched with 

synapse-related functions (Figure 5.20 B). In contrast, no enrichment of any 

functional categories could be observed for the gene loci showing the 

opposite (downregulated) circRNA dynamic expression pattern.  

 

We next examined the relationship between the expression of a circRNA and 

its linear host comparing the earliest (E18) and latest (P30) developmental 

stages. We found that many circRNAs change their expression independent 

of their host transcripts during synaptogenesis (Figure 5.20 C). We validated 

13 circRNA and mRNA pairs with different expression patterns using 

quantitative PCR (Figure 5.20 D). Dlgap1, whose protein product is a core 

component of postsynaptic density (PSD), showed an >20-fold increase in 

circRNA expression at P30 when compared with E18, whilst the mRNA 

abundance increased by less than four fold. Genes such as Myst4 (aka 

Kat6b, associated with Ohdo and Genitopatellar syndrome), Klhl2, and Aagab 

(Alpha-and-gamma-adaptin binding protein, involved in clathrin-coated vesicle 

trafficking) drastically increased their circRNA expression over development 

whereas their mRNA expression decreased markedly. In contrast, Cacna1c 

showed substantial decreases in circRNA expression along developmental 

stages, while the mRNA abundance remain unchanged. Transcripts from 
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lncRNA RMST locus were recently identified as a factor that is important for 

neuronal differentiation as well as a co-regulator for SOX2, a mediator of 

neural stem cell fate [121]. Two circRNAs as well as the linear transcript from 

the RMST locus were downregulated during the development, thereby 

supporting a potential function of circRNAs in brain development. Using high-

resolution in situ hybridization in cultured hippocampal neurons, we further 

validated the developmental regulation of circKlhl2 that exhibited strong 

upregulation during development (Figure 5.20 E). Analysis of the average 

fluorescence intensity at an early and late developmental stage (neurons 

cultured beginning at P1, days in vitro = 4 or 21) revealed a significant 

enhancement of the circKlhl2 expression levels (P < 0.0001; Figure 5.20 F). 

Thus, taken together the data from high-throughput sequencing, quantitative 

PCR and in situ hybridization, indicate that the expression of circRNAs is 

developmentally regulated in neurons and that many circRNAs change their 

expression independent of their host linear transcripts, suggesting a circRNA-

specific regulation of biogenesis and/or turnover (Figure 5.20 C,D). 
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Figure 5. 19 Regulation of circRNAs during brain development. (A) Heat map of 

circRNA expression along developmental stages showing the regulation of several 

clusters between P1 and P10, when synapses typically form. The abundance of 

circRNAs is shown on a scale from red (low) to yellow (high). A developmentally 

downregulated cluster reaches a peak in expression at E18 or P1, and the declined 

in the later stages. In contrast, a much bigger cluster of circRNAs is low in 
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abundance in the earlier stages and then peaks at P10 or P30 in expression. (B) The 

significantly enriched GO terms. The hosting genes of circRNAs that are upregulated 

along development are enriched for synaptic functions, whereas the downregulated 

group is not enriched for any GO terms. (C) Fold change of abundance of both 

circRNAs (Y-axis) and the TTO of the host gene loci (X-axis) between the two 

extreme stages E18 and P30. Each dot represents one pair of circRNA/gene locus. 

Dots in red and yellow highlight circRNAs whose abundance changed significantly 

while the TTO of the corresponding host gene did not. Inset shows that although 

most circRNA hosting gene loci did not change much in abundance, circRNAs were 

significantly upregulated. (D) The change of abundance for both circRNAs and 

hosting protein-coding genes was validated using quantitative PCR. Error bar stands 

for standard deviation. (E,F) Validation of change of circRNA abundance between 

developmental stages using high-resolution in situ hybridization. Quantification of the 

florescence intensity is shown in (F). The outline of neuronal soma was illustrated 

using an antibody against MAP2 (red). Scale bar represents 10 microns. 

