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Reviewer: Dr. André Hagehülsmann (MSR)

Disputation: 10.07.2008

Department of Mathematics and Computer Science

Freie Universität Berlin

May, 2008



© 2008

by

Tim OF Conrad



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Extended Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction and Survey . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Goals, Objectives and Tasks . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Topic Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Mathematical Modeling and Algorithms . . . . . . . . . . . . . 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Introduction to MALDI TOF MS . . . . . . . . . . . . . . . . . 25
3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Highly Sensitive Peak Detection . . . . . . . . . . . . . . . . . . 36
3.5 Peak Detection in 2D Maps . . . . . . . . . . . . . . . . . . . . 42
3.6 Peak Registration (Alignment) . . . . . . . . . . . . . . . . . . 44
3.7 Identifying Potential Features . . . . . . . . . . . . . . . . . . . 50
3.8 Extracting Fingerprints . . . . . . . . . . . . . . . . . . . . . . 56
3.9 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 63

4 (Bio-)Medical Applications . . . . . . . . . . . . . . . . . . . . . 65
4.1 Data Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Statistical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Identification of Proteomic Fingerprints in Blood Serum by

High-sensitive Bioinformatic Analysis of SELDI-TOF MS Data
for Detection of Testicular Germ Cell Cancer . . . . . . . . . . 90

4.5 Identification of Proteomic Fingerprints in Blood Serum by
High-sensitive Bioinformatic Analysis of MALDI-TOF MS Data
for Detection of Thyroid Diseases . . . . . . . . . . . . . . . . . 96

4.6 Biological Applications . . . . . . . . . . . . . . . . . . . . . . . 101

5 Computer Science Grid Strategies . . . . . . . . . . . . . . . . 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 The Quasi Ad-hoc (QAD) Grid . . . . . . . . . . . . . . . . . . 111
5.3 QAD Grid Platform Server . . . . . . . . . . . . . . . . . . . . 114
5.4 QAD Grid Worker . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5 QAD Grid Platform Services . . . . . . . . . . . . . . . . . . . 138
5.6 QAD Grid Workflows . . . . . . . . . . . . . . . . . . . . . . . 141

iii



5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 proteomics.net - Product-oriented Case Studies . . . . . . . . 151
6.1 Available Services . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8 Conclusion and Future Directions . . . . . . . . . . . . . . . . . 169
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.2 From Biobanks to Biomarkers . . . . . . . . . . . . . . . . . . . 170
8.3 From Biomarkers to Bioprints . . . . . . . . . . . . . . . . . . . 171

Appendix A Implementation Details . . . . . . . . . . . . . . . . . 173

Appendix B Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . 175

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

iv



New Statistical Algorithms for the Analysis of Mass

Spectrometry Time-Of-Flight Mass Data with

Applications in Clinical Diagnostics

Declaration

I declare that this thesis is my own work and has not been submitted in
any form for another degree or diploma at any university or other institute of
tertiary education. Information derived from the published and unpublished
work of others has been acknowledged in the text and a list of references is
given.

Tim OF Conrad
September 30, 2008

v



Acknowledgments

Diese zum Schluss verfassten Zeilen meiner Dissertation möchte ich nutzen, um
denjenigen zu danken, die mich in den letzten drei Jahren begleitet, unterstützt
und gefördert haben.

Mein besonderer Dank gilt meinem Betreuer Prof. Christof Schütte für
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Extended Abstract

English Version

Mass spectrometry (MS) based techniques have emerged as a standard for
large-scale protein analysis. The ongoing progress in terms of more sensitive MS standard for large scale protein

analysismachines and improved data analysis algorithms led to a constant expansion of
its fields of applications. Recently, MS was introduced into clinical proteomics
with the prospect of early disease detection using proteomic pattern matching. MS for early disease detection

Analyzing biological samples (e.g. blood) by mass spectrometry generates
mass spectra that represent the components (molecules) contained in a sample
as masses and their respective relative concentrations. It is well known that Mass spectra represent relative

concentrations of molecules in a
samplean individual’s proteome is highly dynamic and changes quite dramatically

during a day, depending on a variety of factors. However, analyzing a large
enough group of similar individuals (e.g. “healthy” or “suffering from disease
X”) allows to identify components in the respective spectra that do not differ An individual’s proteome is highly

dynamic and influenced by e.g.
diseasesmuch - with respect to concentration - between individuals from the same

group (constant components).
In this work, we are interested in those components that are constant

within a group of individuals but differ much between individuals of two dis-
tinct groups. These distinguishing components that dependent on a particular
medical condition are generally called biomarkers. Since not all biomarkers
found by the algorithms are of equal (discriminating) quality we are only in- In this thesis: search for spectra

components that reflect particular
diseasesterested in a small biomarker subset that - as a combination - can be used

as a fingerprint for a disease. Once a fingerprint for a particular disease (or Best components can be combined to
a disease’s fingerprintmedical condition) is identified, it can be used in clinical diagnostics to classify

unknown spectra.
This mass spectrometry based method appears to be one of the arising key

technologies for biomarker discovery, understanding of biological mechanisms,
and consequently, it might offer new approaches in drug development.

In this thesis we have developed new algorithms for automatic extraction
of disease specific fingerprints from mass spectrometry data. Special empha- New algorithms for automatic

extraction of fingerprints have been
developedsis has been put on designing highly sensitive methods with respect to signal

detection. This is extremely important in all stages of the pipeline (such as Focus was laid on developing highly
sensitive algorithms to allow
detection of low abundant molecules
within noise

spectra preprocessing, signal detection, signal analysis and identification of
disease specific fingerprints) since many biologically relevant molecules are
found to be very low abundant (such as hormones) thus yielding (compara-
tively) small signals. Thanks to our statistically based approach our methods
are able to detect signals even below the noise level inherent in data acquired
by common MS machines.

To provide access to these new classes of algorithms to collaborating groups
we have created a web-based analysis platform that provides all necessary
interfaces for data transfer, data analysis and result inspection. Following A new analysis platform for signal

(pre-)processing and extraction of
disease specific fingerprints was
developed1
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fingerprint extraction, the platform provides efficient and robust classification
algorithms to determine the medical condition of an individual.

To prove the platform’s practical relevance it has been utilized in several
clinical studies two of which are presented in this thesis. In these studiesPlatform has already been used in

clinical studies it could be shown that our platform is superior to commercial systems with
respect to fingerprint identification. As an outcome of these studies several
fingerprints for different cancer types (bladder, kidney, testicle, pancreas, colon
and thyroid) have been detected and validated. The clinical partners in fact
emphasize that these results would be impossible with a less sensitive analysis
tool (such as the currently available systems).

In addition to the issue of reliably finding and handling signals in noise
we faced the problem to handle very large amounts of data, since an average
dataset of an individual is about 2.5 Gigabytes in size and we have data ofA new ad-hoc Grid infrastructure

was developed to cope with the large
datasets hundreds to thousands of persons. To cope with these large datasets, we

developed a new framework for a heterogeneous (quasi) ad-hoc Grid - an
infrastructure that allows to integrate thousands of computing resources (e.g.
Desktop Computers, Computing Clusters or specialized hardware, such as
IBM’s Cell Processor in a Playstation 3).
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German Version

Das Gebiet der Proteomik (englisch: proteomics) umfasst die Erforschung
des Proteoms, d.h. der Gesamtheit aller in einem Organismus (z.B. Men-
sch) vorhandenen Proteine. Im Gegensatz zum eher statischen Genom ist das
Proteom hoch dynamisch, d.h. die Zusammensetzung wie auch die Konzen-
tration der einzelnen Proteine ändert sich über den Tag teilweise dramatisch
und wird beeinflusst durch zum Beispiel Umwelteinflüsse, Medikamente oder
Krankheiten.

Massenspektrometrie (MS) -basierte Verfahren haben sich als Standard-
technik zur Proteomanalyse etabliert. Diese Verfahren ermöglichen das Bes-
timmen der (relativen) Konzentrationen von Proteinen in Körperflüssigkeiten,
wie zum Beispiel im Blut. In jedem Blutstropfen schwimmt ein vielfältiges
Gemisch dieser Eiweiße; Art und Menge variieren von Mensch zu Mensch. In-
nerhalb dieses Gemisches lassen sich auch Veränderungen entdecken, die durch
Krankheiten hervorgerufen werden. Jede Krankheit verändert dabei eine ganz
bestimmte Menge von Proteinen (bzw. deren Konzentration) in einer charak-
teristischen Art und Weise und besitzt damit einen eindeutigen Fingerabdruck.

Um einen aussagekräftigen Fingerabdruck für eine bestimmte Krankheit
zu finden, müssen zunächst diese Veränderungen (Signale) zwischen den Daten
(Spektren) von Gesunden und Kranken gefunden werden. Diese Signale reprä-
sentieren Veränderungen in der Konzentration von bestimmten Molekülen
zwischen gesunden und kranken Individuen und werden Biomarker genannt.
Analysen der Unterschiede zwischen einer Gruppe von gesunden und einer
Gruppe von kranken Menschen ergeben oft hunderte von verschiedenen Bio-
marker, die von stark unterschiedlicher Qualität sind (bezogen auf den Un-
terschied zwischen “gesund” und “krank”). Daher wird für den tatsächlichen
Fingerabdruck diejenige Teilmenge aller möglichen Signale benutzt, die sich in
Kombination am besten dazu eignen, die beiden Gruppen zu unterscheiden.

Diese gefundenen Fingerabdrücke ermöglichen zum Beispiel die Früherken-
nung von Krankheiten. Allerdings entstehen hier auch neue Herausforderun-
gen: Zum einen stehen zwar große Datenmengen aus gut charakterisierten
Proben für eine valide Statistik zur Verfügung, zum anderen sind gerade
die hier benutzten MS Hochdurchsatzverfahren anfällig für Störungen zum
Beispiel durch Rauschen und erfordern außerordentlich präzise Algorithmen
zur sicheren Signalerkennung innerhalb großer Anzahlen an Datensätzen.

Diese Arbeit beschäftigt sich mit der oben erwähnten Analyse von Daten
aus MS-Experimenten und stellt eine neue web-basierte Analyseplattform und
neue Verfahren zur Vorverarbeitung, Signalerkennung und Fingerabdruck-
erkennung vor. Die erreichten Verbesserungen insbesondere der Detektionssen-
sitivität steigern unmittelbar die resultierende Klassifizierungsgüte, über deren
zugrundeliegende Signale eine gezielte biochemische Identifikation potentieller
Biomarker überhaupt erst möglich wird.

Um die praktische Relevanz der neu entwickelten Algorithmen zu zeigen,
wurde die neu entwickelte Plattform bereits in mehreren klinischen Studien
eingesetzt - zwei dieser Studien werden in dieser Arbeit ausführlich beschrieben.
In diesen Studien wurde gezeigt, dass unsere Verfahren anderen (kommer-
ziellen) Systemen im Bezug auf die Sensitivität bei der Erkennung von Fin-
gerabdrücken überlegen ist. Als Ergebnis dieser Studien wurden neue Fin-
gerabdrücke für verschiedene Krebsarten (u.a. Blase, Niere, Schilddrüse und
Bauchspeicheldrüse) gefunden und validiert. Die klinischen Partner haben
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ausdrücklich betont, dass diese Ergebnisse mit den vorhandenen (weniger sen-
sitiven) Systemen nicht möglich gewesen wären.

Um die Verarbeitung der MS Massendaten zu ermöglichen (ca. 2.5 Giga-
byte pro Datensatz bei Tausenden von Datensätzen), wurde ein neues (quasi)
ad-hoc Grid System entwickelt. Diese Computerinfrastruktur bietet die Mög-
lichkeit zur Einbindung von Tausenden von Rechenressourcen, zum Beispiel
von Desktopcomputern, Computerclustern oder auch Spezialhardware, wie
den Cell-Prozessor von IBM in einer Playstation 3.



Chapter 1

Introduction and Survey

1.1 Introduction

The Postgenomic Era

The successful completion of the Human Genome Project, which identified
and mapped (almost) the entire collection of human genes (the genome), has
uncovered an amazing amount of information. However, this information did Genome Project: foundation for real

question: how do genes work in
humans?only build up the foundation for further exploration to ultimately answer the

fundamental question biologists are interested in: How do the genes in the
genome work together in a human being ?

Although this and related projects (and genetics in general) have received
much attention during the last couple of years one should not forget that the
primary purpose of most genes is to code for proteins. Whereas gene structure Gene’s purpose: code for proteins

and organization are important, the fate of a cell (and thus of each organism)
is determined by specific proteins and some RNAs (Pandey and Mann, 2000). Proteins determine fate of a cell

They execute and control the majority of cellular activities and are the targets
of nearly all our drugs. Realizing this, the primary focus of biologists is shifting Biologist’s focus shifts to proteins

towards the proteome, the set of all proteins the human genome can produce.
More specifically, the proteome is the set of expressed proteins at a given point
in time under specific conditions - and thus dynamic. A snapshot of a cells Proteome (= set of all proteins)

becomes main topicproteome provides information about the ensemble of proteins active in that
Cell proteome provides temporal
information about cell statecell at that time under the given specific physiological conditions (Wasinger

et al., 1995; Wilkins et al., 1996; Naaby-Hansen et al., 2005).
Unfortunately, switching from genes to proteins adds some orders of mag-

nitude to the complexity of the problem: While the human genome is esti-
mated to contain approximately 30.000-40.000 genes that code for proteins,
the corresponding number of proteins these genes encode for is much higher.
Events such as alternative splicing of genes and post-translational modifica- 3 · 104 genes vs. 106 proteins

tions generate a highly diverse set of proteins that could exceed a million
distinct molecular species within a given cell. Most of these being yet unchar-
acterized (Whisstock and Lesk, 2003).

The Proteomics Era

Bringing proteins into the center of attention, the fundamental question from
the first paragraph now turns into: What is the specific purpose of each pro-
tein, how do they interact with each other, how are they modified and how
can we change their actions therapeutically ? New main question: how do proteins

work in humans?

5



6 CHAPTER 1. INTRODUCTION AND SURVEY

Analytical protein chemistry, or proteomics as it is now commonly known,
provides the tools for answering these questions - high-throughput technolo-
gies for the large-scale, rapid analysis of proteins. Experiments showed anProteomics (HT technology) = tools

for finding answers to main questions enormous potential in clarifying biochemical and physiological mechanisms of
complex diseases at a molecular level (Wittmann and Heinzle, 1999; Süssmuth
and Jung, 1999; Qian et al., 2006; Cravatt et al., 2007; Kicman et al., 2007).
The Human Proteome Organization (HUPO, 2005) states that

“The field of proteomics is particularly important because most
diseases are manifested at the level of protein activity. Conse-
quently, proteomics seeks to correlate directly the involvement of
specific proteins, protein complexes and their modification status
in a given disease state. Such knowledge will provide a fast track
to commercialization and will speed up the identification of new
drug targets that can be used to diagnose and treat diseases.”

Motivated by these results, there is intense interest in applying proteomics
to foster a better understanding of disease processes, develop new biomarkers
for diagnosis and early detection of disease and accelerate drug development.Interest in applying proteomics for

diagnostics This interest creates numerous opportunities as well as challenges to meet
the needs for high sensitivity and high throughput required for disease-related
investigations. The handling and analysis of data generated by proteomics
investigations represents an emerging and challenging field. New techniquesData analysis is challenging

and collaborations between computer scientists, mathematicians and biologists
are called for. There is a need to develop and integrate a variety of different
types of databases; to develop tools for translating raw primary data into formsNeed for developing DBs, analyzing

and visualizing methods suitable for other researchers and formal data analysis; to obtain and develop
user interfaces to store, retrieve and visualize the data from databases; and to
develop efficient and valid methods of data analysis. The sheer volume of data
to be collected and processed will challenge the usual approaches. AnalyzingData volume is challenging

data of this dimension is a fairly new endeavor for all participating scientific
fields.

Mass Spectrometry as Dominant Proteomics Technology

Among all proteomic technologies (such as protein microarrays, two-hybrid
analyses or crystallization) mass spectrometry has emerged as the dominantMS dominant technology for

proteome analysis technique for analyzing production and function of proteins in organisms (Ae-
bersold and Mann, 2003). Simply put1, a mass spectrum represents a snapshot
of the abundances of ions (e.g molecular or fragment ions) contained in a (bi-
ological) sample (such as blood serum or other body fluids - see figure 1.1.1
for an example spectrum), plotted against their mass to charge ratio. This
is in particular interesting since it allows not only for examining functions of
isolated proteins but also to detect molecular modifications (result in modified
mass) or monitor changes in concentration.

One way of analyzing mass spectra (which this thesis deals with) is the
extraction of significant differences between spectra obtained from differentMS spectra analysis: extract

differences groups of people. For example, spectra from a “healthy” cohort of patients
can be compared to those obtained from patients having a particular disease.
(Spectra-)Differences between these two groups - which represent differences
on the molecular (peptide) level - can then be used as so called Biomarkers:Biomarkers (= molecules different in

two patient groups) can indicate
disease status indicators for existence, status or progress of a particular disease. Groups of
Fingerprints = group of biomarkers:
can aid early cancer detection 1See section 2.1.1 on page 11 for an introduction to mass spectrometry.
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Figure 1.1.1: A small part of a common spectrum. The x axis reflects the mass
over charge (m/z) value and the y axis the number of times a particle was counted
by the mass spectrometer.

these single biomarkers are called Fingerprints: distinct signal patterns rep-
resenting distinguishing peptide signatures (e.g. protein fragments). Several
studies have shown the potential of such patterns for early detection of dif-
ferent types of cancer (see (Kozak et al., 2005; Becker et al., 2004) and our
studies presented in chapter 4).

Unfortunately, these fingerprints are usually hidden in much larger sets of Fingerprints usually hidden and
small components hard to detectsignals, such as other (non distinguishing) peptide signals or noise (Tibshirani

et al., 2004; Gillette et al., 2005). Especially small signals - which represent
low abundant molecules (such as hormones) - are extremely hard to detect
since they are literally buried in noise. In this thesis we will introduce new New methods for detecting small

signalsalgorithms to reliably detect even these small signals to allow for much more
sensitive biomarkers and thus fingerprints.

1.2 Goals, Objectives and Tasks

As pointed out in the previous section the main goal of this thesis is to find
characteristic signals (biomarkers) of a disease in mass spectra of human blood
samples. If such a signal is present in a spectrum this could mean that the
individual this sample stems from suffers from this disease. Special focus is
put on the highly increased sensitivity of detecting the signals in very large
amounts of data. Two properties that current algorithms cannot deliver.

This thesis has three main parts that are briefly described below. The first
part introduces new methods for the reliable detection of proteomics finger-
prints from noisy mass spectra. The second part deals with the application
of the newly developed pipeline in biology and in medical studies and shows
some examples. In the third part we will describe a new distributed computing
framework that allows us to analyze very large amounts of data without the
need to implement complicated computer clusters or supercomputers.

Today’s mass spectrometry (MS) based protein fingerprinting techniques
rely on the analysis of spectra from complex biological protein mixtures (e.g.
serum) obtained from high-throughput platforms in clinical settings. The
general workflow to extract fingerprints from raw data of two patient groups Fingerprint extraction workflow

is:
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1. Detect contained signals (and filter out noise)

2. Evaluate the signals

3. Identify biomarkers (that is statistically significant differences between
the groups)

4. Build fingerprints and train classifiers using these fingerprints

5. Test performance (that is classification power) of the resulting classifiers
in independent clinical studies

A follow-up study then often tries to determine the underlying molecules to
link the fingerprints to e.g. metabolic pathways.

Part I: Detecting Fingerprints

There are many (still unsolved) problems associated with each of these pipeline
steps. For example, detecting even smallest but relevant signals in the raw
data - which is a complex mix of the real biological signals and (random and
systematic) noise introduced by the high throughput MS machines. In the
first part of this thesis we propose a solution to this problem: new statistic
driven approach that allows to analyze noise and to identify signals below the
commonly used signal-to-noise threshold2 (chapter 3).

Additionall signals identified can be used in subsequent steps to build
better patterns for proteomic fingerprinting analysis. We believe that this will
foster identification of new biomarkers having not been detectable by most
algorithms currently available.

Other very important issues are also addressed, such as preprocessing the
raw signals (e.g. to reduce systematic noise, see section 3.3), reliable mapping
of detected signals across different spectra to allow comparison (section 3.6),
building robust and compact fingerprints (section 3.8) and finally using these
fingerprints to classify unknown spectra (section 3.8.5).

Part II: Medical Application

The algorithms and methods developed in this thesis can be combined to
an analysis pipeline for automated fingerprint detection from and analysis of
mass spectrometry data. This pipeline has been set up and equipped with a
web-frontend to allow access for remote scientists (for example in hospitals).

To prove the platform’s practical relevance it has been utilized in several
clinical studies. We could successfully detect fingerprints for different cancer
types (bladder, kidney, testicle, pancreas, colon and thyroid). Two of these
studies are presented in chapter 4.

Experiments have shown, that the fingerprints found by our algorithms
are missed by commercially available systems that are less sensitive than our
approach.

2The thresholding method only regards signals if their height is above a certain value
determined by a noise-estimation step. A common setting for the minimum signal height is
three times the estimated noise level.



1.2. GOALS, OBJECTIVES AND TASKS 9

Part III: Coping with Mass-Data

The analysis of the typically very large amounts of data (up to several Terrabytes
per clinical study) is a very computationally intensive task. In chapter 5 we
introduce a new framework that allows desktop computers, machines from
computer clusters or other special hardware (such as Sony’s Playstation 3)
to contribute their computing resources in a GRID-like network without the
need of installing complex software.

This framework is then exemplarily used by our newly developed algo-
rithms for the spectra data analysis.
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Chapter 2

Preliminaries

2.1 Topic Overview

This section briefly introduces the three main topics we deal with in this
thesis: Mass Spectrometry (MS) and its applications, proteomics and GRID
computing. The basic connection is as follows: Data is acquired through MS-
based technology, analyzed in a proteomics context and computed using GRID
techniques.

2.1.1 Mass Spectrometry

This section briefly introduces the general mass spectrometry (MS) technol-
ogy. As we will see below, MS comes in different flavors and each sub-type
used introduces different problems and affects some characteristics of the re-
sulting data. The data used and analyzed in this thesis was produced by a
MALDI-TOF MS machine and we therefore will focus on this sub-type. In the
introduction of Chapter 3 we will give more details of the MALDI-TOF MS
process and show the problems and difficulties connected to the MS technology
in general and MALDI-TOF MS in particular.

Why MS ?

Rapid growth of projects and studies in the areas of biological, clinical, phar-
maceutical, environmental and material sciences have led to dramatically in-
creased demands for chemical and structural information of molecules, espe-
cially from complex systems. Mass spectrometry (MS) has become one of the
most successful and popular techniques for the analysis of a broad range of an-
alytes. The underlying concept is to ionize the analytes of interest followed by
separation according to their mass-to-charge ratio (m/z). Adding an optional
separation step preceding the MS step, such as gas chromatography (GC),
high performance liquid chromatography (HPLC) or capillary electrophoresis
(CE), MS becomes a very powerful tool to even detect compounds from very
complicated systems.

Summarized, when using a suited separation technique combined with a
specific ionization source and a high resolution mass analyzer, mass spectrom-
etry provides accurate molecular mass data which allows the determination of
elemental composition and chemical structure of molecules.

11
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How MALDI-TOF MS Works

The main steps in MALDI-TOF mass spectrometry1 are:

Sample Pre-fractionation: To reduce the sample complexity, that is the
number of different proteins in a sample, it is usually pre-fractionated. Widely
used approaches are for example magnetic beads or liquid chromatography
(LC).

Magnetic separations of proteins and peptides have been used widely for
isolation, separation and purification (Safarik and Safarikova, 2004). Usually,
an appropriate affinity ligand is directly coupled to magnetic particles thus
exhibiting the affinity towards target compound(s). Then these particles are
added to the sample and target compounds bind to them. Subsequently, mag-
netic particles with isolated target compound(s) are magnetically separated
and a series of washing steps is performed to remove the majority of con-
taminating compounds and particles. Then the target compounds are usually
eluted.

Liquid chromatography (LC) is another fractionation method using a va-
riety of chemical interactions between the molecules in a sample (the analyte)
and a chromatography column. Basically, a mixture of liquid (e.g. water)
and the actual sample containing the molecules (the mobile phase) is pumped
through a column of stationary phase (usually a tube containing small par-
ticles having a particular surface similar to the magnetic bead case) at high
pressure. The sample/liquid mixture is retarded by interactions with the par-
ticles in the column (stationary phase) as it traverses the column. The time
a particular peptide/protein needs to travel through the column (elutes) is
called retention time. Each molecule has an individual retention time which
can be calculated quite accurately, thus allowing to draw further conclusions.
For an example see section 3.5.

Sample Preparation: In MALDI MS, samples are usually prepared by
mixing with an excess amount (about 104 fold) of matrix molecules that absorb
laser energies. Then this mixture is deposited on a surface and dried. As the
solvent evaporates the sample and the matrix co-crystallize. The purpose of
the matrix molecules is to isolate the analyte molecules from each other and
absorb the intense laser radiation.

Ionizing: The prepared matrix/sample mixture is shot at with a laser beam
that vaporizes and propels the molecules in the mixture into the gas phase
and subsequently ionizes the neutral analytes in the plume of the excited-
state matrix immediately above the sample target. This soft ionization allows
for little or no fragmentation of the molecules and usually produces only singly
charged ions.

Measuring: The ions are then accelerated within an electric field and travel
through vacuum until they hit a detector. The time needed is measured. This
MS type is called time-of-flight mass spectrometer and can deal with molecules
of almost any mass. MALDI MS has successfully detected large molecules up
to 1.5 million Daltons (Da).

1A more technical introduction is given in section 3.2.
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Figure 2.1.1: Potential Cancer Biomarkers Identified by Mass Spectrometry-Based
Omics Technologies, from (Zhang et al., 2007)

2.1.2 MS-based Applications

(Clinical) Diagnostics / Biomarker Detection

The central hypothesis in mass spectrometry-based proteomics technology for
diagnosis is that proteins or fragments thereof (peptides) that are character-
istic for a particular disease can diffuse into the circulation of e.g. the blood
stream. In the case of early diagnosis of cancer, fragments produced by cancer
cells or their microenvironment can diffuse into the circulation during tumor
development and progression. Their relative concentrations are then measured
by mass spectrometry instruments, analyzed by bioinformatics tools and can
then be used for diagnosis (see e.g. (Hoffman and Diamandis, 2004; Diaman-
dis, 2004)).

In the past decade, much effort has been put into mass spectrometry-based
biomarker discovery and the early diagnosis of diseases, such as cancer (in-
cluding ovarian, prostate, breast, bladder, renal, lung, pancreas and others).
During this time many successful studies have produced potential biomark-
ers, some of them are listed in Table 2.1.1. In these studies many different
-omics technologies besides proteomics have been used, such as metabolomics,
peptidomics, glycomics, phosphoproteomics or lipidomics with a diversity of
components (amino acids, peptides, proteins, metabolites and so forth). Ba-
sically, almost any tissue samples or body fluids can be used in these analy-
ses including blood, urine, sputum, saliva, nipple aspirate fluid, tear fluid or
cerebrospinal fluid. Although different types of samples need different frac-
tionation methods many of the above mentioned -omics technologies can be
performed on the same biological samples.

Currently available results are usually presented as a set of discriminating
peaks occurring at the same m/z values but having different height (inten-
sities) in normal and cancerous samples. The peptides / proteins underlying
these peaks remain unknown but this does not greatly limit its utility for med-
ical diagnostics or classification, because diagnosing a disease is a problem of
prediction rather than of etiology (Boguski and McIntosh, 2003).
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Further analyses of these discriminating peaks can lead to (at least par-
tial) identification of the underlying peptides by tandem mass spectrometry
(MS/MS) and might allow new insights into the actual function of these pro-
teins in the organism (see section 6.2.3 for an example).

Drug Development & Pharmacokinetics

Mass spectrometry based techniques are frequently used in many drug devel-
opment stages such as “Peptide Mapping”, “Bioaffinity Screening”, “In Vivo
Drug Screening”, “Metabolic Stability Screening”, “Degradant Identification”
or “Quantitative Bioanalysis” (Lee and Kerns, 1999).

Pharmacokinetics as a branch of pharmacology can be used to analyze the
metabolism of substances (e.g. newly developed drugs) brought into a living
organism. MS based pharmacokinetical studies can help determining how
quick a drug will be cleared from the Hepatic Blood flow and organs of the
body. Advantages of MS based technologies over commonly used methods such
as UV based detection techniques are its high sensitivity and specificity and a
very short analysis time (see e.g. (Covey et al., 1986; Hsieh and Korfmacher,
2006)).

Peptide Quantification

Peptide quantification is a method to compare the amounts of a given protein
among two or more samples. (For an introduction see e.g. (America et al.,
2006; Wang et al., 2006; Wang, Zhou, Lin, Roy, Shaler, Hill, Norton, Kumar,
Anderle and Becker, 2003).) There are two main strategies for quantification:

Label-based approaches (e.g. ICAT, MeCAT, SILAC) use chemical labels
to mark individual peptides as coming from one or the other sample and
measure the difference in one MS run. For example additional neutrons
are added to one of the samples by introducing stable isotopes in one
or more of the atoms comprising the peptide under scrutiny (e.g., 2H
replacing 1H). The peak intensities of the respective peptides can then
be compared to obtain a relative quantification of the peptide in sample
1 vs. sample 2. See (Ong and Mann, 2005) for a good overview of
different labeling strategies.

Label-free approaches depend on comparison of two (or more) individual
MS runs of the same peptide (in different samples) and comparing the
peak intensities. Obviously, two main critical factors are the mass accu-
racy of the mass analyzer used and the ionization quality of the sample,
since the quantification depends on the identification of peaks belonging
to the peptide. The main advantage of this approach is the low cost,
since peptides do not have to be biochemically modified.

2.1.3 Proteomics

The neologism “omics” refers to some (usually but not only) biological field of
study such as genomics or proteomics. The actual object of this study is then
built with the related neologism “omes”, such as the genome or proteome.
Most of the first scientists to use the “-ome” suffix were Bioinformaticians
and molecular biologists who wanted to refer to some sort of wholeness or
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completeness and thought it has some roots in the Greek language - a fact
that was never confirmed in Greek literature.

However, proteomics (in analogy with genomics) has become a well estab-
lished term for (large-scale) studies of proteins, in particular studies of their
structures and functions. Proteins are the main components of the physiologi-
cal pathways of cells. Similar to the genome as the set of genes of an organism,
the proteome is the set of proteins produced by it during its life.

For many scientists, proteomics is considered the next step in the study
of biological systems, logically succeeding genomics. Although the genome is
rather static the proteome is very dynamic: it differs between cells (even of
the same type) and constantly changes (or adapts) in response to biochemical
interactions with the genome and changes in the environment. The conclusion
that follows from these findings is that one organism will have totally different
proteomes at different stages of its life.

Another major difficulty in proteomics is the vast amount of existing pro-
teins and their derivatives (estimated over 500.000) that are due to mecha-
nisms such as alternative splicing or posttranslational protein modifications
(e.g. glycosylation or phosphorylation).

2.1.4 Grid Computing

Grid computing can be defined as an expandable, scalable set of resources
applied to solve a single or a set of problems. These are usually scientific or
technical problems that require a large number of single, non directly depen-
dent calculations. There are a lot of application domains where grids can be
used in, such as design of integrated circuits, drug discovery, molecular mod-
eling, financial simulations, analysis of biological data, or any number of other
computational intensive calculations.

A grid is an architecture that enables dynamic allocation of resources to
varying workloads in accordance with computational needs. Users do not care
where the compute cycles or data reside - it is delivered to them quickly,
efficiently and seamlessly.

Homogeneous Grids (that are similar to the well-known computer clusters)
are usually built with (almost) identical low cost modular components, so one
can start and increase the number of modules as the need grows. In this case
identical means the type of architecture (e.g Intel’s Pentium 4) and operating
system (OS, e.g. Linux Debian).

The roots of grid computing came from the university and scientific com-
munities in the 1980s and early 1990s. It has grown from a viable option to a
necessity for companies in High Performance Technical Computing.

Heterogeneous Grids

Opposed to a homogeneous grid described above, where all modules (ma-
chines) are of the same type (e.g. Intel’s Pentium 4 machines running Debian
Linux 3.4) a heterogeneous grid consists of different combinations of machine
architectures (Intel, Sun, Sparc, Macintosh, IBM Cell / Playstation 3 - see Sec-
tion 6.2.4, ...) and operating systems (Windows, Linux, Unix, Mac OS, ...).
This is typically the case in a mixed environment like a university network.
One therefore needs a special type of software to be able to

� Use the same algorithms on these different architectures without the
need of re-implementation
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Figure 2.1.2: The different fields and some sub-areas we are using in this thesis.

� Provide a way to efficiently exchange (or access) data on these different
platforms and file systems

� Set up communication schemas to distribute the single calculations to
the particular machines and monitor the execution.

In Chapter 5 we describe the approach we have developed to solve these
problems and introduce our workflow-based worker system (section 5.2.3).

2.1.5 Combination of These Topics

The previous sections briefly introduced the different topics this thesis will
deal with: mass spectrometry-based proteomics, clinical diagnostics (requiring
data analysis) and grid computing. Figure 2.1.2 schematically shows how these
topics are inter-connected. The common thread that will show up throughout
this thesis is of course the analysis of mass spectrometry data to allow clini-
cally relevant diagnosis. The next chapters - which are also suited to be read
separately - will first explain how mass spectrometry data is acquired and an-
alyzed (chapter 3) and how these techniques can be used in medicine / clinical
applications (chapter 4). Then we explain the bottleneck of the data analysis,
namely the large amounts of data that need to be analyzed to get significant
results and show how to solve this issue by performing the analyses on many
computers in parallel (chapter 5). Finally, we present a prototype and give
some case studies to demonstrate the possibilities of these new algorithms and
technologies (chapter 6).

2.2 An Example

This section will give a small example to illustrate the main steps of finger-
print detection, introduced in the previous section. To avoid scientific jargon
as far as possible we have chosen to do this on the basis of piles of Lego bricks
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(a) Opera A (b) Opera B

Figure 2.2.3: The two types of operas to be built. Note the little difference at the
doors of the opera: in the right (type B) there are four white doors.

(which might seem a little bit artificial but serves the purpose). The con-
nection between Lego piles and spectra is quite simple: both contain several
thousand signals - single Lego bricks in a pile or peaks in a spectrum. Again,
the challenge is to find signals that can be used to differentiate between two
groups (piles “A” vs. piles “B” or spectra group “diseased” vs. spectra group
“healthy”). However, spectra of two different groups might differ in just one
or two changes in the signals. In other words, the images of two spectra are
extremely similar.

Suppose at LEGOLAND they want to build a new Lego opera city consist-
ing of two different kinds of operas (opera A and opera B, see Figure 2.2.3). For
some reasons, they want the two types to look almost identical and therefore
the required Lego bricks are almost the same for each type. The LEGOLAND
officials already have a big storage building where a machine has produced
all the needed Lego bricks: one big pile for each opera to build (as shown in
Figure 2.2.4). All the piles look virtually identical since there existed a pro-
duction schema specifying the order in which the bricks are to be produced
and where to place them. The machine exactly followed this plan, so the only
way in which two piles can differ is the type of bricks (between an opera-A
pile and an opera-B pile) or if a brick slid down a pile’s slope and therefore
its desired position got altered.

Unfortunately, this production plan is lost, hence, we have no idea where
the differences between the two kinds of piles are. All we know is that the
differences are extremely small, as shown in Figure 2.2.5: here we zoomed into
the same region of an opera-A and an opera-B pile. Luckily, when the machine
produced the piles, someone did label some of them with their respective labels,
“opera-A” or “opera-B”.
The tasks are now:

1. to identify which Lego bricks distinguish the two groups of piles and

2. to tag each of the remaining unlabeled piles with its appropriate descrip-
tion (A or B).

To enable us doing the analyses the LEGOLAND management has sent
us pictures showing every pile from top (see Figure 2.2.6 for an example).
Obviously, the camera used was not very good so the pictures taken are quite
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Figure 2.2.4: An exemplary pile of Lego bricks. These could be the Lego bricks
needed to build a type A or type B opera.

(a) Zoom into an opera-
A pile - the encircled
area in picture 2.2.4.

(b) Zoom into the same
region as in the left pic-
ture of an opera-B pile.

Figure 2.2.5: Zoomed into the same region of Lego piles for the two different operas.
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Figure 2.2.6: Two pictures of two distinct piles of Lego bricks taken by the
LEGOLAND team. They differ in one Lego brick. (Hint: it is the brick shown
in Figure 2.2.5.)

blurred. This extremely complicates the reliable detection of details such as
the borders of the single bricks or small differences. The two pictures in Figure
2.2.6 have the same differences as in Figure 2.2.5 - can you still find them ?

Recipe

Now, having an idea about the data we are working with (in this example)
we will give a small recipe to fulfill the task stated in the previous section.
We will later use the ideas sketched here to describe the actual algorithms
developed in this thesis. The steps are:

1. Find the bricks

2. Group the bricks

3. Analyze the groups

4. Check the feature quality

5. Compile a fingerprint

Step 1: Find the bricks

Figure 2.2.7: Shown
are the borders found by
a border detection algo-
rithm applied to a picture
of Lego bricks.

In each picture detect the borders of the individual Lego bricks (see Figure
2.2.7). For each brick found, write down its position and color in a list. Since
every picture can be processed independently from each other we can distribute
the single pictures to many different workers and collect the resulting lists
afterwards.

Step 2: Group the bricks

Use the lists of the previous step to identify and group together the same brick
in each picture. We assume that the same brick will appear at almost the same
position in each pile.

For example, bricks of group 1 have the position shown in Figure 2.2.8:
notice that although the two bricks of group 1 differ in color (the little white
dot alters the bricks overall color) they still belong to the same group. So,
a group is essentially a list of bricks having the same (or similar) positions
identified by a specific number.
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Figure 2.2.8: Bricks of the two kinds of operas. Some of them are labeled with the
number of the group they belong to. Notice the difference in the two bricks of group 1
and recall that the only condition for a group membership is the position while other
properties such as color may be different.

Step 3: Analyze the groups

For each group from the previous step check if all its bricks roughly look the
same or if we can identify differences between bricks from an opera-A pile
versus an opera-B pile. For example, within the same group bricks from an
opera-A pile might be darker than bricks from an opera-B pile which would
then be two sub-groups with different average color. This is illustrated in
Figure 2.2.9: we are looking at seven random members of group 1 (see Figure
2.2.8) and there are obviously two sub-groups: the bricks from opera-B type
piles have a white spot so the average color of a brick in this opera-B sub-
group is around 230. Bricks from an opera-A type pile do not have this white
spot which decreases the average brightness value to about 200.

(a) B,
color:
231

(b) A,
color:
205

(c) B,
color:
134

(d) B,
color:
232

(e) A,
color:
204

(f) A,
color:
206

(g) A,
color:
201

Figure 2.2.9: Seven lego bricks of group 1 in Figure 2.2.8. Obviously, there exist
two sub-groups.

From now on we will call a group that has two different sub-groups a
feature. So here a feature has three properties: the group number and the
average color values of its two sub-groups (for group 1: 200 for the opera-A
type and 230 for the opera-B type).

Now, the usage of a feature to determine an unknown pile’s type is quite
simple: From our feature we know the average position (since it is still a
group) and the color a brick would have if it belongs to an opera-A or opera-B
type pile. Consequently, we just have to take the picture of the unknown pile,
identify the brick at this features position and determine its color and compare
it to the colors for an opera-A or an opera-B type. The closer it is to one of
them, the more likely it is that kind of opera.

Step 4: Check the feature quality

Use each feature found in the previous step to guess the label of a pile we
already know. If the answer is correct, we count this as a success. We now
test each feature with every (already labeled) picture we have and count the
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successes. We call the percentage of successes the quality (e.g. 30 correct
labels out of 50 pictures yields a quality of 60%).

Step 5: Compile a fingerprint

Out of the list of features from the previous step take all features having a
quality value above 95%. We call this resulting list of features a fingerprint. To
determine the type of a pile using such a fingerprint, we perform the decision
as described in step 4 for each feature of this fingerprint one after another.
Each decision is treated as a vote for opera-A type or opera-B type. The type
with the most votes wins and is taken as the final result.

Remarks

Of course this example and the recipe are quite simple and sketchy. We omitted
many details, background information and occurring problems - for example,
how do we handle pictures with missing areas ? And, admittedly, it is not
very common that one needs to tell apart two piles of Lego bricks on the basis
of fuzzy pictures.

However, in the next chapters we will see how similar these problems,
questions and eventually concepts and solutions are in the actual field of this
thesis: the analysis of groups of mass spectra images resulting from human
blood samples. We will show how to use, extend and improve these concepts.

