
5 Analysis of QENS spectra

5.1 Essence of QENS spectra analysis 

The first part of a QENS experiment is to perform a measurement, to obtain the 

experimental scattering function STOTAL(Q, ω) with a good statistical accuracy, and at the same 

time keeping both multiple scattering and container scattering as low as possible. The second 

part of a QENS experiment consists in the description of the spectra by a suitable theoretical 

scattering function, STHEO(Q, ω). This is done by fitting the following master equation to 

STOTAL(Q, ω):

SFIT(Q, ω) = exp(-ћω/2kBT)×STHEO(Q, ω)ÄR(φ, ω) + C×VS×SMSC THEO + fEC×C×SSC EXP    (5.1)

As can be seen by consulting eqs. (2.53, 2.55), the factor “C×VS” is lacking in front of 

STHEO(Q, ω). Henceforth, this factor comes in the expression for STHEO(Q, ω).

The component SMSC THEO is evaluated from STHEO(Q, ω) by the method given in 

Appendix E. The term SSC EXP is evaluated using SEXP EC(Q, ω), see section 2.6 and Appendix D. 

The parameter fEC is normally unity, but sometimes, the scattering of the empty container used 

for the determination of SEXP EC(Q, ω) differs from the scattering of the container with the 

sample, in such cases fEC is adjusted.

Thus, it is the expression for STHEO(Q, ω), which must be provided in order to fit eq. 

(5.1) to the data.

Specifically, an analysis of the quasielastic neutron scattering spectra includes:

1) search for suitable models describing the structure and the dynamics of the molecules in 

the sample. A broad spectrum of experimental results from all areas of science must be 

considered at this stage, in order to find a physically sensible model.

2) choice of a suitable model expression for STHEO(Q, ω) (or development of such an 

expression).

3) fit of eq. (5.1) to the experimental scattering function STOTAL(Q, ω). If a good agreement 

between the experimental data and the fitted curve is observed, and fitted values of the 

free parameters are physically meaningful, the explanation of the experiment in the 

frame of the chosen model is completed.

Note that in the present work fitting of eq. (5.1) was always performed simultaneously to 

a number (from 2 to 40) of QENS spectra recorded for different scattering angles.
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5.2 Road map for the QENS study of hydration water dynamics

The aim of the present work is to learn about hydration water in solutions of native and 

methylated cyclodextrins. The samples were dilute aqueous solutions with >1300 water 

molecules per each solute molecule (see Tab. 3.1). By inspecting the scattering cross sections of 

cyclodextrins (Tab. 5.1), it is clear that judging by the incoherent cross section, it is more likely 

to see a greater scattering contribution from the hydration water, if one has a solution in H2O 

rather than in D2O.

Table 5.1 Neutron scattering cross sections for water and native and methylated cyclodextrins 

[barn]. The neutron scattering cross section, σS, is the sum of coherent and incoherent scattering cross 

sections: σS = σCOH +σINC. The sum of the scattering cross sections of C, O, and D atoms only: 

σS(C+O+D). The sum of the scattering cross sections of H atoms only: σS(H). σS
TOTAL =σS(C+O+D) + 

σS(H). The absorption cross section of the molecule: σA (for λ =1.8 Å).

Formula M σS(C+O+D) σS(H) σS
TOTAL σS(H)/σS

TOTAL σA

H2O 18 4.232 164.0 168.3 - 0.6652

D2O 20 19.5 - 19.5 - -

β-CD (H2O) C42H70O35 1134 381.2 5741 6122 0.937 23.28

β-CD (D2O) C42H49D21O35 1155 541.6 4019 4561 0.881 16.30

DIMEB (H2O) C56H98O35 1331 459 8038 8497 0.946 32.60

DIMEB (D2O) C56H91D7O35 1337 512.5 7464 7976 0.936 30.27

γ-CD (H2O) C48H80O40 1297 435.7 6562 6997 0.938 26.61

γ-CD (D2O) C48H56D24O40 1321 619 4594 5212 0.881 18.60

TRIMEG C72H128O40 1634 568.9 10948 11517 0.951 42.57

It is also clear that in order to discriminate between the scattering of the hydration shell 

and the solute, it is desirable, when doing a fit to the spectra, to have no free parameters 

describing the solute motion. For this purpose, one has to obtain dynamical parameters 

describing the solute motion beforehand.

