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CHAPTER D

Quantum Statistics

The free energy of a quantum statistical system with polynomial interaction can be considered as a
functional of the free correlation function (3.182). As such it obeys a nonlinear functional differential
equation which can be turned into a recursion relation [21-23]. This is solved order by order in
the coupling constant of the interaction to find all connected vacuum diagrams with their proper
multiplicities. The procedure is applied here to a system with quartic interaction as it occurs for the
anharmonic oscillator or the double well. The results obtained with this method are, of course, the
same as for a scalar field theory with a ¢* self interaction.

All Feynman diagrams with external lines are obtained from functional derivatives of the connected
vacuum diagrams with respect to the free correlation function. The recursive graphical construction
can efficiently be automatized by computer algebra with the help of a unique matrix notation for the
Feynman diagrams [23].

5.1 Introduction

Within the path integral (3.178) for the partition function Z we have expanded the Boltzmann factor
of the action into a Taylor series with respect to the potential and obtained the general perturbative
expansion (3.188) for the free energy F of a quantum statistical system. The perturbative coefficients
are mainly determined by the time integrals over the connected correlation functions of the poten-
tial. As known from the “ordinary” Wick rule, presented for the density matrix in Section 3.4.1,
these correlation functions can easily be decomposed into products of two-point functions, if the po-
tential is of polynomial type. For the expansion of the free energy (3.188), the two-point correlation
functions (3.182) (3.185) must be used.

Since the number of contributions to the perturbative coefficients rapidly increases from order to
order, it is troublesome to write them down for high orders. Moreover, many contributions are iden-
tical. The number of such repetitions is called the multiplicity of this contribution. It was a main
simplification, when Feynman introduced his pictorial representation. The two-point correlation func-
tions were displayed by lines with ends representing the time arguments of these two-point functions.
Lines with joint end points are connected. The joint point is integrated over and is called verter. In
diagrams for interacting quantum fields, particles hit each other in these interaction points. Examples
for the decomposition of a second-order perturbation contribution for a quartic potential into Feynman
diagrams are given in Egs. (3.140) and (3.141).

In order to circumvent the use of the lengthy analytic description of perturbative contributions
for the construction of Feynman diagrams, one can approach from a topological point of view. In
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66 5. Quantum Statistics

any order, which is in our case characterized by the number of vertices, all topologically different
diagrams having the appropriate number of vertices and obeying the condition that the number of
legs connected by a vertex is identical with the polynomial degree of the potential contribute to the
perturbative coefficient of this order. The multiplicity of each Feynman diagram follows combinatorially
from its symmetry interchanging its lines and vertices. Although the topological point of view is a main
progress in comparison with the naive analytic description of perturbative coefficients, it remains a
tedious task to determine all possible topologically different diagrams and their correct multiplicities of
a high-order perturbative coefficient. There exist various convenient computer programs, for instance
FeynArts [24,25] or QGRAF [26], for constructing and counting Feynman graphs in different field
theories. These programs are based on a combinatorial enumeration of all possible ways of connecting
vertices by lines according to Feynman’s rules.

We develop an alternative systematic approach to construct all topologically different Feynman
diagrams with their multiplicities. It relies on considering a Feynman diagram as a functional of its
graphical elements, i.e. its lines and vertices. Functional derivatives with respect to these elements are
represented by graphical operations which remove lines or vertices of a Feynman diagram in all possible
ways. With these operations, our approach proceeds in two steps. First the connected vacuum dia-
grams are constructed as solutions of a graphical recursion relation derived from a nonlinear functional
differential equation. In a second step, all connected diagrams with external lines are obtained from
functional derivatives of the connected vacuum diagrams with respect to the free correlation function.
The recursion relation enables one to automatize the process of constructing Feynman diagrams and
to count the multiplicity with the help of an efficient computer algorithm which is based on a practical
matrix notation for these diagrams [23].

In the following, the graphical recursion relation for the free energy of a system with z* potential
is derived and graphically solved.

5.2 Systematic Construction of Feynman Diagrams for the
Quartic Oscillator Free Energy

In order to illustrate the power of the recursive graphical construction for Feynman diagrams for
quantum statistical systems with polynomial interaction, we consider the quartic oscillator in one
dimension, whose thermal fluctuations are controlled by a path integral

Z = ]{D:r e Al (5.1)

over the Boltzmann factor containing the action

1

Alz] = —/ 211Gy wy + %/ Vigga 21222324 (5.2)
2 Ji2 4 J1234

with some coupling constant g. In this short-hand notation, where we have also used natural units
(h = kg = M = 1), the argument of the coordinate z, the bilocal kernel G~!, and the quartic
interaction V are indicated by simple number indices, i.e.