 

5.3.9 CircRNAs change their expression as a result of neuronal 

plasticity 

As our data suggests that circRNAs might regulate synaptic functions, we 

went on to study the possibility that the abundance of circRNAs could be 

modulated by alterations in neuronal activity and plasticity. We induced 

homeostatic synaptic plasticity in cultured hippocampal neurons by 

manipulating neuronal activity using bicuculline, an antagonist to the GABAA 

receptor. Treatment with bicuculline enhanced excitatory neuronal network 

activity, leading to a homeostatic decrease in the mini-excitatory postsynaptic 

current (mEPSC) amplitude, without a change in mEPSC frequency (Figure 

5.21 A) [122]. Following the induction of homeostatic plasticity, the circRNA 

population exhibited dynamic behavior: the expression of 37 circRNAs was 

enhanced (Figure 5.21 B), whereas that of 5 circRNAs was reduced. In 

contrast, most of their linear host transcripts showed no substantial change in 

expression level (Figure 5.21 B). We validated the plasticity-induced changes 

in four circRNA candidates using quantitative PCR (Figure 5.21 C). We also 
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visualized directly the circRNA expression changes after homeostatic 

plasticity for additional candidates using in situ hybridization. Notably, a 

circRNA (circHomer1_a) derived from the Homer1 linear transcript was 

significantly upregulated circRNA after plasticity induction in primary 

hippocampal neurons (P < 0.0005 for somata and P < 0.0208 for dendrites) 

(Figure 5.21 D,E) and hippocampal slices (Figure 5.21 F). Taken together, 

these data indicate that circRNA expression levels are regulated by neural 

plasticity, suggesting that they are important for regulating synaptic 

transmission and/or local translation. 

 
Figure 5. 20 Regulation of circRNAs during homeostatic plasticity. (A) 

Electrophysiology traces of mEPSCs from control neuronal cultures and bicuculline 

treated (12hr) neuronal cultures. Representative recordings are shown to the left, and 
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the average mEPSC waveform, amplitudes and frequency are shown to the right. (B) 

Scatter plot shows the change of abundance of circRNAs (Y-axis) and the TTO of 

corresponding gene loci (X-axis) after included homeostatic plasticity. Each dot 

represents one pair of circRNA/gene locus. Grey dots represents pairs whose 

abundance remained largely unchanged (less than 30% change) for both circRNA 

and TTO. (C) Quantitative PCR validation of abundance change after homeostatic 

plasticity using high-resolution in situ hybridization in control or bicuculline-treated 

neurons. Dendrites are illustrated using an antibody against MAP2. Scale bar 

represents 10 microns. (E) The abundance of circHomer1_a upregulated significantly 

in both cell body and dendrite after homeostatic plasticity. (F) The abundance of 

circHomer1_a upregulated significantly in hippocampus slices after homeostatic 

plasticity. Control slice, zoom-in of the arrowhead indicated regions, bicuculline-

treated slice and no-probe control are shown from left to right. Scale bar represents 

20 microns with the exception of 5 microns in zoom-in. Bicuculline-treatment, as a 

well-established method to induce homeostatic plasticity, resulted in a significant 

upregulation of circHomer1_a in both stratum pyramidale (somatic layer) and stratum 

radiatum (neuropil layer). 

 

5.4 Discussion 

5.4.1 Mechanisms of functions 

Eukaryotic circRNAs are a class of low-abundance, but biochemically stable, 

cellular RNAs that possess neither a 5’ nor a 3’ end. The property of circularity 

has contributed to their relative anonymity (until recently), as most of the 

transcriptome-wide studies begin with the purification of a poly(A) RNA 

fraction. Similar to other recent studies, we sequenced and analyzed rRNA-

depleted samples that allow one to analyze both circRNAs and their linear 

hosting transcripts in an unbiased and quantitative manner. Although circRNA 

identification relied on available genome annotation in previous studies, we 

established a computational pipeline that does not rely on gene annotations or 

assume canonical splice sites, and can therefore identify circRNAs derived 

from previously unannotated genomic regions. This allowed us to identify the 

circRNAs in rat, which, to date, has a relatively impoverished genome 
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reference and annotation. 

 

We found that circRNAs are most abundant in brain compared to other 

tissues and the brain-expressed circRNAs are derived from genes that code 

for proteins with synapse-related functions. Moreover, we, for the first time, 

visualized the sub-cellular localization of individual circRNA species both in 

vitro and in vivo. While many schemes of possible functions have been 

proposed for circRNAs, we found that they can bind to miRNAs and RBPs but 

in general not exceed the extent of that of the host linear transcripts. However, 

circRNAs exhibit strong evolutionary conservation in both sequence level and 

expression level, which serves as a strong indicator of their functional 

relevance. 

 

While it has been reported circRNAs with developmental-stage-specific 

expression in C. elegans (oocyte, sperm and embryonic stages) [37], we 

present the evidence for developmental regulation of circRNAs in neurons in 

this study. The development of the CNS/brain involves neuronal maturation, 

neurite outgrowth and synaptogenesis. Non-coding RNAs such as miRNAs 

and lncRNAs have emerged as key players in regulating these developmental 

processes [123], [124]. However, for most of them the molecular mechanisms 

by which they function are still unknown. Recently, the lncRNA RMST was 

identified as a factor important for neuronal differentiation as well as 

functioning as a co-regulator of SOX2, a mediator of neural stem cell fate 

[121]. We identified a set of circRNAs to be differentially expressed in the 

mouse hippocampus at different developmental stages (E18 to P30). 