The relative contribution from the scattering by a solute molecule will be greater in the 

QENS spectra of D2O solutions (as opposed to H2O solutions). Therefore, at first one has to 

extract information on the solute motion from the spectra of D2O solutions, and after that apply 

(with eventual corrections for difference in viscosity between D2O and H2O) the obtained 

information in the analysis of QENS spectra of H2O solutions. An attempt to determine 

simultaneously both solute and hydration water parameters from the QENS spectra of H2O 

solutions might lead to the wrong assignment of a scattering component coming from the solute 

to the hydration water and vice versa.

(N.B.: Strictly speaking, the observed relative contributions of the solute and of the 
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hydration water to the spectrum of the solution will depend also on the energy resolution of the 

experiment.)

5.3 General expression for the theoretical scattering function

The expression for the theoretical scattering function of the solution reads:

STHEO SOLUTION(Q, ω) = n×Sc.F(QEL)×{STHEO SOL(Q, ω) + FW×STHEO W(Q, ω)} (5.2)

where n is the number density of solute molecules, FW the number of water molecules per solute 

molecule, Sc.F(QEL) is the angle-dependent scaling factor, which is conventionally kept free to 

allow scaling of the theoretical scattering function to the experimental data.

The expression for the theoretical scattering function of pure water follows from eq. 

(5.2), taking FW=1, STHEO SOL(Q, ω)=0 and n being replaced by the water number density, nW.

Ideally, Sc.F(QEL) as determined from the fit of eq. (5.1&5.2) must be QEL – independent 

and, moreover, equal to the factor (VS×C), C is given by eq. (2.54). Ideally in this context 

means that:

• a) the correction for the background scattering and the factor H1(k0, k) were precise;

• b) the model expressions for both STHEO SOL(Q, ω) and STHEO W(Q, ω) correspond to the 

true structure and dynamics of solute and water molecules, respectively;

• c) fit parameters which are not variables, were fixed to “true values”, and values of the 

parameters determined in the fit, are also “true values”.

At least for pure H2O, Sc.F(QEL) was found to be indeed fairly constant, see section 7.3.

In some cases the terms STHEO SOL(Q, ω) and STHEO W(Q, ω) must be multiplied by two 

different, QEL-dependent, factors; this happens, for instance, when the model for water and/or 

solute neglects (or predicts only approximately) the coherent scattering contribution. Therefore, 

by introducing scaling factors for the solute (SOL) and solvent (W, for water) components 

(Sc.FSOL(QEL) and Sc.FW(QEL), respectively), a more practice-oriented expression for 

STHEO SOLUTION(Q, ω) can be obtained from eq. (5.2):

STHEO SOLUTION(Q, ω) =n×{Sc.FSOL(QEL)×STHEO SOL(Q, ω)+Sc.FW(QEL)×FW×STHEO W(Q, ω)} (5.3)

(Note that the scaling factor obtained in fits to the spectra of pure water will be denoted as 

Sc.F(QEL) and not as Sc.FW(QEL).)

It is evident that one needs a model for both the solute and water molecules, i.e. 

expressions for STHEO SOL(Q, ω) and STHEO W(Q, ω) must be specified.

5.4 Model for water

The expression corresponding to the scattering function of bulk water reads:

STHEO W(Q, ω) = DWF×{STR W(Q, ω)ÄSROT W(Q, ω) + SVIB W(Q, ω)} (5.4)
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Here DWF is the Debye-Waller factor, accounting for the decrease of quasielastic intensity 

caused by vibrational motions, with <u2>W [Å2] being the effective mean square global 

displacement:

DWF = exp(-<u2>WQ2) (5.5)

N.B.: Different definitions of the DWF are in use. If DWF = exp(-<u2>WQ2/3), then <u2>W is 

defined as the mean-square displacement in any direction of space. In the definition by eq. (5.5) 

employed here, however, <u2>W is the mean-square displacement along the direction of the 

vector Q. Note that the expression exp( - <u2>WQ2/6) is also used by some authors, but in that 

case <u2>W does not have such a practically useful meaning.

