
Der Neurotrophinrezeptor p75^{NTR} Eine biochemische Untersuchung

Im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin eingereichte Dissertation

Vorgelegt von Tim Hucho Berlin, April 2002

Inhaltsverzeichnis

1	Zusammenfassung	9
2	Abstract	10
3	Einleitung	11
3.1	Biologische Funktion der Neurotrophine	11
3.2	Struktur der Neurotrophine	13
3.3	Die Rezeptoren der Neurotrophine	14
3.3.1	Die Trk Rezeptoren	15
3.3.2	Der Neurotrophinrezeptor p75 ^{NTR}	16
4	Zielsetzung der Arbeit	21
4.1	Reinigung von intrazellulären Interaktoren	21
4.1.1	Experimentelle Ansätze zur Identifikation von intrazellulären Interaktoren	21
4.2	Suche nach p75 ^{NTR} -ähnlichen Molekülen	23
5	Material und Methoden	25
5.1	Material	25
5.1.1	Antikörper	25
5.1.2	Tiere	26
5.1.3	Zelllinien	26
5.1.4	Modifizierte Lambda Phosphatase	26
5.1.5	Neurotrophine	27
5.1.6	Plasmide	27
5.1.7	Medien	27
5.1.8	Adjuvantien	27
5.1.9	Chemikalien und Zubehör	28
5.1.10	Geräte	29
5.1.11	Puffer	30
5.2	Methoden	34
5.2.1	Aufreinigung intrazellulärer Interaktoren von p75 ^{NTR}	34
5.2.1.1	P75 ^{NTR} Konzentrationsbestimmung in Gehirnhomogenat	34
5.2.1.2	Expression und Aufreinigung des p75 ^{NTR} -IZD Plasmids	34
5.2.1.3	Verwendung der BIAcore Maschine	35
5.2.1.4	lodierung von Neurotrophinen	36
5.2.1.5	Dissoziation von Spinalganglien	37
5.2.1.6	Overlayblots	38

5.2.1.7	In vitro Translation der intrazellulären Domäne von p75 ^{NTR}	38
5.2.1.8	Kopplung von ¹²⁵ I-Neurotrophin an p75 ^{NTR} für Overlayblots	39
5.2.1.9	Bindungsstudien an dissoziierten Spinalganglien Neuronen	39
5.2.1.10	Präparation von Caveolae mit Triton X-100	40
5.2.1.11	Präparation von Caveolae mit NaCO ₃	40
5.2.1.12	Präparation von "Postsynatic Densities" (PSDs)	41
5.2.2	Charakterisierung, Reinigung und Identifizierung von p75 ^{NTR} -ähnlichen Proteine	.42
5.2.2.1	Herstellung polyklonaler Seren gegen die intrazelluläre Domäne von p75 ^{NTR}	42
5.2.2.2	Organpräparation	42
5.2.2.3	Dephosphorylierung der Freundl Antigene	42
5.2.2.4	Bindungsassay an Spinalganglien	43
5.2.2.5	Reinigung des Freundl Antigens	43
5.2.2.6	Sequenzvergleich und Phosphorylierungsvorhersagen	44
5.2.2.7	Peptidkompetition im Westernblot	44
5.2.2.8	Präparation von Körnerzellen	45
5.2.2.9	Immunhistochemie	45
5.2.3	Vermischtes	46
5.2.3.1	NGF-ELISA	46
5.2.3.2	Herstellung einer stabilen Zelllinie	46
5.2.3.3	Biologischer Überlebensassay	47
5.2.3.4	Anzucht und Lagerung von E. coli-Bakterien	48
5.2.3.5	SDS-Polyacrylamid Gelelektrophorese (PAGE)	48
5.2.3.6	Semi-dry Westernblot	49
5.2.3.7	Entfernung von Antikörpern von Blotmembranen ("Strippen des Blots")	49
5.2.3.8	Coomassie Färbung von Gelen	49
5.2.3.9	Silberfärbung von SDS-PAGE Gelen	50
5.2.3.10	Kolloidal Coomassie Färbung von SDS-PAGE Gelen	50
5.2.3.11	Konzentrationsbestimmung von Proteinen	50
6	Ergebnisse	51
6.1	Biochemischen Aufreinigung intrazellulärer Interaktoren von p75 ^{NTR}	51
6.1.1	Affinitätsreinigung in Gegenwart des extrazellulären Liganden	51
6.1.2	Affinitätsreinigung über die intrazelluläre Domäne von p75 ^{NTR}	
6.1.2.1	Protein Interaktionsmessungen mit der BIAcoremaschine	
6.1.2.2	Interaktorendetektion mit Overlayblots	55
6.1.3	Anreicherung von Interaktoren in funktionell charakterisierten, subzellulären	
	Fraktionen	57

