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Abbreviations  

 

ABCG2  ATP-binding cassette transporter G2  

ABCP ATP-Binding Cassette Gene 

BCRP breast cancer resistance protein  

bFGF basic fibroblast growth factor 

CSCs cancer stem cells 

cDNA  complementary deoxyribonucleic acid  

°C degree Celsius  

DMEM  Dulbecco’s modified Eagle medium  

DNA  deoxyribonucleic acid  

dNTPs  deoxynucleotide triphosphates  

DPN 2,3-Bis(4-hydroxyphenyl)propionitrile, ERβ-selective agonist 

E2 17β-estradiol 

EB embryoid body 

EDTA  ethylenediaminetetraacetic acid  

EGF epidermal growth factor 

ERK extracellular signal-regulated kinase 

ERRs estrogen related receptors 

ERs estrogen receptors 

ESCs  embryonic stem cells  

FACS  fluorescence-activated cell sorting  

FCS  fetal calf serum  

FITC  fluorescein isothiocyanate  

FNAB fine-needle aspiration biopsy  

FTC follicular thyroid cancer 

×g  G-Force (unit of measurement of rotation speed of a centrifuge)  

HBSS  Hank’s balanced salt solution  
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HNF4  heptocyte nuclear factor 4  

ICM inner cell mass 

MEM  non-essential amino acids  

MgCl2  magnesium chloride  

M-MLV-RT murine Moloney leukemia virus reverse transcriptase 

ml  milliliter  

mRNA  messenger ribonucleic acid  

Ng nanogram 

nM nanomole per liter solution (unit of concentration) 

NIS sodium iodide symporter 

Oct4 octamer transcription factor-4 

PAX8 paired box gene 8 

PBS  phosphate buffered saline  

PCR  polymerase chain reaction  

pERK phospho-extracellular signal-regulated kinase 

PH  potentia hydrogenii (negative decimal logarithm of hydrogen-ion 

concentration)  

PI  propidium iodide  

poly-HEMA  poly(2-hydroxyethyl methacrylate), poly(2-HEMA) 

PPT 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, ERα-selective 

agonist 

rpm  revolutions per minute  

RT  reverse transcription  

SP  side population  

TBE  Tris-borate EDTA  

TBS  Tris buffered saline  

Tg thyroglobulin 

TPO thyroid peroxidase 
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TSH  thyroid stimulating hormone  

TSHr  thyroid stimulating hormone receptor  

UV  ultraviolet  

μg  microgram 

Μl microliter 

μM  micromole per liter solution (unit of concentration)  
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1. Introduction  

The incidence of thyroid nodules which is a hallmark of human thyroid glands has been rising 

worldwide (1). About 4 to 7 percent of the population may have palpable thyroid nodules, 

however, 19 to 67 percent have incidental nodules on ultrasonography (2). In fact, 20 to more 

than 50 percent of the normal population develop one or more thyroid nodules during their 

life-time (3). There is also some evidence that thyroid nodules are present in up to 30 percent of 

the German population (4). The majority of patients with thyroid nodules are euthyroid and 

asymptomatic; only less than 1 percent of nodules causes hyperthyroidism or thyrotoxicosis. 

Most palpable and non-palpable thyroid nodules are benign, however, 5 percent may show 

features of thyroid cancer (5).  

 

Fine-needle aspiration biopsy (FNAB) which is obtained in all suspicious cases, is very useful to 

classify thyroid nodules as benign (69%), suspicious (10%), malignant (4%) and nondiagnostic 

nodules (17%) (6). Although many efforts have been made so far, there are still no appropriate 

clinical approaches to clearly distinguish benign and malignant nodules in these patients. Our 

limited knowledge of the molecular background and etiology of thyroid nodules might be an 

important reason.  

 

Although the etiology of thyroid nodules is not yet fully known, there are many pathogenetic 

factors that are relevant for the pathogenesis of thyroid nodules and tumors, such as abnormal 

iodide intake, ionizing radiation exposure, mutagenesis, aging, gender, over-expression of 

growth factors and their related receptors (7, 8). Thyroid nodules are 4 times more prevalent in 

women than in men (9). Some studies found that the incidence of thyroid nodules increased by 2 

percent yearly if the population is exposed to ionizing radiation (3). It seems that the 

development of thyroid nodules is a multi-factorial process, and a comprehensive concept of the 

pathogenesis of thyroid nodules and nodular goiters is still missing. 

 

Classical theory believed that differentiated follicular thyroid cells might be altered by a 
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sequence of molecular aberrations achieved during cell cycling as the primary source of thyroid 

tumourigenesis (10). However, in normal thyroid tissue the proliferation rate is very low (11). 

Previous studies demonstrated that human thyrocytes divide only about five times during 

adulthood which corresponds to a turnover time of about 8.5 years for the follicular thyroid cell 

(12). Therefore, the molecular mechanism of nodule and tumor initiation in resting thyroid tissue, 

which is different from tissues with high cell turnover and higher sensitivity to mutagenesis such 

as the colon, has still to be elucidated. 

 

According to classical theory of pathogenic mechanisms in thyroid cancer, thyroid cancer cells 

originate from the sequential accumulation of genetic alterations during the life cycle of 

well-differentiated premalignant thyrocytes. The mutation of tumor oncogenes and suppressor 

genes plays an important role in thyroid carcinogenesis. Some oncogenes such as RET 

proto-oncogenes and BRAF may have the potential to activate genetic alternations in the 

mediators of signal transduction pathway and thus sustain tumor development and/or progression 

(13). The multistep model of thyroid cancer suggests a step-wise dedifferentiation process from 

the normal differentiated thyroid follicular cell to a papillary or a follicular and finally a 

anaplastic thyroid carcinoma. Although these mutations activate cell cycle checkpoints that 

curtail hyperproliferation, there are instances in which cells escape these checkpoints and 

develop into cancer (14). The rather low proliferation rate of adult thyrocytes limits the 

accumulation of mutations and other genetic or epigenetic changes, a prerequisite of cell 

transformation. On the other hand, the oncofetal markers have been detected in thyroid 

carcinomas and fetal cell remnants within the thyroid gland (15). Furthermore, there is also much 

evidence showing that most thyroid nodules appear to be of a clonal origin (4), which indicates 

that these nodules may be derived from a single cell and naturally occurring clonal cell patch.  

1.1 Adult stem and progenitor cells in thyroid tissue  

Stem cells are cells that are capable of self-renewal and differentiation into many different 

specialized cell types. Stem cells found in almost all multicellular organisms are broadly 

classified as embryonic stem cells (ESCs), fetal stem cells, and adult stem cells. ESCs are the 
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most versatile type of stem cells, since they have the ability to differentiate into all cells of the 

adult body (16). An embryonic stem cell is derived from inner cell mass (ICM), which is part of 

the early (d4 to d5) embryo called the blastocyst and comes from the first entity of life, the 

fertilized egg (17). ICM cells are no longer totipotent, however, they may retain the ability to 

develop into all cell types of the embryo proper (pluripotency, Fig 1.1). When all the cells move 

down the stem cell hierarchy, they begin to lose pluripotent capabilities and become more 

specialized in structure and function (14, 17).  

 

Adult stem cells are undifferentiated cells as well, but they are found among differentiated cells 

in a tissue or organ. They have the ability to self-renew or differentiate to yield some or all of the 

major specialized cell types of the tissue or organ (18). Therefore, the main differences between 

embryonic stem cells and adult stem cells are their location and potency. Embryonic stem cells 

are located in blastocysts, whereas adult stem cells are located in adult tissues. In fact, adult stem 

cells were found in many tissues and organs, such as bone marrow, skeletal muscle, adipose 

tissue, pituitary, the central nervous and system, etc (19, 20). Adult stem cells are also basically 

limited in their differentiation potential, and only differentiate into cell types of their original 

tissue. Their primary role in a living organism is to maintain and repair the tissue damaged by 

disease or injury. By asymmetric cell division the adult stem cells can self-renew and produce 

other progenitor cell which are partly differentiated and further divide and give rise to 

differentiated cells, thus providing a simple method for tissue homeostasis (21).  
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Fig 1.1 The schematic hierarchy of stem cells. Zygote and early cell division stages (blastomeres) to the 

morula stage are defined as totipotent, because they can generate a complex organism. At the blastocyst stage, 

only the cells of the inner cell mass (ICM) retain the capacity to build up all three primary germ layers, the 

endoderm, mesoderm, and ectoderm as well as the primordial germ cells (PGC), the founder cells of male and 

female gametes. In adult tissues, multipotent stem and progenitor cells exist in tissues and organs to replace 

lost or injured cells. At present, it is not known to what extent adult stem cells may also develop 

(transdifferentiate) into cells of other lineages or what factors could enhance their differentiation capability 

(dashed lines). Embryonic stem (ES) cells, derived from the ICM, have the developmental capacity to 

differentiate in vitro into cells of all somatic cell lineages as well as into male and female germ cells. 

[Taken from: Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell 

therapy. Physiol Rev, 2005, 85:635-678(17).]  

 

In order to study early thyroid cell proliferation, a novel ESC-based approach was successfully 

established in vitro (22, 23). After two weeks of treatment with TSH, cultures of EB-derived 

adherent cell populations contained thyrocyte-like cells with the appearance of a set of genes 

(PAX8, NIS, TSHR, TPO and TG) (23). However, the thyroid-like cell progenitors generated by 
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TSH-insulin/insulin-like factor-I treatment were usually transient, variable and too low in cell 

number for further functional studies (15). 

 

Thyroid follicular cells are derived from the endoderm, thus the morphogenesis of thyroid is 

similar to many endoderm-derived organs (24). The adult thyroid gland has been thought to be 

another source of stem/progenitor cells. Adult stem cells were indeed detected as single cells or 

groups of two or three cells dispersed throughout human thyroid gland (25). By means of 

RT-PCR, flow cytometry and immunofluorescence, stem cell marker Oct4 and endodermal 

marker GATA4 and HNF4α were found to be expressed in primary culture isolated from human 

goiter, thus indicating the presence of adult stem and precursor/progenitor cells of endodermal 

origin in human thyroid gland. Oct4, a transcription factor expressed in the developing endoderm, 

plays an important role in maintaining the pluripotency of ICM cells and ESCs (26). Therefore, 

the expressions of stem cell markers reinforce the hypothesis that a subpopulation of pluripotent 

stem cells is present in human thyroid goiter (14).  

 

Taking advantages of the fact that both of ESCs and adult stem cells express ABCG2 transporters, 

Lan et al. from our group successfully isolated stem cells as a side population (27) by FACS 

from a non-side population fraction which comprises differentiated cells and endodermal 

marker-positive cells (28). ABCG2 (or breast cancer resistance protein, BCRP, ABCP) is a 

member of the ABC transporter family, and it has the ability to use the hydrolysis of ATP to 

pump toxin from cells, such as Hoechst 33342 (29). The expressed genes related to stem cell 

pluripotency were identified by RT-PCT in SP cells (28, 30). The side population, whose ABCG2 

transporters could be inhibited by verapamil, represents a stem cell enriched population with low 

degree of cellular differentiation (31, 32). These SP cells were also found in normal mouse 

thyroid through the use of Hoechst 33342 dye (30).  
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Fig 1.2 Thyrosphere derived from nodular goiter in response to intense growth stimulation. Under intense 

growth stimulation with EGF and bFGF, a small number of cells grew out from human thyroid cell cultures as 

floating spheres after 5 d of culture.  