The expression for the translational scattering function of water, STR W(Q, ω), employed 

here corresponds to the jump diffusion model [21,26,112]:

STR W Q ,=Lor { 0.06581 DTR WQ2

10.1DTR W τTR W Q2 ,} (5.6)

In eq. (5.6) the width of the Lorentzian has the dimension of meV; DTR W is given in 10-5 cm2/s 

and τTR W in ps. The rotational scattering function of water, SROT W(Q, ω), corresponds to the 

model of isotropic rotation [109], see equations (2.28, 2.33-2.35). In summary, the expressions 

for STR W(Q, ω) and SROT W(Q, ω) contain following parameters: <u2>W, DTR W, τTR W, Dr W and 

SW(Q), where subscript “W” stands for “water”.

The intermolecular structure factor of D2O, SD2O(Q), was taken from [10]. Here one must 

note that, while for D2O the value of b2
EFF(Q =0) ≈ 3.67 barn, for H2O it is ≈ 0.03 barn. For H2O 

at Q < 2.5 Å-1, b2
EFF(Q) < 0.15 barn so that the term “b2

EFF(Q)×(SH2O(Q) – 1)” can be neglected 

and it is reasonable to rewrite eq. (2.34) as:

S0
ROT(Q, ω) = δ(ω)×A0(Q) (for H2O) (5.7)

Values of DTR W for H2O were taken from [25], and for D2O from [84]. Values for Dr W 

and <u2>W were taken from studies on H2O [132] and used for both D2O and H2O. Values of 

τTR D2O and τTR H2O were determined from fitting to the spectra of pure water.

In eq. (5.4) SVIB W(Q, ω) is the term accounting for the inelastic contribution due to the 

vibrational motions. This contribution can not be neglected for ΔE > 30 µeV. Here a damped 

harmonic oscillator (DHO) after [69,73] is used:

SVIB W(Q, ω) = {exp(<u2>DHOQ2) – 1}×H(ω) (5.8)

H ω=
1
π

ħω
kB T

n ω
exp−ħω/2kBT

ΓDHO EDHO
2

EDHO
2 −ω22ω2 Γ2

(5.9)

where n(ω)=1/{exp(ħω/kBT) – 1} is the thermal occupancy factor, EDHO is the energy, ΓDHO is 

the damping constant and <u2>DHO is the mean square displacement of the harmonic oscillator. 

Note that in the limit of high temperatures (T > 250 K), the integral of H(ω) over ω is unity. 
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Note also that here the frequency–dependent part of SVIB W(Q, ω) does not contain the detailed 

balance factor, because it has been put it in front of the total theoretical scattering function 

STHEO(Q, ω), see eq. (2.55).

5.5 Model for the solute (“standard solute model”)

The model expression given above for water is generally also suitable for solute 

molecules (see section 2.4). However, some simplifications can be made. At first, the inelastic 

scattering from the solute molecules is neglected at this stage of data analysis. This appears to 

be reasonable because:

• a) no information on the low frequency vibrational motions of cyclodextrins could be 

found;

• b) the number of free fitting parameters must be kept small;

• c) quasielastic and inelastic scattering contributions from water are expected to account 

for most of the intensity in the energy transfer region -2.0 < ħω <10 meV.

In the Q range of the available spectra (maximum QEL value ≈ 2.3 Å-1), the minimum 

value of the DWF for water is ≈0.69. Since the mean square displacement for atoms in the 

cyclodextrin molecule is expected to be smaller than it is for the protons in water, in the 

following the DWF of the solute is set to unity.

Finally, the translational diffusion of the solute molecule was described by the model of 

continuous translational diffusion [26,143] (with STR SOL(Q, ω) given by eq. (2.5)). This model 

appears appropriate, because the solvent molecules are so much smaller than CD or mCD 

molecules that the latter will move smoothly, almost like in a continuum. Phenomenologically, 

the difference between eqs. (2.5) and (5.6) consists in setting the mean residence time between 

the successive jumps, τTR SOL, to zero. For the solute being a CD or mCD, this can be justified as 

follows.