1
x; = (1), /E /dﬂ'7 Gl_Q1 = Gil(ﬁ,Tz), Vigza = V (71,72, 73, Ta). (5.3)
i 0

The kernel is a functional matrix G~!, while V is a functional tensor, both being symmetric in their
indices.

In the following we shall leave G~! and V completely general, except for the symmetry with respect
to their indices, and insert the physical values
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5.2 Systematic Construction of Feynman Diagrams for the Quartic Oscillator Free Energy 67

at the end.

We may evaluate the partition function (5.1) perturbatively as a power series in the coupling
constant g. From this we obtain the functional W = In Z, which is related to the free energy F' of the
system by W = —f(F as an expansion

R A
Py .

The coefficients W®) may be displayed as connected vacuum diagrams constructed from lines and
vertices. Each line represents a free correlation function

1

2 =G, (5.6)

which is the functional inverse of the kernel G~ in the energy functional (5.2), defined by

/Glg G531 = 13- (57)
2

The vertices represent an integral over the interaction

>-< = /1234 V1234 - (5.8)

To construct all connected vacuum diagrams contributing to W®) to each order p in perturbation
theory, one connects p vertices with 4p legs in all possible ways according to Feynman’s rules which
follow from Wick’s expansion of correlation functions into a sum of all pair contractions. This yields
an increasing number of Feynman diagrams, each with a certain multiplicity which follows from combi-
natorics. In total there are 4!Pp! ways of ordering the 4p legs of the p vertices. This number is reduced
by permutations of the legs and the vertices which leave a vacuum diagram invariant. Denoting the
number of self, double, triple and fourfold connections with S, D, T, F, there are 2!°, 217 31T 41F leg
permutations. An additional reduction arises from the number N of identical vertex permutations,
where the vertices remain attached to the lines emerging from them in the same way as before. The
resulting multiplicity of a connected vacuum diagram in the ¢* theory is therefore given by the for-
mula [5,27]

417 p!

E=0 __
M T 2SHD 3ITYIF N’

(5.9)
where E = 0 records that the number of external legs of vacuum diagrams is zero. The diagram-
matic representation of the coefficients W®) in the expansion (5.5) of the quantity W is displayed in
Table 5.1 up to five loops [28-30]. For higher orders, the factorially increasing number of diagrams
makes it more and more difficult to construct all topologically different diagrams and to count their
multiplicities. In particular, it becomes quite hard to identify by inspection the number N of identical
vertex permutations. This identification problem is solved by introducing a unique matrix notation
for the graphs [23].

In the following, we shall generate iteratively all connected vacuum diagrams. We start by identi-
fying graphical operations associated with functional derivatives with respect to the kernel G, or the
propagator G. Then we show that these operations can be applied to the one-loop contribution of the
free partition function to generate all perturbative contributions to the partition function (5.1). After
deriving a nonlinear functional differential equation for W, its graphical solution yields all connected
vacuum diagrams order by order in the coupling strength.

5.2.1 Basic Graphical Operations

Each Feynman diagram is composed of integrals over products of free correlation functions G and
may thus be considered as a functional of the kernel G~!. The connected vacuum diagrams satisfy a
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TABLE 5.1: Connected vacuum diagrams and their multiplicities of the 2 theory up to five loops. Each diagram
is characterized by the vector (S, D,T,F;N) whose components specify the number of self, double, triple
and fourfold connections, and of the identical vertex permutations leaving the vacuum diagram unchanged,

respectively.
P w ()
#1
! ee
(2,1,0,0;1)
: , O
(0,0,0,1 (2,1,0 0;2)

#4 #7
3 1728 @ 3456 1728 2592 m
(0,3,0,056) (1,0,1,052) (3,0,0,056) (2,2,0,052)
#8 #9
4 62208 248832 55296 497664 165888
(0,4,0,0;8) (0,2,0,0;8) (0,0,2,0;4) 2,0,0;2) (2,0,1,0;2)

#13
248832 165888 248832 62208 124416
(2,1,0,054) (1,1,1,0;2) (3,1,0,0;2) (4,0,0,0;8) (2,3,0,052)

certain functional differential equation, from which they will be constructed recursively. This will be
done by a graphical procedure, for which we set up the necessary graphical rules now. First we observe
that functional derivatives with respect to the kernel G=! or to the free propagator G correspond to
the graphical prescriptions of cutting or of removing a single line of a diagram in all possible ways,
respectively.