[Taken from: Lan L, Cui D, Nowka K, Derwahl M. Stem cells derived from goiters in adults form spheres in 

response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes. The Journal 

of clinical endocrinology and metabolism, 2007, 92:3681-3688(28).]  

 

Stem cell self-renewal and differentiation in vivo are controlled by the stem cell’s 

microenvironment or niche that physically hosts the stem cells and perpetually maintains the 

pool of slowly dividing stem cells (33). Malnutrition (serum deprivation) of cell cultures in vitro 

is believed to alternate the normal niche control and thus result in an outgrowth of stem cells. In 

a complementary approach that does not allow adherence to a substratum, most differentiated 

thyrocytes derived from nodular goiters did not grow under the condition with medium 

containing growth factor (EGF and bFGF) but no TSH and serum. However, a small number of 

cells grew after 5-7d culture as floating spherical colonies, termed thyrospheres or spheroids (Fig 

1.2) (28, 34). The percentage of SP cells was increased from 0.1% in primary thyroid culture to 

5% in growth factor-stimulated spheres as revealed by FACS (28). Gene profile of thyrospheres 

showed high expression of stem cell markers Oct4 and ABCG2 as well as endodermal marker 

GATA4, but no expression of the thyroid differentiation markers PAX8, Tg, NIS, TSHr and TPO.  

 

These adult stem cells derived from goiters were proved to have an intrinsic ability to generate 
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differentiated thyroidal cells and the potential to produce progenitor cells. Lan et al. dispersed the 

thyrospheres, allowed the cells to grow as a monolayer, and then induced stem cells to 

differentiate with TSH in serum-enriched medium (28). The differentiation markers of thyroid 

follicular cells such as PAX8, Tg, NIS TSHR and TPO were detectable after 21d culture. Iodide 

uptake was shown after the thyrosphere cells were embedded in collagen.  

 

Recently, cancer stem cells (CSCs) were isolated from anaplastic thyroid cancer (ATC) cell lines 

by Zheng and co-workers from our group (35). CSCs sorted as SP by FACS using Hoechst 

33342 dye expressed Oct4. As a characteristic marker for adult and embryonic stem cells, Oct4 is 

also expressed in some human tumors and some cancer cell lines but not in normal differentiated 

cells (25, 28, 36). So far, cancer stem cells have been proved to be present in some thyroid 

carcinoma cell lines (25, 27, 37, 38). Due to many properties shared with embryonic cells, such 

as pluripotency, undifferentiated state as well as self-renewal, the stem cells are widely believed 

to be involved in the pathogenesis of human thyroid tumors (14, 37, 39-41).  

1.2 Thyroid nodules and nodular goiter: a stem cell disease?  

Molecular biology research on the pathogenesis of nodular goiters revealed that not only thyroid 

adenomas but also many thyroid nodules are clonal in origin and thus are true benign tumors (4, 

42-46). The normal thyroid epithelium is thought to be organized into large stem cell-derived 

monoclonal patches, and monoclonality in neoplastic and hyperplastic lesions may just be a 

reflection of normal thyroid epithelium clonal composition (47). In addition, some thyroid cells 

grow autonomously with a higher growth potential after transplantation of nodular goiter tissues 

on a nude mouse (48). These rapidly and autonomously replicating cells were hypothesized to 

initiate nodule formation in human multinodular goiters.  

 

Only less than 1% cells in adult nodular goiters are stem or progenitor cells (25, 28). The 

multipotentiality and self-renewal ability of these stem cells are controlled by stem cell niches 

providing a microenvironment composed of cellular structures or extracellular matrix in which 

undifferentiated stem cells are maintained (49, 50). Growth factors are potent stimulators of 
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many types of adult stem cell growth. When stimulated with EGF and basic FGF, adult stem and 

progenitor cells in thyroid cell cultures gradually escaped niche control and thus grew as 

three-dimensional thyrospheres in suspension culture in vitro (28). These stem cell-derived 

spheres were composed of 5% stem cells and 95% progenitor cells. When TSH-enriched medium 

was added, proliferation rate of progenitor cells slowed down and the differentiation process was 

initiated (28).  

 

 

 

Figure 1.3 Thyroid nodules and nodular goiter as a stem cell disease. Apoptosis, operative in ageing thyroids, 

may limit growth control by niches. In turn, an essentially quiescent stem cell may proliferate to give birth to a 

daughter stem cell and a progenitor cell (asymmetric cell division). Under the influence of locally expressed 

growth factors, one of these cells (or different cells) with a higher than average growth rate may grow out to 

form nodules or hyperplastic lesions, whereas unstimulated cells differentiate into normal thyroid cells as 

shown in vitro. Progenitor cells that do not achieve full differentiation may be the origin of a non-functioning 

nodule or adenoma.  

[Taken from: Derwahl M. Thyroid nodules and nodular goiter: a stem cell disease? Hot Thyroidology. 

http://www.hotthyroidology.com/editorial_180.html (51).]  

 

Epidemiologic studies demonstrated that thyroid nodular transformation increases with age 

whereas the goiter size decreases (51, 52). In addition, there is some experimental evidence that 

http://www.hotthyroidology.com/editorial_180.html
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apoptosis of thyrocytes is a main factor of cell loss during goiter formation and involution (53). 

Hypofunction, destruction and necrosis of normal thyroid tissue has been demonstrated in goiter 

tissues by previous histological and immunohistochemical studies (54). Apoptosis of thyrocytes 

appears to be a prerequisite for thyrosphere formation and therefore the proliferation of stem and 

progenitor cells in vitro (28).  

 

When the niches are altered by apoptosis, operative in ageing thyroids, a primitive quiescent 

stem cell may proliferate to give birth to a daughter stem cell and a progenitor cell by 

asymmetric cell division (Fig 1.3). One of these cells with fast cycling may overgrow, whereas 

other cells differentiate into normal thyroid cells (28). Under the influence of locally expressed 

growth factors in vivo, the progenitor cells containing fast-cycling cells with a higher than 

average growth rate may grow out to form nodules or hyperplastic lesions. Progenitor cells not 

achieving full differentiation may be the origin of a non-functioning nodule or adenoma (51). 

Therefore, intense stimulation of thyroid stem cells by these growth factors in vitro may 

correspond to processes of nodular transformation in vivo that last for years or even decades 

(28).  

1.3 Estrogen, stem cells and thyroid nodules  

Estrogens are a group of steroid compounds, named for their importance in the estrous cycle, and 

functioning as the primary female sex hormones. Estrogens are produced primarily by 

developing follicles in the ovaries, the corpus luteum, and the placenta. Some estrogens are also 

produced in smaller amounts by other tissues such as the liver, fat, adrenal glands, and the breast 

(55). These secondary sources of estrogens are especially important in postmenopausal women. 

Recently, the human thyroid gland was proved to have the potential for both estrogen synthesis 

and intracine or paracrine estrogen responsiveness (56). 17β-estradiol (E2), which is produced by 

ovary and the predominant sex hormone present in females, represents the major estrogen in 

humans among three estrogens, and has the highest affinity for estrogen receptors in the largest 

quantity (57).  
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Steroid hormones play an important role in physiological processes including reproduction, 

differentiation, development and homeostasis (58). E2 does not only have a critical impact on 

reproductive and sexual functioning but also regulates many physiological processes including 

cell growth and development of other organs including the heart, bones, brain, liver, and thyroid 

(59-63). Sex-based differences in the incidence of hypertensive heart disease and coronary artery 

disease, the development of atherosclerosis, and cardiac remodeling after myocardial infarction 

suggested that estrogen has direct effects on the myocardium, endothelium, and vascular smooth 

muscle (64). Estrogen also elicits a selective enhancement of the growth and differentiation of 

axons and dendrites (neurites) in the developing brain, showing its neural actions in the central 

nervous system (CNS) (65, 66). 17β-estradiol has been proved to promote tumor development, 

such as breast and ovarian cancer (67, 68).  

 

As shown in Fig 1.4, estrogen appears to have different effects on proliferation, differentiation, 

and migration of stem and progenitor cells (69). E2 is able to induce the proliferation of ESCs via 

estrogen receptors, since the increased [
3
H] thymidine incorporation by E2 is blocked using 

tamoxifen, an estrogen antagonist (70). In addition to regulation of cell cycle progression, 

estrogen rapidly increases mRNA expression of the protoongenes c-fos. c-jun, and c-myc in 

mouse ESCs (70). Like some other growth factors such as growth hormone (71) (72), epidermal 

growth factor (73, 74), and basic fibroblast growth factor (bFGF) (74, 75), estrogen also acts as a 

promotor for the proliferation of adult neural stem/progenitor cells (76, 77). Interestingly, 

estrogen is also able to increase the ratio of dopaminergic neurons derived from neural stem cells 

(NSCs) in vitro, suggesting the effects of estrogen on differentiation of neural stem cells (78). 

Effects of estrogen on proliferation and differentiation of neural stem cells provide new useful 

strategies for the treatment of Parkinson’s disease (76, 78). By decreasing the rate of apoptosis, 

E2 also increases the number of endothelial progenitor cells (EPCs) (69). By enhancing the 

proliferation of EPCs, E2 may help through repair and regeneration to compensate for damaged 

injured vessels, or ischemic myocardial tissues (69, 79). Taken together, estrogen modifies the 

functions of different stem cell and thus plays further roles in the physiological and pathological 

process in the human body.  
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Fig 1.4 Effects of estrogens on various stem and progenitor cells. Estrogens exert immense influences on the 

functions of stem and progenitor cells, with examples illustrating that estrogens promote proliferation of ESCs 

stem cells by activating the MAPK cascade as well as cyclin-dependent kinases, with associated increases in 

cyclins D1. ESC (embryonic stem cell); EPC (endothelial progenitor cell); MSC (mesenchymal stem cell); 

HSC (hematopoietic stem cell); CF (cardiac fibroblast); BMP (bone matrix protein); RUNX2/CBFA1 

(runt-related transcription factor 2/core-binding factor alpha).  

[Taken from: Ray R, Novotny NM, Crisostomo PR, et al. Sex steroids and stem cell function. Mol Med, 2008, 

14:493-501(69).] 

 

Estrogens exert immense influences on myocardial remodeling following an ischemic insult, 

partially through paracrine growth hormone production by bone marrow mesenchymal stem cells 

(MSCs) and endothelial progenitor cells. Estrogens also facilitate the mobilization of endothelial 

progenitor cells to the ischemic myocardium and enhance neovascularization at the ischemic 
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border zone. Moreover, estrogens limit pathological myocardial remodeling through the 

inhibitory effects on the proliferation of the cardiac fibroblasts.  

