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A B S T R A C T

A tracer bead attached to the cytoskeleton of a living cell shows two distinct types
of anomalously diffusive behavior on different time scales: For times shorter that
a few seconds, the motion is subdiffusive, with a diffusion exponent smaller than
one, while on longer time scales, superdiffusive motion, with a diffusion exponent
bigger than one, is prevalent. We introduce a stochastic model aimed at describ-
ing this transition, as well as the characteristic features of both the subdiffusive
and superdiffusive motion. Our model is based on the fractional Langevin equa-
tion, which accurately reproduces the subdiffusive dynamics in a viscoelastic equi-
librium environment. However, living cells are fundamentally out-of-equilibrium
systems, and we accommodate this fact by including the motion of the cytoskele-
ton due to molecular motor activity as a nonequilibrium random process. In this
way, our model accurately reproduces the transition from sub- to superdiffusion
using a single stochastic equation of motion. It is also able to take into account
the experimentally observed non-Gaussian behavior of the superdiffusive dynam-
ics. As a direct consequence of our model, we obtain a generalized nonequilibrium
Stokes-Einstein relation in terms of an effective temperature. This relation provides
a connection between the diffusive dynamics and the mechanical response of the
system, which is generally absent in nonequilibrium systems. Moreover, our model
gives rise to an effective nonequilibrium noise force, which is nonstationary and
possesses a time-dependent spectral density. This nonequilibrium noise can serve
to classify the nonequilibrium dynamics in living cells.
The superdiffusive dynamics employed in our model, has the important properties
of being asymptotically time-scale invariant. We present a general framework for
treating such scale-invariant superdiffusive processes, based on a nonstationary
scaling correlation function. Within this framework we develop generalizations for
the Green-Kubo formula and for the Wiener-Khinchine theorem, both of which are,
in their original formulation, only applicable to stationary systems. Our scaling
Green-Kubo relation enables us to determine the anomalous diffusion coefficient
for superdiffusive processes. It exposes an intricate dependence of this diffusion co-
efficient on the initial state of the system, as well as an intimate connection between
stationarity and ergodicity. The corresponding scaling Wiener-Khinchine relation,
on the other hand, allows us to determine the spectral density from the asymp-
totic scaling properties of the correlation function and relates the scale-invariant
processes to 1/f-noise.
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Z U S A M M E N FA S S U N G

Eine Tracerpartikel, die an das Zytoskelett einer lebenden Zelle gebunden ist,
zeigt, abhängig von der betrachteten Zeitskala, zwei unterschiedliche Formen von
anomaler Diffusion: Für Beobachtungszeiten unterhalb von ein paar Sekunden ist
die Bewegung des Teilchens subdiffusiv; hier ist der Diffusionsexponent kleiner
als eins. Beobachtet man das Teilchen länger, stellt sich Superdiffusion mit einem
Diffusionsexponenten größer als eins ein. Wir führen ein stochastisches Modell ein,
das darauf abzielt, diesen Übergang und gleichsam das charakteristische Verhal-
ten im sub- wie im superdiffusiven Bereich zu beschreiben. Unser Modell basiert
auf der fraktionalen Langevin-Gleichung, die eine gute Beschreibung des subdiffu-
siven Verhaltens eines viskoelastischen Systems im Gleichgewicht liefert. Allerd-
ings sind lebende Zellen ihrer Natur nach nicht im Gleichgewicht. Wir tragen
dem Rechnung, indem wir die Bewegung des Zytoskeletts aufgrund der Aktiv-
ität molekularer Motoren als Zufallsprozess in unserem Modell berücksichtigen.
Auf diese Weise ist unser Modell in der Lage, den Übergang zwischen Sub- und
Superdiffusion mittels einer einzigen, stochastischen Bewegungsgleichung für den
Tracer zu beschreiben. Eine direkte Konsequenz dieser Beschreibung ist eine Ver-
allgemeinerung der Stokes-Einstein-Relation auf den Nichtgleichgewichtsfall mit-
tels einer effektiven Temperatur. Diese stellt eine Verbindung zwischen dem dif-
fusiven Verhalten und der mechanischen Antwort des Systems her, die für Sys-
teme im Nichtgleichgewicht im Allgemeinen nicht besteht. Darüber hinaus ergibt
sich aus unserem Modell ein effektives Nichtgleichgewichtsrauschen, das nicht-
stationär ist und eine zeitabhängige spektrale Dichte besitzt. Die Eigenschaften
dieses Rauschens können zur Klassifikation der Nichtgleichgewichtsdynamik in
lebenden Zellen dienen.
Die superdiffusive Dynamik, die in unserem Modell zum Einsatz kommt, besitzt
zeitliche Skaleninvarianz. Für derartige skaleninvariante Prozesse erschließen wir
einen allgemeinen Satz von Eigenschaften und Relationen, der auf der Definition
einer nichtstationären skaleninvarianten Korrelationsfunktion aufbaut. Unter an-
derem erhalten wir Verallgemeinerungen der Green-Kubo-Formel und des Wiener-
Khinchine-Theorems; beide sind in ihrer ursprünglichen Formulierung nur auf
stationäre Prozesse anwendbar. Unsere skaleninvariante Green-Kubo-Relation er-
möglicht es uns, den anormalen Diffusionskoeffizienten für superdiffusive Prozesse
zu berechnen. Sie enthüllt außerdem eine komplizierte Abhängigkeit ebendieses
Diffusionskoeffizienten vom Anfangszustand des Systems, sowie eine enge
Verbindung zwischen Stationarität und Ergodizität. Die Verallgemeinerung des
Wiener-Khinchine-Theorems dagegen erlaubt uns, die spektrale Dichte von skalen-
invarianten Prozessen aus dem asymptotischen Verhalten ihrer Korrelationsfunk-
tion zu bestimmen und bringt diese Prozesse dadurch mit 1/f-Rauschen in
Verbindung.
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1
N O N E Q U I L I B R I U M D Y N A M I C S I N L I V I N G C E L L S

In the eyes of a physicist, a living biological cell as a whole is almost hopelessly
complex. A wealth of different constituents interact with each other through

chemical and physical processes that take place on time and length scales spanning
orders of magnitude - from the level of molecular dynamics at femtoseconds and
nanometers up to hours and millimeters on the level of the entire cell. This makes
the description of a living cell from first principles an impossible task. In order to
obtain a meaningful physical model of the processes inside a cell, we need to focus
on a specific set of time and length scales. Any dynamics that takes place outside
this window of scales is only taken into account in an approximate manner or is
even ignored outright. This is well justified if the respective processes happen on
very different scales: Neither will the binding or unbinding of a single base pair of
DNA have any measurable effect on the motion of the cell as a whole, nor will the
center-of-mass motion of the cell change the DNA binding dynamics.

