
2 Method of quasielastic neutron scattering (QENS)

2.1 Introduction

Nowadays, the quasielastic neutron scattering (QENS) method is gaining increasingly 

more attention among the scientific community. In the past, QENS was an intensity limited 

technique, the time to record spectra with sufficient statistics was long, and consequently the 

total number of the experiments was small. The neutron scattering instrumentation at long 

existing world's leading neutron sources (in the first place: the Institut Laue-Langevin (ILL) in 

Grenoble, but also ISIS, UK; HMI, Germany; NIST CNR, USA and others) has been 

continuously improved. Furthermore, new powerful facilities, the nuclear reactor in München 

and the Spallation Neutron Source in USA came into operation, and other facilities will follow. 

For an experimentalist, the access to a QENS spectrometer is becoming easier. Consequently, a 

great interest towards this technique has appeared in biology and life science communities.

The neutron scattering provides information on the microscopic structure and dynamics 

in the target sample (however, limited by the experimental resolution effects). In the following 

no details on the interaction of the neutron with matter will be given (these can be found e.g. in 

[65,76,124]). Such details may be skipped due to the fact that neutron-matter interaction is 

weak. The nature of the neutron manifest itself in the spectra only through the strength of the 

neutron interaction with a nucleus, i.e. through the neutron scattering length, which is just a 

number. Neutron scatterings lengths for the most nuclei are known, as a consequence, it is only 

properties of the sample alone which are reflected in the neutron scattering spectra.

2.2 Correlation functions

The central entity in the quasielastic neutron scattering experiment is the scattering 

function S(Q, ω), and it was shown to be related to the pair correlation function, G(r, t) [47,65,

76]. In the classical limit (always tacitly assumed in the following), G(r, t) is the probability that 

if at time t = 0 there is a particle at the origin, r = 0, one will find any particle (including the 

original one) at the position r at time t. Self correlation function, GSELF(r, t), is the probability, 

that if at time t = 0 there is a particle at the origin, r = 0, one will find the same particle at the 

position r at time t.

G(r, t) is the space-Fourier transform of I(Q, t) and GSELF(r, t) is the space-Fourier 

transform of ISELF(Q, t), so that:
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IQ , t =∫
−∞

∞

expi Q.r Gr , td r (2.1)

ISELFQ , t=∫
−∞

∞

expi Q.r GSELFr , td r (2.2)

and I(Q, t) and ISELF(Q, t) are the intermediate and the self intermediate scattering functions, 

respectively.

The coherent and incoherent scattering functions are the time-Fourier transforms of the 

intermediate and self intermediate scattering function, respectively:

SCOHQ ,=
1

2∫−∞

∞

exp−i t I Q , tdt (2.3)

SINCQ ,=
1

2∫−∞

∞

exp−i t ISELFQ , tdt (2.4)

In the following the case of a monoatomic liquid will be considered and vibrational 

motions of atoms will be neglected. Thus, only the translational diffusion of atoms in the liquid 

has to be taken into account. A number of analytical expressions for translational incoherent 

scattering function, STR INC(Q, ω), exist, see for instance [8]. For instance, in the case of the 

continuous translational diffusion, STR INC(Q, ω) is given by the Lorentzian [26,143]:

STR INC Q ,=
1


     DTRQ2

DTR Q222 (2.5)

where DTR is the translational diffusion coefficient. (Throughout the present work, the 

Lorentzian of argument x with the half width at half maximum being HWHM is denoted as 

Lor(HWHM, x).)

