
 Appendix F The “hydrated solute model”

In this Appendix the “hydrated solute model” introduced in section 5.8 is discussed in more 

detail.

 F.1 Basic equations and definitions 

Together with its hydration shell, an mCD molecule can be considered as a new entity, 

here denoted as mCD-HYD. The rotational structure factors of mCD-HYD, Al(mCD-HYD)(Q) are 

given by [109]:

Al mCD-HYDQ= ∑
=1

n3×NHYD

∑
=1

n3×NHYD

[< b> < b>
 INC

4
] j l Qr jl QrP l cos (F1)

where (n+3×NHYD) is the total number of atoms in “mCD-HYD”. The number of atoms in the 

mCD molecule is n, the number of D2O molecules in hydration shell is NHYD, rendering the 

number of the atoms in D2O molecules equal to 3×NHYD. The vectors rμ and rv give positions of 

the μth and vth atoms, respectively, in the coordinate system of the center of mass (c.m.) of the 

mCD molecule; θμν is an angle between rμ and rv. Pl is the Legendre polynomial of degree l, jl is 

the spherical Bessel function of order l. <bμ> and σμ INC are the coherent scattering length and the 

incoherent scattering cross section of the μth atom, respectively.

Al(mCD-HYD)(Q) can be decomposed as follows:

Al(mCD-HYD)(Q) = Al(mCD)(Q) + Al(mCD-W)(Q) + Al(W-W)(Q) (F2)

The structure factors Al(mCD)(Q) are given by the “standard solute model”, see section 5.5.

The expression for Al(mCD-W)(Q) reads:

Al mCD-W Q=2∑
=1

n

∑
j=1

NHYD

∑
=1

3

<b> <b j> j lQr  j lQr jP l cos− j (F3)

where rjv and rµ are the vectors from the c.m. of the solute molecule to the vth atom of the jth 

water molecule and the μth atom in the mCD molecule, respectively; θµ-jv is the angle between 

the vectors rµ and rjv.

The expression for Al(mW-W)(Q) is given by:

A lW-WQ =∑
i=1

NHYD

∑
=1

3

∑
j=1

NHYD

∑
=1

3

[< bi> < b j >
 iINCi− j

4
] j l Qr i j l Qr j P l cosi− j (F4)

where rjν is the vector from the c.m. of the solute molecule to the νth atom of the jth water 

molecule (riµ is defined in the same way), and θiµ-jν is the angle between the vectors riμ and rjν. In 

addition, δiµ- jν = 1 if i=j and ν=μ and 0 otherwise.

One way to evaluate the structure factors Al(mCD-W)(Q) and Al(mW-W)(Q) consists in the 

tentative assignment of the positions of water molecules around the solute molecule (here: mCD 

molecule). The basis for such an assignment can be crystal structures of mCD hydrates. 
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Alternatively, water molecules could be placed around a mCD molecule wherever the hydrogen 

bond water-mCD can be formed. The simplest way is to approximate water molecules by 

spheres and align these spheres around the solute molecule. In any case, the knowledge of so 

obtained coordinates of atoms of water molecules will allow the evaluation of Al(mCD-W)(Q) and 

Al(mW-W)(Q) from eqs. (F3, F4).

 F.2 An approach leading to the derivation of eqs. (5.33) and (5.34) 

Because the positions (and orientations) of the hydration water molecules are not 

generally known, the procedure described in section 5.8 represents a convenient way for the 

evaluation of Al(mCD-W)(Q) and Al(mW-W)(Q). The following assumption is made: the probability to 

find a center-of-mass of a hydration water molecule is uniformly distributed over the whole 

volume of the hydration shell (for the definition of the hydration shell see section 5.8). The 

number density, p, of molecules in the hydration shell of volume VSHELL is

p = NHYD/VSHELL (F5)

so that the probability to find the c.m. of a water molecule in the volume element dr is pdr. The 

rotational structure factors Al(mCD-W)(Q) and Al(mW-W)(Q) are evaluated from eq. (5.33) and eqs. 