 

Epidemiologic studies found that thyroid nodules including thyroid cancer are more frequent in 

women than men (80-83). Epidemiological studies indicate that the gender difference in the 

susceptibility to this thyroid carcinomas becomes apparent after sexual maturity (84). The studies 

on the role of exogenous hormone also implied a role of female hormones on thyroid cancer 

promotion since oral contraceptives moderately increased risks of developing thyroid cancers (84, 

85). Therefore, hormonal changes related to the menstrual cycle, pregnancy, menopause, and 

hormone use have been suggested as etiologic factors of thyroid cancer (83). The difference in 

incidence of thyroid diseases between genders also suggests that estrogens play an important role 

in the growth and progression of thyroid tumors.  

 

E2 has been clearly implicated to have potential to promote the proliferation of human thyroid 

cells isolated from thyroid goiter nodules (60), and FRTL-5 cells derived from Fischer rat thyroid 

(86). Moreover, E2 also increases the growth of papillary and follicular thyroid carcinoma cells 

(87), Hurthle thyroid carcinoma cells (60), and anaplastic thyroid carcinoma cells (88). Animal 

experiments agreed with these data of both epidemiological and cell experimental researches. 

Ovariectomy decreased the incidence of thyroid tumor when compared with ovary intact rats 

with the highest E2 level, while estradiol/testosterone supplementation increased the incidence 

(89).  

 

In the last two decades, many studies have been performed to elucidate the molecular 

mechanisms of estrogen in tumor pathogenesis. Cell cycle related to the growth and progression 

was recognized to be regulated by estrogen, thus inducing the cellular proliferation of normal or 

tumor cells (90). Cyclin D1-regulating G1/S transmition in the cell cycle was significantly 

increased in protein and mRNA levels by E2 stimulation of human thyroid cells and carcinoma 

cells (60, 87). E2 regulates the cell cycle via specific estrogen receptors α and β (ER-α and ER-β) 

encoded by separate genes, ER-α gene (ESR1) and ER-β gene (ESR2), respectively (91), 

explaining why the estrogen receptor inhibitors have the potential to prevent the effects of 
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estrogen (86, 87). Both receptors are coexpressed in thyroid cells derived from goiter (60), rat 

thyroid cells (86), and thyroid tumor cells (60, 87). ER-α and ER-β may regulate distinct cellular 

pathways despite sharing a similar mechanism of action and domain structures. In addition to 

likely mechanisms, estrogens may also generate a direct genotoxic effects to increase mutation 

rates, and contribute to chromosomal nondisjunction by impairing the formation of mitotic 

spindles (84).  

 

A growing body of evidence has demonstrated that ERs are expressed in undifferentiated human 

ESCs and embryoid bodies (36), suggesting the potency of estrogen to influence the 

differentiation of hESCs (70, 92). Nevertheless, it is still unclear whether these estrogen 

receptors are expressed in thyroid adult stem cells, or whether they play an important role in 

estrogen action. Since estrogen is a potent stimulator of many types of stem cell growth, estrogen 

is speculated also to promote the growth of thyroid stem cells. In addition, it is still unclear 

whether estrogen modifies the functions of adult thyroid stem/progenitor cells during their 

proliferation and differentiation process, and if it induces outgrowth of stem cells and aberrant 

differentiation to transform thyroid nodules.  

1.4 Aim of the present study 

A higher prevalence of thyroid nodules in women than in men demonstrates that estrogen plays 

an important role in the pathogenesis of thyroid nodules. Effects of this steroid hormone on 

thyroid cells have been described more recently, however, the mechanism behind this is still 

unknown. Ongoing advances in thyroid stem cell research have opened new avenues for 

research.  

Therefore, the aim of the present work was (1) to investigate whether 17β-estradiol has the 

potential to promote the proliferation of human thyroid stem/progenitor cells by determining 

bromodeoxyuridine (BrdU) incorporation and thyrosphere formation after passaged in to 

secondary generation, (2) to analyze estrogen receptor expression in human thyroid stem and 

progenitor cells by conventional real-time RT-PCR and immunofluorescence staining, (3) to 

clarify whether 17β-estradiol stimulates cell cycle progression by induction of cyclin D1 gene 
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expression, (4) to observe the influence of 17β-estradiol on TSH-induced differentiation of adult 

thyroid stem and progenitor cells into thyrocytes.   
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2. Materials and Methods  

2.1 Cell culture  

2.1.1 Profile of patients 

Thyroid tissues provided by the Endocrine Surgery Department of St. Hedwig Krankenhaus in 

Berlin were obtained from 54 patients with nodular goiters undergoing thyroidectomy. The mean 

age of the patients was 52.65±13.46 years. Malignancy was ruled out in all cases by means of 

fine needle aspiration biopsy and cytological examination prior to the operation, rapid excision 

biopsy during the operation, and histological examination of tissue after surgery. Informed 

consent was obtained from all patients prior to the operation. The study was approved by the 

ethics committee of Charité, University Medicine Berlin.  

2.1.2 Preparation of primary cultures  

Primary cultures of human thyrocytes and thyrospheres isolated from nodular goiter tissues were 

established as described previously (28). Briefly, thyroid tissue specimens were separated by the 

surgeon from surrounding tissue in operating room, placed in sterile transport tubes containing 

20 ml transport medium (HBSS solution with 100 U/ml penicillin and 100 μg/ml streptomycin), 

placed on ice and transported to the laboratory. Then all work with cell cultures was performed 

in a laminar flow cabinet.  

2.1.3 Primary culture of thyrocytes 

Preparation of primary thyroid cultures from human nodule tissue was performed as described 

previously (28). Employing sterile techniques, macroscopically visible capsule material and 

other connective tissues were removed using scalpel and tweezers. In order to increase surface 

area, the remaining tissue was grossly chopped with a scalpel, to facilitate subsequent 

dispartment in follicles. Enzyme digestion was carried out in fresh HBSS containing 5 mg/ml 

Collagenase A (Roche, Mannheim, Germany) and 30 mg/ml dispase II (Roche, Mannheim, 

Germany) at 37°C for 1.5 h in a shaking bath with slow swirling motion at about 80 rpm. After 
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90 min, the digest was filtered through a sterile mesh sieve, leaving behind the undigested tissue 

fragments. The flow-through was centrifuged for 5 min at 310×g. The supernatant was returned 

to the remaining tissue to continue digestion, while the thyroid cell pellet was re-suspended in 

pre-warmed (37°C) primary cell culture medium, put in 100 mm cell culture dishes (Sarstedt) 

and placed in a humidified incubator at 37°C, with a 5% CO2 atmosphere for 20 min. This was 

the pre-plating step which helps to reduce fibroblast contamination since fibroblasts adhere to the 

dish surface more readily than thyrocytes. After 20 min, the medium with unattached cells was 

transferred to another plastic dish and placed in the incubator for culture. The digestion 

procedure for undigested tissue fragments was repeated several times until only white connective 

tissue remained.  

2.1.4 Primary culture of thyrospheres 

In the approach for prospective enrichment of thyroid stem cells, a new culture system for 

non-adherent sphere formation was performed as described previously (28).   

 

Primary thyroid cells were prepared as described above and cell suspension was sieved through a 

30 μm strainer, centrifuged and re-suspended in growth factor-enriched medium: serum-free 

DMEM/Ham’s F-12 (1:1) containing B-27 (1:50), 20 ng/ml EGF (Invitrogen, Karlsruhe, 

Germany), and 20 ng/ml bFGF (Invitrogen, Karlsruhe, Germany). Single cellularity was 

confirmed under microscope. Cells were cultured in 100 cm Poly (2-hydroxyethyl methacrylate, 

2-HEMA)-coated dishes at 10,000 viable cells/ml in a 37°C, 5% CO2 culture incubator. Every 

2-3 d, B27, bFGF and EGF were added. Under these conditions, most primary thyrocytes died, 

and only a small number of cells survived, proliferated and formed floating spheres following 

5-8 d of culture, which were termed ‘thyrospheres’.  

 

During the sphere formation, the sphere size in every dish was monitored. Sphere cells were 

prepared for RNA isolation, passaged for secondary generation, and stimulated with estrogen.   
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2.1.5 Secondary generation of thyroid stem/progenitor cells 

Adult primary thyrospheres were usually cultured for 5-7 d. In order to avoid differentiation in 

situ and difficult dissociation of thyrospheres, the suspension culture was monitored every day to 

ensure that thyrospheres are not allowed to grow too large. When the thyrospheres were ready 

for passaging, medium with suspended cells was transferred into an appropriately sized sterile 

tissue culture tube. When few cells remained attached to the substrate, a stream of medium was 

shot to detach them. After spinning at 110 g (800 rpm) for 5 min, 100% of the supernatant was 

essentially removed and the cells were resuspended in 1 ml of trypsin-EDTA (Invitrogen, 

Germany), and then incubated at 37°C with shaking for 15 min. An equal volume of serum was 

added into tube to inhibit trypsinization, mixed well, and then centrifuged at 110 g for 5 min. 

After 100% of the supernatant was essentially removed, cells were resuspended by the addition 

of 1 ml of DMEM/F-12(1:1). Then cells were dissociated mechanically once or twice using a 

1000 μl tip. The tip was placed at the bottom of the tube so as to restrict the flow of cells by 

~50% and continued trituration which was repeated three times. After counting of cell numbers, 

cells were seeded for the next culture passage into poly-L-ornithine and fibronectin-coating 

(Sigma-Aldrich, Steinheim, Germany) dishes with DMEM/F-12(1:1) and mitogens (EGF, bFGF 

and B27) at a density of 10
5
 cells/ml.  

2.1.6 Culture conditions 

For most experiments, cells were grown as spheres or monolayers in 100 mm plastic culture 

dishes and kept in a humidified incubator at 37°C in 5% CO2, supplemented with mitogens or 

medium change each 2-3 d. Upon reaching the desired confluency of 70-80% in monolayer 

culture or sphere formation for 5-7 d, cells were passaged after trypsinization using 0.05% 

trypsin, 0.53 mM EDTA-4Na.  

 

Primary thyroid cells were cultured in Ham’s F-12 medium (Gibco, Karlsruhe, Germany) with 

L-glutamine, supplemented with 10 % fetal calf serum (FCS) (Gibco, Karlsruhe, Germany), 1% 

MEM(v/v) (Gibco, Karlsruhe, Germany), 5 mU/ml TSH (from bovine pituitary, Sigma, 

Steinheim, Germany), five hormones or growth factors (H5-mix), 100 U/ml penicillin, 100 μg/ml 
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streptomycin (Roche, Mannheim, Germany), and 2.5 μg/ml amphotericin B (Bristol-Meyer 

Squibb, Germany).  

 

Primary thyrospheres were culture in DMEM/F-12 medium supplemented with B-27 (1:50), 20 

ng/ml EGF, and 20 ng/ml bFGF, 100 U/ml penicillin, 100 μg/ml streptomycin, and 2.5 μg/ml 

amphotericin B. The culture dishes were coated with poly-HEMA in advance.  

 

Monolayer cultures of thyroid stem/progenitor cells were grown in DMEM/F-12 (Invitrogen, 

Germany) supplemented with B-27 (1:50), 20 ng/ml EGF, and 20 ng/ml bFGF, 100 U/ml 

penicillin, 100 μg/ml streptomycin, and 2.5 μg/ml amphotericin B. The culture dishes were 

coated with poly-L-ornithine/fibronectin for cell attachment before use.  