The main focus of this work is motion of and within an eukaryotic cell’s cy-
toskeleton, more precisely the equilibrium and nonequilibrium dynamics of the
network formed by the actin fibers. Specifically, we consider the results of so-called
particle tracking microrheology experiments, where a tracer bead is bound to the
actin network and the motion of the bead is then tracked. Here, the typical length
scales on which the dynamics of the tracer are observed, range from one nanometer
to several hundred nanometers [Burs 05, Trep 08, Gall 09]; time scales range from
milliseconds to hundreds of seconds. Within these length scales fall the dimensions
of the actin filaments (around 6 nm diameter [Albe 02]) and other constituents
of the cytoskeleton and cytoplasm, as well as the typical step sizes of molecular
motors (several tens of nanometers [Vale 00, Yild 03]). The dynamics of these ob-
jects thus need to be taken into account when studying the motion of the bead.
At this point, we again encounter the problem of complexity. The cytoskeleton is
composed of filaments of different sizes, which are cross-linked by and constantly
subject to binding and unbinding of a multitude of proteins [Albe 02]. In addition
to this, the filaments themselves and some of the proteins cause constant motion
and rearrangement in the network [Albe 02]. All of these processes are highly non-
trivial individually and their interplay in influencing the observable motion of the
tracer bead is all but impossible to describe at this level of detail. However, the
very same complexity, that impedes the microscopic description of the problem,
also allows for a way out. Because the motion of the bead is caused by a multitude
of interacting complex dynamical processes, it is essentially random on the exper-
imentally observable level. We thus treat this motion as a random process, with
stochastic forces arising both from the thermal motion of the cytoskeleton and its
active motion due to the action of molecular motors.
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2 nonequilibrium dynamics in living cells

The statistical description of complex physical systems has a long and extremely
successful history. It is at the very heart of statistical mechanics, where the innumer-
able microscopic degrees of freedom are condensed into a handful of macroscopic
quantities. Stochastic models have been successfully applied to describe a wide
range of systems in physics and chemistry [Kamp 92], as well as other fields, such
as finance [Hull 00], biology and medicine [Iosi 12]. The paradigmatic example
for a stochastic process in physics is of course Brownian motion [Brow 28], which
was described within a stochastic framework by Einstein [Eins 05], Smoluchowski
[Smol 06] and Langevin [Lang 08]. Brownian motion describes the random fluctu-
ations of the positions of particles suspended in a fluid due to collisions with the
constituents of the fluid. The complexity in this case arises from the fluid itself,
which at the microscopic level is an interacting many-particle system. Describing
the motion of all the atoms and molecules of the fluid and their interactions among
each other and the observed particles is near impossible, however, their combined
effect on the particles’ motion understood as a random process is captivatingly
simple: In ideal Brownian motion, the motion of the observed particles is entirely
uncorrelated, their velocity at each instant in time is random and independent of
the velocity at earlier times. In this sense, Brownian motion is the "most random"
stochastic process one can think of. This leads to what is called normal diffusion:
The mean-square displacement, i.e. the statistical variance in the particles’ posi-
tions, increases linearly with time, 〈∆x2(t)〉 = 2D1t. All the interactions within the
fluid and between the fluid and the particle are encoded in the single macroscopi-
cally observable quantity of the diffusion coefficient D1. Of course, if we want to
resolve the motion of the probe particle down to the time and length scales where
individual collision events play a role, this simplified stochastic picture breaks
down and we actually have to consider the full microscopic dynamics. But as long
as the experimentally relevant scales are sufficiently distinct from those of the mi-
croscopic processes, the stochastic description offers an excellent approximation.

As paradigmatic as Brownian motion and normal diffusion may be for stochas-
tic processes in physics, even more interesting is the phenomenon referred to as
anomalous diffusion. A diffusive process is called anomalous, if the mean-square
displacement behaves as 〈∆x2(t)〉 = 2Dνtν with ν 6= 1. This definition immediately
implies that there are two sub-classes of anomalous diffusion [Klaf 87, Klaf 05]:
Subdiffusion occurs for 0 < ν < 1, so that the variance of the particles’ posi-
tions grows slower than linearly with time. For ν > 1, on the other hand, the
mean-square displacement grows faster than linearly in time and we speak of su-
perdiffusion. Anomalous diffusion generally occurs when there is an additional
long-ranged structure to the randomness of the stochastic process. Whereas nor-
mal diffusion corresponds to uncorrelated motion, subdiffusion may be caused by
either long-ranged anticorrelations, meaning that the particle is more likely to be
moving in the opposite direction at a later time, or stalling events, where the parti-
cle does not move at all for extended periods of time. An example for an anticorre-
lated subdiffusive process is fractional Brownian motion [Mand 68]; a subdiffusive
process with stalling events is the continuous time random walk [Sche 73]. By con-
trast, superdiffusion may be due to positive long-range correlations, which cause
the particle to be more likely to continue moving in the same direction, or due
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to hopping events, where the particle suddenly jumps over a large distance. Frac-
tional Brownian motion [Mand 68] or the Lévy walk [Shle 87] are possible exam-
ples for long-range correlated motion; the Lévy flight [Shle 86] describes hopping
events. Both sub- and superdiffusion and the various underlying stochastic models
have found numerous applications in physics and other fields of science. Subdif-
fusive dynamics occur in mathematics in the context of nonlinear maps [Bark 03],
in currency exchange rates [Stal 03], in single proteins [Kou 04], biological cells
[Toli 04, Gold 06], colloidal glasses [Indr 94, Week 02] and even for the propagation
of cosmic rays in a background magnetic field [Shal 05]. Nonlinear maps [Zasl 08],
financial data [Cohe 06] and biological cells [Burs 05, Trep 08, Gall 09, Gal 10]
can also exhibit superdiffusive behavior, as can turbulent [Buda 06] and driven
dissipative systems [Liu 08]. Superdiffusion can also be found in optical lattices
[Sagi 12, Dech 12, Kess 12] and even in the foraging patterns of animals [Visw 08].

