Aus dem Institut für Immungenetik Charité – Universitätsmedizin Berlin Humboldt-Universität zu Berlin

eingereicht über das Institut für Geflügelkrankheiten des Fachbereiches Veterinärmedizin der Freien Universität Berlin

Kartierung, Expressionsanalyse und Evolution von Immunrezeptor (CHIR) - Genen beim Huhn (Gallus gallus domesticus)

Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin

vorgelegt von

Katja Laun Tierärztin aus Berlin

Berlin 2006

Journalnummer: 3015

Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin

Dekan: Prof. Dr. Leo Brunnberg

Erster Gutachter: Prof. Dr. Dr. Hafez. M. Hafez

Prof. Dr. Andreas Ziegler Zweiter Gutachter: Dritter Prüfer: Prof. Dr. Heike Tönhardt

immunogenetics; gene mapping; gene expression; fowl; multigene Descriptoren:

families; receptors; immunoglobulins

Tag der Promotion: 29.September 2006

"Es gibt nichts in der Natur, was es nicht gibt."

I Inhaltsverzeichnis

I	Inh	Inhaltsverzeichnis iv		
II	Abl	Abbildungsverzeichnis		
III	Tab	Tabellenverzeichnis		
IV	Abl	kürzungsverzeichnis	xi	
1	Ein	leitung	1	
1.1	Me	rkmale von Immunrezeptoren der Immunglobulin-Superfamilie (Ig-SF)	1	
1.2	Die	genomische Organisation des "Leucocyte Receptor Complex" (LRC)	3	
1.3	Stru	ıktur und Funktion der LRC-Gene.	4	
	1.3.1	Die "leukocyte immunoglobulin-like" Rezeptoren (LILRs)	4	
	1.3.2	"Killer-Cell Ig-like" Rezeptoren (KIRs)	7	
	1.3.3	NKp46	8	
	1.3.4	"Leukocyte-associated Ig-like" Rezeptoren (LAIRs)	9	
	1.3.5	Fc Rezeptor für IgA (FCAR)	10	
	1.3.6	Glykoprotein VI (GPVI)	10	
1.4	Exc	on-Intron-Struktur der LRC-Gene	10	
1.5	Die	Evolution der LRC-Gene	11	
1.6	"Cł	nicken Ig-like" Rezeptoren (CHIRs) beim Haushuhn	12	
1.7	Zie	lsetzung der Arbeit	13	
2	Ma	terial	14	
2.1	Che	emikalien und Verbrauchsmaterialien	14	
2.2	Enz	zyme	15	
2.3	Me	dien	15	
2.4	Lös	ungen und Puffer	16	
	2.4.1	Lösungen für die Isolierung von genomischer DNA	16	
	2.4.2	Lösungen für die Arbeit mit Bakterien	16	
	2.4.3	Lösungen für die Plasmidisolierung	17	
	2.4.4	Elektrophoreselösungen	18	
	2.4.5	Lösungen für die Arbeit mit DNA	19	
	2.4.6	Lösungen für Southern-Blotting und Hybridisierungen	19	
	2.4.7	Lösungen für die Polymerasekettenreaktion	20	
2.5	Ger	äte	21	

2.6	Oli	gonukleotide (Primer)	21
2.7	Son	den	22
2.8	Vel	ctoren	22
2.9	DN	A-Bibliotheken	23
2.10) Gev	vebe	23
3	Me	thoden	24
3.1	Pro	bengewinnung und –aufarbeitung	24
3.2	Isol	ierung genomischer DNA	24
3.3	Bak	rterienkulturen	25
3.4	Dau	nerkulturen	25
3.5	Plas	smidisolierung	25
	3.5.1	(Mini)- Plasmid-Präparation.	25
	3.5.2	(Midi)-Plasmid-Präparation	25
3.6	Res	triktionsendonuklease-Verdau	26
3.7	Fäll	ung von Nukleinsäuren	26
	3.7.1	Ethanol-Fällung	26
	3.7.2	Isopropanol-Fällung	26
3.8	Gel	elektrophorese	27
	3.8.1	Agarose-Gelelektrophorese	27
	3.8.2	Polyacrylamid-Gelelektrophorese	27
	3.8.3	Polyacrylamid-Gel für Sequenzanalysen	28
3.9	Fär	bung von Agarose- und Polyacrylamidgelen	29
3.10) Sou	thern-Blotting	29
3.11	Koı	nzentrationsbestimmung von Nukleinsäuren	30
	3.11.1	Photometrische Messung	30
	3.11.2	Picogreen-Messung	30
3.12	2 Rac	lioaktive Markierung und Hybridisierung	30
	3.12.1	Sondenherstellung	30
	3.12.2	Radioaktive Markierung von Sonden	30
	3.12	.2.1 Radioaktive Markierung mit dem Megaprime-Kit	30
	3.12	.2.2 Radioaktive Markierung mit dem StripEZ-labelling-Kit	31
	3.12.3	Radioaktive Hybridisierung	32
	3.12.4	Signaldetektion	32
3.13	B Isol	ierung von Gesamt-RNA	33