 

H5-mix:  

10 ng/ml glycyl-histidyl-lysine (Sigma-Aldrich, Steinheim, Germany)  

10 μg/ml insulin (human, recombinant, Aventis Pharma, Frankfurt, Germany)  

10 ng/ml somatostatin (Sigma-Aldrich, Steinheim, Germany)  

5 μg/ml transferrin (Sigma-Aldrich, Steinheim, Germany)  

3.2 ng/ml hydrocortisone (Sigma-Aldrich, Steinheim, Germany) 

2.1.7 Cell counting 

Following trypsinization and neutralization protocol for cell cultures, a uniform cell suspension 

was obtained and placed in a centrifuge tube. A 1:2 diluted cell suspension in trypan blue 

(Sigma-Aldrich, Steinheim, Germany) was prepared and loaded into both counting chambers of 

the hemacytometer and the coverslip was placed over them. The cells were counted under a 

microscope at 100 × magnification. Cell numbers (total and viable: Trypan blue-unlabeled) 

overlaying four × 1 mm
2
 areas of the counting chamber were determined. Then the total (or 

viable) cell number of the original cell suspension was calculated as follows:  

 

Total (or viable) cells recovered = 

Cells/ mm
2
 divided by dilution (1/2), and multiplied by 10

4
 and total volume of cell suspension 
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2.2 RNA extraction and reverse transcription PCR (RT-PCR) 

2.2.1 Total RNA isolation  

Total RNA was extracted from cultured cells by using the RNeasy Mini kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s specifications. Briefly, after aspiration of the culture 

medium, 350 μl buffer RLT, supplemented with β-mercaptoethanol (β-ME, add 10 μl β-ME per 1 

ml buffer RLT), was added to the monolayer cultures. Cell lysates were then collected using a 

rubber policeman, pipetted in QIA Shredder microcentrifuge tubes (Qiagen, Hilden, Germany) 

and centrifuged for 2 min at maximum speed for homogenization. Equal volumes of 70 % 

ethanol were added to the homogenized lysate and mixed by pipetting. Samples were then 

applied to RNeasy mini columns placed in 2 ml collection tubes and centrifuged for 15 sec at 

8000 ×g. Flow-through was discarded and 700 μl of RW1 buffer was added to the RNeasy 

columns and centrifuged for 15 sec at 8000 ×g to wash the columns. Flow-through and collection 

tubes were discarded and the RNeasy columns were transferred into new 2 ml collection tubes. 

500 μl of buffer RPE was pipetted onto the RNeasy columns which were then centrifuged again 

for 15 sec at 8000 ×g to wash. Flow-through was discarded and another 500 μl buffer RPE was 

added to the RNeasy columns. Tubes were then centrifuged again for 2 min at 8000 ×g to dry the 

RNeasy silica-gel membrane. For elution, the RNeasy columns were transferred to new 1.5 ml 

collection tubes and 30 μl of RNase-free water was pipetted directly onto the RNeasy silica-gel 

membrane. Tubes were closed gently and centrifuged for 1 min at 8000 ×g. The resulting RNA 

was either stored at - 20ºC or used directly for spectrophotometry and RT-reaction (see below). 

For spectrophotometry analysis, 2 μl of RNA was diluted 1:500 in RNase-free water and 

absorption was calculated at OD260. For each probe, the mean value of at least two independent 

readings was adopted as the result.  

 

DNase I working solution: 

DNase I stock solution  10 μl 

buffer RDD           70 μl 
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2.2.2 Reverse transcription reaction  

For reverse transcription, 1 μl of Oligo(93)12-18 Primer (0.5 μg/ul) (Invitrogen, Germany) was 

added to the volume of mRNA solution containing 1 μg of mRNA (as calculated by 

spectrophotometry). RNase-free water was added to a final volume of 16.75 μl and the mix was 

heated to 70°C for 5 min. Probes were placed on ice and the following reagents were added 

consecutively: 5 μl of M-MLV 5× reaction buffer, 1.25 μl of dNTP nucleotides (10 mM, Roche, 

Mannheim, Germany), 1 μl (25 Units ) of RNAGuard RNase inhibitor (Invitrogen, Germany) 

and 1 μl (200 Units) of M-MLV reverse transcriptase (Promega, Mannheim, Germany). The 

mixture was warmed to 42°C for 60 min, 95°C for 5 min and the reaction was terminated at 0°C. 

cDNA samples were stored at -20°C.  

2.2.3 Primer preparation 

All primers were obtained in powder form from Invitrogen Inc. Upon delivery, primers were 

diluted in RNase-free water and concentration was 5 pmol/μl for conventional RT-PCR and 10 

pmol/μl for quantitative real time PCR, aliquoted and stored at -20°C.  

2.2.4 Polymerase chain reaction 

For PCR amplification the hot start method was performed. In brief, 4 μl of complementary 

DNA was added to a 45.5 μl master mix containing 5 μl 10× reaction buffer, 1.5 mM MgCl2, 1 

μl dNTPs (10 mM) and 30 pmol of sense and antisense primers. Negative controls without 

template cDNA were included in all cases to exclude carry-over contamination with genomic 

DNA. 50 μl of mineral oil was added to each reaction tube, the lids were closed and the mixture 

was preheated to 95ºC for 10 min before adding Taq polymerase (Invitrogen, Karlsruhe, 

Germany) to reduce non-specific annealing and primer elongation events. Probes were then 

cooled to 80ºC and 0.5 μl of Taq DNA polymerase (5 U/μl) was added to each reaction tube. 

Using a thermocycler, cycling conditions were as follows: at 95°C for 30 sec (initial 

denaturation), 52-63°C for 30 sec (primer specific, annealing) and 72°C for 1 min (extension), 

followed by a final extension at 72°C for 10 min and termination at 4°C. The number of cycles 

used was determined to be in the log-linear phase of the amplification reaction. In all PCR 
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analyses, β-actin served as an internal control. Primer pair sequences, product lengths and 

annealing temperatures were as follows: 

 

Table 2.1 Primer sequences, annealing temperatures, cycles and product sizes for RT-PCR 

Target 

gene 

Primer sequences
#
 

Annealing 

Temp 

Cycles 
Expected 

size (bp) 

GAPDH 

S: 5’-GAAGGTGAAGGTCGGAGTC-3’ 

AS: 5’-GAAGATGGTGATGGGATTTC-3’ 
58 26 226 

ER-α 

S: 5’-CCACTCAACAGCGTGTCTC-3’ 

AS: 5’-GGCAGATTCCATAGCCATAC-3’ 
58 36 243 

ER-β 

S: 5’-CGCCAGTTATCACATCTGTATG-3’ 

AS: 5’-CCACTAACCTTCCTTTTCAGTG-3’ 
58 36 112 

NIS 

S: 5’-TCTCTCAGTCAACGCCTCT-3’ 

AS: 5’-ATCCAGGATGGCCACTTCTT-3’ 
58 36 298 

Tg 

S: 5’-GAGCCCTACCTCTTCTGGCA-3’ 

AS: 5’-ATCCAGGATGGCCACTTCTT-3’ 
58 36 324 

TSHR 

S: 5’-AGCCACTGCTGTGCTTTTAAG-3’ 

AS: 5’-CCAAAACCAATGATCTCATCC-3’ 
58 36 131 

TPO 

S: 5’-GTCTGTCAGGCTGGTTATGG-3’ 

AS: 5’-CAATCACTCCGCTTGTTGGC-3’ 
58 36 242 

PAX8 

S: 5’-TTTGCTTGGCTCTTTCTACACCTC-3’ 

AS: 5’-GAATGTCTGTTTTAAGCTCCCTGG-3’ 
58 36 205 

GATA4* 

S: 5’-ACAAGATGAACGGCATCAAC-3’ 

AS: 5’-CGTGGAGCTTCATGTAGAGG-3’ 
58  174 

GATA4 

S: 5’-CTCCTTCAGGCAGTGAGAGC-3’ 

AS: 5’-GAGATGCAGTGTGCTCGTGC-3’ 
58 36 575 

OCT4 

S: 5’-GACAACAATGAGAACCTTCAGGAG-3’ 

AS: 5’-CTGGCGCCGGTTACAGAACCA-3’ 
55 30 216 

CyclinD1 

S: 5’-ACAAACAGATCATCCGCAAACAC-3’ 

AS: 5’-TGTTGGGGCTCCTCAGGTTC-3’ 
58 30 144 
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#
 S: sense primer; AS: antisense primer 

* The primers were used for qPCR  

2.2.5 Agarose gel electrophoresis 

PCR products were separated on 1.5% or 2% (w/v) agarose gels (2% for expected fragment sizes 

of 250 bp or lower) containing 0.5 μg/ml ethidium bromide. Gels were run at a voltage of 90 V 

in TBE running buffer for 60 min. Bands were visualized on a UV-transilluminator at 312 nm.  

 

TBE Buffer (20X):  

1.8 M Tris-base  

1.8 M boric acid  

25 mM EDTA-Na2.2H2O  

PH was adjusted to 8.3 

2.3 Real-time RT-PCR 

Real-time quantitative RT-

(Bio-Rad, CA, USA). SYBR Green reactions were performed using ABsolute
TM

 QPCR SYBR 

Green Fluorescein Mix (Applied Thermo Fisher scientific Inc). The PCR reaction was performed 

in a 96 well plate. Cycling conditions were as follows: initial enzyme activation at 95ºC for 15 

min, followed by 50 cycles at 95ºC for 15 s; 58ºC for 30 s; 72ºC for 30 s. Relative expression 

levels of each gene in real time were analyzed using the 2-ΔΔCT method and normalized to the 

expression of the housekeeping gene 18s rRNA. Each sample was replicated twice from 3 

independent sets of RNA preparations. Results are tabulated as mean ± SEM of 3 independent 

experiments. The Ct values of the real-time PCR were calculated by the (2*efficiency)
ΔΔCt

 

method and normalized by the value of the internal control 18s rRNA. Data were presented as 

mean of fold change ± SEM vs control and derived from at least three independent experiments. 

2.4 BrdU incorporation 

Human thyroid stem/progenitor cells proliferation was initially evaluated by measuring the 
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incorporation of BrdU using cell proliferation ELISA, BrdU colorimetric kits purchased from 

Roche to determine DNA synthesis. After culturing 5-7 d in suspension condition, thyrosphere 

cells were dissociated into single cells by incubation for 15 min with trypsin and then plating by 

8,000-10,000 cells per well into 96-well microtiter plates pre-coated with poly-L-ornithine and 

fibronectin. Cells were allowed to adhere overnight and starved of growth factor (EGF, bFGF, 

phenol red, et al) 24 h before E2 stimulation. Subsequently, the cells were treated with E2 for 24 h, 

10 μl of 100 μM BrdU labeling solution was added into 100 μl/well medium and the cells were 

reincubated for an additional 4 h at 37°C. After removal of the labeling medium and drying of 

the labeled cells, the dry cells were stored up to one week at +2 to +8°C. The cells were 

incubated with 200 μl/well FixDenat for 30 min and then with anti-BrdU-POD working solution 

for approx. 90 min at room temperature. After the cells were developed 15 min with 100 μl 

substrate solution, 25 μl 1 M H2SO4 was added into each well. The plate was measured 

immediately within 5 min in an ELISA reader at 450 nm with 690 nm for the reference 

wavelength. 