Intriguingly, a circRNA that was significantly downregulated at later stages 

arises from the linear transcript coding for Rmst, thus supporting a potential 

function of circRNAs in brain development. In contrast, the expression of 

circKlhl2 was increased at P30 (P21) compared to E18 (P4) indicating a 

putative role of this circRNA during synaptogenesis or when mature synapses 

have formed. In summary, we showed a shift in the expression pattern for a 

large set of circRNAs associated with the onset of synaptogenesis, indicating 
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role of circRNAs in hippocampal development. 

 

The brain is the most plastic organ and its circuits underlay tight regulation 

and modification throughout the entire lifespan of animals. Both the stability 

and flexibility of neuronal networks is key to all perception, behavior as well as 

learning and memory. Experience-dependent alterations in the connectivity of 

neural networks can result in plasticity of intrinsic excitability and synaptic 

connections. We induced homeostatic plasticity by treating cultured 

hippocampal neurons with bicuculline and observed a dynamic change in 

circRNA expression. Interestingly, a circRNA (circHomer1_a) derived from the 

Homer1 linear transcript was the most significantly upregulated circRNA after 

plasticity. The Homer1 protein plays a major role in the organization of the 

postsynaptic densities. It regulates mGluR function [11] and is implicated in 

neurological disorders such as Parkinson Disease and Schizophrenia [125]. It 

is known that neuronal activity causes an increase in expression of immediate 

early gene variants of Homer1 [126]. The increase in circHomer1_a 

expression levels we observed coincided with an up-regulation of Homer1a 

mRNA suggesting a potential co-regulation of the circRNA and its linear host. 

However, this co-regulation may be an exception since only few circRNAs 

showed co-regulation with their host genes; more common was the 

observation that circRNAs exhibited changes opposite to those shown by the 

linear host mRNA following plasticity. Thus, our findings indicate a potential 

for the existence of diverse mechanisms of action for different sets of 

circRNAs in synaptic plasticity.  

 

Finally, as a heterogeneous group of transcripts, it is very likely that circRNAs 

affect cellular and neuronal function via a diverse set of mechanisms. The 

different datasets accumulated in this study should serve as a rich resource 

for future functional research, where genetic perturbation of specific circRNAs 

followed by careful phenotypic examination in different in vitro and/or in vivo 

neuronal systems will be needed to shed more light on circRNA function in the 

nervous system and specifically to address their role in learning and memory. 



107 

 

5.4.2 Other types of circular RNAs 

Recently, two other types of circular RNAs have been identified: circular 

intronic long non-coding RNAs (ciRNAs) and exon-intron circular RNAs 

(EIciRNAs). Among many shared or specific features of the circular RNAs 

(Table 5.2), ciRNAs are not generated from the splicing process and therefore 

is the only type (so far) of circular RNAs that cannot by identified using our 

computational pipeline acfs. In fact, EIciRNAs can be viewed as a variant of 

circRNAs, where the introns between the circular junctions are not completely 

spliced out. Together with the fact that there are multiple isoforms of circRNAs 

with the same circular junctions, the exact full-length sequence of circular 

RNAs must be identified before any further functional analysis. 

 

 circRNA ciRNA EIciRNA 
Biogenesis 5’-3’ ligation 

mediated by 
spliceosome 

Un-debranched 
intron lariat 

5’-3’ ligation 
mediated by 
spliceosome 

Sub-cellular 
localization 

Mostly in 
cytoplasm 

Enriched in 
nucleus 

Exclusively in 
nucleus 

MiRNA binding 
sites 

Many Few Few 

Functions Post-
transcriptional 

regulation 

Transcriptional 
regulation (mostly 

on host genes) 

Transcriptional 
regulation (mostly 

on host genes) 
Can be identified 

using acfs 
Yes No Yes 

Table 5. 2 Types of circular RNAs 

 

5.4.3 Fusion transcripts 
Similar to circRNAs, fusion transcripts originate from coupled splicing and 

joining of two different primary RNA transcripts (termed as trans-splicing, in 

contrast to back-splicing for circRNAs). Many trans-splicing event have been 

observed in cancer samples [127]–[130], and their importance lies in a simple 

fact that the generation of fusion transcripts with novel (often pathological) 

functions does not rely on genomic rearrangement and therefore is much 
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easier to take place. Given the similarity of biogenesis between fusion 

transcripts and circRNAs, acfs can also be used in fusion transcript 

identification and expression profiling. The existence and more importantly the 

change of their abundance may be indicative of the cellular status or response 

to certain stimuli, either endogenous or exogenous, in a physiological or 

pathological context. 

