6 Anhang

6.1 Lebenslauf

Allgemeines	
09.01.1977	geboren in Berlin
Vater	Dr. Konrad Herrmann
Mutter	Dr. Anita Herrmann
Schulbildung	
1983 – 1991	"Kurt-Barthel-Oberschule" (Grundschule)
	in Berlin-Köpenick
1991 – 1996	"Alexander-von-Humboldt-Oberschule" (Gymnasium)
	in Berlin-Köpenick
31.05.1996	Abitur
Studium	l les us léis se sie un se sur de la characte charil."
1990 – 2002	
	an der Brandenburgischen Technischen Universität in Cottbus
	Diplomarbeit "Entwicklung edelmetallfreier Katalysatoren für die Sauerstoffreduktion", publiziert in [16]
18.11.2002	Diplom für "Umweltingenieurwesen und Verfahrenstechnik"
Promotion	
2002 – 2005	Promotion am Hahn-Meitner-Institut
Sonstiges	
1999	Leonardo da Vinci-Programm an der Plataforma Solar de Almeria (Spanien)
	"Entwicklung und Erprobung einer solaren Abwasserbehandlungs- anlage" (Betreuer Prof. Ay und Dr. Fernandez-Ibañez sowie Dr. Malato)

6.2 Danksagung

An dieser Stelle möchte ich gerne einigen Menschen herzlich danken, die auf ihre ganz spezielle Weise zu dieser Arbeit und ihrem Gelingen beigetragen haben.

Mein besonderer Dank gilt Prof. Dr. Tributsch, der das Vertrauen in mich setzte, dieses interessante und anspruchsvolle Thema zu bearbeiten. Insbesondere möchte ich mich für die wertvollen Anregungen und freundliche Unterstützung dieser Arbeit bedanken.

Ich möchte mich gerne bei Herrn Priv.-Doz. Pohlmann für die interessanten Diskussionen neben und in seinen Vorlesungen bedanken, insbesondere dass er mir die Chance gegeben hat, meine Lehrfähigkeiten zu erproben.

Herrn Dr. Bogdanoff möchte ich ebenfalls meinen besonderen Dank aussprechen, weil er mich in jeder Phase der Arbeit sehr sachkundig und richtungsweisend begleitete, mich stets ermunterte und viel Geduld zeigte.

Allen ehemaligen und derzeitigen Mitarbeitern der Arbeitsgruppe Elektrokatalyse am Hahn-Meitner-Institut danke ich für die freundliche und offene Arbeitsatmosphäre. Ein ausdrücklicher Dank geht an die Doktoranden am HMI für ihre Hilfsbereitschaft, die Anregungen und Tipps, sowie die Stammtisch-Abende.

Außerdem möchte ich mich bei Dr. Bogdanoff, Dr. Fiechter und Dr. Zehl für das Korrekturlesen bedanken.

Die hochwertige Ausstattung an Messgeräten am HMI und ihre gute Betreuung haben dieser Arbeit eine sehr gute wissenschaftliche Qualität gegeben. Besonders die Möglichkeit zu bekommen, sich mit Hilfe dieser Betreuung in die Messverfahren einzuarbeiten, gab meiner Promotion eine gelungene Ausbildung. Deshalb möchte ich mich bei Herrn Wilhelm für die Einarbeitung am Rasterelektronenmikroskop und am EDX, Herrn Dr. Rappich am Raman-Spektrometer, Herrn Dr. Fiechter und Frau Dr. Tomm am Röntgen-Pulverdiffraktometer und Herrn Dr. Fostiropoulos und seinen Mitarbeitern für die Hilfe am Infrarot-Spektrometer bedanken. Dr. Chemseddine danke ich für die IR-Analysen mittels ATR. An dieser Stelle möchte ich auch Frau Dr. Alber und ihren Mitarbeitern für die Anfertigung der Neutronenaktivierungsanalysen sowie Herrn Dr. Morbach für die Verbrennungsanalysen meiner Katalysatoren Dank sagen.

Außerhalb des HMI habe ich zahlreiche Unterstützung erhalten: Herrn Dr. Brüser (INP) und Herrn Dr. Kersten (INP) danke ich für die gute Zusammenarbeit in den vergangenen FuE-Projekten. Herrn Dr. Katterle (Universität Potsdam) und Frau Loew (Universität Potsdam) danke ich für die Testversuche der Katalysatoren in einem H₂O₂-Sensor. Herrn Dr. Radnik (ACA) gilt mein besonderer Dank für die vielen XPS-Messungen. Herrn Dr. Novak (PSI) danke ich für die "Anstoß gebende" Diskussion auf der ISE

2004 und seine weitere Hilfe. Ebenfalls möchte ich mich bei Herrn Prof. Scherson für seine motivierenden Worte bezüglich der Chance von Porphyrin-basierten Katalysatoren bedanken.

Ein großer Dank gilt meinen Freunden, die mich stets motiviert haben, diese Arbeit zu Ende zu bringen. Ich verdanke Euch ein buntes und Impuls gebendes Leben während der letzten Jahre. Bei Sandra möchte ich mich speziell für ihr stets offenes Ohr und ihre Hilfe bei den Korrekturen bedanken.

Nicht zu vergessen: Waldbombur, Landroval, Balint und ihre vielen Chars sowie meine heldenhafte Moonglance, die mir genügend Ablenkung in spannenden Abenteuern gegeben haben!

Meiner Familie möchte ich gerne danken, dass sie mich so oft in meiner Arbeit ideell unterstützt und motiviert haben. Besonders in diesem schweren traurigen Jahr hat unser Familienzusammenhalt mir viel Kraft gegeben. Ich möchte gerne meinem Vater für die Korrekturarbeiten, Anregungen und Hinweise danken.

Größter Dank und Respekt gilt Jens, der mir mit viel Geduld geholfen, stets die Nerven behalten und immer Humor bewiesen hat. Danke für Deine Ideen, Dein Verständnis, Deine Wärme und Aufmunterung!

6.3 Symbolverzeichnis

Lateinische Buchstaben

A	[m ²]	Fläche
A	[mol Zeit-1 Teilchen-1]	Aktivität (nach dem Farin-Modell)
В	[A/min ⁻¹]	Steigung der Levich-Koutecky-Gleichung
С	[F]	Kapazität
С	[mol/m ³]	Konzentration
CBulk	[mol/m ³]	Konzentration der elektrochemisch aktiven Spezies im Bulk
C _{Ox}	[mol/m ³]	Konzentration der oxidierten Spezies
CRed	[mol/m ³]	Konzentration der reduzierten Spezies
d	[m]	Abstand der Platten im Kondensator, Teilchendurchmesser
D	[m²/s]	Diffusion
Е	[V]	Potenzial
E ₀	[V]	Standardpotenzial
E _A	[J/mol]	Aktivierungsenergie
E _{AOx}	[J/mol]	Aktivierungsenergie der Oxidation
$E_{A^{Red}}$	[J/mol]	Aktivierungsenergie der Reduktion
f		Ordinatenabschnitt der BET-Geraden
G	[J]	Gibb'sche Energie
Н	[J]	Standardbildungsenthalpie
I	[-]	Lichtintensität
i	[A]	Strom
I ₁₃₅₀	[-]	Intensität der B-Bande
1580	[-]	Intensität der G-Bande
ic	[A]	Kapazitätsstrom

İ _{Diff}	[A]	Diffusionsstrom
İ _{Kin}	[A]	Kinetischer Strom
i _{Ox}	[A]	Oxidationsstrom
I _R	[A]	Ringsstrom
I _{Red}	[A]	Reduktionsstrom
I _S	[A]	Scheibenstrom
j	[A/m ²]	Stromdichte
J	[1/(m ² s)]	Teilchenfluss
jo	[A/m ²]	Austauschstromdichte
JRed	[A/m ²]	Stromdichte der Reduktion
К	[J/mol]	BET-Konstante
k	[1/s]	Reaktionskonstante
k _{Ox}	[1/s]	Reaktionskonstante für die Oxidation
k _{Red}	[1/s]	Reaktionskonstante für die Reduktion
L ₀₀₁	[m]	Ausdehnung der 001-Netzebene
La	[m]	Ausdehnung der perfekt planaren Graphen-Ebene
m	[kg]	Masse
М	[kg/mol]	Molare Masse
n	[-]	Anzahl der Elektronen
Ν	[mol]	Stoffmenge
Ν	[-]	Übertragungsfaktor
O_{sp}	[m²/kg]	Spezifische Oberfläche
p/p ₀	[-]	Relativdruck
Q	[C]	Ladung
r	[m]	Momentaner Kernabstand
r _{eq}	[m]	Kernabstand im Gleichgewicht

r _K	[m]	Kelvinradius
S	[J/K]	Entropie
S		Steigung der BET-Geraden
S _{Meso}	[m ²]	Fläche der Mesoporen
S _{Mikro}	[m ²]	Fläche der Mikroporen
Т	[°C]	Temperatur
t	[s]	Zeit
ta	[m]	Adsorbatschicht
U	[V]	Spannung
V	[m/s]	Geschwindigkeit
V _{ex}	[S ⁻¹]	Anregunsgfrequenz
Vv	[S ⁻¹]	Frequenz nach der Polarisierung
V	[m³/g]	Spez. adsorbiertes Volumen
Va	[mol]	Gemessenes Adsorbatvolumen
V _m	[mol]	Monolayervolumen
х	[m]	Raumrichtung von der Elektrodenoberfläche