2.5 Immunofluorescence staining  

Before immunofluorescence staining, coverslips were coated with poly-L-lysine (Sigma, USA). 

Poly-L-Lysine was diluted to 0.1 mg/ml with sterile deionized water before coating slides. 

Poly-L-Lysine solution was aspirated 0.5 ml/25 cm
2
 to the coverslips. The coverslips were 

rocked gently to ensure even coating. After 5 minutes, the solution was removed by aspiration 

and the surface was thoroughly rinsed with sterile deionized water 3 times. There was at least 2 

hours of time allotted for drying before introducing cells and medium.  

 

Thyrospheres were trypsinized into single cells and passaged to second generation by monolayer 

culture. Briefly, the cells were plated onto the coverslips and grown in culture medium 

containing growth factors (EGF, bFGF and B-27). After 24 h adhesion cells were rinsed in PBS, 

followed by fixation in pure methanol at -30°C for 5 min. The fixed cells were permeabilized by 

0.2% Triton X-100 for 10 min at RT(room temperature), and then blocked by normal goat serum 

(10%) for 90 min at RT. Coverslips were incubated with the monoclonal anti-ERα (1:50) and 
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polyclonal anti-ERβ (1:100) antibodies at RT for 1 h and then 4°C overnight. Unbound 

antibodies were removed by rinsing in washing buffer (PBS containing 0.1% Tween-20 and 

1%BSA), followed by incubation for 60 min at RT with FITC-conjugated secondary antibody as 

secondary antibodies in dark (1:400, Santa Cruz) with gentle shaking. FITC-labeled cells were 

analyzed by fluorescence Zeiss microscope using standard fluorescent filters (excitation 488 

nm). 

2.6 Experimental equipment  

2.6.1 Apparatus  

Laminar flow cabinet  Heraeus, Laminair HB 2448  

Cell culture incubator  Heraeus  

Phase contrast microscope  Nikon, TMS 

Fluorescence microscope  Zeiss 

Digital camera  Sony DSC-W7 

Water bath  Kotterman Labortechnik 

UV Illuminator  Bachofer Laboratoriumsgeräte 

UV camera  Polaroid MP4 Land Camera with Polaroid 

545 4X5 film holder 

Scanner CanoScan 5000 

Thermocycler  Biometra, Trio-Thermoblock 

Spectrophotometer  Pharmacia, Ultrospec II  

Autoclave  H+P Varioklav 

Shake incubator  Infors HT  

Precision scale  Advenurer OHAUS 

Voltage generators  Consort, Electrophoresis power supply, 

E455 

Homogenisator  Eppendorf Thermomixer 5436 

Centrifuges  Hettich Mikro 200R  
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  Beckmann Microfuge E  

Hettich Rotina 46R 

Heating oven  Memmert 

Pipets and tips  Eppendorf 

Plastic centrifuge tubes (1.5, 15 and 50 ml)  Sarstedt 

Falcon tubes  Becton Dickinson 

Plastic culture dishes and plates  Sarstedt 

Polystyrene slide flasks  Nunc (Wiesbaden, Germany) 

Elisa machine Nunc (Wiesbaden, Germany) 

iCycle BIORAD (CA, USA) 

2.6.2 Software  

Biology Workbench version 3.2  DNA and mRNA sequence analysis  

Adobe photoshop version 7.0  Figure preparation  

BIORAD IQ5 Analysis of qPCR dates 

Image-Pro Plus 6.0  Figure preparation  

GraphPad Prism 4.0 Figure preparation  
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3. Results 

3.1 Primary, secondary passaged thyroid stem/progenitor cells culture 

Primary sphere culture of thyroid stem/progenitor cells isolated from nodules and adenomas was 

established as described in Materials and Methods. Single cells of thyroid cells derived from 

thyroid goiters grew under special culture conditions enriched in growth factors EGF and bFGF 

and not allowed to attach to the substratum. Only a few populations of cells formed spherical 

colonies which were termed “thyrospheres”.  

 

These spheres were bright, smooth-edged, and compact and were clearly different from irregular 

clumps of cells under the microscope (Fig. 3.1 A and B). Many thyrospheres were very large and 

grew very slowly after 7 days culture. As a rule of thumb, most spheres became difficult to 

dissociate and eventually began to differentiate in situ after 5-7 days floating culture. The cells of 

the central portion of spheres stopped growing and started differentiation because of malnutrition 

and continuous stimulation of growth factors (94).  

 

Poly-L-ornithine/fibronectin coating is able to render dispersed thyroid stem/progenitor cells 

more adhesively to grow in the presence of growth factors and absence of serum with basal 

DMEM/F12 medium after 24 hours (Fig 3.1, D). Most of cells were attached at 1 hour after 

passage (Fig. 3.1 C). Analysis of expression profiles by semi quantitative RT-PCR revealed that 

the expression of Oct4 as a stem cell marker was increased in primary thyrospheres and 

secondary passaged thyroid stem/progenitor cells, corresponding to the increase in 

ABCG2-positive side population from 0.1% in primary thyrocytes to 5% in thyrospheres under 

intensive culture with growth factors (28).  
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Fig 3.1 Cell culture and characterization of human thyroid stem/progenitor cells. Human thyroid 

stem/progenitor cells were cultured in poly-Hema or poly-L-orithine and fibronectin-coated dishes or plates to 

form floating spheres or monolayer cells respectively. (A) Floating thyrospheres in culture, 10×, (35) (B) 

Representative morphologic photo of thyrosphere, 20×, (C) Monolayer of thyroid stem/progenitor cells 24 h 

after trypsinization and passaging, 10×, (D) Monolayer of thyroid stem/progenitor cells 3 d after passaging, 

10×.  

 

To verify the new expansion approach of thyroid stem cells, the expression of Na
+
/I

-
 symporter 

as a differentiation marker of thyroid follicular cells was analyzed by RT-PCR. NIS was 

undetectable in thyrospheres or in secondary passaged thyroid stem/progenitor cells. Our 

previous data indicated that not all differentiation markers (TSHR, NIS, Tg and TPO mRNA) 

and thyroid transcription factor PAX8 were expressed in thyroid spheres, while both stem cell 

markers (Oct-4 and ABCG2 mRNA) and endodermal progenitor cell markers(GATA4 and 

HNF-4) were present in secondary thyrospheres. The expression pattern confirmed their thyroid 
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stem/progenitor phenotype under the suspending culture conditions. The increased Oct4 

expression and negative NIS expression also confirmed the thyroid stem/progenitor phenotype of 

secondary passaged cells under the given culture conditions.  

 

 

 

Fig 3.2 RT-PCR was performed using isolated mRNA from primary thyrocytes, thyrospheres and secondary 

generation of human thyroid stem/progenitor cells. A representative ethidium bromide agarose gel predicts the 

single band of each RT-PCR product from primary thyrocytes, primary thyrospheres and secondary generation 

of human thyroid stem/progenitor cells with primers specific to human NIS and Oct-4, and GAPDH as an 

internal control.  

 

3.2 ER-α and ER-β were expressed in thyroid stem/progenitor cells and 

thyrocytes derived from thyroid nodules  

To determine the expression of ER subtypes in thyroid stem/progenitor cells, conventional 

RT-PCR and quantitative real-time PCR were performed. MCF-7 human breast cancer cells were 

used as a positive control since both ER-α and ER-β are present in these cells. Total RNA was 

isolated from MCF-7 cells, primary thyrospheres and primary thyrocytes, and GAPDH was used 

as an internal control in PCR. ER-α and ER-β with the expected sizes of 243 bp for ER-α and 

112 bp for ER-β were detected in all three kinds of cells. As a positive control, the expression of 
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ER-α was extremely high in MCF-7 cells, much higher than in thyrospheres and in thyrocytes 

(Fig. 3.3). Quantitative PCR analysis revealed a significant difference in expression of ER-α 

mRNA between primary thyrocytes and thyrospheres (1.10±0.35 vs 8.85±0.81，P<0.001)(Fig. 

3.4). In contrast, the expression of ER-β mRNA in primary thyrospheres was not significantly 

different from that in primary thyrocytes (2.54±0.90 vs 1.05±0.25, P>0.05). To visually observe 

expression of ER isoforms in individual cells, immunofluorescence staining was performed 

using specific antibodies. ER-α and ER-β were detectable in the cytoplasm and nucleus, with 

ER-α enriched in the nucleus and ER-β in the cytoplasm (Fig. 3.5 A-F). 

 

 

 

Fig. 3.3 Expression of estrogen receptors-α and -β in human thyroid stem/progenitor cells. The expressions of 

ER-α and ER-β at mRNA level in human thyroid stem/progenitor cells were determined by RT-PCR. A 

representative ethidium bromide agarose gel predicts the single band of each RT-PCR product, and the 

accurate size of the PCR product, ER-α (243 bp)  and ER-β (112 bp). 
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Fig. 3.4 Expression of estrogen receptors-α and -β in human thyroid stem/progenitor cells. The expressions of 

ER-α and ER-β at mRNA level in human thyroid stem/progenitor cells were determined by quantitative 

real-time PCR using specific primers for the ligand binding domain of human ER-α and ER-β. The Ct value of 

the real-time RT-PCR was calculated by the (2* efficiency)
-△△Ct

 method, and normalized by the value of the 

internal control GAPDH. Data were presented as mean of fold change ± SEM vs control and are derived from 

3 independent experiments(***, P＜0.01).  

 

 

 

Fig 3.5 Immunofluorescence staining using specific primary antibodies. Localizations of ER-α and ER-β in 
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human thyroid stem/progenitor cells were determined by immunofluorescence staining using antibodies as 

described in Materials and Methods. In human thyroid stem/progenitor cells, ER-α and ER-β were observed 

respectively. Most of ER-α was localized to cytoplasm, and ER-β in the nucleus. (A-C), ER-α, (D-F) ER-β in 

progenitor/stem cells.  

 

3.3 Estrogen promotes proliferation of thyroid stem/progenitor cells 

3.3.1 Estrogen increases BrdU incorporation in human thyroid progenitor/stem cells 

Proliferative capacity of human thyroid progenitor-stem cells was quantitatively determined by 

BrdU colorimetric ELISA. To eliminate influence of growth factors and phenol red in the culture 

medium, the cells were incubated in phenol red-free basal medium for 24 h before stimulation 

with E2. BrdU ELISA was performed after cells were exposed to various concentrations of E2 for 

24 h in phenol red-free basal medium. Dose-response analysis showed that a range of E2 

concentrations from 0.1 nM to 10 nM resulted in statistically significant increase of BrdU 

incorporations. The decrement in BrdU incorporation at 10 nM and 100 nM indicates that the 

efficacy of E2 on proliferation is dose-sensitive, with E2 maximally effective at 1 nM 

(167.20±4.07% vs control, P<0.01).   
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Fig. 3.6 Effects of E2 on BrdU incorporation. After being dissociated into single cells and seeded into 96-well 

microtiter plates pre-coated with poly-L-ornithine/fibronectin, human thyroid progenitor/stem cells were 

incubated under starvation condition (absence of EGF, bFGF and B27 supplement) for 24 hours. The cells 

were incubated in the presence of various concentrations of E2 in basal medium for an additional 24 h. Control 

cells were incubated with basal medium. Cells were incubated with BrdU labeling medium for 4 hours, and 

BrdU incorporation was measured by BrdU ELISA. Data were derived from 3 independent experiments 

conducted with four to six replicates. Results were plotted as percentage of vehicle control (mean ± SEM, *, 

P<0.05, **, P<0.01).  
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3.3.2 Estrogen has the potential to maintain the formation of thyrospheres 

Human thyroid progenitor cells were dissociated into single cells and stimulated with 20 ng/ml 

EGF, 20 ng/ml bFGF or 1 nM E2. During the next 6 days, the ‘thyrospheres’ were reformed from 

single cells in culture. Our previous study demonstrated that thyrospheres developed from 

individual cells and not by multicellular aggregation (28). After being passaged, a small number 

of cells grew out and reformed spheres under growth stimulation. E2 was capable of reforming 

new spheres in vitro, although the sphere size was smaller than those in the presence of EGF and 

bFGF (Fig. 3.7).  