 

5.4.4 Improvements 

High throughput sequencing data, especially those with long read length 

and/or paired-end mode, can be used to infer the internal sequences of 

circRNAs. Moreover, the absolute and relative coverage between the exons 

and introns could be used to estimate the exon and intron composition of the 

circRNA sequences. Our data suggest that circRNAs are more abundant in 

vivo (from cells with physiological context) than in vitro (cell cultures), which 

explains the low detection rate in most current profiling studies using cell 

lines, and suggests broader in vivo profiling studies of circRNAs. 
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Summary and discussion 
 

The knowledge of the transcriptome landscape is crucial for understanding 

various mechanisms of molecular biology, and more importantly for disease 

diagnosis and precise treatments. Broadly speaking, three layers contribute to 

the importance of the transcriptome landscape. First, the profile of all isoforms 

of protein-coding genes determines, by and large, the development path of 

cells and organisms. As over 90% of the protein-coding genes in human 

undergo alternative splicing, abnormal alternative splicing is observed in all 

eight hallmarks of cancer and neurological diseases. The abnormal isoforms 

play critical roles in promoting oncogenesis. In cancer, the aberrant usage of 

5’ and/or 3’ UTR, via differential choice of the alternative promoters and/or 

polyadenylation sites, alters not only the coding sequences but also the 

regulatory elements in the UTRs, thereby affects the fate of the RNA 

transcripts and influences their functions. Second, the profile of various 

regulatory elements modulates the activity of protein-coding genes. Small 

non-coding RNAs participate in development and various diseases. RBPs can 

alter the fate of RNA by either bind to RNA directly or indirectly. Proteins 

modulating DNA methylation and a variety of chromatin modifications have 

direct influence on RNA landscape. Third, the interplay of RNA transcripts and 

regulatory elements shapes the dynamic property of transcriptome landscape. 

Expressional changes in RNA lead to difference in protein abundances, which 

in turn modulates the expression profile of the trans-regulatory elements such 

as ncRNAs and RBPs, thus forms a dynamic co-regulatory network consisting 

of feed-forward-loops and feed-back-loops. Mechanistic information could be 

extracted from data profile in the form of time-series, or differential 

compartmentalization, or even heterogeneous population. In fact, such 

information is not only valuable to reverse engineering molecular biology, it 

can also be used to guide clinical diagnosis and make treatment plans. 

Identifying the players in the regulatory network is the first step of decoding 
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molecular biology. In this thesis, I present tailored analysis on four specific 

projects belonging to the above two layers. 

 

First, a hybrid assembly pipeline is developed for identification of 

transcriptome independent of genomic sequences. By combining two 

complementary sequencing technologies in conjunction with efficient cDNA 

normalization, a high quality transcriptome can be characterized. It out-

performs other assembly tools that focus on one type of data input using one 

algorithm, and the results are experimentally validated. 

 

Second, an analysis framework is developed for characterization of full-length 

transcripts. By tailoring tools for long read-length sequencing technology, 

transcriptome landscape could be examined with greater detail. Moreover, the 

association of different RNA processing events could be experimentally 

measured. The application on fly Dscam gene transcripts resolved the 

independent splicing hypothesis and called for re-examination of previous 

experiments. The application on rat brain greatly enhanced the transcriptome 

annotation, which is crucial for the neuroscience community that use rat as a 

model organism. 

 

Third, a de novo microRNA prediction tools is presented. By designing 

sequencing experiments that capture snapshots of miRNA biogenesis 

process, not only mature miRNAs and precursor miRNAs could be identified, 

but also the information on miRNA processing and modification could be 

learnt. Proof-of-principle experiments on well-studies organism like mouse 

and C. elegans demonstrate the efficacy and application potential of this 

method.  

 

Finally, a customized pipeline is developed for characterizing circRNAs as a 

novel group of regulatory RNAs. By examining potential splicing junctions 

based on local alignments, circRNAs can be identified from the “junk” RNA-

Seq data. Tens of thousands of circRNAs are identified and quantified when 
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applied to mouse, rat and fly. Further experiments demonstrate that circRNAs 

are enriched in brain synapses and participate in brain development and 

neuronal homeostatic plasticity. 

