CHAPTER O

Smearing Formulas for Fluctuation
Effects

It is well known from perturbative expansions of interacting quantum fields and quantum mechanical
systems with polynomial interactions that correlation functions appearing in a certain perturbative
order can be decomposed into sums of products of two-point correlation functions by applying Wick’s
rule [4, Chap. 3]. When the potential of a physical system is nonpolynomial, the correlation functions
are more complicated, and Wick’s rule fails. This case can only be treated with a so-called smearing
formula, which simply turns out to be a Gaussian convolution of the original classical potential. The
width of the Gaussian distribution is governed by the two-point correlation functions or Green functions
of the unperturbed system. A special example was the perturbative expansion for the effective classical
Hamiltonian (2.77), which will now be generalized to arbitrary Gaussian systems.

3.1 Generalized Euclidean Action in Phase Space

The most general Euclidean quadratic action in flat 2d-dimensional phase space reads

] e
Aolp, x;j, v] = g/o dT/O dr’ [XT(T)DXX(T, Vx(1") + %7 (7) Dxp (7, 7")p(7")

hg

+ 7 (7) Dpx (7, 7)x(7") + " (7) Dpp (7. 7' )p(7")] +/0 dr [iT(1)x(r) + v ()p(1)],  (3.1)

where j(7) and v(7) are external currents coupled linearly to the respective d-dimensional phase space
coordinate x(7) or p(7). The superscript T denotes the transpose with respect to the phase space
coordinates. The d x d matrices Dxx(7,7"), Dxp (7, T"), Dpx(7, 7’), and Dpp (7, 7’) are arbitrary at the
moment.

Integrating exp{—Ao[p, x; j, v]/h} over all possible configurations satisfying periodic boundary con-
ditions in phase space yields the partition function of the system with external sources

Zoljv] = ]{ Dl gDy e=AolpxivI/h (3.2)

This serves as the generating functional for all correlation functions. The path integral measure is
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26 3. Smearing Formulas for Fluctuation Effects

defined by slicing:

N+1 d d
d%x,d%p
%DdDd:l'm” — g | - :
TEPE ot {/ (2mh)d } (3:3)

The partition function can also be written as an integral over the unnormalized particle density
20(x)[j. v,

Zolj, v] = /dd:v 00(x)[j, v]. (3.4)

The unnormalized particle density go(x)[j,Vv] is the diagonal element of the unnormalized density
matrix

e o e (3.5)
with the sliced measure
i X . N+1 dip,,
frtertn= o 1| foe] 11| [ i) 6
The density matrix is normalized by the partition function (3.2):
ool ). v] = e 0 1)

For the calculation of the density matrix in the presence of external sources (3.5), it is useful to
introduce natural units with A = 8 = M = 1, where M is the particle mass. Thus, positions are
measured in units of \/h%23/M, and the Euclidean time is given as a multiple of hg.

The action (3.1) can be written in the 2d x 2d matrix form

1

Aolp.x:§.v] = 3 /O Cir /O T (1) S Y () + /0 i T (1w, (3.8)

with 2d phase space vectors w’'(r) = (x(7),p?(7)) and currents C*(r) = (j¥(7).v¥(r)). The
2d x 2d matrix S(r,7’") is composed as follows:

, Dy (7, 7") Dxp(T, 7’
StnT) = (DprT, Tlg DppETv 7'/; ) . (3:9)

Utilizing the invariance of the first term of the action (3.8) under transposing and interchanging 7 and
7/, we introduce a symmetrized matrix

S AN D;X(TJTI) Dip(T’T/)
0.7 = (o) D) ) (310)

where the superscript “s” denotes the symmetry S%(r,7’) = S57(7/, 7). The symmetrized kernels are

1 1
Dix(Tv TI) = 5 [DXX(TJ TI) + D;{X(TIJ T)] ’ D;P(TV TI) = 5 [DPP(TJ T/) + Dgp(Tl’ T)] (3'11)
and satisfy
Di (1,7) = Di;{(T’, T), D;p(T, ') = D;g('r', 7). (3.12)
For the mixed kernels, we have
S 1 S 1
D (7, ') = 3 [Dxp(T, )+ Dgx(7'7 T)] , DgL(, ') = 3 [DPX(T, ')+ D,Tp(T’, T)] , (3.13)
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which implies the symmetry
S N sT !
Dy (1,7") = Dyp (77, 7). (3.14)

We will only use the symmetrized kernels in the following sections, where we calculate the path integrals
for the unnormalized density matrix (3.5) and the partition function (3.2) in the presence of external
sources. For simplicity, we omit the superscript “s” for the symmetrized matrices in the sequel.

By varying the symmetrized action without external sources,

§A0[pa X3 Oa 0] = Oa (315)
we find the general Hamiltonian equations of motion
1
[ ar D7 xa() + D7 )] = 0 (3.16)
0
1
/ 7" [Dpp (7, 7' )Pei(7") + Dpx (1, 7" )xci(7')] = 0 (3.17)
0

for the classical paths in phase space xq(7) and pe(7).

3.2 Density Matrix with External Sources

We now calculate the general path integral (3.5) by a time-slicing procedure and find in particular
the generating functional and the two-point correlation functions for the one-dimensional harmonic
oscillator.

3.2.1 Calculation of the Phase Space Path Integral

By dividing the time interval [0, 1] into N 4 1 pieces of length e, the unnormalized density matrix in
the presence of external sources (3.5) can be written as

N N+1 dip N
st )= g o] T 5] 0 |- 35 e )
n=1 n=1 n=1
N+1
X exp l_i Z (Xn[Dxx]nmxm + 2x, [Dxp]nmpm + Pn [Dpp]nmpm>] s (318)
n,m=1

where we have absorbed the lattice constant ¢ in the discrete matrices and currents, respectively. The
calculation of the momentum integrals is easily done after quadratic completion and rotation into the
diagonal basis of Dpp. In continuum representation, we obtain

o ) V] = e | /dT / V() D7 V()

(2m)4 det Dpp
x ) /)Xb d v exp [—— / dr / dr' T (1)GPL (r, T)x(T')—/O 1dTJT(T)x(T)}, (3.19)
x(0)=x4

where the path integral measure in configuration space is

/D z= lim H [/ ;:x;;z} (3.20)

The expression (3.19) possesses the remarkable property that the current

J(T)Zj(T)—/O dﬁ/o d7a Dxp(7,71)Dpp (11, 72)V(T2), (3.21)
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which linearly couples to the coordinate x(7), contains a term with v(7) originally being coupled to
the momentum. It is a general property of such functionals that currents coupling to momenta can
always be considered as new currents, which couple to positions [17].

The other new quantity, which has been introduced in Eq. (3.19), is

1 1
GE;I(T, 7') = Dax (1, 7') = /0 dTl/O d7a Dyp (T, Tl)D;; (71, 72) Dpx (72, T'). (3.22)

Enclosed by coordinates x(7) in the configuration space path integral appearing in Eq. (3.19), the

quantity G’Dfl(T7 7’) is interpreted as a new kernel. It maps the Green function GmDimj (r,7") to ad

XX

function:
d 1
D —1 D
Z / dr Gzia:j (T1= T) G:zj:zk (T7 TZ) = 05k 6(7-1 - 7-2); (323)
j=1"0
where the Kronecker symbol ¢;; is defined as
_J L i=y
dij = { 0. itj (3.24)
The ¢ function has the property
1
/ dr f(7)8(r — ') = f('), ' € (0,1), (3.25)
0

for any smooth test function f(7). With Egs. (3.22) and (3.23), we write the matrix of Green functions
as

-1

1 1
G2 (r,7) = [Dxx (r,7") — / dm / dT2 Dxp(T, Tl)D;; (71, 72) Dpx (T2, ") . (3.26)
0 0

Since the end points of the paths are fixed, x(0) = x, and x(1) = x;, fluctuations are vanishing at
these edges, and the Green function Gaxj (1, 7") must obey Dirichlet boundary conditions:

G, (0,7) =GP, (1,7) =0, GP, (1,0) =G, (1,1) = 0. (3.27)