Griechische Buchstaben

α	[-]	Durchtrittsfaktor
α	[-]	Polarisierbarkeit
β	[-]	Halbwertsbreite
δ	[°]	Kontaktwinkel
δ_{N}	[m]	Nernstsche Diffusionsschicht
δ_{Pr}	[m]	Prandtlsche Strömungsgrenzschicht
3	[As/Vm]	Pemittivität
λ	[m]	Wellenlänge

μ	[J/mol]	Chemisches Potenzial
ν	[m²/s]	Viskosität
ρ	[m³/g]	Dichte
ω	[min ⁻¹]	Rotationsgeschwindigkeit

Konstanten

F = 96484 C/mol	Faradaysche Konstante
N _A = 6,02204 ·10 ²³ mol ⁻¹	Avogadrozahl
R = 8,3145 J/mol	Universelle Gaskonstante
R _{N2} = 297 J/mol	Gaskonstante für Stickstoff

Abkürzungen

BET	Modell von Brunnauer, Emmett und Teller
BP	Black Pearls
BZ	Brennstoffzelle
CoTMPP	Kobalt-Tetramethoxyphenylporphyrin
CV	Zyklovoltametrie
DMFC	Direkt-Methanol-Brennstoffzelle
DSC	Wärmekalorimetrie
EDLC	Elektrochemischer Doppelschicht-Kondensator
EDX	Energiedispersive Röntgenfluoreszenz
GDE	Gasdiffusionselektrode
НОМО	höchstes besetztes Molekülorbital
IR	Infrarot
JCPDS	Joint Commitee on Powder Diffraction Standards
LUMO	niedrigstes unbesetztes Molekülorbital

MEA	Membran-Elektroden-Einheit
MS	Massenspektroskopie
NAA	Neutronenaktivierungsanalyse
NHE	Normal-Wasserstoffelektrode
NTP	Niedertemperatur-Plasma
PEM-BZ	Polymer-Elektrolyt-Membran-Brennstoffzelle
RDE	Rotierende Scheibenelektrode
RI	Refraktionsindex
RRDE	Rotierende Ring-Scheibenelektrode
TG	Thermogravimetrie
THF	Tetrahydrofuran
US	Ultraschall
UV-Vis	Ultraviolett-sichtbar
ÜМ	Übergangsmetall
XPS	Röntgen-Photoelektronen
XRD	Röntgendiffraktometrie

6.4 Abbildungsverzeichnis

Abbildung 2-1. Mesomere Grenzstruktur von Kobalt-Tetramethoxyphenylporphyrin (CoTMPP)	19
Abbildung 2-2. (a) 4-Orbital-Modell nach Gouterman (b – HOMOs, c – LUMOs, Q und B – Übergänge) vor	der
Anregung und (b) bei der Anregung	20
Abbildung 2-3. Gemessenes UV-Vis-Spektrum von CoTMPP in Tetrahydrofuran	20
Abbildung 2-4. d-Elektronenkonfiguration des Kobalt-Ions im Ligandenfeld des Tetra-Pyrrolrings (planare	
Anordnuna)	21
Abbildung 2-5. (a) Schematische Struktur eines Schwarzen Kohlenstoffs II und (b) einer Graphen-Ebene	23
Abbildung 2-6. Kristallstruktur von hexagonal angeordnetem Graphit	24
Abbildung 2-7. (a) Schüsselförmiges Kohlenstoffnetzwerk durch einen eingebauten Fünfring und (b) die da	raus
resultierende "Lasagne"-Struktur der gestapelten Graphen-Ebenen in Schwarzen Kohlenstoffen [33]	25
Abbildung 2-8 Raman-Spektrum von einkristallinem Graphit [38]	27
Abbildung 2-9 Raman-Spektrum von kristallinem Graphit, der durch Pyrolyse gestresst worden ist [38]	28
Abbildung 2-10 Raman-Spektrum des Naturgraphits, Kanadische Flocke" (von Timcal) mit makrokristalline	
Finheiten (D-Peak bei 1350 cm ⁻¹ (orange) und G-Peak bei 1575 cm ⁻¹ (blau))	
Abbildung 2-11 Raman-Spektrum von Black Pearls" (von Carbot) (sp2-bybridisierter Kohlenstoff bei ca	20
1170 cm ⁻¹ (grün) D-Peak bei ca. 1320 cm ⁻¹ (grange) Peak bei 1512 cm ⁻¹ (dunkelgelb) und G-Peak bei 160	0 cm-1
(hlau)	20 20
Abbildung 2-12. In situ Raman-Spektrum eines glasartigen Kohlenstoffes während der Lithium-Interkalation	00
Abbildung 2 T2. In situ Kunan opekirum eines glusulugen Komenstones walliend der Eitham merkaldion	[00] 31
Abbildung 2-13 Gemessenes Raman-Spektrum von Coo im Bereich zwischen 1400 und 1500 cm ⁻¹	0/ 32
Abbildung 2-14. Diffraktogramme eines Schwarzen Kohlenstoffs (Black Pearls" von Carbot, oben blau) un	02
einem Naturgraphit (Kanadische Elocke" von Timcal, unten schwarz) mit dem Diffraktienmuster von Graph	it
(41-1487 rot) sowie rechts einer schematischen Darstellung der Struktur der Kristalle	" ??
Abbildung 2-15 (oben) Schema der Donnelschicht und (unten) Potenzialverlauf durch die Donnelschicht [4	51 36
Abbildung 2-16. Aktylerungsenergie-Berg" bei der Durchtrittsreektion mit (durchgezogen) und ohne (gestri	oj _00 chalt)
zusätzlichen Energieheitrag [50]	//ony /2
Abbildung 2-17 Schematische Darstellung der Tafel-Geraden	 //
Abbildung 2-11. Schemalische Darstellung der Talei-Geraden	
des Seuerstoffs für die Seuerstoffreduktion	weye 18
Abbildung 2.10. Mögliches Modell der Bindungsverhöltnisse von Seuersteff am Höm Komplex (links – halb	40
Abbildung 2-19. Moglicites Modell der Bildungsverhaltnisse von Saderston am Ham-Komplex (imks – Hab	halh
besetztes d_{z} -Aloniorbital des Superoxidions (blau) und leeres u_{z} -Aloniorbital des Elsens (schwarz) und rechts besetztes d. Atomarbital des Eisens (schwarz) und des belb besetzte π^{*} Orbital des Superoxidions) in z	– Haib
Desetztes u _{xz} -Atomorbital des Elsens (schwarz) und das natio besetzte in -Orbital des Superoxidions) in z-	51
Richung	01
Abbildung 2-20. Elektronendonation und Backdonation in einer Saderstonanbildung am Obergangsmetallic	נטן וונ בס
Abbildung 2.21. (a) Ease to Ease" Kabaltaaraburin und (b) dar mögliche Machanismus dar Seuerstoffredu	JZ ktion
Abbiliuung 2-21. (a) "Face-to-Face -Robaliporphyrin und (b) der mögliche Mechanismus der Saderstömedu	גווטוו בס
an einem soichen "Face-io-Face -Kobailporphynn [00]	02
Abbildung 2.1 CV Disgramm since 20.0 Dt/C Katalyastaryan Etaly (Varabyhassahujindialait 2) Varia) in	
Abbildung 3-1. CV-Diagrammelines 20 % PVC-Malaysator von Elek (Vorschubgeschwindigkeit 3 V/min) m	IN2 61
gespuitern 0,5 M H ₂ SO4 Elektrolyt (25 µg Elektrodenbeladung)	07
ADDITIOUTING 5-2. (IITIKS) UV-DIAGRATITITI VOT "BIACK PEARS ITI N2 GESPUITEM U,5 M H2SU4 Elektrolyt bei versehiedenen Versehuksesshwindigkeiten (2 V/min (schwarz) C V/min (schwarz) 0 V/min (sc	
verschliedenen vorschubgeschwindigkeiten (3 v/min (schwarz), 6 v/min (orange), 9 v/min (blau) und 12 v/	nin
(rot)) (25 µg Elektroaenbelaaung) una (recnts) Stromalchte J bel 0,55 V(NHE) versus aer	
vorscnubgeschwindigkeit zur Bestimmung der Kapazität	63
Abbildung 3-3. Kotationsabhangige Strom-Spannungskurven des getragerten pyrolysierten CoTMPP/BP-	
Katalysators (200 min ⁻¹ , 400 min ⁻¹ , 900 min ⁻¹ , 1600 min ⁻¹ und 2500 min ⁻¹) in O_2 gesattigter 0,5 M H ₂ SO ₄ (25	μg
Beladung aut der Elektrode) (eingekreist: Storende anodische Strome begrenzen das Messtenster)	68