Note that in the above we quoted biological cells as an example for both sub-
and superdiffusive dynamics. And indeed, sub- and superdiffusion not only both
occur in living cells, but even within the same cell on different time scales. This
behavior has been extensively confirmed in experiments [Burs 05, Trep 08, Gall 09,
Brun 09]. While, when observed on short times (microseconds up to a few sec-
onds), tracer bead bound to the cytoskeleton exhibits very slow subdiffusion with
an exponent of ν ∼ 0.2, this behavior transitions into fast superdiffusion with an
exponent of ν ∼ 1.6 at longer times up to several tens or hundreds of seconds. This
transition already hints at the possibility that there may be multiple different phys-
ical processes responsible for the motion of the tracer bead. Understanding these
processes, and providing a simple stochastic model for both sub- and superdiffu-
sive behavior as well as the transition between them, is one of the main goals of
the present work.

In the remainder of this Chapter we give a short overview of the experimental
techniques used in particle tracking microrheology and the observables that can be
thus obtained. This is followed by a short consideration of time versus ensemble av-
erages and the notion of ergodicity as it pertains to experimental results. Further,
we discuss what conclusions we can draw about the subdiffusive dynamics and
possible stochastic models and how they are related to the equilibrium mechan-
ical properties of the cell. The superdiffusive dynamics, on the other hand, are
related to the active nonequilibrium forces originating from the action of molec-
ular motors. How the motor activity translates into stochastic motion and what
experiments can tell us about the properties of the latter concludes this chapter. In
Chapter 2, we introduce and examine our main model for the description of sub-
and superdiffusive dynamics in living cells, an extension of the equilibrium frac-
tional Langevin equation to nonequilibrium dynamics via coupling to a moving
medium. We find that sub- and superdiffusion correspond to the equilibrium and
nonequilibrium properties of the system, respectively, and argue different stochas-
tic models for the nonequilibrium dynamics. In Chapter 3, we take a step back
from the actual physical system at hand, and discuss superdiffusive processes in
a more general context. For the class of superdiffusive processes we consider, we
develop a mathematical machinery, which is able to easily extract certain physical
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quantities like the mean-square displacement, time averages and spectral densi-
ties from the processes’ common scaling behavior. This machinery can be applied
in a straightforward manner to superdiffusion in cells, but is also applicable to
a wider range of superdiffusive systems. In particular it exposes an intricate de-
pendence of the long-time dynamics on the initial preparation of the system, an
effect which is absent for normal diffusive systems and which also has implica-
tions for ergodicity. Two central results of this formalism are generalizations of the
Green-Kubo formula and the Wiener-Khinchine theorem, both important concepts
in non-equilibrium statistical mechanics. Whereas their original formulations are
limited to stationary processes, our results generalize them to a nonstationary con-
text. The application of the model introduced in Chapter 2 to cellular dynamics is
carried out in Chapter 4. There we discuss in more detail the transition from sub- to
superdiffusion and introduce an effective temperature that describes the deviation
from the equilibrium system in terms of the transition time. This effective tempera-
ture allows us to relate linear response and the nonequilibrium fluctuations in the
system via a generalized nonequilibrium Stokes-Einstein relation. We compare the
dynamics described by our stochastic model to experimental results and remark
on which physical observables are suited to capture the essential properties of the
system. Chapters 2 and 4 deal with the extension of equilibrium results to nonequi-
librium systems – in our case living cells. Chapter 3, on the other hand, generalizes
from stationary to nonstationary processes. While equilibrium necessarily implies
stationarity, we show that nonequilibrium may also imply nonstationarity under
certain conditions, thus providing a direct link between both concepts.

At this point, we shortly remark on the structure of this thesis. Many of the
results require lengthy calculations, or are themselves of a rather technical nature.
We thus decided to precede each Chapter by a thorough discussion of the main
motivations and results, which also gives an overview over the chapter’s contents.
These discussions make no claim to being exhaustive in covering all the results
of the main chapter, but aim to provide the reader with a good idea of what is
to follow. In addition, each Section is preceded by a short summary of the main
results and physical ideas contained therein. While this structure leads to some
repetition, it is our sincere hope that it enables the reader to quickly grasp the
physics and then, if desired, to descend into the mathematical details with a firm
idea of what is going on.

1.1 particle tracking microrheology

Since our theoretical considerations in the later Chapters focus on providing a
model reproducing the results of particle tracking and microrheology experiments,
we first familiarize ourselves with the experimental procedure and its results as
pertaining to equilibrium systems. In Section 1.1.1 we discuss microrheological ex-
periments in general and the particle tracking microrheology experiments whose
results we use to justify our model in particular. We pay special attention to the
distinction between the active and passive measurement scheme. In Section 1.1.2,
we state some results for the equilibrium system, in particular, that the fluctuation-
dissipation theorem, which connects the results of active and passive measure-



1.1 particle tracking microrheology 5

ments, is verified experimentally. Finally, in Section 1.1.3, we remark on how ex-
perimental data is analyzed and in particular on the concept of time and ensemble
averages, which are generally taken to be interchangeable. We argue that this is
not always the case and one needs to take care when comparing experimentally
obtained time averages to the ensemble averages predicted by theory.

1.1.1 Experimental procedure and advantages

Rheology in general deals with the flow and deformation of matter. In a typical
rheological experiment, one would apply an external stress to a sample and mon-
itor how the sample reacts to it by either deforming elastically, flowing viscously
or doing a combination of both [Find 13]. When it comes to cells, this approach
can be used to probe the mechanical properties of the cell as a whole or of the
cell’s outer layer, the cell membrane. Even so, since cells are very small and very
soft, delicate techniques able to measure forces in the pico-Newton and displace-
ments in the nanometer range are required [Verd 09, Koll 11]. Such techniques in-
clude atomic force microscopy [Vian 99], magnetic [Baus 98] and optical [Ashk 97]
tweezers, pipette suction [Evan 95] and micro-plate rheometry [Thou 97]. However,
while these methods provide an increasingly consistent picture of the membrane
and overall mechanical properties of the cell [Koll 11], they are not suited to probe
specific regions in the interior of the cell in a non-intrusive manner [Weih 06].