TiTj

The calculation of the configuration space path integral in Eq. (3.19),

x(1)=xyp
(x5 1[0 0)[J] = / Dy = Aoeelxid|/h, (3.28)
x(0)=xq
with the action in configuration space
[ 1 . 1
Aoes|x; I = 5/ dr/ dr’ xT(1)GP " (r, T’)X(T')—i—/ dr IT (1)x(7), (3.29)
0 0 0

is done on usual footing. We decompose the path x(7) into a classical part x.;(7) and the fluctuation
term ox(7),

x(7) = xa (1) + 0%(7), (3.30)

where the fluctuations may vanish at the boundaries, 0x(0) = dx(1) = 0. The variation of the action
(3.29) in the absence of the external current J(7) vanishes for the classical path. Performing this
variation, we obtain a relation, which we need for the following considerations:

1 1
SAocslxa 0] = / dr / ar' [5x (G2 (. 7% () + xB(r)GRE (. 7)o (r)]
0 0
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1 1
= / dT/ dr’ (SXT(T)GEX_l(T, Vxa(7') = 0. (3.31)
0 0

Here we have utilized in the last line the symmetry of G2 ! (7,7'), which is obvious from the definition
(3.22) and the properties (3.12) and (3.14). From (3.31), we read off the Euler Lagrange equations of
motion

1
/ dr' G2, (1.7 )xa(r') = 0. (3.32)
0

Inserting now the decomposition (3.30) into the action (3.29), considering the vanishing of the coupling
of fluctuations and classical path from the last line in (3.31), and acknowledging that the measure is
invariant under the translation (3.30), Dda = DLdz, the functional (3.28) can be expressed as

(%0 1[0 0)[J] = exp {% /0 ar | /O ar (17 (NGRr. 7)) = xE(T)GR (7.7 xa (7)) }
ox(1)=

0
1 1 1
X exp {—/ dTJT(T)Xcl(T)} / Dl 5z exp{ — %/ dT/ dr’
0 0 0
1

6%x(0)=0

x {5XT(T) + /0 ldn JT(n)GxDx(ﬁ,T)} G2 (7,7 {5x(7') + / drs GXDX(T',TQ)J(TQ)} }

’ (3.33)

The path integral over the fluctuations is a constant, since it is independent of the end points x, and
Xp. For convenience, we introduce the new variable

y(r) = bx(r) + /O dr' G2 (r. 73 (7). (3.34)

which also vanishes at the boundary, y(0) = y(1) = 0, since the Green functions G2 (7, 7') satisfy the
Dirichlet boundary conditions (3.27). The measure of the path integral over the fluctuations remains
unchanged, DLy = D%z, and the calculation of this path integral is simply done, e.g. in discrete
space, yielding

y(1)=0
1 1

/ Dgsy exp {—%/ dT/ dTIyT(T)GEx_l(T, Tl)y(’]'l):| = ; (3.35)
0 0

pD—1
y(0)=0 y/det G2

Combining the results (3.19), (3.33), and (3.35), we obtain the density matrix in the presence of
external sources

_ , M\ 1 1 T
90 (%p, %0 )[j, v] = (27rhzﬁ> \/detD — exp {_ﬁ/o dr[j" (r)xa(r) + v (T)pcl(T)]}

1 [he ho 1T D1 ’ ’
X exp —3 dr dr'x(1)Gry (1, 7 )% (7")
0 0

1 hB hB
xexpd g [ ar [ar [TOGR(R ) + (06 (7 )v(E)

—l-VT(T)ng(T, i) + VT(T)Ggp(T, TI)V(TI)} }, (3.36)

where we have reused the standard units. In order to prevent complications, the determinants shall
be treated as dimensionless quantities here. For this reason, we have already extracted the dimension-
carrying prefactor (M/h?3)¥/2. As a rule, the determinants are calculated with i = 3 = M = 1. At
the end, powers of &, 3, and M are multiplied to the determinant to make it dimensionless.
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In (3.36), we further utilized the relation

pcl / dT1 / dTQ D T Tl)Dpx(Tlu TZ)XCI(TZ)a (337)

which is a direct consequence of the Hamiltonian equation of motion (3.17), when solved with respect

to pei(7).
Additionally to G, (7,7"), defined by (3.26), we have introduced the d x d matrices

GEP(T, ) = / dﬁ/ dr G2 (T, Tl)Dxp(Tl,TQ)D;pl(TQ,TI), (3.38)
GEX(T, ) = [GD] (7',
= / dﬁ/ dro D TTl)Dpx(Tl,TQ)GEX(TQ,TI), (3.39)

h3
GEP(T, ') = D (T, T)—i—/o dry - - /0 dry
XD;; (7, 71) Dpx (71, TQ)GEP(TQ, 73) Dxp (73, T4) D, ! o (T4, T . (3.40)

These expressions are equivalent to position- and/or momentum-dependent two-point correlation func-
tions, as we show in Section 3.2.3. Before embarking to this, however, we will first check the density
matrix functional (3.36) for a simple example, the one-dimensional harmonic oscillator.

3.2.2 Example: Density Matrix of the One-Dimensional Harmonic Oscillator with Sources

The harmonic oscillator is usually a pretty good system for checking a general theory, since its exact
quantum statistical properties are well known. Due to the Gaussian type of the Boltzmann factor, the
path integrals for density matrix and partition function are simply solved. Additionally, this system
is nontrivial in a sense that it possesses a nonvanishing interaction.

In what follows, we calculate the density matrix functional for the one-dimensional case, since it
already contains the interesting properties that we would like to point out, e.g. the two-point correlation
functions. The action of this system in the presence of external sources j(7) and v(7) reads

hpB 2(r
Adp.aigoil= [ ar {=inr) o) + 5 |5 + M) +00a(r) + o)} @A)

By comparing this action with the general one introduced in Eq. (3.1), we identify

Doy (7,7 = %w%(ﬂ 7, Dpp(T, ') = hLMcS(T, 7', Dgp(r,7') = %%5(T, 7,
Dpy(1,7") = —%%5(7 ')+ 5(7 ) [6(hB3,7) — &(7,0)]. (3.42)

The § functions with two arguments act as the usual § function with the exception of time translational
invariance. It is a consequence of the Dirichlet boundary conditions the paths must satisfy due to the
fixing of the end points. This will become clear after expanding the fluctuations into a complete set of
orthonormal functions and is shown later on.

The symmetric splitting of the first term in the action (3.41) is necessary to ensure the symmetry
of the matrix S(7,7’), defined in Eq. (3.9). This requires that the nondiagonal elements Dy, and Dp;
of S must be transposed to one another.! Tt is a nice problem to show what the transpose of the
operator ¢0/0t is. It is well known from quantum mechanics that the operator

- 7]
H— i— 3.43
or (343)
]The second and third terms of me (r,7') appear since operators with derivatives yield boundary terms:
Bar F(m)a(r) = f(m)g(7)]|, = hﬁ f dr g(7)f(7). If f() and g(7) have periodic or Dirichlet boundary conditions,
these additional terms vanish, “and Dypy(7,7') is exactly the transpose of Dgp(7,7’).
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is Hermitian, H = H*. This means that any representation of this operator is identical to its transpose
with complex conjugated elements. With (3.43), we obtain

I () SO T B

This explains the different signs of Dy, and the first term of D, in (3.42).