Abbildung 3-4. Levich-Plot der RDE-Messung des CoTMPP/BP-Katalysators für verschiedene Spannungen (0,1 V(NHE); 0,2 V(NHE); 0,3 V(NHE); 0,4 V(NHE))	.69
Abbildung 3-5. Berechneter Tafel-Plot aus den RDE-Messungen des CoTMPP/BP- (blaue Kreise), FeC ₂ O ₄ - CoTMPP- (orangefarbene Dreiecke) und FeC ₂ O ₄ -CoTMPP+S-Katalysators (schwarze Quadrate) in O ₂ gesättig 0,5 M H ₂ SO ₄ (25 μg Elektrodenbeladung)	ter 70
Abbildung 3-6. Kinetische Stromdichte j _{kin} bei 0,7 V(NHE) aus RDE-Messungen in O ₂ gesättigter 0,5 M H ₂ SO ₂ versus der Beladung des pyrolysierten CoTMPP/BP-Katalysators auf der Elektrode	.71
Abbildung 3-7. Bestimmung des Ubertragungsfaktors N (Katalysatorbeladung 25 μg, Elektrolyt O₂-freien 0,01 Ν Kaliumsulfat / 0,005 M Hexacyanoferrat(III)-Lösung, Ringpotenzial 0,75 V(NHE))	Л _73
Abbildung 3-8. Bestimmung des Übertragungsfaktors für einen FeC₂O₄-CoTMPP+S-Katalysator bei	
verschiedenen Rotationsgeschwindigkeiten (25 μ g Elektrodenbeladung) in einer O ₂ -freien	
0,01 M Kaliumsulfat/0,005 M Hexacyanoferrat(III)-Lösung, Ringpotenzial 0,75 V(NHE)	.74
Abbildung 3-9. Schema des Wroblowa-Mechanismus (Diffusionsprozesse (dunkelgelb), 4e ⁻ -Sauerstoffreduktion (blau), 2e ⁻ -Sauerstoffreduktion (orange), katalytische Zersetzung von H ₂ O ₂ (schwarz) und H ₂ O ₂ -Reduktion (rot)	ו) 75
Abbildung 3-10. Parallelmechanismus (4e-Sauerstoffreduktion (blau) und 2e-Sauerstoffreduktion (orange))	75
Abbildung 3-11. (a) Schema des Transfers von H ₂ O ₂ von Scheibe zu Ring bei einer geringen Beladung der	
Scheibe (Transfer ohne Behinderung) und (b) bei einer hohen Beladung der Scheibe (lange Diffusionswege un	d
Zerfall von H ₂ O ₂ (Senkenreaktion))	76
Abbildung 3-12. Schematische Darstellung der Beugungsspektren von großen (blau) und kleinen Partikeln	
(orange)	.78
Abbildung 3-13. Aus der Summe der Einzelspektren ergibt sich bei der Messung von verschiedenen	
Partikelgrößenfraktionen ein Summenspektrum.	.79
Abbildung 3-14. Partikelgrößenmessung von "Black Pearls" (von Carbot) (Anzahlverteilung)	.80
Abbildung 3-15. Isotherme des NiC ₂ O ₄ -CoTMPP-Katalysators (Adsorption (blau) und Desorption (orange))	~~
(Stickstoff bei / / K)	.82
Abbildung 3-16. Klassifikation der Isothermentypen nach IUPAC [79]	.82
Abbildung 3-17. Berechnete Adsorbatschicht t _a aus Gl. 3-35	00
Abbildung 3-16. Mesoporenvertenung des NiC ₂ O ₄ -CoTMPP-Katalysators nach dem BJH-Modell	00 97
Abbildung 3-19. V-L-Flot für den NIC204-001MFF-Kaldiysator	.07 .d
abbildung 3-20. (a) Energieniveau-Diagramm für den melastischen Streupiozess (Anti-Stokes – Energiezustan ist niedriger als im Anfangszustand (blau), Rayleigh – gleiche Energiezustände (schwarz) und Stokes – Anfangesetzutend ist georgefisch gisching als im Fachysterad (sengres)) und (b) sing askematische Daratellung s	u
Aniangszustanu ist energetisch meunger als im Enuzustanu (orange)) unu (b) eine schematische Darstellung u daraus resultiorenden Spektrums	00
Abbildung 2.21 Schomatischer Aufbau einer Thermewaage mit angekoppelten Massenspektremeter	.90
Abbildung 3-21. Schematischer Aufbau einer mermowaage mit angekoppenen massenspektrometer Abbildung 3-22. Probenträger mit Tiegel	92 92
Abbildung 4-1. CV-Diagramm von unbehandelten CoTMPP/BP (1,2 wt-% Co) in N2 gespülter 0,5 M H2SO4 (25	μg
Elektrodenbeladung, Vorschubgeschwindigkeit 3 V/min) (eingekreist: Redox-Peaks bei 0,34 V(NHE))	97
Abbildung 4-2. CV-Diagramm von "Black Pearls" (von Carbot) in N ₂ gespülter 0,5 M H ₂ SO ₄ (25 μ g	
Elektrodenbeladung) aufgenommen bei verschiedenen Vorschubgeschwindigkeiten (3 V/min (schwarz), 6 V/mi	n
(orange), 9 V/min (blau), 12 V/min (cyan))	.98
Abbildung 4-3. Tafel-Plots von Black Pearls (orangefarbene Sterne) und geträgertem CoTMPP (blaue Kreise) i	n
O₂ gesättigter 0,5 M H₂SO₄ (25 μg Elektrodenbeladung)	.99
Abbildung 4-4. CV-Diagramm von unbehandelten CoTMPP/BP (1,2 wt-% Co) (orange durchgezogen) und bei	
750 °C pyrolysierten CoTMPP/BP (1,2 wt-% Co) (blau gestrichelt) in N ₂ gespülter 0,5 M H ₂ SO ₄ mit 3 V/min	
(25 µg Elektrodenbeladung, Vorschubgeschwindigkeit 3 V/min)1	00
Abbildung 4-5. Tatel-Plots von unbehandelten CoTMPP/BP (1,2 wt-% Co) (orangefarbene Kreise) und bei 750	°C
pyrolysierten CoTMPP/BP (1,2 wt-% Co) (blaue Quadrate) in O ₂ gesättigter 0,5 M H ₂ SO ₄ (25 μ g	101
Liektroaenbeladung)1	01