(5.34,5.35), respectively. Below, these equations will be derived with the simultaneous 

discussion of underlying assumptions. 

The general expression for the function v(Q, t) (see section 2.3) reads:

v Q , t= ∑
 ,=1

m, m

[< b> < b>
 INC 

4
]Q , t (F6)

where m is the number of atoms in the molecule and χµν(Q, t) is given by:

Q , t=〈exp [−i Q. r0−rt ]〉 (F7)

For isotropic rotational diffusion v(Q, t) is given by eq. (2.26):

v Q , t=∑
l=0

∞

2 l1AlQ Fl t (F8)

with Al(Q):

Al Q= ∑
 ,=1

m, m

[<b ><b>
 INC 

4
] jl Qr  jl Qr P l cos  (F9)

For a “hydrated solute molecule”, m = n + 3×NHYD, so that eq. (F6) can be re-written as:

vmCD-HYDQ , t= ∑
 ,=1

n3×NHYD , n3×NHYD

[< b>< b>
 INC 

4
]Q , t (F10)

The function vmCD-HYD(Q, t) can be split into three parts:

vmCD-HYDQ , t=v mCDQ , t vmCD-W Q , t vW-W Q , t (F11)

As seen from eq. (F8), vmCD(Q, t) contains the rotational structure factors of the mCD molecule, 
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Al(mCD)(Q). In the following two sections, the expressions for Al(mCD-W)(Q) and Al(W-W)(Q) will be 

obtained.

 F.3 Derivation of equation (5.33) 

The expression for vmCD-W(Q, t), analogously to eq. (F6), taking that χµν(Q, t) = χνµ(Q, t), 

reads:

vmCD-W Q ,t =2∑
=1

n

∑
=1

3×NHYD

< b> < b>Q , t (F12)

where the factor “2” accounts for the fact that, while in eq. (F6) the summations over μ and ν 

are both performed over all atoms (i.e. atoms belonging to the mCD and hydration D2O 

molecules), the summations in eq. (F12) are performed only over the atoms belonging to the 

mCD molecule (μ =1 .. n) in the first sum and over those in D2O molecules (ν =1 .. 3×NHYD) in 

the second sum. Eq. (F12) can be rewritten using eq. (F7) as:

vmCD-W Q ,t =2∑
=1

n

∑
j=1

NHYD

∑
=1

3

<b> <b j> 〈exp [−i Q. r0 −r jt ]〉 (F13)

with rjv being the vector from the c.m. of the solute molecule to the vth atom of the jth water 

molecule; rjv =Rj + ajv, where Rj is the vector giving the position of the c.m. of the hydration 

water molecule. The vector ajv gives the position of the vth atom in the jth water molecule in the 

coordinate system of the c.m. of the jth water molecule. It follows from eq. (F7), assuming that 

Rj and ajv are uncorrelated:

− j Q ,t =〈exp[−i Q.r0−R j t ]〉 〈exp[ i Q.a jt ]〉 (F14)

Thus, eq. (F13) can be rewritten as (with ajv instead of ajv(t) because ajv(t) doesn't depend on the 

position of the water molecule relative to the mCD molecule and all ajv(t) are equally probable):

vmCD-W Q ,t =2∑
=1

n

< b>∑
j=1

NHYD

〈exp[−i Q.r0−R j t]〉∑
=1

3

< b j > 〈exp[ i Q.a j]〉 (F15)

Averaging over the orientation of Q relative to ajv yields:

∑
=1

3

< b> 〈exp[ i Q. a]〉=∑
=1

3

< b>
sin Qa

Qa
=bEFF W Q (F16)

where av is the distance of the vth atom to the c.m. of water molecule. The index j was dropped 

in eq. (F16), because the orientation of the jth water molecule is independent of Rj. From eq. 