The first quantity we shall calculate is GxDI:j (1,7'), defined in Eq. (3.22). Inserting the identifica-
tions from (3.42) into (3.22) yields

T

@R, 7) = S 5(h — ) — 8(r)] (e —7') -

57 w2) é(r — T'). (3.45)

h
Thus, calculating the classical action of the density matrix (3.36) for the one-dimensional harmonic
oscillator gives the known result (without external currents):

1

h
Ay alz] = 5/0 / dr' zo (T Mw(T Nra(r))

- ¥ lxdmﬁ)%(fim — za(0)ia(0) - / Vi zar) (aa— - wz) xcl(ﬂ]

hB

= /0 dr BMigl(r)—i- %szle('r)} ) (3.46)

Since the classical path for the harmonic oscillator is known to be [4, Chap. 2]

1

. — inh inh - .
2l (T) S 7o [xp sinhwT + x4 sinhw(hG — 7)), (3.47)

the classical action (3.46) becomes the usual one

Mw

Aw,cl(wb’ :L'a) - m

[(22 + 27) cosh hBw — 2z42) - (3.48)

Now we consider the Green function G, ,(7,7') given by Eq. (3.26). Due to the vanishing of the
fluctuations 6z (7) at the fixed end points of the path, this Green function is required to satisfy Dirichlet
boundary conditions (3.27). The fluctuations can be expanded into a complete set of orthonormal
functions [4, Chap. 3],

1
0, (T) = ——=sinwv,T, 3.49
(1) N (3.49)
with
™
L= 3.50
v = (3.50)
being half the Matsubara frequencies defined in Eq. (2.13).
The completeness relation is then
8y, (T)0x,, (T sinv,7sinv,7’ = sin v, 7 sin v, 7. 3.51
> Ly Ay (331)

n=—oo n=—oo

Here we see the necessity to introduce the ¢ function with two arguments, since the expression on the
right-hand side is not invariant under time translations. Substituting the § functions in expression
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(3.45) by the completeness relation (3.51), it turns out that the boundary terms vanish. Thus we
obtain the decomposition

Gme:j (r.7") ﬁﬁ Z W + vy sm vpTsinv,T’. (3.52)

Inverting the kernel yields the Green function in Fourier space

h 1

GP _
M w? +v?

waw(Vn) = (3.53)

After performing the Fourier back transformation, we obtain the Green function for the harmonic
oscillator with fixed end points

h

D N
Gl ') = 2M w sinh Afw

o [coshw(|T — 7'| — h) — coshw(T + 7" — Bf)] . (3.54)
The calculation of the two-point functions (3.38)—(3.40) is straightforward, since these can be derived
from G 7'). Inserting (3.42) into (3.38) leads to

T, w(

;0
GmDpw( ') = /dﬁ/ dr mwTTl)%a—ﬁé(Tl,Tg)hMé(Tg,T')

= —iM/ dry Gmme(T,Tl) 9 §(m1, ') =iM— 9 Gszw(T,TI). (3.55)
0 ’ 67'1 or’

In the last line we have carried out a partial integration, where the boundary term vanishes due to
the Dirichlet boundary conditions (3.27). The derivative with respect to the second argument of the
Green function (3.54) is easily performed and yields

Gop(T.7) = —%m [O(1 — 7')sinhw(t — 7" — hB) — O(7' — 7)sinhw(r’ — 7 — h3)
+sinhw(r 4+ 7" — hp)]. (3.56)

As the explicit calculation of (3.39) shows, it is

GP (T, )_zM[f GD, (1, 7). (3.57)

PT,w

The difference between (3.55) and (3.57) is that the derivative now acts on the first argument of the

Green function Gm (7, 7"). Thus, we obtain
G T) = o1 [O(1 — 7')sinhw(r — 7/ — hB) — O(r" — 7)sinhw(r’ — 7 — hJ)
P 2 sinh hfw
N Sinhw(T +7 - hﬁ)] GmDp w(TI7 T)' (3.58)

Calculating (3.40) exposes no new aspects and yields

82
D AN no_ ) D
Gpp w( ) = hM(S(Tv T ) M 9ror me,w(Tv T )
M hw
= 2sinhhjw [coshw(|T — 7| = hB) 4 coshw(T 4+ 7" — hP)]. (3.59)

The sole task remaining to be done to specify the density matrix functional (3.36) for the one-
dimensional harmonic oscillator is the calculation of the determinants. Since we know that the prefactor
/M /h2( carries the complete physical dimension of the density matrix, it is useful, for evaluating the
determinants, to return to dimensionless natural variables by setting M = h = 3 = 1. Determining



3.2 Density Matrix with External Sources 33

the determinant of D, is quite simple and yields det D, = 1. This is a simple consequence that D,
is unity in Fourier space and an infinite product of unity yields again unity. The calculation of the
other determinant is much more involved and shall be presented in detail in the following. With the

Fourier representation (3.52) of G2, the appropriate fluctuation factor of (3.36) can be written as

TI,w

—17-1/2 1 1
[det GP wl] = exp (—— Tr InGP w) = exp [—5 / dr2 Z In(w? + 1) sin® VnT] . (3.60)
0 n=1

The integration of the sine-squared over 7 is easily done, fol dr sin? v, =1 /2, and Eq. (3.60) becomes

[det Ghb- w} v exp {—% In ﬁ [w?® + (7n)?] } . (3.61)

n=1

Obviously, the product diverges, but this divergence is not physical. A lattice calculation would have
proved the finiteness of the determinant [4, Chap. 2]. By regularizing the expression within the product
with respect to the free-particle Green function, we obtain

(o9} o0 1
];[ Wt ()} — I[l[wzr ™) } 1:[[ }:;sinhw. (3.62)
Inserting this result into (3.61), we eventually find
1/2 hfw
D _
|:det sz w] - sinh hﬁw 3 (363)

with physical units.
Thus we have calculated the density matrix of the one-dimensional harmonic oscillator in the
presence of external sources, with the result [17]

~ . Mw Mw 9 9
= exp{ h hfw — 2
0w (Tp, T4)[7, V] SwTsinh i exp { ISR [(#2 + z) cosh hfw — 2z,25] }
1 Mo 0 : :
X exp ~hisinh B /0 dr {7(7’) + ’LM’U(T)E:| [zp sinhwT + x4 sinhw(hB — 7)]

xexp{w/hﬁ [5G )+ 5065700

+0(1) Gy o (7,73 (') + (7 )Gpr,w(TaTl)v(Tl)} } (3.64)

where the two-point functions are given by (3.54), (3.56), (3.58), and (3.59). For j(7) = v(1) = 0,
Eq. (3.64) reduces to the well-known expression for the density matrix of the one-dimensional harmonic
oscillator.

3.2.3 Expectation Values and Correlation Functions

We usually define expectation values as
(o) = éal(xb7xa)/Dld.Tde .o g~ Aolpd/R (3.65)

with the action (3.1) but vanishing currents,

Ao[p, x] = Ao[p, x; 0, 0]. (3.66)
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The expectation values are normalized with respect to the density matrix (3.36) with vanishing cur-
rents,

00(Xp, Xa) = 00(xp, X4)[0, 0], (3.67)

XbrXa

which ensures (1) = 1. For the following consideration, however, it is useful to reintroduce the
currents as artificial quantities. If the expectation value of a polynomial function consisting of powers
of x and p shall be evaluated, one can apply functional derivatives with respect to these currents. Such
derivatives act as follows:

g / / " o_ POfGT) () oy 0f((7), u(T))
dz(T) /dT fG(r) u(r)) = /dT 0z(1") o ) 0z(T) ’ (3.68)

Applying, for example, to the action (3.1) a functional derivative with respect to j(7) yields:

0
03*(7)

Analogously, one obtains when differentiating with respect to v(7):

Aolp, x;j, v] = x(7). (3.69)
5o alp v = (7). (3.10)

We can use this recovery of x and p to formulate a redefinition of expectation values for polynomial
quantities, e.g.

R = a5 e T [0 }ﬁ[&f | B )i (3.1)

i=1 (

In the following, we specify some values for (n, m), where n denotes the overall power of z and m that
of p, to obtain the lowest-order correlations. For (1,0), we obtain the expectation value of x(7) by
applying to the density matrix functional (3.36) a single functional derivative with respect to j(7) and
setting the currents to zero thereafter:

j=v=0

(x ()™ = ~hay  (xp, %a)

= xa (7). (3.72)

557 (7) 00 (X6, Xa)[j, V] N

Thus, the expectation value of x(7) is simply identical with the classical path. Evaluating the case
(0,1), we obtain the expectation value of the momentum p(7):

(p(7))*™" = —hgg ™ (xb,%a)

= pa(T). (3.73)

VT (1) 00(xb,%a)[j, V] o

Calculating (2, 0), (0,2), and (1, 1) yields the two-point correlation functions

(er(M)an () = 1Ryt (%, xgm@o(xw xa)li,v]

j=v=0
= Gkaml( T, TI) + xcl,k(T)xd,l(T'), (3.74)

52

N\XbsXa 32 ~—1 s .