Abbildung 4-6. Berechnete H ₂ O ₂ Produktion als Funktion des Potenzials aus RRDE-Messungen von unbehandelten CoTMPP/BP (1,2 wt-% Co) (orange gestrichelt) und bei 750 °C pyrolysierten CoTMPP/BP (1,2 wt-% Co) (blau durchgezogen) in O ₂ gesättigter 0.5 M H ₂ SO ₄ (5 ug Elektrodenbeladung)	02
Abbildung 4-7. REM-Aufnahme von pyrolysiertem CoTMPP (ohne Kohlenstoffträger) (5 kV, 98fache Vergrößerung)1	03
Abbildung 4-8. Tafel-Plots von geträgertem pyrolysiertem CoTMPP (CoTMPP/BP – 1,2 wt-% Co) (orangefarber Quadrate) und Kohlenstoffträger-freiem pyrolysiertem CoTMPP (ca. 8 wt-% Co) (blaue Kreise) in O₂ gesättigter 0,5 M H₂SO₄ (25 μg Elektrodenbeladung)1	те 03
Abbildung 4-9. Kinetische Stromdichten bei 0,7 V(NHE) von pyrolysierten CoTMPP/BP bei unterschiedlichen Kobaltgehalten im Reaktionsansatz 1	04
Abbildung 4-10. Partikelgrößenverteilung von "Black Pearls" (von Carbot) (cyan), pyrolysierten CoTMPP/BP mit 1,2 wt-% Co (grau) und pyrolysierten CoTMPP/BP mit 5 wt-% Co (schwarz)1	t 05
Abbildung 4-11. REM-Aufnahme von CoTMPP/BP (5 wt-% Co) (5.000fache Vergrößerung, 2 kV)1 Abbildung 4-12. Röntgen-Diffraktogramm von pyrolysierten CoTMPP/BP (1,2 wt-%Co, 2 h 450 °C 1 h 750 °C ir №) (Verwendung eines Kohlenstoffträgers) mit dem Signalmuster von Graphit (41-1487 (orange))1	06 1 07
Abbildung 4-13. Raman-Spektren von pyrolysierten CoTMPP/BP (1,2wt-% Co, Verwendung eines Kohlenstoffträgers) (blau) und Black Pearls (orange) (eingekreist: sp ² -hybridisiert gebundener Kohlenstoff)1	08
Abbildung 4-14. Rontgen-Dinraktogramm von pyrolysiertem CoTMPP (700 °C in N_2) als Strichmuster (Graphic (41-1487, blau), Kobaltoxid (01-1227, dunkelgelb) und Kobalt (01-1255, rot))1 Abbildung 4-15. Raman-Spektrum von pyrolysiertem CoTMPP (300K/b, 2 b 450 °C, 1 b 750 °C in N_2) (sp ² -	09
hybridisierter Kohlenstoff bei ca. 1230 cm ⁻¹ (grün); D-Peak bei ca. 1350 cm ⁻¹ (orange); Peak bei ca. 1510 cm ⁻¹ (dunkelgelb) und G-Peak bei ca. 1590 cm ⁻¹ (blau))1	10
Abbildung 4-16. Modell einer möglichen Struktur der gebildeten Kohlenstoffmatrix aus der Pyrolyse von CoTMF	'Р 11
Abbildung 4-17. TG-MS-Messung von CoTMPP in strömender Argon-Atmosphäre (200 ml/min, Aufheizrate 10 K/min)1	12
Abbildung 4-18. Experimentell bestimmte TG- (schwarz durchgezogen) und DSC-Kurve (blau gestrichelt) von CoTMPP in strömender Argon-Atmosphäre (130 ml/min) (Aufheizrate 10 K/min)1	13
Abbildung 4-19. Raman-Spektrum von unbehandeltem CoTMPP (orange) und bis 400 °C in N ₂ -Atmosphäre pyrolysiertem CoTMPP (blau)1	14
Abbildung 4-20. Raman-Spektren verschiedener Pyrolyse-Grade von CoTMPP1 Abbildung 4-21. TG-Kurve von CoTMPP (blau durchgezogen) verglichen mit der Flächenausdehnung der sich	16
bildenden Graphenschicht aus den Raman-Spektren (orangefarbene Kreise)1 Abbildung 4-22. Diffraktogramme verschiedener Pyrolysegrade von CoTMPP als Strichmuster (Graphit (41-148	18 }7,
Abbildung 4-23. TG-Kurve von CoTMPP (blau durchgezogen) verglichen mit der Ausdehnung der Graphit- Nanokristallite (orangefarbene Kreise) und der Teilchengröße der Kobalt-Kristalle (grüne Sterne) nach der Seberrer Cleichung	19 20
Abbildung 4-24. (a) Precursor-Gemisch1	20 22
Abbildung 4-25. TG-MS-Messung von einem FeC ₂ O ₄ /CoTMPP-Gemisch (schwarz durchgezogen) in strömende Argon-Atmosphäre (130 ml/min; Aufheizrate 10 K/min) im Vergleich mit reinem FeC ₂ O ₄ (blau gestrichelt)1 Abbildung 4-26. Berechnete Tafel-Plots aus den RDE-Messungen der Katalysatoren FeC ₂ O ₄ -CoTMPP (nach Standardpräparation, blaue Kreise) und pyrolysiertem CoTMPP (ohne Kohlenstoffträger) (orangefarbene	∍r 24
Quadrate) in O ₂ gesättigter 0,5 M H ₂ SO ₄ (25 µg Elektrodenbeladung) (Standardpräparation)1 Abbildung 4-27. Mesoporenverteilung des FeC ₂ O ₄ -CoTMPP-Katalysators (Standardpräparation)1 Abbildung 4-28. Röntgen-Diffraktogramm eines ungeätzten FeC ₂ O ₄ -CoTMPP-Katalysators (orange) und eines geätzten FeC ₂ O ₄ -CoTMPP-Katalysators (blau) mit dem Signalmuster von Wüstit (02-1186) (blau), Eisen (87-	25 26
0/21) (rot), Graphit (41-1487) (schwarz) und Magnetit (88-0315) (orange)1 Abbildung 4-29. Raman-Spektrum des FeC ₂ O ₄ -CoTMPP-Katalysators (Standardpräparation)1 Abbildung 4-30. CV-Diagramme eines FeC ₂ O ₄ -CoTMPP- (orange) und eines FeC ₂ O ₄ -CoTMPP+S-Katalysators	27 28
(blau) in N ₂ gespülter 0,5 M H ₂ SO ₄ (25 μ g Elektrodenbeladung, Vorschubgeschwindigkeit 3 V/min)1	30

Abbildung 4-31. Berechnete Tafel-Plots aus RDE-Messungen in O₂ gespülter 0,5 M H₂SO₄ von pyrolysierten CoTMPP/BP (1,2 wt-% Co (cyanfarbene Sterne)), einem FeC₂O₄-CoTMPP (3 wt-% Co und 5 wt-%Fe (orangefarbene Kreise)), einem FeC₂O₄-CoTMPP+S-Katalysators (2 wt-% Fe und 1 wt-%Co (blaue Dreiecke)) (jeweils nach Standardpräparation) und einem Platin-Katalysator (10 % Pt/C (schwarze Quadrate)) (25 μg Elektrodenbeladung)_______131

Abbildung 4-32. Berechnete H₂O₂-Produktion des FeC₂O₄-CoTMPP+S-Katalysators (2 wt-% Fe und 1 wt-% Co) bei 0,7 V(NHE) aus RRDE-Messungen (schwarze Quadrate) versus der Katalysatorbeladung im Vergleich mit der kinetischen Stromdichte bei 0,7 V(NHE) (blaue Kreise) ______132

Abbildung 4-33. Berechnete H_2O_2 -Produktion aus RRDE-Messungen versus dem Potenzial für die unbehandelten CoTMPP/BP (1,2 wt-% Co (orange gestrichelt)), die pyrolysierten CoTMPP/BP (1,2 wt-% Co (rot gepunktet)), einem FeC₂O₄-CoTMPP (3 wt-% Co und 5 wt-% Fe (cyan durchgezogen)), einem FeC₂O₄-CoTMPP+S-Katalysators (2 wt-% Fe und 1 wt-% Co (blau durchgezogen)) (5 µg Elektrodenbeladung) ______133 Abbildung 4-34. Berechnete Tafel-Plots aus der RDE-Messung in O₂ gespülter 0,5 M H₂SO₄ vor der H₂O₂-Zugabe (orangefarbene Quadrate), in einer N₂ gespülten 72 mM H₂O₂/0,5 M H₂SO₄ (blaue Kreise) und nach Austausch in einer O₂ gespülter 0,5 M H₂SO₄ eines FeC₂O₄-CoTMPP+S-Katalysators (25 µg Elektrodenbeladung) ______134 Abbildung 4-35. Rotationsabhängige Strom-Spannungskurve (2500min⁻¹) aus der RDE-Messung in einer N₂ gespülten 72 mM H₂O₂/0,5 M H₂SO₄ (blau) des FeC₂O₄-CoTMPP+S-Katalysators im Vergleich mit den Strom-Spannungskurven aus der vorhergehenden RDE-Messung in einer O₂ gesättigten 0,5 M H₂SO₄ (orange) (25 µg Elektrodenbeladung) – eingekreist der auftretende anodische Strom _______135

Abbildung 4-36. Schema der Sauerstoff-Redoxreaktionen (2-Elektronenreaktion (blau) und 4-Elektronenreaktion (orange)) und der Wasserstoffperoxid-Reduktion (cyan), sowie der Messkurve (schwarz gestrichelt) in einem sauren Elektrolyt______136

Abbildung 4-37. CV-Diagramm des FeC₂O₄-CoTMPP+S-Katalysators vor der elektrochemischen Reaktion mit H_2O_2 (orange) und nach der Reaktion mit H_2O_2 (blau) in N_2 gespülter 0,5 M H_2SO_4 (Elektrodenbeladung 25 μ g, Vorschubgeschwindigkeit 3 V/min)_____138

Abbildung 4-38. Thermogravimetrische Messungen eines FeC₂O₄-CoTMPP- (blau gestrichelt) und eines FeC₂O₄-CoTMPP+S-Gemisches (schwarz durchgezogen) gekoppelt mit MS-Daten (siehe Legende) in strömender Argon-Atmosphäre (130 ml/min; Aufheizrate 10 K/min) ______139

Abbildung 4-39. XPS-Spektrum (O1s, C1s, S2p) des bis 500 °C pyrolysierten CoTMPP-Schwefel-Gemisches. 140 Abbildung 4-40. Röntgen-Pulverdiffraktogramm eines pyrolysierten Eisenoxalat-Schwefel-Gemischs (blau) und von pyrolysiertem Eisenoxalat (orange) mit dem Signalmuster von metallischem Eisen (06-0696, schwarz), Wüstit (86-2316, rot) und Magnetit (88-0315, dunkelgelb) ______141