There is no analytical expression for the coherent scattering function for translational 

diffusion, STR COH(Q, ω). Such an expression can only be obtained by making some kind of 

approximation. The famous convolution approximation [143] states:

STR COH(Q, ω) = STR INC(Q, ω)×[1 + γ(Q)] (2.6)

where for a monoatomic liquid γ(Q) is given by:

γ Q=∫
V

expi Q.r [ g r −g0]d r (2.7)

The static pair correlation function, g(r), is the probability to find an atom at the position r, if 

there is an atom at the position r = 0. The quantity g0 is the bulk number density. It follows from 

the definition of G(r, t):

G(r, 0) = g(r) + δ(r) (2.8)

One often splits the intermediate scattering function (eq. (2.1)) into the distinct (describing 

time-dependent correlations between the positions of two different atoms) and self (describing 
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time-dependent correlation between the positions of one atom) parts:

I(Q, t) = IDIST(Q, t) + ISELF(Q, t) (2.9)

where IDIST(Q, t) is the distinct intermediate scattering function. By substituting G(r, 0) from eq. 

(2.8) into eq. (2.1), taking t = 0 and comparing to eq. (2.7), one gets:

IDISTQ , 0 =γ Q∫
V

expi Q.r  g0 d r (2.10)

ISELF(Q, 0) = 1 (2.11)

and for Q≠0, from eq. (2.10) it follows: IDIST(Q, 0) = γ(Q).

Obtaining of the expression for the scattering function, S(Q, ω), for a molecular liquid, 

e.g. water, requires consideration of the rotational motion of a molecule. Because the main part 

of the present work consists in the analysis of the neutron scattering spectra of aqueous 

solutions, it is appropriate to reproduce here a (shortened) approach of Sears [109].

2.3 Neutron scattering by a molecular liquid

Suppose one has a volume V filled with M molecules, and m is the number of atoms in a 

molecule. The general equation for the intermediate scattering function reads:

IQ , t=∑
i=1

M

∑
=1

m

∑
j=1

M

∑
=1

m

< bi b j > 〈exp [−iQ.R i 0−R j t] 〉 (2.12)

where Riμ is the vector giving the position of the μth atom in the ith molecule, biμ is the neutron 

scattering length of the nucleus of atomic species μ. The angle brackets denote the statistical 

average. One splits I(Q, t) into the “distinct” part (containing correlations between the positions 

of atoms of distinct molecules) and the “self” part (correlations between the positions of atoms 

belonging to the same molecule):

I Q , t =∑
i=1

M

∑
=1

m

∑
j≠i=1

M

∑
=1

m

< bi> < b j> 〈exp [−iQ. R i 0−R j t ]exp [−iQ. r i0−r j t  ]〉

∑
i=1

M

∑
=1

m

∑
=1

m

<bibi> 〈exp [−i Q.Ri 0−R i  t ]exp[−iQ.r i 0−r i t  ]〉
(2.13)

where Ri is the vector giving the position of the center of mass of the ith molecule, and riμ is the 

vector giving the position of the μth atom in the ith molecule (in the coordinate system of the 

center-of-mass of the ith molecule).

The neutron scattering length of an atomic nucleus depends on its composition and the 

orientation of the neutron spin relative to the spin of the nucleus. In most cases, different 

isotopes and spin orientations are randomly distributed across the sample. In eq. (2.13) biμ and 

bjν refer to the scattering lengths of nuclei belonging to the distinct molecules i and j, biμ and bjν 

are thus uncorrelated: <biμbjν> = <biμ><bjν> = <bμ><bν>, where brackets mean averaging over all 

nuclei of the atomic species μ. Thus, the “distinct” part contains only coherent scattering 
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lengths, <bμ>, µ=1, 2 .. m.

In the “self part” (here the index i will be temporarily dropped because all molecules are 

equivalent) two cases should be considered: μ ≠ ν and μ =ν. For μ ≠ ν: <bµbν > = <bμ><bν> (i.e. 

for two different atoms in one molecule, bμ and bν are uncorrelated). For μ = ν: <bµbν > = <bµ
2> 

and:

<bμ
2> = <bμ>2 + σμ INC/4π (2.14)

where σμ INC/4π is the mean square deviation of the average (over the whole sample) scattering 

length of the atomic species μ. The quantity σμ INC is the incoherent scattering cross section of 

the μth atom. The coherent scattering cross section of the μth atom is σμ COH, σμ COH = 4π×<bμ>2. 