(pr(T)pe (77)) = h"0q (XbaXa)5vk(T)6vl(Tl)Q0(Xb,Xa)[J’V]
G (T:7') + Pk (T)pa i (1),

Xp,X ~— 52

(@n(r)p (7)™ = P05 (%bs Xa)

j=v=0

WQO(% Xq)[J; V]
= Goup (1. 7) + e k(T)pas (7). (3.75)

j=v=0

5jk T
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From Eq. (3.39) follows that the latter expectation value can be used to identify
21 &2
N\ Xb:Xa — h ~— ~ .
<pk(7—)$l(7_ )> Qo (Xb,Xa) 5'Uk(7_)6jl(7_l) Qo(Xb,Xa)L],V]

j=v=0
= Gy (1.7) + PaLi(T)ars (7). (3.76)
Re-expressing the two-point functions with the help of Egs. (3.72) and (3.73), we obtain

Gy (7.7 = @O G (2 7) = Bl ()™

Goop (1. 7') = (@R (B (7)™ Gp o (1. 7) = (Br(r) @ (7)™

with abbreviations

(3.77)

x(1) = x(1) — xa(7), p(7) = p(7) — Pa(7). (3.78)

Thus, we have identified the elements of the d x d matrices G2, (7. 7), GRu(7,7'), Gh(7,7'), and
GEP(T, 7'), introduced in Eq. (3.36), with appropriate two-point correlation functions.

3.3 Smearing Formula for Density Matrices

In the previous sections we have investigated the exactly solvable density matrix for systems governed
by a Gaussian action (3.1) with external sources. We will now use the results to set up a perturbative
treatment of density matrices for systems with nontrivial interaction. In order to calculate the expec-
tation values, which appear in the perturbation expansion, we derive the smearing formula, which is
useful, in particular, for nonpolynomial potentials.

3.3.1 Perturbative Expansion for the Density Matrix of a System with Interaction

The exact calculation of the density matrix

x(hB)=xp
0(xp, Xq) = / D'dedp e~Alpxl/n (3.79)
x(0)=xq
with an action which contains a potential,
hg
Alpx] = Aofp.x] + [ drV(p(r).x() (3.50)

is impossible for most systems. The potential V(p(7), x(7)) shall be as general as possible, and thus it
may depend on momentum and position. The potential is considered as a perturbation of the exactly
calculable system with the action (3.66). A Taylor expansion of the exponential in (3.79) with respect
to V yields a perturbation expansion around the density matrix go(zp, 4) of the unperturbed system,
defined in (3.67):

x(hB3)=xp L
0(Xp,Xq) = / D'y pip e—Aolpxl/h {1 - ﬁ/ dr V(p(7),x(7))
0
x(0)=xq

2|h2/ dﬁ/ dr:V (p (Tl))v(p(TZ)yx(TQ))—...:|. (3.81)

Using the definition (3.65) of the expectation values, the perturbation expansion can be written as

0o hﬁ 7]

Z 'h" : .. ; dr, (V(p(m1),%x(71)) - - .V(p(Tn)yx(Tn))>Xb7xa‘| .

0(xp,Xa) = 00(%b, Xa)

(3.82)
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The introduction of cumulants, where the first two are given by

(Vp(m), x(m)e"™ = (V(p(r), x(m))™™,
(V(p(r), x(1))V(p(72), x(72)))"™ = (V(p(70), x(r))V (P(72), X(72)))™"™
— (V(p(r0), x(72)))™"™ (V(p(72), X(2))) ™™ ,

enables us to re-express the right-hand side of Eq. (3.82) by

Mo\ 2
By xa) = (m) xp [ BVt 1 (% %0)]. (3.83)

Here, we have used that, written in the form of a classical particle density

d/2
B () = (27:‘; ﬁ) exp =BV (x)] (3.84)

the quantum statistical density matrix is governed by the effective classical potential

1 " B B
‘/;H,cl(xb;xa) = _Bln |:)‘th éO bexa:| BZ A ~/0 d 1‘/0 dry,

X (V(p(71),x(11)) -+ V(p(7a), X(7))) 2" (3.85)
with the thermal wavelength
2mh?
Ath = i ﬂ. (3.86)

The calculation of the density matrix for any system reduces to the calculation of the effective classical
potential (3.85) and thus to an evaluation of the respective cumulants.

3.3.2 Smearing Formula for Gaussian Fluctuations

As a first application of the generating functional (3.36) we derive a general rule for calculating cor-
relation functions of polynomial or nonpolynomial functions of x(r) and p(r) [17]. The result will
be expressed in the form of a smearing formula. This formula will represent an essential tool for
calculating perturbation expansions with nonpolynomial interactions.

Consider the correlation functions of a product of local functions

(Fi(x(m))Fa(x(72)) - .. P (x(70)) Fn1 (P(Tv 1)) g2 (P(Tov2)) -+ Fovens (% (v )

x(hB)=xp
= 05 ' (xp, %4) / D'z Dpt H [F(x H [FNm(P(TNgm))] e~AoPXI/h, (3.87)
n=1
x(0)=xq

By Fourier transforming the functions F,(x(7,)) and Fnim (p(TN4m)) according to

d
Fux(1)) = [ e, P )30 = x(1) = [ ¥ Fxa) [ 5 f)" exp (i€, (60 —x(m))}  (3.89)

and

d
Prsan(®(ren) = [ G Pren®)800 = p(rsn)

= /%FN+M(pm)/dd’im exp{—%ﬁm(pm—p(ﬁvm))}, (3.89)
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the correlation functions (3.87) may be re-expressed as

N d
(P () P (0 = 35" %) T | [t Fue) [ (558 ovw igox,)

x H ([ G Pt [t (<fupn )| o xi o) (3:90)

where the generating functional is given by (3.36). The currents j(7) and v(7) are specialized to

T)= zhz £,0(1— ), v(T) = —i Z Km0 (T — TN4m)- (3.91)

Inserting these equations into the action of the functional (3.36) and the Green functions (3.26) and
(3.38)—(3.40), we find the Fourier decomposition of the generating functional (3.36), so that the corre-
lation functions (3.90) become

(Fi(x(11)) - - - v (P(Tvn )7 = f[ Ud T 1 n)/(d;Tg)nd exp {1, [xn —Xcl(Tn)]}}

X ﬁ U (Z;h’;’d FN+m(pm)/ddffm exp{—%nm[pm—pcl(wm)]ﬂ

m=1
| X N M 1 M
xexpq 2 S 6 CE, 4L Z > €, Ga b — 5 S kG R, (3.92)
n,n’=1 n 1m=1 m,m’=1
where we used the abbreviations
GQZ, = GEx(Tann’)v ngl = GEp(Tn’TN+m)7 G?ﬁ", = Ggp(TN+m7TN+m’)~ (3.93)

To proceed, it is more convenient to write expression (3.92) as a convolution integral

N M d
(Fx(r0)- P @™ = TT | [ den Fuoen)| TT | 5285 Fvim(om)]
XﬁMdP(Xl,... y XN, P1,--- 7p]u) (394)

involving the Gaussian distribution

1
5wlTGwl}. (3.95)

1 .
P(x1,...,pM) = G~ /dN+Mw1 exp {zw?wZ _

The vectors wy and wy have (N + M )d components and are defined as

1 1
wi = (51)"' &N Rt aEK/M) (3.96)
and

Wg = (Xl - xcl(Tl)7 <o XN — Xcl(TN)7 —p1 + pcl(TN—i-l); ., —PM T+ pcl(TN_;,_M» . (3.97)

The (N + M)d x (N + M)d-matrix of Green functions

G:<BAT g) (3.98)
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can be decomposed into block matrices A, B, and C'. The Nd x Nd-matrix A and the Md x M d-matrix
C' are defined by

GLL GE - GiX Gl Gi2 o R
G12 Gll L. G2N G?ﬁ) Gﬁ){) . GS&
A= XX XX xx C = PP PP PP 3.99
o : N : ’ - : - : (3.99)
G G - Gl GR GR - Gl

and yield quadratic forms of the position and momentum variables, respectively. The Nd x M d-matrix

-GLL g2 ... —GgM
_Gi _G)lc _Gi
B= A r (3.100)
-Nl .N2 ) .NM
-GNl —GgN2 ... -GN

gives rise to quadratic terms, which are linear in both position and momentum variables. The multidi-
mensional integral in (3.95) is of Gaussian type and can easily be done, yielding an explicit expression
for the Gaussian distribution (3.95)

1 1 _
P(x1,...XN,P1,--- ,PM) = N ELTTE exp {—§w2T G w2} , (3.101)

where G~ represents the matrix inverse of (3.98) whose block form is [see Appendix 3A for a direct
derivation]

_ X1 _X-1pc-1
& 1_ < _CleTXfl Cfl + CleTXlec—l ) (3102)

with the abbreviation

X =A-BC'BT. (3.103)
The calculation of the determinant is presented in Appendix 3A and yields

det G =det C' det X, (3.104)
when the matrix C' is regular. For singular matrix C' but A regular, we obtain

det G = det X det A, (3.105)

with X = C — BTA™'B.

