Appendix F The “hydrated solute model”

In this Appendix the “hydrated solute model” introduced in section 5.8 is discussed in more

detail.

F.1 Basic equations and definitions

Together with its hydration shell, an mCD molecule can be considered as a new entity,
here denoted as mCD-HYD. The rotational structure factors of mCD-HYD, Ajmcp-nvp)(Q) are
given by [109]:

n+3xNyyp #+3XNyp

TNC5uv . .
Al(mCD—HYD)(Q): Z Z [<by><bv>+0—uT]Jl(er).]l(Qrv)Pl(COSeyv) (F1)

where (n+3 xNyuyp) is the total number of atoms in “mCD-HYD”. The number of atoms in the
mCD molecule is 7, the number of D,O molecules in hydration shell is Nuyp, rendering the
number of the atoms in D,O molecules equal to 3xNuyp. The vectors r, and r, give positions of
the uth and vth atoms, respectively, in the coordinate system of the center of mass (c.m.) of the
mCD molecule; 6, is an angle between r, and r,. P; is the Legendre polynomial of degree /, j; is
the spherical Bessel function of order /. <b,> and o, inc are the coherent scattering lergth and the
incoherent scattering cross section of the uth atom, respectively.
Asmep-nyp(Q) can be decomposed as follows:

Aime-nyp Q) = Aimen)(Q) + Asmep-wy(Q) + Aiw-w(Q) (F2)

The structure factors Aymcn)(Q) are given by the “standard sdute model”, see section 5.5.

The expression for Ajmcp-w)(Q) reads:

n Nuyp 3

Al(mCD-W)(Q):zz Z z <bu><ij>j1<Qru)jl(erv)Pl(Coseufjv) (F3)

u=1 j=1v=1
where r;, and r, are the vectors from the c.m. of the solute molecule to the vth atom of the jth
water molecule and the uth atom in the mCD molecule, respectively; 6, is the angle between
the vectors r, and ;.

The expression for A;mw-w)(Q) is given by:
Nio 3 Nio 3 o5
AI(W—W)(Q): s ; /:Z] ; [< biu><ij>+%]j/(Qrip)jl(erv)PI(COS Qiyfjv) (F4)
where r;, is the vector fromthe c.m. of the solute molecule to the vth atom of the jth water
molecule (r;, is defined in the same way), and 6., is the angle between the vectorsr;, and r;,. In
addition, J;,.,, = 1 if i=j and v=u and 0 otherwise.
One way to evaluate the structure factors Aymcp-w)(Q) and Amw-w)(Q) consists in the

tentative assignment of the positions of water molecules aroundthe solute molecule (here: mCD

molecule). The basis for such an assignment can be crystal structures of mCD hydrates.
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Alternatively, water molecules could be placed around a mCD molecule whereverthe hydrogen
bond water-mCD can be formed. The simplest way is to approximate water molecules by
spheres and align these spheres around the solute molecule. In any case, the knowledge of so
obtained coordinates of atoms of water molecules will allow the evaluation of Ajmcp-w)(Q) and
Aimw-wy(Q) from egs. (F3, F4).

F.2 An approach leading to the derivation of eqgs. (5.33) and (5.34)

Because the positions (and orientations) of the hydration water molecules arenot
generally known, the procedure described in section 5.8 represents a convenient way for the
evaluation of Aymep-w)(Q) and Ajmw-w)(Q). The following assumption is made: the probability to
find a center-of-mass of'a hydration water molecule is uniformly distributed over the whole
volume of the hydration shell (for the definition of the hydration shell see section 5.8). The
number density, p, of molecules in the hydration shell of volume Vigygi. s

P = Nuvo/VsneLr (F5)
so that the probability to find the c.m. of a water molecule in the volume element dr is pdr. The
rotational structure factors Aymep-wy(Q) and Ajmw-wy(Q) are evaluated from eq. (5.33) and egs.
(5.34,5.35), respectively. Below, these equations will be derived with the simultaneous
discussion of underlying assumptions.