Substituting DTR SOL= 0.2×10-5 cm2/s (such a value of DTR SOL have CDs at room 

temperature) and τTR SOL= 1 ps (similar to τTR W= 1 ps for water at room temperature) in Einstein's 

relation [27]:

DTR = <l2>/6τTR (5.10)

yields √<l2>=0.35Å, whereas the maximum diameter of a CD molecule is greater than 15 Å. 

Thus, qualitatively, for τTR SOL < 5.0 ps, the motion corresponds to the picture of continuous 

diffusion.

Additionally, the Q range of the QENS experiment is always limited: Q ≤ QEL max, where 

QEL max is the maximum value of the elastic momentum transfer in the given experiment; in the 

present work QEL max = 2.3 Å-1. For Q = QEL max, τTR SOL= 1 ps and for DTR SOL = 0.2×10-5 cm2/s, the 
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denominator of eq. (5.6) “1+0.1DTR SOLτTR SOLQ2“ is equal to 1.1. It is seen that assuming for CDs 

and mCDs similar or smaller values of τTR SOL and for Q ≤ 2.3 Å-1, eqs. (2.5) and (5.6) provide 

similar results. (Because the translation of the solute molecule is only possible due to translation 

of water molecules, it follows that τTR SOL ≤ τTR W.)

From the above, the expression for the solute scattering function, SSOL(Q, ω), reads:

SSOL(Q, ω) = STR SOL(Q, ω)ÄSROT SOL(Q, ω) (5.11)

with the expression for the translational scattering function:

STR SOL(Q, ω) = Lor(0.06581×DTR SOLQ2, ω) (5.12)

For the description of rotational motion of the solute molecule the model of isotropic 

rotation is applied (with SROT SOL(Q, ω) given by eqs. (2.28, 2.33-2.35)). The atomic coordinates 

of the various solute molecules were taken from the known structures of CDs and mCDs 

crystallohydrates [1,4,6,24] and used to compute rotational structure factors, Al(Q), which are 

required for the evaluation of SROT SOL(Q, ω). (Note that Al(Q) account for the intensity of the 

scattering by the single molecule, both coherent and incoherent.) In principle, the knowledge of 

the intermolecular structure factor of the solute, SSOL(Q), (see eq. (2.42) and sections 2.3-2.4) is 

required to take into account the interference between scattering from different solute 

molecules. As a first approximation for dilute solutions, SSOL(Q) can be set to unity.

For the reference, the complete theoretical formula for the solute scattering component, 

SSOL(Q, ω), is given by eq. (5.11) and STR SOL(Q, ω) is given by eq. (5.12). The expression for 

SROT SOL(Q, ω) reads:

SROT SOL Q ,=∑
l=0

∞

SROT SOL
l Q , (5.13)

S0 
ROT SOL(Q, ω) = δ(ω) ×{b2

EFF SOL(Q)×(SSOL(Q) - 1) + A0(SOL)(Q)} (5.14)

The effective scattering amplitude of the solute molecule, bEFF SOL(Q) is:

bEFF SOLQ=∑
=1

n

< b>
sin Qr

Qr 
(5.15)

Sl
ROT SOL(Q, ω) = (2l + 1)×Al(SOL)(Q)×Lor(l(l+1)Dr SOL , ω) (5.16)

where SSOL(Q) = 1 + γCM SOL(Q), see eq. (2.42). In the present work, SSOL(Q) in eq. (5.14) was set 

to “1”, unless stated otherwise.

The rotational structure factors, Al(SOL)(Q), for the solute molecule consisting of n atoms 

are given by the formula:

A lSOLQ=∑
 ,=1

n ,n

[<b> < b>
INC

4
] j l Qr j l QrP l cos (5.17)

where θμν is an angle between the vectors rμ and rv (giving the positions of the μth and vth atoms 

of the solute molecule in the system of the center of mass), Pl is the Legendre polynomial of 
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degree l, jl is the spherical Bessel function of order l.

Henceforth, the model described in this section will be referred to as the “standard 

solute model”. Although the term accounting for spatial correlations between the solute and 

solvent molecules is lacking in eqs. (5.11-5.17), in many cases this model is fairly adequate.