2.2.1 Term Comparison

This table shows a comparison of terms used in the Lego example and the
according terms used in later chapters.

Term in Lego example Term used later

Pile picture Mass spectrum
Storage building Hard disk drive

Lego brick producing machine Mass spectrometer
Camera Time-of-flight measurement

Opera type (A and B) Patient group (e.g. healthy or diseased )
Brick Peak

Brick position Peak center
Brick color Peak area and shape

Brick border Peak shape
Feature Feature

Fingerprint Fingerprint
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Mathematical Modeling and
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3.1 Introduction

In the introductory Lego example (section 2.2) we presented the core idea of
this thesis: given two different groups of Lego piles, find bricks that correspond
in piles within the same group but differ between the two groups. We called
those bricks features and used the best features to compile a fingerprint. A
fingerprint could then be used to identify the type of an unknown pile. Al-
though being quite simple we already identified some fundamental challenges,
such as the identification of a bricks borders given fuzzy data.

When transferring the ideas of the Lego example to the analysis of mass
spectra the main idea stays the same: find distinguishing properties of two
groups. As we will see in chapter 4 these properties can be used to build clas-
sification algorithms able to distinguish healthy from diseased people. This
chapter will describe the pipeline necessary to achieve this which is shown
exemplarily in Figure 3.1.1. As the colors indicate, there a four basic compo-
nents:

Preprocessing: Prepares the spectrum for subsequent stages. These prepro-
cessing steps mainly removes noise and systematic errors (section 3.3).

Peak Seeding: Find signals (peaks) in the preprocessed spectrum (sections
3.4, 3.5). This is similar to the border detection step in the Lego example

23
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Figure 3.1.1: Overview of the pipeline. The colored boxes show the distinct modules:
“(Signal) Preprocessing”, “Peak Seeding”, “Peak Picking” and “Analysis”. The gray
arrows indicate the data flow.

(see section 2.2): at this stage borders of the peaks are detected and
convoluted peaks separated.

Peak Picking: Classify signals found as noise or relevant peaks (sections 3.4,
3.6). This corresponds to the grouping of bricks in the Lego example.

Analyses: Determine significance of relevant peaks to distinguish spectrum
groups, such as “healthy” vs. “diseased” (section 3.7). Select the best
peaks to distinguish between two groups (section 3.8).

Now, one of the first questions jumping to mind when looking at a technol-
ogy, some hundred years old usually is: “Isn’t it already fully understood and
haven’t algorithms been developed already that can perfectly analyze these
data ?” The simple answer is “No”. It is still unclear what exactly happens
inside the machine (with respect to physical and biochemical phenomena) and
many approaches have been published that are continuously improving, but
still far from being perfect. To give you a better understanding, the next
section will introduce the main principles and resulting problems we have to
deal with. In the remaining of the chapter we will introduce our approaches
to cope with these issues.

3.1.1 Comparison to Other Concepts

The division into the components (pipeline steps) described above is somewhat
different to what is usually described in the literature. This is because most
algorithms are using one spectrum at a time for analysis in contrast to o ur
approach where we use many spectra simultaneously to refine the quality of
our findings. For example, usually a Peak Picking algorithm is designed to
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extract the precise mass/charge (m/z) ratio of the contained peptides and
comprises the steps we named Peak Seeding and Peak Picking.

As will will see in later chapters this approach seems reasonable to us since
the majority of data used in this work1 is acquired from highly complex protein
mixtures. Most other algorithms are designed to analyze data stemming from
less complex samples. Thus, also the concept of a Peak is slightly different:
in this work we use the peaks found during an analysis to de-convolute larger
peak groups to obtain the original peak patterns representing single peptides.
In data from less complex samples the de-convolution can usually be ommited
and a peak (or a small group of peaks called an isotopica pattern see section
3.4) can typically be identified with a particular peptide.

3.2 Introduction to MALDI TOF MS

Introductory remark: A complete understanding of the internal physical
or (bio-)chemical processes of MALDI does not yet exist, which not only af-
fects further optimization of MALDI but also renders a full understanding of
the resulting spectra impossible. Poor shot-to-shot and sample-to sample re-
producibility resulting from the crystalline matrix (see below) is another issue
that must be dealt with when interpreting the results. Finally, due to matrix
fragments the MALDI process produces a large amount of ions below m/z 600
(background noise), which makes it impossible to analyze molecules below this
threshold.

History of MS

In the mid-nineteenth century, the physicist Julius Plücker investigated light
emitted in gas-filled tubes (discharge tubes) arising from ionizing the gas by
applying voltage through electrodes at both ends of the tubes.

Later, in 1886, another physicist Eugen Goldstein discovered that discharge
tubes with a perforated cathode emit a glow at the cathode end. Goldstein
concluded that there exists a ray of positive ions passing through the channels
in the cathode, which he called Kanalstrahlen (canal rays).

In 1899 the Nobel Prize laureate Wilhelm Wien (again, physicist) found
that strong electric or magnetic fields deflect these canal rays and constructed
a device with parallel electric and magnetic fields. This device could separate
positive rays according to their charge-to-mass ratio (e/m) and was further
improved consecutively by J.J. Thomson, A.J. Dempster (1918) and F.W.
Aston (1919) to create the first mass spectrograph.

The modern version of these MS machines (we are mainly using in this the-
sis) was introduced in 1987 by Franz Hillenkamp and Michael Karas: matrix-
assisted laser desorption/ionization mass spectrometry (MALDI-MS).

In 2002, the Nobel Prize in Chemistry was awarded to John B. Fenn for
the development of electrospray ionization (ESI) and Koichi Tanaka for the
development of soft laser desorption (SLD) in 1987.

General Principal

As briefly discussed in section 2.1.1 a modern MALDI-TOF mass spectrometer
contains at least (see Figure 3.2.2)

1The data is described in detail in section 4.1
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Figure 3.2.2: Basics of a modern MALDI-TOF mass spectrometer. (1): Laser,
(2) Sample Slide, (3) Acceleration Chamber, (4) Drift region, (5) Detector. (Picture
modified from (Finnigan, 2007).)

� a laser (1) and the matrix/sample mixture (2), serving as the ion source,

� a time-of-flight (TOF) analyzer to separate the ions based on their
mass/charge ratio (m/z) (3,4), and

� a sensor for detecting the ions (5).

(2)-(4) and sometime (1) usually occur under vacuum conditions, since colli-
sion with residual gas molecules would hinder the ion separation.

The fundamental idea is that the ions (of charge q) are generated by aq: Charge, q = e · z

laser beam ((1) & (2) in Figure 3.2.2) and then accelerated through an electric
field of constant energy E ((3) in Figure 3.2.2) , of hundreds to thousand ofE: Strength of electric field

volts. This allows the description of the ion behavior with newtonian equations
(Guilhaus, 1995).
Therefore, the ions travelling in this field (with potential V ) are acceleratedV : Potential

with force F :F : Force acting on ions during
acceleration

e: Unit charge (charge of a proton)

z: Number of unit charges of ionized
molecule

q: Charge

F = E · e · z = E · q and F = m · a

so acceleration (a) equalsa: Acceleration

a =
E · q
m

Acceleration is also the change of velocity (v) over time (t), dv/dt. So in thev: Velocity

t: Time acceleration region (over distance sa) with a given initial velocity (v0):
sa: Distance of effective acceleration

v0: Initial velocity

v − v0 =
∫

E · q
m

dt

and

v = v0 +
E · q
m
· t

The time to traverse the acceleration region (ta) is given by:ta: Time ion travels through
acceleration field
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ta =
v − v0

a

= m · v − v0

E · q
= m · v − v0

E · e · z
=

m

z
· v − v0

E · e (3.2.1)

The travelled distance (s) during this time, which is the distance to a zero s: Distance

position, measured from the initial position (s0) of the ion is calculated by: s0: Initial position of ion, relative to
zero position

s− s0 =
∫

vdt

= v0 · t +
E · q
2 ·m · t

2

After the acceleration through potential V and before the ions eventually hit
the detector ((5) in Figure 3.2.2) they travel through the drift region (with
length D, (4) in Figure 3.2.2) with kinetic energy UD and drift velocity vD D: Length of drift region

UD: Energy of ion in drift regionand with
vD: Drift velocity

Ekin =
1
2
·m · v2

we get

UD = q · V = q(E · sa) =
1
2
·m · (vD − v0)2

This allows for the calculation of the drift velocity (vD):

vD = v0 +

√
2 · q · E · sa

m

and therefore we can compute the time the ions travel through the drift region:

tD =
D

vD

= D · (
√

m

2 · q · E · sa
+

1
v0

)

= D · (
√

m

2 · q · V +
1
v0

)

= D · (
√

m

z
·
√

1
2 · e · V +

1
v0

) (3.2.2)

Summarized, the total time-of-flight (TOF) is TOF : Time-of-flight

TOF = ta + tD

Of course, this is the assumption for a perfect world. In practice there are
(at least) two more variables: the time between the start of timing and the
acceleration of the ions (t0) and the detector response time (td). Including t0: Time of ion formation

td: Detector response time



28 CHAPTER 3. MATHEMATICAL MODELING AND ALGORITHMS

this yields:

TOF = t0 + ta + tD + td

Modern TOF MS machines usually ensure that vD À v0 and t0 and td are as
small as possible. Nevertheless, these small contributions to the overall TOF
have an impact on the spectra as we will see later. However, following from
equations 3.2.1 and 3.2.2 we can state that:

TOF ∝
√

m

z
(3.2.3)

This exhibits the actual relation between mass and time-of-flight:

m

z
= a · TOF 2 + b (3.2.4)

a being a proportionality constant that can be shown to be

a =
2 · sa · e · UD

(2 · sa + D)2

and b another constant modeling the influence of t0 and td (and potentially
others). Of course, equations 3.2.3 and 3.2.4 only hold if all accelerations are
constant during measurement.

The beauty of these constants is that they can be used to calibrate a mass
spectrometer by determining their (machine dependent) values from the times
of flight of some known m/z values.

Resolution Issues

Figure 3.2.3: This
shows the definition of
peak width: the width
of a peak is defined to
be the width the peak
has at its half maximum
(Full Width At Half Max-
imum, FWHM).

The resolution of a mass spectrometer states the ability to separate ions of
similar mass-to-charge ratio. It is defined as

m
z

4m
z

where m
z is the value of

interest and4m
z the width of a peak at this m

z value at half maximum height
(full width at half maximum height, FWHM, see Figure 3.2.3). Intuitively,
it is clear that the narrower a peak for ions of a particular m

z ratio, the better
the resolution of the machine. To show this let us start with Equation 3.2.4:

m
z = a · t2

Differentiation with respect to time yields:

dm
z

dt
= 2 · a · t

For a finite interval this becomes:

4m

z
= 2 · a · t · 4t

and hence

4m

z
· t = 2 · m

z
· 4t

m
z

4m
z

=
t

2 · 4t

The final equation clearly shows that resolution mostly dependends on the
difference in the measured flight times for ions of similar mass or m/z values.
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Or, in other words, the more exact the machine can determine the time an ion
travels from the moment of its ionization until it hits the detector, the higher
the resolution is. Analyzing the equations from the previous section we see
that many factors contribute to an ions flight time, including:

1. initial states of the ions (prior to acceleration), such as velocity (v0),
position (s0) and time of formation (t0)

2. non-ideal vacuum that introduces particle collisions (affects uD)

3. non-ideal acceleration or drift regions, which affect uD and UD

4. fragmentation of ions, either in acceleration or drift region (affects at
least uD)

The factors that limit the resolution mostly are the distribution of the ions
initial states. These result in slightly blurred spectra (see the Lego example).

Other Types of MS

In this thesis we mainly use data from MALDI MS machines since most of
the recent publications in clinical setting are using this kind of technology.
However, besides MALDI there are other types of MS technology that are
briefly described in the following paragraphs.

SELDI Surface-enhanced laser desorption/ionization (SELDI) is another
common ionization method in mass spectrometry that is used for the anal-
ysis of protein mixtures (Tang et al., 2004). Opposed to MALDI, the protein
mixture is spotted on a surface with a chemical. Such a surface (e.g. CM10,
a weak-positive ion exchange, or IMAC30, a metal-binding surface) specifi-
cally binds some proteins from the sample while the others are removed by
washing. After washing - as in MALDI - the matrix is applied to the surface
and crystallizes with the sample peptides. Thus, the SELDI surface acts as a
separation step. Surfaces can also be built with antibodies or DNA.

SELDI technology was developed by T. W. Hutchens in 1993 (Hutchens
and Yip, 1993) and commercialized by Ciphergen Biosystems in 1997 as the
ProteinChip system. It is now produced and marketed by Bio-Rad Laborato-
ries.

ESI Electrospray ionization (ESI) (Fenn et al., 1989) is another technique
to produce ions and rewarded with the Nobel Prize in Chemistry to J.B. Fenn
in 2002. It is especially well suited to ionize large macromolecules because it
overcomes the propensity of these molecules to fragment during ionization.

In electrospray ionization, a liquid containing the sample is pushed through
a very small, charged capillary (Fenn et al., 1990). The sample is dissolved in a
large amount of solvent and is already ionized. Because like charges repel, the
liquid pushes itself out of the capillary and forms an aerosol consisting of small
droplets. As the solvent evaporates, the sample molecules are forced closer
together, which causes repellence thus breaking up the droplets. Resulting
ions are then accelerated and fly to the detector as in the SELDI or MALDI
case. Opposed to the MALDI ionization process ESI produces also multiply-
charged ions such as [M+2H]2+.
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3.3 Preprocessing

3.3.1 Introduction

The raw data X(t) acquired from the Mass Spectrometer (MS) is a mixture
of the real signal (S) and multiple components of noise (see Figure 3.3.4):
X(t) = B(t) + I · S(t) + ε(t), which are described below. The preprocessing
step removes these modifications and recovers the original data as good as
possible. These steps are crucial for subsequent algorithms (such as peak
detection or further analyses) to deliver reliable results.

Figure 3.3.4: Components of the raw data acquired from the MS machine: (a)
actual signal (S), (b) baseline (B) and (c) random and chemical noise (ε).

In the Lego example (see section 2.2) the error source we considered was
the fuzziness of the pictures leading to problems in border detection.

3.3.2 Sources of Uncertainty

In this section we describe the sources of the different types of noise and
transformations which modify the original data and eventually produce the
raw data that is acquired by the MS machine, these are:

Systematic and random noise (B, ε) The noise itself consists of a low-
frequency baseline (B) and high-frequency chemical and random noise
(ε). The baseline is an exponential like offset dependent on the m/z
value (mass-to-charge; x-value). It is mainly caused by clusters of matrix
components and small molecular fragments originating from degradation
processes, desorption and collisions in the acceleration phase.

Incomplete (missing) data After the detector of the MS machine is hit
by a particle it needs some milliseconds to recover. During this time
it cannot record other particles it collides with and is literally blind.
However, advances in the detection techniques and new MS technologies
like ion-trap seem to decrease this type of error in the future.

Shifts in m/z direction A MS machine needs to be calibrated before it can
be used for the acquisition of data. This calibration needs to be done
carefully and many factors like temperature, humidity and the peptide
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mix (external standard) used are important for reliable results. Not only
the zero-point of the particular machine is determined, but also machine
specific transformations (machine dependent constants, see for exam-
ple Equation 3.2.4). Once these parameters are determined correctly
the measurement errors are corrected automatically during acquisition
within the machines hardware.

Shifts in intensity direction (I) A biological sample (e.g. blood) auto-
matically undergoes some changes in its biochemical content, mainly
caused by proteases (see section 4.1.1). Furthermore, when mixed with
the so-called matrix, a quite inhomogeneous mixture forms, which then
becomes the final sample, put into the MS machine. Within this inho-
mogeneous sample there exists so-called sweet spots where the density of
proteins is much higher than average. If now the laser beam hits these
sweet spots, the intensity of these molecules increases excessively.

3.3.3 Our Approach

In the following, we describe the algorithms we have developed (or modified
to fit our needs) to step-by-step recover the original signals available in the
sample put into the MS machine. The overall procedure is as follows:

Algorithm 1 Preprocessing
Require: Raw Spectrum as x, y value pairs

Apply wavelet-based de-noising
Apply tophat-based baseline reduction
Apply normalization
return Preprocessed spectrum

3.3.4 Denoising

Denoising the raw data X tries to remove whatever noise (ε) is present in X
while retaining whatever signal S is present. (Note baseline removal baseline
is handled separately - see section 3.3.5.) This is not to be confused with
smoothing which removes high frequencies present in the data and retains
low ones opposed to denoising which attempts to remove whatever noise is
present. Denoising generally yields better results in subsequent steps of the
analysis workflow, since some general assumptions about smoothness can be
taken. However, in practice most of the noise in MALDI-TOF spectra is
indeed contained in the high-frequency component of a spectrum. This is
mainly due to a number of factors, such as electrical inference, random ion
motions, statistical fluctuation in the detector gain or chemical impurities (see
e.g. (Shin et al., 2007)). There are several (heuristic) approaches for noise
reduction in the literature such as moving average filters (Liu, Krishnapuram,
Pratapa, Liao, Hartemink and Carin, 2003), Gaussian kernel filters (Wang,
Howard, Campa, Patz and Fitzgerald, 2003), or PCA (Statheropoulos et al.,
1999). However, most of these (parametric) noise reduction approaches have
been established based on empirical insights and the parameters need to be
fine-tuned to make the method work properly - this is always case sensitive
and time consuming.

Our studies have shown that the approaches mentioned above are not very
well suited for reducing noise in MALDI/SELDI-TOF spectra: for example,
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in some of our test cases they alter the relative peak intensities where subse-
quent analyses rely on (e.g. to obtain the relative compound concentrations
correctly). This has also been found by by others (e.g. (Li et al., 2007)).
Our preliminary experiments have shown that non-parametric techniques are
more appropriate. Out of these approaches a wavelet shrinkage approach (for
a review see (Taswell, 2000); a nice introduction can be found here (Louis
et al., 1998)) has performed best on artificial data and data from spiked ex-
periments where we knew the peak positions and intensities. This wavelet
shrinkage approach has been reported to be very well suited for denoising of
mass spectrometry data (see e.g. (Ojanen et al., 2004; Liu, Sera, Matsubara,
Otsuka and Terabe, 2003; Coombes et al., 2005)).

Opposed to other denoising algorithms, such as moving average or low-
pass filter (e.g. Savitzky-Golay), this approach utilizes the multi-scale nature
of the signal and therefore has better energy conservation properties, that is,
the amplitude of the signal decreases less through denoising.

The multi-scale method used here is based on a time-invariant discrete
orthogonal wavelet transformation (Nason and Silverman, 1995) because or-
thogonal wavelets can give the most compact representation of a signal. During
the wavelet transform at each scale high- and low-pass filters are applied to
the signal. The output from a high-pass filter is recorded as the wavelet co-
efficients and represents the details of the signal. The low-pass filter extracts
the low-frequency components which are used in the next stage where another
set of high- and low-pass filters is employed.

Wavelet shrinkage denoising does involve non-linear soft thresholding (shrink-
ing) in the wavelet transform domain (Donoho, 1995). It is based on the
assumption that wavelet coefficients of the true signal have high amplitude,
opposed to the lowest magnitude coefficients that represent the noise (see Fig-
ure 3.3.5 for an example). Thus, by eliminating coefficients that are smaller
than a predetermined threshold this noise can be removed. Summarized, it is a
three step process: a linear forward wavelet transform, a non-linear shrinkage
denoising of the resulting coefficients and a linear inverse wavelet transform.
None of these steps needs a-priori parameterization of a particular model.

We now give a more formal definition. We assume we are given a noisy
signal (the raw data) X consisting of m (noisy) samples

X(t) = S(t) + ε(t), t = 1 . . .m

This raw signal X is assumed to contain the real signal S with additive noise
ε. Let W(·) denote the forward and W−1(·) the inverse wavelet transform
operators and Ds(·, λ) be the denoising operator with a data adaptive soft
threshold λ. Our aim is to denoise X to estimate Ŝ which should be as close
as possible to the original signal S. The three step process mentioned above
is then:

� Linear forward wavelet transform: Y = W(X). This results in m noisy
wavelet coefficients yj,k.

� Non-linear shrinkage denoising, that is thresholding the wavelet coeffi-
cients which includes estimating the threshold λ = {λ1, . . . , λj} for each
level j (see below)

– λ = d(Y )

– Z = Ds(Y, λ)
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Figure 3.3.5: Noisy signal (top) and its discrete wavelet transform (using a Symmlet-
10) at level L = 6. The wavelet coefficients are shown as spikes for the levels (−6 . . .−
10). The size and direction a spike (coefficient) represent its magnitude and sign.

� Linear inverse wavelet transform: Ŝ =W−1(Z)

Obviously, selecting the threshold λ is key to successful denoising. A global,
non-adaptive λ to remove white noise is proposed by (Donoho, 1995):

λ = σ ·
√

2 · log(m), σ =
MAD

0.6745
where m is the length of the signal and MAD an estimator of the noise level
determined by the median absolute deviation in the first scale (the constant
0.6745 makes the estimate unbiased for the normal distribution.).

From the tested shrinkage schemas (VisuShrink universal, Minimax, Stein’s
Unbiased Risk Estimate (SURE) and Minimum Description Length) the SURE
approach (Stein, 1981; Donoho and Johnstone, 1995) was found to deliver the
best results. It determines a threshold for each resolution level (scale) by the
principle of minimizing the Stein Unbiased Estimate of Risk. This approach
is smoothness-adaptive and has some interesting properties when used for the
MALDI-TOF spectra that can contain spiky as well as smooth peaks: if the
unknown signal S contains jumps, the reconstruction Ŝ does also and if S
contains smooths regions Ŝ will be as smooth as the basis functions will allow.
Figure 3.3.6 shows an example of this shrinkage applied to a usual MALDI-
TOF spectrum.

Experiments have shown, that de-noising the signal improves classification
accuracy of spectra (at the final stage of our pipeline, see section 3.8.5) by
4-5% on average, given all other parameters being equal. This is in good
accordance with other studies, for example (Li et al., 2007) who achieve an
improvement of 3-8% on similar SELDI-TOF serum data.

3.3.5 Baseline Correction

A baseline correction is performed to remove this rather low-frequency noise
from the spectrum. Following (Breen et al., 2000; Sauve and Speed, 2004;
Gröpl et al., 2005) we use a morphological TopHat filter (Zeng et al., 2006).
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Figure 3.3.6: Application of wavelet-based denoising. The buttom row shows the
de-noised version of the respective curve from the top row. Note that the curve
structure is retained while the high frequent noise is removed.

Morphological signal analysis are useful for feature extraction, shape anal-
ysis and non-linear filtering. The TopHat transform function is a morphology
function that allows the extraction of peaks and valleys in n-dimensional sig-
nals. An efficient TopHat transform was introduced by (Meyer, 1979) and is
based on set concepts (Serra, 1982). Given a structural element ∆ (“the base
of the hat”) and a (1d) signal X (e.g. a spectrum) the TopHat filter needs
two basic morphological transformations of

Erosion

(X ª∆)(t) = inf{X(t + i) : i ∈ ∆}
and Dilation

(X ⊕∆)(t) = sup{X(t + i) : i ∈ ∆}
Using these the Opening function can be defined as:

X ◦∆ = (X ª∆)⊕∆

The actual TopHat operator is then defined as:

TH(X) = X − (X ◦∆)

Intuitively, during application of the TopHat operator, peaks that cannot con-
tain ∆ remain, while the others get eliminated.

Using this mathematical morphology analysis we can now eliminate certain
spatial structures within the signal, in our case the baseline. Its simplicity and
rapidity (mainly min/max operations) make it extremely handy for application
to large amounts of data.

Fig. 3.3.7 illustrates this method. Note that for any ∆, X ≥ X ◦ ∆
everywhere; thus, TH(X) is a non-negative signal opposed to other popular
methods depending on polynomial fitting (Mazet et al., 2004), piecewise linear
regression (Wagner et al., 2003) or convex hulls (Liu, Krishnapuram, Pratapa,
Liao, Hartemink and Carin, 2003) do. This property will become extremely
useful in the peak detection step (see section 3.4).
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Figure 3.3.7: This shows the results of the TopHat Filter: the TopHat opening (see
text) is subtracted from the raw signal (shown on the left) yielding the filtered version
(on the right). Note that this method does not generate negative signals.

3.3.6 Normalization

Inter-spectrum normalization is the process of removing systematic variations
between spectra. Many different techniques exist such as “Inverse Normaliza-
tion” (Petricoin et al., 2002) or “Logarithmic Normalization” (Li et al., 2004).
Our implementation follows the idea of the most frequently used method which
is global normalization with respect to the average total ion current (TIC2)3

(Fung and Enderwick, 2002; Baggerly et al., 2003) with an important exten-
sion: from the set of spectra to be normalized all TIC values are computed,
outliers removed and the remaining highest value (instead of the average) is
used for the actual computation.

3.3.7 Computational Complexity Analysis of Preprocessing

The complexity of the single steps of the preprocessing

Denoising: O(n log n) (Besbeas et al., 2004)

Baseline reduction: O(n) (Gao et al., 2003)

Normalization: O(n)

(n being the number of input samples) yields a total complexity of O(n log n).

2The TIC is the sum of the area of all peaks in a spectra.
3The normalization by the ratio R = “TIC of spectrum”

“Average TIC of all spectra”
is reported to be superior

to other methods tested (Norris et al., 2005; Sauve and Speed, 2004).
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3.4 Highly Sensitive Peak Detection

3.4.1 Introduction

In this (second) stage of the pipeline the detection of signals (peaks) in mass
spectra is performed. Since only some peaks detected in this step have a
biological meaning (that is, represent peptides) subsequent peak evaluation
processes are crucial. These evaluations determine whether a given peak is
just noise or actually represents a peptide. In later stages of the pipeline these
peptide peaks are used to find differences between two groups of spectra (e.g.
“diseased” vs. “healthy”).

Recall that a spectrum consists of (x, y) value pairs that reflect the number
of measured particles (y value) of a particular mass (x value). We define a
peak as

Definition 3.4.1. Peak: A set of successive x values (xi . . . xj)
with corresponding y-values greater than zero where yi−1 = 0 and
yj+1 = 0.

In other words, all connected areas of a spectrum where the MALDI-TOF
machine’s detector did measure a signal are regarded as potential peaks.

Figure 3.4.8: A zoom
into a common raw spec-
trum with some clearly
identifyable large peaks
inbetween many small
peaks usually regarded
as noise. We left out
the scale since we want
to draw the attention to
these two scales (noise vs.
signal).

The according step to peak detection in the Lego example is
the detection of the bricks borders (see section 2.2). The same idea
holds with the peak detection: a mass spectrum contains many peaks
where we want to find start- and end-point (therefore the borders) of.
In other words, the raw signal is scanned for regions that intersect
the x-axis twice (begin and end) and start with positive slope. We
call these regions candidate peak since we do not know yet whether
or not they are real peptide peaks. Just as in the Lego example, we
face the problem that if we cannot detect the borders reliably the
algorithm might take two or more peaks for being one. This might
be - for example - because

� the shape is often not clearly recognizable (noisy)

� peaks are convoluted (do overlay)

� noisy parts might look - just by chance - like a peak

� peaks might be very small, that is, below the noise level

The basic approach to detect these errors is to compare the can-
didate peaks with a previously learned model. In other words, if we
know how a peak shape should look like, we can check if a candidate
peak is valid, or we missed a border, or just detected noise.

The key assumption we use in our algorithm is that most peaks consist of
Gaussian-like shapes (sub-peaks). To understand why this is a good model,
let us recall the functioning of a mass spectrometer and some chemical basics.
If we were in a perfect world, each molecule in a sample would have a well-
defined mass and represented as a very thin peak at exactly this mass. So
why do we see a Gaussian-like peak ? The first - simple - reason is the
inaccuracy of the measurement process, since (imprecise) time-of-flight data is
converted into (molecule) mass and small errors can occur. This leads to small
shifts in x direction and broadens the peak. Secondly, due to the existence of
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isotopes 4 , the more complex a molecule is the more different varieties, with
respect to mass, exist. For example, oxygen occurs in nature as three different
(stable) isotopes: 16O (99.765%; 8 protons, 8 neutrons), followed by the rare
isotope 18O (0.1995%; 8 protons, 10 neutrons) and the even rarer isotope 17O
(0.0355%; 8 protons, 9 neutrons ). Obviously, the more complex the molecule,
the more combinations of isotopes (and hence masses) are possible. Since
some combinations are more likely than others, the isotopes are independent
of each other, and there is usually a high number of a particular molecule we
see a Gaussian-like shape (Central limit theorem). Depending on the type of
machine used this shape can be resolved in its isotopic components (see Figure
3.4.9).

Figure 3.4.9: Sample
Spectrum. The inset
shows a comparison of (a)
experimental and (b) cal-
culated isotope distribu-
tion patterns for the peak
at m/z 811.

The knowledge of the isotope distributions enables us to exactly
calculate the shape and position a molecules peak will (should) have.
So if we find a peak-like shape at a certain position we can determine
the similarity to the calculated shape and accept this shape or perform
further analysis.

3.4.2 Common Approaches

Almost all peak detection algorithms rely on the shape comparison tech-
nique described above. They usually differ in how they detect candidate
peaks. What they have in common is the usage of threshold driven de-
tection techniques. That is, each candidate peak must be higher than
a predetermined signal-to-noise threshold depending on the calculated
noise level (see e.g. (McDonough and Whale, 1995)).

Drawbacks of common Approaches

As shown exemplarily in Fig. 3.4.10, by assuming a noise level of 505 and using
a signal-to-noise ratio of 36 about 85% of the 1332 potential (candidate) peaks
in this particular spectrum would be discarded and their assigned information
lost. Although most of these peaks essentially are noise, some might carry
important information. This means, that these artificially introduced barriers
would prevent detection of small signals in a very early pre-processing stage.

The subsequent sections describe our new approaches to overcome this
signal-to-noise barrier, that means increasing sensitivity without decreasing
specificity.

3.4.3 Our Approach

To avoid loss of potentially important information by not considering (small)
peaks in the preprocessing we take the most simple solution and regard ev-
erything as a candidate peak that has a start point Pi,s ∈ S and an end point
Pi,e ∈ S, S = s2 . . . sn being the set of n points defining a spectrum. Then
the tuple (Pi,s, Pi,e) defines the ith candidate peak ranging from Ss . . . Se. The
requirements for these points to meet are:

4Atoms with the same number of electrons and protons, but different numbers of neutrons,
are called isotopes. Different isotopes belong to the same element because they have the same
number of electrons, which means that they all behave almost the same in chemical reactions.
It was discovered during the Second World War that isotopes of the same element can be
separated by physical and chemical methods.

5different noise-estimators compute values ranging from 50 to 150
6a commonly used value to get reliable results
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Figure 3.4.10: Histogram of peak heights from a randomly chosen spectrum. Note
that only peaks smaller than 500 are displayed. The curve in darker green is a spline
based approximation to the top mid-points of the histogram bars.

� x(Pi,s) < x(Pi,e) - the end point’s x value must be greater than the start
point’s x value.

� y(Pi,s) = 0 - the y value of the start point must equal to zero.

� y(Pi,e) = 0 - the y value of the end point must equal to zero.

� ∀Sk ∈ {Sx(Pi,s) . . . Sx(Pi,e) : Sk > 0} - the y values of all points between
the start and end point must be greater than zero.

Where x(·) returns the x and y(·) returns the y value of a given spectrum
point. Thus, we are scanning through a spectrum S looking for intersections
of the data curve with the x-axis. Everything between every two intersection
we call a candidate peak.

However, most of these candidate peaks found with this simple algorithm
are not actually real peaks. Most are overlaying single peaks either result-
ing from poor resolution of the MALDI-TOF machine, because of isotopic
patterns, or highly complex peptide mixtures.
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Pseudo Code

Algorithm 2 Peak Detection
Require: Preprocessed Spectrum (xi, yi) == si ∈ S as sequence of value

pairs, i = 1 . . . n
{Look for start of first peak}
i← 0
while y(i) > 0 do

i← i + 1
end while
candidatepeak start ← i
{Scan through value pairs}
for i = candidatepeak start . . . n do

if y(i) == 0 then
if si is start of candidatepeak then

candidatepeak start ← i
else {si is end of candidatepeak}

candidatepeak end ← i
RP ← candidatepeak area from candidatepeak start to candidate-
peak end
{ Deconvolve RP to set of real peaks }
P ← sub-peaks of RP
{ De-isotope }
if P is isotopic pattern at mass x(i) then

Determine parameters of (single peak) P
PL← PL + P

else
for all p ∈ P do

Determine parameters of (single peak) p
PL← PL + p

end for
end if

end if
end if

end for
return List of peaks PL

Detection of Candidate Peaks

The initial peak detection simply determines the location of potential peaks,
a process often referred to as seeding. Utilizing the properties of the TopHat
filter (see Section 3.3.5) it is sufficient to detect interception points of the curve
with the X-axis. These points define start- and end points of potential peaks
and are stored in a database for further analyses.

The advantage of this approach is that even smallest peaks are considered
for consecutive steps. However, a deliberate validation algorithm must be
applied to this set of candidate peaks to distinguish real peaks from noise and
detect and deconvolute overlapping peaks.
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Analyzing Candidate Peaks

In mass spectra of complex protein mixtures (such as serum) most of the
peaks detected are broadened and/or highly convoluted. This results for ex-
ample from molecular fragments having very similar masses and thus partly
overlay, from poor machine resolution, or different isotopic forms of the same
molecule. Therefore, a successful peak detection algorithm needs to deconvo-
lute those peaks. A widely accepted method assumes a blurred peak to be a
mixture of Gaussians and tries to resolve it back into its original components.
A commonly used technique is Maximum Entropy that has been originally
developed for clarifying blurred images (see (Guiasu and Shenitzer, 1985)).
Based on this idea we have developed an approach to separate and evaluate
the assumed mixture of Gaussians. The key steps for each candidate peak
found are as follows:

1. Determine number of Gaussian components by density estimation using
the Greedy Expectation Maximization algorithm (Verbeek et al., 2003).
This algorithm has been shown to have a very good performance even
on large mixtures often found in peaks at higher masses (> 3000Da).
(For a comparative study see (Paalanen et al., 2005).)

2. To account for isotopic forms a de-isotoping step is carried out by fitting
a mass dependent pre-calculated model (see (Zhang et al., 2005) for de-
tails) if more than one Gaussian component is found. If successful, the
peaks involved are tagged as belonging to the same molecule(-fragment).
If the quality of the fit is too poor the peak is split according to the num-
ber of Gaussians found and for each of the new parts step 1 is performed
again.

3. Determine and store the parameters (height, width, center, area, shape
quality7) of this peak.

3.4.4 Computational Complexity Analysis of Peak Picking

The complexity of the peak picking is O(n) where n is the number of input
points since we loop over all points and determine properties of some areas
(candidate peaks) which are performed in constant time.

3.4.5 Comparison to Threshold-driven Algorithms

To obtain a first proof-of-principle we spiked a subset of human serum samples8

(see section 4.1.2) with a peptide mix9. We split 16 different samples into
five groups each. Before sample pretreatment and measurement each of the
groups was spiked with one of the following concentrations: 121.21nMol/L,
0.76nMol/L, 0.30nMol/L, 3.03pMol/L, 0.075pMol/L, resulting in 320 spectra
(64 for each concentration group due to 4-fold spotting).

7This is achieved by geometrical hashing (Wolfson and Rigoutsos, 1997). The hashing
algorithm returns a discrete value c ∈ {0, 1 . . . 5}, indicating the class the hashing algorithm
has assigned to this shape. c = 0 means noise and c = 1..5 peak, where c = 5 is assigned if
the peak looks perfect. The categories are trained a priori.

8The protocol used for preprocessing and (magnetic bead) fractionation has been de-
scribed in (Baumann et al., 2005).

9Protein calibration standard mix (Part No.: 206355 & 206196 purchased from Bruker
Daltronics, Leipzig, Germany)
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Substance Plat- Theor. Center found
form3 Center (Concentration of spiked peptide mix as stated below)

121.21nMol/L 0.76nMol/L 0.30nMol/L 3.03pMol/L 0.075pMol/L

Angiotensin II P.NET 1047.20 1047.1 -1 -1 -1 -1

Angiotensin II CPT 1047.20 1046.9 -2 -2 -2 -2

Angiotensin I P.NET 1297.51 1297.6 1298.0 1299.3 1299.2 -1

Angiotensin I CPT 1297.51 1297.2 -2 -2 -2 -2

Bombesin P.NET 1620.88 1620.9 1618.1 1617.2 1617.2 -1

Bombesin CPT 1620.88 1620.6 -2 -2 -2 -2

ACTH clip 18-39 P.NET 2466.73 2466.8 2465.8 2465.8 2466.2 -1

ACTH clip 18-39 CPT 2466.73 2466.2 -2 2466.1 2465.9 -2

Somatostatin 28 P.NET 3149.61 3149.5 -1 -1 -1 -1

Somatostatin 28 CPT 3149.61 3149.0 -2 -2 -2 -2

Insulin P.NET 5734.56 5734.3 -1 -1 -1 -1

Insulin CPT 5734.56 5734.2 -2 -2 -2 -2

Table 3.4.1: Results of the spiking experiments (see text for explanation). Note
that no calibration has been performed for the Proteomics.NET platform.
1: No significant masterpeak in this range at this concentration found, 2: No signifi-
cant peaks in this range at this concentration found, 3: CPT: Bruker ClinprotTools,
P.NET: Our Proposed Platform: Proteomics.NET

We then processed each resulting raw spectrum as described above. For
each of the five resulting concentration groups we ran the peak detection al-
gorithm of our platform and of the Bruker software. Table 3.4.1 summarizes
the findings:

The algorithms successfully detect peaks even for very small concentrations
at pMol/L level. This is exemplarily shown for the hormones Angiotensin,
Bombesin and ACTH clip 18-39 which can be detected in a very low and bi-
ologically relevant concentration range ( ∼3 pMol/L). Peaks for Angiotensin
and Bombesin are not detected by commercial software10. Therefore, in these
examples, our algorithm is at least 20000 times more sensitive than a com-
mercial algorithm using a signal-to-noise threshold.

10ClinProTools 2.0, Bruker Daltronics. Parameters used: Signal-to-Noise Level: 3, Peak
Detection Algorithm: Centroid
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(a) Raw 2D spectrum (b) Heat map of 2D spectrum.

Figure 3.5.11: LC/MS 2D map example. Left: This view exhibits the single 1D
(m/z vs. intensity) spectra. The y-axis shows the retention time. Right: 2D spectrum
from above showing m/z vs. retention time. The peak intensity is coded in the circle
radii.

3.5 Peak Detection in 2D Maps

Figure 3.5.12: LC/MS
2D Feature. (Picture
taken from (OpenMS,
2008).) The top image
shows the peaks of the 1D
spectra this feature was
extracted from. The bot-
tom figure shows a 2D
function fitted on the 1D
peaks.

This section introduces our peak detection algorithm for 2D spectrum
maps. A 2D map is created from (hundreds of) single 1D spectra
which are arranged successively (ordered by acquisition time). These
single spectra usually result from one MS run preceded by some frac-
tionation technique, such as liquid chromatography (LC, see section
2.1.1). Therefore, the m/z and intensity (x and y) axes stay the same
and a new z-axis is introduced denoting the retention time of a peptide
(peak). The retention time states the elapsed time since the beginning
of the MS experiment at that a particular spectrum is acquired. This
means, a spectrum St taken at time t contains all peptides that were
eluted from the column (in the LC/MS case) between time (t − 1)
(when the previous spectrum was acquired) and t.

Figure 3.11(a) shows such a 2D map: the single spectra are plotted
on the m/z (x) axis, ordered by increasing retention time; the intensi-
ties are color coded from dark blue (very small peak) to dark red (very
high peak). Taking a look from above (thus neglecting the intensity

axis) yields Figure 3.11(b): here, the 2-dimensional structure of a peak gets
obvious (shown more clearly in Figure 3.5.12), resulting from similar peaks
(with respect to height) from consecutive spectra.

The 2D peak detection algorithm is based on the 1D peak detection: first
the peak detection is performed on the single 1D spectra of a 2D map. This
process is easily distributable to many working machines or processors and
can be run in parallel (see chapter 5). The peak detection of the 1D spectra
results in peaks (isotope patterns) for each single spectrum. Subsequently, the
2D-detection is performed which consists of the following key steps:

� Load picked peaks for all 1D spectra of the 2D Map as 2D points with
attached attributes (such as (m

z , t)-position, parameterization of isotope
pattern, goodness of isotope-pattern fit, etc.).
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� Create 2D (orthogonal) range tree (de Berg et al., 2000) which needs
O(n log n) time and space for creation and storage11, respectively, and
can answer range queries in O((log n)2 + k)12 (k being the number of
results). Since in a typical (medium resolution) map n ∼ 2.000.000, a
query needs about (36 + k) comparisons in time and 12MB in space.
Of course, the analysis could also be performed directly by querying the
database but by using range trees this can be done on a remote worker
(see section 5.4) without the need for using the potentially slow database
connection.

