
4 Analysis of the small-angle X-ray and neutron scattering spectra

Small-angle X-ray and neutron scattering and their applications have been subject of 

many publications, equations not specifically cited can be found in [31,57,123].

4.1 SAXS analysis

The experimental solute scattering curve, IEXP SAXS(Q, c), was found from the 

experimental D2O and sample scattering patterns as follows:

IEXP SAXS(Q, c)={IS/SAXS(Q, c) – ID2O/SAXS(Q)}×fH2O/{c×Na/M} (4.1)

where Na is Avogadro's number, M is the molecular mass of the solute molecule [g/mol], c is the 

solute concentration, g/mL. The factor fH2O is arising due to normalization to the scattering by 

H2O [97] and given by:

fH2O = IH2O(0)/(IH2O - IEC) (4.2)

IH2O(0), the zero-angle X-ray scattering of H2O, is 0.01632 cm-1 at 20 °C [97]. The denominator 

in eq. (4.2) is the difference in the experimentally measured scattering intensity between the 

H2O filled (IH2O) and empty cell (IEC) and provides the scattering by H2O. Only IH2O was 

measured for the employed cells; the ratio IH2O/IEC was known to be ≈ 1.34±0.05, and thus one 

could evaluate fH2O that was necessary to put the data on an absolute scale. In the following 

IEXP SAXS(Q, c) has dimension of barn, 1 barn = 10-24 cm2.

The orientationally averaged self-convolution of the excess electron density is the 

correlation function γ(r):

γ(r) = < ∫Δρ(u)Δρ(u+r)du >Ω (4.3)

where < >Ω denotes averaging over the solid angle Ω and the integration is performed over the 

volume of the particle. Δρ(r) is the excess electron density, Δρ(r) = ρ(r) – ρ0, with ρ(r) and ρ0 

being electron densities of the solute and solvent, respectively. The contrast, ΔρAV = ρAV - ρ0, is 

the average value of Δρ(r), ρAV is the average electron density of a particle. The scattering from 

the solute molecule, I(Q), is the Fourier transform of γ(r):
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Q r
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where Q is the vector of reciprocal space (Q being its modulus). The theoretical SAXS curve, 

ITHEO SAXS(Q), and the theoretical correlation function, γTHEO(r), were computed from the known 

atomic structures of cyclodextrins studied here [1,4,6,24] using a set of programs in which the 

cube method [30,89] was implemented. 

In short, the solute molecule is inscribed into a parallelepiped which is subdivided into 
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small cubes with edges of 0.2-0.6 Å. The distance between the center of the atom belonging to 

the molecule (with coordinates x, y, z) and the center of the ith cube (with coordinates xci, yci, 

zci) is evaluated as √{(xci-x)2 + (yci-y)2 + (zci-z)2} and then compared to the van der Waals 

radius of this atom. If at least for one atom belonging to the molecule, the value of the van der 

Waals radius (taken from [104]) is greater than the distance between the center of the cube and 

center of the atom, the cube is attributed to the solute molecule, otherwise it is attributed to 

solvent. (Some of the cubes attributed by this procedure to solvent are in fact within the 

excluded volume. Such cubes are re-attributed to the solute molecule by an auxiliary 

computational procedure.) 

Thus, the integral (4.3) becomes a summation over all the cubes belonging to the solute 

molecule with Δρ(r)=Δρi, i denotes an ith cube. In the “homogeneous approximation“ (i.e. 

assuming the electron density of the solute molecule to be uniformly distributed over its 

volume), Δρi is equal to ΔρAV if the ith cube belongs to the particle, and 0 if it does not. 

Application of this approximation allowed to compute γTHEO(r) and the theoretical SAXS curve 

from eqs. (4.3, 4.4). Further, the SAXS curve was multiplied by r0
2, where r0 = 0.282×10-12 cm 

is the scattering length of one electron; the theoretical SAXS curve is therefore on the same 

scale as IEXP SAXS(Q, c) obtained from eq. (4.1).

The maximum diameter of a particle, D, was estimated from the spatial cosine transform 

of IEXP SAXS(Q, c):

Φ  =∫
0

∞

IEXP SAXSQ , ccosQ d Q (4.5)

under the assumption that Φ(ύ) is zero for ύ > D ([90], p. 82 in [31]). The values of DEXP were 

compared to DTHEO values, the latter being determined by γTHEO(r) under consideration that 

γTHEO(DTHEO)≡0. The lowest and the upper integration limits in eq. (4.5) were equal to 0 and 0.5 

Å-1, respectively. (For Q < 0.05 Å-1, IEXP SAXS(Q, c) was found from eq. (4.6).)