5.6 “Fast“ motion in the solute molecule

In the course of the data analysis it turned out that for a satisfactory description of the 

experimental spectra of DIMEB by the fitted curve, a term for the description of a “fast”motion 

(with a characteristic time of about 5 ps) was required. This motion was attributed to the motion 

of -CH3 and -CH2-O-CH3 groups (“side” groups). Because the rotational correlation time of the 

solute molecule is greater than 150 ps (see section 7.5), one can assume the dynamical 

independence of the rotational motion of the molecule and “fast” motion of the “side” groups. 

Qualitatively, the expression for the rotational scattering function should be:

SROT mCD(Q, ω) = SROT SOL(Q, ω)ÄSFAST SOL(Q, ω) (5.18)

where SFAST SOL(Q, ω) must describe the motion of the “side” groups only (as opposed to 

SROT SOL(Q, ω), which corresponds to the rotation of the whole molecule); however, 

SFAST SOL(Q, ω) must be convoluted only with that part of SROT SOL(Q, ω) which corresponds to the 

scattering by “side” groups. 

The following semi-phenomenological approach was used. Values of Al(Q) for 

hydrogen atoms belonging to the -CH3 groups (hydrogens of -CH2-O- fragments were not 

considered at the present stage), Al(MET)(Q), were evaluated by modifying eq. (5.17) as follows:

Al (MET)Q=∑
=1

mMET  INC

4
jl

2Qr (5.19)

where mMET is the number of hydrogen atoms in all -CH3 groups. Analogously to eq. (5.13), 

SROT mCD(Q, ω) is the sum of the terms Sl
ROT mCD(Q, ω), l = 0, 1, 2 .. ∞. Eq. (5.14) can be modified 

so that the expression for S0
ROT mCD(Q, ω) is given by:

S0
ROT mCD(Q, ω) = δ(ω)×{b 2

EFF SOL(Q)×(SSOL(Q) - 1) + [A0(Q) – A0(MET)(Q)]}+ S0
MET(Q, ω)  (5.20)

S0
MET(Q, ω)=A0(MET)(Q)×SFAST SOL(Q, ω) (5.21)

And for all other l values, similarly to eq. (5.16):

Sl 
ROT mCD(Q, ω)= (2l + 1)×{[Al(Q) – Al(MET)(Q)]×Lor[l(l + 1)Dr SOL, ω]} + Sl

MET(Q, ω)   (5.22)

where Sl
MET(Q, ω) is given by:

Sl
MET(Q, ω)= (2l + 1)×Al(MET)(Q)×Lor[l(l + 1)Dr SOL, ω]ÄSFAST SOL(Q, ω) (5.23)

As to the detailed expression for SFAST SOL(Q, ω), it depends on the nature of the “fast” 

motion. In the first approximation, the model of jumps among three equivalent sites equally 

spaced on a circle (see for instance [8]) is considered:
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SFAST SOL(Q, ω) = A0
JUMP(Q)×δ(ω) + A1

JUMP(Q)×Lor(3/τ, ω) (5.24)

A0
JUMP(Q) = ⅓[1 + 2×j0(QRFAST√3)] (5.25)

A1
JUMP(Q) = ⅔[1 – j0(QRFAST√3)] (5.26)

Here RFAST is the radius of the circle and τFAST is the mean residence time on each site. 

Note that in Al(MET)(Q) given by eq. (5.19) coherent scattering lengths of hydrogen and 

carbon are neglected. The resulting error in Al(MET)(Q) will be substantial only for Q < 0.5-1 Å-1; 

in this Q region, however, the quasielastic broadening due to jump and rotatory motions of 

small “side” groups can be neglected (e.g. A0
JUMP(Q)≈1 and A1

JUMP(Q)≈0) rendering 

S0
ROT mCD(Q, ω) ≈ S0

ROT SOL(Q, ω), as expected.