 

In summary, this thesis presents tailored analysis on four different aspects of 

transcriptome landscape. With big data to come, the methods can be used in 

conjunction towards an integrated understanding of molecular biology and 

medicine. 
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Appendix B: Zusammenfassung 
 
 
Eine genaue Kenntnis des Transkriptoms ist von entscheidender Bedeutung  im Bereich der 
Molekularbiologie und gewinnt Bedeutung bei der Diagnose von Krankheiten und deren 
Behandlung. Drei entscheidende Aspekte des Transkriptoms tragen zu dessen vielschichtiger 
Bedeutung bei. Zunächst  definiert das Profil aller Isoformen der Protein-kodierenden Gene 
den  Entwicklungspfad der Zellen und Organismen. Zweitens moduliert das Profil der 
regulatorischen Elemente die Aktivität der Protein-kodierenden Gene. Drittens prägt das 
Zusammenspiel der Protein-kodierenden Gene und regulatorischen Elemente die Dynamik 
des Transkriptoms. Die Identifizierung der einzelnen Bestandteile des regulatorischen  
Netzwerks ist der erste Schritt im Bereich des Reverse Engineering in  der Molekularbiologie.  
In der vorliegenden Arbeit beschreibe ich vier Analysemethoden für Anwendungen, die sich 
mit den ersten beiden Aspekten  beschäftigen.   
 
Als Erstes wurde eine Software-Pipeline entwickelt, die ohne  Referenzgenom ein Assembly 
zur Identifizierung des Transkriptoms  durchführt. Ein qualitativ hochwertiges Transkriptom 
konnte erstellt  werden, indem zwei sich ergänzende Sequenziertechnologien und zusätzlich  
eine effiziente cDNA-Normalisierung kombiniert wurden. Die vorgestellte Pipeline übertrifft 
bestehende Programme, die nur auf eine einzige Art  von Eingabedaten setzen. Darüber 
hinaus wurden die Ergebnisse  experimentell bestätigt.   
 
Als Zweites wurden Analysemethoden erarbeitet, um vollständige Transkripte zu 
charakterisieren. Es wurden Werkzeuge für die Auswertung von Daten aus 
Sequenziertechnologien, die lange Reads liefern, entwickelt, mit denen das Transkriptom 
genauer untersucht werden kann. Des weiteren konnte damit das Zusammenspiel 
verschiedener Schritte der RNA-Prozessierung experimentell untersucht werden. Eine 
Untersuchung des Transkripts des Gens Dscam in der Fruchtfliege bestätigte die Hypothese  
des unabhängigen Spleißens, wodurch eine Neuauswertung früherer  Experimente notwendig 
wird. Die Anwendung der Methode auf Sequenzierdaten des Rattengehirns verbesserte 
deutlich die Annotation des Transkriptoms. Dies ist von großer Bedeutung für die 
Neurobiologie, in der die Ratte als Modellorganismus eingesetzt wird.   
 
Als drittes wurde ein de-novo-miRNA-Vorhersagewerkzeug implementiert. Durch die 
Entwicklung von Sequenzierexperimenten, welche eine Momentaufnahme der miRNA-
Entstehung liefern, können nicht nur  prozessierte und Vorläufer-miRNAs identifiziert werden, 
sondern auch  Details der miRNA-Prozessierung und -Modifikation beobachtet werden.  Erste 
Experimente in Modellorganismen wie der Maus und C.elegans zeigten die Effizienz und das 
Anwendungspotential der Methode.   
 
Schließlich ist eine Pipeline zur Charakterisierung von zirkulärer RNA entwickelt worden. 
Durch die Untersuchung von potentiellen Spleißstellen  basierend auf lokalen Alignments 
können zirkuläre RNAs aus ansonsten  nicht berücksichtigten RNA-Sequenzdaten identifiziert 
werden.  Zehntausende zirkuläre RNAs in Maus, Ratte und Fruchtfliege konnten identifiziert 
und quantifiziert werden. Weitere Experimente zeigen, dass zirkuläre RNAs in 
Gehirnsynapsen angereichert sind und bei der Entwicklung des Gehirns und neuronalen 
homöostatischen Plastizität  beteiligt sind. 
 
Zusammenfassend beschreibt diese Arbeit vier Analysemethoden für verschiedene Aspekte 
des Transkriptoms. Die vorgestellten Methoden tragen gemeinsam zu einem ganzheitlichen 
Verständnis der  Molekularbiologie und Medizin bei. 

 