Cutting Lines

Since z is a real scalar coordinate, the kernel G—! is a symmetric functional matrix. This property
has to be taken into account when performing functional derivatives with respect to the kernel G,
whose basic rule is
6G1y
0G5
From the identity (5.7) and the functional chain rule, we find the effect of this derivative on the free
correlation function

1
=3 {613042 + 614032} . (5.10)

0G
-2 — 1% = G13Ga2 + G14G32 (5.11)
e,
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which has the graphical representation

0
6G3)!

1T — 2 = 1 2 4+ 1 2 . (5.12)

Thus differentiating a propagator with respect to the kernel G~' amounts to cutting the associated
line into two pieces. The differentiation rule (5.10) ensures that the spatial indices of the kernel are
symmetrically attached to the newly created line ends in the two possible ways. When differentiating
a general Feynman integral with respect to G~', the product rule of functional differentiation leads to
a sum of diagrams in which each line is cut once.

With this graphical operation, the product of two fields can be rewritten as a derivative of the
action with respect to the kernel

1T = 2 &[71‘1] s (513)
0G5

as follows directly from (5.2) and (5.10). Applying the substitution rule (5.13) to the functional integral
for the fully interacting two-point function

1
G12 = E /D.’L’ T1T2 eiA[z] B (514)
we obtain the fundamental identity

Gy =2 (5.15)

6Gry
Thus, by cutting a line of the connected vacuum diagrams in all possible ways, we obtain all diagrams
of the fully interacting two-point function. Analytically this has a Taylor series expansion in powers
of the coupling constant g similar to (5.5)

o0 l _g P
G=Y = (j> G (5.16)
=P !
with coefficients
SW )
GP) =2 ST (5.17)
12

The cutting prescription (5.17) converts the vacuum diagrams of pth order in the coefficients W) in
Table 5.1 to the corresponding ones in the coeflicients G&’;) of the two-point function. The results are
shown in Table 5.2 up to four loops. The numbering of diagrams used in Table 5.2 reveals from which
connected vacuum diagrams they are obtained by cutting a line.

For instance, the diagrams #15.1-#15.5 and their multiplicities in Table 5.2 follow from the con-
nected vacuum diagram #15 in Table 5.1. We observe that the multiplicity of a diagram of a two-point
function obeys a formula similar to (5.9):

417 pl 21

E=2 __
M T 21S+D3IT N *

(5.18)
In the numerator, the 4!P p! permutations of the 4p legs of the p vertices are multiplied by a factor 2! for
the permutations of the two end points of the two-point function. The number N in the denominator
counts the identical permutations of both the p vertices and the two end points.

Performing a differentiation of the two-point function (5.14) with respect to the kernel G™! yields

0G12
2712 Gloss — G12Gay, 5.19
(5G§41 1234 1234 ( )
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TABLE 5.2: Connected diagrams of the two-point function and their multiplicities of the z* theory up to four
loops. Each diagram is characterized by the vector (S, D,T; N) whose components specify the number of self,
double, triple connections, and of the combined permutations of vertices and external lines leaving the diagram

unchanged, respectively.