(F15) it follows:

vmCD-W Q ,t =2bEFF W Q∑
=1

n

< b>∑
j=1

NHYD

〈exp[−i Q. r0−R jt ]〉 (F17)

From eqs. (F6-F9) it follows that Al(mCD-W)(Q) is given by:
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Al mCD-W Q=2bEFF W Q∑
=1

n

∑
j=1

N HYD

< b> j l Qr jl QR jP lcos− j (F18)

where Rj is the position of the c.m. of the hydration water molecule and θμ- j is the angle between 

rμ (the vector giving the position of the μth atom in the mCD molecule) and Rj.

Because the water molecule can be found in every volume dR with probability pdR, eq. (F18) 

can be written as an integral, rendering eq. (5.33):

Al mCD-W Q=2 p ×bEFF W Q×∑
=1

n

〈b〉 j lQr ∫
V SHELL

j l QR jP lcos− jd R j (F19)

It is important to note that Al(mCD-W)(Q) doesn't contain the incoherent scattering cross sections, 

because the function vmCD-W(Q, t) depends on the correlations between the positions of two 

different groups of atoms.

 F.4 Derivation of equation (5.34) 

In similar fashion, as was shown above for vmCD-W(Q, t), it follows from eqs. (F10, F11):

vW-W Q , t= ∑
=1

3×NHYD

∑
=1

3×NHYD

[< b> < b>
 INC 

4
]Q , t  (F20)

Using eq. (F7), which provides χµν(Q, t), eq. (F20) can be rewritten as:

vW-W Q , t=∑
i=1

NHYD

∑
=1

3

∑
j=1

NHYD

∑
=1

3

{[< b i> <b j>
 i INC i j

4
]*

〈exp[−i Q.Ri 0a i0−R j t−a jt ]〉 }
(F21)

For convenience, vW-W(Q, t) will be split into two terms:

vW-W Q , t=vW-W DISTQ , t vW-W SELFQ , t  (F22)

Assuming that: a) the orientation of the hydration water molecule relative to the solute molecule 

is not correlated with the position of the c.m. of this water molecule; b) that the relative 

orientations of two distinct hydration water molecules are uncorrelated; it follows from eqs. 

(F21, F22):

vW-W DISTQ ,t =∑
i=1

NHYD

∑
=1

3

∑
j≠i=1

NHYD

∑
=1

3

{< b i> <b j>*

〈exp[−i Q.Ri 0−R j t ]〉 〈exp[−i Q. a i 0]〉 〈exp[ i Q. a jt ]〉}
(F23)

vW-W SELF Q ,t =∑
i=1

NHYD

∑
=1

3

∑
=1

3

{[< bi> < b i>
i INC

4
]*

〈exp[−i Q.Ri 0−R it ]〉 〈exp[−i Q.a i0−a it ]〉 }
(F24)

One can rewrite eq. (F23) noticing that (see eqs. (F14-F16)):

bEFF W
2 Q =∑

=1

3

∑
=1

3

<b> <b> 〈exp[−i Q.a0]〉〈exp[ i Q.at ]〉 (F25)

as:
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vW-W DISTQ ,t =bEFF W
2 ∑

i=1

NHYD

∑
j≠i=1

NHYD

〈exp[−i Q.R i0 −R jt ]〉 (F26)

Eq. (F24) can be rewritten as:

vW-W SELF Q ,t =bSELF W Q×∑
i=1

NHYD

〈exp [−i Q.R i0−Ri t ]〉 (F27)

with bSELF W(Q) given by (see also eq. (2.39)):

bSELF WQ =∑
=1

3

∑
=1

3

[< b> < b>
 INC

4
] j0 Q r (F28)

with rµν = rµ -  rν. Here, in writing eqs. (F27, F28), it was tacitly assumed that the hydration 

water molecule doesn't change its orientation relative to the solute molecule, i.e. that aν(t)=aν(0).