Abbildung 4-41. (links) Röntgen-Pulverdiffraktogramme eines FeC₂O₄-CoTMPP-Schwefel-Gemisches (ungeätzt) bis 500 °C (blau) und bis 750 °C (orange) mit dem Signalmuster von Hämatit (79-1741, rote Quadrate), Eisen (06-0696, cyanfarbene Dreiecke), Magnetit (88-0315, blaue Vierecke) und Troillit (75-0602, orangefarbene Sterne) und (rechts) REM-Aufnahmen der Proben (oben – 750 °C 2 kV 400.000fache Vergößerung, unten – 500 °C 2 kV 75.000fache Vergrößerung) _______142

 Abbildung 4-42. Mesoporenverteilung des FeC₂O₄-CoTMPP- (orangefarbene Quadrate) und des FeC₂O₄ 144

 CoTMPP+S-Katalysators (blaue Kreise) (Standardpräparation)
 144

 Abbildung 4-43a. REM-Aufnahme des schwefelfreien Katalysators (5 kV und 20.000fache Vergrößerung)
 145

 Abbildung 4-44. Partikelgrößenverteilung des FeC₂O₄-CoTMPP- (orangefarbene Quadrate) und des FeC₂O₄ 145

 CoTMPP+S-Katalysators (blaue Kreise)
 145

 Abbildung 4-44. Partikelgrößenverteilung des FeC₂O₄-CoTMPP- (orangefarbene Quadrate) und des FeC₂O₄ 145

 CoTMPP+S-Katalysators (blaue Kreise)
 145

Abbildung 4-45. Röntgen-Diffraktogramme des FeC₂O₄-CoTMPP- (orange) und des FeC₂O₄-CoTMPP+S-Katalysators (blau) (Standardpräparation) mit dem Signalmuster von Graphit (41-1487, schwarz), Eisen (87-0721, blau) und dem Halter (rot)______146

147

Abbildung 4-46. (oben) Raman-Spektren des FeC₂O₄-CoTMPP- und (unten) des FeC₂O₄-CoTMPP+S-Katalysators (Standardpräparation)

Abbildung 4-47. Schematische Darstellung der Anordnung, Größe und Form der Graphen-Schichten im schwefelfreien und –haltigen Katalysator. (a) Im schwefelfreien Katalysator ordnen sich die relativ kleinen Graphen-Ebenen zu ca. 8 nm gestapelten Nano-Kristallite. (b) Im Gegensatz dazu, sind die Graphen-Ebenen im

schwefelhaltigen Katalysator unsystematisch geordnet. Die Graphen-Schichten besitzen größere planare Be	zirke
Abbildung 4.49. (aban) S2n Snaktran dag sebwafalbaltigan und (untan) dag sebwafalfraian Katalyastara	_149
Abbildung 4-46. (Obern) Szp-Spekiren des Schweielnalugen und (untern) des Schweielneien Kalaysalors	150
(Stanuarupraparation)	_150
(Standardnränaration)	151
Abhildung 4-50 (ohen) O1s-Snektrum des schwefelheltigen und (unten) des schwefelfreien Ketelvsetors	_101
(Standardnränaration)	152
Abbildung 4-51 (ohen) N1s Spektrum des schwefelhaltigen und (unten) des schwefelfreien Katalysators	_102
(Standardpränaration)	153
Abbildung 4-52 Kinetische Stromdichte in bei 0.7 V/NHE) versus Schwefelgehalt im Precursor-Gemisch	_ 100
(schwarze Quadrate) im Vergleich mit dem Metallgehalt in den Katalysatoren aus der Neutronen-	
Aktivierungsanalyse (Fisen (rote Sterne) und Kohalt (blaue Kreise))	154
Abbildung 4-53 Kinetische Stromdichte in hei 0.7 V/NHE) versus Schwefelgehalt im Precursor-Gemisch	_ / 0 /
(schwarze Quadrate) im Vergleich mit dem Schwefelgehalt in den Katalvsatoren aus der Verbrennungsanalv	se
(blaue Kreise)	155
Abbildung 4-54 Raman-Spektren des EeC $_{2}O_{4}$ -CoTMPP+S-Katalysators aus Präparationen mit unterschiedlig	_ loo
Schwefelgehalt im Reaktionsansatz	156
Abbildung 4-55. Kinetische Stromdichte ikin bei 0.7 V(NHE) versus Schwefelgehalt im Precursor-Gemisch	_ / 0 0
(schwarze Quadrate) im Vergleich mit der berechneten horizontalen Ausdehnung der Graphen-Ebenen in de	n
Katalvsatoren aus den Raman-Spektren (blaue Kreise)	 157
Abbildung 4-56. MEA-Tests in einer H2-PEM-Brennstoffzelle mit 60 °C und 4 bar O2 mit einer RuPt/C-Anode	
(0.5 mg/cm^2) und einer FeC ₂ O ₄ -CoTMPP+S/Vulkan (1.7 mg/cm ² , blaue Dreiecke), sowie einer 20 % Pt/C-	
Kathode (0.5 mg/cm ² , schwarze Quadrate)	158
Abbildung 4-57. Partikelgrößenverteilung von Eisenoxalat (d_{50} = 2.5 µm von STREM (orangefarbene Quadra	te))
und einem daraus präparierten schwefelhaltigen Katalysator ($d_{50} = 12,7\mu m$ (blaue Kreise)) (Standardpräpara	tion) 160
Abbildung 4-58. Partikelgrößenverteilungen der unterschiedlichen Eisenoxalat-Precursoren (unten REM-	
Aufnahme der durch Kristallisation hergestellten Eisenoxalate) und gegenübergestellt die Verteilungen der	
jeweiligen daraus präparierten schwefelhaltigen Katalysatoren (Standardpräparation)	_161
Abbildung 4-59. REM-Aufnahme des präparierten schwefelhaltigen Katalysators aus mittels Ultraschall	
zerkleinerten Eisenoxalat-Partikeln (20.000fache Vergrößerung, 2 kV) (Standardpräparation)	_162
Abbildung 4-60. (a) REM-Aufnahme des präparierten schwefelhaltigen Katalysators aus 200 nm und (b) 2 μ r	п
großen Eisenoxalat-Partikeln (2.000fache Vergrößerung, 2 kV) (Standardpräparation)	_163
Abbildung 4-61. (a) Modell des Sauerstoffantransports für große und (b) kleine Katalysatorteilchen	_163
Abbildung 4-62. Partikelgrößenverteilung des Katalysators vor (orangefarbene Quadrate) und nach dem Mah	ilen
in einer Schwingmühle (blaue Kreise)	_164
Abbildung 4-63. (a) REM-Aufnahme des präparierten schwefelhaltigen Katalysators vor und (b) nach der	
Ultraschallbehandlung (Zeit und Leistung) (5.000fache Vergrößerung, 2 kV)	_165
Abbildung 4-64. Partikelgrößenverteilung des Katalysators vor (orangefarbene Quadrate) und nach der	
Ultraschall-Desintegration (blaue Kreise)	_165
Abbildung 4-65. Tafel-Plots des Katalysators vor (orangefarbene Quadrate) und nach der Ultraschallbehandl	ung
(blaue Kreise)	_166
Abbildung 4-66. Porenvolumenverteilung des schwefelhaltigen Katalysators vor (orangefarbene Quadrate) un	nd
nach der Ultraschallbehandlung (blaue Kreise)	_167
Abbildung 4-67. Berechnete Tafel-Plots aus den RDE-Messungen des SnC ₂ O ₄ -CoTMPP- (11,4 wt-% Sn und	
1,4 wt-% Co, blaue Quadrate) und des FeC ₂ O ₄ -CoTMPP-Katalysators (5 wt-% Fe und 3 wt-% Co, orangefart	ene
Kreise) in O ₂ gesättigter 0,5 M H ₂ SO ₄ (25 μ g Elektrodenbeladung) (Standardpräparation)	_169
Abbildung 4-68. Mesoporenverteilung der Katalysatoren: SnC ₂ O ₄ -CoTMPP (blaue Quadrate) und FeC ₂ O ₄ -	
CoTMPP (orangefarbene Kreise) (Standardpräparation)	_169

