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trollable manner. Thus, further 

 

tages of the presented model peptides are beneficial for NMR experiments in general, 

11. Outlook 

In the future, the presented model peptides can be used for a variety of investigations 

and applications. In comparison to naturally occurring systems, the advantages of 

these models are obvious - they follow clear and well investigated design principles, 

are easily synthetically accessible, exhibit a perceptibly elevated solubility and slowly 

convert into amyloids in a highly pH and metal ion con

investigations using low as well as high resolution methods can help to elucidate the

complex molecular events that occur during amyloid formation on a molecular level. 

A systematic rearrangement of the β-sheet preferring Val residues within the sequence 

of VW18 for example, can be used to obtain valuable information on the validity of the 

so-called “amyloid stretch” hypothesis, where very short hydrophobic core segments 

(“amyloid stretches”) are discussed to be the essential amyloid inducing element. Also 

experiments on continuative peptides with a similar intrinsic amyloid formation propen-

sity, but distinct stability of the coiled coil structural motif should provide a closer view 

on the impact of the competitive native conformation. Moreover, the presented model 

peptides can be easily equipped with spin labels or fluorescence tags which, in combi-

nation with sophisticated biophysical techniques, such as EPR spectroscopy and ultra-

fast time-resolved fluorescence spectroscopy, enable a systematic investigation of the 

amyloid formation kinetics in a millisecond to picosecond time scale that is usually not 

accessible by conventional spectroscopic approaches. 

A detailed characterization of the presented model system by modern high resolution 

techniques such as NMR spectroscopy should furthermore help to understand both, 

the molecular arrangement within fibrils as well as events and intermediates that occur 

during the complex amyloid formation process. Thereby, the above mentioned advan-

regardless if at solid state conditions or in solution. Solid state NMR in combination with 

proline scanning analysis for example can be applied to determine the internal proto-

filament structure of the system. Such experiments are suitable to locate turn regions 

within the peptide strands and might help to identify specific side chain - side chain 

interactions that, beside hydrogen bonds, govern the extraordinarily high stability of 

amyloid fibrils. A structural characterization by solid state NMR can furthermore lead to 

a better understanding of the morphological distinctions of the resulting amyloid fibrils 
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that are driven by protofilament-protofilament interactions which are still very poorly 

understood. On the other hand, NMR spectroscopy in solution can help to obtain infor-

mation on the dynamics of amyloid formation. Solution state NMR spectroscopy is very 

demanding in terms of solubility and sample consumption which, as a consequence, 

often hampers a detailed characterization of amyloid formation processes at solution 

conditions. As the model peptides presented here are easily synthetically accessible, 

isotope labels can be introduced selectively at sequence positions of special interest 

and importance. Additionally, the here presented peptide model exhibits a perceptibly 

elevated solubility and slowly converts into amyloids at native like aqueous conditions 

without the necessity of unusual stimuli. Consequently, it should be possible to directly 

monitor the molecular events which occur during the process of amyloid formation by 

solution state NMR. Such experiments are of current, paramount interest, since espe-

cially the early aggregates and intermediates, which are thought to be the real cause of 

many diseases associated with amyloids, are very poorly investigated so far. 

Under the prerequisite of a well investigated internal protofilament structure, the pre-

sented model systems can furthermore be used for a variety of biology and materials 

science related applications. It is for example possible to use model peptide fibrils as 

rigid, stable, and, more importantly, switchable scaffolds for the presentation of several 

non-peptidic molecules such as oligosaccharides. The well defined amyloid ultra struc-

ture ensures a discrete alignment of these molecules on the outer surface of the fibril. 

Additionally, it should be possible to direct the formation of these fibrillar scaffolds by 

pH alteration or the addition of metal ions. In the context of biomedicine this switchable 

biopolymeric aggregation might provide a powerful tool for the controlled generation of 

functional, multivalent species at targets of special interest. 

Additionally, a detailed structural knowledge can be used for the generation of a pro-

s

a  
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plemented at hydrophobic and polar positions of coiled coil peptides and subsequently 

pective model system to study interactions between natural and non-natural amino 

cids in the well defined environment of a cross-β quaternary structure. Our group has

n enormous experience in the field of fluorinated amino acids, which have been im-

studied regarding their impact on the conformational stability. In contrast to the rather 

complex α-helical coiled coil folding motif, the cross-β quaternary structure displays 

only two defined interfaces and, thus, should provide a perfect environment to study 

the impact of non-natural amino acids on peptide-peptide and peptide-protein interac-

tions. 
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