3.14	4 cDi	NA-Synthese	33
3.15	5 Pol	ymerase-Kettenreaktion	34
3.16	6 DN	A-Sequenzierung	34
3.17	7 Ent	fernung niedermolekularer Stoffe aus DNA-Proben	35
	3.17.1	Gelfiltration	35
	3.17.2	Dialyse	36
3.18	8 Klo	nierung	36
3.19	9 Tra	nsformation von Bakterienzellen	36
	3.19.1	Hitzeschock	36
	3.19.2	Elektroporation	36
3.20) Ang	gewendete Programme	37
4	Erg	ebnisse und Diskussion	38
4.1	Ide	ntifizierung von LRC-homologen Sequenzen bei verschiedenen Spezies	38
	4.1.1	Radioaktive Hybridisierung mit einer LILR-Sonde	38
	4.1.2	Radioaktive Hybridisierungen mit Sonden anderer Gene des LRC	39
	4.1.3	Identifikation von LILR-Homologen beim Huhn	41
	4.1.4	Diskussion der Hybridisierungsergebnisse	42
4.2	Ana	alyse der genomischen Organisation der CHIR-Gene des Huhns	43
	4.2.1	Durchmusterung einer Bibliothek mit Klonen genomischer Hühner-DNA	43
	4.2.2	Sequenzierung ausgewählter BAC-Klone	46
	4.2.3	Analyse der Sequenzen der CHIR-enthaltenden BAC-Klone	46
	4.2.3	3.1 Vergleich der BAC-Sequenzen unteinander	46
	4.2.3	3.2 Vergleich der Fingerprint-Daten mit den Dot-Matrix-Ergebnissen	47
	4.2.3	3.3 Detaillierte Sequenzanalyse der BAC-Klone	48
	4.2.3	3.4 Genomische Organisation der CHIR-Gene	51
	4.2.3	3.5 Detailanalyse der CHIR-Gene	53
4.3	Cha	arakterisierung von Transkripten der CHIR-Gene	63
	4.3.1	Durchmusterung einer Hühner-cDNA-Bibliothek	64
	4.3.2	Herstellung von Hühner-cDNA und deren Verwendung für CHIR-	
		spezifische PCRs	66
	4.3.3	"Expressed Sequence Tags" (ESTs)	70
	4.3.4	Zuordnung der Transkripte zu CHIR-Genen.	72
	4.3.5	Diskussion der CHIR-Transkript-Analyse	73
4 4	Eve	plutionäre Betrachtungen zur Entwicklung der CHIR-Gene	76

4.5	Vai	riabilität der CHIRs	78
4.6	Str	ukturmodelle für CHIRs	81
4.7	Abs	schließende Betrachtung und Ausblick	81
	4.7.1	Genomische Organisation	82
	4.7.2	Struktur und Funktion der CHIRs	85
	4.7.3	Evolution der CHIR-Gene	87
5	Zus	sammenfassung	90
6	Sur	nmary	92
7	Ref	ferenzen	94
8	Daı	nksagung	104
9	Let	penslauf	106