With the Gaussian distribution (3.101), our result (3.94) constitutes a smearing formula, which de-
scribes the effect of harmonic fluctuations upon arbitrary products of functions of space and momentum
variables at different times.

3.4 Generalized Wick Rules and Feynman Diagrams

In applications, there often occur correlation functions for mixtures of nonpolynomial functions F'(Zy)
or F(py) and powers according to

(F@r) &), (F(@n(m) B (m)™,
(Fr(r) 2] ()™ (F(r(r)) B (7))

where we consider functions of the shifted phase space coordinates (3.78). In order to evaluate such
correlation functions, we derive in this section generalized Wick rules and Feynman diagrams on the
basis of the smearing formula (3.94). For simplicity, we restrict ourselves to the calculation in one
dimension, since it already involves the interesting features, which we want to discuss in the following.

(3.106)
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3.4.1 Ordinary Wick Rules

It is well known that if one has to calculate expectation values of polynomials with even power, Wick’s
rule can be written as the sum over all possible permutations of products of two-point functions. We
shortly recall to this expansion by considering the case of a position-dependent n-point correlation
function in one dimension, n even, defined as

G (1) = () B ()™ (3.107)

Note that it will be sufficient to study only the correlation functions involving the deviations from
the classical path, respectively. This expectation value can be decomposed with the help of Wick'’s
expansion

G(n)(Tla CIE JTn) = Z G(Q)(TP(1)7 TP(Q)) oo G(2) (TP(nfl)a TP(n))7 (3108)

pairs

where P denotes the operation of pairwise index permutation. Note that Eq. (3.108) may be considered
as a consequence of a simple derivative rule

(F(&(1)) F(12)) """ = (2(11) Z(2)) """ (F' (& (1)) (3.109)

with F'(Z) = 0F (£)/0z. By applying this recursively, one eventually obtains (3.108). And conversely,
the derivative rule (3.109) can be proved for polynomial functions F(Z(7)), following directly from

Wick’s theorem (3.108).
The two-point Green function G® (1, 73), occurring in (3.108), can be considered as a Wick con-
traction, which we introduce as follows:

H(r) 3(r2) = () 3(r2)) ™ = G2, 7). (3.110)
(7)) = (3(r) ()™ = 6B (1. 7). (3111
) 3(m) = (3(r) ()™ =GRy (1, m) = GEy (o), (3112
) () = (3m) B} = Gy (o) (313

Decomposing polynomial correlations of Z(7) and p(7) with the help of these contractions corresponding
to Eq. (3.108) or successively applying the derivative rule (3.109) leads to following results

min(n,m)

@ (m) & ()™ = 3 [GR ()] TG (11, )] [GR(r )] TV (3114)

l=o,a+2,
a+4,...

min(n,m)

@ () ()™ = Y a [60 )]G (r )] [GD (12, m2)] TV (3115)

l=a,a42,
a+4,...

min(n,m)

() F ()™ = S e (60 ()] TG (ray )] [GR (72, m2)] TV (3.116)

l=a,a42,
a+t4,...

min(n,m)

(B" (1) P (1)) = Z c [GI],)p(ﬁ,7’1)](7171)/2 [GEP(Tl,Tg)]l [GPDP(TQ,TQ)](mfl)/Q, (3.117)

l=a,a+2,
a+4,...

with the multiplicity factor
(n—l—=D(m—=101-1)Inlm!
Nn—=0Hm =1

¢ = (3.118)
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Note, that (—k)!! =1 for any positive integer k. For nonvanishing correlation, the sum n 4+ m must be
even so that the regulation parameter « is defined as follows:

0, n,m even,
o =

1, n,modd. (3.119)

The contractions defined in (3.110) (3.113) can be used to treat Taylor-expandable functions F(Z(7))
and F(p(7)) only. The desired derivative rules for such correlations read

(F(E(n) 3 ()™ =

n

z:a,a;g,:a%___ (n—Lll)”l' (G2, (ra )] " (G m)) <F(l>(5(ﬁ))>”’“, (3.120)
(F () 57 (r2)) ™ =

l+z+ i G (Gl (FOGr)) " @)
(F(p()) p" ()"0 =

Z+Z+ (n—Lz'w (G2 )| "0 (G, )] (FOG)) ™ (3122)
(F(p(11)) 3 (19)) "> =

za,aé:a%___ (H—LI')”I' (G2, (r2,72)] "% [GD (72, )] <F(”(ﬁ(n))>mb’xa. (3.123)

The parameter « distinguishes between even and odd power n:

0, mneven,
a—{ 1 nodd (3.124)

since even (odd) powers of n lead to even (odd) derivatives of the function F(Z(71)). The [th derivative
FO(z(r)) is formed with respect to z(r1), and FO(H(r1)) is the Ith derivative with respect to p(71).
Note, that in (3.123) the Green function Gsz appears with exchanged time arguments, which in this
case happens to be inessential due to the symmetry G2 (72, 71) = GD,. (71, 72).

3.4.2 Generalized Wick Rule

According to their derivation, the contractions (3.120) (3.123) are only applicable to functions F'(Z(7))
and F(p(r)) which can be Taylor-expanded. In the following, we will show with the help of the smearing
formula (3.94) that these derivative rules remain valid for functions F'(Z(7)) and F(p(7)) with Laurent
expansions. Expectations of this type appear in variational perturbation theory (see Ref. [20] for
position-position coupling). Since the proceeding is similar in all the cases (3.120)—(3.123), we shall
only discuss the expectation value

(F(Z(m1))p" (12)) "> (3.125)

in detail. For this we consider the generating functional of all such expectation values following from
(3.94)

“+oo “+o0
- s\ _ ap
<F(x(‘r1))e > \/m/de(m)/%rhe

1 D
X exp {—m [G?p(TQ, Ta) x? - 2GmDp(T1, To) ap + G oy (71, Tl)pZ] } . (3.126)
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The p-integration can easily be done, leading to

—+oo
. Tp,Tq 2 dx 2 /5D

Fli(m)) " )\ GD (ta,12)57/2 / F(z+j GP (1, t3)) e/ ta,t2)
(F@m) e ) o [ I Rl ta)

—00

-2 b 1 Ty, Ta
= St 2 N S GR ()] (FO@E®)) (3.127)
=0

The correlation of two functions at different times has been reduced to a single-time expectation value
of the Ith derivative of the function F(#(r1)) with respect to z(r1), denoted by F®(#(7)), with Green
functions describing the dependence on the second time. Expanding both sides in powers of j, we
re-obtain (3.121).

Now we demonstrate that the derivative rules (3.120)—(3.123) for Laurent-expandable functions
F(z(r)) and F(p(r)) also follow from generalized Wick rules. Without restriction of universality, we
only consider the expectation value

(F(2(11)) 2" (12))""" . (3.128)

The proceeding to reduce the power of the polynomial at the expense of the function F'(Z(r1)) is as
follows:
la. If possible (n > 2), contract &(72) &(72) with multiplicity (n — 1), giving

(n—1) i(m)i(‘m) (F(&(r1)) 2" 2(r2))"""" (3.129)

else jump to 1b. directly.
1b. Contract F(&(71)) #(72) and let the remaining polynomial invariant. We define this contraction
by the symbol

8

F(@(r)) #(72) 87 (r2) = &() (r2) (F'(#(r0)) & (r2)) ™" (3.130)

L 1 - _1 I

1c. Add the terms la. and 1b.
2. Repeat steps la.-1c. until only expectation values of F(#) or expectations of its derivatives remain.
Summarizing, we can express the first power reduction by the generalized Wick rule (n > 2)

(F(&(m)) 3" (2))™" = (n = 1) (r) #(r) (F(&(r)) 2" 2(r2))™""

+F(f(ﬁ))f(72)f”_2(72) (3.131)

with the contraction rules defined in (3.110) and (3.130). For n = 1, we obtain
(F(@(m) &(72))™" = (1) #(72) (F'(x(m)))™"", (3.132)
L

which is valid for any function F(Z(7)) generalizing the rule (3.109) that was proved for polynomial
functions only. Recursively applying this power reduction, we finally end up with the derivative rule
(3.120). Note that the generalization of Wick’s rule for mixed position-momentum or pure momentum
couplings is done along similar lines, leading to the derivative rules (3.121)—(3.123).