(p)
p Gi;
#1.1
1 12
(1,0,0;2)
#2.1 #3.1 #3.2
2 192 288 8 288
(0,0,1;2) (1,1,052) (2,0,052)
#4.1 #5.1 #5.2 #5.3
3 20736 @ 6912 @ 20736 % 13824 @Q
(0,2,0;2) (0,0,1;4) (1,1,052) (1,0,151)
#6.1 #6.2 #7.1 #7.2
10368 10368 M 10368 20736
(2,0,0;4) (3,0,0;2) (1,2,0;2) (2,1,051)
#8.1 #9.1 #9.2 #10.1 #10.2
4 995328 @ 1990656 1990656 @- 221184 663552
(0,3,0;2) 0,1,0;4) 2,0;2) (0,0,2 ,1;2)
#11.1 #11.2 #11.3 #11.4 #12.1
995328 @ 1990656 995328 3981312 995328
2,0;4) (1,2,0; 1) (1,2,0:2) (1,1,0;1) 1,0:2)
#12.2 #12.3 #12.4 #13.1 #13.2
331776 Q@Q 663552 Gm 663552 @b 995328 995328
(2,0,1;2) (2,0,1;1) (1,0,1;2) (2,0,0;4) (1,1,0;4)
#1333 #14.1 #14.2 #14.3 #14.4
1990656 8@ 995328 663552 663552 g@ 331776
(2,1,0;1) (1,2,0;2) (1,1,1;1) (1,0,1;2) (0,1,1;4)
#15.1 #15.2 #15.3 #15.4 #15.5
995328 &m 497664 Qﬁ) 497664 995328 995328
(3,1,031) (3,1,052) (2,1,0;4) (2,1,052) (3,0,052)
#16.1 #16.2 #17.1 #17.2 #17.3
497664 080 497664 O O O 497664 995328 497664 %
(3,0,0;4) (4,0,0;2) (1,3,0;2) (2,2,0;1) (2,2,0;2)
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where G234 denotes the fully interacting four-point function
G 1 —Alz]
1234 = E Dx L1X2X3T4 € . (520)

The term G13G34 in (5.19) subtracts a certain set of disconnected diagrams from G1234. By subtracting
all disconnected diagrams from G234, We obtain the connected four-point function

G234 = G231 — G12G34 — G13G21 — G14G23 (5.21)
in the form
c oG
fa30 = —2 —— — G13Gas — G14Ghs. (5.22)
0G5,

The first term contains all diagrams obtained by cutting a line in the diagrams of the two-point-function
G'12. The second and third terms remove from these the disconnected diagrams. In this way we obtain
the perturbative expansion

S 1 /—g p
Giazs = Z ) (T) Gié(gi (5.23)
= !
with coefficients
. 5G(P) p p _ B
Gl =25 -y (1) (6l U6k + 6 Y6y). (520
34 q=0

They are listed diagrammatically in Table 5.3 up to three loops. As before in Table 5.2, the multiple
numbering in Table 5.3 indicates the origin of each diagram of the connected four-point function.
For instance, the diagram #11.2.2, #11.4.3, #14.1.2, #14.3.3 in Table 5.3 stems together with its
multiplicity from the diagrams #11.2, #11.4, #14.1, #14.3 in Table 5.2.

The multiplicity of each diagram of a connected four-point function obeys a formula similar to
(5.18):

ypE—d_ _ Arpld

S SN (5:25)

This multiplicity decomposes into equal parts if the spatial indices 1,2, 3,4 are assigned to the four
end points of the connected four-point function, for instance:

1 3 1
3 4 4 3
(5.26)

Generalizing the multiplicities (5.9), (5.18), and (5.25) for connected vacuum diagrams, two- and four-
point functions to an arbitrary connected correlation function with an even number F of end points,
we see that

417 pl B

E _
M= = 215+D 3IT AIF N’

(5.27)

where N counts the number of permutations of vertices and external lines which leave the diagram
unchanged.
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TABLE 5.3: Connected diagrams of the four-point function and their multiplicities of the z* theory up to four
loops. Each diagram is characterized by the vector (S, D,T; N) whose components specify the number of self,
double, triple connections, and of the combined permutations of vertices and external lines leaving the diagram
unchanged, respectively.

<,(p)

p G1234
#1.1.1
1 n X
(0,0,0;24)
#2.1.1, #3.1.1 #3.1.2, #3.2.1
9 1152,576 ><>< 1152,1152 Q
1728 2304
(0,1,0:8) (1,0,0;6)

#4.1.1, #7.1.1 #4.1.2, #5.1.1, #5.2.1 #5.1.2, #5.3.2
3 41472,20736 m 165888,41472,41472 27648,27648 %