It is not always convenient to have RFAST as an explicit parameter, especially if a model 

of jumps on a circle is used to describe the scattering component (due to the motion of unknown 

geometry) phenomenologically. Therefore, another form of SFAST SOL(Q, ω) was also used:

SFAST SOL(Q, ω) = AMET(Q)×Lor(WMET, ω) (5.27)

where AMET(Q) is a Q-dependent fitting parameter and WMET is the HWHM [meV]. Clearly, this 

is a purely phenomenological approach.

Finally, by setting SFAST SOL(Q, ω) = δ(ω) the “standard solute model” is recovered.

5.7 Remarks on the “standard solute model” and eq. (5.3)

In eqs. (5.2, 5.3) a “mixed” term (see eq. (2.41)) accounting for the coherent scattering 

due to D2O – solute pair correlation is missing. For the correlations between D2O and solute 

molecules which exist during only a short time, one might expect this term to be as broad as the 

scattering term for bulk D2O, and significantly smaller in intensity. In such case, neglection of 

the “mixed” term would not result in substantial error. By contrast, if these correlations are 

long-lived, the “hydrated solute model” (section 5.8) does takes them into account.

The absence of a separate hydration water term in the “standard solute model”, eqs. 

(5.11-5.17), accounting for somewhat slower translational and rotational diffusion of hydration 

water as compared to bulk water molecules, appears a priori justified by the fact that in dilute 

D2O solution (FD2O > 1300 D2O molecules here, see Tab. 3.1, most of which are part of the bulk 

water fraction), incoherent scattering by the hydration shell is much smaller than the scattering 

by solute and bulk water molecules.

The introduction of separate scaling factors for solvent and solute component, 

Sc.FSOL(QEL) and Sc.FW(QEL), can now be explained as follows. The contribution of the coherent 

scattering in pure D2O or its solutions becomes increasingly important for Q > 1.0 Å-1. The 

“convolution approximation” [143] used here to evaluate coherent scattering can not be 

expected to be perfect (it does not fulfill sumrules, see e.g. [76], pp. 73-75 in [124]). Thus, 
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Sc.FW(QEL), being a free and QEL-dependent fit parameter, will scale the theoretical D2O 

scattering contribution to its experimental value, making it possible to obtain good fits. And the 

factor Sc.FSOL(QEL) being a free and QEL-dependent fit parameter, allows eventual correction for 

the intermolecular coherent scattering from the solute molecules. This correction was found to 

be necessary for aqueous solutions of mCDs (sections 7.6, 7.9).

5.8 The“hydrated solute model”

A “hydrated solute model” was developed in order to account for the steep increase in 

Sc.FSOL(QEL) with decreasing QEL, as obtained in the fitting of the “standard solute model” to the 

spectra of DIMEB and TRIMEG solutions in D2O. Such a behavior of Sc.FSOL(QEL) was 

assumed to originate from a layer of D2O molecules on the surface of methylated cyclodextrins. 

Such a layer would indeed result in an increase of coherent scattering from an mCD solute 

molecule and would explain the observed behavior of Sc.FSOL(QEL) and the increase of the 

QENS integral, IQENS(QEL), towards low QEL region.

It is assumed that the hydration shell of a molecule can be described by two parameters 

– the thickness of the hydration shell, h, and the number of water molecules in the hydration 

shell, NHYD. Specifically, the hydration shell is defined as the layer of thickness h, where the 

centers of all hydration water molecules (their number is NHYD) are situated. The surface of the 

solute molecule is defined as the surface of the volume, excluded by the solute molecule. The 

excluded volume is found using van der Waals radii of the atoms of the solute molecule. The 

water molecule (here D2O) is approximated by a sphere of the radius RD2O =1.90 Å. Thus, the 

maximum of the distance between the centers of a hydration water molecule and the atom of the 

solute is given by h + RD2O+ RATOM, and the minimum of this distance is given by RD2O+ RATOM. 

See also Fig. 5.1 for the schematic representation explaining the definitions introduced above.

Figure 5.1 The definition of the hydration shell employed in the “hydrated solute model”. For the 

explanation refer to the text above the figure.
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The definition of the hydration shell thickness employed here was chosen to be suited 

for the evaluation of the scattering component arising due to the hydration shell. This is in 

contrast to the common definition, where the thickness of the hydration shell is the thickness of 

the layer formed by hydration water molecules, its (implied) minimal value being ≈ diameter of 

the water molecule.