This is where particle tracking microrheology [Maso 97, Wirt 09] comes into
play. In this approach, the motion of tracer particles embedded within or bound
to specific regions in the cell is observed via optical microscopy [Tsen 02, Croc 07,
Lee 07] or laser tracking [Yama 00, Mass 07, Mizu 08]. These tracer particles may
be endogenous to the cell [Yama 00, Toli 04] or artificial [Baus 99, Fene 01, Casp 02].
Compared to directly probing the cell mechanically, this method has several advan-
tages [Weih 06]: Even when using artificial tracers, the measurement procedure is
less disruptive to the cell as no mechanical fixtures are needed. This allows mea-
surements to be performed on live cells and monitor active biological processes in
the cell [Beil 03, Gira 04]. Furthermore, since the tracer particles may be inside the
cell and bound to specific regions, the properties of these regions may be probed
directly. For a statistical point of view, many cells and multiple tracer particles
per cell may be analyzed at the same time [Burs 05, Gal 10], yielding better statis-
tics than individually probing one cell at a time. Downsides of particle tracking
microrheology are that, for endogenous tracers, there is generally some variation
in their size and surface chemistry [Weih 06]. For artificial tracers on the other
hand, one may not have complete control over the internalization of the tracers by
the cell and there may be additional effects stemming from the binding dynamics
themselves [Weih 06, Metz 10]. Due to its numerous advantages, particle tracking
microrheology has been successfully employed in studying the properties of artifi-
cial equilibrium [Maso 97, Xu 98] and nonequilibrium [Mizu 08, Levi 09, Bert 12a,
Stuh 12] systems designed to emulate cell behavior in a controlled way as well
living cells themselves [Burs 05, Mass 07, Wilh 08, Gall 09, Bert 12b].
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Generally, there are two distinct measurement schemes in particle tracking mi-
crorheology [Brau 07, Mizu 08, Lee 10]. In the passive scheme, the tracer parti-
cles are allowed to diffuse freely and their diffusive motion is observed. This
yields information about both thermal and nonthermal fluctuations in the cell
[Casp 02, Webe 12]. In the active scheme, an external force is applied to the tracer
particles, e.g. via optical or magnetic tweezers, and the response of the tracers
to the applied force is measured. This type of measurement directly probes the
mechanical properties of the cell [Baus 99, Fabr 01, Chen 03]. In an equilibrium
system, the results of both measurements are related and can be inferred from one
another [Maso 97], see Section 1.1.2. As living cells are by definition not in equilib-
rium, both measurements are necessary to characterize their rheological properties
[Gall 09, Robe 10, Bohe 13], see Section 1.2.2. In the experiments on which our the-
oretical model focuses, artificial tracer beads, a few micrometers in diameter, are
coated in a peptide to specifically bind to the actin network through the cell mem-
brane [Burs 05, Leno 07, Gall 09]. The dynamics of these beads are then recorded
via optical microscopy, the external force on the beads is exerted either through a
magnetic field [Burs 05, Leno 07] or via optical tweezers [Gall 09]. Figure 1.1 shows
a typical time trace of one such bead obtained in the passive measurement scheme
and a scanning electron microscope picture of beads on the cell membrane.

1.1.2 Experimental results for equilibrium systems

As remarked before, living biological cells are a fundamentally nonequilibrium
system. Nevertheless, understanding their equilibrium behavior, i.e. in the absence
of biological activity, is vital to, on the one hand, characterize their mechanical
properties, and on the other hand understand precisely which observations are
attributable to the biological activity. Several experiments also substitute artifi-
cial systems designed to emulate specific properties of cells [Ambl 96, Maso 97,
Szym 09, Lee 10]. This allows to test specific hypotheses without having to deal
with the complexity and inhomogeneity of actual cells. A common finding of ex-
periments both on these artificial systems and on cells [Weis 04, Toli 04, Gold 06,
Ball 06, Webe 10] is that, in the absence of active transport, the motion is subdif-
fusive, 〈∆x2(t)〉 = 2Dνt

ν with ν < 1. Typical exponents range from ν ∼ 0.2 for
the dynamics of the cytoskeleton [Ball 06, Trep 08, Gall 09] to ν ∼ 0.8 for small
endogenous tracers in the interior of the cell [Weis 04, Toli 04, Gold 06]. The origin
of this subdiffusive behavior is a phenomenon called crowding [Elli 03, Weis 04,
Dix 08, Soko 12, Hofl 13]. In the cytoplasm inside the cell, the tracer cannot move
freely due to the high volume fraction of space – up to 40 % – taken up by pro-
teins and other macromolecules, but is confined to small volumes for extended
periods of time. However, this confinement is not stationary, as the constituents
of the cytoplasm themselves are constantly in motion, changing the geometry of
the confinement and opening up pathways for the tracer to escape. Thus the mo-
tion of the tracer is somewhere between confined and freely diffusive, leading to
a diffusion exponent < 1. On timescales beyond several seconds, the excursions
between "traps" dominate the dynamics and diffusion returns to normal [Weis 13].
Several mathematical models for subdiffusion in crowded environments have been
proposed [Soko 12, Hofl 13]. The three most widely discussed models are the con-
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Figure 1.1: Typical trajectory of a tracer bead in the passive measurement scheme, the scale
bar: 10 nm. Inset: Scanning electron microscope picture of two beads bound on a human
airway smooth muscle cell. Image taken from Ref. [Burs 05].
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tinuous time random walk, obstructed diffusion and fractional Brownian motion.
In the continuous time random walk [Sche 73] the dynamics is described as an
ordinary random walk, however, the particle has to wait for a random time tw