62208 248832 55296
(0,2,0;8) (0,1,0;4) (0,0,1;6)
#5.2.2, #6.1.1 #5.2.3, #5.3.1, #7.1.2, #7.2.1 #6.1.2, #6.2.2, #7.2.2
82944,41472 82944,82944,41472,41472 @ 20736,20736,82944 Q@
124416 248832 124416
(1,0,0;8) (1,1,0;2) (2,0,0;4)
#6.1.3, #6.2.1 #7.1.3, #7.2.3
41472,41472 m 41472,41472
82944 82944
(2,0,0:6) (1,1,0;6)
#8.1.1, #17.1.1 #8.1.2, #9.2.1, #10.2.1 #8.1.3, #11.1.2, #11.3.1
4 1990656,995328 m 3981312,3981312,3981312 CZZ 7962624,1990656,1990656
2985984 11943936 11943936
(0,3,0;8) (0,2,0;4) (0,2,0:4)
#9.1.1, #13.2.1 4o.12 #9.1.3, #9.2.3, #11.1.1, #11.4.1
3981312,1990656 % X 15925248,15925248,7962624,7962624
5971968 7962624 47775744
(0,1,0;16) (0,0,0:24) (0,1,0;2)
#9.2.2, #14.1.1, #14.4.3 #10.1.1, #10.2.3, # 14.2.1, #14.4.2 #10.2.2, #12.4.1
7962624,1990656,1990656 2654208,2654208,1327104,1327104 2654208,1327104 @
11943936 7962624 3981312
(0,2,0;4) (0,1,1;2) (0,0,1;8)
#11.1.3, #11.2.1 #11.2.2, #11.4.3, #14.1.2, #14.3.3 #11.2.3, #11.4.2, #13.2.2, #13.3.1
3981312,3981312 2 E 7962624,7962624,3981312,3981312 7962624,7962624,3981312,3981312
7962624 23887872 23887872

(0,2,0:6) (1,1,0:2) (1,1,0:2)

3981312,3981312,1990656,1990656 7962624,7962624,3981312,3981312 7962624,1990656,1990656
11943936 23887872 11943936
(1,2,052) (1,1,0:2) (1,1,0:4)

#11.2.4, #11.3.2, #17.1.2, #17.2.1 #11.3.3, #11.4.4, #12.1.1, #12.4.5 #11.4.5, #15.3.1, #15.4.1 %
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Table 5.3 (Continued)

#11.4.6, #13.1.1, #13.2.3
4 15925248,3981312,3981312
23887872
(1,0,0:4)

#12.1.4, #12.3.3, #15.1.1, #15.3.2
3981312,3981312,1990656,1990656
11943936
(2,1,0;2)

#12.3.1, #12.4.4
1327104,1327104
2654208
(1,0,1;6)

#13.2.4, #13.3.5
3981312,3981312
7962624
(1,1,0:6)

&

#14.1.4, #15.4.4
3981312,1990656
5971968
(1,1,0;8)

11943936
(2,1,052)

#15.2.3, #15.4.6
1990656,1990656
3981312
(2,1,0;6)

e

=

#15.1.3, #15.4.3, #17.2.3, #17.3.2
1990656,1990656,3981312,3981312

Rele

#12.1.2, #12.2.2, #13.3.3, #17.2.2
1990656,1990656,3981312,3981312
11943936
(2,1,0;2)

#12.2.1, #12.4.2
1327104,1327104
2654208
(1,0,1;6)

OO Q om0

#13.1.2, #13.3.4, #15.4.2, #15.5.1
7962624,7962624,3981312,3981312
23887872
(2,0,02)

#13.3.2, #15.2.1, #15.3.3
3981312,995328,995328 m
5971968
(2,1,0;4)

#14.3.1, #14.4.1
1327104,1327104
2654208
(0,0,1;12)

#15.1.4, #15.4.5
1990656,1990656
3981312
(2,1,0;6)

&P

#17.1.4, #17.2.4
1990656,1990656
3981312
(1,2,0;6)

#15.3.4, #15.5.4
1990656,1990656
3981312
(2,0,0;12)

o

#16.1.4, #16.2.1
1990656,1990656

#12.1.3, #16.1.2
3981312,1990656
5971968
(2,0,0;8)

#12.3.2, #12.4.3, #14.2.2, #14.3.2
1327104,1327104,2654208,2654208
7962624
(1,0,1;2)

#13.1.3, #16.1.1
1990656,995328
2985984
(2,0,0;16)

#14.1.3, #14.2.3, #17.1.3, #17.3.1
3981312,3981312,1990656,1990656
11943936
(1,2,0;2)

#15.1.2, #15.5.3, #16.1.3, #16.2.2
3981312,3981312,1990656,1990656

0,00

#15.2.2, #15.5.2
1990656,1990656
3981312
(3,0,0;6)

LQQO

11943936
(3,0,0;2)

3981312
(3,0,036)

X

Qe

&
58

Removing Lines

We now study the graphical effect of functional derivatives with respect to the free propagator G,
where the basic differentiation rule (5.10) becomes

6G12
0G34

1
= B {613042 + 614032}

(5.28)

We represent this graphically by extending the elements of Feynman diagrams by an open dot with
two labeled line ends representing the § function:

1—2 = (512.