6.1.3.1	Präparation von Caveolae	57
6.1.3.2	Präparation von Postsynaptischen Dichten (PSDs)	58
6.2	Charakterisierung, Reinigung und Identifizierung von p75 ^{NTR} -ähnlichen	
	Proteinen	60
6.2.1	P75 ^{NTR} Antiserum zeigt Westernblotsignal auch in p75 ^{NTR} -/- Mäusen	60
6.2.2	Freundl Antigene sind nur im ZNS exprimiert	62
6.2.3	Freundl Antigene werden postnatal herunterreguliert	63
6.2.4	Freundl Antigen Westernblotsignal ist kalziumabhängig	63
6.2.5	Freundl Antigene wechseln die Zentrifugationsfraktion nach Inkubation	64
6.2.6	p75 ^{NTR} Seren detektieren Freundl Antigene in dephosphoryliertem Gehirn-	
	homogenat	65
6.2.7	P75 ^{NTR} -ähnliche Immunfärbung in p75 ^{NTR} -/- Basal Ganglien	67
6.2.8	P75 ^{NTR} -ähnliche Bindung an dissoziierten Spinalganglien von p75 ^{NTR} -/- Tieren	67
6.2.9	Reinigung der Freundl Antigene	68
6.2.10	Identifikation der Freundl Antigene als N-Terminus von MAP1B	73
6.2.11	Die Freundl Antigene werden von einem MAP1B Antiserum detektiert	74
6.2.12	QRADxxESL-Peptide kompetieren nicht um Bindungsepitop	74
6.2.13	Calpain-Proteolyse führt zum N-Terminus von MAP1B	76
6.2.14	MAP1B Fragmente auch <i>in vivo</i> detektierbar	77
6.2.15	Neurotrophine zeigen keinen Einfluss auf die Spaltung von MAP1B	78
6.2.16	Neurotrophin abhängige Runterregulation von p75 ^{NTR} in Körner Zellen	79
7	Diskussion	81
7.1	Biochemische Reinigung eines intrazellulären Interaktors von p75 ^{NTR}	81
7.1.1	Affinitätsreinigung in Gegenwart des extrazellulären Liganden	82
7.1.2	Affinitätsreinigung über die intrazelluläre Domäne	83
7.1.2.1	Proteininteraktionsmessungen mit der BIAcoremaschine	84
7.1.2.2	Interaktorendetektion mit Overlayblots	86
7.1.3	Anreicherung des Rezeptor-Interaktorkomplexes in einer funktionell	
	charakterisierten, subzellulären Fraktion	87
7.1.4	Zusammenfassung und Schlußfolgerungen	88
7.2	Charakterisierung, Reinigung und Identifizierung von p75 ^{NTR} -ähnlichen	
	Proteinen	91
7.2.1	Antiserenhinweise auf p75 ^{NTR} -ähnliche Moleküle	91
7.2.2	Reinigung der p75 ^{NTR} -ähnlichen Proteine	92
7.2.3	Was ist MAP1B?	93
7.2.4	Sequenzhomologie zwischen p75 ^{NTR} und MAP1B	95

7.2.5	Die MAP1B Fragmente	97
7.2.6	Funktionelle Beziehungen zwischen p75 ^{NTR} und MAP1B	97
7.2.7	Calpain und der N-Terminus von MAP1B	99
7.2.8	Neurotrophinabhängige Proteolyse des N-Terminus von MAP1B	100
7.2.9	Experimenteller Ausblick	101
8	Abkürzungen und Begriffe	103
9	Lebenslauf	105
10	Danksagung	107
11	Literaturverzeichnis	109