Thus, one can now combine vW-W DIST(Q, t) and vW-W SELF(Q, t) into an expression for 

vW-W(Q, t):

vW-W Q , t=∑
i=1

N HYD

∑
j=1

N HYD

gW ij Q 〈exp [−i Q.Ri 0−R j t ]〉 (F29)

with gW ij(Q):

i≠ j : gW ij Q=bEFF W
2 Q 

i= j : gW ij Q =bSELF WQ = ∑
=1,=1

3,3

[〈b〉 〈b〉
 INC 

4
] j 0Qr

(F30)

From eq. (F29) and eqs. (F6-F9) one readily obtains Al(W-W)(Q) as:

Al W-WQ=∑
i=1

NHYD

∑
j=1

NHYD

g W ij Q  jl QRi jl QR jP l cosi− j (F31)

Since the c.m. of the hydration water molecule can be in every volume element dR of the 

hydration shell with the probability pdR, the sum can be written as an integral, rendering eq. 

(5.34):

Al W-WQ= p2 × ∫
V SHELL

∫
V SHELL

g W ij Q jl QRi j lQR jP l cosi− jd Ri d R j (F32)

with gW ij(Q) defined as:

 
Ri≠R j : g W ij Q =bEFF W

2 Q

R i=R j : gW ij Q=bSELF W Q= ∑
=1,=1

3,3

[〈 b〉〈 b〉
 INC 

4
] j0Qr 

(F33)

 F.5 The extended “hydrated solute model” 

In writing eqs. (F27, F28), it was assumed that the hydration water molecule doesn't 

rotate. This assumption is most probably not fulfilled in reality; therefore, the model based on 

such an assumption may be inadequate under certain circumstances. The expression for the 

scattering function of the hydrated solute, SmCD-HYD(Q, ω), with the reorientational motion of the 
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water molecules in the hydration shell taken into account, is derived below.

At first, eq. (F24) can be rewritten as:

vW-W SELF Q ,t =vSELF WQ , t ×∑
i=1

NHYD

〈exp [−i Q.Ri 0−R it ]〉 (F34)

where the expression for vSELF W(Q, t) reads:

vSELF WQ , t= ∑
 ,=1

3,3

[< b> <b>
 INC 

4
]〈exp[−i Q.a0−at]〉 (F35)

Combining of vW-W DIST(Q, t) (given by eq. (F26)) and vW-W SELF(Q, t) leads to vW-W(Q, t):

vW-W Q , t=∑
i=1

NHYD

∑
j=1

NHYD

gW ij Q , t 〈exp[−i Q.Ri 0 −R j t ]〉 (F36)

with gW ij(Q, t) given by:

i≠ j : g W ij Q ,t =bEFF W
2 Q 

i= j : gW ij Q , t =vSELF WQ , t 
(F37)

Note that eqs. (F27-F30) are obtained from eqs. (F34-F37) by setting aν(t) = aν(0).

Similarly to eq. (F31), the expression for Al(W-W)(Q, t) reads:

Al W-WQ , t=∑
i=1

NHYD

∑
j=1

NHYD

g W ij Q ,t  j lQRi j lQR jP l cosi− j (F38)

For convenience, Al(W-W)(Q, t) will be split into two parts:

Al W-WQ ,t =Al W-W  DISTQAl W-W  SELFQ ,t  (F39)

with the distinct (and time-independent) part Al(W-W DIST)(Q) given by:

Al W-W DISTQ =bEFF W
2 Q∑

i=1

N HYD

∑
j≠i=1

NHYD

j l QRi jl QR jP lcosi− j (F40)

and the self part Al(W-W SELF)(Q, t) (making use of the fact that for i=j, Pl(cos θi-j) =1) is:

Al W-W SELFQ , t =vSELFQ , t∑
i=1

NHYD

j l
2QRi (F41)

 To recall: vmCD-HYD(Q, t) is the sum of vmCD(Q, t) (given by eq. (F6) with m=n), 

vmCD-W(Q, t) (eq. (F17)), vW-W(Q, t) (eq. (F36)). Then, eq. (F8) can be rewritten as:

vmCD-HYDQ , t =∑
l=0

∞

2 l1Fl  t [Al mCD QAl mCD-WQAl W-WQ ,t ] (F42)

with Fl(t) = exp(-Drl(l+1)t).