� For each spectrum St (sorted increasingly by retention time t): If an yet
unprocessed peak is found at position (m

z , t)

– Use this peak as seed and extend a bounding box around it.

* The extension in m/z (x) direction is given by the length of
the isotope pattern + 10% (that is, if an isotope pattern spans
from 1000 to 1010da the box would have the x-dimension: 999
to 1011da).

* In retention time (y) direction (successively (t − i) and (t +
i)) the extension is done as follows: if Si is the current 1D
spectrum, get the peaks of the next spectrum (Sj = Si±1)
within the determined x range. If the peaks found are similar
(see below) to the peaks of Si this step is repeated until no
further extension is possible.
If the peaks found are not similar the next two spectra (Sk =
Si±2 and Sl = Si±3) are checked as well to account for missing
data. If the peaks of Sk or Sl are similar to the peak of Si

the respective spectrum is set as the current one and this step
started all over.

– Fit 2D isotope pattern (mixture of 2D Gaussians) on peaks found
within the bounding box. For each 2D Gaussian13 we can compute
the center of mass along the retention time axis and the m/z spread
along the m/z axis for each gaussian from the 1D isotopic patterns
(consisting of a mixture of Gaussians).

– Mark used peaks as processed

This procedure results in a list of 2D peaks parameterized by a mixture of
2D Gaussians.

3.5.1 Similarity Measures for Curves

The similarity (or distance) d(A,B) of two curves A,B (e.g. isotope patterns
modeled as mixture of 1D Gaussians) is measured by the difference of their
curvature based Turning Function ΘA (Arkin et al., 1991) (see (Veltkamp and
Hagedoorn, 2000) for a discussion of differently similarity measures) that is
well suited to capture differences in isotope pattern shape but is not sensitive
to height differences.

11Optimal storage of O( n log n
log log n

) is possible by using R-trees.
12Or O((log n) + k) in an improved fractional cascading version.
13f(x, y) = A · exp(−( (x−xo)2

2σ2
x

)− ( (y−yo)2

2σ2
y

)) where A is the amplitude, x0, y0 the center

and σx, σy the x and y spreads.
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3.6 Peak Registration (Alignment)

The term registration is borrowed from the field of computer vision. Here,
an object is often sampled from different perspectives and is therefore in dif-
ferent coordinate systems. Image registration is the process of transforming
these into one global coordinate system. Obviously registration is necessary
to enable reliable comparisons or integrations.

As introduced in the Lego example (see section 2.2), to enable detection
of differences between two classes we first need to group together the same
items (bricks) of each individual (picture) and subsequently detect sub-groups
(differences) in these item groups. As we grouped together Lego bricks in
the example we will now group peaks in our spectra world. The problems
arising are: (a), similar to the Lego example, the positions of the peaks are a
little fuzzy, and (b) a spectrum might be linearly shifted and/or non-linearly
transformed. Therefore, we have basically the same problem as in computer
vision: we first need to transform the elements (peaks) of all spectra into one
global system.

In the previous section we showed how to detect and evaluate peaks in
single spectra. The question we now pose is: if we find a peak in a spectrum
at position X having properties Yi - do there exist peaks at the same position
and with similar properties in other spectra of the same group ? The basic
assumption underlying this question is that a peak not occurring in all (most)
spectra of a particular group is either specific to the individual or it is just
noise. In the following, we will call a group of peaks from different spectra
that occur at the same (x-axis) position a Masterpeak (see Figure 3.6.13 for
an example). The important thing to note here is that we group the peaks
and operate on the level of peak groups. We therefore leave out the noise in
between and do not operate on a spectrum level.

3.6.1 Our Approach

Figure 3.6.13: This
shows three masterpeaks
(indicated by red ar-
rows). A masterpeak is
a cluster of peaks occur-
ring at the same position
in different spectra of the
same group.

In order to identify a particular peak across spectra a list of so-called
masterpeaks is maintained per spectra group (e.g. male or healthy).
A masterpeak comprises peaks having similar properties (m/z value,
height, shape, etc.) across spectra in this group. From the comprehen-
sive distribution of property values the real values for a masterpeak
will be derived in later stages.

Pseudocode

Key Steps:

1. Create candidate clusters

2. Refine clusters (Bayesian Clustering)

3. Determine cluster properties

4. Merge similar clusters

5. Result: List of masterpeaks
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Algorithm 3 Peak Registration (Finding Candidate Masterpeaks)
Require: Peak list PL of spectra group (e.g. healthy) sorted by peak centers
{Create candidate clusters (CC)}
{Alternatively, hierarchical clustering could be performed}
CC ← ∅
curC ← PL(0)
for i = 1 . . . |PL| do

p1← PL(i− 1)
p2← PL(i)
if p1 and p2 overlap partly then

curC ← curC + p2
else { p2 does not overlap with p1→ End of Cluster found}

if |curC| > 1 then
CC ← CC + curC

end if
curC ← p2

end if
end for
{Refine candidate clusters}
C ← ∅
for all curC ∈ CC do

C ← C + CRP (curC)a

end for
{Determine cluster properties}
MPs← ∅
for all curC ∈ CC do

Determine set of properties P (center, height, . . . ) of curC
MPs←MPs + (curC, P )

end for
{Merge similar clusters}
MPsmerged ← ∅
i← 0
while i < |MPs| − 1 do

curMP ←MPs(i)
j ← i + 1
while (j < |MPs|) and (MPs(i) is similar to MPs(j)) do

j ← j + 1
curMP ← merge (curMP, MPs(j))

end while
MPsmerged ←MPsmerged + curMP
i← j + 1

end while
return List of masterpeaks MPmerged

a: Result of Bayesian Clustering (Chinese Restaurant Process, CRP)

Finding Candidate Masterpeaks

To build a set of potential masterpeaks the following two steps are carried out:

1. Center and width of every peak identified in step 3.4.3 in a group of
spectra under scrutiny (e.g. healthy or female) are stored in a temporary
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table, ordered by their center.

2. Candidate clusters of these peaks are built with respect to the centers
and the width of these peaks. Peaks belong to the same cluster if they
overlap in at least one point. Since we can simply scan through this
ordered set of peaks with a linear number of comparisons, the complexity
is O(n). Alternatively, complete-linkage hierarchical clustering could
be performed (Tibshirani et al., 2004) to build the clusters which is
computationally more expensive.

Refining the Clusters

We now have a set of candidate clusters often containing more than one real
group of similar peaks. This step is going to resolve these groups by a Bayesian
Clustering approach. From the clusters found in this step all properties such as
center, height or width are derived. From the law of large numbers we know
that the average values will converge to the real values. The probabilistic
object that underlies this approach is a distribution on partitions of integers14

known as the (weighted) Chinese restaurant process (CRP) (Aldous, 1983;
Ishwaran and James, 2003; Lo, 2005).

The CRP can be best described by a process where N customers (here:
peaks) sit down in a Chinese restaurant with an infinite number of tables
C1, C2, . . . and each table has an infinite number of seats. Suppose customers
Xi arrive sequentially. Per definition the first guest x1 sits down at the first
table. The n + 1th subsequent customer xn+1 sits at a table drawn from the
following distribution:

p(occupied table i | previous customers) = |Ci|
α+n

·R · s(xn+1, Ci)

p(new table | previous customers) = α
α+n

where |Ci| is the number of customers already sitting at table Ci, R is a
rescaling factor and α > 0 is a parameter defining the CRP. Obviously, the
choice of the similarity function s(·) is crucial and is explained in the following
paragraphs.

Let DA,Ci be the distribution of a property A (e.g. center or height) of the
peaks “sitting” at table Ci. (For example, Dcenter,C2 would be the distribution
of peak centers of all peaks “sitting” at the 2nd table.) Then, µ(DA,Ci) is the
mean of that distribution. Let A(xj) be the value of property A of peak j.
(For example, center(xj) would return the center of peak xj .) s(·) has the
following properties:

1. The distance of the center of a peak to the average center of an existing
group of peaks cannot be further away than 2 Da.

2. s(xj , Ci) is the likelihood of peak xj belonging to table Ci depending on
how similar the properties of xj are to the peaks already at table Ci.

This results in:

s(xj , Ci) =
{

0 if | µ(Dcenter,Ci)− center(xj) | > 2∑
A∈PP DA,Ci

(
A(xj)

)
otherwise

14Interestingly, the partition after N steps has the same structure as draws from a Dirichlet
process (Ferguson, 1973; Blackwell and MacQueen, 1973).
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PP being the set of peak properties. DA(Ci) is constructed as follows:
Kernel Density Estimation (KDE)15 (Scheather, 2004) is performed on A(xk) ∀ xk ∈
Ci, interpolated and scaled to result in a probability density function.

We have used this particular clustering approach since preliminary exper-
iments have shown that this technique was able to best resolve the clusters in
the |PP|-dimensional space we work in (typically |PP| = 6 . . . 8). Analyses
have shown that the DA(Ci) are usually not unimodal thus favoring a cluster-
ing schema that does not create spherical clusters, such as k-means clustering
(see e.g. (Deonia et al., 2007)).

Determine Cluster Properties

Figure 3.6.14: These
are the parameters being
determined for each peak.

This step determines the properties (such as center, height, . . . ) of
the clusters found in the previous step. For each property a KDE k
is performed on the values of the single peaks the masterpeak consists
of. If k is not similar to a normal distribution (tested by: Kolmogorov-
Smirnov test, Lilliefors test, Anderson-Darling test, Ryan-Joiner test,
Shapiro-Wilk test, Normal probability plot (rankit plot), Normality
test, Jarque-Bera test) the masterpeak is flagged.

Merge Similar Clusters

Since the clustering in the previous step is not deterministic this step
repairs clusters that have been divided into two or more sub-clusters.
Two clusters are merged together if all properties or all properties except the
center are similar (measured by the Jensen-Shannon divergence, see section
3.7.1).

Outcome: List of Masterpeaks

The above procedure finally results in a list of masterpeaks. That is a list
of peaks clustered by positions and properties (such as position or height)
represented by the average values for these properties.

3.6.2 Other Approaches

An alternative approach to enable different spectra for comparison is to align
them and described below. This means, define some reference key peaks (e.g.
based on known house-keeping molecules), find these peaks in each spectrum
and reorientate each spectrum towards these peaks. Obvious problems are:

� How to detect the key peaks ?

� What if key peaks are missing ?

� What if there is a peak similar and next to a key peak ? Which is the
right one ?

The main issue here is that during the reorientation process a spectrum
gets partly distorted, because between two key peaks a linear adjustment takes
place but the parts are not directly tied together.

This is shown exemplarily in Figure 3.6.15: spectrum (b) is reorientated
on the basis of its detected key peaks towards the position of the reference key

15Following the Parzen Window approach with Gaussian Kernel.
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Figure 3.6.15: This shows a spectrum alignment using key reference key peaks.
The top left picture show the reference key peaks and their respective distances in x-
direction. The top right picture show a new spectrum to be aligned with the reference.
The result of this alignment process is shown in the bottom picture.

peaks. As can be seen, the part in range a1 is compressed while range b1 is
stretched and partly filled with zero elements.

Other Alignment Algorithms

The problem of spectra alignment appears not only in mass spectrometry but
for many other data, such as in NMR spectra alignment (see (Kim et al., 2006)
for an Bayesian approach) or electrophoretic lane alignment (see (Aittokallio
et al., 2001) for a dynamic time warping approach). In all of these domains
(and many more) different and similar algorithms have been developed (see
e.g. (Mäkinen, 2007) for an example derived from sequence alignment). One
large family of algorithms we have analyzed during this work have the following
drawbacks:

� They are operating globally, that is, local changes (during alignment)
of an ordered spectrum x0 . . . xn at a particular position xi affects all
positions xi+1 . . . xn.

� They align exactly two spectra, that is, a new spectrum to a reference
spectrum.

� They can not incorporate any statistical information.

As we have shown above, our approach allows to circumvent these shortcom-
ings while using statistical information which are incorporated naturally by
aligning groups of peaks (masterpeaks) opposed to single peaks from two single
spectra.
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3.6.3 Computational Complexity Analysis of Peak Registra-
tion

The complexity analysis of these steps yields:

Sorting the peak list: O(n log n) (e.g. by quicksort)

Finding the cluster: O(n)

Refining the clusters: O(n)

Determine cluster properties: O(n)

Merge clusters: O(n)

so we have a total complexity of O(n log n).



50 CHAPTER 3. MATHEMATICAL MODELING AND ALGORITHMS

3.7 Identifying Potential Features

This step identifies masterpeak (potential features) that can be used to dis-
criminate two groups based on their respective properties (e.g. differences in
average height, see Fig. 3.6.13). That is, we consider a masterpeak a feature if
this masterpeak can be used to discriminate two sets of spectra. For example,
if a masterpeak at position x does only occur in one of these spectra sets it is
a feature since the detection or absence of this peak would clearly assign it to
one of the groups.

3.7.1 Our Approach

After the preprocessing steps we now have information about masterpeaks
of two patient (spectra) groups under scrutiny. To enable the creation of
fingerprints (see next section 3.8) we first need to create a set of potential
differences between these two groups of spectra. We define two spectra to be
different (with respect to one particular property) if

a) a masterpeak existent in one group does not occur in the other group

b) a masterpeak exists in both groups but differs significantly in some property
between the two groups.

In other words, the feature detection step identifies a set of masterpeaks that
differ significantly in particular properties (e.g. height, width) between two
groups of spectra with respect to some metric. With these information we can
subsequently analyze for sub-sets / patterns (fingerprints) by detection and
subsequent selection of the most significant combination of features.

Choosing the Metric

A metric or distance function defines a distance between two elements of a
set. The elements of our set are masterpeaks that are defined by property
distributions of their assigned single peaks, such as m/z values, height or
area. What we want is a distance function that equals to some very large
number (or infinity) if it does not make sense to compare them (that is, their
respective m/z values are too different) or incorporates the (dis-)similarity of
their property distributions otherwise.

Therefore, we need some (symmetric) method of measuring the similarity
between two probability distributions which we found in the Jensen-Shannon
(JS) divergence (see e.g. (Gómez-Lopera et al., 2000) and references therein)
because it can be computed quickly, has shown good results in similar ap-
plications and does not assume strong properties of the data, such as being
normally distributed: For probability distributions ”P” and ”Q” of a discrete
variable the JS-divergence of ”Q” from ”P” is defined as:

Definition 3.7.1. Kullback-Leibler (KL) divergence (S. Kullback, 1951):
DKL(P‖Q) =

∑
i P (i) log P (i)

Q(i) .

Definition 3.7.2. Jensen-Shannon (JS) divergence (Lin, 1991):
DJS = 1

2

(
DKL

(
P

∥∥∥P+Q
2

)
+ DKL

(
Q

∥∥∥P+Q
2

))
.

Of course there are other probability distance measures, for example his-
togram intersection (Jia et al., 2006), Kolmogorov-Smirnov distance (Fasano
and Franceschini, 1987) or the earth mover’s distance (Rubner et al., 2000),
but these usually have quite strong requirements to the data.
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Figure 3.7.16: This shows identified masterpeaks of two groups (top: men; bottom:
women). The alignment process assigns pairs of masterpeaks having similar properties
(such as m/z value). These assignments are indicated by the red arrows.

Algorithm

From the preprocessing steps we have acquired a list of masterpeaks of groups
G1, G2 (e.g. cancer group vs. healthy group). To obtain a set of masterpeaks
that differ in some defined property (e.g. average height) we perform the
following key steps:

i) Alignment of Masterpeaks in G1, G2 (masterpeak alignment across groups)

ii) Calculation of aligned Masterpeak Pair (MPP) property Jensen-Shannon
(JS) differences

iii) Order this list by distances.

This yields a list of pairs of aligned masterpeaks of G1 and G2, ordered by
their respective distances.

Pseudocode

The basic process is as follows:

Algorithm 4 Extracting features
Require: Lists of masterpeaks of group 1 & 2, respectively.
{Masterpeak Alignment}
Match the masterpeaks of group 1 & 2 by algos described in section 3.7.1.
{Calculation of Masterpeak Property Differences}
return A sorted list containing tuples of aligned pairs of masterpeaks with
their respective distances.

Preprocessing 1: Masterpeak Alignment (Across Groups)

The majority of masterpeaks obtained by the preprocessing steps occurs in
each group of spectra (e.g. S1, S2) at the same position and having identical
heights, due to the almost identical blood proteome of two humans. Remember
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that a masterpeak is a set of peaks where each single peak stems from a distinct
spectrum and represents a molecule (or peptide) of a certain weight. If we
now find a masterpeak in two different groups at the same (m/z) position
we have most likely found the same molecule (peptide) in the two groups.
If these masterpeaks differ significantly in height we could differentiate by
them. However, if the two masterpeaks have similar height we call them non-
informative and want them to be tagged as such.

Following this, we first have to match masterpeaks of two groups occurring
at the same m/z position. Obviously, sometimes a masterpeak from group S1

cannot be matched with a masterpeak from group S2 because this molecule
(peptide) is just not present in S2. This process is called Masterpeak Align-
ment.

We have implemented two different approaches to solve this problem, a
naive version and an implementation as an Minimum Weight Maximum Car-
dinality Bipartite Matching formulated as Linear Program and solved by the
Munkres (Hungarian) Algorithm which are compared in section 3.7.3.

Approach 1: Naive Solution

Algorithm 5 Masterpeak Assignment - Naive
Require: Lists of masterpeaks MP1,MP2 of groups 1 & 2 respectively

while MP1 has more elements do
MP1cur ← next element from MP1

MP2candidates : { s |m/z(s)−m/z(MP1)| ≤ 2}
if |MP2candidates| = 0 then

insert (MP1cur, ∅) into LMP PAIRS

else
for all p ∈MP2candidates do

insert (MP1cur, p) into LMP PAIRS

mark p (in list MP2) as processed
end for

end if
for all p ∈MP2 do

if p is not marked as processed then
insert (∅, p) into LMP PAIRS

end if
end for

end while
return MP PAIRS: tuples of aligned pairs of masterpeaks.

In this approach we simply check for masterpeaks in both groups that have
similar m/z values. An obvious problem here is that peaks can be assigned
more than once and no similarity measure is used to increase the quality of
the assignments.

Approach 2: Bipartite Graph Matching

In the second approach we re-formulate the problem as a Minimum Weight
Maximum Cardinality Bipartite Matching (assignment) problem. We are given
the two sets of masterpeaks (MP1,MP2) which can be seen as vertices of a
graph. This graph G = {V, E} is bipartite because the vertex set V is sub-
divided into two sets.
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The goal is to find the largest possible number of matches between similar
elements of the two sets. The similarity is measured by using a cost function
that defines the cost for connecting two particular vertices (masterpeaks). The
cost is defined as:

c(p, q) =




∞ if |m/z(p)−m/z(q)| > 2
∞ if |n(p) = 1 or n(q) = 1
|m/z(p)−m/z(q)| · s(p, q) otherwise

(3.7.5)

where p and q are masterpeaks, m/z(·) returns the m/z position of a mas-
terpeak, s(p, q) returns the shape similarity of the peaks of p and q and
n(x) = 1 if masterpeak x is classified as noise. Note that c(·) can be extended
to incorporate other masterpeak features.

Bipartite Graph Matching

Let G = (V,E) be a bipartite graph such that there is a partition V =
MP1 ∪MP2 and every edge in E has one endpoint in MP1 and the other in
MP2. Let M ⊆ E be a matching such that no vertices are incident to more
than one edge in M . We also define the cardinality |M | to be the number
of edges in M and let c : E → R be the cost function on the edge of G (as
defined in Equation 3.7.5). The cost (weight) of a matching is the sum of the
cost of its edges, that is, c(M) =

∑
e∈M c(e)

The Minimum Weight Maximum Cardinality Bipartite Matching (MWMCB
Matching) problem is thus to find the matching on graph G such that |M | and
c(M) are minimized where c(M) is the MWMCB weight ((Papadimitriou and
Steiglitz, 1982; Mehlhorn and Naher, 1999)).

Bipartite Graph Matching - Solver

Now this problem can be solved using the Hungarian Algorithm (Kuhn,
1955; Munkres, 1957) or by expressing it as an Integer Program and solving
it by the inner point method as follows:

Min
∑

i,j cijxij

subject to:

1)
∑

j xij = 1, i ∈ A

2)
∑

i xij = 1, j ∈ B

3) xij ≥ 0, i ∈ A, j ∈ B

4) xij integer, i ∈ A, j ∈ B

where ci,j is the cost for an edge between vertex i and j and xi,j = 0 if an
edge exist between vertex i and j and 0 otherwise.
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Preprocessing 2: Calculation of Masterpeak Property Differences

Algorithm 6 Calculate Masterpeak Property Differences
Require: Given: LMP PAIRS

while LMP PAIRS has more elements do
MPP ← next element (MP1, MP2) from LMP PAIRS , MP1 ∈ G1, MP2 ∈
G2 LMP PAIRS , MP1 ∈ G1, MP2 ∈ G2

d ← DJS(MPP )
if h(MP1) < h(MP2) then

d← −d
end if
insert (MPP, d) into LMP PAIRS W/ DISTANCES

end while
sort LMP PAIRS W/ DISTANCES by distance d
return LMP PAIRS W/ DISTANCES : a sorted list containing tuples of
aligned pairs of masterpeaks with their respective distances.

Figure 3.7.17: Right: Aligned masterpeaks of two groups (top: men, bottom:
women). Left: Width (top) and height (bottom) distributions of the two masterpeaks
of feature “F#1”. Colored in blue are the distributions of the peaks associated to the
bottom F#1 masterpeak, the distributions for the peaks of the top F#1 masterpeak
are colored in purple.

This step calculates the distance of aligned Masterpeak Pairs (MPPs) with
respect to the Jensen-Shannon (JS) divergence. For each masterpeak property
(e.g. heights of involved raw peaks) of the MPP the distribution is calculated
(in the discrete case this would be a histogram). Then the difference of the two
distributions is stored in a list (LMP PAIRS W/ DISTANCES). (See Algorithm
4.) Figure 3.7.17 gives an example: the red arrows indicate the Masterpeak
assignments. The distributions for heights and widths (of the masterpeak’s
raw peaks) of a MPP are shown on the left. (For a similar approach see
(Tibshirani et al., 2004).)

3.7.2 Other Approaches

Other alignment approaches have been described in section 3.6.2.
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3.7.3 Computational Complexity Analysis of Alignment and
Feature Detection

The naive implementation has a complexity of O(n2) compared to the Hungar-
ian Algorithm that runs in O(n3)), n being the total number of masterpeaks
(in both groups). However, the former approach can produce alignments that
align a masterpeak of one group to more than one masterpeak of the other
group. The Hungarian approach only produces correct assignments and opti-
mizes for the best assignments possible.

Since we typically have some hundred masterpeaks the number of assign-
ments between them is usually relatively small (about 100). Therefore, the
cubic runtime is feasible in this application.

The second step, calculation of distances runs in O(n).
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3.8 Extracting Fingerprints

3.8.1 What are Fingerprints ?

A Fingerprint, with respect to this thesis, is a set of masterpeaks of a particular
set of spectra (for example spectra of lung cancer patients of a certain age)
that are not present (or differentiate) in some control group (for example
healthy patients of the same age). That is, given an unknown spectrum S (of
a patient P ) and a fingerprint F of, say a particular disease, we can judge just
by checking the occurrence of the peaks of F whether the patient P is likely
to have this disease. The following sections will explain how we determine a
fingerprint given two sets of spectra (e.g. cancer patients vs. healthy patients).

3.8.2 Our Approach

After the preprocessing steps we now have information about assigned mas-
terpeaks from the two patient (spectra) groups. With these information we
can analyze for patterns (fingerprints) by detection and subsequent selection
of significant features.

1. Creation of Fingerprint

� Requires Feature Detection, described in the previous section and
detects potential features that can be used to discriminate two
groups based on their properties (e.g. differences in average height,
see Fig. 3.6.13)

� Feature Selection: Selection of an optimal subset of features de-
tected (see Figure 3.18(a)).

2. Reduce Complexity: Dimensionality Reduction of fingerprint data by
projecting fingerprint data to a low-dimensional space (see Fig. 3.18(b)).
This is done because it is usually not reliable to cluster in high dimen-
sions.

3. Evaluation by clustering: Clustering of low-dimensional projections to
get a performance measure. The clusters found can then be used to
derive classification rules. (See also section 4.3.3.)

The feature detection step identifies a set of masterpeaks that differ sig-
nificantly in particular properties (e.g. height, width) between two groups of
spectra.

Feature Selection

Generally speaking, feature selection approaches try to find a subset of the
original features of the given data. Thus, this step selects a small and efficient16

set of features from the previous feature detection step. This step is also called
modeling since we build a reduced model of the (real) full feature set. By
removing irrelevant and redundant features from the data, feature selection
helps to improve performance of learning models by

� Reducing the effect of the curse of dimensionality
16The less features used while maintaining the same discrimination power the more efficient

is the set.
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Figure 3.8.18: This shows the feature selection (FS, left) and dimensionality re-
duction (DR, right) process. First, in the FS stage, from a set of potential features
(pairs of masterpeaks, top image) the best x are selected (x = 8 in this example).
Thus, each spectrum is projected onto a point in Rx. These points are then projected
during the DR stage into R2

where most clustering algorithms are easily applicable.

� Enhancing generalization

� Speeding up the learning process

� Enabling the interpretation of the model

The core idea is to apply a mapping of the high-dimensional data space
into a space of fewer dimensions. Two widespread strategies are filtering (e.g.
information gain) and wrapping (e.g. genetic algorithm) approaches. In clas-
sification applications, feature selection may be viewed as a discrimination
problem where one aims to emphasize the class separability by a judicious
choice of feature parameters. Ideally, the extracted features should reveal
some unique non-redundant characteristics that are most effective in discrim-
inating between classes.

The selection of features is necessary because (a) it is mostly computation-
ally infeasible to use all available features in the subsequent machine learning
algorithms and (b) problems emerge when limited data samples but a large
number of features are present (this relates to the so called curse of dimension-
ality). It can be shown that optimal feature selection requires an exhaustive
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Figure 3.8.19: This figure shows the histogram of the JS-differences of the height
distributions of masterpeaks of a particular masterpeak assignment analysis. Experi-
ments have shown that this histogram can be best approximated by an Extreme Value
Distribution (also known as Fisher-Tippett Distr., (Fisher and Tippett, 1928)).

search of all possible subsets of features, which becomes infeasible if large
numbers of features are available. This means that usually a satisfactory set
(as opposed to the optimal set) of features is sought for.

Feature selection is a technique used in the machine learning community
since years for building robust learning models. We have not tried to come up
with a new better feature selection algorithm. Instead we compared many of
the most popular existing algorithms and evaluated their performance when
applying them to our feature data. The next section shows these evaluation
results

3.8.3 Evaluation of Feature Selection Algorithms

This section shows the results of the feature selection algorithms. We created
two groups (n = 150 spectra each) consisting of females (a) taking oral contra-
ceptives and (b) not taking oral contraceptives. We pre-processed all spectra
and performed peak picking and Masterpeak analysis as described. Out of
these results we created an initial fingerprint of the best discriminating peaks
that have a JS difference (see section 3.7) above 100 (n=34) (see Fig. 3.8.19).

In the remaining, algorithms labeled with the prefix WEKA are used from
the WEKA 3 Toolkit ((Witten and Frank, 2005)). If not otherwise stated we
used the standard parameters proposed by the WEKA team.

Note that this dataset is easy to classify since the features extracted are
already quite powerful thanks to our pipeline. This can be verified by looking
at the surprisingly good performance of fingerprint A2 (correct classification
of 80%, see Table 3.8.2, consisting only of randomly chosen features (out of
the Top 100 features).

Starting from the initial 34 feature fingerprint we used the following al-
gorithms to perform a feature selection (For a more detailed description see
(Witten and Frank, 2005)):
3rd party feature selection algorithms used in this thesis:

� CfsSubsetEval : “Attribute Evaluator”: Evaluates the performance of an
attribute (sub-)set by predictive ability of each feature while penalizing
correlation between them. This algorithm needs a “Search Method” for
the subset selection.
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FID FeatSel Algo #Feat. Performancea

A1 Initial Set 34 89.3 %
A2 Random Selectionb,c 12 79.3 %
A3 WEKA::CfsSubsetEval::BestFirstc 12 89.7 %
A4 WEKA::CfsSubsetEval::GAc 12 90.8 %
A5 WEKA::ChiSquaredAttribEval::Ranker 12 90.0 %
A6 WEKA::InfoGainAttributeEval::Ranker 12 90.0 %
A7 WEKA::SVMAttributeEval::Ranker 12 92.7 %
A8 Mergedd 6 90.2 %

Table 3.8.2: Results of selection experiments. The performance is evaluated by
a WEKA::ADTree classificator. a: Performance: correct classifications. b: Twelve
features were selected randomly. c: This was repeated 100 times and the average value
of the classification result was used. d: The features occurring in each fingerprint
A3..A7 were used in this fingerprint.

� BestFirst : “Search Method”: Greedy Hill Climbing.

� GA: “Search Method”: Genetic Algorithm as described in (Goldberg,
1989).

� CfsChiSquaredEval : “Attribute Evaluator”: The attribute performance
is the chi-squared statistic with respect to the class.

� Ranker : “Search Method”: Ranks attributes by their individual perfor-
mance values computed by the “Evaluator Methods”.

� CfsInfoGainAttributeEval : “Attribute Evaluator”:
InfoGain(Class,Attribute) =
H(Class) - H(Class — Attribute).

� SVMAttributeEval : “Attribute Evaluator”: Computes the attribute per-
formance by using an SVM classifier (see (Guyon et al., 2002).)

The performance was measured by the WEKA ADTree classification algo-
rithm (Freund and Mason, 1999), which gives a deterministic, traceable and
comparable result17. The fingerprint A8 was compiled by taking the features
that occurred in all fingerprints A3 . . . A7 thus representing the intersection.

Table 3.8.2 shows the performance of the individual algorithms. For the
reduced fingerprints we used the Top 12 features ranked by the respective
algorithms, since these seem to be the number of the dominant features with
respect to the scores (data not shown).

What is striking here is that every fingerprint except the randomly chosen
features (A2) performs almost identically well. This is not surprising since
all of them share six core features (fingerprint A8), which even by their own
reach a competitively high score. These six features are necessary since using
fewer features results in scores below 85% (data not shown). We therefore
conclude that (a) all of the tested feature selection methods are capable to
produce smaller sets of features while maintaining their performance and (b)
even smaller feature (sub-)sets can be built by using them in a voting schema.

Dimensionality Reduction

The fundamental assumption for Dimension Reduction (DR) is that the infor-
mative part of the data (at least approximately) lies on a linear or nonlinear

17This means, the resulting trees can be understood and analyzed by humans, opposed to
matrix transformations or resulting Neural Networks.
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manifold M of smaller dimension than the original d-dimensional data space
X . Its primary goal is to find a representation of M, allowing to project the
data (Xn)N

n=1 on it and thus obtain a low-dimensional, compact representation
of the noisy sample. The challenge is to find a linear or nonlinear mapping
f : Rd → Rm with m ≤ d such that reconstruction error of the sample,

Eλ[{Xn}Nn=1] =
1
N

N∑

n=1

λ(Xn, X ′
n)

is acceptably small. Here, X ′
n = f(Xn) is the reconstructed vector for Xn

and λ a suitable distance measure in X . At best one will get rid of some
computational obstacles:

i) efficiency and classification performance

ii) measurement, storage and computation costs

iii) ease of interpretation and modeling

The problem of DR technically decomposes into two tasks: First one has
to determine elements from the target space. Second, one has to construct a
basis of the target space from these elements. Hence DR is often achieved by
semi-parametric feature extraction.

In this work we use DR techniques to reduce the dimensionality of the
fingerprint feature vectors by projecting from the high dimensional feature
space to some low-dimensional embedding. This enables subsequent clustering
algorithms to work reliably in two or three dimensions, since they usually are
not designed to cluster points in high-dimensional space (see e.g. the curse-
of-dimensionality and section 4.3.3).

As in the case of feature selection for example in the machine learning
community much effort has been put into the development of sophisticated
(general) DR algorithms. Therefore, we did not develop an own approach but
evaluated existing ones with the fingerprints gained from the feature selec-
tion step. We can show that it is possible to reduce the complexity of these
fingerprints even more by only losing very little classification power. This re-
sults in a classifier being a line or a plane and gains comprehensible clustering
possibilities in R2 or R3 which are easily visualizeable.

All of the dimensionality reduction (DR) algorithms project the n-dimensional
fingerprint data18 to d = 2 dimensions19. Subsequently the resulting points
are clustered by k-means clustering20 and a goodness of clusters (GOC) score
is calculated as follows:

GOC =

∑n
i=1

|Ci|
max(|Ci,G1|,|Ci,G2|)

n
(3.8.6)

where n: number of clusters, |Ci|: number of total points in cluster Ci, |Ci,Gx|:
number of points of group x in cluster i.

For the evaluation we used some widely used algorithms of three classes:

18n being the number of features
19The performance can be increased by projecting into d = 3 dimensions (data not shown)

but for easier visualization we took only two dimensions.
20k = 5



3.8. EXTRACTING FINGERPRINTS 61

DimRed Algo A1 A2 A3 A4 A5 A6 A7 A8
PCA 0.82 0.63 0.81 0.82 0.83 0.82 0.78 0.83
MDS 0.85 0.63 0.87 0.86 0.82 0.85 0.83 0.87
ISOMAP 0.82 0.66 0.83 0.84 0.78 0.77 0.83 0.83

Table 3.8.3: Results of Dimensionality Reduction experiments. Shown are the GOC
scores (see section 3.8.3). Best GOC score for a dimensionality reduction algorithm
is shown in bold. A1..A8 refers to the FIDs from Tab. 3.8.2.

� Principal Component Analysis (PCA): An orthogonal linear transforma-
tion that projects data to a lower dimensional space such that the basis
of the new coordinate system is spanned by the dimensions of greatest
variance.

� (non-metric) Multidimensional Scaling (MDS): MDS non-linearly projects
high-dimensional data points to a low dimensional space while (as good
as possible) reproducing the distances between the original data points.
(See (Shepard, 1962) for further details.).

� Isometric mapping of data manifolds (ISOMAP): Graph-based version of
MDS that tries to maintain the geodesic distances (opposed to Euclidean
distances in original MDS). (See (J.B. Tenenbaum and Langford, 2000)
for more details.)

Of course, other (more recent and/or complicated) algorithms could have been
used as well but in this thesis we focus on methods that are well studied and
their properties are well understood. This is due to the topic of determining
diseases (such as cancer) from humans: we rather have some good and robust
method that we can fully analyze and understand than a black box that we
cannot analyze anymore.

Table 3.8.3 shows the results of the procedure described above: the Good-
ness of Clusters score (see Equation 3.8.6) is on average above 0.80 while
the non-linear methods perform superior over the linear PCA dimensionality
reduction. It is remarkable that these projections to two dimensions allow
subsequent cluster algorithms to find that much structure in the data. We
therefore think that this approach is very well suited to build reliable, robust
and traceable classifiers.

3.8.4 Other Approaches to Pattern Detection

Pattern detection algorithms have become widely used in almost all disci-
plines that somehow deal with mining of data. Reviewing all these different
approaches is definitively outside the scope of this thesis, though we have given
some remarks about other algorithms above. To get some other insights into
the area we refer to a beautiful review of “36 years on the pattern recognition
front” by (Pavlidis, 2003) and an exhaustive article by (Yang and Honavar,
1998) about feature selection.

3.8.5 Using the Fingerprints

The fingerprints (patterns) created in the previous steps now enable two
things:

� First, they can be used to classify unknown spectra, e.g. if a fingerprint
for a particular cancer has been found, a new spectrum can be checked
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whether it contains peaks similar to those the fingerprint consists of (see
chapter 4).

� Second, the components (peaks) of a fingerprint can be analyzed further,
that is, the underlying molecules can be determined and advanced stud-
ies can be made to investigate the role of these molecules in the human
body (see section 6.2.3).

� Third, they can be used to cluster spectra to detect sub-groups even
within a group, e.g. a particular type of cancer (see section 4.3.3.
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3.9 Complexity Analysis

Using the single complexity analyses from the previous chapters the full com-
plexity analysis results in:

Preprocessing: O(n log n), n being the number of sample points.

Peak Picking: O(n), n being the number of sample points.

Peak Registration: O(m log m), m being the number of peaks.

Feature Extraction: O(p3), p being the number of masterpeaks.

From empirical studies we know the approximate value ranges of these vari-
ables:

n: 104

m: n
10 = 103

p: m
10 = n

100 = 102
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(Bio-)Medical Applications
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This chapter describes the range of applications the algorithms introduced
in the previous chapter can be applied in and pinpoint some common pit-
falls when interpreting the results. Further, we described the dataset we used
throughout this thesis and for the development and benchmarking of our meth-
ods.

4.1 Data Used

This section describes the biological data we are using in this thesis to perform
our experiments and check our algorithms. Since the actual data we are using
is derived from biological samples (blood) we also give some background to
what must be taken care of when using such material.

4.1.1 Some Remarks on Blood

During the previous years in proteomics driven cancer research much emphasis
has been given to blood analysis. Usually, plasma or serum data from cancer
patients was compared against samples from matching healthy subjects to de-
tect differences in the proteome. Many interesting results have been obtained
by the evaluation of MS profiles, as the following examples show:

� (Zhang et al., 2004) identified and validated three early-stage ovarian
cancer biomarkers through MS analysis of the serum proteome. The

65
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combination of the three identified biomarkers (apolipoprotein A1, atru-
cated form of transthyretin and a cleavage fragment of inter-alpha-trypsin
inhibitor heavy chain H4) is superior to CA-125 (cancer antigen 125, a
mucinous glycoprotein) alone in terms of sensitivity. CA-125 is a stan-
dard tumor biomarker for ovarian cancer.

� (Honda et al., 2005) conducted a MS-based analysis of 245 plasma sam-
ples from pancreatic cancer patients and controls. They found a fin-
gerprint (peak pattern) consisting of four peaks that was sufficient to
discriminate cancer patients from healthy subjects with a sensitivity of
91%. Combining this fingerprint with CA-19-9 (carbohydrate antigen
19-9) this sensitivity increased to 100%.

� (Hong et al., 2005) developed a MS-based approach for determining the
severity of multiple myeloma from serum of 64 newly diagnosed multiple
myeloma patients.

In addition to these reports excellent reviews are available, e.g. (Rosenblatt
et al., 2004; Thadikkaran et al., 2005; Omenn, 2006; Ebert et al., 2006).

The advantage of blood is that it has a very high protein concentration.
The bad news is, however, that only 22 proteins account for about 99% of
its protein content. These belong to the so-called high-abundance protein
species, including albumin (approximately 60% of the total protein in nor-
mal human plasma), transferrins, immunoglobulins, etc. When interested in
low-abundance circulatory proteins, for example produced by tumors and es-
pecially early-stage tumors, one must keep in mind that these will account
for less than 1% of the blood proteins. So, how to enrich the low-abundance
proteins become extraordinarily important in blood-based cancer proteomics
investigations.

As mentioned above, blood can be analyzed by two methods: (a) using the
plasma which is the liquid portion of blood in which the cells are suspended
or (b) using serum which is the fluid that remains after clotting proteins are
removed from plasma. Although, the advantage of using plasma is that it
contains more proteins and its protease activity is inhibited the same fact is
also a disadvantage: it is very difficult to detect low-abundance proteins in
the presence of many other (common, e.g. clotting) abundant proteins.

In principle, mass spectrometry-based proteomics analysis of blood can
be performed on both types, plasma and serum. However, there is still no
agreement in the community which is best:

� Regarding the ongoing enzymatic activity in serum (Koomen et al., 2005)
indicated that serum is not well suited for proteomics experiments be-
cause even proteins that are not involved with the biologically relevant
pathways are cleaved as well by non specific proteases.

� (Tammen et al., 2005) recommended the use of platelet-depleted EDTA
or to citrate plasma for the analysis of the low-molecular-weight proteins.

� It was shown in (Villanueva, Shaffer, Philip, Chaparro, Erdjument-
Bromage, Olshen, Fleisher, Lilja, Brogi, Boyd, Sanchez-Carbayo, Hol-
land, Cordon-Cardo, Scher and Tempst, 2006) that - when focused on
analysis of low-molecular-weight proteome - serum is superior to plasma
as a source of diagnostic information in terms of peptidomics.