Presumably, together with its hydration shell, an mCD molecule can be considered as a 

new entity, here denoted as mCD-HYD. Further assumptions are that this entity diffuses as a 

whole (with D2O molecules bound to it, perhaps significantly longer than the translational 

diffusion correlation time of the water molecules in the bulk) and that in the same sense, it also 

rotates as a whole. Effectively, the modification of the “standard solute model” which is made 

here, represents only a change of the structure of the solute, i.e. instead of Al(SOL)(Q) given by 

eq. (5.17) one now has:

Al mCD-HYDQ= ∑
=1

n3×NHYD

∑
=1

n3×NHYD

[< b> < b>
 INC

4
] j l Qr jl QrP l cos (5.28)

where (n+3×NHYD) is the total number of atoms in mCD-HYD, n for mCD and 3×NHYD for D2O. 

For convenience, Al(mCD-HYD)(Q) is decomposed as follows:

Al(mCD-HYD)(Q) = Al(mCD)(Q) + Al(mCD-W)(Q) + Al(W-W)(Q) (5.29)

The coefficients Al(mCD)(Q) are given as before by eq. (5.17). For Al(mCD-W)(Q) one has:

Al mCD-W Q=2∑
=1

n

∑
j=1

NHYD

∑
=1

3

<b> <b j> j lQr  j lQr jP l cos− j (5.30)

where rjν is the vector from the center of mass (c.m.) of the solute molecule to the νth atom of 

the jth water molecule, and θμ-jν is the angle between rμ and rjν. For Al(mW-W)(Q) one has:

A lW-WQ =∑
i=1

NHYD

∑
=1

3

∑
j=1

NHYD

∑
=1

3

[< bi> < b j >
 iINCi− j

4
] j l Qr i j l Qr j P l cosi− j (5.31)

where riμ is the vector from the c.m. of the solute molecule to the µth atom of the ith water 

molecule (rjν is defined as above), θiμ-jν is the angle between riμ and rjν; δiμ- jν = 1 if i=j and μ =ν 

and 0 otherwise.

Because the positions of the hydration water molecules are not known, it will be 

assumed that the probability to find a hydration water molecule is uniformly distributed over the 

whole volume of the hydration shell. Thus, the number density, p, of molecules in the hydration 

shell of volume VSHELL is:

p=NHYD/VSHELL (5.32)

All orientations of a water molecule relative to the mCD molecule are assumed to be equally 

probable. Thus, from eq. (5.30) one has:
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Al mCD-W Q=2 p ×bEFF W Q×∑
=1

n

〈b〉 j lQr  ∫
V SHELL

j l QR jP lcos− jd R j (5.33)

where Rj is the vector giving the position of the c.m. of the hydration water molecule in the 

coordinate system of the c.m. of the solute molecule and θμ- j is the angle between rμ and Rj. 

Here bEFF W(Q) is the scattering amplitude of water molecule, for the definition of bEFF(Q) see eq. 

(2.24). From eq. (5.31) it follows:

Al W-WQ= p2 × ∫
V SHELL

∫
V SHELL

g W ij Q  jl QRi j lQR jP l cosi− jd Ri d R j (5.34)

where θi-j is the angle between Ri and Rj. A function gW ij(Q) is defined depending on the fact 

whether Ri and Rj refer to the positions of the centers of mass of two distinct water molecule, or 

not:

Ri≠R j : g W ij Q =bEFF W
2 Q

R i=R j : gW ij Q=bSELF W Q= ∑
=1,=1

3,3

[〈b〉〈b〉
 INC 

4
] j0Qr 

(5.35)

where rμ and rv are the vectors pointing to the μth and vth atoms of the water molecule and 

rμv=rμ – rv.

The evaluation of Al(mCD-W)(Q) was carried out using the cube method described in 

Chapter 4. Cubes belonging to the hydration shell are defined as cubes which are located within 

the layer of the thickness h, perpendicular to the surface of the solute molecule. Al(mCD –W)(Q) 

and Al(W-W)(Q) are evaluated using eqs. (5.33, 5.34), where instead of integration, a summation 

over all cubes belonging to the hydration shell is performed.