As follows from eq. (2.30):

IROT mCD-HYD(Q, t) = γ(Q)CM mCD-HYD×umCD-HYD(Q) + vmCD-HYD(Q, t) (F43)

The function SROT mCD-HYD(Q, ω) is the time-Fourier transform of IROT mCD-HYD(Q, t) and reads:

SROT mCD-HYDQ ,=∑
l=0

∞

SROT mCD-HYD
l Q , (F44)
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with:

S0
ROT mCD-HYD(Q, ω) = δ(ω)×{b2

EFF mCD-HYD(Q)×γCM mCD-HYD(Q) + A0(mCD)(Q) +A0(mCD-W)(Q)  

+A0(W-W DIST)(Q)} + A0(W-W SELF)(Q)×SHYDW(Q, ω) (F45)

Sl
ROT mCD-HYD(Q, ω) = (2l + 1)×{[Al(mCD)(Q) + Al(mCD-W)(Q) + Al(W-W DIST)(Q)]×Lor(l(l+1)Dr, ω)  

+ Al(W-W SELF)(Q)×Lor(l(l+1)Dr, ω)ÄSHYDW(Q, ω) (F46)

The expression for bEFF mCD-HYD(Q) reads:

bEFF mCD-HYDQ= ∑
=1

n3×NHYD

< b> 〈exp[−i Q. r]〉= ∑
=1

n3×NHYD

<b>
sinQr 

Qr
(F47)

where the subscript Ω stands for the averaging over all relative orientations of Q and rµ. Clearly, 

bEFF mCD-HYD(Q) = bEFF mCD(Q) + bEFF HYD(Q); the function bEFF mCD(Q) is readily evaluated from the 

coordinates of mCD atoms. The expression for bEFF HYD(Q) reads:

bEFF HYDQ= ∑
=1

3×NHYD

< b> 〈exp [−i Q.R ia i ]〉=

=∑
i=1

NHYD

〈exp [−iQ. R i]〉∑
=1

3

<b> 〈exp [−i Q. a]〉

(F48)

where Ri and aiµ have the same meaning as defined in the text after eq. (F13). If follows then:

 bEFF HYDQ =bEFF W Q∑
i=1

NHYD sin QRi

QRi

(F49)

Finally, eq. (F49) can be written in the same fashion as eqs. (F19, F32):

bEFF HYDQ = p×bEFF WQ × ∫
V SHELL

j0QRid Ri (F50)

The function vSELF W(Q, t) depends on the nature of the reorientational motion of the 

hydration water molecule. Assuming, for example, the case of the isotropic rotation, it follows 

(see eqs. (2.26-2.28)):

vSELF WQ , t=∑
l=0

∞

2 l1Al HYDWQFl HYDWt  (F51)

Al HYDWQ =∑
 ,=1

3, 3

[< b> < b>
 INC

4
] j l Qr jl QrP l cos (F52)

The function SHYDW(Q, ω) is the time-Fourier transform of vSELF W(Q, t) and given by:

SHYDW Q ,=∑
l=0

∞

SHYDW
l Q , (F53)

 S0
HYDW(Q, ω) = A0(HYDW)(Q)×δ(ω);  Sl

HYDW(Q, ω) = (2l + 1)×Al(HYDW)(Q)×Lor(l(l+1)Dr HYDW, ω)  (F54)

where Dr HYDW is the rotational diffusion coefficient of the water molecule in the hydration shell. 

Of course, functions Al(HYDW)(Q) are the same as for bulk water. 

Setting Dr HYDW = 0 results in the function Sl
ROT mCD-HYD(Q, ω) , which would be obtained 
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assuming aν(t) = aν(0). For water, the functions Al(HYDW)(Q) for l ≠0 are negligible for Q < 0.5 

Å-1. Therefore, in fitting of the “hydrated solute model” no error was introduced by setting aν(t) 

= aν(0) and employing Al(mCD-W)(Q) and Al(mCD-W)(Q) derived as described in sections F3 and F4, 

respectively.