3.4.3 New Feynman-Like Rules for Nonpolynomial Interactions

Higher-order perturbation expressions become usually complicated. For simple polynomial interac-
tions, Feynman diagrams are a useful tool to classify perturbative contributions with the help of
graphical rules. Here, we are going to set up analogous diagrammatic rules for perturbation expansions
for nonpolynomial interactions V (z(7),p(7)), whose contributions may be expressed as expectations
values

hB B
/O dry - /O A (V(@(m1), p(11)) - - - V(@ (), plra))) 7% (3.133)
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From (3.110) (3.113) follows that we have four basic propagators whose graphical representation may
be defined as (setting h = M = 3 =1 from now on)

1 T = (#(n)#(n)"" = Gou(n, ),
T1 T2 = (p(m1) p(r2))*" " = G]I))p(TlaTQ)a
T o=ee T = () B(1)) = G, (71, T2),
TLoemee T2 = (1) B(12)) = Gy(11,12) = G (T2, 7).

A vertex is represented as usual by a small dot. The time variable is integrated over at a vertex in a
perturbation expansion,
1
. = / dr.
0

We now introduce the diagrammatic representations of the expectation value of arbitrary functions
F(&(1)) or F(p(7)) and their derivatives as

s = [ wae. s o= [ Eaye
= [arEaeym, = [ar eyt

< / Cr () ¢< / ()

With these elements, we can compose Feynman graphs for two-point correlation functions of the type
(3.106) for arbitrary n by successively applying the generalized Wick rule (3.131) or directly using
the derivative relations (3.120) (3.123). The general results become obvious by giving explicitly a
graphical representation of the following four correlation functions

/Oldn /O1 drs (F(3()) #(ra))" % = /Oldﬁ/olm GD (11, 73) (F'(3(m)))™" (3.134)

o,

/01 dm /01 dry (F(&(r1)) 2% ()" = /01 dmy /01 dra {Gme(7—277'2) (F(&(r)))*"e

+ (G2 (1, )] (" (#(m)))™ } (3.135)

QO

/Oldn/oldrg (F(@(m)) #(r))™" = /Oldﬁ/01dTQ{gagx(n,Tg)GEE(TQ,TQ)<F'(g:~(n))>“b’“

(G0, ()] (" ()™ } (3.136)
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/01 dTl/OldTZ (F(#(r)) &' (r2))™""" = / dn/ d72{  (ras )] (F((r0)))™"
+6 [GR,(m, )] G2, (ra. 72) (F"(&(r)))""""

+ [GP(r1, 7)) <F(4)(:%(n))>zb7% } (3.137)

BORTESRrSY

Mixed position-momentum and momentum-momentum correlations and their graphical representations
are given in Appendix 3B.

The consideration of higher-order correlations with more than one function F(Z(7)) or F(p(7)) can
be reduced to the results (3.114)—(3.117) or (3.120)—(3.123) by expanding them with respect to the
classical path or momentum, respectively. By expanding both functions in the expectation value, one
obtains for example

(R Poam) ™™ = 32 3 o @) E ) (3139
with
fim = F(0), i=1,2. (3.139)

But constructing graphical rules for such general correlations is more involved due to the various
summations over products of powers of propagators G2, (7, 7;) with i,j = 1,2.

Finally, we apply the diagrammatic rules to the anharmonic oscillator with #*-interaction, which is
a powerful system being discussed in detail by the help of a perturbation expansion [4, Chap. 3]. With
the Green functions given by (3.26) and (3.38)—(3.40), the two-point-correlation for the anharmonic
system can then be expressed graphically, yielding the known decomposition for the second-order
perturbative contribution

/ dﬁ/ dry (2*(m1) (Tz) Tosfa — m @ (3.140)

with subscript ¢ indicating that we restrict ourselves to connected graphs only. Beyond this, our
theory allows to describe nonstandard systems with polynomial interactions (3.133) depending on both,
position and momentum, to higher order. Finally, we want to give the graphs for a four-interaction
%2 p? to second order to see the variations of possible graphs in comparison with (3.140):

/ dry / dry (2 (r1) 17 (r1) #°(72) P*(72)),"" = 2 m m

=000 000 =+ OO = O
+16A ¢ , \,‘ +4 4;5\,/»— @ (3.141)

We see, that we have the same class of graphs already occurring in (3.140), however, with different
propagators connecting the vertices. Thus, both classes decay into subclasses with different multiplic-
ities, but the total numbers remain 72 and 24 for each type of class, respectively. Furthermore, all
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graphs are vacuum-like graphs. Eventually, it is easy to construct the Feynman graphs for polyno-
mial correlations higher than second order by applying Wick’s rule or the Feynman rules given in this
section.

Due to its universality, the theory should serve as a basis for investigating physical systems with
nonstandard Hamiltonian via perturbation theory and its variational extension.

3.5 Particle Density in the Presence of External Sources

The particle density for a quantum statistical system is given by the diagonal elements of the density
matrix. This means, for an explicitly given system, that the knowledge of the density matrix implies
the particle density and is obtained by

o(x)[j, vl = % (3.142)
The normalization ensures
/ddfw(X)[j,V] = % =1 (3.143)

In order to calculate the particle density for the general action (3.1), we follow, however, a different
way, since extracting the diagonal elements of expression (3.36) requires the knowledge of the classical
path with periodic boundary conditions x(0) = x, = x(hf3) = x; = x, which is determined by the
solution (we assume that there is only one) of the general Hamiltonian equations (3.16) and (3.17).
Rather, we utilize that the unnormalized particle density g(x) can also be obtained from a path integral
over all periodic paths with an inserted ¢ function §(x(7’) — x), which restricts the end points of the
periodic paths to x. This position is any point of the loop-like path x(7) at the time 7/, but it is the
same position in space for all loops we integrate over. Thus all periodic paths touch each other in this
point. The unnormalized particle density for a system with an action (3.1) reads

oo(x)[j, v] = }[dede §(x(7") — x) e~ AolpxivI/h, (3.144)

where the path integral measure is given by (3.3). Without any restriction of universality and as a
consequence of the time-translation invariance of actions of periodic paths, one could also have chosen,
for example, the points x(0) = x, or x(h3) = x,.

Similarly to (3.91), we rewrite the § function in Eq. (3.144) as

d hB
S(x(7') —x) = / % exp lika — %/0 deOT(T)x(T)] , (3.145)

with the artificial current
jo(r) =ik §(t — 7). (3.146)
After adding the second term in the brackets of the expression (3.145) to the action in the path integral

of Eq. (3.144), the Gaussian phase space path integral is easily solved. Introducing 2d-dimensional
phase space coordinates and currents

wi(r)=(x"(r),p"(m). 0" =(["0) +io(r), v (7)), (3.147)

and using the symmetric 2d x 2d-matrix (3.10), expression (3.144) can be written as

Go(x)lj v] = / (ji’)‘“dei”x f Dy
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h3
X exp l——/ dﬁ/ draw™ ( (7‘1,Tz)w(72)—i1—i ; dTnT(T)W(T)] . (3.148)

The calculation is straightforward. After a quadratic completion and a rotation of the phase space
vectors which makes S diagonal, the 2d-dimensional path integral reduces to a 2d-fold product of a
single one. This yields

s 'k ey )
00 (x)[j. v] \/W/ l%zf dn/ dram™( (rl,rg)n(rg)l. (3.149)

For further proceeding, it is practical to rewrite this expression with the help of the submatrices of S
as defined in (3.10), (3.11), and (3.13). The calculation of the inverse of S and its determinant is done
in Appendix 3A. We insert into Eq. (3.149) the components of