The general expression for the function v(Q, f) (see section 2.3) reads:

v(Q,t)=

'ﬁMs

[<bu><bv>+0’“j—f‘”]xw(Q,t) (F6)

u 1

where m 1s the number of atoms in the molecule and y,.«(Q, ?) is given by:
XHV(Q,t)=<exp[—iQ.(r“(0)—rv(t))]> (F7)
For isotropic rotational diffusion v(@Q, ¢) is given by eq. (2.26):

i 21+1)4,(0)F,(¢) (F8)
with A(Q):
AI(Q): Z_l [<bu><bv>+0-ur4N—(_;_fuv]jl(Qru)jl(Qrv)Pl(coseuv) (F9)

For a “hydrated solute molecule”, m = n + 3xNuyp, so that eq. (F6) can be re-written as:
n+3xNyyp, n+3*Nyyp o 6
VmCD—HYD(Q’t): Z [<bu><bv>+%]xuv(Q’t) (FIO)
u,v=l1
The function vimep-nyn(@Q, ?) can be split into three parts:
VmCD—HYD(Q’ t):VmCD(Q’ t)+VmCD—W(Q: 1)+ vyw(Q,1) (F11)

As seen from eq. (F8), vimcn(Q, £) contains the rotational structure factors of the mCD molecule,
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Aimeny(Q). In the following two sections, the expressions for Ajmep-w)(Q) and A w-w)(Q) will be

obtained.

F.3 Derivation of equation (5.33)

The expression for vimep-w(@, ), analogously to eq. (F6), taking that y,.(Q, ?) = %(Q, ?),

reads:
n 3XNHYD
Voo (Q,6)=22, 2, <b,><b,>X,.(Q,1) (F12)
u=1 v=I

where the factor “2” accounts for the fact that, while in eq. (F6) the summations overp and v
are both performed over all atoms (i.e. atoms belonging to the mCD and hydration D,O
molecules), the summations in eq. (F12) are performed only over the atoms belonging to the
mCD molecule (i =1 .. n) in the first sumand over those in D,O molecules (v =1.. 3XNyuyp) in

the second sum. Eq. (F12) can be rewritten using eq. (F7) as:

n NH\D 3

Vo (@) zZZZ<b ><b, >(exp[—iQ.(r,(0)=r,,(1)]) (F13)

p=1j=1v=
with r;, being the vector from the c.m. of the solute molecule to the vth atom of the jth water
molecule; v, =R; + a;,, where R; is the vector giving the position of the c.m. of the hydration
water molecule. The vector a;, gives the position of the vth atom in the jth water molecule in the
coordinate system of the c.m. of the jth water molecule. It follows from eq. (F7), assuming that
R; and a;, are uncorrelated:

X, 1 (Q.0)=(exp[—i Q. (r, (0)= R, (1)) (expli Q.atj (1)) (F14)
Thus, eq. (F13) can be rewritten as (with a;, instead of a;,(¢) because a,,(f) doesn't depend on the

position of the water molecule relative to the mCD molecule and all a;,(¢) are equally probable):

Voo (@ 1) 22<b >Z exp[—iQ-(ru(O)—R,(t))]>§<ij><exp[iQ-a,~v]> (F15)

Averaging over the orientation of Q relative to a;, yields:

3

Z<b >(expliQ.a,] z SIZQavaEFFW(Q) (F16)

V= v

where a, is the distance of the vth atom to the c.m. of water molecule. The index j was dropped
in eq. (F16), because the orientation of the jth water molecule is independent of R;. From eq.
(F15) it follows:

VmCD—W(Q’t):zbEFFW(Q)Zi:l <b,> Zj<exp[—iQ.(ru(0)—Rj(t))]> (F17)

From egs. (F6-F9) it follows that Ajmcp-w)(Q) 1s given by:
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n Nuyp

Al(mCD-W)(Q):2bEFFW(Q)Z Z <bu>jl(Qru)jl(QRj)PI(COSQH—/'> (F18)

u=1 j=1
where R; is the position of the c.m. of the hydration water molecule and ,.; is the angle between
r, (the vector giving the position of the uth atom in the mCD molecule) and R;.
Because the water molecule can be found in every volume dR with probability pdR, eq. (F18)
can be written as an integral, rendering eq. (5.33):

A[(mCD-W)(Q):Zp X beprpw (O Z <b ) Ji or,) f Ji QR (Coseu—j>de (F19)

VSIII'II

It is important to note that Ajmcp-w)(Q) doesn't contain the incoherent scattering cross secions,
because the function vicp-w(@Q, f) depends on the correlations between the positions of two

different groups of atoms.