In this study, blood serum served as a basis for the acquisition of data.
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4.1.2 Serum Data Used

The data was acquired by our partner organization the Institute of Labora-
tory Medicine, Clinical Chemistry and Molecular Diagnostics at the University
Hospital Leipzig. The biological foundation consists of frozen serum samples of
770 apparently healthy blood donors who served as basis for the mass spectro-
metric investigation. The study group has been described elsewhere (Kratzsch
et al., 2005).

Human serum is particularly susceptible to any confounding factor, for ex-
ample, (Boguski and McIntosh, 2003) showed that it does make a difference
whether the subject is sitting or recumbent during blood taking and can induce
a change by 10% in total protein concentrations. Further, the proteome pro-
files can also be significantly influenced by the pre-analytical process such as
collection of samples (time-frames) and how the processing is done, e.g. vari-
ables of clotting tube types, freeze-thaw cycles, centrifugation, storage time
and temperature, and so forth (Banks et al., 2005). Based on these results,
(Baumann et al., 2005) developed a protocol for preanalytics that was used in
this study.

Proteome fractionation: After thawing on ice peptide and protein purification
and fractionation was performed using a magnetic bead-based separation tech-
nique (ClinProtTM, Bruker Daltonics, Leipzig, Germany) with specific surface
functionalities (MB-IMAC Cu, MB-WCX, MB-HIC C8).

Chemicals & Consumables: Gradient grade acetonitrile, ethanol, acetone were
obtained from J.T. Baker (Phillipsburg, USA); trifluoroacetic acid was pur-
chased from Sigma-Aldrich (Steinheim, Germany). Peptide and protein cali-
bration standards, a-cyano-4-hydroxycinnamic acid were purchased from Bruker
Daltonics (Leipzig, Germany). Peptide preparations were done in 0.2ml polypropy-
lene tubes (8-tube strips) from Biozym (Hess. Oldendorf, Germany). The
MALDI-TOF AnchorChipTM target (four spots) was purchased from Bruker
Daltonics (Leipzig, Germany). The protein calibration standard mix (Part
No.: 206355 & 206196) used for the spiking experiments was bought from
Bruker Daltronics (Leipzig, Germany).

Hardware Configuration: ClinProtTM Robot & Autoflex Linear MALDI-TOF
Mass Spectrometer (Bruker Daltonics, Germany)

Mass Spectrometry: Mass spectra were recorded by the flexControlTM 2.0 Soft-
ware (Bruker Daltonics, Germany). The settings were applied as follows: Ion
source 1: 20 kV; ion source 2, 18.50 kV; lens, 9.00 kV; pulsed ion extraction,
120 ns; nitrogen-pressure, 2500 mbar. Ionization was achieved by a nitrogen
laser (λ=337 nm) operating at 50 Hz. For matrix suppression a high gating
factor with signal suppression up to 500 Da was used. Mass spectra were de-
tected in linear positive mode. Spectral data were combined with beforehand
surveyed epidemiological and clinical metadata in a Microsoft SQL ServerTM

database to provide highly differentiated classification criteria (such as age,
gender, or even peptide admixture).

Overall, about 8500 spectra were acquired during data collection. To cope
with the amounts of raw data and data generated during the analyses, and to
enable access to one structured storage (as opposed to many different files), a
Microsoft SQL ServerTM database was used.
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4.2 Statistical Remarks

4.2.1 Measurement Fundamentals

Campbell defines measurement as the “assignment of numerals to represent
properties” (Campbell, 1920). This very general statement fits with the com-
mon perception of this term and is used in many different application domains:
people are measuring the diameter of the sun, the mass of an electron, the in-
telligence of a human being, or the popularity of a television show. In other
words, measurement is the objective representation of objects, processes, and
phenomenon (Finkelstein and Leaning, 1984). Measurement captures informa-
tion about a system through its properties (also called characteristics, features,
or attributes) which can be either directly or indirectly observable. Addition-
ally, there exist relationships between the properties and the elements (i.e.
measured representations) of a system. Thus, a system X is defined by the
properties xi chosen to represent it:

X = (x1, x2, . . . , xi)

Mostly, there are three elements present: a property to be determined (P), a
measured quantity (M) and a relationship between these two quantities:

M = f(P )

Figure 4.2.1 is a graphical representation of the relationship associated with a
measuring process.

Since this formulation only addressed the properties selected to represent
the system one easily notices that, although being objective, it is an abstrac-
tion, and many important properties of the systems might not be included.
Property selection is crucial since the validity of a system measurement is
influenced by the number of properties used in the measurement. Clearly,
properties affect the validity of a measure. Therefore, formalized frameworks
and theories are required to clarify concepts about measurement within a par-
ticular domain.

Figure 4.2.1: A mono-
tonic relationship associ-
ated with a measuring
process.

Obviously there is a catch here with regard to property selection:
In order to measure a system properly, one needs to know something
about it - however, the main reason to measure a system is to gain an
understanding of it. Therefore, for most complex systems the proper-
ties that best define such a system are unknown, inaccessible, or only
visible as an outcome. Measurement of these systems requires use of a
proxy or indirect measuring method which is essentially a model or ap-
proximation of the system property of interest. The process of deriving
these proxies usually involves reducing complex aspects of a system into
understandable, measurable components.

Having defined or selected the properties the subsequent measure-
ment can be thought of as a process of assigning numbers (or generally

symbols) to the properties of a system such that these symbols reflect the
underlying relationships (or nature) of the properties (Caws, 1959).

Having performed the measurements one should analyze its main charac-
teristics (Geisler, 2000), namely:
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1. Validity: characterizes how well a measure reflects the system properties
it was supposed to represent.

2. Reliability (or precision): addresses the consistency or repeatability of
the measurement process.

3. Amplitude: how well a measure represents abstract or higher order con-
structs and complex properties.

4.2.2 Making Errors

Measurements are generally made through the use of a measurement instru-
ment, which is based on a scale that should have the same underlying rela-
tionships as the system property being measured. Formally put, a scale is a
predefined mapping from one domain to another (e.g. the volume expansion of
mercury to degrees of Celsius). The mappings can of course induce uncertainty
e.g. through the use of fuzzy scales to represent the degree to which a property
is considered present (Benoit and Foulloy, 2003). Obviously, the construction
of a scale can be a source of error as well as each observation itself, which is
a random variable with an underlying distribution (Potter, 2000). Basically,
there are four primary sources of measurement error:

� Random error: non-deterministic variation from any source impacting
the system including the system itself.

� Systemic error: derives from construction of the measure or definition of
the measurement process and comes in form of measurement bias.

� Observational error: the oversight of key system properties requiring
measurement or using the wrong measures for identified system proper-
ties.

� Experimental error: the influence of environment conditions (such as
temperature, air pressure, or response time of the operator) which affects
the measurement process

These errors create divergences between the perceived state of a system
and the true state and can yield misleading insights and thus, must be ad-
dressed in any measurement framework. They will be part of the measurement
process even when the system is welldefined (Krantz et al., 1971). Error is
an inescapable feature of measurement (Mitchell, 2003) and can be partially
addressed with statistical theory as described in chapter 3.

4.2.3 Experiment and Inference

As mentioned in the previous sections when experiments are carried out, the
results of the measurements and the subsequent statistical analyses are often
stated in the language of mathematics or, more precisely, in that of the the-
ory of probability. These mathematical statements have the beauty of being
objective, precise and clear. On the other hand, this might induce people to
hide inadequate experimentation behind a brilliant (mathematical) facade. A
fact, unfortunately often seen in scientific publications. Let discuss a simple
example: data consisting of two columns of numbers, say x and y, can always
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be subjected to calculations known as linear regression. This works as a foun-
dation for correlation analysis and to various other tests of statistical signif-
icance. Despite their mathematical preciseness and undoubtedly correctness,
inferences drawn from these results may be incorrect, thoroughly misleading,
or failing to call attention to the basic insufficiency of the experiment. This
usually has two main reasons:

� assumptions underlying the statistical procedure are not fulfilled

� problems connected to the data were of a completely different type from
those for which the particular statistical methods provide useful infor-
mation.

Indeed, most data sets provide some useful information, but this is no guar-
antee that the information actually desired has been obtained.

In most cases the goal of statistical analyses is to draw inferences from the
particular to the general and often people are not familiar with the problems
of inductive inference, which is closely tied to this. R. A. Fisher has pointed
to a basic and most important difference between the results of induction and
deduction (Fisher, 1959) which we recall briefly and illustrate by two small
examples. By using deduction, conclusion based on correct partial information
are always correct, despite the incompleteness of the premises. Let us use a
well-known theorem from geometry as an example: the sum of the angles
of a plane triangle always equals to 180 degrees. This does not necessitate
information as to whether it is isosceles or not. If any information of this
type is subsequently added, it cannot possibly alter the fact expressed by the
theorem.

As an counterexample, inferences drawn by induction from incomplete
information may be entirely wrong, even when the information given is un-
questionably correct. Let us use a simple example from physics. Suppose we
were given the data of Table 4.2.3 on the pressure and volume of a fixed mass
of gas. Analyzing the data one might infer (by induction) that the pressure

Molar volume (liters) Pressure (atmospheres)
0.182 54.5
0.201 60.0
0.216 64.5
0.232 68.5
0.243 72.5

Table 4.2.1: Volume-Pressure Relation for a gas, an apparently proportional rela-
tionship

of a gas is proportional to its volume (of course a completely erroneous state-
ment). What went wrong ? The answer is simply that another important
item of information was omitted, namely that each pair of measurements was
obtained at a different temperature, as indicated in Table 4.2.3. Of course,
this example is artificially constructed and extreme but it emphasizes the basic
problem in inductive reasoning: the data not only has to be correct but also
complete to enable correct inference. In this simple example the missing piece
of information was easily identifiable because we have a good understanding
of the physical background. What researchers need to be aware of is that
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Molar volume (liters) Pressure (atmospheres) Temperature
(degrees Celsius)

0.182 54.5 15.5
0.201 60.0 25.0
0.216 64.5 37.7
0.232 68.5 50.0
0.243 72.5 60.0

Table 4.2.2: Volume-Pressure-Temperature Relation for a gas

they normally are not familiar with the physical relations of a system they are
analyzing and therefore recognize the danger of drawing false inferences from
incomplete, though correct information.

4.2.4 Statistical Significance Testing

Statistical significance testing has been conducted by scientists (at least) since
the early 1700 (McLean and Ernest, 1998). However, the concept does not
seem to be entirely clear to all scientists and consequently it is often misused
or its results misinterpreted1,2 (Thompson, 1994). As early as 1931, (Tyler,
1931) noted the misuse of statistical significance:

“[...] we are prone to conceive of statistical significance as equiva-
lent to social significance. These two terms are essentially different
and ought not to be confused.”

A statistical significance test basically determines whether or not a dif-
ference exists between variables and was advanced by Fisher, Neyman and
Pearson (see (Fisher, 1922; Neyman and Pearson, 1928) and (Lehmann, 1993)
for a discussion). For example, a researcher who believes that drug A is more
effective than drug B formulates a so-called null hypothesis that the two drugs
are equally effective. He would then attempt to disprove this claim by con-
ducting a study with two randomly chosen patient groups, each group being
treated with one of the drugs. Then he would somehow measure the effective-
ness of the respective drugs and compute a probability value, p. This value
p reflects the probability of obtaining the results if actually the null hypoth-
esis was true. If p is less than a previously set value α (typically α = 5%),
the results are said to be significant, which means that (probably) the two
drugs are not equally efficient. On the other hand, if p exceeds α the scientist
would report that the study is not significant (thus the null hypothesis holds),
meaning that the two drugs may or may not be equally effective.

Opponents of this rejection framework claim that this approach is coun-
terintuitive and reporting on what one found instead of what can be rejected
would also be absolutely appropriate (see e.g. (Cohen, 1990)). Further, it is
quite important to note that the commonly used level of α = 5% (described

1In a study by (Anthony, 1996) the use of statistics in papers from high-quality medical
research journals were analyzed. He reports that statistical errors and misunderstandings
of statistical concepts are almost the norm rather than the exception. Errors were found in
more than 45% of all papers reviewed.

2One in 20 studies using a significance level of 95% are likely to detect some statistically
relevant finding by chance alone, see e.g. (McCloskey, 1995)
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as a Gold Standard(McCloskey, 1995)) is arbitrary and to remember that im-
probable outcomes can, and do, occur by chance (which is why many of us buy
lottery tickets). Therefore the level of statistical significance should not be set
in the abstract but in the light of current knowledge, since it has important
implications for the reporting of results.

Another quite important fact to be aware of when performing statistical
testing is the influence of (a) the sampling itself and (b) the size of the sample.
Both can greatly affect the outcome of a test: when investigating differences
between two groups usually not the whole population can be examined but,
instead, a (random) sample is taken from each group. It is important to realize
that differences in these samples may be just the result of the sampling (Rudy
and Kerr, 1991).

Another misbelife is that increasing the sample size will achieve a higher
significance: large samples may also introduce new problems, since even well
selected samples are never identical. However, (Bakan, 1970) shows that it
is almost certain in large samples to find statistically significant differences
in one or more variables - the important question here is whether these are
important or just occur by chance. Therefore, the real value of large samples
is that they increase confidence in the reliability of the results (see Confidence
Intervals in section 4.2.5).

To summarize: in clinical research emphasis should be laid on the actual
size of a difference found then on the mere statistical significance, since these
are usually of greater importance in practice (see Effect Size in section 4.2.5).
Therefore, a detected statistical association should be treated like a messenger,
suggesting that further research might be valuable.

4.2.5 Advanced Result Analysis

This section summarizes alternative concepts to statistical significance testing.
These can be used as stand-alone tools or to provide further overall significance
to a study. Three approaches will be briefly described below that can support
and/or extend classical statistical significance testing. First, a method called
effect size that measures the actual relevance of a finding should be calculated
and interpreted in all analyses. Second, the precision of a result should always
be given, by e.g. a confidence interval. Third, the replicability of results must
be empirically investigated, either through actual replication of the study, or
by using methods such as the jackknife or the bootstrap.

Effect Size

The so-called effect size measures the magnitude of the relationship between
two variables. Unlike significance tests, these indices are independent of sam-
ple size. For example, if a p value reports a difference between a parameter of
two groups to be statistically significant, the effect size reports the size of this
observed difference and helps to determine whether it is of practical concern.
As we have described in the previous sections, given a sufficiently large sam-
ple size, it is always possible to show that there is some significant difference.
Effects size is a tool to know whether this difference observed really matters.
To summarize, effect sizes are important to report and interpret for at least
two reasons:
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� First, these indices can help judging the practical or substantive signifi-
cance of results, because improbable events are not necessarily important
(see e.g. (Shaver, 1985) famous telephone example).

� Second, reporting effect size facilitates the meta-analytic integration of
findings across different studies (of the same topic), and thus comparison.

Interpreting Effect Size

Effect size and the actual value of an effect can be interpreted in various ways:

Technical: Effect size is equivalent to a Z-score of a standard Normal distri-
bution. For example, an effect size of 0.8 means that the average value
of a variable, say IQ, in group A is 0.8 standard deviations above the
average value of this variable in group B, and hence the average IQ of
person from group A exceeds the IQ of 79% of persons of group B.

Comparative: A quite descriptive way to interpret effect sizes is to compare
them to the effect sizes of differences that are familiar. For example,
(Cohen, 1969) analyzed the effect size of the height difference between
several age groups of (American) girls. He describes a 0.2 effect size
between the heights of 15 year old and 16 year old girls as “small”. An
0.5 effect size between 14 and 18 year old girls is described as “medium”
and “large enough to be visible to the naked eye”. A “large” effect size
of 0.8 is “grossly perceptible” and equivalent to the difference between
the heights of 13 year old and 18 year old girls.

Contextual: Cohen does acknowledge the danger of using terms like “small”,
“medium” and “large” out of context. (Glass et al., 1981) argue that
the effectiveness of e.g. a drug treatment can only be interpreted in
relation to other drugs that aim to produce the same effect. For example,
a 2% variance-accounted-for effect size will not be very impressive to
most researchers in some study dealing with the effect of smiling on the
amount of tip in some restaurants. However, (Gage, 1978) cites a study
investiging the relationship between cigarette smoking and lung cancer
that resulted in roughly the same effect size and noted that

“Sometimes even very weak relationships can be important
[...] [On] the basis of such correlations, important health policy
has been made and millions of people have changed strong
habits.”

However, it needs to be realized that the recognition of a study result
always includes personal, own values of the reader: “As in all of statistical
inference, subjective judgment cannon be avoided. Neither can be reasonable-
ness!” (Huberty and Morris, 1988).

Effect Size Measures

There are many different effect size measures to choose from. Most commonly
effect size is reported by standardized measures of effect or by unstandardized
(but intuitive) measures (e.g. the raw difference between group means or the
loss of weight a new diet promises). Thus, standardized measures are typically
used when the metrics of variables being studied do not have an intuitive
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meaning to the target audience, or when results from multiple studies of an
area are being combined.

To give an example for a standardized measure let us look at Cohen’s d
(Cohen, 1988) which is the difference between two means divided by the pooled
standard deviation for those means:

d =
mean1 −mean2√
(SD2

1 + SD2
2)/2

where meani and SDi are the mean and standard deviation for group i = 1, 2.
Note that sample size does not play a part in the calculation that d is

heavily influenced by the denominator in the equation. This is incorporated
in (Hedges and Olkin, 1985)’s ĝ:

ĝ =
x̄1 − x̄2√

(n1−1)·SD2
1+(n2−1)·SD2

2
((n1+n2)−2)

·
(

1− 3
4 · (n1 + n2)− 9

)
.

Note that both values can also be computed from the value of the t test of
differences between the two groups (Rosenthal and Rosnow, 1991; Rosnow and
Rosenthal, 1996).

Replication & Bias Estimation

“If science is the business of discovering replicable effects, be-
cause statistical significance tests do not evaluate result replicabil-
ity, then researchers should use and report some strategies that do
evaluate the replicability of their results.” (Thompson, 1995)

Empirical evidence for result replicability can be gained either external
or internal (Thompson, 1995). While the external replication involves the
creation of a new sample measured at a different time and/or different location,
internal replicability is based on comparing recombinations of sub-samples of
the full sample at hand. An internal replication is performed to estimate the
bias (also called imprecision or random error) of the analytical method. It
helps to understand the precision of some sample statistics, such as median,
variance or percentiles. Methods of measurements are almost always subject
to some random variation by using subsets of (jackknife) or drawing randomly
with replacement from (bootstrapping) the available data (samples). The
following paragraphs introduce these techniques.

Jackknife (Tukey, 1958): The jackknife is a simple method for approxima-
tion of the bias and variance of an estimator. Basically, the jackknife approach
partitions out the impact of a particular subset of the data on an estimate de-
rived from the total sample. In other words, jackknife tries to control for a
piece of the sample which may be exerting too much influence on your results
due to sampling error. This is done by systematically recomputing the desired
statistical estimate leaving out one observation at a time from the sample
set. The Jackknife is less general than bootstrap (see below) but easier to ap-
ply to complex sampling schemes, such as multi-stage sampling with varying
sampling weights. The following introduces the calculation of the jackknife
estimator:
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Let θ̂ = T (X1, . . . , Xn) be an estimator for some (unknown) quantity θ (e.g.
mean) and

bias(θ̂) = E(θ̂)− θ

Let T−i be the statistic with the ith observation removed.

The jackknife bias estimate is defined as

bjack = (n− 1) · (θ̄ − θ̂)

where

θ̄ =
1
n
·

n∑

i=1

T−i

So the bias corrected estimator is

θ̂jack = θ̂ − bjack

It can be shown (Wasserman, 2006) that the bias of θ̂jack = O( 1
n2 ) which is

up to one order of magnitude smaller than that of θ̂. In practice, however,
correcting for the bias can obviously increase the standard error - this can be
checked for example by bootstrapping (see below) using the biased and the
corrected estimator.

To calculate the variance by the jackknife approach, note that θ̂jack can also
be written as:

θ̂jack =
1
n
·

n∑

i=1

T̃i (4.2.1)

where

T̃i = n · θ̂ − (n− 1) · T−i

The T̃ are called pseudo values and are supposed to act as if they were n
independent variables. Using equation 4.2.1 the jackknife estimate of V(Tn)
is:

vjack =
s̃2

n

where

s̃2 =
∑n

i=1(T̃i − 1
n ·

∑n
i=1 T̃i)2

n− 1

is the sample variance of the pseudo-values. Again, it can be shown that vjack

is a consistent estimator of V(Tn) if T is a smooth function of the sample mean
- thus the estimate for the median is usually inconsistent. It is important to
note that bias correction should only be used if the bias is much higher than
variance of a statistic.
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Bootstrap (Efron, 1979): The bootstrap is a method for estimating the
variance and the distribution of a statistic Tn = g(X1, . . . , Xn) (note that
Tn needs to be Hadamard Differentiable, see e.g. (Shao and Tu, 1995)). In
principle it can also be used to estimate some parameter θ. This method first
creates an infinitely large mega data set by copying the original data set many
time. Then a large number of different samples are drawn from this mega set
and analyses are performed separately for each sample and the results aver-
aged. Thus, a lot of configurations (including configurations in which an item
may be represented several times or not at all) are considered and conclusion
about generalization of the results can be drawn. It is a robust alternative
to inference based on parametric assumptions when those assumptions are in
doubt, or where parametric inference is impossible. Opposed to jackknife the
bootstrap gives slightly different results when repeated on the same data.

In the real world we would sample n data points (X1 . . . , Xn) from some
CDF F and calculate a statistic Tn = g(X1 . . . , Xn). Transferred to the boot-
strap world, we sample n data points (X∗

1 . . . , X∗
n) from F̂n and estimate a

statistic T ∗n = g(X∗
1 . . . , X∗

n). Drawing n points at random from F̂n is the
same as drawing a sample of size n with replacement from (X1 . . . , Xn) (the
original data). By the law of large numbers we know that vboot

a.s.−→VF̂n
(Tn) as

B →∞. It follows

VF (Tn)
O(1/

√
n)︷︸︸︷≈ VF̂n

(Tn)
O(1/

√
B)︷︸︸︷≈ vboot

For the parameter estimation, the number of the bootstrap samples B is
usually chosen to be around 200. The algorithm for estimating the variance
of some statistic Tn is as follows:

� Given data: X = (X1, . . . , Xn)

� Repeat the following two steps i = 1 . . . B times

1. Draw X∗ = (X∗
1 , . . . , X∗

n) with replacement from X

2. Calculate T ∗n,i = g(X∗
1 , . . . X∗

n)

� This results in B estimators (T ∗n,1, . . . , T
∗
n,B) and can be used for various

purposes (for variance estimation, for interval estimation, hypothesis
testing and so on).

For example the variance estimator is computed by:

vboot =
1
B
·

B∑

b=1

(
T ∗n,b −

1
B
·

B∑

i=1

T ∗n,i

)2

and the estimator for the standard error by:

ŝeboot =
√

vboot

Jackknife vs. Bootstrap

Since the jackknife only needs n computations it is usually easier computable
compared to about 200-300 replications needed for the bootstrap. However,
only using the n jackknife samples, the jackknife uses only limited information
about the statistic θ̂. It can be shown that asymptotically the estimators of
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the bootstrap and the jackknife algorithms are in fact equal (see e.g. (Efron
and Tibshirani, 1994; Fan and Wang, 1995)). Since the bootstrap method can
also be used with small sample sizes (opposed to the jackknife) this method
should be favored when only one technique can be applied.

Confidence Intervals

As described above the p value can easily be misinterpreted because it com-
bines information about effect size with information about the precision of the
effect size estimate. Opposed to that, confidence intervals offer the estimate
of some meaningful parameter (e.g. then mean) and the precision of that
estimate.

For example, rather than reporting usage of drug A yields an improvement
on a significance level α < 0.01, using confidence intervals allows to report
that this drug yields an improvement of 20% with a 95% confidence interval
of 15 . . . 24%. This means, that the best (point) estimate for this parameter is
20% which equals the observed parameter in this study. The interval endpoints
(15% and 24%) reflect the variability of the parameter in this population and
are consistent with the observed data: in 95% of replications of the process of
obtaining the data the interval will include the parameter. The chosen level
of confidence is again arbitrary - common values are 80%, 90% or 95%.

It is important to realize that the interval endpoints themselves are random
variables also estimated using sample data. That is, the confidence interval
does not indicate that, given the endpoints, the chance are X% that the
interval will include the parameter (note that it is the confidence interval that
is random, not the unknown parameter). However, confidence intervals do
have a very appealing feature: even if all the research in an area of inquiry
was based on radically erroneous estimates of parameters, the parameters
would still emerge across studies as a series of overlapping confidence intervals
converging on the same parameter.

Another quite important fact is that taking the intersection of two confi-
dence intervals C1, C2 (with level α1 and α2, respectively) decreases the power
of the new confidence interval to 1− α1 − α2. This is because the probability
that C1∩C2 does not contain θ is the probability that either interval does not
contain θ. This is less than or equal to the sum of the probabilities of those
two events - α1 + α2. Therefore, C1 ∩ C2 is a level 1 − α1 − α2 confidence
region for θ. Thus, a smaller region is attained, but at a reduced confidence
level.

Calculating confidence intervals (CI) for some quantity θ can be done in
numerous ways. We will introduce the two main bootstrap-based approaches,
that account for the distribution of Tn, namely if Tn is (close to) a normal
distribution or if it is not:

(1) If Tn is close to a normal distribution the computation of CI is
quite simple:

Cn = (Tn − zα/2 · ŝeboot, Tn + zα/2 · ŝeboot)

where

zα = φ−1 · (1− α)
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and φ being the CDF of a standard normal random variable. To check the
requirements of normality we use established standard tests, such as Lilliefors
test ((Lilliefors, 1967), needs a large sample), Anderson-Darling test ((An-
derson and Darling, 1952), for small to medium sample size, e.g. 10-200),
Shapiro-Wilk test (Shapiro and Wilk, 1965), or the Jarque-Bera ((Bera and
Carlos, 1980), highly attentive to outliers) test.

(2) If Tn is not a normal distribution the Pivotal Intervals method can
be used. A 1− α bootstrap pivotal confidence interval can be calculated by:

Cn =
(

2 · θ̂n − θ∗((1−α/2),B), 2 · θ̂n − θ∗((α/2),B)

)

where θ∗β,B is the β sample quantile of (θ̂∗n,1, . . . , θ̂
∗
n,B) and θ̂n = T (X1, . . . , Xn)

Model Validation by Cross-Validation

Cross-validation is one of several approaches to estimating how well the model
just learned from some training data is going to perform on future (yet unseen)
data. It is better than the widely used residuals approach. The problem with
residual evaluation is that it just gives a indication on how well a model fits
the given data opposed to the a predictions for the performance on data it has
not already seen. Other (more complex) method include Akaike Information
Criterion (AIC, asymptotically equal to CV with k = n − 1) or Bayesian
Information Criterion (BIC, asymptotically equal to CV with k ≈ 10).

Cross-validation (Stone, 1974) partitions the original sample into (two or
many) subsets. The analysis (e.g. model parameter estimation) is initially
performed on one of these subsets (often denoted training set), while the other
subsets (test sets) are used to confirm and validate the initial analysis.

A widely used method is the so called k-fold cross-validation. Here, the
original sample is partitioned into k sub-samples. The cross-validation process
is then repeated k times: in each step one of the k sub-samples (each sample is
used exactly once) is used as the test set and the remaining k− 1 sub-samples
as the training set. The final results is usually computed by taking the average
from the k single results.

4.3 Study Results

This section will explain the results of the algorithmic pipeline described in
the previous chapter when analyzing data such as introduced in section 4.1.
The outcome of the first stage of the analysis pipeline are lists of peaks that
occur in a significant portion of a group at the same m/z value. These peaks
are the basis for further analysis stages that yields three distinct classes of
results:

Correlations: If patient meta-data are available (such as age, weight, blood
parameters etc., see for example Figure 4.3.2) (cor-)relations can be
sought for between peak properties (such as height) and meta-data prop-
erties (see section 4.3.1).

Fingerprints: Peaks of two groups (e.g. cancer vs. healthy) are compared to
find peaks having the same m/z value in both groups but differ in prop-
erties. More formally, peaks in group A at position X that are similar
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Figure 4.3.3: Left: Masterpeaks of two groups (top: men; bottom: woman) at m/z
2274da. Obviously the average height of a peak in the woman’s group is lower than
in the men’s group. This is also clearly shown in the chart of the height distributions
(right): the two distributions do overlap between 400-800, but outside this area there
is a clear domination of one group.

with respect to a property P but differ to peaks in group B at position
X (again with respect to property P ) are sought for. An example is
shown in Figure 4.3.3: two masterpeaks and their respective height dis-
tributions (of their single peaks) are shown. The best combinations of
these distinguishing peaks are then used to create fingerprints. Thus, a
fingerprint is basically a list of m/z values. Each list entry has attached
the considered property (e.g. peak height or peak width) and the aver-
age value of this property for each group. A fingerprint can be used to
classify unknown spectra (see Sec 4.3.2).

Difference Analysis: Based on the distinguishing features found during the
fingerprint detection stage, further investigations can be done that an-
alyze these differences. For example, using tandem mass spectrometry,
the underlying proteins can be determined (see section 4.3.4).

Clustering: Spectra of one groups can be clustered using the fingerprint fea-
tures to detect sub-groups within a group, e.g. a particular sub-group
of cancer type X (see section 4.3.3).

4.3.1 Correlation of Patient Meta Data to Peaks

This analysis finds correlations of certain meta-data such as blood parameters
to peak properties. These correlations are found between properties of peaks
(e.g. height) from a particular group of patients (e.g. 20 year old men from
a blood donator study) and available meta-data for these patients (e.g. blood
parameters such as FT3).

The actual analysis computes the correlation corXi,j between a peak prop-
erty i (e.g. peak height, peak area, peak width, peak shape) and some param-
eter j which can be almost anything that is related to a patient (e.g. sex, age,



80 CHAPTER 4. (BIO-)MEDICAL APPLICATIONS

blood parameters, parameters from other studies concerning this patient and
so forth).

Figure 4.3.2: Distri-
bution of two sample
blood parameters (MPV,
PROT) in a groups of 20
year old men.

We use a variety of different correlations tests such as Pear-
son’s r (linear relation, depends on normal distributions of the
variables), Spearman’s R (non-linear measure, which might miss
some dependencies), Kendall’s τ (an improved version of Spear-
man’s) and the Quadrant correlation, which are widely used in
the applied sciences and are sensitive to different types of corre-
lations.

As the next two sections will explain, results of such correla-
tion measures have to be analyzed cautiously: for example, Pear-
son’s test can seriously be affected by only one outlier (see e.g.
(Devlin et al., 1975)). Therefore, a high correlation coefficient
should be thought of as an indicator to perform further analyses,
e.g. for validating the result using the cross validation schema,
introduced in section 4.2.5.

Probability and Correlations

One in 20 studies using a significance level of 95% are likely to
detect some statistically relevant finding by chance alone, or as

(McCloskey, 1995) puts it:

“[...] with so many people doing so many studies some of them are
going to run into a one-in-20 chance of believing in a mirage.”

These problems may also occur in individual studies. If a large number of
statistical association between variables are analyzed (such as one masterpeak
with many blood parameters), some correlations are likely to be found simply
as a result of chance, even when correct statistical methods are used. To avoid
this, further investigation of the relations need to be carried out, that is, it
must be asked if the findings are plausible. If these questions are not asked,
then there is a risk that statistics become the main quality criterion.

Causality

A statistical association is not the same as a causal relationship, and finding
statistically significant correlations in data does not necessarily mean that
causal relationships exist. As stated in the previous section, they might simply
exist at random or actually based on mutual association with other (hidden)
variables.

To draw conclusions about causality it is necessary to show a direct link
between intervention and observed outcome. Therefore, a detected statistical
association should be treated like a messenger, suggesting that further research
might be valuable. Subsequently, plausibility of the correlation should be
checked. Of course, plausible relations are not necessarily genuine, but it
makes far more sense to use clinical or biological experience to decide what is
likely to be true than to rely on statistical evidence alone.

4.3.2 Fingerprints for Classification

As mentioned in the previous sections, fingerprints are the main results of the
analysis pipeline. They reflect the differences between two classes of patients
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Figure 4.3.4: Sample fingerprint with two features (masterpeaks) at m/z positions
a = 3879.69 and b = 5940.18. The table shows the details for the two masterpeaks.
Not that the average peak heights differ (so the two groups can be distinguished)
while the means are almost the same (the alignment did work).

(e.g. between class c1: “men” and class c2: “women”) with respect to peak
properties. These differences are called features (see figure 4.3.3 for an exam-
ple). Figure 4.3.4 shows an example fingerprint with two features (peaks) at
m/z positions a = 3879.69 and b = 5940.18 that differ in height (c1a = 3152
vs. c2a = 2224 for feature a and c1b = 1637 vs. c2b = 804 for feature b,
respectively).

Recall that significance of a feature was calculated by distribution differ-
ences (see section 3.7). A second quality criterium in the fingerprint evaluation
is the average effect size (section 4.2.5) for each feature, based on the mean
value for each of the two distributions.

This fingerprint can now be used to classify an unknown spectrum S. A
naive approach would simply find peaks in S at positions a and b, and compare
the height ha of the peak found at position a to c1a (height for the feature a
in class 1) and c2b (height for feature b in class 2). The closer ha is to one of
the two values the more likely that S is of this class. Then hb is compared to
c1b and c2b. If both comparisons result in the same class membership, S is
assigned this class. Otherwise S is marked as unknown.

Figure 4.3.5 visualizes this procedure: The green and red vertical bars
reflect the value range of each feature in the respective green or red class. The
boxes within this range show the 20% range around the average value (mid-
point). Diamonds reflect the actual values (here peak heights) of a feature
in a particular spectrum and lines connect the feature values for the same
spectrum. For visualization purposes the lines are also dyed in the color of
the class represented.

The example given in Figure 4.3.5 shows the classification of a set of spectra
containing two classes of patients, “class 1” and “class 2”. The charts show
spectra classified as “class 1” (top) and “class 2” (middle) - the bottom chart
is a merge of the upper two.

Although the naive implementation does work out, it has severe limita-
tions especially in higher dimensions (that is many features) or if features
are of different quality and should be weighted accordingly. Therefore, in the
proteomics.net framework we have implemented the following classification
algorithms using the WEKA toolkit described in (Witten and Frank, 2005).

� SVM : Implements John Platt’s sequential minimal optimization algo-
rithm for training a support vector classifier. (For more details see (Platt,
1999; Keerthi et al., 1999).)

� ANN : Multilayer Perceptron Network (Artificial Neuronal Network) trained
by the backpropagation algorithm.
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(a) Classification of class 1.

(b) Classification of class 2.

(c) Classification of both classes.

Figure 4.3.5: A screenshot of a classification result. The green and red vertical
bars reflect the value range of each feature in the respective green or red class. The
boxes within this range show the 20% range around the average value (mid-point).
Diamonds reflect the actual values (here peak heights) of a feature in a particular
spectrum and lines connect the feature values for the same spectrum. For visualization
purposes the lines are also dyed in the color of the class represented.
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� kNN (gen.): Nearest-neighbor-like algorithm using non-nested general-
ized exemplars. (For more details see (Martin, 1995).)

� ADTree: Class for generating an alternating decision tree. The basic
algorithm is based on: (Freund and Mason, 1999).

� Rand. Forest : Class for constructing a forest of random trees. (For more
details see (Breiman, 2001).)

� Bayes Net : Bayesian Network learning using the K2 hill climbing search
algorithm.

As mentioned earlier, other algorithms (more recent and/or complicated) could
have been used as well. The main reason for using more established algorithms
is that they are well studied and their properties are well understood.

Each of these classification technique builds a particular model and op-
timizes the structure and parameters of this model using the 10-fold cross-
validation approach (see section 4.2.5). If the optimal structure / parameter
set is found, this classifier is evaluated on the full data-set. This evaluation re-
sults in a quality value stating how many spectra were classified correctly. To
ensure a statistical relevance we also create confidence intervals as described
in section 4.2.5.

4.3.3 Fingerprints for Clustering

The previous section introduced classification of unknown spectra based on
fingerprint features. That is, based on a given set of peaks the classification
algorithm assigns a probability value to each possible class the spectrum might
stem from (e.g. “female” or “male”). The class having the highest probability
values is then assigned to the spectrum.

An implicit assumption here is that all spectra having assigned the same
class have very similar features. While this is generally the case, further analy-
ses show that a class can often be divided in smaller sub-classes, based on their
feature similarity. This clustering approach often reveals groups of patients
that have other common properties not explained by the actual class member-
ship, such as age class, disease status or other medical treatment influencing
blood proteins. Thus, we want to discover something about the nature of the
class from which a sample arose - to discover whether the overall class is, in
fact, heterogeneous.

The next sections will first introduce some notations and presents a short
overview of two widely used clustering methods, with a special emphasis on
structural properties and implicit mathematical assumptions intrinsic for each
of the methods. Subsequently, we show that for clustering high-dimensional
spectra low-dimensional fingerprints are needed to achieve meaningful results.

Cluster Distance Functional

Let x ∈ X ⊂ Rn be the observed n-dimensional data. In our case x would be
a spectrum’s fingerprint, that is, a vector containing heights of n particular
peaks. Our main goal is to partition data into K distinct groups (clusters)
characterized by K distinct sets with a-priori unknown cluster parameters

θ1, . . . , θK ∈ Ω ⊂ Rd, (4.3.2)
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(d is the dimension of a cluster parameter space) such that members of a
particular cluster are close to this cluster and far away from other cluster. It
is obvious that such methods hinge on the notation of distance. Let

d(x, θi) : X × Ω→ [0,∞) , (4.3.3)

be a functional describing the distance from the observation x to the cluster i.
For a given cluster distance functional (4.3.3), under data clustering we will
understand the problem of a function Γ(x) = (γ1(x), . . . , γK(x)) called the
cluster affiliation (or the cluster weights) for a datum x together with cluster
parameters Θ = (θ1, . . . , θK) which minimize the cluster scoring functional

L(Θ,Γ) =
|X|∑

t=1

K∑

i=1

γi(xt) · d (xt, θi)→ min
Γ(x),Θ

, (4.3.4)

subject to the constraints on Γ(x):

K∑

i=1

γi(x) = 1, ∀x ∈ X (4.3.5)

γi(x) ≥ 0, ∀x ∈ X, i = 1, . . . ,K. (4.3.6)

As we will see below choice of the cluster distance functional d (4.3.3)
will bias an algorithm towards finding different types of cluster structures (or
shapes) in the data. To illustrate this, we might choose d such that it will
favor clusters where each member is as close to the cluster center as possible.
We would expect these clusters to be compact and roughly spherical. On the
other hand, we could also define our d such that each cluster member is as
close to another cluster member - but not necessarily to all other members
or the cluster center. Clusters discovered by this approach need not to be
spherical or compact, but could have some sort of sausage shape.

A large number of different score functions can be used to measure the
quality of clustering and a wide range of algorithms has been developed to
search for an optimal (or at least good) partition. The exhaustive approach
would be to simply search through the space of possible assignments of n
points to K clusters to find that one that minimizes the score. The number
of possible allocations is approximately Kn - thus, with n = 100 points and
K = 2 classes we would have to evaluate 2100 ≈ 1010 possible allocations.
Since this is - of course - not feasible, the next sections exemplarily introduce
concepts on how to practically optimize those score functions.

K-Means Clustering

One of the most popular clustering methods in multivariate data-analysis is
the so-called k-means algorithm (Bezdek, 1981; Höppner et al., 1999). The
affiliation to a certain cluster i is defined by the proximity of the observation
x ∈ X to the cluster center θi ∈ X. In this case the cluster distance functional
(4.3.3) takes the form of the square of the simple Euclidean distance between
the points in n dimensions:
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d(x, θi) = ‖ x− θi ‖2 . (4.3.7)

Since we have only discrete observation xt, t = 1, . . . , |X|, the functional
(4.3.4) gets the form

K∑

i=1

|X|∑

t=1

γi(xt) ‖ xt − θi ‖2 → min
Γ(X),Θ

. (4.3.8)

K-means algorithm iteratively minimizes the functional (4.3.8) subject to
constraints (4.3.5 - 4.3.6) assigning the new cluster affiliations γ(l)(x) and
updating the cluster centers θ

(l)
i in iteration (l) according to the following

formulas

γ
(l)
i (x) =

{
1 i = arg min ‖ x− θ

(l−1)
i ‖2,

0 otherwise,
(4.3.9)

θ
(l)
i =

∑|X|
t=1 γ

(l)
i (xt) · x∑|X|

t=1 γ
(l)
i (xt)

. (4.3.10)

Iterations (4.3.9-4.3.10) are repeated until the change of the averaged clus-
tering functional value does not exceed a certain predefined threshold value.