before taking the next step. If the distribution of the waiting times is such that
the average waiting time is infinite, then longer and longer waiting times will
occur and the mean-square displacement of the particle will increase sublinearly
with time. Obstructed diffusion [Hofl 06], on the other hand, places the particle
in a stationary array of obstacles. If the density of obstacles is precisely at a cer-
tain critical value, the so-called percolation threshold, then the particle is trapped
in voids between obstacles most of the time, leading again to subdiffusion. In
the third model, fractional Brownian motion [Mand 68], the cytoplasm is consid-
ered as a semi-viscous, semi-elastic medium. This interplay between viscous flow
and elastic back-action leads to a long time memory, which induces the subdiffu-
sive behavior and is discussed in more detail in Section 2.1.2. Each of these three
models captures certain elements of the crowded cytoplasm: The continuous time
random walk straightforwardly incorporates the idea of extended trapping times,
obstructed diffusion captures the geometric picture of the particle being trapped
and fractional Brownian motion takes into account the dynamic nature of the cyto-
plasm by allowing for elastic and viscous response. Which model in the end offers
the most accurate description of subdiffusion in the cytoplasm is still debated
[Soko 12, Hofl 13, Weis 13]. However, there is rather good evidence that, at least
in artificial crowded systems, fractional Brownian motion may be the model of
choice [Szym 09, Weis 13]. Some experimental and theoretical considerations also
point to fractional Brownian motion for diffusion in cells on time scales of several
milliseconds up to seconds [Magd 09, Webe 10], while for shorter time scales, the
continuous time random walk has been suggested as a model for the dynamics
[Jeon 11].

The second main result for the equilibrium dynamics is the mechanical response
of the cell to external stress. In the context of microrheological measurements, ap-
plying a force to the tracer beads causes a time-dependent displacement of the
beads. As with the diffusive motion, the time-dependence of the displacement is
anomalous 〈∆x(t)〉 ∼ tν ′ [Maso 97, Xu 98, Desp 05, Ball 06, Gall 09] with an ex-
ponent ν ′ that is roughly the same as the subdiffusion exponent. This is not a
coincidence, rather it is a consequence of the equilibrium dynamics of the sys-
tem being probed. In equilibrium systems, thermal fluctuations lead to diffusion.
However, these fluctuations act on the tracer particle through the same medium,
in our case the cytoplasm and cytoskeleton, whose mechanical properties are re-
sponsible for the response to external forces. Thus diffusion and response in equi-
librium systems are related via the so-called generalized Stokes-Einstein relation
[Maso 97, Schn 97, Maso 00], which is a consequence of the fluctuation-dissipation
theorem [Nyqu 28, Call 51, Reif 09]. This relation states that the response of the par-
ticle, called creep function or creep compliance [Xu 98, Wirt 09, Koll 11], is identical
to the mean-square displacement up to a factor of temperature. A similar relation
exists for the frequency dependent elastic modulus [Maso 95, Maso 97, Maso 00].
The Stokes-Einstein relation allows to infer the outcome of an active measurement,
i.e. the response function, from a passive measurement of the mean-square dis-



1.2 living cells as a nonequilibrium stochastic system 9

placement or vice-versa and has been experimentally verified in various contexts
[Maso 95, Khol 95, Banc 99]. For fractional Brownian motion, the Stokes-Einstein
relation is a straightforward consequence from its mathematical description in
terms of the fractional Langevin equation [Lutz 01], see Section 2.3.4.

1.1.3 Ergodicity

The theoretical results derived in the following sections will generally be stated in
terms of ensemble averages. Such an ensemble average is understood to be over
a number of realizations of the involved random processes large enough that the
statistical error becomes negligible, ideally over infinitely many realizations. For
typical single particle tracking experiments as in particle tracking microrheology,
on the other hand, only a limited number of bead trajectories is available, usually
on the order of several tens [Gall 09] to hundreds [Burs 05]. Each bead’s trajectory
can be monitored over extended periods of time on the order of several hours
[Burs 05], so that for each single trajectory, ample data is available. For evaluat-
ing experimental data and in order to obtain statistically sound results, it is thus
often indispensable to obtain quantities like the mean-square displacement and
response functions from single trajectories via time averaging [Gall 09] or from a
limited number of trajectories via a combination of time and ensemble averaging
[Burs 05, Leno 07, Brun 09]. So how to compare the ensemble averages from theo-
retical considerations to time averages obtained from experiments? Most physical
systems have the property of ergodicity [Papo 02], which guarantees that the time
average of a quantity over a single realization will reproduce the ensemble aver-
age over all possible realizations, given that the averaging time is sufficiently long.
This allows us to compute the time average for a small number of experimentally
obtained trajectories and directly compare it to the ensemble average we obtained
from our theory. However, this approach has to be taken with care, as there are
some stochastic models that exhibit broken ergodicity [Bouc 92, Cugl 95], among
them the continuous time random walk [Bel 05], which has been suggested as a
model for the short-time diffusion in cells [Jeon 11]. In these models, the time av-
erages over single trajectories display significant fluctuations even in the long-time
limit and are not reproducible. We describe the intermediate-time dynamics us-
ing fractional Brownian motion, which is ergodic in principle [Deng 09], so that
the fluctuations between individual time averages indeed vanish for long times.
However, ergodicity by itself is only truly reached for infinite averaging times
and the approach to ergodicity may be slow. So, even if the model is ergodic in
principle and thus allows interchanging time and ensemble averages, we should
still be aware that time averages may show sizable fluctuations for finite times
[Deng 09, Froe 13].

1.2 living cells as a nonequilibrium stochastic system

While already the equilibrium mechanical properties of cells are rather complex,
things get even more interesting once we take into account the nonequilibrium
behavior. The motion of tracers in the cell crucially depends on the motion of
the cell itself and its constituents. In particular, a bead bound to the cytoskeleton
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will move according to the internal dynamics and structural reorganizations of the
latter. In this way, microrheological experiments can yield valuable information
about active biological processes in the cell.