F.4 Derivation of equation (5.34)

In similar fashion, as was shown above for vucp-w(Q, ?), it follows from egs. (F10, F11):

3><I\I]IYD 3><I\IIIYD

vun(@.00= 2 2 [<h,><b >+ Ry (g, y) (F20)

u=l1 v=1 4

Using eq. (F7), which provides y,.(Q, ), eq. (F20) can be rewritten as:

Ngyp 3 Nuyp 3

l,uINC(Slu/v *
VWW Q t Z Z Z Z{ <b ><b >+ 47T ] (le)

i=1 p=1 j=1v=

(exp[—i Q.(R;(0)+a;,(0)—R,(1)—a;,(1))])}
For convenience, vw.-w(Q, ) will be split into two terms:
Vuw (@, 1)=Vwwoist (@, 1)+ Vwwseir(Q, 1) (F22)
Assuming that a) the orientation of the hydration water molecule relative to the solute molecule
is not correlated with the position of the c.m. of this water molecule; b) that the relative

orientations of two distinct hydration water molecules are uncorrelated; it follows from egs.
(F21, F22):

Vywoist (@)= ZEDZ_:] AZHZZ:I {<b;,><b;,>* (F23)
(exp[—iQ.(R;(0)—R;(1))]) (exp|—iQ.a;,(0)])(exp[i Q. a;,(t)])}
Viw spp( @0 1)= :YDH_IZ_;{ [<b,,><b, >+ lHiNC(Suv] 20
(exp[—i Q.(R;(0)—R;(2))])(exp|—i Q.(a;,(0)—a,,(t))])}
One can rewrite eq. (F23) noticing that (see eqs. (F14-F16)):
berrw(Q)=2 2, <b,><b,>(exp[-iQ.a,(0)])(expli Qa,(1)]) (F25)

u=1v=1

as:
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NHYD N HYD

Vawoist(@.0)=brpw| 2 D (exp[—i Q.(R,(0)—R,(1))]) (F26)

i=1 j#i=1

Eq. (F24) can be rewritten as:

NHVD

Vv-w SELF(QJt):bSELFW(Q) X Zl <eXp[_iQ'(Ri(0)_Ri(t))]> (F27)
with bserw(Q) given by (seealso eq. (2.39)):
bSELFW(Q): Z[<bu><bv>+%i\]71c_r6w]jo(Q”py) (F28)

u=1v=l1

with r,, = r, - r,. Here, in writing eqgs. (F27, F28), it was tacitly assumed that the hydration
water molecule doesn't change its orientation relative to the sdute molecule, i.e. that a,(¢)=a.(0).

Thus, one can now combine vw.w pist(Q, f) and vw.w seLr(Q, ) into an expression for

Vw_W(Q, t)l
V(0. 1)= ZZgW,] )(exp[—i Q.(R;(0)—R,(1))]) (F29)

with gw(Q):
I#j gW,,(Q) b w(Q)

neOuy F30
i=j gWy(Q) boprw(0)= ZIZ: [<b ) (b,)+ H4_’T ]]0<Q’” ) (530)

From eq. (F29) and eqs. (F6-F9) one readily obtains A;w-w)(Q) as:
A (@)= 2 X" 2,,(0)/(OR) ], (QR,) P,(cos0, ) (F31)

i=1 j=1

Since the c.m. of the hydration water molecule canbe in every volume element dR of the
hydration shell with the probability pdR, the sum can be written as an integral, renderingeq.
(5.34):

Ajw pXV!WwaWgW,, )j,(OR,) j,(OR ) P,(cosO, )d R,d R, (F32)
with gy (Q) defined as:
R#R; : g,,(0)=bpy(0)
BB, g0 =tra(@= 3 [0+ 720 gy, )

F.5 The extended “hydrated solute model”

In writing eqs. (F27, F28), it was assumed that the hydration water molecule doesn't
rotate. This assumption is most probably not fulfilled in reality; therefore, the model based on
such an assumption may be inadequate under certain circumstances. The expression for the

scattering function of the hydrated sdute, Sycp-nvp(Q, ®), with the reorientational motion of the
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water molecules in the hydraton shell taken into account, is derived below.

At first, eq. (F24) can be rewritten as:

Viw sece (@0 1) = Ve pw(Q, 1) X Z (exp[—iQ.(R,(0)—R,(1))])

where the expression for vserr w(Q, f) reads:

33

Vel @.1)= 3 [<b,><b >+ 40 exp i 0.(a, 0)-a, (1)

u,v=l1

Comblnlng Of Vw-w DIST(Q, t) (given by €q. (F26)) and Vw-w SELF(Q, t) leads to Vw,w(Q, t):