The scattering cross section, σS, is the sum of the coherent and incoherent cross sections: σS = 

σCOH + σINC. The values of neutron scattering lengths and cross sections for selected atoms and 

isotopes are listed in Tab. 2.1.

Table 2.1 Neutron scattering lengths and cross sections for selected elements/isotopes. Notations: 

coherent scattering length <b> [10-12 cm]; coherent, incoherent and total scattering cross sections σCOH, 

σINC, and σS, respectively [barn]a; absorption cross section σA [barn]. Taken from [8].

Atom <b> σCOH σINC σS = σCOH + σINC σA (for λ0 = 1.8 Å)b

H -0.3741 1.7586 79.90 81.66 0.3326

D 0.6674 5.597 2.04 7.640 0.00051

C 0.6648 5.554 0.001 5.555 0.00350

N 0.936 11.01 0.49 11.50 1.90

O 0.5805 4.235 0.000 4.235 0.00019

V -0.03824 0.0184 5.187 5.205 5.08
a 1 barn = 10-24 cm2.
b For the arbitrary value of λ0, the absorption cross section is found from: σA(λ0) = σA(1.8 Å)×√(λ0/1.8)

In the following, both cases, μ ≠ ν and μ =ν, are considered by writing <bµbν > as: <bµbν> 

= <bµ><bν> + σμ INC×δµν/4π. Further, one makes two separate assumptions: a) rotational and 

translational motion of a molecule are not correlated; b) the rotational motions of different 

molecules are not correlated. Eq. (2.13) can be then rewritten as:

I Q , t= ∑
i=1, j≠i=1

M,M

〈exp[−i Q.R i 0−R j t ] 〉∑
=1

m

< b> 〈exp [−i Q. r0] 〉∑
=1

m

< b> 〈exp[ i Q. rt ]〉

∑
i=1

M

〈exp[−i Q.R i 0−R i t]〉 ∑
 ,=1

m ,m

< b> <b>

 INC
4

 〈exp[−i Q.r 0−rt ] 〉
(2.15)

Because all M molecules are equivalent, the summation over i from 1 to M can be substituted 

by multiplication by M. With R(0) and R(t) being the positions of a given molecule at times 0 

and t, respectively, one may rewrite eq. (2.15) as:
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I Q , t=M∑
j=1

M-1

〈exp[−iQ. R0−R j t]〉∑
=1

m

< b> 〈exp[−i Q. r0] 〉∑
=1

m

< b> 〈exp[ i Q. rt] 〉

M 〈exp[−i Q.R 0−R t] 〉 ∑
 ,=1

m ,m

<b> < b>

 INC

4
 〈exp [−iQ. r0−r t]〉

(2.16)

where in the “distinct” part, the correlation of the position of a given molecule with positions of 

M-1 other molecules is expressed through the summation over j from 1 to M-1.

From eq. (2.16), the intermediate function I(Q, t) can be represented as:

I(Q, t) = M×{ITR DIST(Q, t)×u(Q) + ITR SELF(Q, t)×v(Q, t)} (2.17)

where ITR DIST(Q, t) and ITR SELF(Q, t) are given by:

ITR DIST Q , t=M-1〈exp[−i Q.R0 −R jt ]〉 (2.18)

ITR SELF Q , t=〈exp [−i Q.R 0−Rt ]〉 (2.19)

The functions u(Q) and v(Q, t) are given by:

u Q=∣∑
=1

m

<b

> f


Q∣

2
(2.20)

v Q , t= ∑
 ,=1

m, m

[< b> < b>
 INC 

4
]Q , t (2.21)

f Q =〈exp [−iQ.r]〉 (2.22)

Q , t=〈exp[−i Q.r0−rt ]〉 (2.23)