Finally, SmCD-HYD(Q, ω) is just a convolution of SROT mCD-HYD(Q, ω) from eq. (F44) with the 

translational scattering function STR mCD-HYD(Q, ω). The latter is the same as the translational 

scattering function for the solute molecule, given for the “standard solute model” by eq. (5.12).

 F.6 Concluding remarks 

In section F1 it was suggested that the structure factors Al(mCD-W)(Q) and Al(W-W)(Q) could 

be evaluated by taking water molecules to be spheres, and aligning these spheres on the surface 

of the solute molecule. One option is to specify the coordinates of every sphere, and 

additionally, the orientation of a water molecule relative to the solute molecule. In this way, 

coordinates of all atoms belonging to all hydration water molecules are known and Al(mCD-W)(Q) 

and Al(W-W)(Q) are found straightforwardly from eqs. (F3) and (F4), respectively. This approach 

will be referred to as the method of atom coordinates.

Alternatively, it is reasonable to assume that the precise orientation of the water 

molecules won't influence Al(mCD-W)(Q) and Al(W-W)(Q) very much for Q < 2.5 Å-1 (because the 

resolution in the “real space” is of the order 2π/Q). It is also reasonable to make a simplifying 

assumption (made in sections F3 and F4), namely that the orientation of the hydration water 

molecule relative to the solute molecule is not correlated with the position of the center of mass 

of this water molecule. Then, Al(mCD-W)(Q) and Al(W-W)(Q) can be evaluated from eqs. (F18) and 

(F31), respectively. This approach, the method of c.m. coordinates, has an advantage: one needs 

only coordinates of the centers of spheres (i.e. c.m. of hydration water molecules).

The methods of atom coordinates and c.m. coordinates were both used to evaluate 

Al(mCD-W)(Q) and Al(W-W)(Q) for the case of the complete monomolecular coverage of the surface 

of the mCD molecule by D2O molecules. Both methods yielded very similar results.

In addition, the functions Al(mCD-W)(Q) and Al(W-W)(Q) evaluated from eqs. (F19, F32) 

were qualitatively the same, as Al(mCD-W)(Q) and Al(W-W)(Q) found by the method of c.m. 

coordinates.

The structure factors Al(mCD-W)(Q) and Al(W-W)(Q), as seen from eqs. (F18, F31), depend 

on bEFF W(Q) and bSELF W(Q). For D2O, b2
EFF W(Q=0) ≈ 3.67 barn, whereas for H2O b2

EFF W(Q=0) ≈ 

0.03 barn, see Tab. 2.1 (and at Q <1 Å-1, b2
EFF W(Q) > 3.0 barn for D2O and b2

EFF W(Q)< 0.04 barn 

for H2O). In addition, the term bSELF W(Q) for H2O is dominated by the incoherent cross section 

and practically Q-independent. Thus, the Q dependence of the QENS scattering intensity due to 
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the presence of the hydration shell is virtually absent for H2O solutions (because Al(mCD-W)(Q) ≈ 0 

and Al(W-W)(Q) is nearly Q-independent).

In sections 5.8 and F2 the assumption was made that the probability to find a center-of-

mass of a hydration water molecule (p) is uniformly distributed over the whole volume of the 

hydration shell. This assumption is not necessary; generally, one can have p as a function of R, 

(i.e. as a function of position of the c.m. of water molecule relative to the solute molecule) so 

that p will come into the integrand expression in eqs. (F19, F32). Thus, even complex 

assumptions about the distribution of water molecules in the hydration shell can directly give 

Al(mCD-W)(Q) and Al(W-W)(Q).

Finally, it is clear that the present implementation of the “hydrated solute model” can be 

used for the analysis of QENS spectra of any solution, where the phenomenon of solvation or 

adsorption of small particles on relatively large particles takes place.
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