1.2.1 Equilibrium and nonequilibrium dynamics

One important property that distinguishes nonequilibrium from equilibrium sys-
tems in general, is that their behaviors under active and passive measurement
are no longer directly related by the Stokes-Einstein relation [Bonn 03, Chen 07,
Mizu 07]. The fundamental reason for this is that the fluctuation-dissipation the-
orem does not hold for nonequilibrium systems, as their dynamics are not solely
due to the coupling to a thermal bath. Instead, driving the system out of equi-
librium may lead to additional fluctuations as well as changes in the mechani-
cal properties. However, these changes depend on the precise type of nonequilib-
rium behavior and are not related in an universal manner. Living cells are driven
out of equilibrium by the biological activity that distinguishes them from inan-
imate matter [Mizu 07, Kasz 07]. The mechanical activity of a cell is caused by
certain proteins, called molecular motors [Schl 06, Kolo 07], which undergo pe-
riodic chemical reactions, changing their spatial conformation. These conforma-
tional changes effectively convert chemical energy (e.g. in the form of ATP) into
mechanical motion [Vale 00, Yild 03]. That this molecular motor activity is indeed
what causes the mechanical nonequilibrium behavior has been verified experimen-
tally both in actual cells [Burs 05, Bran 08, Bran 09] and artificial model systems
[MacK 08, Levi 09, Bert 12a]. The motor proteins form connections between actin
fibers and generate relative motion between them, leading to active restructuring
of the actin network [Mizu 07, MacK 08, Levi 09, Toyo 11]. Since typically many
molecular motors act on an extended network of actin fibers [Levi 09], the impact
of the cytoskeleton’s active motion on a bead bound to it can be modeled as a
stochastic process [Kuli 08, Brun 09].

1.2.2 Experimental observations in living cells

One of the key results of microrheological experiments in living cells is the occur-
rence of superdiffusion, 〈∆x2(t)〉 = 2Dνt

ν with ν > 1 [Casp 02, Lau 03, Burs 05,
Leno 07, Burs 07, Trep 08, Gall 09]. This superdiffusive motion is indicative of cor-
related motion and active transport in the cell and typically occurs on time scales
longer than 1 s. For shorter time scales, thermal motion is dominant and the equi-
librium subdiffusion prevails. Just as with the subdiffusion exponent ν ∼ 0.2, the
superdiffusion exponent ν ∼ 1.6 is largely universal for experiments probing the
cytoskeleton for various cell types [Trep 08], suggesting that both sub- and su-
perdiffusion occur as a consequence of fundamental processes in the cytoskeleton
and not due to specifics of individual cells. This makes modeling the dynamics
as a stochastic system all the more promising, since in this approach, the micro-
scopic details of the complex physical, chemical and biological processes occurring
in the cell are subsumed in a small number of universal parameters. Figure 1.2
shows the typical mean-square displacement of a tracer bead obtained in a mi-
crorheological experiment [Gall 09]. Note the clear transition from subdiffusion to
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Figure 1.2: Left: Mean-square displacement of a tracer bead obtained in the passive mea-
surement scheme. Control cell (a), ATP-depleted cell (b) and noise background (c). Right:
Response of the tracer bead to an external force applied via optical tweezers. Images taken
from Ref. [Gall 09].

superdiffusion with a transition time on the order of a few seconds. The superdif-
fusive motion has another characteristic feature, namely the underlying dynamics
is non-Gaussian [Burs 05, Gal 10, Toyo 11, Gal 13]. Specifically, higher order mo-
ments of the particle displacement (e.g. 〈∆x4(t)〉) are larger with respect to the
second moment than expected be for Gaussian dynamics. The origin of these non-
Gaussian effects are periods in which the tracer moves almost ballistically, i.e. in a
straight line, which lead to unusually large displacements and contribute dispro-
portionally to the higher-order moments. These periods of almost ballistic motion
can be attributed to remodeling in the cytoskeleton as a result of motor activ-
ity [Burs 05, Toyo 11], see Section 1.2.1. Together with the equilibrium subdiffu-
sion, this leads to intermittent dynamics [Burs 05], where periods of ballistic mo-
tion alternate with periods during which the tracer is almost immobile. On short
timescales, where subdiffusion in prevalent, on the other hand, the dynamics is
Gaussian, as expected from equilibrium dynamics. This supports the approach of
characterizing sub- and superdiffusion as due to different stochastic processes, as
we do in Section 2.2.





2
M O V I N G V I S C O E L A S T I C M E D I U M M O D E L

Rheological experiments on tracers bound to the cytoskeleton of living cells
show a characteristic transition from subdiffusion on short time scales to su-

perdiffusion on long time scales. In this Chapter, we develop a stochastic model,
which is able to describe both this transition and the experimentally observed be-
havior in both the sub- and superdiffusive regime. The mathematical basis for our
model is the fractional Langevin equation. The equilibrium fractional Langevin
equation is an established model for anticorrelated subdiffusion and has been
shown to reproduce many of the features of the equilibrium dynamics in cells
and similar crowded environments. For this reason, we choose it as the foundation
of our nonequilibrium model. In Section 2.1, we show how the fractional Langevin
equation arises as a generalization of the Langevin equation and discuss its solu-
tion and the physical implications of the latter. The fractional Langevin equation
describes the motion of a particle in a viscoelastic equilibrium environment. Math-
ematically, a long-ranged power-law memory kernel, which causes the evolution to
depend on the entire history of the process, interpolates between viscous and elas-
tic behavior. Since the memory kernel is a power-law, it has no characteristic time
scale, and the process described by the fractional Langevin equation is asymp-
totically scale-invariant. The long-range memory induces negative, long-ranged
correlations in the velocity. These long-range anticorrelations cause the particle to
be more likely to reverse its velocity for long times and are responsible for the
subdiffusive motion. Importantly, the fractional Langevin equation describes an
equilibrium system, for which the fluctuation-dissipation theorem connects the
thermal fluctuations with the dissipative mechanical properties.

In order to extend the fractional Langevin equation to nonequilibrium dynam-
ics, we need to introduce a term which violates the fluctuation-dissipation theorem.
We do this in Section 2.2 in two different but equivalent ways, both of which extend
existing models. The first idea is based on Ref. [Brun 09]. There, an additional ex-
ternal noise term was introduced into the fractional Langevin equation. Since this
noise is not related to the memory kernel via the fluctuation-dissipation theorem,
it drives the system out of equilibrium and can indeed induce superdiffusion for
long times. The external noise in Ref. [Brun 09] was assumed as stationary and
good agreement between the model and the experimental system, which consisted
of small endogenous particles in the cell’s cytoplasm, was observed. For beads
bound to the cytoskeleton, however, a careful analysis of the model’s parameters
reveals that it cannot possibly describe the experimental results. In particular, the
external noise can no longer be stationary but its magnitude needs to increase with
time. The first, heuristic, approach is thus to replace the stationary external noise
of Ref. [Brun 09] with a nonstationary one. While this yields the desired sub- and
superdiffusion, it does not reveal anything about the origin of the strange non-
stationary behavior of the noise itself. This is where the second approach comes