Averaging of eq. (2.22) over the orientation of Q relative to r (because the sample is a liquid) 

allows, by introducing the scattering amplitude of the molecule, bEFF(Q):

bEFFQ=∑
=1

m

< b>
sinQr 

Qr 
(2.24)

 to rewrite eq. (2.20) as follows:

< u Q>=bEFF
2 Q (2.25)

For the model of the isotropic rotational diffusion, one has:

v Q , t=∑
l=0

∞

2 l1AlQ Fl t (2.26)

Fl(t) = exp( -l(l+1)×Dr×t) (2.27)

AlQ =∑
 ,=1

m , m

[<b> < b>
 INC

4
] j l Qr jl QrP l cos (2.28)

where θμν is an angle between rμ and rv, Pl is the Legendre polynomial of degree l, jl is the 

spherical Bessel function of order l. Note that if v = μ, then θμν = 0 and thus Pl(cos θμν) = 1.

The application of the convolution approximation [143] to the translational motion of 

the center of mass allows to rewrite eq. (2.17) as:

I(Q, t) = M×ITR SELF(Q, t)×IROT(Q, t) (2.29)

where IROT(Q, t) is given by:
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IROT(Q, t) = γ(Q)CM×u(Q) + v(Q, t) (2.30)

where γCM(Q) has the same meaning as γ(Q) in eq. (2.7), except that it applies to the center of 

mass of the molecule in a molecular liquid and not to an atom in a monoatomic liquid.

The final scattering function is the time-Fourier transform of I(Q, t) from eq. (2.29):

SQ ,=M×
1

2∫−∞

∞

exp−i t ITR SELFQ ,t × IROTQ , t dt (2.31)

From eq. (2.31), applying the convolution theorem of Fourier transform one obtains:

S(Q, ω) =M×{STR INC(Q, ω)ÄSROT(Q, ω)} (2.32)

where Ä is the convolution operator. Note that the incoherent translational scattering function, 

STR INC(Q, ω), is the time-Fourier transform of the self part of the intermediate scattering 

function, ITR SELF(Q, t) which is related to the nature of the motion of the center of mass of the 

molecule, i.e. to GTR SELF(r, t), see eqs. (2.2, 2.4). A number of models is available for 

STR INC(Q, ω), and any of them can be used since translational and rotational motions are taken to 

be independent.

The rotational scattering function, SROT(Q, ω), is the time-Fourier transform of IROT(Q, t) 

given by eq. (2.30). For the case of isotropic rotation, SROT(Q, ω) can be represented as:

SROTQ ,=∑
l=0

∞

SROT
l Q , (2.33)

S0
ROT(Q, ω) = δ(ω)×{b2

EFF(Q)×γCM(Q) + A0(Q)} (2.34)

Sl
ROT(Q, ω) = (2l + 1)×Al(Q)×Lor(l(l+1)Dr, ω) (2.35)

Here Dr is the rotational diffusion coefficient [meV], related to the rotational correlation time 

τROT [ps], with 0.6583 being reduced Planck constant, ħ, [meV·ps]:

Dr = 0.6583/6τROT (2.36)

One has to note that rotational structure factors Al(Q) account for both coherent and 

incoherent quasielastic neutron scattering intensity. Specifically, A0(Q) is the elastic structure 

factor (ESF), the sum of the elastic incoherent and coherent structure factors, EISF and ECSF, 

respectively.

The differential neutron scattering cross section for the molecular liquid is given by:

d 
d

= I Q , t=0=MbEFF
2
Q γCMQ ∑

 ,=1

m , m

[<b> < b>
 INC 

4
] j0 Qr (2.37)

so that experimentally one can determine the quantity γCM(Q). More frequently, one finds in the 

literature another quantity, the intermolecular structure factor of the center of mass, S(Q) (in the 

following called simply “intermolecular structure factor”):

S(Q) = 1 + γCM(Q) (2.38)

The second term in eq. (2.37) is v(Q, t) from eq. (2.21) at t=0 and after the averaging over the 
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orientation of Q relative to r was performed. In the following this term will be denoted as 

bSELF(Q):

bSELFQ= ∑
 ,=1

m, m

[< b> < b>
 INC 

4
] j 0Qr (2.39)

where rµν = rµ - rν.

