
 Appendix C Neutron scattering experiment: supplementary information 

The geometry of the scattering experiment and angle definitions are shown in Fig. C1. 

In most of the experiments performed and/or analyzed in the frame of this work, the sample 

container was a plain slab. Throughout all calculations the approximation of an infinite plane 

slab was employed; therefore, the corrections for the self-attenuation and self-absorption by the 

sample and corrections for multiple scattering were greatly simplified. Such an approximation 

is justified when the neutron beam cross section, Abeam, is significantly smaller than the area of 

the slab, Aslab. Calculations show that even for the ratio Abeam/Aslab ≈ 0.7 the approximation is 

still valid for all scattering angles, except for φ = α ± 5°.

Figure C1 Geometry of scattering and angle definitions. The Slabs 1 and 3 are the walls of the 

sample container and the Slab 2 is the sample. Incident neutrons have wave vector k0, the angle 

between the incident neutron beam and the sample plane is the sample angle α. Scattered neutrons 

have wave vector k and the scattering angle φ is defined as the angle between the wave vectors k0 and 

k. Instead of α and φ one sometimes uses θ0 and θ, respectively (θ0 and θ are counted from the normal 

to the sample slab).

Note that the volume exposed to the beam, VS, number density, n, and all the scattering 

lengths and/or cross sections are included in the expression for S(Q, ω) in the present work (as 

opposed to the presentation given e.g. in [110] and many other articles). In a conventional 

approach, neglecting multiple scattering and scattering by the sample container, eq. (2.46) can 

be rewritten as:

d2σ/dΩdħω = VS×(k/k0)×(nσS/4π)×η(E)×H1(k0, k)×S(Q, ω) (C1)

where σS is the scattering cross section of the sample. However, for molecular liquids scattering 

lengths and/or cross sections necessarily come into the expression for S(Q, ω); for solutions, 
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number densities of all components come into the expression for S(Q, ω) as well. One can see 

that the approach used in the present work is aimed at the practical application in the QENS 

spectra analysis.

The macroscopic scattering cross section of the sample, ΣS, [cm-1] is the total number of 

neutrons scattered per unit volume per unit time per unit incident neutron flux; it is related to 

the experimental scattering function, SEXP(Q, ω):

ΣS=
1

V S
∫ k

k 0

SEXPQ ,dd ħω (C2)

The macroscopic absorption cross section of the sample, ΣA, [cm-1] is the sum of the 

atomic absorption cross sections, σAi, for all atomic species i=1, 2 .. weighted by the 

corresponding number density (ni [cm-3]):

ΣA=∑
i=1

ni σAi (C3)

The macroscopic cross section, Σ, is a sum of macroscopic absorption cross section, ΣA, 

and macroscopic scattering cross section, ΣS:

Σ = ΣS + ΣA (C4)

 Appendix D The scattering of the sample container 

 D.1 Attenuation of the container scattering

Neutron scattering spectra always contain contribution from the sample container (SC), 

further denoted as SSC(k0, k); it is appropriate to reproduce here eq. (2.52):

STOTAL(k0, k) = s(1)S(k0, k) + SSC(k0, k) + SS MSC(k0, k) (D1)

SSC(k0, k) is related to the scattering by the empty sample container, SEC(k0, k):

SSC(k0, k) = Att(k0, k)×SEC(k0, k) (D2)

where Att(k0, k) is the attenuation factor taking into account that neutrons scattered by the 

container walls will be partially absorbed and/or re-scattered by the sample.

In the course of the experiment a measurement of SEC(k0, k) is usually performed, and it 

is the factor Att(k0, k) which must be evaluated in order to correct STOTAL(k0, k) (or STOTAL(Q, ω)) 

for the scattering by the sample container.