Abbildung 4-69. TG-MS-Untersuchung eines SnC ₂ O ₄ -CoTMPP-Gemisches (schwarz) in strömender Argon- Atmosphäre (130ml/min; Aufheizrate 10K/min)170
Abbildung 4-70. REM-Aufnahme des SnC ₂ O ₄ -CoTMPP-Katalysators (a) vor Säurebehandlung (1 kV, 80.000fache Vergrößerung) und (b) nach Säurebehandlung (1 kV, 50.000fache Vergrößerung) (Standardpräparation) 170 Abbildung 4-71. Röntgen-Diffraktogramm des SnC ₂ O ₄ -CoTMPP-Katalysators vor (orange) und nach der
Abbildung 4-72. (oben) Raman-Spektren des FeC ₂ O ₄ -CoTMPP-Katalysators und (unten) des SnC ₂ O ₄ -CoTMPP- Katalysators (Standardpräparation)172
Abbildung 4-73. Röntgen-Diffraktogramm eines SnC ₂ O ₄ -CoTMPP-Katalysators (7,8 wt-% CoTMPP im Reaktionsansatz) (Graphit (75-2078, blaue Dreiecke), Zinn (86-2264, schwarze Vierecke), Zinnoxid SnO ₂ (88-
Abbildung 4-74. Röntgen-Diffraktogramm eines SnC ₂ O ₄ -CoTMPP-Katalysators (9 wt-% (orange) und 11 wt-% CoTMPP (blau) im Reaktionsansatz) (Graphit (75-2078, rote Sterne) und Halter (blaue Quadrate)) 174
Abbildung 4-75. Röntgen-Diffraktogramm eines SnC_2O_4 -CoTMPP-Katalysators (25 wt-% CoTMPP im Reaktionsansatz) (Graphit (75-2078, rote Sterne), Zinnoxid SnO_2 (88-0287, cyanfarbene Dreiecke), CoSn ₃ (48-
1814, schwarze Vierecke) und Halter (violette Quadrate)) 175 Abbildung 4-76. Kinetische Stromdichte der präparierten Katalysatoren als Funktion des eingesetzten CoTMPP-
Gehalts im Reaktionsansatz (blaue Quadrate) verglichen mit deren Zinn- (cyanfarbene Dreiecke) und Kobalt- Gehalt (rote Kreise) gemessen mit Neutronenaktivierungsanalyse176
Abbildung 4-77. Struktureffekt von mit Metailoxalat-praparierten Katalysatoren: Überproportionales Ansteigen der Aktivität gegenüber der elektrochemisch zugänglichen Oberfläche177 Abbildung 4-78. C/Sum-Sum /Sum-Plot (links) der Metalloxalat-präparierten CoTMPP-Katalysatoren (rechts) aus
der Beziehung zwischen Kapazität und Fläche178 Abbildung 4-79 Analyse für Poren im Bereich zwischen 5 und 10 nm (Auftragung der kinetischen Stromdichte zur
Fläche)
Plasmaleistung (blaue Quadrate), im Vergleich mit der Entwicklung der Peakhöhe bei 0,33 V(NHE) aus dem CV- Diagramm (orangefarbene Sterne)184
Abbildung 4-81. Berechnete Tafel-Plots aus RDE-Messungen von unbehandelten CoTMPP/BP (1,2 wt-% Co, cyanfarbene Dreiecke), von thermisch behandelten CoTMPP/BP (1,2 wt-% Co, blaue Kreise) und von Plasma behandelten CoTMPP/BP (1,2 wt-% Co 400 W 10 min ArO ₂ -Plasma, orangefarbene Quadrate) in O ₂ gespülter
Abbildung 4-82. CV-Diagramm von unbehandelten CoTMPP/BP (1,2 wt-% Co (orange)) und von Plasma behandelten CoTMPP/BP (1,2 wt-% Co, ArO ₂ 400W 10min (blau)) in N ₂ gespülter 0,5 M H ₂ SO ₄
(Vorschubgeschwindigkeit 3 V/min) (25 µg Elektrodenbeladung)186 Abbildung 4-83. Tafel-Plots von einer Plasma behandelten Probe vor (orangefarbene Quadrate) und nach der Extraktion mit Tetrahydrofuran (blaue Kreise)187
Abbildung 4-84. IR-Spektrum des extrahierten Filtrats (blau) im Vergleich mit dem Spektrum von CoTMPP (orange) (Linien von CoTMPP (orangefarbene Sterne) und zusätzliche Linien (rote Dreiecke)) (aufgetropft auf einen ATR-Kristall)188
Abbildung 4-85. UV-Vis Spektrum des extrahierten Filtrats (blau) im Vergleich mit dem Spektrum von CoTMPP (orange)189
Abbildung 4-86. HPLC-Analyse des extrahierten Filtrats (blau) im Vergleich mit der Analyse von CoTMPP (orange)190
Abbildung 4-87. Variation der Behandlungszeit: Kinetische Stromdichte j _{kin} bei 0,7 V(NHE) versus der Behandlungszeit für verschiedene Plasmaleistungen (50 W (rote Quadrate), 150 W (orangefarbene Kreise) und 250 W (blaue Dreiecke))191
Abbildung 4-88. Berechnete Tafel-Plots aus RDE-Messungen in O ₂ gesättigter 0,5 M H ₂ SO ₄ von Ar-Plasma behandelten CoTMPP/BP (1,2 wt-% Co 250 W 10 min – orangefarbene Kreise) und von CoTMPP/BP aus einer nacheinander geschalteten Ar- und ArO ₂ -Plasmabehandlung (1,2 wt-% Co; jeweils 250 W 10 min) (25 μ g Elektrodenbeladung)192

Abbildung 4-89. Tafel-Plots von thermisch behandelten CoTMPP/BP (1,2 wt-% Co (schwarze Quadrate)), eine ArO2-Plasma behandelten CoTMPP/BP-Probe (1,2 wt-% Co. 400 W 10 min ArO2-Plasma (orangefarbene	er in
Dreiecke)) und von einer in Ar-Plasma behandelten CoTMPP/BP-Probe (1.2 wt-% Co. 400 W 10 min Ar-Plasm	па
(blaue Sterne)) in O ₂ gespülter 0.5 M H ₂ SO ₄ (25 μ g Elektrodenbeladung)	193
Abbildung 4-90. Partikelgrößenverteilung von thermisch behandelten CoTMPP/BP (1,2 wt-% Co (hellgrau)) ur	nd
von Plasma behandelten CoTMPP/BP (1,2 wt-% Co, 400 W 10 min Ar-Plasma (schwarz))	194
Abbildung 4-91. Raman-Spektren von Plasma behandeltem CoTMPP/KBr bei verschieden Leistungen (80 W	_
400 W 20 min) und zum Vergleich unbehandeltes CoTMPP/KBr	_195
Abbildung 4-92. Vergleich der Raman-Spektren (oben) einer Plasma behandelten CoTMPP/KBr- (400 W 20 n	nin
Ar) und (unten) einer pyrolysierten CoTMPP-Probe (700 °C N2-Strom ohne Kohlenstoffträger)	_197
Abbildung 4-93. IR-Spektrum des CoTMPP/KBr-Reaktionsansatzes (orange) und der Plasma behandelten	
CoTMPP/KBr-Proben (80 – 400 W 20 min Argon-Plasma (blau)) (KBr-Pressling)	198
Abbildung 4-94. Raman-Spektrum von ArO2-Plasma behandelten CoTMPP/KBr (250 W 20 min ArO2-Plasma)	ļ
(blau) und Ar-Plasma behandelten CoTMPP/KBr (250 W 20 min Ar-Plasma) (orange)	200
Abbildung 4-95. (oben) Raman-Spektrum von ArO2-Plasma behandeltem CoTMPP/KBr (400 W 20 min ArO2-	
Plasma) und (unten) Ar-Plasma behandeltem CoTMPP/KBr (400 W 20 min Ar-Plasma)	201
Abbildung 4-96. CoTMPP-Target zur Erprobung der Sputtertechnologie	203
Abbildung 4-97. Skizze des Reaktoraufbaus	203
Abbildung 4-98. Substrat (links) vor und (rechts) nach dem Sputterprozess	204
Abbildung 4-99. Raman-Spektrum des Substrats nach dem Sputterprozess von CoTMPP bei 37 W für 1 h im	Ar-
Plasma	_205