II Abbildungsverzeichnis

Abb. I Strukturmodell einer Ig-Domäne
Abb. 2 Schematische Struktur von aktivierenden und inhibitorischen Immunrezeptoren
der Ig-SF
Abb. 3 Genomische Organisation des LRC von Mensch und Maus.
Abb. 4 Schematische Darstellung der Interaktion zwischen KIR2DL1 und LILRB1 mit
einem MHC-Klasse-I-Molekül.
Abb. 5 Exon-Intron- Struktur einiger ausgewählter LRC-Gene
Abb. 6 Hybridisierung einer "Multispezies-Membran" mit der Sonde ILT1 (LILRA2)3
Abb. 7 Multispezies-Membranen, welche mit zwei unterschiedlichen NKp46-Sonden
hybridisiert wurden
Abb. 8 Hybridisierung einer Multispezies-Membran mit einer humanen FcαR-Sonde4
Abb. 9 Hybridisierung einer "Multispezies-Membran" mit KIR-Sequenzen4
Abb. 10 Hybridisierungsergebnis der "Makro-Array"-Membran 2 der Huehner-BAC-
Bibliothek4
Abb. 11 Gelelektrophoretische Auftrennung der CHIR-BAC-Klone und deren
radioaktive Hybridisierung mit CHIR-A und -B-spezifischen Sonden4
Abb. 12 Überlappung der Klone 112A23 und 58B134
Abb. 13 Dot-Matrix-Sequenzvergleich eines Teils von BAC 52G8 mit der CHIR-B-
cDNA4
Abb. 14 Exon-Intron-Struktur der CHIR-Gene
Abb. 15 Grafische Darstellung der Organisation der CHIR-Gene innerhalb der BAC-
Contigs5
Abb. 16 Aminosäuresequenzvergleich aller 60 funktionellen CHIR-Rezeptoren5
Abb. 17 Schematische Darstellung der Rezeptortypen CHIRA, CHIR1B und CHIR-1C5
Abb. 18 Schematische Darstellung der Intron-Exon-Struktur der CHIRA- und
CHIR1B/CHIR1C-Gene5
Abb. 19 Exon-Intron-Struktur für ein CHIRA-Typ-Gen (CHIRA-01)
Abb. 20 Aminosäure-Sequenzvergleich von je zwei Genen pro aktivierendem Rezeptor-
Typ5
Abb. 21 Mögliche Mitglieder der Rezeptor-Gruppen II, die Homologie zu inhibitorischen
CHIRs zeigen5

Abb. 22	Schematische Darstellung der Exon-Intron-Struktur der verschiedenen	
	inhibierenden CHIR-Gen-Typen.	.59
Abb. 23	Exon-Intron-Struktur eines CHIRB-Typ-Gens (CHIRB-01)	61
Abb. 24	Aminosäuren-Sequenzvergleich von je einem Gen pro inhibierenden Rezeptor-	
	Тур	62
Abb. 25	Schematische Darstellung der Exon-Intron-Struktur der sequenzierten Bursa-	
	cDNA-Klone.	65
Abb. 26	Schematische Darstellung der Lage der zur CHIR-Amplifikation verwendeten	
	Primer	67
Abb. 27	Schematische Darstellung aller amplifizierten CHIR-cDNA-Sequenzen	.68
Abb. 28	Schematische Darstellung einiger ausgewählter ESTs.	.71
Abb. 29	Gewebeverteilung der analysierten CHIR-ESTs	.72
Abb. 30	Sequenzvergleich eines Teils der Gene CHIRC-04 und CHIRC-05 mit den	
	cDNAs-08 und -24.	.74
Abb. 31	Stammbaum von Exon 5 aller funktionellen CHIR-Gene	.77
Abb. 32	Sequenzdiversität der CHIRs	.80
Abb. 33	Strukturmodelle von CHIRC-02 basierend auf LILRB1 und KIR2DL2.	82

III Tabellenverzeichnis

Tab. 1 Längen, Contigs und Eigenschaften der sequenzierten CHIR-BAC-Klone	47
Tab. 2 Liste aller Gene von Gruppe-I-Rezeptoren.	57
Tab. 3 Gene der Rezeptorgruppe II und ihre Zuordnung zu den einzelnen Contigs	60
Tab. 4 Charakteristika der Pseudogene und Genfragmente	63

IV Abkürzungsverzeichnis

Abb. Abbildung

ADCC Antikörper-abhängige Zellzytotoxizität (Antibody-Dependent Cell-

mediated Cytotoxicity)

AK Antikörper

APS Ammoniumpersulfat ATP Adenosin 5'-Triphosphat

AS Aminosäure

BAC Bacterial Artificial Chromosome

bp Basenpaar(e)

BSA Bovine Serum Albumin (Rinderserumalbumin)