The sample container is considered to be a plain slab, the geometry of the system is 

shown in Fig. C1. The slab 1 and slab 3 are the container walls and they are equivalent, the 

(hypothetical) effective scattering function of a container wall, SEC/2(k0, k) is defined as:

 SEC/2(k0, k) = H1-SLAB1(k0, k)×SSLAB 1(Q, ω) = H1-SLAB3(k0, k)×SSLAB 3(Q, ω) (D3)
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where H1(k0, k) is the 1st order attenuation factor. In eq. (D3) SEC/2(k0, k) is assumed to be due to 

single scattering only. The thickness of the container wall and the sample layer are dWALL and dS, 

respectively. Additional abbreviations (to shorten the expressions) include:

β = α – φ (D4)

Σ(k)S×dS = sam(k) Σ(k0)S×dS = sam(k0) (D5)

Σ(k)EC×dWALL = ec(k) Σ(k0)EC×dWALL = ec(k0) (D6)

where Σ(k)S and Σ(k)EC are macroscopic cross sections of the sample and container, respectively.

Depending on the scattering angle, there are two cases: transmission and reflection.
Transmission:

SEC(k0, k) = SEC/2(k0, k)×exp(-ec(k0)/sin α) + SEC/2(k0, k)×exp(-ec(k)/sin β) (D7)

SEC/2(k0, k) = SEC(k0, k)/{exp(-ec(k0)/sin α) + exp(-ec(k)/sin β)} (D8)

SSC(k0, k)=SEC/2(k0, k)×{exp(-{ec(k0) + sam(k0)}/sin α) + exp(-{ec(k) + sam(k)}/sin β)} (D9)

Thus, Att(k0, k) can be found from eqs. (D2, D8 and D9).

Reflection:

SEC(k0, k) = SEC/2(k0, k) + SEC/2(k0, k)×exp(-ec(k0)/sin α)×exp(ec(k)/sin β) (D10)

SEC/2(k0, k) = SEC(k0, k)/{1 + exp(-ec(k0)/sin α)×exp(ec(k)/sin β)} (D11)

SSC(k0, k) = SEC/2(k0, k)×{1 + exp(-{ec(k0) + sam(k0)}/sin α)×exp({ec(k) + sam(k)}/sin β)} (D12)

Thus, Att(k0, k) can be found from eqs. (D2, D11 and D12).

 D.2 Importance of corrections for the container scattering

In practice, both eq. (D7) and (D10) can be approximated as SEC(k0, k) ≈ 2×SEC/2(k0, k), 

because the values of ec(k) and ec(k0) are small. For the same reason, it holds:

 SEC/2(k0, k) = H1 EC/2(k0, k)×SEXP EC/2(Q, ω) ≈ SEXP EC/2(Q, ω) (D13)

and it follows:

SEC(k0, k) =2×SEXP EC/2(Q, ω) = SEXP EC(Q, ω) (D14)

where SEXP EC(Q, ω) is the experimental scattering function of the sample container. Note that 

similarly to the case of the sample scattering (eq. (2.55)), the expression for SEXP EC(Q, ω) 

contains VSC, the volume of the sample container exposed to the beam.

For the following discussion, eq. (D1) can be expanded as:

STOTAL(k0, k) = SEXP(Q, ω)×H1(k0, k) + Att(k0, k)×SEXP EC(Q, ω) + SS MSC(k0, k) (D15)

Often containers made of aluminum (because of its low scattering and absorption cross section) 

are employed in order to minimize the contribution of SEXP EC(Q, ω). The following facts must 

however be kept in mind:

1) The value of IQENS EC(QEL) (i.e. QENS integral of SEXP EC(Q, ω)) increases towards low Q, 

i.e. there is small angle scattering from the sample container.

2) For the given value of IQENS EC(QEL), the elastic intensity (i.e. SEXP EC(Q, ω=0)) is 
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increasing with increasing energy resolution (that is, with decreasing ΔE). 

Consequently, results of the fitting of the model to the experimental spectra become 

more sensitive to errors in the determination of SEXP SC(Q, ω) (and to errors in the 

determination of Att(k0, k)).

3) In the experiments on water/aqueous solutions at temperatures > 30 – 40 °C, the 

corrosion of the surface of the conventional sample containers was observed. Corrosion 

leads to the formation of gas, increase of the pressure inside the container, and, 

sometimes, to leakage of the sample containers. Specifically, in the experiment with 

HFBS (see Chapter 3, Tab. 3.1), signs of corrosion were seen on the surface of the 

cylindrical container made of aluminum (sample container did not leak). In order to 

avoid potential sample leakage, containers covered with gold were used in a number of 

experiments performed in the frame of this work. However, the nickel and gold layers 

led to an increase of IQENS EC(QEL) at least by the factor of 2, which made an exact 

correction for the container scattering more crucial.