Thus we can write the differentiation (5.28) graphically as follows:

4]

63—4

+

1—4

(5.29)

(5.30)
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Differentiating a line with respect to the free correlation function removes the line, leaving in a sym-
metrized way the spatial indices of the free correlation function on the vertices to which the line was
connected.

The effect of this derivative is illustrated by studying the diagrammatic effect of the operator

A 1)
L = _— 5.31
12 Gz 0G12 (5:31)

Applying L to a connected vacuum diagram in W ()| the functional derivative §/6G12 generates dia-
grams in each of which one of the 2p lines of the original vacuum diagram is removed. Subsequently,
the removed lines are again reinserted, so that the connected vacuum diagrams W (®) are eigenfunctions
of ﬁ, whose eigenvalues 2p count the lines of the diagrams:

Lw® =2pw® (5.32)

As an example, take the explicit first-order expression for the vacuum diagrams, i.e.
W = 3/ V1234 G12G3y (5.33)
1234
and apply the basic rule (5.28), leading to the desired eigenvalue 2.

5.2.2 Perturbation Theory

We introduce an external current J into the functional (5.2) which is linearly coupled to the coordinate
2. Thus the partition function (5.1) becomes the generating functional Z[.J] which allows us to find
all free n-point functions from functional derivatives with respect to this external current J. Due to
the shape of the functional (5.2) the expectation value of the coordinate z is zero and only correlation
functions of an even number of coordinates are nonzero. To calculate all of these, it is possible
to substitute two functional derivatives with respect to the current J by one functional derivative
with respect to the kernel G—1. This reduces the number of functional derivatives in each order of
perturbation theory by one half and has the additional advantage that the introduction of the current
J becomes superfluous.

Current Approach

Recall briefly the standard perturbative treatment, in which the energy functional (5.2) is artificially
extended by a source term

Az, J] = Ala] - / Jyas - (5.34)

1

The functional integral for the generating functional
210 = / Dap Al 7] (5.35)
is first explicitly calculated for a vanishing coupling constant g, yielding
© 1 -1, 1
A [J] = exp —5 TrinG™ + 5 J1Gia s p (536)
12

where the trace of the logarithm of the kernel is defined by the series [31]

T‘rlnG’l—iﬂ (G =12} {Gpt — 61} (5.37)
- n o 12 12 nl nljy - :

n=1
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If the coupling constant g does not vanish, one expands the generating functional Z[J] in powers of
the quartic interaction V', and re-expresses the resulting powers of the coordinate within the functional
integral (5.35) as functional derivatives with respect to the current J. The original partition function
(5.1) can thus be obtained from the free generating functional (5.36) by the formula

g & 0)
Z = —= Viegs ————-— p ZV[J 5.38
eXp{ A1 /1234 1234 5J15J25J35J4} 1] o (5.38)
Expanding the exponential in a power series, we arrive at the perturbation expansion
g &
Z =4q1—= Viegg ——————
{ a1 /1234 23 S 16200301
il / Visaa Vs * t.. s 20 (5.39)
2 (A2 Jinzasgrs ot OO 616026301050 500700 | o ‘

in which the pth order contribution for the partition function requires the evaluation of 4p functional
derivatives with respect to the current .J.