The complexity of the k-means algorithm is O(K · |X| · L), where L is
the number of iterations. Note that it is possible that a good cluster solution
will be missed due to the algorithm converging to a local rather than global
minimum of the scoring function. One way to alleviate this problem is to carry
out multiple searches from different randomly chosen starting points for the
initial cluster centers. This can even be taken further to adopt a simulated
annealing strategy to try to avoid getting trapped in local minima of the score
function.

Fuzzy c-Means Clustering

Experiments have shown that a spectrum is very unlikely to be assigned to
exactly one (sub-)cluster. In most cases a spectra reflects a transient disease
status between two or more extrema (e.g. some stage between healthy and
fully diseased). As it can be seen from (4.3.9), this can not be represented
by the k-means algorithm and thus geometrically overlapping clusters can not
be resolved. This issue was addressed by (Bezdek, 1981) who proposed the
following modification of the averaged clustering functional (4.3.8):

K∑

i=1

|X|∑

t=1

γm
i (xt) ‖ xt − θi ‖2 → min

Γ(X),Θ
, (4.3.11)

where m > 1 is a fixed parameter called the fuzzyfier (Bezdek, 1981; Bezdek
et al., 1987). Analogously to k-means, the fuzzy c-means algorithm is an
iterative procedure for the minimization of (4.3.11)
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γ
(l)
i (x) =





1
PK

k=1(
‖x−θ

(l−1)
i

‖2

‖x−θ
(l−1)
k

‖2
)

1
m−1

if Ix is empty,

∑
r∈Ix

γ
(l)
r (x) = 1 if Ix is not empty, i ∈ Ix,

0 if Ix is not empty, i 6∈ Ix,

(4.3.12)

θ
(l)
i =

∑|X|
t=1 γ

(l)
i (xt) · xt∑|X|

t=1 γ
(l)
i (xt)

. (4.3.13)

where Ix = {p ∈ 1, . . . ,K | ‖ x− θ
(l−1)
p ‖2= 0} (Höppner et al., 1999). As it

follows from (4.3.12), for any fixed fuzzifier m, the cluster affiliations γ
(l)
i (x)

can take values between 0 and 1, for m → ∞ γ
(l)
i(x) → 1

K . This feature allows
clustering of overlapping data. However, the results are quite dependent on
the choice of the fuzzifier m and there is no mathematically sound strategy
on how to choose this parameter. Moreover, it is not clear a-priori how many
clusters exist in the data and thus which value K should be initialized with.

Another problem not solved by this extensions is that the data is assumed
being (locally) stationary, that is, that the conditional expectation values θi

calculated for the respective clusters i are assumed to be time independent.
This can result in misinterpretation of the clustering results, if the data has
indeed a temporal trend, which would be the case when time series data is
analyzed.

Problems Clustering High Dimensional Data

Most real-world data sets (such as a spectrum) are very high-dimensional.
However, the performance of clustering algorithms tends to scale poorly as
the dimension of the data grows. This is often referred to as the curse of
dimensionality which seems to be a major obstacle in the development of data
mining techniques in several ways.

In (Beyer et al., 1999; Hinneburg et al., 2000) the authors show that under
certain reasonable assumptions on the data distribution in high dimensional
space all pairs of points are almost equidistant from one another for a wide
range of distributions and distance functions. In this paper the authors proved
that the difference between the nearest and the farthest data point to a given
query point (e.g. a cluster center) does not increase as fast as the distance
from the query point to the nearest points when the dimensionality goes to
infinity. In other words, the ratio of the distances of the nearest and farthest
neighbors to a given target in high dimensional space is almost 1.

In such a case, the evaluation of the distance functional becomes ill defined,
since the contrast between the distances to different data points does not exist.
Thus, even the concept of proximity may not be meaningful from a qualitative
perspective: a problem which is even more fundamental than the performance
degradation of high dimensional algorithms.

Parameterizing Distance Metrics

As indicated in the previous section the main problem of clustering high-
dimensional data is the number of dimensions used in the cluster distance
functional (Equation 4.3.3). This distance metric d(x, y) is a function over
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pairs of objects x and y from some set X. It needs to have the following
properties for all x, y, z ∈ X ⊂ Rn:

d(x, x) = 0, d(x, y) = d(y, x), d(x, y) ≥ 0, d(x, y) + d(y, z) ≥ d(x, z)

d(x, y) = 0⇒ x = y

Commonly, d has the following form:

dA,W (x, y) =
√

(x− y)T AWAT (x− y) (4.3.14)

where x, y ∈ Rn, A can be any real matrix and W is a diagonal matrix with
non-negative entries - this corresponds to a metric that “weights” the axes
differently; more generally, W parameterizes a family of Mahalanobis distances
over Rn. Note that AWAT is semi-positive definite and thus dA,W (x, y) is a
valid distance metric.

The parameterization of A and W is very flexible. For example, setting
A = I (the identity matrix) would result in a weighted Euclidian distance
dI,W (x, y) =

√∑n
i=1 Wii(xi − yi)2. Setting A 6= I corresponds to applying a

linear transformation to the input data (AT x, AT y)3:

dA,W (x, y) =
√

((x− y)T A)W (AT (x− y)) (4.3.15)

Thus, we need to find a parameterization of A and W that allows rescaling
of the data such that only important dimensions are considered in the distance
calculation.

Clustering Spectra

Now we are coming back to our original problem: clustering spectra to detect
biologically interesting sub-clusters e.g. within the group of spectra of a par-
ticular disease. The previous sections gave a good explanation why clustering
of whole spectra with tens of thousands of dimensions would not be very rea-
sonable. For the above reason the dimensionality of data sets is often reduced
by various techniques before it is clustered.

Figure 4.3.6 shows the strategy we are using to allow clustering of very
high-dimensional data. As described in sections 3.7 & 3.8.3, in this thesis we
have developed a new algorithm to learn a metric that allows low-dimensional
representations of high-dimensional mass spectra. This low-dimensional repre-
sentation can then be used in subsequent steps such as clustering. The studies
presented below (sections 4.4 & 4.5) show that our algorithms produce good
results. The following steps briefly summarize our algorithm:

1. We begin with the original spectrum after preprocessing has been per-
formed (see section 3.3). A raw spectrum typically has about 100.000
data points.

2. The peak detection step (see section 3.4) eliminates noise that “looks
like” peaks and identifies biologically relevant peaks. This steps detects
about 2000-4000 peaks per spectrum.

3Note that by introducing a non-linear basis function φ and usingp
(φ(x)− φ(y))T W (φ(x)− φ(y)) a non-linear distance metrics could also be used.
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Figure 4.3.6: This figure shows the steps that are performed to achieve reduction
of dimensionality starting with a spectrum of about 100.000 dimensions to a point in
R3.

3. Choosing the metric (see section 3.7) involves detecting significant
signals and identifying a set of the most relevant peaks that can represent
a spectrum. This information is then used to build the metric.

Commonly, the following two basic strategies for dimensionality reduction
are used: (a) use a subset of relevant variables to construct the model (vari-
able selection). That is, to find a subset of d′ variables where d′ << d. (b)
transform the original d variables into a new set of d′ variables, where again
d′ << d. Unfortunately, these techniques do not work well with mass spec-
trometry data due to two main reasons:

1. Different scales: The inherent scales of the variable values are quite dif-
ferent. However, common algorithms assume that the variable value
reflects the importance of a variable which is not the case in out appli-
cation.

2. Number of variables: Choosing the best combination of variables re-
quires an exhaustive search over all possible feature combinations which
is in general not feasible due to the high time complexity (see e.g. (Lan-
gley, 1994)). Although there exist a variety of random and heuristic
approaches they only guarantee sub-optimal results.

4.3.4 Fingerprint Analysis

Features that can distinguish two groups of patients (e.g. healthy vs. diseased)
are used to create fingerprints and classify unknown spectra (as described
above) but can also be the basis for further investigations. The questions
posed then is “What is the biological basis for this difference ?”. The basic
approach to find answers to this consists of three steps:

(1) Identify the molecules that caused these peaks: There are two major
methods for molecule identification:
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� “Peptide Mass Fingerprinting” (Mann et al., 1993; James et al.,
1993; Clauser et al., 1999) that uses the mass(es) of the (full or
proteolytic) peptide as input to a database search of known proteins
or

� Using the Tandem MS (MS2, MS/MS) technique (Little et al., 1994;
Mrtz et al., 1996; Wells and McLuckey, 2005; Hernandez et al.,
2006) that generates collision-induced fragments of a peptide and
analyzes these fragments to infer the original molecule either by
searching a database for the resulting fragment pattern or by de
novo sequencing the molecule.

There a numerous sophisticated algorithms available for peptide identi-
fication and we have integrated some of them into our framework (see
section 6.2.3.

(2) Analyze biochemical pathways where this molecule plays a role: this
and the next step require a sound expertise in the biological / medical
area to draw meaningful conclusions. This step lays the foundation to
understand the context this molecule works in. As (Villanueva, Shaffer,
Philip, Chaparro, Erdjument-Bromage, Olshen, Fleisher, Lilja, Brogi,
Boyd, Sanchez-Carbayo, Holland, Cordon-Cardo, Scher and Tempst,
2006) show, even small pathways such as protease activity can exhibit
interesting insights.

(3) Find the reason for the different occurrence frequency: This step is
certainly the most complex part of the analysis and can yield insights
of varying complexity. This ranges from basic findings such as men and
woman have different concentrations of sex specific hormones till very
complex statements such as cancer patients show a very specific activity
of some proteases that result in a quite complex peptide pattern of the
fragmented pieces.

These findings should of course always be validated and confirmed by
further biochemical tests and (eventually) clinical trials.

4.3.5 Medical Examples

The above paragraphs gave a very coarse grained overview of the steps nec-
essary to analyze the features or fingerprints that can be found with our pro-
teomics.net pipeline. The next two sections give an example of how this can
be used in clinical environment.
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4.4 Identification of Proteomic Fingerprints in Blood
Serum by High-sensitive Bioinformatic Analy-
sis of SELDI-TOF MS Data for Detection of
Testicular Germ Cell Cancer

This study was performed in close collaboration with Dr. Romy Strenziok from
the Charité Berlin.

Testicular germ cell cancer is the most common solid malignant tumor
in young men. (Huyghe, Plante and Thonneau, 2007) showed that the inci-
dence of testicular tumors has shown a steady increase in Europe over the past
decades. Although numerous molecular parameters have been established as
diagnostic and prognostic tools for a variety of tumor entities, testicular germ
cell cancer and its molecular patterns are not well understood, and the liter-
ature addressing this important issue is sparse.

Routine clinical testing with serum markers is of high diagnostic value
and should therefore be included in the clinical workup of testicular masses.
However, these markers are only considered useful for follow-up checks and
cannot adequately replace other diagnostic procedures like testicular palpa-
tion, ultrasound, and surgical exploration of suspicious testicular masses. The
only available tumor marker for testicular seminoma, beta-human chorionic
gonadotropin (beta-HCG), is elevated in approximately 18 % of the cases
(Schmid et al., 1999). Thus there is clearly a need for new molecular markers.

In this study we use the ProteinChip�system based on surface-enhanced
laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS)
(see section 3.2) to identify biomarkers by analyzing aberrant protein patterns
in complex biological mixtures. This technology has already been beneficially
applied in urological diseases such as renal cell cancer (Tolson et al., 2004)
and prostate cancer (Qu et al., 2002) and for urinary protein identification in
transitional cell carcinoma of the bladder (Mueller et al., 2005; Vlahou et al.,
2001; Liu et al., 2005).

The aim of this study is to examine serum samples of seminoma patients by
SELDI-TOF MS and assess the predictive value of this technique at primary
tumor manifestation in different clinical stages.

4.4.1 Study Material

All clinical samples and data were obtained from the Charité-Universitätsmedizin
Berlin, Urologische Klinik und Hochschulambulanz, Campus Benjamin Franklin,
Berlin and from the Vivantes Klinikum Am Urban, Klinik für Urologie, Berlin.
Serum procurement was done with the ethical approval by the Institutional
Review Board.

Blood was drawn into standard serum collection tubes and allowed to clot
at 4� for 1 hour, warmed to room temperature and centrifuged for 10 min-
utes at 2500g. After centrifugation, all serum samples were immediately pre-
pared and snap-frozen in liquid nitrogen before storage at -80�. The clinically
diagnosed testicular germ cell cancers were confirmed by histopathological
expertising following inguinal orchiectomy. Seminoma components were im-
munohistologically verified by tumor-associated antigen profiling with cluster
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Figure 4.4.7: Total number of seminoma samples analyzed in the study (n=49).

of differentiation 30 (CD30), pancytokeratin, alpha-fetoprotein (AFP), beta-
human chorionic gonadotropin (beta-HCG) and placental alkaline phosphatase
(PLAP).

Healthy control samples were obtained from the Charité-Universitätsmedizin
Berlin, Urologische Klinik und Hochschulambulanz, Campus Benjamin Franklin,
Berlin on a voluntarily basis.

A total of 98 serum samples with 49 histologically confirmed seminoma
samples and 49 age-matched controls with no history of urological disease were
analyzed. The testicular germ cell cancer cohort consisted of 29 patients with
localized disease (clinical stage I) and 20 patients with disseminated disease
(clinical stage II) according to the Lugano classification. Marker elevation
(beta-HCG) was detected in 11 seminoma patients (see Figure 4.4.7).

4.4.2 Study Description

Samples were subjected to SELDI-TOF mass spectrometric profiling using
the ProteinChip System, Series 4000 Personal Edition as recommended by
Ciphergen Biosystems, Inc. (Freemont, CA). Initially, various ProteinChip®

chemistries were evaluated to determine which affinity chemistry provided the
best spectra in terms of number and resolution of proteins. IMAC-Cu+ as
well as CM10 chips gave the best results and both were used subsequently for
evaluation of all serum samples.

For denaturating and fractionation of the samples we used the ProteinChip®

Serum Fractionation Kit (Ciphergen Biosystems, Inc., Freemont, CA) in com-
bination with a Biomek® 2000 Laboratory Automation Workstation (Beck-
man Coulter, Inc., Fullerton, CA) and followed exactly the supplied proto-
col. pH gradient elution (pH9/flow through, 7, 5, 4, 3, and organic sol-
vent) resulted in 200µl fractions referred to in the following as F1 through
F6. Aliquot of fractions (20µl) were bound (1:5 diluted in binding buffer)
using a randomized chip/spot allocation schema to IMAC-Cu+ and CM10
(Weak Cation Exchanger) ProteinChip Arrays using a bioprocessor and the
Ciphergen-recommended protocols. Finally, the energy absorbing matrix SPA
(sinapnic acid, dissolevd in 250µl 1% TFA and 250µl 100% acetonitril) was
manually applied as 2 x 1 µl/spot. Only fraction F4 that had been shown in
preliminary experiments to give the largest number of peaks was subjected to
analysis. Chips were read with the ProteinChip® Reader 4000.

Instrument settings were chosen with a laser intensity of 6000 for data
shots, a mass range of 0-200000, a focus mass of 20000, a matrix attenuation
of 3800, and a sampling rate of 400; 795 data shots were fired at each position.
External calibration was done with a standard protein and peptide mixture.
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The acquired data was then analyzed and processed by our “proteomics.net”
pipeline as described in chapter 3 resulting in different sets of fingerprints for
the two groups under scrutiny (“cancer” vs. “healthy”).

During the analyses 138 peaks in a mass range of 3800-10000 Da where
detected that could discriminate between tumor and nontumor serum samples.
There was no single peak that could separate the two groups (seminoma vs.
control subjects). Five peaks (6.48 kDa, 6.84 kDa, 8.14 kDa, 8.17 kDa, 8.92
kDa) were combined to construct the fingerprint to train classifiers.

4.4.3 Study Results

As the classification results show (see next section) this study clearly demon-
strates that is is possible to find highly significant differences in protein pro-
files of cancer vs. control generated by SELDI-TOF mass spectrometry in
testicular germ cell cancer patients. The potential value of the SELDI-TOF
mass spectrometric pattern is particularly evident in the low molecular weight
range. This feature closes the gap between SELDI-TOF mass spectrometry
and valuable conventional methods like 2D gel electrophoresis that are not
capable of detecting low molecular weight areas, especially in low-abundant
proteins and peptides thanks to the newly developed algorithms in this thesis.

In our patient cohort, the analysis of MS-generated protein patterns not
only yielded a clear assignment to either the cancer or non-cancer cohort but
also enabled even beta-human chorionic gonadotropin-negative patients to be
correctly distinguished from normal controls. The protein pattern on a CM10
ProteinChip® achieved 80% sensitivity and 70% specificity when classified
by decision trees (95% confidence interval of 60.7%-87.1%). Four different
peaks with molecular masses of 6.94 kDa, 7.76 kDa, 8.63 kDa, and 8.69 kDa
were utilized to build the fingerprint and train the classifiers. In seminoma
patients, beta-HCG is currently the only available tumor marker in clinical use,
but according to several authors, the overall incidence of beta-HCG secretion
is low and dependent on the stage of disease (Butcher et al., 1985; Huyghe,
Muller, Mieusset, Bujan, Bachaud, Chevreau, Plante and Thonneau, 2007).

Patterns generated by SELDI-TOF MS would significantly facilitate the
detection of marker-negative seminomas. In addition, this new proteomic
approach would be most beneficial in the therapy monitoring, surveillance
and follow up of these patients.

4.4.4 Classification Results

Using the fingerprint described above classifier were trained and evaluated by
the 10-fold cross-validation schema. These classifier correctly predicted the
spectra in 90.4% (decision tree analysis, 95% confidence interval of 82.6%-
95.5%), 80.8% (support vector machines, 95% confidence interval of 71.4%-
88.2%) and 89.3% of the samples (neural networks, 95% confidence interval
of 81.3%-94.7%). Decision tree analysis discriminated between seminoma and
healthy subjects with a sensitivity of 91.5% and a specificity of 89.4%.

Figure 4.4.8 shows the specificity and sensitivity achieved in the tested
cohorts by using support vector machines and neural network analysis (CM10
ProteinChip®). Figure 4.4.9 depicts a representative spectrum of a seminoma
sample in a mass range of 4000-10000 Daltons. Figure 4.4.10 shows a decision
tree example generated from a CM10 ProteinChip®.
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Figure 4.4.8: Classification of the training set and test sets in 10-fold-stratified
cross-validation

Figure 4.4.9: Representative spectra of a seminoma sample in a mass range from
4000-10000 Dalton (CM10 ProteinChip®).

Figure 4.4.10: Decision trees generated from a CM10 ProteinChip®. Circles rep-
resent splitting nodes containing array type and moleular mass in Dalton. Peak
intensity cut off is defined as < x µA (micro ampere) or >/= x µA because of differ-
ent intensities (ranging between 35,1 µA-39,58 µA). Squares represent decision nodes
with class assigned by algorithm (cancer and control).
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Figure 4.4.11: Classification of the training set and test sets in 10-fold-stratified
cross-validation for marker-positive seminoma patients vs. healthy controls (CM10
ProteinChip®)

Figure 4.4.12: Classification of the training set and test sets in 10-fold-stratified
cross-validation for marker-negative seminoma patients vs healthy controls, (CM10
ProteinChip®)

Assessment of beta-HCG-positive seminoma vs. control subjects yielded
comparable but less significant results. Due to the lack of peaks with an
adequate height difference, only three peaks were selected for analysis (CM10
ProteinChip®). The highest number of significant peaks were found in a mass
range of 3800-8000 Da. Marker-positive seminomas were correctly predicted in
67.6% (decision trees, 95% confidence interval of 50.2%-81.9%), 78.4% (neural
networks, 95% confidence interval of 61.8%-90.2%), and 75.8% of the cases
(support vector machines, 95% confidence interval of 58.8%-88.2%). The
three analytical methods had adequate sensitivities ranging between 76.5% and
88.2%. Their specificities were likewise adequate at 60% (decision trees), 75%
(neural networks), and 65% (support vector machines), respectively. Three
different peaks (3.80 kDa; 4.98 kDa; 7.97 kDa) were chosen to create a finger-
print.

Figure 4.4.11 displays the corresponding sensitivities and specificities. De-
cision trees achieved 80% sensitivity and 70% specificity in discriminating
between beta-HCG-negative seminoma and control subjects.

Figure 4.4.12 shows decision trees, neural networks, and support vector
machine analyses. The rates of correctly classified subjects in all groups are
71.1%-75.7% (CM10 ProteinChip ®, 95% confidence interval of 60.7%-87.1%
for decision trees; 95% confidence interval of 60.7%-87.1% for neural networks;
95% confidence interval of 55.7%-83.6% for support vector machines; molecu-
lar masses: 6.94 kDa; 7.76 kDa; 8.63 kDa; 8.69 kDa). The CM10 ProteinChip
® achieved excellent differentiation between seminoma and control subjects,
while the IMAC-Cu+ chip yielded significantly less precise results. The com-
bination of 6 peaks (4.19 kDa, 6.37 kDa, 7.76 kDa, 7.93 kDa, 7.97 kDa and
9.29 kDa) predicted cancer patients in 60.6%-76.6% (decision trees, neural
networks and support vector machines) with a sensitivity of 27.6% to 76.6%
and a specificity of 76.6% to 93.6% (Figure 4.4.13) in the 10-fold stratified
cross-validation (95% confidence interval of 67.9%-85.6%, decision trees; 95%
confidence interval of 64.4% -74.4%, neural networks; 95% confidence interval
of 50.0% - 60.4%, support vector machines).
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Figure 4.4.13: Classification of the training set and test sets in 10-fold-stratified
cross-validation for seminoma patients vs healthy controls (ProteinChip® IMAC-
Cu+).

Protein profiles generated by the IMAC-Cu+ array did not differ signifi-
cantly between beta-HCG-positive and beta-HCG-negative seminoma patients
and healthy controls.
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4.5 Identification of Proteomic Fingerprints in Blood
Serum by High-sensitive Bioinformatic Analy-
sis of MALDI-TOF MS Data for Detection of
Thyroid Diseases

This study was performed in close collaboration with Dr. Alexander Leichtle
from the Institute of Laboratory Medicine, Clinical Chemistry and Molecular
Diagnostics at University Leipzig.

Today, thyroid diseases are very common in the general population. For
example, up to one third of the adult German population suffers from nodular
thyroid disease (Hampel et al., 1995; Kratzsch et al., 2005). Studies have
shown that even failure of thyroid function shows a prevalence of up to 10%,
whereas the presence of positive anti-TPO antibodies (TPOAb) and of positive
anti-thyroglobulin antibodies (TgAb) is slightly higher in a US population
(13% and 11.5%) and more pronounced in white population, females and the
elderly ((Hollowell et al., 2002)). (Zphel et al., 2003) showed that TPOAb are
detectable in nearly all euthyroid individuals and TPOAb values in the low
measurable range are normally distributed.

Applying the National Academy of Clinical Biochemistry (NACB) decision
limits applied to older men or women, there is a markedly increased number
with “elevated” autoantibody levels compared to sex- and age-specific refer-
ence intervals (O’Leary et al., 2006). TgAb and TPOAb are of immunoglob-
ulin G (IgG) class and have high affinities for their respective autoantigens.
(McLachlan and Rapoport, 2004) have shown that both autoantibodies are
markers of thyroid autoimmunity. While TgAb alone in the absence of TPOAb
is not significantly associated with thyroid disease, TPOAb and the combina-
tion of both, TgAb and TPOAb, however, show strong association with clinical
hypo- and hyperthyroidism (Hollowell et al., 2002).

The familial aggregation of thyroid autoantibodies seems to be mainly
genetically determined (Brix et al., 2004): An exon 1 CTLA-4 gene polymor-
phism G allele influences higher TPOAb and TgAb production, whereas the
C allele affects specifically TPOAb production in patients with Hashimoto’s
thyroiditis (Zaletel et al., 2006) suggesting CTLA-4 as a major thyroid au-
toantibody susceptibility gene.

High TPOAb titre correlates with increased frequencies of T cells produc-
ing Th/Tc1 cytokines, probably responsible for thyroid cell damage and/or
death in Hashimoto’s thyroiditis (Karanikas et al., 2005). TPOAb and TgAb
are both correlated with thyroid enlargement (Carl et al., 2006). The histo-
logical diagnosis of Hashimoto’s thyroiditis can most precisely be predicted by
TgAb measurement (Kasagi et al., 1996).

(Engum et al., 2005) have found no associations between antithyroid an-
tibodies and depression or anxiety in a population-based study. However,
fibromyalgia patients had thyroid autoimmunity higher than control subjects
(Pamuk and Cakir, 2007). There is also a strong relation between thyroid
autoimmunity and breast cancer (Giustarini et al., 2006), but a direct rela-
tionship between thyroid autoimmunity and breast cancer seems to be unlikely
(Kuijpens et al., 2005).

Pregnant women seem to have a lower positive rate of TPOAb than non-
pregnant women (3.3% vs 9.4%, p ¡ 0.01) (xia Guan et al., 2006) and the preva-
lence of both, TPO and Tg antibodies shows a progressive decline throughout
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gestation becoming undetectable in the third trimester (Smyth et al., 2005).
(Radetti et al., 2006) showed that in children, the presence of goiter and

elevated TgAb at presentation, together with progressive increase in both
TPOab and TSH, may be predictive factors for the future development of
hypothyroidism.

So far several studies using proteomic techniques have been performed in
the area of thyroid diseases, mainly focusing on thyroid malignancies (Vil-
lanueva, Martorella, Lawlor, Philip, Fleisher, Robbins and Tempst, 2006;
Brown et al., 2006; Suriano et al., 2006) and thyroid tissue pathology (Krause
et al., 2006; Torres-Cabala et al., 2006). However, the proteomic implications
of thyroid autoantibodies in the general population still remain unclear.

Due to the high clinical impact of thyroid autoantibodies even in a non-
symptomatic population, this study investigates serum proteome profiles in an
apparently healthy population of blood donors to detect specific discriminating
proteome patterns which could very early point to the underlying autoimmune
processes in subjects with high thyroid autoantibody titers.

Study Participants

We included a sub-group of 870 healthy blood donors from one study cen-
ter (experienced and first time donors, which met the general principles of
donor selection and guidelines for deferral according to the German Guidelines
(Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz, 2000)) with-
out a personal history of a thyroid disease.

All donors filled out a questionnaire requesting information concerning a
family history of thyroid diseases, anthropometric data, smoking habits, and
medications. A total of 445 male and 425 female donors (age range, 18-68
years) were randomly included.

Thyroid ultrasonography was performed with an EUB-405 (Hitachi) with
a 7.5 MHz transducer. The thyroid volume was calculated as length · width
· depth · 0.479 for each lobe (J et al., 1981). Goiter was defined as a thyroid
volume exceeding 18 mL in women and 25 mL in men (Gutekunst et al., 1988).
Solid nodules were identified as differing from the healthy thyroid tissue in
pattern and ultrasonic echo intensity. The nodules were classified as isoechoic
if their texture closely resembled that of healthy thyroid tissue, hyperechoic if
more echogenic, and hypoechoic if less echogenic.

Venous blood was collected before the blood donation procedure started
using Sarstedt blood collection systems (Sarstedt, Nümbrecht, Germany). Af-
ter blood was centrifuged at 3000g for 15 min, the serum was aliquoted and
stored frozen at -80� until analysis.

All blood donors gave written consent for the participation in this study
and the study was also approved by the local ethics committee.

Study Description

Serum concentrations of TSH, FT4, FT3, T4, and T3 were measured by assays
on the ELECSYS system (Roche Diagnostics). The immunoreactivity of serum
TPO antibodies and Tg antibodies was measured on the same platform.

After thawing on ice peptide and protein purification and fractionation was
performed using a magnetic bead-based separation technique (ClinProtTM,
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Bruker Daltonics, Leipzig, Germany) with specific surface functionalities (MB-
IMAC Cu, MB-WCX, MB-HIC C8). The procedure was performed exactly
according to the recently published protocol (Baumann et al., 2005).

Gradient grade acetonitrile, ethanol, acetone were obtained from J.T.
Baker (Phillipsburg, USA); trifluoroacetic acid was purchased from Sigma-
Aldrich (Steinheim, Germany). Peptide and protein calibration standards, a-
cyano-4-hydroxycinnamic acid were purchased from Bruker Daltonics (Leipzig,
Germany). Peptide preparations were done in 0.2ml polypropylene tubes (8-
tube strips) from Biozym (Hess. Oldendorf, Germany). The MALDI-TOF
AnchorChip� target (four spots per sample) was purchased from Bruker Dal-
tonics (Leipzig, Germany).

The proteome profiling was performed using a ClinProt� Robot and an
Autoflex Linear MALDI-TOF Mass Spectrometer (Bruker Daltonics, Ger-
many). Mass spectra were recorded by the flexControl� 2.0 Software (Bruker
Daltonics, Germany). The settings were applied as follows: Ion source 1:
20 kV; ion source 2, 18.50 kV; lens, 9.00 kV; pulsed ion extraction, 120 ns;
nitrogen-pressure, 2500 mbar. Ionization was achieved by a nitrogen laser
(λ=337 nm) operating at 50 Hz. For matrix suppression a high gating factor
with signal suppression up to 500 Da was used. Mass spectra were detected
in linear positive mode. Spectral data were combined with beforehand sur-
veyed epidemiological and clinical meta-data to provide highly differentiated
classification criteria. Overall, about 8500 spectra were acquired during data
collection. The following data processing was performed according to our
standardized workflow as described in chapter 3

Study Results

In our study group, gender was comparably distributed within all age groups
(data not shown). Thyroid volume was significantly higher in males than in
females (19.9 vs. 14.7, p < 0.001). Other physiologic variables such as blood
pressure and heart frequency showed values and gender-dependent differences
within the expected intervals for healthy persons. Approximately one-fifth
of the donors (16.2% males and 26.1% females) reported a family history of
thyroid diseases. Goiter and/or hyperechoic or hypoechoic areas were newly
detected in 26.8% of the investigated females and 23.8% of the investigated
males. Of the 870 donors recruited, 220 showed irregularities of the thyroid
or had a positive family history for thyroid diseases. Of all persons examined,
9.6% had increased TPO antibody immunoreactivity and 10.3% had Tg an-
tibody immunoreactivity; 16.0% of these showed immunoreactivity for both
antibodies.

Serum samples were analyzed using magnetic-bead based MALDTI-TOF
MS. After preprocessing diverging peaks for normal/high TPO and Tg anti-
bodies were selected manually with respect to peak height and distance mea-
sure.

For TPO antibody classes (above and below 37.1 IU/mL) we build a finger-
print (FP1) with discriminating signals at 1836.0 Da (Jensen-Shannon mea-
sure of divergence [JS] 41.7), 1884.5 Da (JS 53.3) and 1732.8 Da (JS 39.6) (see
Figure 4.5.14).

For Tg antibody classes (above and below 98.1 IU/mL) we built a finger-
print (FP2) with discriminating signals at 1084.5 Da (JS 60.0), 2755.4 Da (JS
51.3) and 4064.2 Da (JS 135.5) (see Figure 4.5.15).
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Figure 4.5.14: Fingerprint FP1 (selected signals) for TPO antibody classes.

Figure 4.5.15: Fingerprint FP2 (selected signals) for the Tg antibody classes.
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Training classifiers with fingerprint F1 we used 10-fold cross-validation to
measure the performance of these classifiers. The results are shown in Figure
4.5.16.

Training classifiers with fingerprint F2 we used 10-fold cross-validation to
measure the performance of these classifiers. The results are shown in Figure
4.5.17.

To show that the fingerprints are generalizable we then used the finger-
prints F1 and F2 to build classifiers that can distinguish between the TPO
and Tg antibody classes. Performance was again measured by the 10-fold
cross-validation schema. These results are shown in Figure 4.5.18.

Figure 4.5.16: Classification of the training set and test sets in 10-fold-stratified
cross-validation. Data is shown for four different classifiers using the fingerprint F1
after classification of n = 981 spectra “above 37.1 IU/mL TPO antibody” vs. “Con-
trol”.

Figure 4.5.17: Classification of the training set and test sets in 10-fold-stratified
cross-validation. Data is shown for four different classifiers using the fingerprint F2
after classification of n = 450 spectra “above 98.1 IU/mL Tg antibody” vs. “Control”.

Figure 4.5.18: Classification of the training set and test sets in 10-fold-stratified
cross-validation. Data is shown for four different classifiers using the fingerprints F1
& F2 after classification of n = 1097 spectra “above 37.1 IU/mL TPO antibody” vs.
“above 98.1 IU/mL Tg antibody”.
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4.6 Biological Applications

In addition to the clinical application described in the previous sections mass
spectrometry has also emerged as the preferred method for in-depth charac-
terization of protein components of biological systems. Many studies have
shown that is is possible to gain key insights into the composition, regulation
and function of molecular complexes and pathways. Thus, mass spectrometry-
based proteomics has evolved to a quite powerful hypothesis-generation plat-
form. This tool in combination with complementary techniques from areas
such as molecular biology or pharmacology provides a framework to gather
more understanding of complex biological processes. This section will briefly
review some recent studies and show the large range of applications.

4.6.1 Characterization of Protein Complexes

Many proteins found in cells or tissue function as components of larger com-
plexes. These complexes can vary in size dramatically, from just a few small
proteins clustering together to very large assemblies of dozens of proteins,
such as the ribosome. Since the composition of these complexes is highly reg-
ulated in cells (context and time dependent) unraveling the structure becomes
a real challenge. Mass spectrometry-based proteomics can aid in this issue as
described in the examples below.

Discovering a Mitochondrial Protein Complex Structure

By mass spectrometry-based proteomics analysis of mitochondrial BAD-con-
taining complexes (Danial et al., 2003) discovered an unexpected physical
association between a key apoptotic protein (BAD) and a key glycolytic pro-
tein (glucokinase). This led to new models to explain how cells coordinate
metabolic signals and survival signals.

Discovering a Transcription-Factor Complex

(Ranish et al., 2004) used mass spectrometry-based proteomics to characterize
a previously unknown component of TFIIH (one of the transcription factors
that make up the RNA polymerase II preinitiation complex) that eventually
succeeded in explaining the molecular basis for a human photosensitivity syn-
drome.

Discovering a Chaperone Complex

In an early study (Washburn et al., 2001) analyzed the CFTR (cystic fibro-
sis transmembrane conductance regulator, an ABC transporter-class protein
and chloride ion channel) interactome using mass spectrometry-based pro-
teomics and identified specific co-chaperones and chaperone folding pathways
that seem to control mutant channel stability, cell-surface expression and func-
tion. Mutations of CFTR leads to cystic fibrosis and congenital absence of
the vas deferens (part of the male anatomy).

4.6.2 Characterization of Protein Pathways

Another very exciting application of mass spectrometry-based proteomics is
the comparative analysis of biological samples of different conditions, such as
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in human cancer research (see above) but also in understanding a biological
system. These studies usually aim at the identification of protein fingerprints
that characterize the difference between a system at the different stages. Below
we give some success stories in this area of mass spectrometry-based research.

Identification of Proteins in Kinase Pathways

A compelling example of the value of comparative proteomics for assigning
unique cellular functions to uncharacterized members of protein classes was
done by (Khan et al., 2005). They developed an innovative cell-biological strat-
egy based on mass spectrometry proteomics to enrich distinct sexual stages of
P.berghei life cycle that allowed the generation of high-quality cellular models
for in-depth analysis. The result of this study was the most comprehensive
inventory of sex-specific parasite proteins generated so far, including the dis-
covery of novel protein kinasis regulating sex-specific signalling pathways.

Identification of ATM/ATR candidates in DNA-damage Response
Pathways

An excellent example how quantative mass spectrometry-based methods can
used for mapping protein phosphorylation sites in proteomes is given by (Mat-
suoka et al., 2007).

Identification of Proteins in Insulin Pathways

(Dong et al., 2007) show that quantitative mass-spectrometry-based proteomics
using stable isotope labelling can be applied to intact organisms, as well as
cell-culture preparations, thus greatly expanding the potential applications of
this method.

4.6.3 Fingerprinting the Influenza Virus

Influenza is still a deadly virus that continues to cause illness all over the world.
The Influenza type A virus (most virulent in humans) genome is contained on
eight single (non-paired) RNA strands that code for eleven proteins. One of
these proteins, HA, encodes hemaglutinin which determines the extent of an
infection into a host organism. Screening of the virus is necessary for the
development of effective vaccines, since even a point mutation in the HA gene
sequence can render a vaccine ineffective. Usual screening techniques such
as enzyme immunoassays, complement fixation and heagglutination inhibition
(HI) assays are quite time consuming and do not provide molecular details.

A recent paper by (Downard and Morrissey, 2007) introduces a new surveil-
lance approach for screening the structure and antigenicity of the virus. The
method is based on creation of MS and MS/MS spectra from the tryptic digest
of hemagglutin. The resulting MS fingerprints can be compared to reference
fingerprints and by analyzing the MS/MS spectra even the molecular structure
and sequence can be determined in a single step.
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The previous chapters have introduced new methods for the analysis of
mass spectrometry data. The main advantage of our algorithms was increased
sensitivity that - unfortunately - introduced more complex computations and
increased amount of data. To speed up these calculations we developed a new
framework that can split up the analyses tasks and distribute these sub-tasks
to compute machines organized in an environment we call the quasi ad-hoc
Grid. This framework and its advantages (e.g. over commonly used compute
clusters) are described in the following sections.

5.1 Introduction

Driven by increasingly complex problems, new technologies and machines pro-
ducing gigabytes of data each day, today’s science is based on computation
power and data analysis as never before. But even as development of computer
power and data storage continue to improve exponentially1, these resources
are failing to keep up with what scientists demand of them. As an example,
scientists back in 1990 were happy assembling small parts of DNA sequence
information of a chromosome. These days they want to assemble the complete
human genome and several physics projects such as CERN’s Large Hadron
Collider, produce multiple petabytes of data per year. Of course, current
desktop computers are much more powerful than supercomputers in the early
1990s and the storage a PC ships with is comparable with an entire 1990

1According to Moore’s Law stating that semiconductor power doubles roughly every 18
months.
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supercomputer center, but from these two examples it gets obvious that the
demand will always be greater than what current technologies can deliver.

Figure 5.1.1: A typi-
cal cluster as it is used
in many computing cen-
ters. The picture shows
a server rack with com-
puting, storage and con-
trol units which are con-
nected through a fast
backbone network.

The typical approach to tackle this issue is what computer scientists
call divide and conquer : break down the original problem into smaller
sub-problems and let them be solved by many processors in parallel in
(much) shorter time. Then the solutions to the sub-problems are com-
bined to give a solution to the original problem. The actual computation
of these sub-problems is usually done by using one of the following con-
cepts:

� Using a Supercomputer consisting of hundreds or thousands of
processors connected by an ultra-fast network and often access-
ing shared memory. Therefore, data exchange within this machine
is extremely fast. A supercomputer costs from hundreds of thou-
sands to tens of millions of Euros. Examples are NEC’s “Earth
Simulator” or IBM’s Blue Gene/L with over 131.000 processors.

� Using a computer cluster. A cluster is usually a (fixed-sized) group
of identical2 computers connected by a fast network (see Figure
5.1.1) and controlled by a central host (master / slave approach).
The supposedly first cluster was built at a NASA research center
in 1994 and consisted of 16 Intel 486 PCs. The big advantage of a
cluster system over a classical supercomputer is the price tag. While
performing equally well with respect to speed it is usually 50 - 90%
cheaper to build a cluster than buying a supercomputer, because a
cluster can be built from cheap commodity hardware. The biggest
downside is that communication between two nodes takes some
hundred microseconds opposed to just a few microseconds within a
supercomputer.

� Using a computing Grid. The Grid is a type of Infrastructure similar
to a cluster. The main difference is that a Grid has no fixed size
- its nodes are loosely connected together dynamically on demand.
The probably most interesting advantage of a Grid system over the
supercomputer and the cluster is that every computer can be part
of a Grid no matter where it is located or if other users are working
on this machine. That is, a Grid can be build with any existing
hardware so basically no money needs to be spent!

Since the cluster and the Grid approach are much cheaper while delivering
the same computational power we will abandon the supercomputer idea. It
should be noted however, that if sub-problems need to communicate with
each other frequently (e.g. because sub-problems are very quickly computed)
a supercomputer is the first choice. This is because the other concepts need
(comparatively) quite a long time for communication between nodes.

Comparing a cluster system and the Grid approach, the key differences
and main advantages of Grids are:

� Each node can be any piece of computer hardware opposed to a cluster
where (usually) they need to be of the same type of hardware and run
the same operating system.

2Identical here means that the hardware, operating system and installed software is the
same.
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� A node is not exclusively used for the Grid whereas in a cluster it is
completely used by the cluster Application - it follows that even office
computers or laptops can be integrated into a Grid.

� A node can be at any physical location in the whole world as long as it
can connect to the Grid (e.g. by the Internet) whereas they need to be
in the same local network in the cluster case and use the same access
policies (for control reasons).