For reasons given above, it was chosen not to subtract the scattering by the sample 

container at the stage of data reduction (which is the conventional way, see e.g. [34,102]). 

Therefore, SFIT(Q, ω) (i.e. the expression fitted to the total scattering function, STOTAL(Q, ω)) 

always contained the term “fEC×C×SSC EXP×”, see eq. (5.1). Such an approach allowed to adjust 

the sample container scattering either by changing the parameter fEC or by allowing “SSC EXP” to 

be free and QEL-dependent fitting parameter.

 Appendix E Multiple scattering correction 

 E.1 Definitions

The approach given here was developed by Sears [110].

The angle θ0 is defined as the angle between the beam and the normal to the slab; thus, 

θ0 lies in [0; π/2], see Fig. C1. The polar angle for the incident beam is denoted by ψi. and ψi = 0 

for the case shown in Fig. C1. The scattering angle is θ and the polar angle of the scattered 

neutron is ψf. The relation with the previously used notations (sample angle α and scattering 

angle φ) reads:

θ0 = 90° - α θ = φ + θ0 (E1)

Note that the polar angle ψi = 0 for the sample angle α smaller than 90°, else ψi = π.

Generally, multiple scattering component includes such neutrons which were scattered 

both by the sample and container walls. However, for conventional sample containers 
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calculations show that “container-sample” or “sample-container“ contributions to the double 

scattering are very small and can be neglected.

The expression for the effective scattering function of the sample reads:

SS( k 0 ,k )=∑
j=1

∞

s j S( k0 , k ) (E2)

where s(j)S is the contribution from the neutrons which have been scattered j times (by the 

sample only). Consider single scattering, s(1)S:

s(1)S(k0, k) = S(Q, ω)×H1(k0, k) (E3)

H1(k0, k) is the 1st order transmission factor; for an infinite plane slab, it is given by:

H 1 ( k0 , k )=exp−0−
exp−0−exp0−

2 −0
(E4)

where ξ = Σ×dS/2cos θ (E5)

The expression for the double scattering component, s(2)S, reads:

s2(S)(k0, k)= S(Q1, ω1)ÄS(Q2, ω2)×H2(k0, k) (E6)

and an analytical expression for the case of an infinite plane slab exists for H2(k0, k) [110].

The momentum and energy transfers are given by:

Q = Q1 + Q2 Q1 = k1 – k0 Q2 = k – k1 (E7)

ħω = ħω1 + ħω2 ħω1 = E1 – E0 ħω2 = E – E1 (E8)

The relationship between different wave vectors is given in Fig. E1.

Figure E1 Wave vectors relationship for double scattering. Relation between k0, k1 and k and the 

momentum transfers Q, Q1 and Q2 are shown.
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From eqs. (E2, E3) it follows:

SS(k0, k) = H1×{S(Q, ω) + (H2/H1)×S(Q1, ω1)ÄS(Q2, ω2) + (H3/H1)×(...) +...} (E9)

where H1 = H1(k0, k), H2 = H2(k0, k) etc.

 E.2 Approximation

The central formula from [110] is:

SS(k0, k) = H1(k0, k)×{S(Q, ω) + Δ×R2(k0, k)} (E10)

where for an infinite plane slab one has:

Δ = {(exp(2δ) - 1)/2δ} – 1 (E11)

=2∫B k1sin 1 d 1 (E12)

R2(k0, k) is a three dimensional integral:

R2k0 ,k = 1

∫d1 d ħω1 S Q1 ,1S Q2 ,2B k1 (E13)

This integral (if the axis of symmetry is taken as polar axis) can be represented as:

R2k0 ,k = 1

∫ R k 0 ,1 , k b 1d 1 (E14)

where:

R k 0 ,1 , k =∫
0

2

d φ1∫d ħω1 S Q1 ,1S Q2 ,2 (E15)

b(θ1) = 2π×B(k1)×sin(θ1) (E16)

 B(k1)={p/Σ(k1)}×{1 – exp( -q×Σ(k1)×dS/cos(θ1))} (E17)

The macroscopic cross section Σ(k1) is calculated according to eqs. (C2-C4). The coefficients p, 

q depend on the geometry of the sample; for an infinite plain slab p = 0.75 and q = 0.667.