NHYD NHYD

View(@.6)= 2 Zgw,j 0, 1)(exp[ =i Q.(R,(0)=R,(1))])

i=1 j=
with gy (O, t) given by:
i#j gWy(Q t)= EFFW(Q)
i=j gW;/(Q 1)=Veprw(Q, 1)
Note that egs. (F27-F30) are obtained from eqgs. (F34-F37) by setting a.(f) = a,(0).
Similarly to eq. (F31), the expression for A,w-wy(Q, ) reads:

1(W-W) (0.1 :Z ZgWy 0,t) ], QR)]I(QR )P (Coseia/‘)
For convenience, A w-wy(Q, f) will be split into two parts:
Al(w-w)(Q t) 1(W-W DIST)(Q)+AI(W-W SELF)(Q’I)

with the distinct (and time-independent) part Ayw-w mist)(Q) given by:

N HYD I\]HYD

AI(W-WDIST)(Q): EFFW z Z Ji QR Jz(QR) (0059[7/)

i=1 j#i=1

and the self part Ajw-w seLr(Q, £) (making use of'the fact that for i=j, P(cos 6;;) =1) is:

N HYD

AI(W»WSELF)(Q’ t):VSELF<Q’ t) Zl: JIZ(QR1>

To recall: Vimep-nyn(Q, ?) is the sum of vinen(Q, ¢) (given by eq. (F6) with m=n),
Vmep-w(@, 1) (eq. (F17)), vew(Q, ?) (eq. (F36)). Then, eq. (F8) can be rewritten as:

VinCD-HYD Q t IZ(:) 2l+1 Al(mCD)(Q)+A/(mCD—W)<Q>+AI(W—W)(Q’Z)]

with F(t) = exp(-D(/+1)1).
As follows from eq. (2.30):

Irot mep-nyD(@Q, 1) = Y(Q)cM mep-nYDX Umcp-HYD(Q) + Vimcp-nyn(Q, 1)

(F34)

(F35)

(F36)

(F37)

(F38)

(F39)

(F40)

(F41)

(F42)

(F43)

The function Sror mcp-nyn(Q, ®) is the time-Fourier transform of Iror mep-uvn(@, £) and reads:

o0
SROTmCD—HYD 0, w) Z S ROT mCD-HYD (0, w)
I=
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with:
SOROT mCD-HYD(Q, 03) = 8((D)>< {bZEFF mCD—HYD(Q)XYCM mCD-HYD(Q) + AO(mCD)(Q) +A0(mCD-W)(Q)

+Agw-woist(Q)} + Agow-w seLr(Q)* Suypow(Q, ©) (F45)
S'ror mep-nyn(Q, )= (21 + 1) {[Aimen(Q) + Amen-wi(Q) + Auw-w pist(Q)]xLor((i+1)D;, ®)
+ A](w_w SELF)(Q)XLOI'(Z(H‘I)Dr, 03)®SHYDW(Q, (D) (F46)

The expression for berr mep-nyn(Q) reads:

n+3xNyyp n+3xNyyp Sil’l Qr

bEFFmCD—HYD(Q): Z <bu><exp[_iQ'ru]>Q: Z <b”>Q—ru (F47)

where the subscript Q stands for the averaging over all relative orientations of Q and r,. Clearly,

berr mCD—HYD(Q) = Dgrr mCD(Q) + bgrr HYD(Q); the function bggr mCD(Q) is readily evaluated fromthe

coordinates of mCD atoms. The expression for berr nyn(Q) reads:

3><NHYD
breruyp( Q)= Z <bu><exp[—iQ.(R,.+a,.“)]>Q=
Nuo SR (F48)

= ; (exp[—iQ. R;]) Y <b,>(exp[-iQ.a,])

u=1

where R; and a;, have the same meaning as definedin the text after eq. (F13). If follows then:

& sin OR,
bEFFHYD(Q):bEFFW(Q)Z l (F49)
-1 OR,
Finally, eq. (F49) can be written in the same fashion as eqs. (F19, F32):
bEFFHYD(Q):prEFFW(Q)X f jO(QRz')dRi (F50)
VSIIELL

The function vserr w(Q, t) depends on the natureof the reorientational motion of the

hydration water molecule. Assuming, for example, the case of the isotropic rotation, it follows
(see egs. (2.26-2.28)):

VSELF W Q ! :Z 2l+1 HYDW)(Q)FI(HYDW)(t) (F51)
=0
=X UulNC6pv . .
AI(HYDW)(Q): z [<bu><bv>+ P ]]1(Q’”u)]l(Qrv)Pl(COSQW) (F52)
w,v=1

The function Suypw(Q, ®) is the time-Fourier transform of vseir w(Q, ) and given by:

(F53)

4
g
é
lQ
8
-
C/)
U
2

S"uvow(Q, )= Anarvow(Q)*0(0); S'uvow(Q, )= (21 + 1)*Aisrvow(Q)*Lor(/(H+1)Drivow, ©) (F54)
where D;uypw is the rotational diffusion coefficient ofthe water molecule in the hydration shell.
Of course, functions A;uypw)(Q) are the same as for bulk water.