Kernel Approach

The derivation of the perturbation expansion simplifies, if we use functional derivatives with respect
to the kernel G—1 in the action (5.2) rather than with respect to the current J. This allows us to
substitute the previous expression (5.38) for the partition function by

7 = exXp {—g / V1234 %} BW(D) s (540)
6 1234 5G;2 5G§4

where the zeroth order of the negative free energy has the diagrammatic representation
wo - Lozl O - (5.41)
2 2
Expanding again the exponential into a power series, we obtain

g 52 142 / 5t } W
Z=<1-= Visssa —— =5+ 53% Vi2saVsers ——— 77 T --- ¢ € .
{ 6 Ji234 0GT 0G5 236 Jia3u5678 6G 3 6G 310G 6G 73
(5.42)

Thus we need only half as many functional derivatives than in (5.39). Taking into account (5.10),
(5.11), and (5.37), we obtain

SW© 1 2w 1
R — , —————— =~ {G13G24 + G14G23} 5.43
FTei 5 G2 6G1_215G§41 1 {G13G24 14Ga3} ( )
such that the partition function Z becomes
Z {1 39 Visos GraGas + + 2 / VissaVk
= -5 1234 G12G34 + 5 535 1234 V5678
4l J1234 2 (41?2 Ji23as5678

X |9 G12G34G56G78 + 24 G15G26G37Gag + 72 G12G35G46Grs

+ } eV (5.44)

This has the diagrammatic representation

1 2
2=31-3300 + 57 |2 OO OO #2653 +2 OO0 |+

(5.45)
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All diagrams in this expansion follow directly by successively cutting lines of the basic one-loop vacuum
diagram (5.41) according to (5.42). By going to the logarithm of the partition function Z, we find a
diagrammatic expansion for W

1 g 1 g
w=50O ~53C0 +30m 24@”2@@@ LIRREE (5.46)

which turns out to contain precisely all connected diagrams in (5.45) with the same multiplicities. In
the next section we show that this diagrammatic expansion for W can be derived more efficiently by
solving a differential equation.

5.2.3 Functional Differential Equation for W = 1n Z

Regarding the partition function Z as a functional of the kernel G—1, we derive a functional differential
equation for Z. We start with the trivial identity

/DLL‘(Si {xg e_A[x]} =0. (5.47)

1

Taking into account the explicit form of the action (5.2), we perform the functional derivative with
respect to the coordinate and obtain

/Dl? {512 — /Gl_gll'zl??, — g V1345 $2$3.Z'4.T5} 67"4[‘1] =0. (548)
3 6 345

Applying the substitution rule (5.13), this equation can be expressed in terms of the partition function
(5.1) and its derivatives with respect to the kernel G~

VA 2 6%z
012 Z + Q/Gfl—_ =39 / Visas——g1——1 - 5.49
s P0G 37 Jass 0G 536G (5.49)

Note that this linear functional differential equation for the partition function Z is, indeed, solved by
(5.40) due to the commutation relation

ex {_9/ v L} Gl — G ex {_2/ v L}
p 6 1254 1234 (SGIZI(SG;LI 56 56 p 6 1234 1234 (SG;ZI(SG;E

g J g 52
=—= | Vser8 —— exp {—— / Viasa 7} 5.50
3 Jzs 6G781 6 J1234 5G1215G341 ( )
which follows from the canonical one
1) ) 1
——— G5 — G3f —— = = {13024 + 014023} . 5.51
e M 56T T2 {613024 + G142} (5.51)

Going over from Z to W = In Z, the linear functional differential equation (5.49) turns into a nonlinear

one:
ow 2 W ow oW
612 +2/G1731—71 ==-g / ‘/1345{ 1 1 + 1 1} . (552)
3 0Gy3 37 Jaus 0Go3 0G5 0GL3 0G4

If the coupling constant g vanishes, this is immediately solved by (5.41). For a nonvanishing coupling
constant g, the right-hand side in (5.52) produces corrections to (5.41) which we shall denote with
W) Thus the quantity W decomposes according to

W =wO 4 st (5.53)
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Inserting this into (5.52) and taking into account (5.43), we obtain the following functional differential
equation for W (int).

§W(int) g g 5w(int)
Gy —— = —/ V1234 G12G34 — = Vi2sa Gioa ——
/12 G 4 J1234 3 Ji234 6G3)

(5.54)

g - { 52W(int) 5w(int) 5w(int)}
+= 1234 — — + — —

3 J1234 6G10Gs  0GT  6G3
With the help of the functional chain rule, the first and second derivatives with respect to the kernel

G~ are rewritten as

] ]

1= [ G13Gas— 5.55
5Gf21 » 13 245G34 ( )
and
5 52
——— = G15G26G37Gag————
0G5 0G4 sors T G50 Grs

1 1)
+- | {G13G25Ga6 + G14G25G36 + G23G15Ga6 + G24G15Ga6t ——,  (5.56)
2 Jse 0Gs56

respectively, so that the functional differential equation (5.54) for W(int) takes the form