3.4 ER-α in stem/progenitor cells was up-regulated by E2 stimulation 

As demonstrated above, ER-α and ER-β were shown to be co-expressed in thyroid 

progenitor/stem cells by RT-PCR and immunofluorescence staining. To further investigate the 

effect of E2 on estrogen receptors, quantitative PCR was conducted. Thyroid progenitor/stem 

cells were introduced to 1 nM E2 for 24 h. Then RNA was isolated for quantitative real-time PCR. 

As shown in Fig. 3.8, level of ER-α was significantly increased by E2 (4.9±0.32 vs control), 

while ER-β was not.  
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Fig. 3.7 Thyrospheres were dissociated and seeded in defined media including EGF and bFGF or in similar 

media in which these growth factors had been replaced with E2 (E), 10×.  
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Fig. 3.8 Expression of ER-α and ER-β in thyroid progenitor/stem cells by estrogen stimulation. After cells 

were incubated with 1 nM E2 for 24 h, real-time PCR was performed to determine expressions of ER-α and 

ER-β. The Ct values were calculated by the (2* efficiency)
-△△Ct

 method and normalized by the value of the 

internal control GAPDH. Dates were presented as mean of fold change ± SEM vs control and derived from 3 

independent experiments, **, P＜0.01.  

 

3.5 Cyclin D1 expression in response to E2 treatment 

Cyclin D is a member of the cyclin protein family that is involved in regulating cell cycle 

progression. The synthesis of cyclin D is initiated during G1 and promotes progression through 

the G1-S phase of the cell cycle.  

 

There is a great deal of evidence supporting the view that E2 is able to increase expression of 

cyclin D1 protein and mRNA level in thyroid cancer cells and human thyrocytes (60, 95). The 

expression levels of cyclin D1 mRNA were examined after E2 treatment at various times. 

Analysis using conventional RT-PCR revealed that mRNA expression of cyclin D1 was 

increased from 3 h to 24 h after E2 stimulation (Fig 3.8), indicating that E2 treatment upregulates 

cyclin D1 and thus induces growth of human thyroid stem/progenitor cells.  
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Fig 3.9 Upregulation of cyclin D1 mRNA levels induced by E2 treatment in thyroid stem/progenitor cells. The 

expressions of cyclin D1 at mRNA level were determined by RT-PCR. A representative ethidium bromide 

agarose gel predicts the single band of each RT-PCR product and the accurate size of the PCR product, cyclin 

D1 (144 bp). 

 

3.6 Effects of E2 on differentiation of thyroid progenitor cells  

3.6.1 Estrogen decreases differentiated markers during differentiation 

Discoveries in recent years have suggested that adult stem cells have the ability to differentiate 

into different types of cell under specific differentiated conditions. To observe the different 

effects of E2 and TSH on differentiation of human thyroid progenitor/stem cells, the cells were 

cultured in basal medium containing 10% serum for 3d, and then exposed to TSH or/and 1 nM 

E2 for additional 3 d. Morphology of the cells showed fibroblast-like aspect of progenitor/stem 

cells when treated for 3 days with 1 nM E2 (Fig. 3.10). Cells were smaller when treated with E2 

for 3 days, even when TSH was present in the basal medium.  

After the secondary passaged cells were treated with or without E2 for 3 d or 18 d, total RNA 

was isolated, and cDNA was amplified by RT. Conventional or real-time qPCR was performed to 

determine gene expressions. Under the influence of TSH in serum-enriched medium, these 

thyrosphere-derived cells expressed thyroid differentiated markers at an early stage (PAX8, Tg, 

NIS, TSHr, and TPO) (6 d) (Fig. 3.11) and late stage (21 d) (Fig.3.12). In response to E2 
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stimulation, expression levels of some differentiation markers (TSHr, NIS and TPO) were 

significantly decreased at the early stage as revealed by quantitative PCR analysis. On the other 

hand, GATA4, an endodermal marker, was significantly upregulated (2.15±0.43% vs. control, 

P<0.05). After treatment with E2 for 21 d, RT-PCR was performed to determine these markers. 

Corresponding to gene expression in the early state, NIS expression was significantly decreased, 

while a significantly higher GATA4 expression was observed after E2 treatment at the late stage 

(Fig. 3.12).  

 

 

Fig. 3.10 Morphology of human thyroid progenitor/stem cells and thyrocytes. Phase contrast microscopy of 

living cells(×10). TC, primary human thyrocytes.  
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Fig. 3.11 Effects of E2 on TSH-induced differentiation of human thyroid stem/progenitor cells after 6 d. The Ct 

values were calculated by the (2* efficiency)
-△△Ct

 method, and normalized by the value of the internal control 

GAPDH. The effect of estrogen on differentiation had been repeated in 3 independent experiments. Dates were 

presented as mean of fold change ± SEM vs control and derived from 3 independent experiments, *, P＜0.05.  

 

 

Fig 3.12 Effects of E2 on TSH-induced differentiation of human thyroid stem/progenitor cells after 21 d 

stimulation.  
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3.6.2 E2 inhibits NIS expression in a dose-dependent manner 

The balance between self-renewal and differentiation of stem cells is the key to the regulation of 

stem cell development. As described above, E2 has the ability to promote the growth of human 

adult thyroid stem/progenitor cells. On the other hand, E2 decreased the differentiation marker 

NIS in the early stage and late stage. To analyze the differential effects of E2 on growth and 

differentiation, the thyroid stem/progenitor cells were exposed to various concentration of E2 for 

21 d. RT-PCR was performed to determine the expression of NIS mRNA. NIS was significantly 

decreased by E2 stimulation within a physiological range (0.1 nM to 10 nM). 1nM E2 obtained 

the maximal inhibitory effect on NIS expression, corresponding to the potential of E2 to induce 

the proliferation of adult stem cells (Fig. 3.13).  

 

 

 

Fig. 3.13 Dose sensitivity of E2 on NIS expression in differentiation condition. RT-PCR showed expression of 

NIS mRNAs in thyroid progenitor/stem cells which were treated with serum/TSH and different concentrations 

of E2.  

 

3.6.3 Estrogen inhibited TSH-induced expression of sodium/iodide symporter 

To evaluate the effects of E2 on TSH-stimulated expression of sodium/iodide symporter, 

secondary generated thyroid progenitor/stem cells were exposed to E2 or/and TSH. As shown in 

Fig. 3.14, TSH significantly increased expression of NIS mRNA (1.98±0.25 vs control, P<0.01), 

whereas TSH-stimulated expression level was significantly suppressed by E2 (0.89±0.04 vs 
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2.0±0.25).  

 

 

 

Fig. 3.14 The suppressive effect of E2 on expression of NIS mRNA. The Ct values were calculated by the (2* 

efficiency)-ΔΔCt method, and normalized by the value of the internal control GAPDH. Dates were presented 

as mean of fold change ± SEM vs control and derived from 4 independent experiments. Statistical analysis was 

performed with nonparametric ANOVA, *, P＜0.05, **, P<0.01.  
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4. Discussion 

Nodular disorders of the thyroid gland are relatively common among adults living in Germany. 

Using high-resolution ultrasound, a substantially higher prevalence of thyroid nodules (68%) 

than previously reported was found (7). Nodules arising in hyperplastic endocrine glands may be 

polyclonal or clonal in origin, and in both lesions a wide range of functional and morphological 

heterogeneity may emerge secondarily (54). According to recent studies, most nodules, including 

benign adenoma and papillary thyroid carcinoma, are of clonal origin, considering the clonality 

as the most important single characteristic of thyroid neoplasias (45, 46, 95, 96). In most cases, 

the spontaneous proliferation of a benign neoplasia could be the underlying mechanism for 

autonomous growth of thyroid lesions (1). However, the causes of spontaneous neoplasia growth 

in human thyroids are still unclear, since the human thyroid cells have been estimated to divide 

only 5 times during adulthood, but cell division is a prerequisite to gaining molecular alterations 

that lead to neoplastic growth. 

 

In recent years, stem cell research has opened new pathways for understanding many of the 

physiological mechanisms controlling basic biological processes as well as disease mechanisms. 

Adult stem cells which correspond to remnants of the fetal thyroid are a putative source of 

thyroid neoplasia (25). Our group identified properties of human thyroid stem/progenitor cells 

derived from goiter, including a capacity of self-renewal and the ability to differentiate into more 

than one cell type (25, 28). The cancer stem cells that may originate from normal stem cells 

undergoing an aberrant differentiation were also isolated and identified from anaplastic thyroid 

carcinomas cell lines (35). Some markers for pluripotent embryonic and adult stem cells, such as 

Oct4 and ABCG2, are expressed in both stem cells derivation from normal thyroid tissues and 

anaplastic thyroid carcinoma cell lines. Moreover, some other studies confirmed the presence of 

stem cells in human thyroid and various thyroid cancer cells (34, 37).  

 

The initial doubling time of stem cells was about 12 h, which is much shorter than that of normal 

human thyrocytes (28). As reported previously, in a non-adherent three-dimensional culture, 

these stem cells are able to form spheres in a medium enriched with EGF and bFGF (28, 34). The 
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average cell counts in each sphere increased significantly during the first several days in culture.  

Recent studies have found that adult neural stem cells transform into tumorigenic cell lines or 

cancer stem cells after expansion in vitro (97). This suggests that expansions of these stem cells 

for therapeutic strategies could also harbor the risks for amplifying progenitor cells with acquired 

genetic abnormalities and therefore induction of tumors after transplantation (97-99). In response 

to intensive growth factors stimulation, stem cells can outgrow as thyrospheres, thus revealing 

new clues for the relationship between stem cells and neoplastic thyroid diseases (100). 

 

It has been suggested that growth factors play an important role in the pathogenesis of human 

thyroid goiters and carcinomas (101, 102). Expression of growth factor receptors is increased in 

human goiters, and bFGF is found to inhibit thyroid function measured by 
125

I uptake in primary 

human thyrocytes (103). EGF enhances migration and invasiveness of thyroid cancer, and is also 

able to induce thyroid cell proliferation with the loss of thyroid-specific functions, including 

iodide uptake (104). Moreover, after human thyrocytes were treated with EGF and serum, the 

evolution showed pattern of stimulated cells converges to the pattern of PTCs in which the cells 

have a chronically activated MAPK pathway (105). This evidence suggests that growth factors 

play an important role in the regulation of growth and function of thyroid.  