� Nodes can be added dynamically on demand opposed to a cluster that
usually has a fixed size (until new nodes are bought and manually inte-
grated).

In this project we have focused on the Grid approach. In a university
setting this follows almost automatically from the fact that there is usually
a large number of (heterogeneous) computing resources available within the
university or other partner institutes. The resources are idle most of the time.
With the Grid approach resources can be added (when they are unused) or
excluded (when a user starts using them) from the Grid dynamically and even
resources from an existing cluster can be integrated.

However, as pointed out in section 5.1.3 using the power of Grid comput-
ing these days is still very complicated. This is due to quite complex Grid
frameworks needed to be set up and used for the computations. There is still
no easy and quick way to set up such a system crossing organizational borders
to work mutually on a problem. Projects such as SETI@HOME (see section
5.7) have made a remarkable step towards this direction but they are highly
specialized on one particular problem domain. To the best of our knowledge
there is still nothing that allows users to set up a Grid spontaneously and
compute any (suited) large problem on many different resources in an easy
way.

In this thesis we have developed an approach we call the Quasi ad-hoc
Grid fulfilling these requirements. Additionally to the commonly available
functions of a Grid platform, namely

� easily set up a Grid Infrastructure with distributed heterogeneous re-
sources

� integrate thousands of working nodes working mutually together on
(suited) large scale problems (opposed to systems like the SETI@HOME
project where only one particular problem can be analyzed)

it allows users to

� do this almost instantaneously (ad hoc) without the need of installing
client software prior to computation (see section 5.3.3 on page 126)

� use almost any programming language for the computations - even Mat-
lab�(see section 6.2.5 on page 159)

� use almost any hardware platform - even Sony’s Playstation 3�(see sec-
tion 6.2.4 on page 158)

� hot deploy new services into an existing structure (see section 5.5.4 on
page 140)
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� create complex workflows to be executed on the Grid (see section 5.1.2
on page 109)

It is a quasi ad hoc approach since we need a central management entity
usually not necessary in ad hoc networks.

5.1.1 The History of Grid Computing

The term Grid computing was coined by Ian Foster and Carl Kesselmans
(Kesselman and Foster, 1998) in the early 1990s as a metaphor for making
computer power as easy to access as an electric power Grid. It is often am-
biguously used with “distributed computing”, “High Performance Computing
(HPC)”, or “Virtual Supercomputing”.

The concept of sharing distributed resources is actually quite old. In
1965, Corbat‘o and his team envisioned a computer facility operating “like
a power company or water company” (Vyssotsky et al., 1965), and in (Lick-
lider and Taylor, 1968) the authors anticipated Grid-like scenarios. Since the
late 1960s, much work has been devoted to developing distributed systems,
but with mixed success.

Taking off in the late 1970s (virtual) supercomputers were initially limited
to Applications in defense industry and a small number of high technology in-
dustries. Since the early 1990s, however, Grid computing entered other sectors
of business, industry and science. Computer manufactures have understood
the demand of the market and responded by developing many different com-
puter architectures ranging from traditional vector processors to assemblies
of RISC processors 3 . Nowadays, Grid computing has been accepted by the
global computing community and is used successfully for solving large scale
problems in industry, business and science.

Important Grid projects at the moment are Folding@Home (Stanford Uni-
versity; the goal is to understand why proteins misfold), Seti@Home (UC
Berkeley; they search for signs of extra-terrestrial intelligence), or Evolu-
tion@Home (addressing fundamental questions about evolution and popula-
tion genetics). Each project is usually running their own Grid platform such
as BOINC (Anderson, 2004), Globus (Foster and Kesselman, 1997), GridBus,
Condor (M. J. Litzkow and Mutka, 1988) (which is actually a scheduler), Be-
owulf (Sterling et al., 1995) (which is actually a cluster concept) or the SUN
Grid Engine (Gentzsch, 2001) (which is actually a scheduler). The Globus
toolkit has evolved into something the New York Times calls the de facto
standard for Grid computing.

5.1.2 Grids at a Glance

Traditionally, a Grid consists of three main components: (a) the Compute
Grid where the actual problem is computed, (b) the Data Grid providing the
data and (c) the (optional) Grid Portal that allows easy submission to, control

3The reduced instruction set computer, or RISC, is a CPU design philosophy that favors
an instruction set reduced both in size and complexity of addressing modes, in order to enable
easier implementation, greater instruction level parallelism, and more efficient compilers.
As of 2007, common RISC microprocessors families include the DEC Alpha, ARM, Power
Architecture, PowerPC and SPARC. The idea was originally inspired by the discovery that
many of the features that were included in traditional CPU designs to facilitate coding were
being ignored by the programs that were running on them. Also these more complex features
took several processor cycles to be performed.
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of and configuration of the Grid. However, when using a Grid some concepts
known from traditional single-machine oriented problem solving cannot be
applied anymore. Some key points to be reconsidered are listed below and
will be discussed in the remaining of this chapter:

� Problem splitting and result merging: Obviously the original problems
needs to be decomposed into hundreds, thousands or even millions of
tasks, each of which is executed (nearly) independently. The most com-
mon decomposition approach exploits a problem’s inherent data paral-
lelism - breaking the problem into pieces by identifying the data subsets,
or partitions, that comprise the individual tasks. These and the corre-
sponding data partitions are then distributed to the compute nodes for
processing. It is obvious that for each single problem the right strategy
needs to be found. This feature is commonly not directly implemented in
the Grid platform but in a so-called scheduler. After the computations
are finished they need to be merged together to form the final result.

� Data transportation: Sub-problems and their associated (often very
large) data, results and status messages must be communicated through
the Grid efficiently and reliably.

� Inhomogeneous nodes: A computer program is no longer written for a
particular system; instead, a Grid node can be almost any combination
of hardware, operating system and programming languages (or their
respective interpreters). To allow integration of special hardware (like
Sony’s Playstation) and software (such as Matlab) special client software
adapted to the local environment is needed.

� Changing conditions: Since (mostly) nodes are not exclusively used for
the Grid job executing control must be performed and events such as
loss of nodes must be handled.

� Restricted access: Usually a user of a Grid has no administrative access
to all machines. This affects the process of distributing and running the
client software on the nodes.

� Reliability of Results: The results should be double-checked since com-
puters which are performing the calculations might not be entirely trust-
worthy.

� Security: Neither the machines itself nor the communication within the
Grid is fully trustworthy.

Different Types of Grids

Since there are different groups of users having different needs there does not
exist the Grid. What we have learned in the last years is that there are
many different Grid types satisfying different specific requirements. Following
(CERN, 2007) grid systems can be categorized into the following six classes:

National Grids: The idea behind National Grids is to couple high-end re-
sources across a nation. This will provide a strategic computing reserve
and will allow substantial computing resources to be applied to large
problems in times of crisis, such as to plan responses to a major envi-
ronmental disaster, earthquake, or terrorist attack. Furthermore, such a
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Grid will act as a national collaborator, supporting collaborative inves-
tigations of complex scientific and engineering problems, such as global
climate change, space station design, and environmental cleanup. For
example, the UK has a major e-Science program, part of which is dedi-
cated to developing a major national Grid.

Private Grids (sometimes called local-Grids or intra-Grids) can be useful
in many institutions (hospitals, corporations, small firms, etc). They
are characterized by a relatively small scale, central management and
common purpose and, in most cases, they will probably need to integrate
low-cost commodity technologies. In fact, commercial solutions for such
private Grids are already available, such as Entropia’s DC Grid, and
likely to grow in sophistication over the next years.

Project Grids will likely be created to meet the needs of a variety of multi-
institutional research groups and multi-company virtual teams, to pur-
sue short- or medium-term projects (scientific collaborations, engineer-
ing projects). A Project Grid will typically be built ad hoc from shared
resources for a limited time, and focus on a specific goal. Typically, this
is something a self-motivated team could set up, without need to apply
to any major Public Grid Infrastructure for permission. The LHC Com-
puting Grid (LCG) Project is an example of such a Grid for a particular
experiment in high-energy physics.

Goodwill Grids are for anyone owning a computer at home who wants to
donate some computer capacity to a good purpose. To date, activities
in this area has been limited to the various @home projects, where the
fun of participating is the main motivator, with sometimes prizes and
potential fame as extra bait (imagine if your computer happened to
detect the first message from outer space! SETI@home will give you a
free trip to Puerto Rico if that happens, to see the radiotelescope that
they are using for their project.).

Peer-to-peer Grids: Peer-to-peer technology depends on people sharing data
(like the now defunct Napster and its many subsequent imitators) be-
tween their computers. The name peer-to-peer suggests that there is no
central control, but actually, in the case of Napster, there was a central
repository of addresses, and this is precisely how the company got nailed!
However, newer versions are truly peer-to-peer, requiring no third-party
intervention. Compared to Goodwill Grids, the idea here is that you get
in kind for what you give: access to music files for sharing your own, for
example.

Consumer Grids: In a Consumer Grid, resources are shared on a commer-
cial basis, rather than on the basis of goodwill or mutual self-interest.
Companies or other organizations rent distributed resources, and the
owners of these resources are paid for the computing power or data stor-
age capacity they contribute, by a middleman in charge of the middle-
ware. Although many customers could use the same resources, in general
they would not have common collaborative aims, and indeed there is a
challenging need to provide security that prevents different customers
snooping on each others’ work. A big issue in such Grids will be re-
source marketing : a user has to find the resources needed to solve his
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particular problem, and the supplier must make potential users aware of
the resources he has to offer. There has been attempts to make commer-
cial solutions based on @home type cycle scavenging, but basically it is
seen as generally too unreliable to be a business proposition. It has been
suggested that future generations of processor chips could come with a
Grid facility pre-installed, to optimize their use by Grids when not in
use by the owner.

Grid Resources

This section describes the basic resources a Grid needs to have. Each node
contains a certain number of computers, which may be playing different roles.
To provide a concrete example, we describe here the concept of the EU Data-
Grid project. The DataGrid consist of approximately 1000 CPUs at 15 sites
across Europe, and is built on top of the EU-funded GEANT high-speed com-
munications network. The machines play one (or more, if possible) of the
following different roles:

Resource Broker: Module that receives users’ requests and queries the In-
formation Index to find suitable resources.

Information Index: Can reside on the same machine as the Resource Bro-
ker, keeps information about the available resources.

Replica Manager: Used to coordinate file replication across the Grid from
one Storage Element to another. This is useful for data redundancy but
also to move data closer to the machines which will perform computation.

Replica Catalog: Can reside on the same machine as the Replica Manager,
keeps information about file replicas. A logical file can be associated to
one or more physical files which are replicas of the same data. Thus a
logical file name can refer to one or more physical file names.

Computing Element: Module that receives job requests and delivers them
to the Worker Nodes, which will perform the real work. The Computing
Element provides an interface to the local batch queuing systems. A
Computing Element can manage one or more Worker Nodes. A Worker
Node can also be installed on the same machine as the Computing Ele-
ment.

Worker Node: Machine that will process input data.

Storage Element: Machine that provides storage space to the Grid. It pro-
vides a uniform interface to different Storage Systems.

User Interface: Machine that allows users to access the Grid.

Workflow Management Systems

There are basically two different modes a Grid is used:

1. Data oriented : A large problem is split up into many similar sub-tasks
which then are put into the Grid’s job queue and computed by the worker
nodes
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2. Pipeline oriented : A large workflow consisting of many different and
dependent tasks is created and for each step different jobs are submitted
to the queue

According to the definition given by Workflow Management Coalition, a
workflow is: “The automation of a business process, in whole or part, during
which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules” (WfMC, 2007).

A business process is the set of procedures required for obtaining a given
result, therefore workflow is the automation of a set of operations that allows
obtaining a given result, with the exchange of information among involved
entities and with respect to defined procedural rules. The operations involved
by a workflow are called activities; an activity is a part of the entire work and
it represents a logical step in the process.

Since in the data-oriented case the problem can be reduced to how to split
up the data the pipeline-oriented case is considerably more difficult. Here, the
workflow must be defined, implemented, and executed. This issue of execution
in a given order of complex computational tasks in a Grid environment has
even been discussed by the “Grid Computing Environment Working Group”,
in the Global Grid Forum (Hugh P. Bivens, 2001).

To run a workflow into a Computational Grid it is necessary to define a
language to be interpreted and manipulated automatically from a manage-
ment system, which should allow defining a set of activities, their relation,
involved entities (i.e. Applications, data resources, etc.) and some criteria for
determining the start and end of the processes.

However, there are many available workflow manager that fulfill these tasks
(such as Nimrod, Triana, Taverna, Pegasus, Proteus) but they need to be
installed on top of an existing Grid platform and are usually not part of them
(a nice exception is the myGrid project (Stevens et al., 2003)).

5.1.3 Problems of Todays Grid Systems

Nowadays most Grid systems are run by large research organizations, com-
panies or governmental institutions such as NASA (Information Power Grid),
US Department of Energy together with IBM (Science Grid) or the European
Union (EGEE). These organizations have dedicated staff who set up, config-
ure, administrate and manage these projects. This is still far away from trivial,
making these administrators vital to the task. As in the case of the Internet
boom in the late 1990’s what is really is needed to fulfill the “everyone can
use the Grid” vision is

� Significantly reduce the complexity of installing and maintaining a Grid
system.

� Provide easy to use client software that can compute jobs on Grid re-
sources.

� Allow for easy participation in a Grid system either as user who wants
to compute a large problem or to provide resources - this includes things
such as registration and security models.

� Merge the needed components such as the Grid platform, workflow man-
ager and scheduler into some consistent product.

� Allow for easy enabling of Grid technology to existing algorithms.
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5.2 The Quasi Ad-hoc (QAD) Grid

This section describes our quasi ad-hoc approach. Before we dive into details
section 5.2.2 will give a broad overview of the basic modules. These are the
building blocks of this approach. Subsequently, section 5.2.3 describes details
of the underlying concepts which differ from traditional Grid solutions.

5.2.1 Why Another Grid Approach ?

� No need for real client software

� Heterogeneity: embedding of specialized hardware

� Unreliability of nodes: specialized checkpoints and migration possibili-
ties

� Merging the grid and cluster idea

� Hot deployment of services into a running system

5.2.2 Modules

This section introduces the main building blocks of the quasi ad-hoc Grid from
a users’ perspective (see Figure 5.2.2):

Figure 5.2.2: Grid - from the users’ perspective. Elements in blue are standard
Grid components; green elements are extensions.

User: The User can login to the (web-based) platform server for managing
and control purposes. Depending on his credentials he might only have
limited access to data, clients and Grid services / functions.
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(1) Grid Platform Server: The Platform Server is the central instance of
the quasi ad-hoc Grid. It allows users to use and access the Grid system
e.g. via a web-based front-end (see section 6.2). The core functions are:

� Management of, enabling access to and transports of data.

� Job administration, e.g. creation and fail-over handling.

� Start and control of and communication with workers.

� Security related issues such as client login or data encryption.

To increase performance and enable fail-over handling it is possible to
run many Grid Platform Servers in parallel. Using database technology
these instances periodically synchronize their data, such as jobs details.

(2) Data is stored at the Grid Platform Server and replicated partly at the
worker’s host system. This distributes the data across the Grid and
enables efficient data access for the distributed workers.

(3) Analyses Service: The server can provide complex analyses services
through its web-frontend.

(4) Workers perform the computational work and mirror parts of the data.
It requests jobs from the Grid’s platform server, computes them and
transfers the results back to the server. Additionally, it mirrors data
from the platform server and provides it to other workers.

(5) Workflow Management: As described in section 5.1.2 workflows are
sequentially executed tasks that depend on another. The management
includes:

� Creation of workflows

� Execution of workflows. That is, after a workflow step is finished,
the appropriate actions have to be taken including creation of new
tasks

5.2.3 Concepts

Worker Injections: In contrast to (almost) all other Grid and cluster ap-
proaches, client software is not previously installed on target machines
but on demand our platform connects to the target machine and trans-
fers and executes the client software via SSH 4 or WMI 5 . Of course,
the client can also be pre-installed and executed locally on the target
machine.

4Secure Shell or SSH is a network protocol that allows data to be exchanged over a secure
channel between two computers. Encryption provides confidentiality and integrity of data.
SSH uses public-key cryptography to authenticate the remote computer and allow the remote
computer to authenticate the user, if necessary.

5The Windows Management Instrumentation (WMI) is a set of extensions to the Win-
dows Driver Model that provides an operating system interface through which instrumented
components provide information and notification. WMI is Microsoft’s implementation of
the Web-Based Enterprise Management (WBEM) and Common Information Model (CIM)
standards from the Distributed Management Task Force (DMTF). WMI allows to manage
Microsoft Windows personal computers and servers, both locally and remotely.
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Job Pull: Jobs are requested (pulled) by the workers. This is opposed to
most other Grid or cluster approaches where the jobs are distributed
(pushed) by some service node directly to a worker.

Database Centered Communication: Current database technology is fully
platform independent. In the QAD Grid the entire communication be-
tween Grid nodes (that is servers and clients) is done via modifying
database entries which are read and interpreted by the single entities.
In most other systems communication is done via web-services 6 which
causes communication overhead and requires installation of a web-service
container (usually a special server component).

Workflows / -items: Jobs in our system are workflow elements (see section
5.1.2). This means all (atomic) elements can be automatically combined
to complex workflows. A workflow is a directed acyclic graph (DAG).

Data Access: All data is centrally hosted on the server platform and au-
tomatic data replication is performed to the Grid workers. That is, we
can perform both Data-follows-client and client-follows-data paradigms.
This implies that data to be processed by the Grid are first transferred
(staged) to a platform server and then automatically actively distributed
to the clients or passively replicated over the Grid.

Security: Security is obtained via the database security features. All database
connections and client logins are encrypted and transfered over a (certifi-
cate based) SSL 7 connection. Further data connections can be secured
by SSL.

(Hot) service deployment: Services8 are deployed simply by the worker
registering a new service class at the platform server. From that point
on jobs can be submitted to the Grid that require that particular kind
of service. Hot in this case means that a new service can be deployed at
any time and the server does not need to be restarted. Further, a new
service is automatically announced throughout the Grid by database
synchronization.

Job / Worker matching: One of the most important parts of a Grid system
is how the workers are matched to the available jobs. In our approach
this is solved by matching a service ID. Jobs are tagged with a service ID
(they require a particular service to be computed) and a worker requests

6The W3C defines a Web service as “a software system designed to support interoperable
Machine to Machine interaction over a network.” Web services are frequently just Web APIs
that can be accessed over a network, such as the Internet, and executed on a remote system
hosting the requested services. The W3C Web service definition encompasses many different
systems, but in common usage the term refers to clients and servers that communicate
using XML messages that follow a particular standard (SOAP). Common in both the field
and the terminology is the assumption that there is also a machine readable description of
the operations supported by the server written in the Web Services Description Language
(WSDL).

7Secure Sockets Layer (SSL) is a cryptographic protocols that provides secure commu-
nications on the Internet. It provides endpoint authentication and communications privacy
over the Internet using cryptography. Typically, only the server is authenticated (i.e., its
identity is ensured) while the client remains unauthenticated; this means that the end user
(whether an individual or an application, such as a Web browser) can be sure with whom
they are communicating.

8Here, service means computational services such as a particular data analysis.
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jobs from the server tagged with their own service ID. The job is then
distributed to this worker.

5.3 QAD Grid Platform Server

As briefly pointed out in section 5.2.2 this is the central instance in our Grid
approach. We have implemented it as a web-Application where users can login
to and use it online. This means the user does not need any local program to
use the service. Its functions include:

1. Management

� Authentication / Authorization

� (Secure) client/server communication

� Data transportation

� User management

� Worker management

� Data management

� Service management

2. Job execution

� Worker injections

� Workflow execution

� Task scheduling and provision

� Job/worker matching

� Data provision

3. Monitoring

� Worker monitoring

� Offline Machine Monitoring

� (Workflow-)task execution monitoring

� Result check / verification

Further, it can divide large jobs into single tasks and merge returned results.
The next sections will describe each of these points.

5.3.1 Management

Authentication

Authentication is the process of verifying a subject’s (e.g. person or computer
program) identity. This is needed to grant or deny access to a server or a client.
However, note that it is actually not possible to confirm or prove really the
identity of a subject. The best what can be done is to apply one or more tests
(such as querying a password) which, if passed, have been previously declared
to be sufficient to proceed. To validate a subject’s identity we use a two-factor
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Figure 5.3.3: A user’s perspective sequence diagram of the processes started when
a task is scheduled or a worker started.

authentication9 schema where two different methods are used to authenticate.
Using more than one factor is supposed to be a strong authentication opposed
to a weak authentication when only one factor (such as a password) is used.

Authentication in the QAD Grid is needed in three situations: (a) when
a server wants to start a worker (this is operating system dependent and
explained in section 5.3.3), (b) when a worker tries to connect to the Grid
platform server, or (c) when a user wants to connect to the Grid server. For
a worker to be able to connect to the Grid it must first register at the Grid
platform server. This process is described in more details in section 5.4.2.
After a successful registration process

� a database account has been created for this worker at the database
server,

� the account information (user id and password) were sent to the worker,

� a new RSA public/private key pair for this worker was issued and trans-
ferred to the worker,

� a new worker certificate was issued and transferred to the worker.

Note, that transmission/communication of sensitive data is encrypted (see
section 5.3.1).

The authentication process is as follows:

1. The worker sends its certificate and account information to the server.
This is done through a database account that has only write access to
the connection initiation table in the database. The worker then inserts
its certificate into the table by calling a stored procedure 10 . Further

9An authentication factor is a piece of information.
10A stored procedure is a subroutine available to applications accessing a relational

database system. Stored procedures are actually stored in the database. Typical uses for
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information such as time stamp and the sender’s IP address are stored
automatically as well.

2. The server validates the certificate and checks if it belongs to the account
data given. If this is the case the actual database account for this worker
is activated.

3. The worker establishes a connection to the database server using its
account information.

The worker is now logged into the Grid and can request and compute tasks.

Authorization

Authorization is the process of verifying that a known subject (after successful
authentication) has the authority to perform a certain operation, such as ac-
cessing a particular dataset. In the QAD Grid we face the following situations
where authorization is necessary:

Worker requests data: This occurs when a worker requests data belonging
to the current job it computes.

Worker submits data: After computations have finished a worker submits
the data back into the Grid.

User wants to use platform functions: This happens when a user is logged
into the Grid platform server web front-end and requests some function-
ality such as job submission or data visualization.

User wants to access data: This usually takes place when a platform user
wants to see raw data or computational results.

In QAD Grid we use the well-known access control list (ACL) approach to
authorize access (see e.g. (Koch et al., 2005) and references therein). An ACL
is a list of permissions attached to an object (e.g. a dataset or a function).
This list specifies if a user or a worker is allowed to access this particular
object and what operations are allowed to be performed on the object. A
typical ACL list entry for a particular dataset could be: (user::ILM, read).
This would grant user “ILM” read access to this dataset. In an ACL-based
security model, each time a subject requests an object or wants to perform
an operation on an object, the server first checks the object’s ACL for an
applicable entry and then decides whether to grant or deny this request.

(Secure) Client/Server Communication

Current database technology is fully platform independent with respect to
data exchange and has implemented sophisticated security features. In the
QAD Grid the entire communication is done via modifying database entries.
For example, if a worker requests a new job this is done by calling a (database)
method on the platform server that marks a job as in progress and passes the

stored procedures include data validation (integrated into the database) or access control
mechanisms. Furthermore, stored procedures are used to consolidate and centralize logic
that was originally implemented in applications. Large or complex processing that might
require the execution of several SQL statements is moved into stored procedures and all
applications call the procedures only.
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job’s parameters to the calling worker. The beauty of this is that current
database technology can be used to replicate and synchronize many servers in
the Grid automatically.

The main task usually performed with(-in) a Grid is computation or data
analysis. Mostly this data is non-confidential but sometimes data of value
are to be analyzed which need to be secured. Since usually data is replicated
throughout the Grid confidential data is excluded from this process and is only
provided by the server on demand. Other data needed to be securely trans-
mitted through the Grid are e.g. account information (including passwords).

To enable secure transmission of sensitive information across the Grid we
use a secure software layer (SSL) that transparently encrypts all data. This is
implemented by using public-key cryptography, namely the RSA algorithm11.
We encrypt socket communication with the (public) receiver certificate.

Communication with the database is done through an ODBC (Open Database
Connectivity) driver (e.g. JDBC by Sun which is actually a bridge but ful-
fills the purpose). Our database is configured to only allow (SSL) encrypted
connections.

Data Transportation

Data transportation between two machines is usually performed by using FTP
(File Transfer Protocol), its secure S-FTP version or its Grid version Grid-
FTP (Allcock et al., September 2002). The benefit of using FTP is that it is
relatively easy to use, has been around for a long time and is therefore likely
to be installed virtually everywhere. However, as e.g. (Huang and Grimshaw,
2006) point out, the disadvantages of FTP are numerous. First, the user must
have access to an FTP account (user name/password) on the target machine.
Having such access means that a user could potentially do more than just file
transfer, e.g. log into the target machine and access files, directories and other
machines to which he has not been given explicit access. Further, if sensitive
data needs to be transfered (see section 5.3.1) the secure FTP version (SFTP)
has a very big overhead. As Figure 5.3.4 shows the time needed to transport
a 1GB file almost triples.

Figure 5.3.4: Benchmark values for transportation data using different encryption
algorithms in comparison to plain FTP. Shown is the time (in seconds) needed to
transfer a 1GB file over a 1Gbit network.

11Invented by R. Rivest, A. Shamir and L. Adleman at MIT in 1977, see (Rivest et al.,
1978). (RSA are the initials of their surnames.)
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Figure 5.3.5: Comparing basic FTP to GridFTP. Shown is the time needed for the
transfer of a 1GB file over the internet at different times of a day.

GridFTP solves most of these problems and extends the FTP approach by
many useful features. E.g., by using parallel connections it is able to speed up
transmission throughput as shown in Figure 5.3.5. But in order to use it all
machines have to install the GlobusToolkit - which is definitively not desirable
(see section 5.1.3).

To circumvent these problems we have developed an Internet-socked based
client/server approach that allows to exchange files between two machines
within the QAD Grid obeying the authentication and authorization schemas
described above. A socket is one software endpoint of a bidirectional com-
munication link between two programs in a network. Typically this would
be a server program and one or more client programs communicating via a
dedicated port (channel). In the QAD Grid each platform server runs at least
one data service that accepts client connections and sends or receives data.

For a worker to get a file the following process must be successfully finished:

1. The worker queries the platform server by a database query to get IP
addresses of available data services hosting the requested file (identified
by the unique file ID) ordered by their local machine load level.

2. The worker measures the round-trip time (RTT) of the first five IP
addresses of this list. The RTT is the time a data packet needs to travel
from the worker to the service and back.

3. The worker establishes a secure socket connection (see section Secure
Communication below) to the data service with the smallest RTT value
and requests the file.

4. The data service checks the authentication and authorization of the
worker and rejects the query if one fails. Authentication is done in
the following way: the worker sends its account information (user id
and password) and certificate to the data service. The data service logs
into the platform server’s database using the worker’s credentials and
requests the certificate of this worker. Authorization is successful if the
database login is successful and both certificate are identical.

5. If the previous step succeeds the file is send to the worker. If the file is not
marked as sensitive the connection is no longer encrypted to avoid en-
cryption overhead. If sensitive data is to be send, first a 256bit key is sent
to the worker and then encryption is changed from RSA (asymmetric)
to Rijndael AES-256 (symmetric Advanced Encryption Standard, see
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(Daemen and Rijmen, 1999, 2002)) encryption which is about 1000fold
faster with respect to encryption and decryption.

Figure 5.3.6: This
graph shows how the
quality of a particular
connection changes be-
tween 8am and 2pm.
The y-axis shows “Band-
width · delay”, sam-
pled every 20 seconds.
(Taken from (Thulasi-
dasan et al., 2003).)

The latter step - the fast transfer of large volumes of
data - mainly relies on the network transport protocol
used. However, the dominant network transport protocol
of today, TCP (Transmission Control Protocol), is tuned
for yesterdays wide area networks (WAN). The slow re-
sponse of TCP in fast long distance networks leaves size-
able unused bandwidth in such networks. As an exam-
ple, if one copies a big file (bigger than 100MB say) be-
tween two computers in a country-wide 100Mbit network
the transfer rate would be about 5Mbit/s (Megabyte per
second, meaning that about 95% of the bandwidth are
unused.

To understand this, one has to know that TCP sends
data in small packages. At the start of a connection, TCP
determines the size of a so-called congestion window to
determine how many packets are send at one time. The maximum congestion
window is related to the amount of buffer space that the OS allocates for the
connection. To achieve maximum throughput, it is critical to use an optimal
buffer size for each individual connection. Obviously, the larger the size of this
congestion window, the higher the throughput. However, if set too large, the
sender can overrun the receiver, which will cause packets drop on the receiver
side which have to be re-sent.

For the following example to the calculation of optimal TCP buffer size we
assume that there is no network congestion (no packet loss) and the connection
quality stays the same over connection life-time. Then, network throughput is
directly related to TCP buffer size (BS) and the network latency (NL), which
is the amount of time for a packet to traverse the network.

Let us further assume that network latency in a typical connection between
two computers over a 100Mbit WAN in, say, Berlin is about 40ms. We know
that Windows XP has a default TCP buffer size of 17.520 bytes. The maximum
possible throughput (TP ) is calculated by

TP =
BS

NL
= 17520bytes/0.04sec = 0.44

MByte

sec
= 3.5

Mbit

sec

If you would increase the TCP buffer size to 65KByte (as e.g. Mac OS does)
it would get a bit better but still not close to the optimal value of 100Mbit:

TP =
BS

NL
= 65936bytes/0.04sec = 1.6

MByte

sec
= 13

Mbit

sec

It is a rule of thumb that a near optimal TCP buffer size (BSopt) for a par-
ticular connection is double the value for delay (D) times bandwidth (BW ).
By using a program like “ping” one can measure the round trip time (RTT ) a
data package needs to travel to the destination computer. The RTT is twice
the delay, so we have

BSopt = 2 ·D ·BW = RTT ·BW

If we assume a RTT of 80ms for the above connection this means that the
TCP buffer should be
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Figure 5.3.7: Performance of GridFTP with OS-default buffer size (64KB, left)
versus Performance of GridFTP with dynamically adapted buffer sizes (right). Shown
are the average bandwidth values depending on the size of the transferred file (16, 32,
64, 128, 256, 512 MB).

BSopt = 0.08sec · 100
Mbit

sec
= 8

Mbit

sec

Since with a transmission rate of 1 Mbit/Sec one can transfer 0.125 MByte/Sec
we get:

BSopt = 8
Mbit

sec
/8 = 1MByte

Therefore, the TCP buffer size for this connection should be set to 1 MByte.
Now, in reality the assumption made at the beginning are not very likely

to hold. First, if packet loss starts to occur (Mathis et al., 1997) have shown
that throughput is then bounded by the Maximum Segment size (MSS), which
is Maximum Transmission Unit12 (MTU) minus TCP/IP headers (in practice
default values are: MTU: 1500bytes, TCP/IP Header: 40bytes and therefore
MSS=1460bytes).

Throughput ∝∼ 0.7 · MSS

RTT · √packet loss

This problem can be tackled by increasing the frame size to about 8KByte
(Chase et al., 2001), that is using so-called Jumbo Frames. Since the maximum
frame size is set by switches in the Internet on the path from sender to receiver
we cannot do anything about this. The second problem we face is that the
bandwidth delay (RTT values) can fluctuate quite wildly over lifetime as shown
in Figure 5.3.6. Following (Thulasidasan et al., 2003) for the transmission part
we have implemented dynamically adaptive TCP buffer sizes to allow TCP
flow control to adapt to changing high-speed WAN environments, especially
when transmitting large files. Figure 5.3.7 shows the effect of this tuning in a
concrete example where this technique was used in GridFTP. It can be easily
seen that performance approximately quadruplicates.

User Management

In the QAD Grid a user is modeled as a database object with the following
properties:

Account information: This can be a local account or a network account.
In both cases a user name is stored. In the local case an additional

12Size of the largest packet that a network protocol can transmit.
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password (actually its MD5 hash value) is stored as well, which is used for
authentication. In the network case authentication is done by querying
a network authentication server, e.g. via LDAP or Kerberos protocol.

Group membership: A users can be member of one or many groups (e.g.
an institution) which can be used to give many users at once access to
particular objects, such as data or functions. Using this feature it is
also possible to implement some kind of hierarchy, e.g. simple user or
administrator groups.

Account details: Further (optional) information such as real name, institu-
tional affiliation, e-mail address and so forth can also be stored.

Billing details: Since system usage logs are collected automatically (such
as CPU time used for computation) these information can be used to
implement some kind of billing.

To be able to login to the QAD Grid a user needs to be registered at the
platform server. This is done through a special web-site new users can access.
At this site they enter their user details which then needs to be reviewed by
an administrator. After successful registration a user can log into the web-
based front-end of the platform server and use its services, such as start of
new computations or analyses (see section 5.5) or view results of previous
runs. After successful login a fine-grained access control list (ACL) system
(see section 5.3.1) is used to determine (1) what parts of the system the user
can see, what (2) functions he can use and (3) what data and results he is
allowed to see.

(1) Access to web-sites: When a user accesses a web-page the web-server
checks during the on-load sequence of this site whether there exists an
ACL entry that allows this user to see this site.

(2) Use of functions: As in the web-site case each time a user requests the
use of a function, e.g. start of a computation, the web-server first checks
if the users has appropriate credentials to use this.

(3) Access to data: There are many scenarios when a user needs to access
data, e.g. visualization of results, computations that need data or just
display of raw data. Again, there exist ACL entries for each dataset
available in the system that is checked if data is requested either through
the web-server or directly from the database.

Worker Management

A worker is modeled as a database object with the following properties:

Account information: This includes a user name and a password and is
mainly used to log into the database.

Public key: The public key is used by the platform server to encrypt com-
munication (initialized by the server) with this worker.

Certificate: The worker-specific certificate is issued the first time a worker
successfully registers at the platform server. It contains a MD5 digest of
a combination of the service id this worker offers and the public key of
this worker. It is used for authentication purposes.
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Type of service offered: This service id is a string describing the (compu-
tational) service this worker offers. In the job/worker match process (see
section 5.3.3) this is used to match workers with jobs.

Worker machine details: This comprises details about the machine the
worker runs on: information about CPU speed, memory size, operat-
ing system and maximum size of storage the worker is allowed to use for
temporary files.

Connection details: Here information about current and previous connec-
tions are stored, covering connection speed (RTT and up-/download
speed), development of connection speed (only RTT), presumed (physi-
cal) location and timestamps of connection initiation and termination.

As briefly described in section 5.3.1 a worker needs to be registered at the
QAD Grid platform server to be able to login to the Grid and offer computa-
tional services (for details see section 5.4.2). If a worker is already registered
at the Grid it just has to go through the authentication procedure. During the
life-time of this connection many information are gathered and stored at the
platform server. After successful login a worker’s fingerprint is created that
contains the following information:

� timestamp of connection start

� connection speed, that is RTT and time needed for upload and download
of a 500KB file (upload is measured by uploading 500KB binary content
to the platform server by FTP)

� (presumed) geographical location (city, country, latitude and longitude)13

Further, the worker sends a list of files (file IDs and MD5 checksums) currently
available locally at the machine it was started on.

To keep this information up-to-date a worker sends every 5-300 seconds an
“I-am-alive” message to the server that updates the information about state,
local load and current connection quality (see section 5.4.3 for details). Using
this information conclusions can be drawn about the overall connection quality
over the connection life time. Further, we can infer indications about how to
mirror data cross the Grid smartly in order to minimize time needed for a
worker to transfer needed data (see section 5.3.2).

Data Management

To model and manage data in the QAD Grid we use a hierarchical study-
centered approach. That is, all data stored or used (e.g. analyzed) in the Grid
is at least linked to a study (e.g. “Study of Leipzig Blood-Donators in 2002”).
Further hierarchy levels are:

Data or result groups (e.g. “Men above 20”, “Results of Peak Picking
Analysis 20” or “all 1D spectra of a 2D spectrum map”): Often, there
are many raw data files or many results entries that actually belong
together and form a dataset. For example, a raw 2D spectrum consists
of many 1D data files.

13Using a webservice such as http://hostip.info/. These services are of course not
always absolutely correct but it can be used as a good estimate.
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Data elements (e.g. a single 1D spectrum, or a peak picking result). This
is the most basic element reflecting the actual information physically
stored in the Grid. There exist two classes of data:

1. RAW Data: This kind of data usually exists as text or binary files
on the platform server. These files can get quite large and easily
exceed several gigabytes per file. Depending on the network path
transferring these files can take several minutes to several hours.
Especially if large quantities of data is requested from a single node
network traffic speed can decrease drastically.

2. Analysis (intermediate) Result Data: This type of data is usually
stored in database tables and fetched by database queries. The size
of data fetched per query is usually comparatively low. However,
if many workers query a database the overall performance drops as
in the file based case.

To model this we have chosen to use a rooted directed acyclic graph (DAG).
This naturally introduces hierarchies and links between elements and allows for
fast searches. Studies are directly connected to the root, groups and datasets
are part of a study and data elements are modeled as the leafs. Each leaf in
a tree corresponds to an actual physical file or database entry of a result.

A nice feature of this structure is that is allows for linking any kind of
information to each element (node) without losing the DAG’s properties. For
example, metadata (e.g. patient metadata, timestamp when a datum was
added to the system, or information about physical location of a file) can be
directly linked to a leaf. Especially the latter will be of importance for data
distribution and (subsequent) data location in the Grid (see section 5.3.2).

Task Management

To split up a large problem some problem specific method must break this up
into smaller tasks. These tasks contain parameters describing

� system data, such as: task priority, task owner, draft flag and linked
task (see section 5.3.4)

� target specification: sometimes a particular worker has to handle a task

� the type of this task (e.g. peak picking or file copy)

� (optional) dependencies on another tasks

� (optional) target worker that has to handle this particular task

� what input data is needed

� where results should be written to (e.g. database or file)

� further task dependent parameters - such as fitting variables or window
sizes
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5.3.2 Providing Data in the Grid

As described in the previous section the QAD Grid provides two different types
of data: (a) files (usually RAW data) and (b) database entries (normally meta
data or analysis results).

In a single-server based setting with many workers just transferring data
to the workers would cause a very high CPU load. Whereas the latter case
is solved by using many (automatically) synchronized14 database server the
former case is more complicated. To avoid high network traffic on the platform
server and to enable workers getting their requested data from fast (near-by)
sources we developed a peer-to-peer approach to distribute (mirror) data cross
the Grid. This is done automatically and on on special events (see below).

The basic transport mechanisms are described in section 5.3.1. The follow-
ing paragraphs give details about the distribution algorithm. The key ideas
are as follows:

� All data is available from the platform server (master repository)

� Workers can be assigned storage space on their local host

� Selected data is mirrored at reliable workers with good connections based
on their geographical location

� Data is copied automatically when server and workers are idle by creating
a task that states a particular worker to handle this task

� For each file successfully copied to a worker an entry (MD5 checksum) in
the platform server’s data graph (see section 5.3.1) is created that states
that this worker now has a copy of this file.

This system is usually called a Data Grid Management System (DGMS).
The next sections describe how data is selected that is going to be mirrored
and how the workers are selected that this data is copied to.

Selecting Workers to Mirror Data

This step selects the workers to be used to mirror data within the Grid. The
main target is to find some hubs that are then used to distribute data from the
main server(s) into several geographical areas where many computing workers
need data. We therefore (a) decrease load on the central servers caused by
data transmission and (b) use short distance network connections and save
bandwidth. We have selected to use a maximum of 10% of all workers being
online at a given time as mirror nodes, since tests have shown this seems
to be the minumum of nodes necessary to provide the data without creating
bottlenecks. These workers need to meet two criteria:

Reliability: The worker must have been online on average at least one hour
during the last five times they went online.

Speed: The upload speed of a worker must be higher than the bottom 80%
out of all workers being online at the time the measurement is taken.

14E.g. using Microsoft’s database mirroring features.



5.3. QAD GRID PLATFORM SERVER 125

Figure 5.3.8: Example for a hierarchical clustering (HC): the nodes shown on the
left are clustered by HC (single linkage) using Euclidean distances. The resulting
dendrogram (right) shows the results.

Out of this list of all workers being reliable and fast enough a distance ma-
trix is created. These geographical distance between two workers is calculated
using the haversine formula (Sinnott, 1984). This computes the great-circle
distances between two points on a sphere given their longitudes and latitudes
which is particularly well-conditioned even at very small distances. On this
distance matrix a (single linkage) hierarchical clustering (Johnson, 1967) is
performed. Searching from the top in the resulting dendrogram (see Figure
5.8(b)) that level is sought for that maximizes the number of clusters but has
at most c clusters. c was set a-priori to 10% of the number of workers. What
also could have been done is to use a technique known as multi dimensional
scaling (MDS) (Shepard, 1962) to recover the original Euclidean coordinates
and find clusters on the resulting map.