5w(int) g 5w(int)
. Gi2 SGn 14 /1234 Vi234 G12G34 — g /123456 V1234 G12G35Gas e
g 52w(int) 5w(int) 6w(int)

- / V1234 G15G26G37G s {
12345678

. (557
3 5Ga0Crs | 0Ging §G78} (5:57)

5.2.4 Recursion Relation and Graphical Solution

We now convert the functional differential equation (5.57) into a recursion relation by expanding W (int)
into a power series in g:

i _ 5~ L (=9 o
Wi =% " — o) W (5.58)
o p! !

Using the property (5.32) that the coefficient W () satisfies the eigenvalue problem of the line numbering
operator (5.31), we obtain the recursion relation

SW®) 52 @)
W<P+1>=12/ Vizsa G12G35G +4/ Vigsa G15G26G37Gag———
193456 1234 U12W354046 5G56 12345678 1234 L15G26W37 485G565G78
p—1 _
P SW =0 s (@)
+4 ( ) / Vi G15G26G37Gug ——— ——— 5.59
; ¢ ) Jissisens 1234 G15 G20 GiarGus = — S (5.59)

and the initial condition (5.33). With the help of the graphical rules of Section 5.2.1, the recursion
relation (5.59) can be written diagrammatically as follows

1
52w (P) SW ) 1
(p+1) _— . yw 2
W 4 01—203—4 3 + 12 61—2 2>Q
4

Ly [/1/ (p_Q) (q)
+ E D 0 1 3 ow
ST o > 1. ]
4 q1<Q) 01—2 2><4 §3—4 p>1 (560)
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This is iterated starting from

wW =3 (Y ). (5.61)

The right-hand side of (5.60) contains three different graphical operations. The first two are linear
and involve one or two line amputations of the previous perturbative order. The third operation is
nonlinear and mixes two different one-line amputations of lower orders.

To demonstrate the working of (5.60), we calculate the connected vacuum diagrams up to five loops.
Applying the linear operations to (5.59), we obtain immediately

sw 1 2w 1 3
= - =6 ) 5.62
01—2 6 2>Q T f1—203—4 2><4 ( )
Inserted into (5.60), these lead to the three-loop vacuum diagrams

w® = 24 @ +72 (X)) - (5.63)

Proceeding to the next order, we have to perform one- and two-line amputations on the vacuum graphs
in (5.63), leading to

SWw®2)
s =90 12+ 144 + 144 lwz : (5.64)
1 2

and subsequently to

52w @) 1 2 1 3 p
_—— = 288 144 288 2 4
601—2063—4 3>Q<4 + 2>Q<4 +

+144 3 2 + 144 1 4 + 144 . (5.65)
Q.

Inserting (5.64) and (5.65) into (5.60) and taking into account (5.62), we find the connected vacuum
diagrams of order p = 3 with their multiplicities as shown in Table 5.1. We observe that the nonlinear
operation in (5.60) does not lead to topologically new diagrams. It only corrects the multiplicities of
the diagrams generated from the first two operations. This is true also in higher orders. The connected
vacuum diagrams of the subsequent order p = 4 and their multiplicities are listed in Table 5.1.

As a cross-check we can also determine the total multiplicities M®) of all connected vacuum
diagrams contributing to W(®). To this end we recall that each of the M ®) diagrams in W) consists
of 2p lines. The amputation of one or two lines therefore leads to 2pM (P) and 2p(2p —1) M P) diagrams
with 2p — 1 and 2p — 2 lines, respectively. Considering only the total multiplicities, the graphical
recursion relations (5.60) reduce to the form derived before in Ref. [22]

p—1 |
M@ = 16p(p+ 1)MP + 16 ( L
D
=1

(@ pyr—a)
_q_l)!(q_l)!Mquq, p>1. (5.66)

These are solved starting with the initial value

MM =3, (5.67)



5.2 Systematic Construction of Feynman Diagrams for the Quartic Oscillator Free Energy 79

leading to the total multiplicities
M® =96, MG =9504, MW =1880064, (5.68)
which agree with the results listed in Table 5.1. In addition we note that the next orders would contain

M®) =616108032, M =301093355520, M(T = 205062331760640 (5.69)

connected vacuum diagrams.