Per construction, Al(mCD-HYD)(Q) are functions of h and NHYD. To simplify the matter, in 

the present work it was assumed that the hydration shell is a monolayer of water molecules and 

that h =0.5 Å. Thus, the distance between the centers of a water molecule and an atom of the 

solute molecule was between 0.5 + RD2O +RATOM and RD2O +RATOM. For RATOM = 1.1 Å (for 

hydrogen), the distance was therefore in the range 3.5 Å - 3 Å. Since the value of h was fixed, 

Al(mCD-HYD)(Q) depended on the number of water molecules in the hydration shell, NHYD, only, so 

that, as opposed to the “standard solute model”, the “hydrated solute model” required only one 

additional fitting parameter.

For extensive details on the “hydrated solute model” (in particular, about the derivation 

of eqs. (5.33, 5.34)) see Appendix F.

5.9 Subtraction of the pure water spectrum

Instead of determining parameters of STHEO W(Q, ω) as described in section 5.4, with the 

subsequent fitting of eq. (5.3) to the solution spectra, one can adopt another procedure. Given 

that the total scattering function was measured both for the solution and pure water (i.e. 

39



STOTAL SOLUTION(Q, ω) and STOTAL W(Q, ω) are available), one can obtain the difference spectrum, 

STOTAL SOL(Q, ω), by subtraction of STOTAL W(Q, ω) with the weight Fw:

 STOTAL SOL(Q, ω) = STOTAL SOLUTION(Q, ω) – Fw×STOTAL W(Q, ω) (5.36)

Note that to employ eq. (5.36) one has to correct both STOTAL SOL(Q, ω) and STOTAL W(Q, ω) for the 

“fEC×C×SSC EXP“ component beforehand. Further, eqs. (5.1, 5.2) can be fitted to STOTAL SOL(Q, ω) 

and, since Fw≡0, there is no need to know parameters describing the scattering by the bulk water 

component. However, such an approach has three major drawbacks:

1) subtraction of the bulk water spectrum with the weight Fw is based on the tacit 

assumption that there is no hydration water; this is generally wrong. One can only 

account for the hydration water by subtracting the spectrum of bulk water with a weight 

Fw BULK, Fw BULK < Fw, but the factor Fw BULK is not known.

2) for every spectrum of the solution, a spectrum of water (or, generally, a buffer solution) 

under exactly the same conditions must be measured.

3) subtracting one experimental spectrum from another leads generally to an increase of 

the statistical errors in the so obtained difference spectra, STOTAL SOL(Q, ω).

In addition, the multiple scattering component is not a simple additive quantity, and after 

subtraction of STOTAL W(Q, ω), the remaining multiple scattering contribution will still depend on 

STHEO W(Q, ω).

5.10 Analysis of the spectra recorded with different energy resolutions

In section 2.7 it was demonstrated that, depending on the energy resolution, different 

kinds of motions and to different extent can be reflected in QENS spectra. Generally, 

parameters describing geometry and dynamics of these motions are not known. One way to 

proceed with an analysis of the spectra recorded for a number of different resolutions is outlined 

below.

It is reasonable to analyze first the spectra recorded with the highest energy resolution, 

because:

1) the fast motion of water molecules and fast motions in the solute molecule will be 

separated from the scattering component due to a slow solute motion: the latter will 

result in a narrow scattering component as opposed to the former, which produce 

broader components;

2) one may hope to determine dynamical parameters of the slow motion (because of the 

small ΔE value).

Subsequently, one can switch to the analysis of spectra recorded with lower resolution and fix 

parameters, describing the slow motions, at the values obtained in the first step. At last, the 
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spectra with the lowest resolution can be used to determine parameters of the fast motion, while 

parameters of all other motions are fixed at values determined in the previous stages of the 

analysis.

Clearly, in the first analysis of the high resolution spectra one eventually neglects the 

contribution from the fast motions. Therefore, after the first cycle of the data analysis is 

completed, one can then start by fixing parameter values of the faster motions obtained in the 

previous cycle and repeat the whole procedure again.
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