6.5 Literatur

- 1 Pross, E. (H.C. Starck), *Engine*, 2, 38 (2004)
- 2 Zhang, Z. und Lagally, M.G., Science, 276, 377 (1997)
- 3 Trapp, V.; Christensen, P. und Hamnett, A., J. Chem. Soc., Faraday Trans., 92, 4311 (1996)
- 4 Bron, M.; Bogdanoff, P.; Fiechter, S.; Dorbandt, I.; Schulenburg, H. und Tributsch, H., *Journal of Electroanalytical Chemistry*, 500, 510 (2001)
- 5 Schulenburg, H.; Hilgendorff, M.; Dorbandt, I.; Radnik, J.; Bogdanoff, P.; Fiechter, S.; Bron, M. und Tributsch, H., *Journal of Power Sources*, (Artikel im Druck) (2005)
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B. und Wagner, F.T., *Applied Catalysis B: Environmental*, 56, 9 (2005)
- Shukla, A.K; Raman, R.K.; Choudry, NA.; Priolkar, K.R.; Sarode, P.R., Emura, S. und Kumashiro,
 R., *Journal of Electroanalytical Chemistry*, 563, 181 (2004)
- 8 Jasinski, R., *Nature*, 201, 1212 (1964)
- Jahnke, H.; Schönborn, M. und Zimmermann, G., *Topics in current chemistry*, 61, 133 (1976)
- 10 Lalande, G.; Cote, R.; Tamizhmani, G.; Guay, D.; Dodelet, J.P.; Dignard-Bailey, L.; Weng, L.T. und Bertrand, P., *Electrochimica Acta*, 40, 2635 (1995)
- 11 Scherson, D.; Tanaka, A.; Gupta, S.; Tryk, D.; Fierro, C.; Holze, R. und Yeager, E.B, *Electrochimica Acta*, 31, 1247 (1986)
- 12 van Veen, J. A. R.; Colijn, H.A. und van Baar, J. F., *Electrochimica Acta*, 33, 801 (1988)
- Faubert, G.; Lalande, G.; Cote, R.; Guay, D.; Dodelet, J.P.; Wenig, L.T.; Bertrand, P. und Denes,G., *Electrochimica Acta*, 41, 10, 1689 (1996)
- 14 Lefèvre, M. and Dodelet, J.P., *J. Phys. Chem. B*, 104, 11238 (2000)
- 15 Schmithals, G., " Strukturelle und elektrochemische Charakterisierung der katalytischen Zentren in edelmetallfreien Katalysatoren für die Sauerstoffreduktion", Dissertation, FU Berlin (2005)
- 16 Herrmann, I. "Entwicklung edelmetallfreier Katalysatoren für die elektrochemische Sauerstoffreduktion", Diplomarbeit, BTU Cottbus (2002)
- 17 Hilgendorff, M.; Dorbandt, I.; Schulenburg, H.; Bron, M.; Fiechter, S.; Bogdanoff, P. und Tributsch, H., *"Platinfreies Chelat-Katalysatormaterial für die selektive Sauerstoffreduktion und Verfahren zu seiner Herstellung"*, Patent No. US2004236157, WO03004156 (2004)
- 18 Itagaki, Y.; Deki, K.; Nakashima, S.-I. und Sadaoka, Y., Sensors and Actuators B, 108, 393 (2005)
- 19 Sonoyama, N.; Kirii, M. und Sakata, T., *Electrochemistry Comm.*, 1, 213 (1999)
- 20 Tributsch, H., *Photochem. Photobiology*, 14, 95 (1971)

- 21 O'Regan, B. und Grätzel, M., *Nature*, 353, 737 (1991)
- 22 Udal'tsov, A., Journal of Photochem. and Photobiology A: Chem., 140, 21 (2000)
- 23 Gabriela Alvarez, M.; Principe, F.; Elisa Milanesio, M.; Durantini, E. N. und Rivarola, V., *The International Journal of Biochem. and Cell Biology*, **37**, 2304 (2005)
- 24 Imahori, H.; Mori, Y. und Matano, Y., *Journal of Photochem. and Photobiology C: Photochemistry Reviews*, 4, 51 (2003)
- 25 Gouterman, M., Journal of Molecular Spectroscopy, 6, 138 (1961)
- 26 Zerner, M. und Gouterman, M., Theoret. Chim. Acta, 4, 44 (1966)
- 27 Gouterman, M., J. Chem. Phys., 30, 1139 (1959)
- 28 Daul, C.; Schläpfer, C.W. und von Zelewsky, A., *Structural Bonding*, 36, 129 (1979)
- 29 Besenhard, J.O. und Fritz, H.P., *Angewandte Chemie*, 95, 954 (1983)
- Yingxing, S. *"Erschließung der himmlischen Schätze"*, (aus dem Altchinesischen übertragen von K. Herrmann), Wirtschaftsverlag NW, Verlag für neue Wissenschaft, Bremerhaven, (2004)
- 31 Rodriguez-Reinoso, F., Carbon, 36, 159 (1998)
- 32 Hollemann, A. F. und Wieberg, N., *"Lehrbuch der Anorganischen Chemie"*, 91.-100. Auflage, Walter de Gruyter, Berlin New York (1985)
- 33 Dunne, L.J.; Clark, A.D.; Chaplin, M.F. und Katbamna, H., *Carbon*, 30, 8, 1227 (1992)
- 34 Oberlin, A. in *"Chemistry and Physics of Carbon"*, Vol. 6, Walker, P.L. (Herausgeber) (1970)
- 35 Jenkins, G.M. und Kawamura, K., *"Polymeric Carbons, Carbon Fibre, Glass and Char"*, Cambridge University Press, Cambridge (1976)
- 36 Marsh, H. und Warburton, A.P., *Journal of Applied Chemistry*, 20, 133 (1970)
- 37 Ruston, W.; Warzee, M.; Hennaut, J. und Waty, J., *Carbon*, 7, 47 (1969)
- 38 Tuinstra, F. und Koenig, J. L., *The Journal of Chemical Physics*, 33, 1126 (1970)
- 39 Paul Scherrer Institut "Annual Report 2003 Electrochemistry Laboratory", 2003
- 40 Persönliche Mitteilung von Fostiropulos, Dr. K. (2005)
- 41 Ramm, M.; Ata, M.; Brzezinka, K.-W.; Gross, T. und Unger, W., *Thin Solid Films*, 354, 106 (1999)
- 42 Kropachev, A.V. und Jones, L.E., Carbon Conference Proceedings, (2001) (verfügbar unter http://acs.omnibooksonline.com, letzter Zugriff: 10.10.05)
- 43 Beyer, H., "Lehrbuch der organischen Chemie", 12. Auflage, S. Hirzel Verlag, Leipzig, (1966)
- 44 Labib, M.E.; Thomas, J.H. und Embert, D.D., *Carbon*, 22, 445 (1984)
- 45 Hamann, C.H. und Vielstich, W., *"Elektrochemie"*, 3. Auflage, Wiley-VCH Verlag, Weinheim (1998)
- 46 Kinoshita, K., "Carbon Electrochemical and Physicochemical Properties", John Wiley & Sons, Berkeley (CA) (1988)

- 47 Shi, H., *Electrochimica Acta*, 41, 1633 (1996)
- 48 Gryglewicz, G.; Machinkowski, J.; Lorenc-Grabowska, E.; Lota, G. und Frackowiak, E., *Electrochimica Acta*, 50, 1197 (2005)
- 49 Hsieh, C. und Teng, H., Carbon, 40, 667 (2002)
- 50 Henze, G. und Neeb, R., *"Elektrochemische Analytik"*, Springer-Verlag, Berlin (1986)
- 51 Heitner-Wirguin, C., *Journal of Membrane Science*, **120**, 1 (1996)
- 52 Inaba, M.; Yamada, H.; Tasaka, A.; Kinumoto, T. und Ogumi, Z., International Society of Electrochemistry, 55th Annual Meeting (2004)
- 53 Pauling, L., *Nature*, 203, 182 (1964)
- 54 Griffith, J.S., *Proceedings Royal Society (A)*, 235, 23 (1956)
- 55 Wiesener, K., *Electrochimica Acta*, 31, 1073 (1986)
- 56 Golabi, S.M. und Raoof, J.B., Journal of Electroanalytical Chemistry, 416, 75 (1996)
- 57 Schulenburg, H.; Stankov, S.; Schünemann, V.; Radnik, J.; Dorbandt, I.; Fiechter, S.; Bogdanoff, P. und Tributsch, H., *J. Phys. Chem. B*, 107, 9034 (2003)
- 58 Bron, M.; Radnik, J.; Fieber-Erdmann, M.; Bogdanoff, P. und Fiechter, S., *Journal of Electroanalytical Chemistry*, 535, 113 (2002)
- 59 Bron, M.; Fiechter, S.; Hilgendorff, M. und Bogdanoff, P., *Journal of Applied Electrochemistry*, **32**, 211 (2002)
- 60 Schulenburg, H., "Ruthenium und eisenbasierte Katalysatoren für die elektrochemische Sauerstoffreduktion in Polymerelektrolytmembran-Brennstoffzellen", Dissertation, FU Berlin (2002)
- 61 Gojkovic, S.; Gupta, S. und Savinell, R., *Electrochimica Acta*, 45, 889 (1999)
- 62 Kendrew, J.C., "Myoglobin and the Structure of Proteins",

http://nobelprize.org/chemistry/laureates/1962/kendrew-lecture.pdf (letzter Zugriff: 26.10.05)

63 Perutz, M., "X-Ray Analysis of Haemoglobin",

http://nobelprize.org/chemistry/laureates/1962/perutz-lecture.pdf (letzter Zugriff: 26.10.05)