13
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into play. In Ref. [Metz 07], the tracer particle is treated as bound in a moving har-
monic (i.e. elastic) trap moving at constant velocity. Here, both subdiffusion and
superdiffusion emerge as a transient behaviors. The former between diffusion and
confined motion within the trap, the latter between the confined motion and the
ballistic motion of the trap itself. This approach, however, does not capture the
viscoelastic properties of the medium and neither the subdiffusion nor superdif-
fusion exponent are related to the parameters of the model in a straightforward
manner, as both are transient effects. While this model was able to reproduce the
experimentally observed mean-square displacement rather well, it was found to
exhibit too pronounced anticorrelations for short times and too pronounced cor-
relations for long times when compared to the experimental data. We extend this
model in two ways: Firstly, we do not treat the particle as bound elastically, but
model its interaction with the medium (the cytoskeleton) with the viscoelastic frac-
tional Langevin equation. This allows us to smoothly interpolate between viscous
and elastic behavior and leads to reduced anticorrelations. Secondly, we do not
model the motion of the cytoskeleton as purely ballistic but instead as a dedicated
random process with reduced long-time correlations. With these two extensions in
mind, we term our model "moving viscoelastic medium model".

More specifically, we introduce a random "medium velocity" process vm(t). For
vm = 0, our model corresponds to the fractional Langevin equation and thus re-
produces the equilibrium subdiffusion. In contrast to a particle in a harmonic trap,
subdiffusion not only occurs transiently, but as also as the asymptotic long-time
behavior. For vm 6= 0, on the other hand, the motion of the particle will asymp-
totically follow the motion of the medium and thus be governed by the proper-
ties of the process vm. By choosing an appropriate stochastic process vm, we thus
realize superdiffusion for long times. We present three candidate processes that
accomplish this superdiffusion: Stationary and nonstationary fractional Gaussian
noise and the non-Gaussian Lévy walk. As with the subdiffusion, this superdif-
fusion does not only appear as a transient behavior but describes the long-time
asymptotics as well. The viscoelastic moving medium model thus yields a smooth
transition between short-time subdiffusion and long-time superdiffusion, cast into
a stochastic Langevin-type equation of motion. The sub- and superdiffusion expo-
nent are directly specified via the exponent 0 < α < 1 of the equilibrium fractional
Langevin respectively the characteristic exponent 0 < β < 1 of the process vm.
Since the nonequilibrium behavior is governed by a dedicated stochastic process,
we can choose the latter to best match the experimental observations. Our model
also allows identifying an effective external noise, which represents the force act-
ing on the particle due to the motion of the cytoskeleton. As noted above, this
external noise can be nonstationary in the sense that its magnitude increases with
time. However, the nonstationarity can now be explained as the result of the com-
bination of the viscoelastic medium and the motion of the latter, for details, we
refer to Section 4.3 at this point. Note that our model incorporates both the one of
Ref. [Brun 09] (for 2α+ β < 1) and the one of Ref. [Metz 07] (for α = β = 1) as
special cases.
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In Section 2.3 we explicitly solve the nonequilibrium fractional Langevin in
terms of velocity and position correlation functions and discuss the asymptotic be-
havior of the latter. We show, that asymptotically, the solution exhibits a particular
scaling behavior, which mirrors the asymptotic scale invariance of the involved
stochastic processes. The mean-square displacement can be written as a sum of
two terms, one that describes the contribution form the equilibrium subdiffusion
with diffusion exponent 1− α, and one that corresponds to the superdiffusion in-
troduced by the medium velocity process with diffusion exponent 1+β. Since the
former is the dominant contribution for short times and the latter for long times,
our model reproduces the desired transition from sub- to superdiffusion. Further, it
retains an important property of the equilibrium fractional Langevin equation: The
anomalous response function or creep function, which describes the response of
the particle to a constant external force. Since the fluctuation-dissipation theorem
holds for the equilibrium component of the mean-square displacement, the creep
function increases asymptotically with the same exponent 1− α. This relation be-
tween response and diffusion is called Stokes-Einstein relation. Finally, we discuss,
in a more general context, the consequence of the presence of a nonequilibrium
noise term in the Langevin equation. As it turns out, the resulting dynamics can
be stationary for all times only if the system is in equilibrium and the fluctuation-
dissipation theorem holds. For a nonequilibrium noise, there necessarily have to
be finite-time deviations from the stationary behavior, even if the system does
eventually become stationary for long times. This means that nonequilibrium and
nonstationarity are intimately related and the study of more general, nonstationary
correlation functions is necessary to understand the dynamics.

2.1 the fractional langevin equation

In this Section, we set the stage for the following discussion and introduce our
basic mathematical model, the fractional Langevin equation. We start out with a
short review of stochastic Langevin dynamics in Section 2.1.1. Then in Section 2.1.2
we introduce the mathematical model proper, the generalized Langevin equation,
of which the fractional Langevin equation is a particular case. Finally, we shortly
outline the solution of the equilibrium fractional Langevin equation and discuss
its most important properties.

2.1.1 Langevin equation

The Langevin equation [Lang 08, Coff 04] describes the motion of a probe par-
ticle of mass m in a thermal bath of temperature T ,

v̇(t) = −γv(t) +
1

m
η(t). (2.1)

Here γ is a relaxation rate describing the systematic dissipation of energy from
the probe particle into the bath. η(t) is a random force representing the fact that
the thermal motion of the bath particles transfers momentum onto the probe via
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collisions. Within the framework of the usual Langevin equation, this random force
is unbiased and completely uncorrelated in time,

〈η(t)〉 = 0, 〈η(t2)η(t1)〉 = 2m2Dvδ(t2 − t1), (2.2)

where Dv is the velocity diffusion coefficient and δ(t) is the Dirac delta function.
It is furthermore Gaussian, meaning that all higher order correlations are either
zero (for odd orders) or can be expressed as a sum of products of the second
order correlator via the Gaussian moment theorem (for even orders). Since both
the dissipation and the fluctuating force are due to the interaction of the probe
particle with the bath, they are not independent of each other but are related via the
temperature through the fluctuation-dissipation theorem [Coff 04, Reif 09] which
links the velocity diffusion coefficient Dv and the relaxation rate γ,