 

Estrogens are potential mutagens in a number of target tissues including the thyroid gland where 

they play a pivotal role in the growth regulation of human thyroid cells and tumors (60). Several 

lines of evidence support the concept that the EGFR-MAPK signaling axis is a common pathway 

that is regulated by estrogen. Estrogen triggers rapid yet transient activation of the MAPKs, 

extracellular signal-regulated kinase Erk-1 and Erk-2. Coordinated signaling between growth 

factor receptors and estrogen receptors is required for controlled growth of normal mammary 

epithelium. EGF-related ligands enhance ER transcriptional activity (106, 107), and this has been 

shown to result from MAPK-mediated phosphorylation of serine 118 within the activation 

function II (ATF-II) domain of the ER (108). Interestingly, estrogen was proved to induce human 

neural progenitor cell proliferation mediated by ER-activated expression of pERK (76). Estrogen 

stimulates proliferation of mouse embryonic stem cells, and this action is mediated by MAPKs, 

CDKs, or protooncogenes (70). 
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In the floating culture system, the average cell count in each sphere and sphere size reached a 

plateau after the first 5 days of cell growth (28). This is explained by the fact that with increasing 

size of spheres, proliferation rate slows down; many stem and progenitor cells stop growing and 

start differentiation. The central portion may contain degenerating cells that probably die from 

worsened nutrition conditions in large spheres (94). Fierabracci reported that the ‘spheroids’ 

were passaged into secondary generation after being mechanically dissociated into single cells 

and then resuspended in the fresh medium with growth factors (EGF and bFGF) in new tissue 

culture plates (34). After the next 7 days, these cells were reformed into ‘spheroids’, hampering 

the long-term stimulation of estrogen to each cell. In an alternative approach, poly-L-ornithine 

and fibronectin were used to coat cell culture dishes to promote attachment and expansion of 

stem cells (109-112).  

 

In the present study, poly-L-ornithine and fibronectin coating also induced dispersed thyroid 

stem/progenitor cells to attach and grow in the presence of growth factors and the absence of 

serum. The expression of Na
+
/I

-
 symporter (15) (15) as a differentiation marker of thyroid 

follicular cells was undetectable in thyrospheres and secondary passaged thyroid stem/progenitor 

cells. NIS is an integral plasma membrane glycoprotein of the thyroid gland, which mediates the 

active transport of iodine into the thyroid follicular cells as the crucial first step for thyroid 

hormone biosynthesis (113). When differentiation was induced by stimulation with TSH for 21 d, 

thyrosphere-derived cells expressed NIS but lost expression of stem cell marker Oct4 (28). 

Therefore, the increased Oct4 expression and negative NIS expression can be helpful in 

identifying the thyroid stem/progenitor phenotype of secondary passaged cells under the new 

culture conditions.  

 

Estrogen was reported to promote growth of various cells including normal human thyrocytes, 

thyroid cancer cells, and stem cells. The secondary generation of thyroid stem/progenitor cells 

was also induced to proliferate in response to E2 stimulation in a dose-sensitive manner (Fig. 3.6). 

E2 was maximally effective in inducing BrdU-incorporation at 1 nM. Thyroid stem cells 

generated new spheres when cultured with 1 nM E2 in the absence of EGF and bFGF, although 
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the size was smaller than that of spheres in the presence of EGF and bFGF (Fig. 3.7). The 

smaller size may indicate that E2 has a different potential to maintain growth of stem cells in 

vitro than EGF and bFGF (76).  

 

Our previous study found that 10 nM E2 is able to significantly increase the percentage of 

BrdU-labeled cells in thyroid carcinoma cells and thyrocytes derived from nodules (60). 

Furthermore, FRTL-5 cell growth was maximally induced only when 100nM E2 was used (86). 

The study showed that 100 nM E2 was also the maximally effective dose for proliferation of 

human neural stem/progenitor cells (76). These data suggest that different types of cells have 

different sensitivity to E2 stimulation. In females, the serum estrogen level is lower than 0.28 nM 

in the follicular phase and 1.1 nM in the luteal phase in premenopausal women, but it may 

increase to 150 nM in the third trimester of pregnancy (114). These dates suggest that the 

fluctuation of serum estrogen level may regulate the growth of various types of cells in human 

thyroid, particularly thyroid stem/progenitor cells, which may explain why females are more 

prone to develop thyroid neoplasias (5).  

 

The present work demonstrated that ER-α and ER-β mRNAs and protein are co-expressed in 

thyroid stem/progenitor cells as revealed by RT-PCR, quantitative PCR and immunofluorescence 

staining (Fig. 3.3, Fig. 3.5). In contrast to ER-β, ER-α mRNA expression level in thyroid 

stem/progenitor cells was significantly higher than that in normal thyrocytes (Fig. 3.3, Fig. 3.4). 

In previous studies, both ER-α and ER-β have been identified in human thyrocytes derived from 

goiter, human thyroid carcinoma cell lines, and cell lines derived from rat primary thyroid 

tumors (60, 86-88, 115-117).  

 

ER-α and ER-β have distinct transcriptional abilities and may regulate distinct cellular pathways 

although both of them share similar mechanisms of action (118). Particularly when ERs are 

co-expressed, ER-α participates in the initiation and progression of neoplasia, while ER-β may 

exhibit an inhibitory action on ER-α mediated gene expression (85, 119). ER-α mRNA has been 

reported to be upregulated during carcinogenesis of breast cancers, whereas ER-β mRNA is 

downregulated (120). ER-α mRNA expression levels are significantly higher in follicular 
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adenomas than in follicular carcinomas, accordingly, ratios of ER-α to ER-β mRNA levels are 

significantly higher in follicular adenomas compared to follicular carcinomas and normal thyroid 

tissues (117). Recently, increasing evidence supported that ER-α and ER-β exert differential roles 

in the apoptosis of thyroid cancer cells. The apoptosis of thyroid papillary carcinoma cells 

(KAT5), follicular thyroid carcinoma cells (FRO) and anaplastic carcinoma cells (ARO) is 

positively associated with ER-β but negatively with ER-α (88). In general, ER-α functions as a 

promoter for growth of benign or malignant thyroid tumors, whereas ER-β as a suppressor, 

indicating that the imbalance between ER-α and ER-β may contribute to thyroid carcinogenesis 

(Fig. 4.1) (84).  

 

 

 

Fig. 4.1 Schematic illustration of ER-α and ER-β balance shift and tumor development.  

[Taken from: Chen GG, Vlantis AC, Zeng Q, et al. Regulation of cell growth by estrogen signaling and 

potential targets in thyroid cancer. Curr Cancer Drug Targets, 2008, 8:367-377(84).] 

 

More recently, ERs also have been simultaneously detected by RT-PCR and by western blot in 

embryonic stem cells and adult stem cells (70, 77, 78, 92, 112). ER-α and ER-β are observed to 

be co-expressed in mouse ES cells, and both of them are upregulated by estrogen treatment (70), 

while ER-β was the predominant ER in human neural stem/progenitor cells (76). In the present 
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study, however, only ER-α was upregulated by E2 treatment of human thyroid stem/progenitor 

cells in vitro (Fig. 3.8). The higher expression of ER-α after E2 stimulation may suggest that 

estrogen regulates the growth of stem cells via ER-α.  

 

The cell growth promoted by estrogen was reported to be associated with an increased 

expression of cyclin D1. Overexpression of cyclin D1 plays important roles in the development 

of many human cancers including parathyroid adenoma (121), breast cancer (122), colon cancer 

(123), lung cancer (124), pancreatic carcinoma (125), and pituitary tumors (126). Cyclin D1 

encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the 

retinoblastoma protein, and thus promotes progression through the G1-S phase of the cell cycle 

(127). Some studies found that cyclin D1 is overexpressed in cold thyroid nodules (CTNs) and 

papillary thyroid carcinomas associated with poor prognosis (128-130). Estrogen is believed to 

activate cyclin D1 gene expression via ER-α, while it inhibits cyclin D1 expression via ER-ß 

(119). Previous research in mammary cancer cells demonstrated that cyclin D1 is an important 

target gene through which estrogen-complexed ER-α mediates its proliferation (119).  

 

Our previous study also demonstrated that the growth stimulatory effect of E2 on benign and 

malignant thyroid cells was associated with an increased expression of cyclin D1 (60). In the 

present study, the expression level of cyclin D1 mRNA was increased in thyroid stem/progenitor 

cells after stimulation with 1 nM E2 (Fig. 3.9), demonstrating that cyclin D1 is also involved in 

cellular proliferation of thyroid stem/progenitor cells. Cyclin D1 mRNA expression was 

increased 3 h after E2 stimulation of thyroid stem/progenitor cells. Stimulation of E2 to 

G0/G1-arrested cells resulted in induction of cyclin D1 mRNA within 1-3 h and a three- to five 

fold increase in synthesis and steady-state levels of cyclin D1 protein within 3-6 h (131).  

 

An important characteristic of a stem cell is its pluripotency or multipotency, which implies that 

adult stem cells have the remarkable potential to develop into different cell types in vivo or vitro 

(132). In response to serum and ΤSH, the thyrosphere-derived cells are able to produce 

thyroid-like cells with expression of thyroid differentiation makers PAX8, Tg, NIS, TSHr, and 

TPO (28, 34). After being embedded into collagen in a 3D culture system, these differentiated 
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cells formed thyroid follicular-like structures that displayed TSH-dependent 
125

iodide uptake (28). 

In addition, thyrospheres may also develop into cells expressing neuronal marker β-tubulin III 

when they are co-cultured with the neuroblastoma cell line, and differentiate towards to 

adipogenic lineage, confirming their pluripotency (34).  

 

Stem cells are faced with a uniquely difficult task: to avoid cell cycle exit and differentiation, and 

to avoid uncontrolled proliferation or even tumor formation (133, 134). Maintaining the balance 

between self-renewal and differentiation is an important issue in stem cell and cancer biology, 

and it allows stem cells to undergo proliferation only to sustain tissue regeneration or repair 

(135). During embryonic development, various niche factors act on embryonic stem cells to alter 

gene expression, and induce their proliferation or differentiation for the development of the fetus 

(136). Therefore, the better understanding of balance between self-renewal vs. differentiation of 

stem cells might be the significant basis for understanding the thyroid organogenesis, thyroid 

cancer biology, and in designing further stem cell research.  

 

Our current study demonstrates that E2 has the potential to induce the proliferation of adult 

thyroid stem cells. Thyrosphere reformation in the presence of E2 suggests the ability of E2 to 

promote the division of stem cells in vitro as well. It is very crucial to investigate the influence of 

E2 on the differentiation of adult thyroid stem cells that is the other end of the rope.  

 

Thyroid stimulating hormone (TSH) is the primary hormonal regulator of thyroid function and 

stimulates iodide  accumulation in the thyroid (137). The TSH is able to stimulate NIS 

transcription and biosynthesis, and it is also required for targeting NIS to and/or retaining it at 

the plasma membrane (113), whereas E2 blunts TSH-induced expression of NIS in adult 

thyrosphere-derived cells (Fig. 3.14).  