CHIR "Chicken Ig-like" Rezeptor

CD Cluster of Differentiation (Nomenklatur für Oberflächen-Antigene)

cDNA zur mRNA komplementäre DNA dATP Desoxyadenosin 5'-Triphosphat $\alpha[^{32}P]dCTP$ Desoxycytidin 5'- $[\alpha^{-32}P]$ Triphosphat

dCTP Desoxycytidin 5'-Triphosphat dGTP Desoxyguanosin 5'-Triphosphat DMF N, N - Dimethylformamid

DMSO Dimethylsulfoxid
DNA Desoxyribonukleinsäure

dNTP Desoxynukleotid 5'-Triphosphat

DTE 1,4-Dithioerythritol
DTT 1-4-Dithiothreitol

dTTP Desoxythymidin 5'-Triphosphat

EDTA Ethylendiamintetraacetat

EST Expressed Sequence Tag (Exprimierter Sequenzabschnitt)

EtBr Ethidiumbromid
FA Formaldehyd
FcαR, FCAR Fc Rezeptor für IgA

FCS Fetal Calf Serum (Fötales Kälberserum)
FRET Fluoreszenz-Resonanz-Energie-Transfer

h Stunde(n)

HLA Human Leukocyte Antigen
Ig-SF Immunglobulin-Superfamilie
ILT "Immunoglobulin-like Transcript"

IRD Infra Red Dye

IPTG Isopropyl-\(\beta\)-D-Thiogalactopyranosid

ITIM "Immunoreceptor Tyrosin-based Inhibitory Motif" ITAM "Immunoreceptor Tyrosin-based Activatory Motif"

kb Kilobasenpaar(e)

KIR "Killer-Cell Ig-like" Rezeptor

kV Kilovolt

LILR "Leucocyte immunoglobulin-like" Rezeptor

LIR "Leucocyte Ig-like" Rezeptoren LRC Leucocyte Receptor Complex

M molar (Mol/Liter)

MHC Haupt-Histokompatibilitätskomplex (Major Histocompatibility Complex)

min Minute(n)

ml Milliliter µl Mikroliter

MNZ Mononukleäre Zellen

MOPS Morpholinpropansulfonsäure NK-Zelle Natürliche Killer-Zelle

OD Optische Dichte

ORF Offenes Leseraster (Open Reading Frame)
PAC P1-derived bacterial artificial chromosome

PBS Phosphat-gepufferte Salzlösung PCI Phenol/Chloroform/Isoamylalkohol

PCR Polymerasekettenreaktion (Polymerase chain reaction)

PFGE Pulsfeldgelelektrophorese
PIR "Paired Ig-like" Rezeptoren
PMSF Phenylmethylsulfonylfluorid

PNK Polynukleotidkinase

RACE Rapid Amplification of cDNA Ends

RNA Ribonukleinsäure RT Raumtemperatur

rpm Umdrehungen pro Minute

s Sekunde(n)

SDS Natriumdodecylsulfat

SNP Single Nucleotide Polymorphism (Einzelbasenpaaraustausch)

SSC Citrat-gepufferte Salzlösung (Standard Saline Citrat)

Tab. Tabelle

TEMED N, N, N', N'-Tetramethylethylendiamin

TM Transmembrandomäne

TRIS Tris-(hydroxymethyl)-aminomethan

U Unit (Enzymeinheit)

üN über Nacht

UTR untranslatierte Region

UV Ultraviolett

V Volt Vol Volumen

X-GAL 5-Brom-4-Chlor-3-Indolyl-β-D-Galactopyranosid

8 Danksagung

Ich möchte mich an dieser Stelle zuerst bei Prof. Dr. Andreas Ziegler für die Überlassung des Themas, die hervorragenden Arbeitsbedingungen, seine erfolgreichen Bemühungen, Kooperationspartner für dieses Projekt zu gewinnen und die kritische Durchsicht des Manuskripts bedanken.

Bei meinem Doktorvater Herrn Prof. Dr. H. M. Hafez bedanke ich mich herzlich für die Durchsicht der Dissertationsschrift und die Vertretung dieser extern angefertigten Arbeit am Fachbereich Veterinärmedizin.

Mein ganz besonderer Dank gilt Dr. Armin Volz, der als Betreuer dieser Arbeit immer ein offenes Ohr für meine experimentellen und theoretischen Fragen hatte. Durch viele konstruktive und kritische Gespräche hat er maßgeblich zum Gelingen dieser Arbeit beigetragen.

Herrn Dr. Stephan Beck und seiner Arbeitsgruppe vom "Wellcome Trust Sanger Institute" in Großbritannien danke ich für die aufwendige und umfangreiche Sequenzierarbeit; ohne diese wäre die vorliegende Arbeit in diesem Umfang nicht zustande gekommen.