Within each clusters found the most reliable and fastest node is then se-
lected for mirroring.

Selecting Data to be Mirrored

Not all data in the Grid system is used all the time: if analyses have been
finished on a particular dataset it might never be used again. On the other
hand a particular (presumably) quite recent dataset will be analyzed on many
machines at the same time and long delays can occur if data is copied from a
single source. Therefore, it does not make sense to mirror all datasets across
the Grid but for some data it is extremely interesting to make it highly-
available during load spikes. Thus, the system has to select datasets that are
to be distributed (mirrored) across the Grid. The actual selection happens
in rounds, that is, each time the distribution process is started datasets of a
maximum of 5GB are selected. The data selection algorithm is organized in
two stages and works as follows:

Server Stage: At this stage data is selected from the central server to be
copied to the workers using the last in, first out principle. This means,
first all datasets are selected that are not currently distributed within
the Grid more than three times. The resulting list is then sorted by time
and date they were added to the system. Starting from the most recent
item datasets are selected up to a (total) maximum filesize of 5GByte.

P2P Stage: At this stage data is distributed directly between workers. The
procedure is similar to the server stage, but this time five copies of
the most recent datasets are created and distributed to the workers.
Tests have shown that five seems to be the minimum number to avoid
bottlenecks in our testbed.
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To distribute data the system creates tasks (see section 5.3.1) that are
inserted into the system’s job queue with an assigned priority that is lower
than analysis tasks. Therefore, if a new analysis is queued it will be handled
before the next copy task will be executed.

Remarks

To disable this feature set worker storage size to zero. This might be useful
in local area networks where data is available through the network file system
anyway and does not need to be copied.

5.3.3 Job Execution

In this section we describe how jobs are actually created and executed. This
comprises starting of workers at target machines (that will do the actual com-
putational work), creation and scheduling of tasks and the actual execution of
tasks, that is matching of tasks and workers. Further, we give details about
how workers get job specific data from the Grid.

Worker Injections

One of the most striking features of the QAD Grid approach is that there is
no need to (pre-)install client software on the working machines. The only
requirement is that the target machine provides SSH access. When a machine
is added to the Grid the platform server logs into that machine, copies the
client software and needed libraries to this target and executes it. The worker
then connects itself to the Grid and starts working (see section 5.4). We have
tested this with different types of Linux, MacOS and Windows systems run-
ning a variety of SSH servers. If a target machine cannot provide SSH access
the worker can of course be started manually on that machine. Another possi-
bility on Windows-based systems is the usage of WMI (Windows Management
Instrumentation) which is also supported. This allows the QAD Grid Server
to log into an windows machine and - as in the SSH case - remotely execute a
program.

The main advantage of this approach is that only the network (IP) address
of a new client needs to be added to the QAD Grids client database and
there must exist a user account on that machine for the QAD Grid server to
login. Then, the server can inject the client software and start a worker on
that machine without further user interaction. These workers are then fully
controlled by the QAD platform server.

Details of this injection process are as follows:

1. The QAD Grid server establishes a SSH (Linux) or WMD (Windows)
connection to the target machine.

2. If no sub-directory “qad grid” exists within the clients temporary direc-
tory, it is created.

3. The “qad grid/3rd party libraries” sub-directory is checked whether all
libraries needed by this worker are available. If not, missing libraries are
transferred via SCP.

4. The “qad grid/workers” sub-directory is checked for the existence of the
worker to start. If it does not exists or the available version is outdated
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the current version of the worker is transferred as a zip archive and
unzipped into a new sub-directory.

5. Further commands - as stored in the database for this kind of worker -
are executed.

6. The worker is started via the worker specific command line stored in the
QAD Grid’s database during registration (see section 5.5.2.

Task Scheduling and Provision

One of the central functions of the Grid platform server is to provide jobs and
their respective details for workers. This means, there must exist two basic
functions on the platform server:

� Receive jobs from some instance and insert them into the central job
queue. The jobs can be send from some (authorized) worker or from a
Grid platform itself where a user has started an analysis that results in
a set of jobs.

� Provide jobs to workers: each authorized worker can request jobs of a
particular kind from the server (see below). A job contains all needed
information the workers needs, such as algorithm parameters, location
of data to be analyzed etc.

Job/Worker Matching

Each worker can handle exactly one particular kind of job, such as copy a file,
perform an analysis or classify an item (see section 5.4). Hence, each job and
each worker is assigned a so called job type id (JTI) tag. If a worker requests
a job it sends its JTI tag and the platform server checks if unprocessed jobs
tagged with this JTI exist. If this is the case the first job in the queue is marked
“in progress” and the parameters transferred to the requesting worker.

Requesting Data

To handle a task a worker mostly needs a dataset to e.g. perform an analysis
on. This data is stored at the central Grid server and usually at some workers
within the Grid. To get this data the worker queries the platform server to
get a list of all nodes that currently host that particular dataset. The request
includes the geographical location and the id of the needed dataset. The
resulting list includes the machine’s IP addresses ordered by the (geographical)
distance to the requesting worker. We could also have used the upload speed
of the target as order criterion but as hosting nodes must have a large upload
bandwidth the geographical location is considered to be more important to
save total network (Internet) bandwidth.

Using the resulting list the worker tries to connect to and request from the
closest node to get the needed data (see section 5.3.1). If a connection fails it
will try the next machine. If all connections fail it will request the data from
the central server.
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5.3.4 Monitoring

One of the central features of the QAD Grid platform are the monitoring
functions and reactions on events such as worker failure. The next sections
describe what is monitored in the system, what events can occur and what
actions are taken if particular events occur.

Worker Monitoring

The worker monitoring comprises two things:

Alive check: if a worker does not send a status message at least every 300
seconds to the QAD platform server (see section 5.4.3) a worker is con-
sidered lost. In this case the platform server will update the database
and mark this node as down. If the node that was lost was controlled
by the QAD Grid server the platform will try to re-connect to the client
machine and restart the worker (client software) as described in section
5.3.3.

Workload check: If the local load of a worker exceeds a certain threshold
the worker is considered overloaded (see section 5.4.3). If so, this worker
is set into paused state in which a worker will not request new tasks and
sleep until the workload gets again to a level below the threshold. If the
worker computes a task at the moment it was set into the sleep state it
will mark this task as suspended and create a dump file of the current
task state. This file contains all variables necessary to restart this task
on another worker / machine at exactly this position (see section 5.4.4).
This file is then copied to the QAD platform server which will distribute
it to another client machine that will resume from this state.

Offline Machine Monitoring

In addition to active workers the system can also monitor client machines that
are registered at the QAD Grid system as possible computing nodes and allow
the QAD Grid server to login but are not running a worker. This is done by
periodically logging into the target machine and running a quick status check.
The resulting values and machine details such as CPU speed and available
memory are then inserted into the Grid server’s database.

Task Execution Monitoring

This monitoring checks whether the execution of a tasks was interrupted or
terminated because of a worker failure.

The former condition can fail if a node is lost during task execution (see
previous section). In this case the state of this task (at the QAD’s platform
server) will be set to new, that is, another worker can request and compute
this task.

Result Check/Verification

In some cases an explicit result verification is necessary. To achieve this a task
will be computed by two different workers and the results compared prior to
insertion into the database. This is done by setting the draft flag of the two
(identical) task and inserting the ID of the opposite task into the linked task
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field. A worker that computes a task with a draft flag will not directly insert
the result into the database or copy into a target repository but will send it
into a to be verified zone on the QAD platform server. If the results from the
different workers have arrived the platform server compares and either stores
or rejects them. In the latter case two new tasks are created until the two
results are identical.

5.4 QAD Grid Worker

The QAD Grid worker is a program that runs on a client machine and can
perform exactly one particular kind of analysis / computation (such as peak
picking) or service (e.g. convert a file). As described in section 5.3.1 commu-
nication within the Grid (that is between servers and workers) is entirely done
via database entries. The most striking feature of a QAD Grid worker is that

� it can be written in any programming language

� runs on (almost) any hardware / operating system platform

� can contain arbitrarily complex algorithms

� can perform system calls (e.g. OS dependent copy functions)

� can enable non-Grid enabled executable programs (binaries or scripts)

A worker can be tailored to specific needs and written in any programming
language that supports (T-)SQL database access. The following sections de-
scribe the basic functions a worker needs to support and an extended standard
reference implementation. Further, details of worker integration into the QAD
Grid are given.

5.4.1 Functionality

Base

As described above a worker essentially runs on some client machine and
computes available jobs. Therefore, a worker needs to have these base features:

� Connect to and register at the Grid’s Platform Server. Registration
includes the announcement of what kind of job it can compute (see
section 5.3.1).

� Request a job and respective parameters to compute

� Load needed data (see section 5.3.2).

� Compute job

� Transfer results back into the Grid (see section 5.3.1).

� Send alive and status messages (e.g. local workload) to the Grid
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Extended

Additionally to the base methods the standard reference worker has some
extended features that allow for a more sophisticated usage. This includes:

� Copy and mirror data from the Platform Server and provide these data
to other clients (see section 5.3.2).

� Store intermediate results / checkpoints for possible resume of job (e.g.
after node has crashed)

� Migrate to other Grid nodes (e.g. if local load becomes too high)

Universality

As briefly mentioned above, a worker can also be a simple proxy service. This
means it communicates with the QAD Grid to request tasks and their respec-
tive parameters and then starts an external program with these parameters.
After the external program has finished the worker handles and presumably
transfers the results into the QAD Grid.

Design Principles

Each worker type has is derived from the Base Worker that offers the following
functionality:

Communication with the QAD Grid: Registering, getting and setting sta-
tus information

Data transfer: Each worker can exchange data by File Transfer Protocol
(FTP), Secure Copy (SCP - copying using the Secure Shell), copy using
network shares.

Basic functions: Log in/out, getting new jobs, migration

Based on this, the following worker categories can be defined:

Wrapper: Calling an external tool

Proxy: Using external libraries

Full implementation: Implementing a full algorithm within the worker

5.4.2 Registration

If a worker connects to the Grid for the first time it must pass through the first
time registration process. Once registered it can use the credentials gathered
during this procedure at later logins for authentication (see section 5.3.1).
This process works as follows - recall that all communication via database is
automatically encrypted via SSL:

1. Using a database guest account the worker inserts an account request
into a special table by calling a stored procedure with two parameters: a
worker generated 2048bit key and the id of the service this worker offers.
Both values are encrypted with the public server key. The server returns
an request id.
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2. This request triggers another stored procedure that performs the follow-
ing steps:

� If there exists a request within the last five minutes containing
the same key or the same IP address the whole request is canceled.
This is done to prevent abusive generation of worker accounts which
might result in high load on the server.

� A new database account is created with randomly generated user
name and password.

� A new public/private key pair for asymmetric RSA encryption is
generated.

� A new certificate is created that is based on the MD5 digest of
a combination of the requesting worker’s service id and the just
generated public key for this worker.

� A new table entry is created that contains these information (DB
account, key pair, certificate) and is encrypted by the 2048bit key
the worker sent at initialization as binary array. This entry is iden-
tified by the request id the server sent back to the worker.

3. The worker fetches this information by database query, decrypts it and
splits it back to the single components. These are then stored at the
worker’s host.

4. A new worker entry is created into the worker table of the platform
server.

5. The worker is now registered and can log into the QAD Grid system
with these credentials.

At later logins the worker simply authenticates using these credentials and
announces itself at the Grid. This announcement includes a unique identifi-
cation key that is created when a worker starts up and used to identify each
worker, e.g. for status updates.

5.4.3 Status Messages

Since the workers and client machines are not directly controlled by the Grid
(as opposed to a cluster) the Grid needs to get messages from the clients
to get information about their status. This is by updates to a status table
that contains a record for each client currently registered at the Grid. These
updates are sent every 5-300 seconds by the workers and contain the following
informations:

State: The state a worker is in is actually a text string. This string can be set
during computations and can e.g. contain progress information or state
changes during algorithm execution. It is mainly intended for humans
to get information about the actual worker condition.

Local load: This measures (estimates) the load of the host system the worker
is running on, caused by foreign processes. We define load as the time
needed by the operating system to give control once to each other process



132 CHAPTER 5. COMPUTER SCIENCE GRID STRATEGIES

currently running on this machine before returning to the worker thread
15 (see below for details).

Connection quality: The connection quality is measured with respect to
the RTT - the time a data packet needs to travel from the worker to the
platform server and back.

Each time a status update is performed a timestamp is automatically set to this
database entry. Therefore, the time of the latest update can be determined. If
the status has not been sent within the last 300 seconds a client is considered
lost and will be logged out.

Workload Determination

As stated above, we define the machine’s local load as the time needed by
the operating system to cycle through all processes currently running on this
machine excluding the worker process. In our worker reference implementation
we use the Java method Thread.yield()16 that

“Causes the currently executing thread object to temporarily pause
and allow other threads to execute.” (SUNMicrosystems, 2006)

So, if a thread executes yield, it is suspended and the CPU is given to some
other runnable thread. It then sleeps until the CPU becomes available again.
Technically put, the executing thread is put back into the ready queue of the
processor and waits for its next turn.

This means, if the worker is the only (high priority) program (thread) on
a machine the time needed for the yield will be almost zero because there is
no other program that will consume time. The beauty of this approach is
that the CPU utilization can be well close to 100% but if caused exclusively
by the worker the local load is about zero, because the worker thread is the
only program running. On the other hand, if there are many CPU intensive
processes running on the host machine it will take a long time for the worker
thread to get back control. This time is measured and can be directly related
to the number of running other threads and their CPU consumption as can
be seen in Figure 5.4.9. Further, this tool gives us only the utilization of the
processor core we are really working on.

Other measure such as CPU utilization (Windows) or workload (Unix)
have the disadvantage that (a) it cannot be distinguished what process causes
the load (is it us or the others?) and (b) it is not entirely clear what is actually
measured. For example, the average load in the Linux world (which is often
mistakenly taken as the CPU utilization by many benchmarks) is actually an
exponentially-damped moving average of the total CPU queue length (see e.g.
(O’Reilly et al., 1997)).

15A thread in computer science is short for a thread of execution. Threads are a way for a
program to fork (or split) itself into two or more simultaneously (or pseudo-simultaneously)
running tasks. Threads and processes differ from one operating system to another but, in
general, a thread is contained inside a process and different threads of the same process share
some resources while different processes do not. Multiple threads can be executed in parallel
on many computer systems. This multithreading generally occurs by time slicing (similar to
time-division multiplexing), wherein a single processor switches between different threads,
in which case the processing is not literally simultaneous, for the single processor is really
doing only one thing at a time.

16The yield() method is available in almost all programming languages that provide the
thread concept.
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Figure 5.4.9: Time needed for the OS to cycle through the active thread (yield) vs.
number of running threads. This shows that there exists an almost linear relationship.
Data was created on a 2.3GHz single-core machine (2GB RAM) running Debian Linux
and Windows Vista, respectively.

5.4.4 Worker Migration

So far, we presented a system that can collect and manage jobs that are
then requested by workers running on some client machine performing the
computation. At the moment a new job becomes available it is easy for a
client machine to decide whether to request or to skip it, given that a worker
has knowledge about the current system state (e.g. CPU utilization) of its
host computer. This concept is known as static scheduling, an early approach
being the Linda system (Carriero and Gelernter, 1986).

The problem now is that these conditions can (and mostly will) change
over time. So using static scheduling might be a good idea within a dedi-
cated cluster environment but as soon as user’s workstations are integrated
the following obvious problem arises: A user, say Alice, integrates her desktop
workstation into the Grid and goes away for some time. Another User, say
Bob, creates a job in the Grid system that is then requested by the worker
running on Alice’s machine. The trouble comes if Alice returns to her worksta-
tion before Bob’s job has finished. If static scheduling is used, the options are
limited: (a) we can allow Bob’s job to finish which will make Alice unhappy
because her system will be slow or (b) terminate Bob’s job that will make Bob
unhappy because he loses work already done.

In the QAD Grid system it is of primary importance that an owner of a
workstation does not pay penalty for integrating its machine into the Grid, that
is running a worker on his/her machine. So, workers must have the ability to
vacate a workstation (or at least pause computation) if a users starts working
on that machine and/or wants the worker to quit. In the remaining of this
section we will describe a dynamic scheduling approach that is able to satisfy
both, Alice and Bob. The key idea is that when Alice returns and starts using
her machine Bob’s job is paused, transferred to another workstation that is idle
at that moment and continued from the point it was stopped. This concept
holds also for multi-core systems where the load of one of the cores might get
too high.

Worker migration (also known as Process Migration) is the process of freez-
ing a workers state, sending that state along with the worker to another idle
workstation, start that worker at that workstation initialized with the restored
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state and continue execution. There are many different approaches to this such
as agent-based systems (Baumann et al., 1997), kernel-based (such as MOSIX
or Condor (Barak and La’adan, 1998; M. J. Litzkow and Mutka, 1988)) or
user-space based (e.g. Sprite (Douglis, 1990)) scheduler that support trans-
parent migration. The most apparent downside of all of these approaches is
that they require a particular operating system and programming language.
This is because they are either built into the kernel or have to be linked to
the executable program or need to be programmed in a specific framework.

To overcome these issues we have developed a migration concept that is
realizable in most programming languages and implemented it in our worker
reference implementation. Because this implementation is done in Java and
does not need any hardware specific hooks it will be usable on most architec-
ture/operating system combinations.

Migration Algorithm

Although there are many different migration strategies and implementations,
most of them share a similar design and can be summarized in the following
steps:

1. A migration event is created by the client, negotiated with the server
and finally accepted.

2. The process to migrate is suspended and its state changed accordingly.

3. The process state is extracted and stored locally (see below).

4. The stored state is either transferred to the server (to be distributed
later) or directly to a destination node.

5. A new process instance is created on a destination node and the stored
state is imported.

6. The new instance is resumed. Migration is now complete and the stored
state can be deleted from the source machine.

Migration Policies

In the QAD Grid we use the so-called sender-initiated policy. This means,
that a worker is aware of its host environment and decides when this node is
overloaded and the worker needs to be transferred to another node. (Eager
et al., 1985) have shown that this strategy is convenient for systems with light
and moderate load and better suited when compared with other concepts,
such as receiver-initiated policy (underloaded nodes request processes from
overloaded nodes) or symmetric policy (combination of the former two).

At special checkpoints (see below) a worker performs a health check of its
environment. The main component here is the local workload as described in
section 5.4.3. If a worker identifies an unhealthy condition, that is the local
workload exceeds a predefined threshold, it sends a migration request to the
platform server and pauses until it gets a reply.
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Checkpoints

Checkpoints are particular breakpoints in a program defined on the source code
level. At these points the execution of the worker’s core algorithms is inter-
rupted and control is given to a (implementation specific) checkpoint handler.
Obviously, it is the programmer’s responsibility to integrate enough check-
points at reasonable positions. Within this checkpoint method the following
actions should be performed:

1. Check the runtime of the process. Measurements have shown that it is
only advantageous with respect to the total execution time (“run slow”
vs. “migrate and run faster”) if a process runs at least 3-5 minutes.

2. Check the current health condition of the machine hosting this worker.
The key property used here is the workload of a client as described in
section 5.4.3. Tests have shown that a workload above 100ms, that is, it
takes 100ms for the worker process to get back control from the operating
system, means the worker process runs significantly slower that normal.
Therefore, we consider a worker’s host system as overloaded when the
workload exceeds 100ms.

3. If the health check shows no overload condition control is given back to
the core algorithm.

4. If the worker is overloaded it sends a signal to the server and requests to
be migrated. If the server does not answer within 10 seconds or refuses
the migration control is again given back to the core algorithm.

5. If the migration request is accepted migration is performed as described
above and the worker terminates itself.

With termination of the worker the checkpoint handling is finished.

Worker Persistence

To realize a worker’s migration the worker must be capable of saving its exe-
cution state. This property is called persistence and is a two step procedure:
(1) getting the process’ state (variables, stack and the point of execution) and
(2) storing the state into a file that can be transmitted over a network. So-
phisticate (but operating system dependent) systems can interrupt a process
at arbitrary points. To retain OS independence we cannot use this technique
and require each worker to define its own checkpoints (see above).

The key design pattern in our QAD Grid workers is separation of concerns
(SoC) which means to break up a computer program into distinct features
that overlap in functionality as little as possible. A concern is any piece of
interest or focus in a program. In our case, what needs to be implemented is
the separation of data structures needed for the core algorithm (core data) and
data necessary for the peripheral program. Obviously, only the core data needs
to be stored and implanted into the target worker that is going to continue
from the point the source worker has suspended. Consequently, for the worker
to store (and eventually load) its core data each data element needs

a) to be registered in and accessible through a globally (but within this par-
ticular worker instance) available list,



136 CHAPTER 5. COMPUTER SCIENCE GRID STRATEGIES

b) to have a method to dump its content to a given stream object 17 and

c) to have a method to load its content from a given stream.

A list element consists of the variable name and a link to the object it
represents. When a worker then calls its save state method the list is traversed
and for each object in this list the specific save method is called and the content
is appended to the stream.

The above definition is quite general and needs to be specified further to
allow for the key issue here, namely to enable storing and reading data in a
system independent way. What we really need is a mechanism that allows for,
say, storing the state of a worker written in Java running on a Linux system,
and restoring this state on a Windows box, running a C++ worker. There
are many commercial and open-source solutions available for this problem, for
example CORBA, RPC, (D)COM or SOAP (for an overview see (Emmerich
and Kaveh, 2002; Elfwing et al., 2002) and references therein). They all have
in common that they use some interface definition language (IDL) to describe
a software component’s interface and are also capable to transfer values (and
mapping types) between systems. The main reason why we developed our
own (proprietary) approach here is that neither of the systems really works
in practice if used with more than a couple of programming languages, ac-
cording to our experience. This mainly relies on the fact that all tested open
source implementations of these standards were incomplete or inadequate (see
e.g. (Henning, 2006) and references therein) and generated APIs that are
incoherent, strange or even impossible to use.

To address this, we are using a combination of enterprise Application pat-
terns called Domain Model 18 and Active Record 19 (see eg (Fowler et al.,
2003)). This means, each object (such as a peak, a spectrum or a peak as-
signment result) used in an algorithm can be mapped to a database object
and hence stored in a database. The beauty of this approach is that it is
fully programming language and OS independent, while allowing to simply
reference large objects (such as 2D spectra) rather than copying them. For
example, if a peak picking algorithm is analyzing a 2GByte 2D spectrum and
now is about to store its state it does not need to store the 2D spectrum to the

17A stream is a source or sink of data, usually individual bytes or characters. Streams are
an abstraction used when reading or writing files, or communicating over network sockets.

18A domain model can be thought of as a conceptual model of a system which describes
the various entities involved in that system and their relationships. The domain model
is created to document the key concepts and the vocabulary of the system. The model
displays the relationships among all major entities within the system and usually identifies
their important methods and attributes. This means that the model provides a structural
view of the system which is normally complemented by the dynamic views in Use Case
models. An important benefit of a domain model is to describe and constrain system scope.
The domain model can be used at a low level in the software development cycle since the
semantics shown therein can be used in the source code. Entities become classes, while
methods and attributes can be carried directly to the source code; the same names typically
appear in the source code.

19Active record is an approach to accessing data in a database. A database table or view
is wrapped into a class, thus an object instance is tied to a single row in the table. After
creation of an object, a new row is added to the table upon save. Any object loaded gets
its information from the database; when an object is updated, the corresponding row in
the table is also updated. The wrapper class implements accessor methods or properties for
each column in the table or view. This pattern is commonly used by object persistence tools,
and in object-relational mapping. Typically foreign key relationships will be exposed as an
object instance of the appropriate type via a property. Implementations of Active Record
can be found in various frameworks for many programming environments.
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database but simply inserts the ID of that 2D spectrum since it is available
at the database or at the central server anyway. Therefore, only references to
existing objects and real dynamic data needs to be stored. The actual storing
process works as follows:

1. In the migration table a new record is inserted that consists of the worker
ID and the current migration status, beginning with “migration started”.

2. The core data list (see above) is traversed and for each object the store
method is called.

3. Within the store method a database entry in the migration data table
is created that consists of the worker ID, the variable name of this data
and the data itself in its native format. That is, each record has a field
for a string, a float, a double etc. where all fields but one are empty.
Admittedly, this does waste disc space but is still beneficial because one
does not have to worry about data conversion in different programming
languages or operating systems.

4. The migration table record is updated setting the state to “migration
data stored”.

As described above, all primitive data types (such as integer, float etc.)
require just two field in a record, namely variable name and value. For more
complex data types, such as arrays, collections, or specialized objects (e.g.
composed result types) we have introduced a simple hierarchy: each record
can set a have children flag and a parent ID entry. If the former is set this
variable reflects some complex datastructure such as an array that contains
children elements. These children elements then have the ID of the parent
element stored in the parent ID field. This quite flexible design pattern allows
for the mapping of almost any complex structure even between programming
languages, as long as the worker’s implementations are aware of the used
variables.

Job Resumption

The second part of the migration procedure is the recovery of the original state
and resumption of the algorithm on a different machine. To allow for this the
target worker (that has required the suspended job) must be capable of (a)
restoring the state of the source worker and (b) seamlessly continue execution.

The main prerequisite for a worker to be able to restore another worker’s
state is that it uses the same variable names internally, or at least knows how
to map them onto the actual variables used. At initialization of a worker the
core data list (see previous section) is created and the process of resuming is
as follows:

1. The migration table record with the ID of the source worker is updated
setting the state to “migration data transferring to target”.

2. The core data list (see above) is traversed and for each object the “load”
method is called.

3. To check whether the core data list is compatible with the data stored in
the database, after each single transmission each item in the core data
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list that has been loaded is flagged with a “load success” flag. Similarly,
each data element in the database is also flagged with a “restored” flag.

4. After the core data list has been traversed the worker checks whether all
elements in the list have set the “load success” flag and all elements at the
database have set the “restored” flag. If this check fails, the migration is
terminated and the migration table record is updated setting the state
to “migration failed” including a reference to the worker that failed the
data transmission.

5. If the check succeeds the migration table record is updated setting the
state to “migration successful” and migration data at the database is
deleted.

6. Prior to the actual computation the worker checks whether all required
data - for example spectra that might have been references - is available
locally and possibly requests and loads missing data.

7. Finally, the worker needs to continue at the algorithmic entry point
where computation continues.

5.5 QAD Grid Platform Services

A service in the QAD Grid platform refers to either a particular computational
service (such as peak picking or converting data formats) or a system service
(such as workflow execution/control or restarting of unstable workers). A
service consists of three components:

� The service specification (registration) at the QAD Grid server that de-
scribes the identification string (see section 5.3.3) and the parameters
needed to define a task for this service.

� An implementation of a worker able to handle tasks of this service.

� Some method to create new tasks of this service and submit them to the
QAD Grid’s job queue (see section 5.3.3).

In the QAD Grid system users can create their own (non-system) services
by registering this service and developing an individual worker that can handle
this particular type of task using the QAD Grid design principles (see section
5.4.1). A new service can also be fully integrated into the QAD Grid which en-
ables central administration (for example worker injections, see section 5.3.3).

Once registered, a service is available within the QAD Grid and tasks of
this type can be submitted which can be requested and handled by workers.

5.5.1 Service Registration

The registration process of a new service announces the new type at the QAD
Grid servers and defines its input and output, important for the usage in
workflows (see section 5.6). It consists of the following steps:

1. Through a web-based form a registered user can request a new service
by entering detail information about the service. This includes a gen-
eral description and a unique identification string of this service. This
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identification string will be used later to match this service with workers
and tasks. Further, description and specification of the input parameters
used and the output format have to be specified.

2. The service request is reviewed by a QAD Grid administrator and either
accepted or denied.

3. In case of a positive decision that new service is automatically inserted
into the QAD Grid database.

5.5.2 Service Integration

The QAD Grid system allows so-called worker injections (see section 5.3.3).
This means, if triggered by some event (e.g. new tasks of a particular kind are
available), the QAD Grid server can log into some client machine and start a
worker on that machine able to handle this task.

To enable this feature a service needs to be integrated into the QAD Grid
system. Integration of a service requires the following steps:

� The service must be successfully registered (see above) at the system.

� Each worker implementation needs to be registered at the QAD server -
again, through a web-form. This includes

– description,
– version number,
– operating system(s) this worker runs on (e.g. Linux or Windows),
– hardware platform(s) this worker runs on (e.g. Intel or Cell/BE),
– 3rd party library dependencies,
– class path,
– command-line to start this worker.

Each 3rd party library used by this worker must be available at the
QAD Grid server. This is to avoid redundant storage of libraries within
the Grid and therefore multiple transfer of files to a client. Further, by
providing verified libraries through the QAD Grid server no misuse can
happen. Missing libraries need to be requested and will be integrated
into the system by an QAD Grid administrator.

� The actual implementation of this worker needs to be available at the
QAD Grid server zipped into one archive. This zip archive is also trans-
mitted through the web-form (see above). When a worker is injected
into a client this zip archive is transferred and unzipped at the target
directory (see section 5.3.3).

5.5.3 Task Submission

Submission of tasks to the QAD Grid is done by calling a stored procedure
at the database. This call needs to include the task id string and the task’s
parameters. The stored procedure then checks

� whether the task’s id string is valid

� whether the sender is allowed to submit new tasks

If the checks are positive the task is inserted into the system’s task queue.
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5.5.4 QoS / Service Management

Service management in the QAD Grid means

1. controlling and ensuring availability of (integrated) core services

2. controlling and ensuring availability of Grid resources

3. allowing new services to be hot deployed into the Grid system

Additional Quality of Service (QoS) management ensures not only the avail-
ability of a service but also the quality of the available services and resources.
Effective and efficient QoS management is critical for a service grid. Another
crucial point in delivering high quality services is that enough reliable workers
for a particular service type are available. To ensure this two things must
be monitored: (a) the actual number of available workers and (b) the quality
of the available workers. Recall that a service is directly dependent on the
workers performing the tasks of a particular service type. Therefore we have
developed a service management architecture that

� Periodically evaluates available workers

� Periodically checks the Grid’s state

� Can dynamically adjust the number of workers available in the Grid,
bases on the global Grid state

� Enables the creation of virtual private Grids

� Allows task priorization

� Allows integration of hot deployed services

The details of this architecture are described in the following paragraphs.

5.5.5 Worker Evaluation

A worker is evaluated based on its performance characteristics and its connec-
tion history. That is, the better the CPU speed (CPU , GHz), the more free
memory available (MEMavail, GByte) and the better the connection speed
(CONNup, CONNdown, KByte/s), the higher the score (S) of a worker W :

SW = CPU + MEMavail +
CONNup + CONNdown

2

5.5.6 Evaluating the Grids State

The global Grid state is determined by:

� Job waiting time (JWTsertype, seconds): average time between submis-
sion and start of the last 20 jobs of service type sertype. We define a
value above 60 seconds as insufficient

� Job queue length (JQLsertype): number of submitted but not started
tasks in the queue of service type sertype. We define five unstarted jobs
for each available worker as barely acceptable.
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� Database load (DBL, in percent)

We can therefore compute the Grid’s state (GS) for each particular service
type sertype:

GSsertype =
JWTsertype

60
· JQLsertype

5 · workerssertype
·DBL

where workerssertype is the number of currently available workers of type
sertype. The total Grid state is simply the average state.

With this measurement in hand we can now evaluate the Grid’s state and
identify possible bottlenecks with respect to the single services available in the
Grid. If a value exceeds “1” for a particular service this triggers the start of
new workers of this service type and is described in the next section.

5.5.7 Dynamically Adjust Number of Workers

As described in section 5.3.3 the QAD system is able to start new workers at
some target machine registered in the QAD Grid. When a performance value
of a service exceeds “1” the QAD Grid server determines how many additional
workers are needed. Based on the offline client monitoring (see section 5.3.4)
the available machines are ranked and worker instances are injected into the
top ranked machines.

On the other hand, if a performance value is close to “0” the QAD Grid
server determines if workers - that are controlled by the QAD Grid - can be
shut-down.

5.5.8 Virtual Private Grids

A virtual private grid (VPG) is a sub-set of available QAD Grid workers that
are exclusively assigned to a particular user group. This restricted access can
be set either by a QAD Grid administrator for nodes that are controlled by
the QAD Grid or by the owners of the client nodes. These nodes will then
only compute tasks that were submitted by a member of this particular user
group.

The advantage of a VPG is that it can be dedicated to a particular project
where it is not slowed down by computing foreign tasks but still can use all
features of the QAD Grid. These Grids are especially well suited for hot
deployment of services.

5.5.9 Task Prioritization

Each task to be computed by the QAD Grid has a standard priorization. When
a worker requests a task the task list is first ordered by priority and then by
submission time. This means, a task with high priority will be computed
before a standard priority task even if that task was submitted earlier. This
tool allows the quick execution of important tasks even if the task queue
contains many entries.

5.6 QAD Grid Workflows

As introduced in section 5.1.2 (at page 109) a workflow is the orchestration of
tools and services. Built together from simple components it is well suited to
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Figure 5.6.10: An example workflow shown on the left. On the right hand side the
parameters of the selected icon (highlight in yellow) are shown. The gray and purple
bars at the top are the toolbars containing the available workflow components.

create large pipelines to solve complex problems, e.g. a combination of many
preprocessing steps followed by a multi-level analysis of data. A big advantage
of workflows over manual execution of different tools is that a workflow is
designed once and then applied to many different datasets (even in parallel).

For a workflow system we need two basic components: (a) the workflow
designer and (b) a workflow execution module, which are described below. In
the QAD Grid system each workflow component is either (1) a QAD Grid
service which will be handled by a worker (e.g a particular analyses), (2)
a basic programming language function (such as an if/then condition or a
variable assignment) or (3) an extended workflow function (such as sending
an email or deleting a file).

In the QAD grid system workflows are modeled as rooted directed graphs.
Since we allow (conditional) jumps (see below) it can contain cycles. Figure
5.6.10 shows a small section of an example workflow. The left hand side of
the figure shows the workflow in the workflow editor. Each icon represents
one component of the workflow. At the right hand side, the parameters of
the selected item (dyed in yellow) are shown: since this component is a “send
email” item one needs to specify the receiver address and a mail body. Other
items would presumably have more parameters.

An important concept in the QAD Grid workflow system is the usage of
user defined variables. These variables allow the assignment of values to work-
flow variables at execution time. That means, a workflow can be designed and
variables, such as the dataset to be analyzed or particular algorithm parame-
ters, can be set by the user when the workflow is executed.

5.6.1 Workflow Elements

The following paragraphs describe the elements that can be used to build a
workflow.
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Services

Each registered service (see section 5.5.1) can be used in a workflow. During
the service registration process the needed input parameters and the output
format are defined. When a service is included in a workflow for each of these
input parameters a source must be specified. This can be a fixed parameter
(e.g. a numeric value for an algorithm), the result of a database query, such
as the result of a preceding workflow step or a user defined parameter that
will be fixed at execution time (see below).

In addition to these Grid services there exist further system services that
require client/server interaction. For example, services that copy files from a
server to a client.

Programming Language Elements

A QAD Grid workflow can contain so-called programming language elements.
These are constructs known from imperative programming languages. The
QAD Grid system knows the following constructs:

Variables: The QAD Grid workflow system provides two kinds of variables:
(a) workflow variables that are initialized and modified during the work-
flow design phase and (b) user defined variables that are initialized by
the user at the time of execution and can be modified during workflow
execution. Usually at least one user defined variable is used within a
workflow that defined the dataset that is used.

Assignment statements: Each variable can be assigned a value. Internally
the value is represented as a string object and converted to numbers if
required during workflow execution.

Evaluation of expressions: Simple expressions (such as basic arithmetics
or relational operators) can be evaluated at runtime. For example a
variable “VAR1” can be assigned a value “VAR2 * 5” that would be
first evaluated to five times the current value of the variable “VAR2”
and then assigned to “VAR1”.

Unconditional branching statements: This is commonly known as jump
or goto. This item has a parameter that contains the target item the
workflow execution process will jump to. Only special items (tags) can
be used as jump targets.

Conditional branching statements: When the workflow execution process
hits this item type it first evaluates the condition parameter which must
evaluate to “false” or “true”. For example a valid condition might be
“VAR1 ≥ 5”. For each outcome (“true or false”) a jump target can be
defined where the process will branch to. If none is given the process
will continue with the next item.

There are also higher conditional branching elements available for the
user, such as readily implemented checks whether all jobs of a particular
kind of this particular workflow are finished or whether a task finished
with an error. This gets very handy for example if during pre-processing
a 2D spectrum is to be split up into its 1D components. Then, this item
can be used to check whether all of this splitting jobs have finished so
the next workflow stage can be started.
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Looping statements: Using the above elements a simple loop can be cre-
ated:

1. Define a counting variable, say VAR1, and initialize it to “0”
2. Define a start tag (jump target), say TAG::loop start
3. Use the conditional branching to evaluate “VAR1 ≤ x”, where “x”

is the number of desired loop cycles - define the jump target for a
negative evaluation to TAG::loop end (see below)

4. Define the elements to be executed within the loop
5. Increase VAR1
6. Jump to TAG::loop start
7. Define an end tag (jump target), say TAG::loop end

Server-side Functions

Server-side functions are functions that are executed on the server. At the
moment the following functions can be used within a workflow:

Sleep: Suspends the workflow execution for a given time, for example to wait
for an analysis to finish.

Send email: Sends an email. This can be used for example to report that a
workflow has finished.

Send SMS: Sends a SMS via a SMS gateway provider20. This feature can
be used to report urgent system messages.

Directory and file I/O: During execution the workflow control process has
full control over an exclusively assigned directory. In this directory it can
create, delete, copy and move files and directories and read from/write
to text files.

Log entries: During workflow execution entries in the global log file can be
created for debugging purposes.

5.6.2 Workflow Designer

The workflow designer is a graphical online development interface accessible
through the QAD Grid system. It allows easy creation and modification of
workflows. Its core components (as shown in Figure 5.6.10) are the toolbar
(top), the workflow viewer (left) that displays the workflow as a tree and the
parameter viewer (right).

To add a new item to a workflow it is simply dragged from the toolbar
and dropped at the workflow tree at the position it is supposed to appear
(see Figure 5.6.11). To correct its position an item can also be dragged and
dropped within a workflow tree. To modify the parameters of an item it has
to be selected by clicking on it. Then, the available parameters are shown in
the parameter view on the right hand side (see figure 5.6.10 for the parameters
of the “Send email” item). Here, the parameters can be changed or the item
can be removed from the workflow by clicking on the trash icon on the upper
right corner of the parameter view.

20Currently we are using the Clickatell�service (http://www.clickatell.com) because it
allows for the control of the User Data Header and supports the SMSJ-SMS library for Java
(see http://smsj.sourceforge.net) and many other programming languages.
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Figure 5.6.12: The same example workflow collapsed (left) and expanded (right).

Figure 5.6.11: Screen-
shot from the pro-
teomics.net workflow
designer: An item is
dragged from the tool-
bar and dropped at a
workflow.

For better visual partitioning of complex workflows levels can be
introduced. Each level can contain an unlimited number further
sub-levels and items and can be collapsed and expanded (see Figure
5.6.12).

Workflow Check

Most of the item input parameters cannot be input freely but selected
from a given valid set. For example, jump targets can only chosen
from a list of targets that really exist at the moment of creation. Con-
sequently, a jump target can only be deleted when it is not referenced
by an item within the workflow. Consequently, only a syntax check
for the free text parameters has to be performed.

5.6.3 Workflow Execution

Workflows are executed by specialized services running at the QAD Grid
server. When running a workflow the user first needs to specify the user
defined variables required in this workflow. The execution request and the
variable values are then inserted into the database. Similar to the job execu-
tion (see section 5.3.3 a workflow execution service then marks this workflow
as “in progress” and requests / loads the (graph) structure. Starting with
the root node the following steps are performed following the state machine
paradigm (see e.g. (Gill, 1962)):

1. Depending on the current node the matching node type handler is called
with the input parameters.

2. The node handler

� checks the input parameters

� evaluates variables and conditions if necessary

� performs required actions - usually this means that tasks are created
and scheduled.

� returns the next node to execute: either the succeeding tree node
or a jump target
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3. The workflow execution service stores the state of all current variables
and the new active node to the database. This allows for resuming from
this point after a system crash.

4. The workflow execution service sets the returned node to active and
starts over with step (1).

Experiments have shown that the workflow execution service is idle most of the
time during execution. Therefore, we have implemented this service as a multi-
threaded service: The main thread handles all database requests including
scanning the database for new workflows to execute. If a new request is found
and the overall system load is not too high a child-thread is created that
handles this workflow. The main advantage of this approach is that we save
connections to the database, since only the main thread needs to have an active
database connection. This is beneficial since each open connection slows down
the database server (see e.g. (Huddleston et al., 2006)).