1y [ G T GRL(T. )
S (T7 T ) = ( ng(TJ 7_/) GBZ(T7 7_/) ) (3.150)

which are two-point functions satisfying periodic boundary conditions,
GE‘)S(TY 0) = GI!?S(TJ hﬂ)? GES(OJ T/) = GE‘)S(h’BJ TI>7 r7 5 E (X7 p)‘ (3‘151)

These two-point functions have the same shape as those for Dirichlet boundary conditions defined in
Egs. (3.26) and (3.38)—(3.40). We will discuss the properties of Green functions with periodic boundary
conditions later on. To proceed, we substitute jo(7) by the right-hand side of Eq. (3.146), which enables
us to perform the Fourier integral over k. This finally yields the general expression for the particle
density:

Mo\92 . 1
2ol v] = (2 2 > exp{—§xTG§;1(T’,T’)x}
TG/ Jdet Dyp det G det GRx(7/, 77)

1 [he
xexp{— ﬁ/ dr 3T () GELM (7 7 )x 2h2/ dﬁ/ de xx (71, 72)j(72)
0

+2jT(fr1)G§p(T1, T2)v(T2) + VT(Tl)Ggp(Tl, TQ)V(TQ)] }, (3.152)

where we have used the abbreviation
h3
JT(T) = jT(T)ng(Tv TI) - VT(T> / dry / dr G 7_ Tl)Dpx(le 7_2>G§x(7'2, T/)- (3153)
0

It is necessary to remark that, after discretizing the Euclidean time interval [0, k3] into N + 1 pieces,
the dimension of the matrix G, (7', 7) remains d X d, since 7’ is a fixed point of time within this
interval. Thus, its determinant is calculated only over the space components. The determinant of
the (N + 1)d x (N + 1)d matrices GB' and D, must be calculated, however, over all space-time
components. We have marked the difference by attaching the subscript “s” to the determinant in the
first case. For the evaluation of the determinants, it is useful to take into account, once more, the rules
regarding the physical dimension given after Eq. (3.36).

3.6 Partition Function with Currents

The partition function is, beside the density matrix, another fundamental quantity of statistics. In the
canonical ensemble of a closed thermodynamic system, it is related to the free energy F' via

Z=ePF. (3.154)
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It is the free energy that we will devote considerable attention throughout this thesis. In a subsequent
part, we are going to discuss its properties at finite and zero temperature, and in a different form, the
role as effective classical potential.

Additionally, the partition function in the presence of external sources can also be used as a
generating functional of the correlation functions, similar to the proceeding in Section 3.2.3.

3.6.1 Partition Function in the Presence of External Sources

The quantum statistical partition function is defined as the trace over the unnormalized density matrix.
For a system governed by the action (3.1), this is the space integral of (3.152):

ZO[jaV]

Tl v) = [ ()l v

NS lth/ / dr’' CT(r)S~ (1, 7")C(7")

with CT(7) = (j7(7),vT(r)). Written in components of the matrix S~ (7, 7’), the functional (3.155)
reads

, (3.155)

j ! i7 GP (T, m2)j(m2
el \/detD det GRZ! Xp{%z/ dﬁ/ dTQ i)
+31 (1) GEp (11, 72)v(72) + v (11)GY (leTZ)J(TQ)+VT(TI)GI;p(Tla7—2)V(7'2)]}- (3.156)

The Green functions are obtained as the elements of the inverse matrix S—!, which we investigate in
detail in Appendix 3A. They look similar to those obeying Dirichlet boundary conditions defined in
Egs. (3.26) and (3.38)—(3.40), but they must satisfy periodic boundary conditions (3.151) now:

1
B B
G (1, 7") = lex(T, T')—/ drmy dry Dyp(7, 1) Dp, 1(7'1,7'2)Dpx(7'2,7")1 . (3.157)
0 0
B B
Grp(: ') = _/0 dm d7'2 G2 (7, 71) D (71, 72) Dy p (72, '), (3.158)
G (r. ) = [GR]T (7', / dm / dry D31 (7, 71) Dpx (11, 72)GR (72, 7'),  (3.159)

Gh (1. 7') = Dp;(T 7' —I—/O dry - - /0 dry
XD;;(T, 71) Dpx (71, 72) Gy (T2, 73) Dy (73, 74) Dy L1, ). (3.160)

In the following, we specify these Green functions in the example of the one-dimensional harmonic
oscillator.

3.6.2 The Harmonic Oscillator Revisited

As an illustration, we calculate the partition function and the periodic Green functions of the one-
dimensional harmonic oscillator in the presence of external sources j and v (3.41). With the definitions
(3.42), where we now omit the boundary terms for D, (7, 7") due to the periodicity of the paths to be
considered, the matrix S reads

2 .
S(r,7") = % (%‘gT 1\24811) S(r — '), (3.161)
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where 0, = 0/07. Since only periodic paths must be considered, it is useful to transform the system
to Fourier space. The completeness relation for the periodic eigenfunctions is

1 : :
5(T_T/):ﬁ 3 eriemr=), (3.162)

with Matsubara frequencies w,, = 2wm/hf. Inserting this into (3.161), the Fourier representation of
the matrix S(, 7') becomes

 — , ,
_ —twm (T7—7")
S(r, ') = % ngioo S(wm)e , (3.163)
where
D Dy (wim)
S(wm) = et AL 3.164
(@) <Dp:r(wm) Dy, ) ( )

Thus, the elements of this matrix are

Muw? Wm 1

7 Dyp(wm) = —— = —=Dpa (W), Dy, = Mh

Dmm =
h

(3.165)

Combining these components according to the expressions (3.157) (3.160), we obtain the periodic two-
point correlation functions of the one-dimensional harmonic oscillator in Fourier space. Then, the back
transformation in time space yields

Chow(m ™) = % m_ioo % Tiu% e = 2]\7;L[w — ws(i:l—h_h;;; /_2%/2) (3.166)
GP, (1.7 = —% m_ioo wigi’”w? e o) = —iM%ngyw(T, ')

- o R Y gyt

= —Gp, (1. 7") =G, (7, 7), (3.168)
GY, (T ') = % m_ioo wignj\f—wiQ e twm(T=T") — M2 Gy (T, 7")

S e e 6109

For the calculation of the prefactor in (3.155), we use the eigenvalue representation of the determinant
of S

—1/2
[det 5] 712 = H H A (W) = exp (—%Tr In S)
m=—oo k=+,—
= exp {—% m;oo A (W) +1n )\(wm)]} . (3.170)

The eigenvalues of S(w,,) are determined from Egs. (3.164) and (3.165). According to our rule to
calculate determinants in units with A = 8 = M = 1, this leads to

Ai(wm) = 2 (? +1) £ \/i (@ +1) = (W2 +2). (3.171)

N —
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In (3.170), we have also utilized the definition of the logarithm of matrices via the diagonal represen-
tation of S(wy,),

10 Saing (W) = <ln A+O(wm) - A_O(wm) ) . (3.172)

The use of the diagonal representation is possible, since the trace appearing in (3.170) is independent
of the representation of S.
Inserting the eigenvalues (3.171) in (3.170), we find

[det S]_1/2 = exp {—% lnml__[oo [w® + w2 ] } = exp {—lnw - lnnl_:[1 [w® + w2 ] } . (3.173)

The product in the latter expression diverges, and we regularize it, similar to (3.62), with respect to
the free particle. Thus, we obtain

—-1/2 1 w/2

det S =——".
[det 5] w sinhw/2

(3.174)
For vanishing currents, j = v = 0, this is just the partition function of the one-dimensional oscillator,

1
Zo = 7,[0,0] = [det S] ¥/ =

~ 2sinh hfBw/2’ (3.175)

where we have chosen again physical units by demanding that the argument of sinh and the partition
function itself must be dimensionless. Combining this result with the exponential containing the
currents in Eq. (3.156), we obtain

K8 hB
Zulj.] = mexp{% /O ar /O 47’ [H(7)GE, (. 7))+ (7Y (.70
+0(1)Ghy o (1,77 (7") + v(T)GD, (T, TI)’U(TI)} }, (3.176)

where the periodic Green functions of the harmonic oscillator are given in Eqgs. (3.166)—(3.169).