Setting D, yypw = 0 results in the function S’kor mep-nyn(Q, ®), which would be obtained
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assuming a,(f) = a,(0). For water, the functions A;uypw(Q) for / #0 are negligible for O < 0.5
A!. Therefore, in fitting of the “hydrated solute model” no error was introduced by setting a,(?)
= a,(0) and employing Aymcp-w)(Q) and Aymep-w)(Q) derived as described in sections F3 and F4,
respectively.

Finally, Sicp-nyn(Q, ®) is just a convolution of Srormep-nyn(Q, ®) from eq. (F44) with the
translational scattering function Str mcp-nyn(Q, ®). The latter is the sameas the translational

scattering function for the solute molecule, given for the “standard solute model” by eq. (5.12).

F.6 Concluding remarks

In section F1 it was suggested that the structure factors Ajmcp-w)(Q) and Ay w-w)(Q) could
be evaluated by taking water molecules to be spheres, and aligning these spheres on thesurface
of the solute molecule. One option is to specify the coordinates of every sphere, and
additionally, the orientation of a water molecule relative to the solite molecule. In this way,
coordinates of all atoms belonging to all hydration water moleculesare known and Ajmcp-w)(Q)
and A;w-w)(Q) are found straightforwardly fromegs. (F3) and (F4), respectively. This approach
will be referred to as the method of atom coordinates.

Alternatively, it is reasonable to assumethat the precise orientation of the water
molecules wont influence Ajmepwy(Q) and Agw.w)(Q) very much for O < 2.5 A (because the
resolution in the “real space” is of the order 2n/Q). It is also reasonable to make a simplifying
assumption (madein sections F3 and F4), namely that the orientation of the hydration water
molecule relative to the sdute molecule is not correlated with the position of the center of mass
of this water molecule. Then, Ajmcp-w)(Q) and Ajw-w)(Q) can be evaluated fromeqgs. (F18) and
(F31), respectively. This approach, the method of c.m. coordinates, has an advantage: one needs
only coordinates of the centers of spheres (i.e. c.m. of hydration water molecules).

The methods of atom coordinates and c.m. coordinates were both used to evaluate
Asmep-w)(Q) and Ayw-w)(Q) for the case of the complete monomolecular coverage of the surface
of the mCD molecule by D,O molecules. Both methods yielded very similar results.

In addition, the functions Aymcp-w)(Q) and A w-w)(Q) evaluated fromegs. (F19, F32)
were qualitatively the same, as Ajmep-wy(Q) and Aqw-w)(Q) found by the method of c.m.
coordinates.

The structure factors Ajmep-w)(Q) and A;w-w)(Q), as seen from egs. (F18, F31), depend
on berr w(Q) and bsgrr w(Q). For DO, berr w(Q=0) = 3.67 barn, whereas for HyO b’ w(Q=0) =
0.03 barn, see Tab. 2.1 (and at O <1 A™', b?rw(Q) > 3.0 barn for D,O and bgre w(Q)< 0.04 barn
for H,0). In addition, the term bserr w(Q) for H,O is dominated by the incoherent cross sectian

and practically O-independent. Thus, the O dependence of the QENS scattering intensity due to
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the presence of the hydration shell is virtually absent for H,O solutions (because Ajmcp-w)(Q) = 0
and A;w-w)(Q) is nearly O-independent).

In sections 5.8 and F2 the assumption was made that the probability to find a center-of-
mass of a hydration water molecule (p) is uniformly distributed over the whole volume of the
hydration shell. This assumption is not necessary; generally, one can have p as a function of R,
(i.e. as a function of position of the c.m. of water molecule relative to the solute molecule) so
that p will come into the integrand expression in eqgs. (F19, F32). Thus, even complex
assumptions about the distribution of water molecules in the hydration shell can directly give
Asmep-wy(Q) and Ayw-w(Q).

Finally, it is clearthat the present implementation of the “hydrated solute model” can be
used for the analysis of QENS spectra of any solution, where the phenomenon ofsolvation or

adsorption of small particles on relatwely large particles takes place.
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