5.7 Related Work

As mentioned in the previous sections, most systems that are used for building
distributed computing systems or computational grids have evolved to quite
complex software frameworks. In Table 5.7.1 we list some exemplary Grid
projects that are currently (2007/2008) active and have been studied by us21.
There are roughly three categories these projects fall into:

1. e-Infrastructure: This refers to a research environment in which a re-
searcher has shared access to scientific facilities (such as data, computing
or sensors), regardless of their type and location in the world.

2. Middleware: A middleware connects software applications enabling ex-
change of data. Thus, it organizes and integrates the resources in a Grid.
One of its main purpose is to automate the required machine to machine
negotiations, such as negotiating the exchange of resources on behalf of
Grid users and resource providers. It also provides the core foundation
(basic services) for grid applications including areas such as: security,
resource management, information services and data management.

3. Application: These are projects within the context of specific scientific
fields that are devoted to explore and harness grid technology. Depend-
ing on its state (fully operational vs. experimental) these projects are
called application or testbed.

Since there exists neither the exemplary Grid system nor a standard for
Grid systems (although systems like Globus seem to become the de-facto stan-
dard) we will not describe any system in great detail nor give a detailed com-
parison to our system22. Rather, we use the table to illustrates two things:
(a) there is a need for distributed computing systems in many application
areas and (b) there is a large variety of systems with different scales, aims, ap-
proaches and technological foundations. However, as far as our analyses have
shown none of them manages to provide a powerful and at the same time easy

21Another even more exhaustive list can be found here (GridInfoware, 2008)).
22For a detailed comparison of four large Grid systems see e.g. (Asadzadeh et al., 2006)

and references therein.
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to set-up system that can be used in an (quasi) ad-hoc manner, as our system
is designed to operate. Further, there does not seem to be a fully equipped
framework that provides all layers such as middleware, workflow system, Grid
monitor and web portal. All of these layers have been incorporated in the
system introduced in this thesis.

Table 5.7.1: Overview of several Grid projects

Project Category Description

@neurIST Appli-
cation

Grid platform for management, integration and
processing of data associated with cerebral
aneurysm and subarachnoid haemorrage.

ACGT Appli-
cation

Grid platform to support exchanges of clinic and
genetic information with a particular focus on
breast cancer data.

BioinfoGRID Middleware This project aims to connect European computer
centers to offer computational services especially in
the area of Bioinformatics.

BIOPATTERN Appli-
cation

Within this project the members want to create a
pan-European platform enabling sharing and anal-
ysis people’s bioprofiles. This should allow to com-
bat major diseases such as cancer and brain dis-
eases.

Condor Middleware Condor is a specialized workload management sys-
tem for compute-intensive jobs. Similar to other
batch systems, Condor provides a job queueing,
several scheduling policies and priority schemas, re-
source monitoring and management. The Condor-
G extension is fully interoperable with resources
managed by the Globus system.

DataGrid Appli-
cation

This was one of the first projects (and predecessor
to the EGEE project) that aimed to enable inten-
sive computation and analysis of shared large-scale
databases across widely distributed scientific com-
munities.

DataMining
Grid

Appli-
cation

This consortium develops generic and sector-
independent data-mining tools and services for the
grid.

D-Grid Infra-
structure

The German national Grid initiative wants to es-
tablish a sustainable Grid infrastructure for e-
Science in Germany by (a) strengthening exist-
ing Grid user communities and (b) integrating
and extending existing but dispersed middleware
testbeds.

DutchGrid Appli-
cation

The DutchGrid is the platform for Grid Computing
and Technology in the Netherlands.

Continued on Next Page. . .
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Table 5.7.1 – Continued

Project Category Description

Edutain@Grid: Appli-
cation

Edutain@Grid seeks to transfer techniques from
Grid computing to networks used in massive on-
line games through development of a Grid-based
framework allowing responsive and interactive ap-
plications.

EGEE Infra-
structure

The Enabling Grids for E-sciencE (EGEE) project
is funded by the European Commission and aims
to build on recent advances in grid technology and
develop a service grid infrastructure which is avail-
able to scientists 24 hours-a-day.

EGRID Infra-
structure

An Italian GRID infrastructure for finance and eco-
nomic research.

EUChina Infra-
structure

This Grid aims to facilitate scientific data transfer
and processing between Europe and China.

g-Eclipse Appli-
cation

The g-Eclipse project aims to build an integrated
workbench framework to allow access to existing
Grid infrastructures. It is built on top of the
Eclipse framework and provides tools to customize
Grid user’s applications, to manage Grid resources
and to support the development cycle of new Grid
applications.

gLite Middle-
ware

Lightweight middleware for Grid Computing. gLite
integrates components from current middleware
projects, such as Condor and the Globus Toolkit, as
well as components developed for the LCG project.

Globus Middle-
ware

The Globus Project is developing fundamental
technologies needed to build computational grids,
which enable software applications to integrate a
variety of resources. The project includes investi-
gations of security, resource management, commu-
nication protocols, data management mechanisms,
etc.

GRIDCC Appli-
cation

GRIDCC will extend the commonly used batch ac-
cess to distributed computational and storage re-
sources by including access to and control of dis-
tributed instrumentation.

Health-e-
Child:

Appli-
cation

is an integrated platform for European paediatrics
based on a grid-enabled network of leading clinical
centers.

Interactive Eu-
ropean Grid

Infra-
structure

The goal of the project is to deploying and operate
an inter operable production-level e-Infrastructure
for demanding interactive applications. Dis-
tributed parallel computing is based on MPI.

myGrid Appli-
cation

The myGrid projects puts emphasis on the infor-
mation Grid and provides middleware layers tai-
lored to the need of scientists in the area of bioin-
formatics.

Continued on Next Page. . .
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Table 5.7.1 – Continued

Project Category Description

NorduGrid Middleware Also known as Advanced Resource Connector
(ARC) they provide a reliable implementation of
the fundamental Grid services, such as information
services, resource discovery and monitoring, job
submission and management, brokering and data
management and resource management.

SEE-GRID-2 Infra-
structure

The successor of the South-East Europe (SEE)
GRID aims to further advance the existing in-
frastructure and services, to further strengthen
scientific collaboration and cooperation among
participating SEE communities, and ultimately
achieve sustainability for regional and national e-
Infrastructures.

TeraGrid Appli-
cation

The aim of this project is to create an integrated,
persistent computational resource. Currently, Ter-
aGrid resources include more than 750 teraflops of
computing capability and more than 30 petabytes
of online and archival data storage. Researchers
can also access more than 100 discipline-specific
databases. They claim to be the world’s largest,
most comprehensive distributed cyberinfrastruc-
ture for open scientific research.

UniGrids Appli-
cation

This project develops a grid service infrastruc-
ture based on the Open Grid Services Architecture
(OGSA) and on the UNICORE grid software. The
goal of UniGrids is to develop translation mecha-
nisms, such as resource ontologies, to interoperate
with other OGSA compliant systems. At the same
time UniGrids will target grid economics by devel-
oping a SLA framework and cross-grid brokering
services. The scientific focus is set to be in the ar-
eas of biomolecular and computational biology, en-
ergy, geophysical depth imaging by oil companies
and reactor safety.
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proteomics.net -
Product-oriented Case
Studies
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This chapter will describe our proteomics.net platform. This platform was
developed with three goals in mind:

� Create a reference implementation of the algorithms for the analysis of
mass spectra described in chapter 3.

� Create a reference implementation of the Grid approach specified in
chapter 5 to enable handling and analysis of mass data.

� Create an intuitive web-based user interface to allow easy usage of this
platform for us and our collaborators enabling research as described in
chapter 4.

During this work many other positive side effects could be detected, such
as:
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Organization of data and results: Often a project lacks sufficient organi-
zation, documentation and storage of source and resulting data or pa-
rameters used in different analyses. The presented platform does solve
these problems in the domain of (mass spectrometry based) proteomics
research. Once the raw data is integrated into the system each analy-
sis performed is fully documented and each result is stored and can be
traced back to the data and parameter-sets used.

Comparison of results: During the course of a (data centered) project usu-
ally many different algorithms are developed or tested. Additionally,
most algorithms can be parameterized in many ways often with large
variations in the results. The platform presented here cannot only orga-
nize the results depending on algorithms and parameters and thus enable
reasonable comparisons but also provides consistent visualization.

Exploring parameter space: Many algorithms depend on a lot of input
parameters. Determining and optimizing these parameters for a partic-
ular dataset or certain purpose is not always possible. The presented
platform in combination with the QAD Grid workflow system does not
only allow to create different parameter-sets but also starts the desired
algorithms with these input parameters on many different machines in
parallel and monitors the execution and can also evaluate the results and
send reports to the user.

Rapid Grid application development: Thanks to the worker concept and
available web-services embedding of almost any available program code
becomes possible quite quickly - even on specialized hardware.

6.1 Available Services

The proteomics.net platform offers the following services:

� Web portal for (MS-based) proteome research

– Fostering organization, exchange and provision of (raw) data and
(intermediate) results)

– Provision and easy usage of tools and algorithms (section 6.2.1)

– Providing of web services to use available algorithms in local appli-
cations (section 6.2.2)

� Distributed computing (Grid) services

– Enabling processing and analysis of proteomics mass data faster
than real time

– Allowing integrating of specialized hardware, such as IBM’s Cel-
l/BE processor in Sony’s Playstation 3 for compute intensive tasks
(section 6.2.4)

– Enabling non-Grid applications to use the power of a distributed
computing environment (section 6.2.5)

– Easy creation and integration of Grid applications (section 6.2.6)
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6.2 Case Studies

6.2.1 Software as a Service: Using the Web Based Platform
Services

This section describes the main concept of the proteomics.net platform: host,
operate and provide algorithms that can be used over the internet with user-
specific data. We will give a brief example in the proteomics context that
shows the benefits of this concept for an user that does not have the needed
IT infrastructure to solve a particular problem. It is generally suited for users
that have little interest or capability in software deployment, but do have
substantial computing needs.

Background

Performing an arbitrary data analysis requires of course (1) the data to be an-
alyzed and (2) a suitable analysis algorithm (computer program). Often there
arise problems concerning (2): installing, maintaining and running a software
package is not always a trivial task. Problems like insufficient hardware (e.g.
memory) or an incompatible software platform (e.g. operating system or li-
braries) can render the use of a particular software impossible.

Our Approach: Software as a Service

With the proteomics.net platform we have chosen to provide our algorithms
using the Software as a Service (SaaS) approach. This means, that the al-
gorithms are hosted on our IT infrastructure and can be used through a web
based user interface. To give an example we briefly sketch the steps a user
needs to execute to perform a peak picking analysis (as described in section
3.4:

1. Open the platform’s web portal in a web browser

2. Log into the platform (Figure 6.1(a))

3. Upload the data to be analyzed (e.g. by FTP)

4. Start a new peak picking analysis (figure 6.1(b))

5. Select the dataset and parameter-set to be used (figure 6.2(a))

6. Assign a name and description (Figure 6.2(b))

7. Start the analysis

After the peak picking analysis is finished the results will be available for
inspection, further usage or export/download. Note that the results are auto-
matically

� archived in the system

� linked to the raw data the peak picking was performed on

� linked to the parameter-set used

Note that the data analysis is automatically scheduled to the best matching
computing ressources available.
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Figure 6.2.1: Screenshot of the proteomics.net framework. Left: Login screen; right:
Starting a new peak picking analysis

6.2.2 Web Services: Using the Platform Services in Local Pro-
grams

A second possibility to use the algorithms provided by the proteomics.net
framework is by using Web Services. Web services can be seen as APIs (ap-
plication programming interface) accessible over the Internet. By using them,
algorithms can be executed on a remote system hosting the requested services.
This means that users can write their own software that includes calls to an
algorithm hosted by the proteomics.net framework.

All algorithms and services available at the proteomics.net platform are ac-
cessible via system independent web-services from outside the platform. This
means (authorized) local stand-alone software (written in almost any program-
ming language) can

� query the platform (e.g. get status information),

� read and send data or results,

� submit new jobs, that is, use the algorithms available at the platform.
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Figure 6.2.2: Screenshot showing the creation of a new peak picking analysis. Left:
Select dataset and parameter-set to use; right: Assign an analysis name and descrip-
tion. Note: in the proteomics.net framework the two screens are on top of each other.

Concepts

The platform provides information about available web-services in the web-
service definition language (WSDL). Using tools like Apache AXIS’ “WSDL2Java”1

from this WSDL code necessary Java classes and bindings can automatically
be created to enable usage of web-services in a Java environment. To allow a
local software usage of the web-services it must be authenticated and autho-
rized (see section 5.3.1).

For the following example, let us assume that there exists a web-service
called “get current worker()” that simply returns a string containing type and
name of the workers being online and their client machines. Let us further
assume that necessary Java classes have been created automatically by the
WSDL2Java tool and for this service the client does not need to be authen-
ticated. Then, the code needed for a (very simple) Java client to connect to

1see http://ws.apache.org/axis/java/user-guide.html\

#WSDL2JavaBuildingStubsSkeletonsAndDataTypesFromWSDL
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the platform, get the worker status information and display it can be written
in less than 20 lines as the following listing 6.1 shows:

Listing 6.1: Minimal code for using the “get current worker()” web-service in Java.

1 import org . apache . ax i s . c l i e n t . Ca l l ;
2 import org . apache . ax i s . c l i e n t . S e rv i c e ;
3 import javax . xml . namespace .QName;
4 import de . f u b e r l i n . mi . proteomics . p ro t eomi c s ne t webs e rv i c e s . * ;
5
6 public class c l i e n t j a v a {
7 public stat ic void main ( St r ing [ ] a rgs ) {
8 try
9 {

10 S e r v i c e s i n f oLo c a t o r l o c = new Se r v i c e s i n f oLo c a t o r ( ) ;
11 S e r v i c e s i n f oSoap port = l o c . g e t s e r v i c e s i n f o S o ap ( ) ;
12 System . out . p r i n t l n ( port . g e t cu r r en t worke r ( ) ) ;
13 }
14 catch ( Exception e )
15 {System . out . p r i n t l n ( e . getMessage ( ) ) ; }
16 }
17 }

The actual (synchronous) call to the web-service happens in line 12. This
line could also contain far more complex calls, for example including objects
as input and output parameters. Thanks to the transformation services (e.g.
within the WSDL2Java tool) parameters send to and received from the web-
service are mapped to Java data types.

6.2.3 Integrating External Web Services on the Example of
Protein Identification

Background

One key issue in proteomics is to identify proteins and characterize their ex-
pressions in cells. In mass-spectrometry based proteomics this is done by
either peptide mass fingerprinting (PMF) of MS1 spectra or by further frag-
menting single peptides producing MS2 spectra where (ideally) the amino acid
sequence can be derived from.

The PMF approach (also known as protein fingerprinting) is an ana-
lytical technique for protein identification developed in the early 1990s. The
basic idea is to digest an unknown protein of interest by a sequence specific
protease (such as Trypsin). The set of resulting peptides (fragments) build a
unique identifier (fingerprint) of the unknown protein based on this protease
and subsequently compared to databases containing known fragmentation pat-
terns for this protease. Obviously, the mass accuracy to which the peptides
are measured plays a crucial role (Green et al., 1999).

In MS2 spectra analysis peptides of interest - identified during a MS1

run - are fragmented further in a collision cell to produce tandem (MS/MS,
MS2) mass spectra. Since fragmentation (usually) happens at the backbone
peptide bonds, by putting together matching pieces (that result in the full
peptide) and analyzing the point of rupture (in principle) determination of
the amino acids gets possible. This approach is called De Novo sequencing
(see e.g. (Ma et al., 2003; Halligan et al., 2005) and references therein). The
second large class of algorithms for the identification problem is based on
comparing the experimental spectrum against a database of theoretical spec-
tra determined by in silico digestion and fragmentation of known proteins.
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MASCOT and SEQUEST (Perkins et al., 1999; J et al., 1994) are examples of
this approach which employ sophisticated statistical models to determine the
similarity of experimental and theoretical spectra.

Both approaches suffer from the fact that peptide fragmentation is a com-
plex (biochemical) process, so spectra generated from mass spectrometers
are often significantly different from their theoretical counterparts. However,
database approaches have been reported to work quite effectively when used
with standard data. Unfortunately, performance deteriorates significantly in
certain settings, such as high abundance of homologue proteins, lack of se-
quence data or present peptide modifications. In such scenarios de novo
methods provide an invaluable alternative because they infer protein sequences
without using existing sequence data, while additionally accounting for possi-
ble peptide modifications.

Available Projects

As mentioned in the previous section building a protein/peptide identifica-
tion algorithm is a complicated task and many sophisticated scientific and
commercial projects are available for this. These are available as stand-alone
programs, web-sites or web-services. The integration of stand-alone programs
is described in section 6.2.5 so in this example we focus on the integration of
web-based services.

Approach

To integrate web-based services into the proteomics.net framework we ex-
tended the base QAD Grid worker (see section 5.4.1) by methods for using
web-forms (GET & POST), parsing HTML code and using web-services. With
this new methods it becomes possible to use web pages (such as the Mascot ser-
vices) and web-services (such as Emboss’ emowse service from the Helmholtz
Open BioInformatics Technology initiative, based on (Pappin et al., 1993)).

To use these services at the proteomics.net platform we implemented a
protein ID worker that

� takes the ID of a dataset (peaklist) available at the platform, the desired
ID service and needed parameters as input,

� send the request to the chosen service,

� waits for the answer,

� parses the result and converts it to the format used in the proteomics.net
framework,

� inserts the result into the database and links to the source data.

This ID worker not only enables the integration of the protein identification
service into the proteomics.net platform, but also allows execution of many
queries in parallel and full integration into the workflow system.
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6.2.4 Embedding of Specialized Hardware on the Example of
a Playstation 3

Background

In the last years specialized multi-core hardware such as IBM’s Cell/BE pro-
cessor or Graphic Processing Units (GPUs) from AMD and NVIDIA were re-
leased to the consumer market. Although having a radically different hardware
architecture opposed to the common desktop PC, they are really interesting
for computational tasks because they are equipped with many (co-) process-
ing units for calculations. A smaller version (seven opposed to 16 cores) of
IBM’s Cell/BE processor is built into Sony’s Playstation 3 (PS3) and can be
purchased for about 400 EUR (in December 2007).

Figure 6.2.3: Cell per-
formance values for eight
SPEs. Note that in a
PS3 only six SPEs are
available for calculations.
These benchmarks nicely
reflect the optimization
of the Cell towards single
precision operations.

At 3.2 GHz, each SPE gives a theoretical 25.6 GFLOPS
of single precision performance which add up to about 190
GFLOPS. Since in a PS3 only six SPEs are available for cal-
culations (one is deactivated and another one reserved for the
OS) about 150 GFLOPs can be achieved. This is about 15 times
faster than a common Intel desktop PC (single core, running at
3.6GHz).

In a typical usage scenario, Linux is installed on the Playsta-
tion using a kernel extension by IBM. Using IBM’s Cell SDK
programs can be written in the C++ programming language
that support the Cell’s instruction set. This system will load
the SPEs with these programs (similar to threads) which can
then perform the given task in parallel.

Since the playstation has only a limited memory (RAM)
of 512MB and reaches the good performance only in single-

precision mode not all algorithms will run well on this technology. Further,
each SPE has only 256KB of local memory that can be used for computations.

Porting Peak Picking

Motivated by these performance figures we ported the core of our reference
worker from Java to C. This “Playstation BaseWorker” can communicate with
the proteomics.net platform, request jobs and send back results.

Given the above mentioned limitations, we choose to implement and opti-
mize the peak picking algorithm (see section 3.4.3) because the data can be
processed linearly and easily splitted up into small packages.
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The peak picking algorithm changed slightly opposed to the original version
on a single core CPU and is now as follows:

1. Load a 1D spectrum into main memory (about 670KB in 54.000 x/y
data points)

2. Split spectrum into pieces of size min(256KB, spectrum size[KB]
#SPUs )

3. Until pieces are available: Send pieces to SPEs to find peaks

4. Wait for all SPEs to finish

5. Merge results

Results

The results are shown in Table 6.2.4.

Machine Test # SPEs Time [ms] per spectrum
Intel# w/o fitting 1 8200
Intel# w/ fitting 1 13300
PS3 w/o fitting 6 115
PS3 w/ fitting 1 2250
PS3 w/ fitting 6 750
QS20 w/ fitting 1 2100
QS20 w/ fitting 6 730
QS20 w/ fitting 12 410
QS20 w/ fitting 16 350

Table 6.2.1: This shows the PS3 performance tests. #: Standard desktop single-core
PC at 3.2GHz

6.2.5 Integrating of Non-Grid Applications on the Example of
Matlab Scripts and Linux Binaries

Background

As explained in the previous chapter, writing QAD Grid applications is not
a very complex task but still, some modifications must be made to standard
code. Thanks to the QAD Grid worker concept, there are ways to circumvent
even this requirement as we will show below for algorithms existing as Matlab
script and for binaries where the source code obviously cannot be modified.
Besides the obvious advantages distributed computation offers, e.g. Load bal-
ancing, another very interesting point is service availability. That means, if we
have many Matlab scripts providing the same service running on n different
nodes in the network (and assume a stable QAD Grid server) then failure of
up to n − 1 nodes still does not harm the availability of this service, since
the QAD Grid server will distribute incoming jobs to the remaining running
nodes.
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Approach

Matlab Scripts The scripting language Matlab is quite popular for quick
coding of mathematical algorithms. A typical algorithm gets some input pa-
rameters and data and then computes and returns the results. To allow almost
any user-defined matlab script to be run within a QAD Grid two things must
be done: (a) a special Matlab worker must be started at the Grid nodes that
will then run the user-defined Matlab scripts and (b) the function call of the
user-defined Matlab script must be changed to take two more parameters. If
the user-defined script is called from the Matlab worker these two additional
parameters contain (1) a string “MCP” and (2) an object reference to the
underlying QAD Grid worker. Through this the base QAD Grid worker func-
tions (see section 5.4.1) can be used, such as writing log entries or change
the worker’s status. If the Matlab worker is started at a QAD Grid node it
performs the following steps:

1. Start Matlab at the Grid node

2. Start the Matlab worker script

3. Within the Matlab worker:

� Wait until a new Matlab task is available

� Request the name of the user-defined Matlab script to be started

� Request the parameters for the user-defined Matlab script

� Start the user-defined Matlab script

The Matlab worker core that gets the parameters from the QAD Grid and
starts the user-defined script is implemented as shown in listing 6.2:

Listing 6.2: Minimal code for using the a Matlab worker.
1 params = jPROTEOMICSWORKER MATLAB MCP. g e t n ex t t a s k ( ) ;
2
3 i f ( params ˜= [ ] )
4 % param1 : name o f s c r i p t
5 % param2 − param8 : params f o r c a l l e d s c r i p t
6 m scr ip t = char ( params (1 ) ) ;
7
8 . . .
9

10 c = [ m scr ip t ’ ( ”MCP” , jPROTEOMICSWORKER MATLAB MCP’ ] ;
11 for i = 2 :9
12 i f ( ˜ isempty ( char ( params ( i ) ) ) )
13 c = [ c ’ , ” ’ char ( params ( i ) ) ’ ” ’ ] ;
14 end
15 end
16 c = [ c ’ ) ’ ] ;
17
18 jPROTEOMICSWORKER MATLAB MCP. change s ta t e ( [ ’ Proce s s ing Task ID : ’
19 id ’ − c a l l i n g : ’ c ] ) ;
20 c = strrep ( c , ’ ” ’ , ’ ’ ’ ’ ) ;
21
22 % execu te matlab s c r i p t
23 eval ( c ) ;
24 end ;

Line 1 requests a new task from the QAD Grid. If a new job is available
the 9-dimensional array “params” contains the parameters of this task. The
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first entry in “params” contains the filename of the user-defined script, the
remaining array entries contain the parameters. Line 10-16 show how the
calling string “c” is built and that the first two parameters mentioned above
are the “MCP” string and the object reference (line 10). Line 18 shows how the
QAD Grid worker object can be used to communicate directly with the QAD
Grid: here, the state string of the worker is changed, which will automatically
be updated in the QAD Grid database. The Matlab built-in function “eval”
is then used with the start string “c” as parameter to start the actual user-
defined Matlab script.

Binaries The QAD Grid worker concept offers another far more general
approach to enable non-Grid applications in the case where no source code is
available. Using a wrapper worker almost any binary application can use the
power of distributed computing. To achieve this, a standard base worker is
available that offers the following:

� Authenticate at and integrate into the proteomics.net platform

� Request new tasks (and respective parameters) for the configured pur-
pose

� Perform any system call or run any binary application

� Process results and transmit them to the proteomics.net platform

To give a concrete example listing 6.3 shows how we use a wrapper worker
to start a binary (“tophat”, line 47-51), and process the results (copy to some
destination, line 57).

Listing 6.3: Core of wrapper worker to start tophat filter binary.

1 public stat ic void main ( St r ing [ ] a rgs ) throws Exception {
2
3 . . .
4
5 % i n i t i a l i z e ob j e c t
6
7 PROTEOMICSWORKER apply tophat
8 myPROTEOMICSWORKER apply tophat =
9 new PROTEOMICSWORKER apply tophat(

10 ”PROTEOMICSWORKER apply tophat . java ” , ” app l i c a t i o n t opha t ” ,
11 ”” , false , ”” , ”” , args [ 0 ] ) ;
12
13 % run main method
14
15 myPROTEOMICSWORKER apply tophat . do work ( ) ;
16 }
17
18 . . .
19
20 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 public void do work ( ) {
22
23 . . .
24
25 params = ge t n ex t t a s k ( ) ;
26
27 i f ( ( params != null ) && ( ! params . equa l s ( ( ”” ) ) ) ) {
28 task handled = true ;



162CHAPTER 6. PROTEOMICS.NET - PRODUCT-ORIENTED CASE STUDIES

29
30 // open ta s k found
31 change s ta t e ( ” Proce s s ing Task ID : ” + cur ta sk ID ) ;
32
33 // proces s t a s k
34
35 St r ing s o u r c e f i l e = params [ 1 ] ;
36 St r ing t a r g e t f i l e = s o u r c e f i l e + ” . f i l t e r e d ” ;
37 St r ing tophat param = params [ 2 ] ;
38 St r ing t a r g e t d i r = params [ 4 ] ;
39
40 St r ing cmd = ”/home/ c o c k t a i l / conrad/work/phd/PROTEOMICS WORKER/
41 PROTEOMICSWORKER apply tophat/ UseTopHat ” +
42 s o u r c e f i l e + ” ” + tophat param ;
43
44 exec cmd (cmd ) ;
45
46 . . .
47
48
49 // Move f i l e to new d i r e c t o r y
50 r e s = f s o u r c e . renameTo (new F i l e ( t a r g e t d i r hand l e ,
51
52 . . .

6.2.6 Allowing for Easy Creation and Integration of Grid Ap-
plications on the Example of Analyzing Molecular Dy-
namics Simulations

Background

The goal of this project was to build a pipeline for dimensionality reduction
and analysis of molecular dynamics simulation data. This is a three step
process:

Import data into the system: To enable access to the data it must be
copied to a temporary directory of this project accessible by the server.
Subsequently, the datasets can be selected for import. This includes ex-
traction of meta-data (such as structure of the simulated molecule) and
conversion into the “trr” (Gromacs trajectory format) format, which
is used internally. After successful conversion the transformed data is
moved to the project directory and a description, metadata and an ID
is inserted into the database. The ID is necessary to access the data in
further analyses.

Transform data: To prepare the data for analysis it must be converted to
an internal binary format that can be read by the analysis algorithms.
Because an analysis only needs parts of the full dataset this step is not
included in the import process.

Analyze data: The analysis of the transformed data is performed and the
results written to the database.

Since the data is usually quite large (several Gigabytes) it makes perfectly
sense to process many datasets in parallel.
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Approach

Based on the pipeline described above we implemented a graphical user in-
terface (GUI) and the import, transform and analyses workers which are de-
scribed below.

Graphical user interface Based on the proteomics.net design principles we
integrated the GUI into the framework. It allows to import datasets (see figure
6.4(a)), transformation of data (figure 6.4(b) and 6.5(a)) and visualization of
results (see Figure 6.5(b)).

QAD Grid workers Three workers were needed for the tasks of conversion,
transformation and the actual analysis and reflect the full spectrum of possible
applications (see section 5.4.1): The conversion worker is a wrapper worker
that calls an external tool. The transformation worker is a full worker that
implements the complete algorithm within the QAD Grid worker framework.
Finally, the analysis worker is a proxy worker that calls methods from an
external library to perform the analysis.
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Figure 6.2.4: Screenshot of the proteomics.net GUI for MD simulation analysis:
Top: Import of datasets. Bottom: Available datasets and links to the results.
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Figure 6.2.5: Screenshot of the proteomics.net GUI for MD simulation analysis:
Top: transformation of data, bottom: visualization of results.
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Chapter 7

Related Work

In this chapter we will give a brief overview of other projects related to this
thesis. Since related algorithms and concepts have been already discussed
in the relevant chapters we will focus here on whole pipelines or frameworks
for the analysis of protein MS TOF data. These pipelines can be roughly
categorized into three groups:

1. Collection of stand alone tools for data processing (e.g. peak picking,
identification or quantitation)

2. Integrated software platforms that offer data processing tools and data
management functionality, usually providing a graphical user interface
that allows for the assembly and execution of workflows. Since these
platforms run on a single machine they are not well suited for the analysis
of very large datasets.

3. Software platforms that offer data processing, data management and
support distributed computation of their algorithms. Opposed to the
previous category these frameworks are also well suited to handle very
large datasets.

Interestingly, the shift from development of stand-alone tools to integrated
platforms has only become widespread since increase in data volume became
an issue. Still, most of these systems address only a part of the pipeline
described in this thesis. High-throughput laboratories such as the Seattle
Proteome Center (Trans-Proteomics Pipeline1, TPP (Kiebel et al., 2006)), the
Institute of Molecular Systems Biology at ETH Zürich (Superhirn, (Mueller
et al., 2007)) or the Institute of Biomedical Engineering at Imperial College
London (ProteomeGRID, (Dowsey et al., 2004)) have developed significant
platforms with similar functionality. However, none of them provides the
full range of the discovery process lifecycle including distributed computing
support as our platform does.

Other software packages such as mzMine2 by Turku Centre for Biotechnol-
ogy (Katajamaa et al., 2006), OpenMS3 by Freie Universität Berlin (Kohlbacher
et al., 2007) or XCMS4 by Scripps Center for Mass Spectrometry (Smith et al.,
2006) are not complete platforms (yet) since there is no graphical user inter-
face, workflow or data management functionality.

1http://tools.proteomecenter.org/wiki/index.php?title=Software:TPP
2http://mzmine.sourceforge.net/
3http://www.openms.de
4http://metlin.scripps.edu/download/
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There are also platforms such as GenePattern5 (Reich et al., 2006) that
extend other systems (PEPPeR (Jaffe et al., 2006)) by data management func-
tionality and further analysis algorithms.

Besides the academic efforts there are of course also commercial solutions
either by instrument vendors (e.g. ClinProt Tools by Bruker Daltronics, Pro-
tein Expression Systems by Waters, ProteinChip by BioRad, ProteinPilot by
Applied Biosystems) or other proteomics companies (e.g. CellCarta by caprion
proteomics, ProteomeIQ by proteome systems, or Progenesis by Nonlinear
Dynamics). Although a comprehensive comparison of these products is not
possible, in conclusion it can be said that all of them share the common goal
of biomarker detection from MS data.

5http://www.broad.mit.edu/cancer/software/genepattern/desc/proteomics.html



Chapter 8

Conclusion and Future
Directions

8.1 Conclusion

In this thesis we have described a new pipeline for preprocessing, processing
and analysis of Time-Of-Flight Mass Spectrometry proteomics data. We have
shown the application of this web-based framework in the area of clinical
diagnostics to detect molecular patterns (fingerprints) of diseases and used
these to classify unknown datasets (spectra). Newly developed algorithms
allow the detection of very small signals that presumably represent very low
abundant molecules, such as hormones. Fingerprints including these very
small signals can be much more sensitive compared to standard approaches
that do not detect them.

The datasets are typically very large (several Gigabytes per patient). To
enable handling of these large datasets we have also introduced a new dis-
tributed computing platform that allows creation of heterogeneous ad-hoc
Grids. To demonstrate the universality of this framework we have shown in
a case study the integration of a Playstation 3 to perform data preprocessing
tasks.

In the current stage of this work it is possible to reliably detect multi-
component fingerprints for a given disease. The components of a fingerprint
represent particular molecular species (peptides or proteins) contained in some
body fluid (e.g. blood serum) that significantly differentiate in concentration
between two patient groups, such as healthy vs. diseased. These molecules -
once identified - can be used as so called biomarkers. A biomarker is defined
as a molecular, biological or physical characteristic (e.g. DNA sequences,
antibodies or - as in our case - proteins) that indicates a specific physiologic
state which can be directly linked to the clinical manifestations and outcome
of a particular disease.

After identification of a disease specific set of biomarkers subsequent stud-
ies can be designed to eventually find drugs that can target these biomarkers
and hopefully open up new steps for actually curing this disease.

However, until this vision becomes reality there are some open problems
that need further investigation to allow for a deeper understanding and thus re-
liable and comprehensible mass-spectrometry based clinical diagnostics. These
open problems include:
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1. Mass spectrometry is a largely qualitative technique. That is, the actual
serum concentration of discriminating molecules is not known and can
only be stated as relative differences. However, it could be (in principle)
inferred by comparisons to known concentrations. This is further com-
plicated by the fact that relationship between peak area (or height) and
molecule abundance is not linear and could be very complex.

2. Analysis of current literature has shown that discriminating peaks for a
particular disease identified by different investigators are mostly differ-
ent.

3. Due to the lack of standards in pre-analysis preparation of the biologi-
cal samples, data acquired by different laboratories even from the same
sample is often quite different. This problem in reproducibility of results
extremely hinders validation.

4. Since we are dealing with biological samples protease activity can have
a large impact on the results. Thus, it is often not clear whether dis-
criminatory peaks originate by the action of proteases after the blood is
drawn.

Another important issue for the detection of reliable biomarkers is the bio-
logical material used to perform the studies. In this thesis we mainly used
material from voluntary blood donors or from patients from one hospital that
suffered from a particular cancer. These patient groups are usually of small to
medium size since - fortunately - there are not that many people in a hospital
that suffer from the same type of disease under investigation.

The problem of a small patient group is statistical significance of the results
obtained by analyzing this group. Therefore, for a study to deliver reliable re-
sults the number of analyzed patients needs to be sufficiently large. Biobanks
are (usually very large) collections of biological material such as cells, tissue
or body fluids (e.g. blood or urine) including meta-data of the donors, for ex-
ample age, sex, blood parameters or informations about existing diseases. As
explained in more detail below, these biobanks can provide enough biological
material allowing to study even rare diseases.

8.2 From Biobanks to Biomarkers

Some European countries consider basically any repository of biological ma-
terial as a biobank, whereas in other countries biobanks are seen as a research
infrastructure (EU, 2003). There is not a typical biobank; they differ based
on the type of samples that are stored and the scientific domain in which they
are collected (Cambon-Thomsen, 2004). There are at least three major types
of biobanks:

� Population based biobanks aim to study the development of common,
complex diseases over time. This type seems to dominate the public per-
ception of biobanks and their associated scientific, ethical, legal and so-
cial issues (Lipworth, 2005; Joly and Knoppers, 2006). Examples for this
type of biobanks are the first initiative, the Icelandic BioGenetic Project
(Hodgson, 1998; Palsson and Rabinow, 1999) and follow-up projects e.g.
in the UK (1998), Norway (1999), Japan (2003) or the USA (2004)
(Maschke, 2005). Beyond these large projects, there have also been many
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smaller biobanks as well as existing epidemiological studies rebranding
themselves as “biobanks” (Gibbons et al., 2007).

� Corporate-held biobanks involve the collection of tissue samples and clin-
ical data by pharmaceutical companies and clinical research organi-
zations from clinical trial subjects. Opposed to the population-based
biobanks, the corporate biobanks are not as well documented or scruti-
nized by ethicists, lawyers or social scientists (Corrigan and Williams-
Jones, 2006). This can be partly explained by the fact that details about
these biobanks are commercially sensitive and therefore mostly kept se-
cret. There is evidence that pharmaceutical companies such as Novartis,
Roche and Pfizer have been routinely collecting biological samples from
clinical trials and have created large repositories of tissues with assigned
patient information (Lewis, 2004).

� Disease specific biobanks which are established by disease advocacy or-
ganizations with the aim of producing therapies for people with rare
genetic conditions. One of the earliest examples is PXE International
(Terry et al., 2007) collecting tissues and patient information of peo-
ple affected by the rare genetic disorder of pseudoxanthona elasticum
(Zarbock et al., 2007).

Biobanks as a basis for better drug development

Biobanks have been part of what has been called the biotechnology revolution
(Nightingale and Martin, 2004) - a view that was shared by governments,
academics and industry. In short, it was believed that significant benefit would
come from genomics and biotechnology (by using these biobanks) for drug
development, healthcare and the economy in general. This was one of the
main reasons for governmental support in the creation of large population-
based biobanks.

Thus, the central expectation of biobank research is that it will enhance
diagnosis, prevention and treatment of diseases, leading to an improvement in
the health of the general population and in particular subgroups. This hope
is based on the main assumption that analysis of biobanks will lead to better
understanding of diseases which is usually coupled to the identification of
biomarkers for a particular disease. There is no doubt that the establishment
of cooperative human tissue banks or research networks can greatly facilitate
the large-scale validation of biomarkers.

8.3 From Biomarkers to Bioprints: Enabling Infor-
mation-Based Medicine

The concept of personalized medicine embodies the belief that a drug is not
simply effective or ineffective. Rather, it is likely to be more effective in
some people and less effective or even harmful in others. Thus, personalized
medicine can improve the potential for successful, sophisticated evaluation of
the balance of risk and benefit. The promise of genomics and proteomics is
largely built on the theory that these technologies will enable us to judge these
risk and benefit consideration using much smaller, focused groups of patients
than before. As a consequence, the concept of single-source biomarkers (e.g.
just a genomic SNP or just proteomics peptide modification) used to make
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these judgements, should be replaced by multi-source (or multi-dimensional)
biomarkers that combine informations from different sources in a reasonable
way.

What we call a bioprint is the multi-dimensional extension of the biomarker
concept. Using many different data sources (-omics) and different analyzing
techniques, bioprints can be created that not only rely on a single change but
mathematically and biologically meaningful combine many different relevant
elements. These potentially complex models require not only sophisticated
data-mining algorithms for the analysis but also large amounts of computing
power.

The ultimate goal should be to find disease specific bioprints using data
from all available kinds of sources and examine the relationships between clin-
ical symptoms and genetic, biochemical, immunological and cellular biomark-
ers. This and perhaps only this would facilitate an area of personalized
medicine: “Although they are certainly related, the only way to really achieve
personalized medicine is to be able to create an information base that lets you
say what is it about an individual that I need to know in order to define what
the right treatment is.” (Carol Kovac, General Manager Healthcare and Life
Sciences at IBM interviewed by (McDonald, 2006).)

The Next Steps

We feel that the there are four main steps that have to be taken in order to
come closer to the aim of providing such an information base:

1. Evaluate available data: Collect, classify and analyze publicly avail-
able biobank data and data available in “unofficial biobanks” such as
hospitals or institutes.

2. Consolidate compatible data on a disease level: Based on the
analysis in the previous step, data clusters are created that are related to
the focused cancer types. Subsequently, sub-clusters are extracted that
contain compatible data, that is, data that can reasonably be compared
with respect to biology.

3. Data Mining: Develop algorithms to analyze and mine this data.

4. Web-based community access: Build and provide an “out-of-the-
box” web-based platform for researchers across disciplines and medical
staff to access this data and perform individual analyses.

The ultimate goal: Value for Healthcare

By developing new ways to identify major diseases at the molecular level and
provide appropriate (personalized) diagnosis and therapeutics. This means
shorter duration of therapy, increased healing chances and therefore increases
life quality.



Appendix A

Implementation Details

The project was implemented using the following programming languages /
tools:

Worker: Matlab, Java and C++ (32.808 lines in total)

Database: Microsoft SQl Server 2005 (64 tables)

Server: .NET 2.0, C# and Visual Basic (26.735 lines in total)

Webserver: Microsoft Internet Information Server

173



174 APPENDIX A. IMPLEMENTATION DETAILS



Appendix B

Curriculum Vitae

For data privacy reasons, this online version does not contain the CV.
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