2.4 Neutron scattering by a liquid solution

In case of a binary mixture (in this work: cyclodextrin solutions), similarly, one starts 

with a volume V, where N and M are the number of solute and solvent molecules, respectively; 

and the number of atoms in a solute and a solvent molecule are n and m, respectively. The 

general equation for the intermediate scattering function now reads (compare to eq. (2.12)):

ISOLUTIONQ , t=∑
i=1

N+M

∑
=1
∑
j=1

N+M

∑
=1

< b ib j> 〈exp[−iQ.Ri 0−R jt ] 〉 (2.40)

where μ = 1,2 .. m for the solvent molecule and μ = 1,2 .. n for the solute molecule; the same 

holds for ν. One may further decompose eq. (2.40) into the “solute”, “solvent” and “mixed” 

terms:

ISOLUTION(Q, t) = ISOLUTE(Q, t) + ISOLVENT(Q, t) + IMIXED(Q, t) (2.41)

One can define the static pair correlation function a) of the centers of mass of solute 

molecules, gSOL(r); b) of the centers of mass of solvent molecules, gSOLVENT(r); c) of the centers 

of mass of a solute and a solvent molecules, gSOL-SOLVENT(r) in the similar way as it is done right 

after eq. (2.7). Similarly to eq. (2.7), one will have γCM SOL(Q), γCM SOLVENT(Q), γCM SOL SOLVENT(Q). 

The three intermolecular structure factors (all of them refer to the center of mass) are defined 

as:

SSOLVENT(Q) = 1 + γCM SOLVENT(Q); SSOL(Q) = 1 + γCM SOL(Q); SSOL SOLVENT(Q) = γCM SOL SOLVENT(Q)  (2.42)

Both solute and solvent terms are described by the same formalism given above. The 

term ISOLVENT(Q, t) and the scattering function for the solvent component will contain 

SSOLVENT(Q); analogously, the scattering function for the solute component will contain SSOL(Q). 

The “mixed” term IMIXED(Q, t) (not treated here) will contain SSOL SOLVENT(Q). 

In conclusion, it must be noted that:

a) in solutions, the intermolecular structure factor of the center of mass of solvent 

molecules, SSOLVENT(Q) will be different from S(Q) in the pure solvent, although for the 

dilute solutions this difference may be expected to be small and was therefore neglected 

in the present work;

b) in dilute solutions, SSOL(Q) is close to unity;

c) in aqueous solutions hydrogen bonds may form between the solute and water molecules. 
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This will probably result in some contribution from the coherent scattering due to time-

dependent correlations between the positions of the solute and solvent molecules. With 

the exception of the “hydrated solute model” (section 5.8, Appendix F), no account for 

this effect is attempted in the present work (meaning that the “mixed” term IMIXED(Q, t) 

was neglected).

2.5 Neutron scattering experiment

The scheme of the neutron scattering experiment is represented by Fig. 2.1. The 

monochromatic neutron beam (wavelength λ0, with the corresponding wave vector k0 and 

energy E0) passes through the sample, and the scattered neutrons are registered by the neutron 

detectors located around the sample at a number of constant angles, φ. Neutrons of energy E 

(wavelength λ and wave vector k) detected at the angle φ suffered momentum transfer Q and 

energy transfer ħω:

 Q=k - k0 (2.43)

ħω = E – E0 = ħ2(k2 - k0
2)/2mn (2.44)

where mn is the neutron mass. The modulus of the momentum transfer Q is given by:

Q2 = k2 + k0
2 - 2×k×k0×cos φ (2.45)

Figure 2.1 The scheme of the neutron scattering experiment for the direct geometry time-of-

flight spectrometer. The incident neutron beam (wave-vector k0) hits the target at the sample angle α. 