 

TSH was reported to have the potential to induce ES cells to differentiate into thyroid cells (23). 

Under the influence of TSH and serum, adult thyroid stem cells are also induced to differentiate 

into thyrocytes that expressed PAX8, TG, NIS, TSHr, and TPO, which is consistent with our 

previous study. Notably, the gene profile of thyrosphere-derived cells showed that GATA4, an 
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endodermal marker, is upregualted by E2 treatment but not by Oct4 or differentiation markers 

(Fig. 3.11). As demonstrated by quantitative analysis, only NIS, TSHR, TPO and GATA4 are 

significantly regulated by E2 stimulation in the early stage of differentiation process (Fig. 3.12).  

 

Thyroid follicular cells have also been proved to contain functional ERs that enhance cell growth 

and inhibit expression of NIS (86, 138). Estradiol is able to affect thyroid cells derived from 

goiters directly (60). Compared with normal thyrocytes, stem cells display a much higher 

proliferation rate on growth stimulation (28). Under intensive stimulation with estrogen, 

asymmetric cell division gains more progenitor cells (Fig. 1.4, Fig. 4.3). On the other hand, 

clinical and experimental data demonstrated low thyroid hormone synthesis and significantly 

reduced NIS expression in thyroid nodules (139, 140). Therefore, progenitor cells characterized 

by lower NIS expression may suggest a putative role of the offspring of stem cells in chronic 

estrogen-stimulated nodular transformation of the thyroid in females who develop more nodules 

than man (60).  

 

New data also support the link between stem cells and tumors. Tumors may originate from 

transformed stem cells. Continuous and longtime expansion of precursor cells in culture was 

thought to harbor the risk of spontaneous transformation which is likely to result in tumor 

formation in graft recipients (97). The spontaneous immortalization of adult neural stem cells 

leads to development of an immortal clonal population with a potential to produce high-grade 

and invasive brain tumors in immunodeficient mice (97, 99). Cancer stem-like cell lines were 

further generated from adult neural precursors following expansion in a culture assay adapted to 

brain stem and progenitor cells (98). Similar signaling pathways for growth may regulate 

self-renewal in stem cells and cancer cells, and cancer cells may include cancer stem cells that 

drive tumorigenesis (141). Both stem cells and cancer stem cells (CSCs) have the ability of 

asymmetric cell division, i.e. they might generate daughter cells containing a self-copy 

(self-renewal) and progenitor cells. CSCs are defined as transformed cells that are thought to 

share several characteristics with normal stem cells.  

 

Does thyroid tumor arise from oncogenic transformation of stem cells into CSCs? Our recent 
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study successfully demonstrated that CSCs derived from anaplastic thyroid carcinoma cell lines 

expressed ABCG2 and MDR1 transporters of the ABC gene family, which enabled the exclusion 

of the Hoechst dye from CSC that otherwise binds to the DNA in non-stem cells (35). This 

supports the hypothesis that a small population of tumor cells termed CSCs can be regarded as 

the origin of thyroid cancer.  

 

More evidences are required to confirm the transformation of thyroid stem cells to CSCs and the 

mechanisms. So far, several possible mechanisms have been suggested, including DNA 

double-stranded breaking (99), aberrantly activated Notch signaling (97), constitutive and 

excessive activation of the PDGFRα pathway (98, 142). Other signaling pathways associated 

with oncogenesis, such as Sonic hedgehog (Shh) and Wnt signaling pathways, may also play an 

important role in regulating stem cell self-renewal and its transformation (141). The crosstalk 

and interrelationship between stem cell and cancer stem cell will focus light on new potential 

research into stem cells and thyroid diseases.  

 

Based on current knowledge, a schematic diagram has been drawn for the role of stem cells in 

the physiological and pathological development of the thyroid (Fig. 4.2). The essentially 

quiescent stem cell may proliferate to give birth to a daughter stem cell and a progenitor cell by 

asymmetric cell division. Under normal conditions, stem cells stimulated by TSH and serum 

undergo differentiation into normal and functional thyroid cells. However, iodide deficiency, 

accumulated mutation, apoptosis of thyroid cells, operative in ageing thyroids, higher level of 

estrogen, and other locally expressed growth factors might cause the alterations of niches. One 

possibility is that thyroid stem cells undergo aberrant differentiation to promote the growth of the 

partly differentiated progenitor cells and thus form thyroid nodules (51). Another possibility is 

that transformation of stem cells to cancer stem cells is initiated, resulting in the development of 

undifferentiated, poorly differentiated or differentiated thyroid cancers.  
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Fig. 4.2 Stem cell hypothesis for thyroid diseases. CSCs, cancer stem cells, PTC, papillary thyroid carcinoma, 

FTC, follicular thyroid carcinoma.  

 

Our current study paves a path for further research into the putative link between stem cells and 

thyroid nodular diseases. Aberrant differentiated thyroid stem cells under estrogen stimulation 

display an increasing ratio of ER-α to ER-β, upregulation of cyclin D1, lower expression of NIS, 

and number of progenitor cells with not fully-achieving differentiation. Further studies are 

required to investigate the gene profiles among aberrantly differentiated stem cells, benign and 

malignant thyroid nodules. In addition, the molecular and cellular events in vivo that may occur 

in the tumorigenesis of adult stem cells need to be studied. This may suggest a link between stem 

cell and thyroid nodules or tumors. 
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5. Summary 

Nodular disease of the thyroid gland has been rising worldwide. Its prevalence is 4 times higher 

in women than in men. Both epidemiological and experimental cell research has demonstrated 

that estrogen plays an important role in the pathogenesis of thyroid nodules. However, a 

comprehensive understanding of the relevance of estrogen in pathogenesis of thyroid nodular 

disease is still missing. Ongoing advances in stem cell research have opened new avenues for 

research. The purpose of my current study was to determine whether estrogen has the potential to 

promote the proliferation of human thyroid stem/progenitor cells, clarify the intracellular events 

involved in E2-induced stem/progenitor cells proliferation and analyze the influence of E2 on 

TSH-induced differentiation of progenitor cells into thyrocytes.  

 

Intense growth stimulation of stem cells resulted in the formation of spheres that consist of 

highly proliferating stem and progenitor cells. After passaged into secondary generation and 

starved from growth factors, thyroid stem/progenitor cells proliferated in response to E2 

stimulation in a dose-dependent manner. 1 nM E2 was maximally effective to induce BrdU 

incorporation and also to generate new thyrospheres in the absence of other growth factors. The 

results further demonstrated that ER-α and ER-β were co-expressed in thyroid stem/progenitor 

cells, and regulate distinct cellular pathways. Only ER-α expression was significantly 

upregulated by E2 stimulation. The cell growth promoted by estrogen was associated with an 

increased expression of cyclin D1 that promotes progression through the G1-S phase of the cell 

cycle. Under the influence of TSH, adult thyroid stem cells were induced to differentiate into 

thyrocytes (expression differentiation marker as NIS, thyroglobulin, etc.). By estrogen 

stimulation, NIS was simultaneously decreased significantly.  

 

The stimulation effect on growth and inhibitory effect on NIS expression of estrogen reminds of 

cell clone with a higher than average growth potential and a lower NIS expression as the origin 

of non-functional thyroid nodules in females. The results demonstrate the molecular cascade and 

related cell biology events involved in estrogen-effected proliferation and differentiation of 

thyroid stem cells in vitro, and suggest a link between stem cells and the pathogenesis of thyroid 
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nodules. Further studies are required to investigate the gene profiles among 

aberrantly-differentiated stem cells and benign and malignant thyroid nodules.  
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ZUSAMMENFASSUNG IN DEUTSCHER SPRACHE  

Die Entwicklung von Schilddrüsenknoten nimmt weltweit zu. Frauen sind 4 mal häufiger 

betroffen als Männer. Epidemiologische und zellbiologische Studien haben gezeigt, dass 

Östrogene in der Pathogenese von Schilddrüsenknoten eine wichtige Rolle spielen. Die 

Bedeutung von Östrogen in der Pathogenese von Schilddrüsenknoten ist jedoch in ihren 

Einzelheiten noch unbekannt. Die Fortschritte der Stammzellforschung haben auch auf diesem 

Gebiet neue Wege eröffnet.  

 

Ziel meiner gegenwärtigen Arbeit war es: 

1. zu analysieren, ob Östrogene die Proliferation menschlicher Schilddrüsenstamm-/progeni- 

torzellen stimulieren,  

2. die intrazellulären Veränderungen, die in der Östrogen-induzierten Stamm-/Progenitorzell- 

proliferation involviert sind, aufzuklären und 

3. den Einfluss von Östrogenen auf die TSH-induzierte Differenzierung von Progenitorzellen in 

Schilddrüsenzellen zu analysieren. 

 

Eine intensive Stimulation von Stammzellen führte zur Bildung von sogenannten „spheres“, die 

sich aus stark proliferierenden Stamm- und Progenitorzellen zusammensetzen. Nach Passage 

dieser Zellen in eine zweite Generation und nach Entzug von Wachstumsfaktoren proliferierten 

diese Schilddrüsenstamm- und progenitorzellen nach Stimulation mit Östrogen dosisabhängig.  

Mit 1 nM E2 wurde der maximaler Einbau im BrdU-ELISA erreicht und gleichzeitig in 

Abwesenheit von Wachstumsfaktoren die Entstehung neuer „thyrospheres“ induziert. Weiter 

wurde gezeigt, dass ERα und ERß in Schilddrüsenstammzellen und -progenitorzellen 

co-exprimiert werden und unterschiedliche Signalwege aktivieren. Allerdings wurde nur die 

ER-Alpha-Expression signifikant durch eine E2-Stimulation hoch reguliert.  

 

Die Stimulation des Zellwachstums durch E2 war assoziiert mit einer vermehrten Expression von 

Cyclin D1, das für die Progression durch die G1 bis S-Phase des Zellzyklus verantwortlich ist.  

Unter dem Einfluss von TSH wurde die Differenzierung adulter Schilddrüsenstammzellen in 
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reife Thyreozyten induziert mit vermehrter Expression von Differenzierungsmarkern (u. a. NIS). 

Durch Östrogenstimulation wurde dagegen die NIS-Expression signifikant gehemmt.  

 

Die wachstumsstimulierende Wirkung von E2 und ihr hemmender Effekt auf die NIS-Expression 

erinnern an Zellklone mit einem überdurchschnittlichen Wachstumspotential und einer 

verminderten NIS-Expression, die als Ursprung nicht-speichernder Schilddrüsenknoten 

diskutiert werden. Die Ergebnisse dieser Arbeit zeigen die molekularen und zellbiologischen 

Veränderungen, die E2 auf die Proliferation und die Differenzierung von 

Schilddrüsenstammzellen in vitro ausübt und lassen eine Verbindung zwischen den Stammzellen 

und der Pathogenese von Schilddrüsenknoten vermuten. Weitere Studien sind erforderlich, um 

die Genprofile aberrant differenzierter Stammzellen und benigner und maligner 

Schilddrüsenknoten miteinander zu vergleichen. 
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