1 Zusammenfassung

Neurotrophine sind Wachstumsfaktoren. In Säugern modulieren sie nicht nur weitreichende Aspekte der Entwicklung sondern auch Funktionen des erwachsenen Nervensystems. Die Signaltransduktion erfolgt einerseits über den Rezeptor p75^{NTR} andererseits über die Rezeptor-Tyrosinkinasen TrkA, TrkB und TrkC. Während die Signalkaskaden der Trk Rezeptoren weitgehend aufgeklärt wurden, entwickelte sich das Wissen über p75^{NTR} ebenso wie das über die verwandten Mitglieder der "Tumor Necrosis Factor Rezeptor" (TNFR)-Superfamilie nur langsam. 10 Jahre nach der Klonierung sollten mit dieser Arbeit daher die intrazellulären Interaktoren von p75^{NTR} identifiziert werden. Ebenso wie zur Aufklärung der Signalwege anderer Mitglieder der TNFR-Superfamilie wurden biochemische Reinigungsansätze unternommen. Sowohl die Reinigung des p75^{NTR}-Interaktorkomplexes in Gegenwart extrazellulärer Liganden, als auch die Affinitätsreinigung über die intrazelluläre Domäne sowie die Anreicherung des p75^{NTR}-Interaktorkomplexes in charakterisierten subzellulären Fraktionen wurde vorgenommen.

Im Rahmen dieser Arbeit wurden zudem neue Antiseren gegen p75^{NTR} hergestellt. Eines dieser Seren zeigte zusätzliche p75^{NTR}-ähnliche Westernblotsignale. Überraschenderweise konnten diese Signale auch in Gehirnhomogenaten des 1992 hergestellten p75^{NTR}-Teil-*Knockout* sowie in dem bis dahin nur in unserem Labor zugänglichen ersten vollständigen p75^{NTR}-*Knockout* detektiert werden. Die Expression der p75^{NTR}-ähnlichen Proteine war auf das Gehirn beschränkt, wurde postnatal stark herunterreguliert und zeigte in differenzieller Zentrifugation starke Kalziumabhängigkeit. Zusätzlich konnte in p75^{NTR}-*Knockout*-Tieren eine p75^{NTR}-ähnliche Bindungsstelle identifiziert werden. Die p75^{NTR}-ähnlichen Proteine wurden gereinigt, als N-Terminus von des Mikrotubuli Assoziierten Proteins 1B (MAP1B) identifiziert und die Homologie zu p75^{NTR} untersucht.

2 Abstract

Neurotrophins are growth factors. In mammals, they exert a broad range of modulatory effects on developing as well as on mature neurons. Neurotrophin-mediated signals are transduced by either the neurotrophin receptor p75^{NRT} or the receptor tyrosine kinases TrkA, TrkB and TrkC. Whereas signaling via the Trk-receptors is quite well understood, even 10 years after its identification there was little known about the function and signaling pathways of p75^{NTR}. The aim of this work was therefore to identify intracellular interactors of p75^{NTR}. A biochemical approach was chosen, as was previously applied to related proteins of the TNFR-family. Three different purification strategies were used: 1) purification of the p75^{NTR}-interactor complex in the presence of its extracellular ligands, 2) affinity purification via the intracellular domain of p75^{NTR} and 3) enrichment of the p75^{NTR}-interactor complex in characterized subcellular fractions.

In addition, new antisera against p75^{NTR} were generated and characterized. One antiserum recognized additional p75^{NTR}-like signals on Western blot. Surprisingly, these signals remained strongly detectable in brain homogenates of a partial as well as a complete p75^{NTR}-/- knock out mouse. The p75^{NTR}-like antigens were expressed exclusively in the central nervous system, were strongly downregulated during postnatal development and showed calcium-dependent segregation during centrifugation. In addition, a p75^{NTR}-like binding site was detected in dissociated dorsal root ganglia of the complete p75^{NTR} knock out mouse. The p75^{NTR}-like antigens were purified, identified as the N-terminus of the microtubule associated protein MAP1B and the homology to p75^{NTR} was investigated.