Neutrons scattered at the scattering angle φ have wave-vector k and are registered by the array of the 

detectors positioned at constant angles φ1, φ2, .. φn.
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In the QENS experiment one measures the double differential scattering cross section 

d2σ that is defined as the number of neutrons per unit time per unit incident flux which are 

scattered into the solid angle dΩ with energy exchange between ћω and ћ(ω+dω). After 

transformation of the raw neutron scattering spectra to the energy scale, one gets:

d2σ/dΩdħω = (k/k0)×η(E)×STOTAL(k0, k) (2.46)

where η(E) is the neutron detector counting efficiency. The total effective scattering function, 

STOTAL(k0, k) is:

STOTALk0 ,k =∑
j=1

∞

s j TOTALk0 ,k  (2.47)

where s(j)TOTAL(k0, k) is the contribution from neutrons which have been scattered j times [110]. 

The superscript “TOTAL”indicates that: 

a) STOTAL(k0, k) contains scattering contribution from the sample and the sample container; 

b) for j > 1, s(j)TOTAL(k0, k) contains neutrons which were scattered several times, possibly, 

both by the sample and the sample container. 

See also Appendix C for the comparison of eq. (2.46) with its more conventional version.

In the present work the contribution of the neutrons scattered one time by the sample 

and one time by the sample container was found to be negligible, therefore one can rewrite eq. 

(2.46) as:

d2σ/dΩdħω = (k/k0)×η(E)×{SS(k0, k) + SSC(k0, k)} (2.48)

and analogously to eq. (2.47):

SS k 0 ,k =∑
j=1

∞

s j S k0 ,k  SSCk0 , k=∑
j=1

∞

s jSCk0 ,k  (2.49)

where SS(k0, k) (or SSC(k0, k)) contain 1, 2 .. times scattered neutrons by the sample (or the 

sample container) only. In the following, another form for SS(k0, k) will be used:

SS(k0, k) = s(1)S(k0, k) + SS MSC(k0, k) (2.50)

where the term SS MSC(k0, k) contains all neutrons multiply scattered by the sample. The single 

sample scattering, s(1)S(k0, k) is:

s(1)S(k0, k) = SEXP(Q, ω)×H1(k0, k) (2.51)

where H1(k0, k) is the 1st order transmission factor, accounting for the self-attenuation and 

absorption of the incident neutron beam by the sample (the attenuation of the incident and 

scattered intensity due to the sample container is neglected). One can rewrite eq. (2.47) for 

STOTAL(k0, k) as:

STOTAL(k0, k) = SEXP(Q, ω)×H1(k0, k) + SSC(k0, k) + SS MSC(k0, k) (2.52)

The conventional reduction procedure includes corrections for the factor H1(k0, k) and 

the normalization of the sample spectra to the spectrum of vanadium in order to correct for the 
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neutron detector counting efficiency [102]. After reduction, the spectra represent the total 

scattering function STOTAL(Q, ω):

STOTAL(Q, ω) = C×{SEXP(Q, ω) + SMSC EXP + SSC EXP} (2.53)

where the term SMSC EXP is equal to SS MSC(k0, k)/H1(k0, k) and the term SSC EXP is equal to 

SSC(k0, k)/H1(k0, k). The factor C is given by [102]:

C = 1/{nvan×Vvan×σvan/4π} (2.54)

where nvan = vanadium number density, [cm-3], σvan = vanadium scattering cross section [barn], 

Vvan is the vanadium volume exposed to the beam [cm3].