Weiterhin danke ich Herrn Dr. Hagen Wende für fachlich konstruktive Gespräche, Hilfestellungen und die kritische Durchsicht des Manuskripts.

Ganz besonders bedanken möchte ich mich bei allen Mitarbeitern des Instituts, die jeder auf seine Weise eine große Hilfe insbesondere bei den Tiefen des molekularbiologischen Arbeitens waren. Waltraud Bangel, die immer dafür gesorgt hat, daß mir nie die Pipettenspitzen oder das Medium für die Bakterienkultur ausgingen. Maja Thieck, die mir unter anderem eine ganz neue Sichtweise bezüglich der Bedeutung des Leerwertes einer PCR nahegebracht hat. Zusammen mit Melanie Rühl haben sie mir immer hilfreich bei kleinen und großen Problemen zur Seite gestanden und zusammen mit Britta Radeloff dafür gesorgt, daß der Spaß beim Arbeiten nicht zu kurz kam. Ich bedanke mich für die ausgezeichnete Arbeitsatmosphäre, das großartige kollegiale Miteinander und die angenehme Zeit.

Mein herzlichster Dank geht an Maja, die mir den Rücken gestärkt hat, mich immer wieder aufgebaut und zu mir gehalten hat. Sie hat mich durch viele intensive Gespräche und Denkanstöße persönlich unglaublich voran gebracht. Für ihre außergewöhnlichen Bemühungen werde ich ihr immer dankbar sein. Nicht zu vergessen die vielen gemütlichen Abende, bei denen ich bekocht und bewirtet wurde; Du bist eine ganz große Köchin! Ich wünsche Dir und Deiner kleinen Familie alles erdenklich Gute. Sei lieb umarmt!

In diesem Zusammenhang geht auch ein ganz großes Dankeschön an Melli und Bettina, die mich mit Worten und Taten unterstützt und motiviert haben. Dr. T., was waren das für Zeiten. Schräge Melkmeister, Reggae-Musik morgens um drei, und die prompte Anwendung neu erlernter Wörter, wie zum Beispiel Gynäkomastie. Danke für den einen oder anderen Denkanstoß.

Weiterhin gilt mein besonderer Dank meinen Eltern, die mir die Möglichkeit gegeben haben, mit ihrer steten Unterstützung meinen gewählten beruflichen Weg einzuschlagen und zu realisieren.

Für die finanzielle Unterstützung danke ich der Charité Berlin im Rahmen eines Forschungsstipendiums.

Lebenslauf 106

9 Lebenslauf

PERSÖNLICHE DATEN:

Name: Laun Vorname: Katja

Geburtstag: 04. Januar 1975

Geburtsort: Berlin

SCHULAUSBILDUNG:

1991 - 1994 Lise-Meitner-Oberstufenzentrum in Berlin

- Abschluss: Abitur -

BERUFSAUSBILDUNG:

08/94 - 06/95 Berufsausbildung zur Biologisch-technischen Assistentin am Lise-

Meitner-Oberstufenzentrum in Berlin

STUDIUM:

10/96 - 07/02 Studium der Veterinärmedizin an der Freien Universität Berlin

Studienbegleitende Praktika:

07/01-08/01 Fleischhygieneamt Teterow, Mecklenburg-Vorpommern
 09/01-10/01 Groß- und Kleintierpraxis in Mecklenburg-Vorpommern

10/01 - 01/02 "Veterinary Clinic for Small and Large Animals" in Hout Bay,

Südafrika

PROMOTION:

08/02 – 06/05 Promotion am Institut für Immungenetik

BERUFLICHE TÄTIGKEIT:

06/95 - 10/96 Biologisch-technische Assistentin am Institut für experimentelle On-

kologie und Transplantationsmedizin

10/96 - 07/01 studentische Hilfskraft am Institut für Immungenetik

seit 07/05 Wissenschaftliche Mitarbeiterin am Centrum für Muskuloskeletale

Chirurgie, Charité – Universitätsmedizin Berlin

Hiermit bestätige ich, daß ich die vorliegende Arbeit selbständig angefertigt habe. Ich versichere, dass ich ausschließlich die angegebenen Quellen und Hilfen in Anspruch genommen habe.

Berlin, den 08. März 2006

Katja Laun