- 64 Weiss, J.J., *Nature*, 202, 88 (1964)
- Alt, H.; Binder, H. und Sandstede, G., *Journal of Catalysis*, 28, 8 (1973)
- 66 Collmann, J.; Marrocco, M. und Denisevich, P., *Journal of Electroanalytical Chemistry*, **101**, 117 (1979)
- van Veen, J.A.R. und Colijn, H.A., Ber. Bunsenges. Chem., 85, 700 (1981)
- Jia, N.; Martin, R. B.; Zhigang, Q.; Lefebvre, M.C. und Pickup, P.G., *Electrochimica Acta*, 46, 2863 (2001)
- 69 Kiyoshi Horita, X. L., *Carbon*, 38, 133 (2000)

- 70 Fagan, D.T.; Hu, I. und Kuwana, T., *Anal. Chem.*, 57, 759 (1985)
- 71 Rao, V.; Simonov, P.A.; Savinova, E.R.; Plaskin, G.V.; Cherepanova, S.V.; Kryukova, G.N. und Stimming, U., *Journal of Power Sources*, 145, 178 (2005)
- 72 Ding, J.; Chan, K.-Y.; Ren, J. und Xiao, F., *Electrochimica Acta*, 50, 3131 (2005)
- 73 Vielstich, W., Zeitschrift für Elektrochemie, 57, 8, 646 (1953)
- 74 Hsueh, K.-L. und Chin, D.-T., Journal of Electroanalytical Chemistry, 153, 79 (1983)
- 75 Wroblowa, H.S.; Pan, Y.C. und Razumney, G., *Journal of Electroanalytical Chemistry*, **69**, 195 (1976)
- 76 Paulus, U.A.; Schmidt, T.J.; Gasteiger, H.A. und Behm, R.J., *Journal of Electroanalytical Chemistry*, 495, 134 (2001)
- 77 Malvern Instruments *"Sample dispersion and refractive index guide"*, MAN0079, Version 3.1 (1997)
- 78 Carbot, Datenblatt für Black Pearls
- 79 Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J. und Siemieniewska, T., *Pure and Applied Chemistry*, 57, 4, 603 (1985)
- 80 Brunnauer, S.; Emmett, P.H. und Teller, E, *Contribution from the bureau of chemistry and soils* and George Washington University, 60, 309 (1938)
- 81 Langmuir, J. American Chem. Society, 38, 2221 (1916)
- Lippens, B.C.; Linsen, B.G. und de Boer, J.H, *Journal of Catalysis*, 3, 32 (1964)
- 83 IR-Datenbank der Universität Potsdam: http://www.spec-online.de/ (letzter Zugriff: 03.11.05)
- 84 Stelter, M., *"Elektrokatalytische Sauerstoffreduktion an übergangsmetallporphyrinmodifizierten Graphitelektroden"*, Dissertation, TU Chemnitz (2001)
- 85 Perkin Ellmer, *"Handbook of X-Ray Photoelectron Spectroscopy"*, Physical Electronics (Ausgabejahr unbekannt)
- 86 Online Datenbank vom NIST (USA): http://srdata.nist.gov/xps/ (letzter Zugriff: 19.10.05)
- 87 Hemminger, W.F. und Cammenga, H.K., "Methoden der thermischen Analyse", Springer-

Verlag, Berlin (1988)

- 88 DIN 51006 *"Thermische Analyse (TA) und Thermogravimetrie (TG)",* Beuth Verlag GmbH, Berlin (1990)
- P. Vanýsek, in *"Handbook of chemistry and physics"*, 77th edition, S. 8-20, D. R. Lide, Editor, CRC Press, Inc., New York (1996 1997)
- 90 Lin, A.S. und Huang, J.C., Journal of Electroanalytical Chemistry, 541, 147 (2003)
- 91 Bogdanoff, P.; Herrmann, I.; Hilgendorff, M.; Dorbandt, I.; Fiechter, S. und Tributsch, H., *Journal* of New Materials for Electrochemical Systems, 7, 85 (2004)

- 92 Holze, R., *Electrochimica Acta*, 33, 1619 (1988)
- 93 Caballero, A.; Cruz, M.; Hernan, L.; Melero, M.; Morales, J. und Castellon, E.R., *Journal of Power* Sources, Artikel im Druck (2005)
- 94 Contamin, O.; Debiemme-Chouvy, C.; Savy, M. und Scarbeck, G., *Electrochimica Acta*, 45, 721 (1999)
- 95 Brinkmann, G., Kolloid-Zeitschrift, 123, 116 (1951)
- 96 Gamburzev, S.; Atanasov, P.; Ghindilis, A.L.; Wilkins, E.; Kaisheva, A. und Iliev, I., Sensors and Actuators B, 43, 70 (1997)
- 97 Roberts, J.T. und Friend, C.M., Surface Science, 202, 405 (1988)
- 98 Siriwardane R.V. und Cook J.M., J. Colloid Interface Sci., 114, 525 (1986)
- 99 Beamson G. und Briggs D., "High Resolution XPS of Organic Polymers: the Scienta ESCA300 Database" (1992)
- 100 Pels, J.R.; Kapteijn, F.; Moulijin, J.A.; Zhu, Q. und Thomas, K.M., Carbon, 33, 1641 (1995)
- 101 Casanovas, J.; Ricart, J.M.; Rubio, J.; Illas, F. und Jimenez-Mateos, J.M., *J. Am. Soc.*, 118, 8071 (1996)
- 102 Suslick, K.S., Science, 247, 1439 (1990)
- 103 Outiki, O. und Lamy-Pitara, B., J. React. Kinet. Catal. Letter, 23, 213 (1983)
- 104 Farin, D. und Avnir, D., J. Amer. Soc., 110, 2039 (1988)
- 105 Shioyama, H.; Yamada, Y.; Ueada, A. und Kobayashi, T., Carbon, 43, 2373 (2005)
- 106 Osada, Y. und Mizumoto, A., *J. Appl. Phys.*, 59, 1776 (1986)
- 107 Inagaki, N.; Tasaka, S. und Sei, Y., Polymer Bulletin, 36, 601 (1996)
- 108 Nakamura, K.; Watanabe, M.; Zhou, M.; Fujishima, M.; Tsuchiya, M.; Handa, T.; Ishii, S.; Noguchi, H.; Kashiwagu, K. und Yoshida, Y.,*Thin Solid Films*, 345, 99, (1999)
- 109 Haiber, S.; Ai, X.; Bubert, H.; Heintze, M.; Brüser, V.; Brandl, W. und Marginean, G., Anal. Bioanal. Chem., 375, 875 (2003)
- 110 Cruz, G.J.; Morales, J. and Olayo, R., *Thin Solid Films*, 342, 119 (1999)
- 111 Korri Yousoufi, H.; Hmyene, M.; Yassar, A. und Garnier, F., *Journal of Electroanalytical Chemistry*, 406, 187 (1996)
- 112 Saidman, S.B. und Quinzani, Q.V., *Electrochimica Acta*, 50, 127 (2004)
- 113 Brüser, V.; Heintze, M.; Brandl, W; Marginean, G. und Bubert, H., *Diamond and Related Materials*, 13, 1177 (2004)
- 114 Loh, I.H.; Cohen, R.E. und Bardour, R.F., *J. Mater. Sci.*, 22, 2937 (1987)
- 115 Dittmar, A.; Kosslick, H.; Müller, J.-P. und Pohl, M.-M., *Surface and Coatings Technology*, 182, 35 (2004)

- 116 Faubert, G.; Cote, R.; Dodelet, J.P.; Lefevre, M. und Bertrand, P., *Electrochimica Acta*, 44, 2589 (1999)
- 117 Medard, C.; Lefevre, M.; Dodelet, J.P.; Jaouen, F. und Lindbergh, G., *Electrochimica Acta*, (Artikel im Druck) (2005)
- 118 Piejak, R.; Godyak, V.; Alexandrovich, B. und Tishchenko, N., *Plasma Source Science Technolology*. 7, 590 (1998)
- 119 Thornton, J.A., Thin Solid Films, 54, 23 (1978)
- 120 Kersten, H.; Deutsch, H.; Steffen, H.; Kroesen, G.M.W. und Hippler, R., *Vacuum*, 63, 385 (2001)
- 121 Schmuhl, A.; Junge, H. und Brüser, V., *"Plasmamodifizierung von Katalysatoren für die kathodische Reduktion von Wasserstoffperoxid in Brennstoffzellen"*, Bunsen-Kolloquium, Schwerin, 16.06.2005
- 122 Hirano, S.; Kim, J. und Srinivasan, S., *Electrochimica Acta*, 42, 1587, (1997)
- 123 Herrmann, I.; Bogdanoff, P. und Fiechter, S., Verfahren zur Herstellung eines platinfreien Chelat-Katalysatormaterials und elektrischen Elektrode", Patent, (AT 20.02.2005) Aktenzeichen 10 2005 008 338.2