The experimental scattering function SEXP(Q, ω) is related to the theoretical classical 

scattering function, STHEO(Q, ω), folded with the energy resolution function R(φ, ω):

SEXP(Q, ω) = VS ×exp(-ћω/2kBT)×STHEO(Q, ω)ÄR(φ, ω) (2.55)

where Ä is the convolution operator, kB - Boltzmann constant, T – absolute temperature and VS 

is the sample volume exposed to the beam [cm3]. The factor exp(-ћω/2kBT) is the detailed 

balance factor, its relevance is explained elsewhere, e.g. [65,76,124]. In the present work R(φ, 

ω) is the Gaussian function and the standard deviation of this Gaussian, σR(φ), is determined by 

fitting the function:

REXP (ω) = const×exp(-(ω - ω0)2/2σR
2)/{σR×√(2π)} (2.56)

to the elastic component of the vanadium spectrum at each scattering angle φ. Often when 

referring to the energy resolution of the experiment one uses full width at half maximum 

(FWHM) of the resolution function, ΔE, given by:

ΔE=2σR√(2ln 2) (2.57)

Strictly speaking, it is the set of spectra STOTAL(φi, ω), φi being the scattering angle, 

which is recorded in the QENS experiment; after the container and multiple scattering are 

corrected, the so obtained set of the experimental scattering function SEXP(φi, ω) is a function of 

φi, λ0 and λ. Since the momentum transfer Q and the scattering angle φ are related, see eq. 

(2.45), SEXP(φi, ω) is the function of Q and ω. Thus, measurements with different instruments 

and/or different incident wavelengths all provide the function SEXP(Q, ω), where the 

“experimental setup”-specific information is contained only in R(φi, ω) and VS.

The integral of SEXP(φi, ω) is denoted here as QENS integral, IQENS(QEL):

IQENSQEL=IQENSφi= ∫
−MIN

MAX

SEXPφi ,d  (2.58)

where QEL is the elastic momentum transfer that can be found from eq. (2.45) by setting k = k0, 

so that:

QEL = 2×k0×sin(φ/2) (2.59)
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2.6 Multiple scattering and container scattering

Eq. (2.53) contains the contribution from multiple scattering, which in practice is 

usually neglected. Indeed, one often states that with sample transmission of about 0.90, multiple 

scattering is negligible. This is not generally true, and a semi analytical approach allowing to 

account for MSC with a good degree of approximation was presented already in 1975 [110]. In 

the past, the absence of multiple scattering corrections was partially justified by the fact that this 

semi analytical approach required numerical integration of at least a double integral. Yet, the 

rise in computational power of the common personal computers makes it now possible to 

perform a fit of the theoretical models to the spectra with simultaneous evaluation of the 

multiple scattering term on a PC. Details of the approach used in this work are given in 

Appendix E.

STOTAL(Q, ω) in eq. (2.53) includes scattering by the sample container walls (see Fig. 

2.1), SSC EXP, which can be represented as:

SSC EXP = SSC(k0, k)/H1(k0, k) = Att(k0, k)×SEXP EC(Q, ω)/H1(k0, k) (2.60)

where SEXP EC(Q, ω) is the scattering function for the empty sample container and Att(k0, k) is 

the angle-dependent attenuation factor, which accounts for the presence of the sample. 

SEXP EC(Q, ω) is related to the function SEC(k0, k) conventionally determined from a separate 

measurement. Att(k0, k) can be evaluated given that the total cross section of the sample is 

known (see Appendices C, D for details). Because SEXP EC(Q, ω) consists to large extent in the 

elastic scattering, one may write:

SEXP EC(Q, ω) = Intensity(φ)×R(φ, ω) (2.61)

and the angle dependent quantity “Intensity(φ)” can be determined by fitting eq. (2.61) to the 

experimental scattering function SEXP EC(Q, ω).

2.7 The role of the energy resolution of the experiment

The term STHEO(Q, ω) in eq. (2.55) is the sum of a number of terms with different widths 

and different Q-dependent weighting factors (for models given in Chapter 5 all these terms are 

Lorentzians, except for the DHO component). Generally, there can be more than one 

combination of parameters, both structural and dynamical, which in the frame of a chosen 

theoretical model provide adequate description of the experimental spectra in the Q range 

accessed in the experiment.