A further approximation is valid for Σ×dS ≤ 0.2 and further referred to as “π/2 

approximation”:

R2(k0, k) = R(k0, π/2, k) (E18)

This approximation can be illustrated as follows: for the once scattered neutron, the probability 

to be re-scattered depends on the length of the path, which neutron has to take before it leaves 

the sample; this length increases as θ1 becomes closer to 90°.

In “π/2 approximation”, eq. (E10) can be rewritten as:

SS(k0, k) = H1(k0, k)×{S(Q, ω) + Δ×R(k0, π/2, k)} (E19)

For small δ, Δ = δ, meaning that multiple scattering is, to a great extent, double scattering. It is 

important that R(k0, π/2, k) is just a two dimensional integral, which can be evaluated 

numerically by standard methods.

In order to fit the expression SFIT(Q, ω) (see eq. (5.1)) to the spectra, the term 
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“C×VS×SMSC THEO” has to be evaluated. It follows:

C×VS×SMSC THEO = Sc.F(QEL)×Δ×R(k0, π/2, k)/H1(k0, k) = Sc.F(QEL)×SMSC THEO(φ, ω)    (E20)

Note that the factor Sc.F(QEL) normally comes into the expression for STHEO(Q, ω), see section 

5.3. However, in evaluation of R2(k0, k), STHEO(Q1, ω1) and STHEO(Q2, ω2) are taken without this 

factor.

 E.3 Implementation

Expressions for Q1
2 and Q2

2, required for the evaluation of the multiple scattering, are:

Q1
2 = k1

2 + k0
2 – 2×k1×k0×(cos θ0×cos θ1 + sin θ0×sin θ1×cos ψ1) for α < 90° (E21)

Q1
2 = k1

2 + k0
2 – 2×k1×k0×(cos θ0×cos θ1 - sin θ0×sin θ1×cos ψ1) for α > 90° (E22)

Q2
2 = k2 + k1

2 – 2×k×k1×(cos θ×cos θ1 + sin θ×sin θ1×cos (ψf – ψ1)) (E23)

Note that the value of ψf depends, generally, on the instrument and the angle grouping 

procedure; often ψF = 0 or ψf = π. For “π/2 approximation” the values of Q1
2 and Q2

2 are 

obtained by substituting θ1 = π/2, into eqs. (E21-E23).

In the process of fitting the theoretical model to the spectra, a subroutine evaluating the 

scattering function, SFIT(Q, ω), is called by the program for every pair of values (φ, ω). In 

principle, every such call can be accompanied by the evaluation of the multiple scattering 

component, SMSC THEO(φ, ω), as well. One would need, however, a lot of CPU time to complete 

such a fit, even if the “π/2 approximation” is employed.

In this work it was chosen to evaluate SMSC THEO(φ, ω) only for the predefined array of 

points ω1, ω2, ... ωN for every scattering angle. Whenever the value of a free fit parameter was 

changed, the array SMSC THEO(φ, ωi) was re-evaluated. Because the quasielastic peak has the 

shape of a Voigt function (which is the convolution of a Gaussian with a Lorentzian), it is a 

reasonable approximation, to find SMSC THEO(φ, ω) for any point ω which lies in the interval (ωi, 

ωi+1) by the Lorentzian interpolation:

 SMSC THEO(φ, ω) = ai(φ)×Lor(bi(φ), ω) (E24)

and ai(φ) and bi(φ) can be found from SMSC THEO(φ, ωi) and SMSC THEO(φ, ωi+1) and eq. (E24). If no 

solution of eq. (E24) exists for given ωi, SMSC THEO(φ, ωi), ωi+1, SMSC THEO(φ, ωi+1), a linear 

interpolation is used:

SMSC THEO(φ, ω) = ai(φ) + ωi×bi(φ) (E25)

and ai(φ) and bi(φ) are found from SMSC THEO(φ, ωi) and SMSC THEO(φ, ωi+1) and eq. (E25).

The number of ω-points for the evaluation of multiple scattering was kept below 50. On a PC 

with 1.6 GHz processor, the time required to perform the simultaneous fit of the spectra for 

several angles could be kept shorter than 5 - 15 minutes.
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