3.7 Perturbative Expansion for the Free Energy

The free energy of a quantum statistical system is obtained as the logarithm of the partition function

F:—%an. (3.177)

If we assume that the action of the system has the form (3.80), the partition function is given by the
phase space path integral

7= f DDy e~ AP/ (3.178)

and cannot exactly be solved in general. Considering the decomposition of the action ratio (3.80) into
an unperturbed term and the interaction, and expanding the Boltzmann factor with respect to the
potential V(p(7),x(7)) into a Taylor series, we obtain the perturbative expansion

X (_1\n phB hB
2=+ 3 S0 [V [Can V) x() - Vi) D)y G179
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The expectation values are defined with the help of the unperturbed path integral

(o= 25" § DDl o, (3.180)
where

Zo = Z[0,0] = f DDy e=AolPxI/R (3.181)
is the partition function of the unperturbed system and its solution for vanishing currents is given

by (3.156) with j = v = 0. With the definition of the expectation values (3.180), the periodic Green
functions (3.157)—(3.160) can be expressed by the two-point correlation functions

b (1 7) = (wk(T)au(r")g (3.182)
B (1:7) = (2e()pu(7))g (3.183)
poa (T 7) = (r(r)2i(7)q (3.184)
pon (1) = (oe(T)pe(7)) (3.185)

(V(p(11),x(11)))g,. = : (3.186)
= V(p(72), x(72)))o

= (V(p(71), (1)) (V(P(72),%(72)))g,  (3.187)

which enable us to find a suitable expression for the free energy from (3.179) by using (3.177). Thus,
the perturbative expansion for the free energy reads

1 (_1)n h3 hB
F=F— 3 > e / dry - / A7 (V(p(r1)x(71)) -+ - V(P (10)X(70)))g.c - (3.188)
n=1 """ 0 0
with the free energy of the unperturbed system
1
Fy= ~3 In Zy. (3.189)

The free energy is the energy, which is available for a canonical thermodynamic system in a heat
bath with volume V' at temperature T to perform mechanical work. Thus, it is the portion of energy,
which remains when the inner system energy U is reduced by the entropic energy T'S. Assuming the
system to be closed (T = const., V' = const.), the entropy S ensures that the number of possible
configurations of the system, expressed by the partition function Z, is maximal at equilibrium for a
certain temperature T. Since 7 is at maximum for an equilibrated system, the free energy is minimum.
This is what Eq. (3.177) states. Thus, it is plausible that thermodynamics requires the relation

F=U-TS. (3.190)

Since the inner energy U is identical with the entire system energy F, and the system goes over into its
ground state for zero temperature, the quantum mechanical limit T — 0 (8 — o0) of the free energy
is equal to the ground-state energy E(©) of the system:

lim F = E©. (3.191)

B—o0
This is easily seen for the example of the harmonic oscillator, whose free energy is F,, =
(1/8)In2sinh hBw/2. For f — oo, sinh hfjw/2 has the asymptotics exp(hfw/2)/2. Inserting this into
the free energy yields limg_.o F, = hw/2 = EU(JO), which is the ground-state energy of the harmonic
oscillator with one degree of freedom.
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3A Algebraic Properties of Block Matrices

Consider a symmetric matrix consisting of block matrices A, B, and C,

S = (;T g) =57, (3A.1)

where A and C are also symmetric matrices. In what follows we calculate the inverse of S. In a first
step, we decompose the matrix into a product of triangular matrices. For regular matrix C, this means
that C 1 exists, we choose

I4 B X 0
S =518, 51=<640>7 52=<C_1BT Ic)’ (3A.2)

with the abbreviation
X=A-BCc'B". (3A.3)

In (3A.2), we have also introduced the identity matrices T4 and I, which act in the same space as A
and C, respectively. The inverse of S is determined by

Sl =(8,8,)" =5,1t87t (3A.4)

Since SiS;l =Ig,i=1,2, we have to calculate

s, (“1 bl) _Is, S, (“2 b2> _ T (3A.5)

c1 di

The identity matrix

Is = (15‘ [(; ) (3A.6)

is composed of the identity matrices I4 and Io. Thus, the determination of the elements of the inverse
matrices S and S5 ! becomes simple and we obtain

1_ (a1 b1 B X1 0 1 _ [ a2 bo N Ia —BC!
S]_ - (Cl dl) - (_C—lBTX—l IC) ) SQ - (02 d2 — 0 C_l . (3A7)
Multiplying both in the order given in Eq. (3A.4) yields the desired inverse of S
_ X1 _X-1pc-1
s = < _C-1BTX-1 014 lBTX-1BC-! > . (3A.8)

For the calculation of the determinant of S, we use again the decomposition (3A.2). Then, the
determinant of S is given by the product rule for matrices

det S = det Sy det Sy = det C'det X. (3A.9)
If C is singular but A regular, we can make use of another decomposition than (3A.2):
14 0 A B
with
X=C-BTA'B. (3A.11)

Then, the inverse of S turns out to be

_ A1 4+ ATIBX1BTA-Y —A-1BX!
57 = ( %-1pT - %o (3A.12)
and the determinant is

det S = det X det A. (3A.13)
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3B Generalized Correlation Functions
In this appendix we give the expectations for the correlation between a general position or momentum

dependent function and a polynomial up to order n = 4:
Position-Momentum-Coupling:

/ dn, / drs (F(3(r1)) p(r)) ™" = / Can, / s GB () (F(3(r)) ™ (3B.1)

I
*
A
i

/01 dm /01 dry (F(#(m)) p° ()" = /01 dry /01 dra {G?p(TQ;TQ) (F(z(ry))) "

LG, (r1.m)] (F" ()™ } (3B.2)

Il
*
_|_
*

1 1
[an | de{SG?p(ﬁ,Tz)Gpr(Tz,Tz) (F'(@(r))) ™"
0 0

/dﬁ/ dTQ T1)) P (Tg))mb’xa

LGP ()] (" (@ ()" } (3B.3)

i

w
*
)

+
*
‘

+

/: d“/()ld” (Fm)p'(m)™™ = /Oldﬂ /Old { (G (72 72)]” (@)™
6 [GR, (11, 72)]” G (r2, 1) (F"(#(r1)))"*"

[G (7’1772)]4 <F( Z(m1)) mb,xa} (3B.4)

Il
*
+
x»
4’ ;
\V

Momentum-Position-Coupling:

/ dﬁ/ drs ) (m2))" " = /:dﬁ /O1 dry Gy (1, 72) (F'(B(71))) """ (3B.5)

Ve,

/dﬁ/ dry (F(p(r)) 2 (r2)) ™" = /Oldﬁ/oldfg{agx(fg,fg) (F(5(r))) ™

+[Gpu(m, T2)]2 (F"(p(ry)))y " } (3B.6)

Il
X
+
P43
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/Oldn/Olde (F(p(m1)) #(r2))™""™ = / dn/ dTg{sc; (11, 72) G2, (12, 72) (F" (B(11))) """
+ G2, (1, 72))° <F”'(15(Tl))>mb’xa} (3B.7)

I
w
Xf
%
_l’_
’f
\

/ ', / s () 8 (r)) ™ = / ', / 1d72{[G£x<Tz,rz>]2 (B (F(r)))

8
Q

Momentum-Momentum-Coupling:

/ d“/ dra (F(p(r)) p(r2))™" = /d /Old@agp(ﬁ,@) (P ((r0))) ™ (3B.9)

Yorrnmnnne

/Oldﬁ /d (F((r)) 5(r2)) ™" = / a, / de{ 72, m2) (7))

+ (G m2)]” (P (B(ra))) ™" } (3B.10)

/Oldﬁ/oldm (F(p(r)) 7%(ma) "% = / dﬁ/ dTg{3G (r1,72) G, (72, 72) (F' (3(r))) ™"

T [GD (r1m)]) (B (B )™ (3B.11)

3@@

J)an [ dm (ot = [Can [ an g (G FGE@)
6 [GEP(H’TQ ]2 GEP(T%T?) <F”(ﬁ(7'1))>mb7ma

[GEP(T1,T2)]4 <F(4)(ﬁ(ﬂ)) mb,ma} (3B.12)

The case of position-position-coupling has already been calculated in Section 3.4.3.
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