In eq. (2.55), STHEO(Q, ω) is convoluted with the resolution function, R(φ, ω), and the 

experimental scattering function SEXP(Q, ω) depends therefore on the energy resolution, ΔE. An 

illustration of the significance of the energy resolution is given by Fig. 2.2.
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Figure 2.2 A hypothetical example showing the significance of the experimental energy 

resolution, ΔE. Symbols are: (▲) the 1st scattering component, DTR1=1×10-5 cm2/s; (□) the 2nd 

scattering component, DTR2=0.1×10-5 cm2/s; (■) the total scattering intensity. (a): ΔE = 100 µeV, 

slower motion (with DTR2=0.1×10-5 cm2/s) is unresolved. (b): ΔE = 10 µeV, slower motion is partially 

resolved. Q=0.25 Å-1.

Suppose that STHEO(Q, ω) consists of only two terms, both corresponding to translational 

diffusion (values of DTR are in 10-5 cm2/s units):

STHEO(Q, ω) = Lor(DTR1Q2, ω) + Lor(DTR2Q2, ω) (2.62)

For simplicity, the resolution function of the experiment will be assumed to be Lorentzian, i.e. 

R(ω) = Lor(ΔE/2, ω). Thus, one has:

SEXP(Q, ω) = STHEO(Q, ω)ÄR(ω) = Lor({DTR1Q2+ΔE/2}, ω) + Lor({DTR2Q2+ΔE/2}, ω)  (2.63)

The spectrum recorded with the energy resolution ΔE = 100 µeV will be, in practice, 

satisfactorily fitted with just one Lorentzian, assuming STHEO(Q, ω) = Lor(DTR EFFQ2, ω), and the 

value of the “effective diffusion coefficient”, DTR EFF, of about 1.0 ×10-5 cm2/s will be found 

(Fig. 2.2a). One says that the second component (with the intrinsic width DTR2Q2) is unresolved. 

In the experiment with ΔE=10 µeV, (Fig. 2.2b), the spectrum SEXP(Q, ω) will not be adequately 

described just by one Lorentzian, Lor(DTR EFFQ2, ω), and it will become clear for the 

experimentalist, that the spectrum contains contributions from at least two types of motions. 

The experimentalist can further attempt to determine the values of both, DTR1 and DTR2, by 
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fitting eq. (2.63) to the spectrum in Fig. 2.2b.

From eq. (2.63) and the convolution theorem of Fourier transformation, it follows [64,

68]:

IEXP(Q, t) = ITHEO(Q, t)×R(t) = ITHEO(Q, t)×exp(-t/Δt) (2.64)

Δt×(ΔE/2) = 0.6583 (2.65)

where ΔE and Δt have dimension of [meV] and [ps], respectively. Further transformation of 

eq. (2.64) gives:

GEXP(r, t) = GTHEO(r, t)×exp(-t/Δt) (2.66)

where GTHEO(r, t) reflects the motion of the atoms/molecules. It is clear from eq. (2.66) that in 

the experiment one “observes” motion only in the time range t < ≈ 3 Δt; Δt is called the 

“observation time of the experiment”. In the example given above, for ΔE = 100 µeV, Δt = 13.2 

ps (as follows from eq. (2.65)). Substituting of the FWHM = 2DTRQ2 instead of ΔE into the 

same equation gives the time constants of 160 ps and 1600 ps for the 1st (DTR1) and 2nd 

component (DTR2), respectively. Therefore, it is only the faster motion (DTR 1 = 1.0 10-5 cm2/s) 

which can be observed in the experiment with the energy resolution ΔE = 100 µeV. With ΔE = 

10 µeV (Δt = 132 ps), the slower motion will be partially resolved. 

Generally, for the motion with the time constant τ [ps](and the intrinsic width 0.6583/τ 

[meV]) to be observed, the rule must be satisfied:

Δt > τ or (ΔE/2) < 0.6583/τ (2.67)

The energy resolution of the QENS experiment is therefore an important variable, 

making it possible to distinguish between different kinds of motion and to extract parameters of 

these motions.
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