The initial part of the experimental SAXS curve (0.05 Å-1 < Q < 0.2 Å-1) was used to 

evaluate experimental values of intensity at the origin, IEXP SAXS(0), and the square of the radius 

of gyration, R2
g(EXP), according to Guinier’s relation:

IEXP SAXS(Q) =IEXP SAXS(0)×exp(-R2
g(EXP)Q2/3) (4.6)

The value of the square of the radius of gyration in the “homogeneous approximation”, 

R2
g(THEO), was found (see e.g. [31]) as follows:
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The volume of the homogeneous particle, V, is:
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A value of volume found according to eq. (4.8), but with the upper integral limit being Qmax, 

will be denoted by V(Qmax); obviously, for Qmax→∞, V(Qmax) →V. One evaluates VEXP(Qmax) and 

VTHEO(Qmax) from IEXP SAXS (Q) and ITHEO SAXS(Q), respectively. The value of VEXP was found as 

follows:

VEXP = VTHEO×VEXP(Qmax)/VTHEO(Qmax) (4.9)

Because the spectrum ID2O(Q) changes slightly during the experiments (by a factor from 

0.9  to  1.1 for Q > 0.05 Å-1), even two SAXS curves for the same solution are eventually 

shifted with respect to each other by an additive constant (that is: IEXP SAXS(Q, c) |t1= 

IEXP SAXS(Q, c)|t2 + const, where “t1” and “t2” refer to the SAXS patterns of the same solution 

taken at different times). Therefore, for the comparison of a series of curves obtained for 

different concentrations, the curves were shifted (by an appropriate choice of the constant const) 

so that all of them coincided for Q ≥ 0.45 Å-1. Such a manipulation is justified if the 

intermolecular structure factor is close to the unity in this Q region (as, for instance, was found 

for γ-CD). For DIMEB and TRIMEG, SSOL(Q, c) became somewhat less than unity (for Q ≥ 

0.45) upon increase of the concentration, but the error introduced through the shift of curves 

was smaller than the error that would have occurred if no shift was performed.

4.2 SANS analysis

The theoretical small-angle neutron scattering curve, ITHEO SANS(Q), was computed as 

described in [30,89]:

ITHEO SANSQ=〈∣F Q −Q∣2 〉 (4.10)

by using the cube method (see above). F(Q) is the scattering amplitude of the solute molecule 

of volume V in vacuum, and ζ(Q) is the scattering amplitude of the volume V filled with 

solvent with scattering density ρ0:

F Q=∑
i=1

n

〈b〉i exp−i Q.r i (4.11)

Q =ρ0∫
V

exp−i Q.rd r (4.12)

where <b>i is the coherent scattering length of the ith atom [cm], and n is the number of atoms 

in the solute molecule. The scattering amplitude of the excluded volume, ζ(Q), was evaluated 

using the value of the scattering length density of heavy water, ρ0=0.064×10-12 cm-2 (ρ0 = 

{2<b>D + <b>O}/VD2O, where VD2O is the volume of the D2O molecule). It is worth to emphasize, 

that in evaluation of F(Q) for neutron scattering, no approximation is involved. On the contrary, 

27



for SAXS, the “homogeneous approximation” corresponds to:

 F SAXS Q=∫
V

ρ r exp−i Q.rd r≈∫
V

ρAV exp−i Q.rd r (4.13)

The experimental SANS curve IEXP SANS(Q, c) [barn], corrected for incoherent 

background (IINC) and concentration c [g/mL] was found from the experimental SANS pattern 

IS/SANS(Q, c):

IEXP SANS(Q, c) = IS/SANS(Q, c)/(c×Na/M) - IINC (4.14)

Note that IS/SANS(Q, c) is already normalized to H2O scattering (see section 3.4).

4.3 Intermolecular structure factor SSOL(Q)

When the scattering curve is solely due to particle scattering in a very dilute solution, 

I(Q) is given by eq. (4.10). For solutions at concentration c, the expression for I(Q, c) reads:

I (Q, c)=SSOL(Q, c)×I(Q)  (4.15)

where SSOL(Q, c) is the intermolecular structure factor, see sections 2.3-2.4. Eq. (4.15) holds 

under the condition:

<|F(Q) – ζ(Q)|2>Ω ≈ <|F(Q) – ζ(Q)|>Ω
2 (4.16)

in particular for CDs and mCDs it holds for Q < 0.45 Å-1. More generally, one can write:

I (Q, c) = γCM SOL(Q, c)×<|F(Q) – ζ(Q)|>Ω
2 + I(Q)  (4.17)

where γCM SOL(Q, c) is related to the intermolecular structure factor (see section 2.4) as follows: 

γCM SOL(Q, c) = SSOL(Q, c) – 1 (4.18)
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