Dv =
γkBT

m
, (2.3)

where kB is the Boltzmann constant. The fluctuation-dissipation theorem is a fun-
damental consequence of the equipartition theorem and applies to equilibrium
systems only [Reif 09]. It expresses the fact that both the viscous friction and the
kicks from the random force are due to interactions of the probe particle with
the thermal bath. A direct consequence of Eq. (2.3) is the Stokes-Einstein relation
(see Section 2.3.3) which relates the diffusive motion of the probe particle to its
response to an external force. The Langevin equation (2.1) is Markovian [Doob 90],
which means the evolution of the velocity only depends on its instantaneous value
v(t) at time t. Since Eq. (2.1) is linear in the velocity, we can immediately write
down the formal solution,

v(t) = v0e
−γt +

1

m

∫t
0

dt ′ e−γ(t−t
′)η(t ′),

x(t) = x0 +
v0
γ

(
1− e−γt

)
+
1

m

∫t
0

dt ′′
∫t ′′
0

dt ′e−γ(t
′′−t ′)η(t ′), (2.4)

where v0 = v(0) and x0 = x(0) are the particle’s initial velocity and position. Using
the noise autocorrelation function Eq. (2.2), we obtain the results for the velocity
and position autocorrelation,

〈v(t2)v(t1)〉 =
kBT

m
e−γ(t2−t1) +

(
〈v20〉−

kBT

m

)
e−γ(t2+t1), (2.5)

〈x(t2)x(t1)〉 = 〈x20〉+
1

γ
〈v0x0〉

(
2− e−γt2 − e−γt1

)
+
1

γ2
〈v20〉

(
1− e−γt2 − e−γt1 + e−γ(t2+t1)

)
+
2kBT

mγ
t1 +

kBT

mγ2

(
2e−γt2 + 2e−γt1

− e−γ(t2+t1) − e−γ(t2−t1) − 2
)

, (2.6)



2.1 the fractional langevin equation 17

where we assumed that the initial values v0 and x0 are statistically independent
of the random force, 〈v0η(t)〉 = 〈x0η(t)〉 = 0, as well as t2 > t1 without loss of
generality. Equations (2.5) and (2.6) simplify in the limit of long times t2, t1 � 1/γ,

〈v(t2)v(t1)〉 '
kBT

m
e−γ(t2−t1), (2.7)

〈x(t2)x(t1)〉 '

〈(
x0 +

v0
γ

)2〉
+
2kBT

mγ
t1 +

kBT

mγ2
e−γ(t2−t1). (2.8)

In particular, the velocity autocorrelation is stationary, it depends only on the time
lag t2 − t1. The mean square velocity relaxes to its thermal value 〈v2〉th = kBT/m

corresponding to the equipartition theorem in an exponential manner. For the
mean square displacement 〈∆x2(t)〉 with ∆x(t) = x(t) − x(0), we find normal dif-
fusion,

〈∆x2(t)〉 ' 2D1t with D1 =
kBT

mγ
. (2.9)

The constant D1 is called the spatial diffusion coefficient, the subscript 1 denot-
ing that it refers to normal diffusion. The relation linking the spatial diffusion
coefficient D1 to the friction constant γ via the temperature is called Einstein re-
lation [Eins 05]. The Markovian Langevin equation (2.1) describes the motion of
the probe particle in an ideal viscous environment, which is unaffected by the
particle’s motion.

2.1.2 Fractional Langevin equation: Anticorrelated subdiffusion

In general, the equation describing the motion of the probe particle does not
have to be Markovian. The more general case, which takes into account the exis-
tence of memory effects, is covered by the generalized Langevin equation [Mori 65,
Kubo 65],

v̇(t) = −γ

∫t
0

dt ′ k(t− t ′)v(t ′) +
1

m
η(t). (2.10)

The memory or friction kernel k(t) takes into account the fact that the damping
force acting on the particle may not only depend on its instantaneous velocity v(t)
but also on the velocity at earlier times t ′ < t. The value of the memory kernel
function describes how the motion is affected by the velocity at earlier times. This
retarded friction may be due to displacements of the surrounding medium caused
by the motion of the particle or to an elastic-like behavior of the medium. Since the
bath is assumed to be in thermal equilibrium, the fluctuation-dissipation theorem
holds in its more general form [Kubo 66],

〈η(t2)η(t1)〉 = mγkBT k(|t2 − t1|). (2.11)

The retardation in the memory kernel k(t) thus is accompanied by correlations
in the random force η(t), which is still assumed as unbiased and Gaussian. The
solution of Eq. (2.10) is most conveniently carried out in frequency space by intro-
ducing the Laplace transform f̃(s) of a time-dependent function f(t) [Doet 74],

f̃(s) ≡ L[f(t)]t→s =

∫∞
0

dt e−stf(t). (2.12)
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Under Laplace transform, the derivative and convolution in Eq. (2.10) are replaced
by multiplications,

sṽ(s) − v0 = −γk̃(s)ṽ(s) +
1

m
η̃(s). (2.13)

The solution of Eq. (2.13) is then straightforward,

ṽ(s) =
1

s+ γk̃(s)

(
v0 +

1

m
η̃(s)

)
,

x̃(s) =
x0
s

+
1

s2 + sγk̃(s)

(
v0 +

1

m
η̃(s)

)
. (2.14)

The generalized Langevin equation (2.10) reduces to the usual Langevin equa-
tion (2.1) if the friction kernel is infinitely short ranged, k(t) = δ(t), respectively
k̃(s) = 1. A short ranged memory kernel with a finite memory time tα, e.g. an expo-
nential one k(t) = e−t/tα/tα or k̃(s) = 1/(1+ tαs) , will lead to a non-Markovian
dynamics on time scales shorter than the memory time t � tα. For long times
t� tα which according to the Tauberian theorems [Wien 32, Doet 74] corresponds
to tαs � 1, the memory kernel is well approximated by a delta function k̃(s) ' 1
and the long-time dynamics becomes effectively Markovian.

The situation is markedly different when the memory kernel is a power law,

k(t) =
1

Γ(α)tα

(
t

tα

)α−1
, k̃(s) = (tαs)

−α, (2.15)

with 0 < α < 1 and the gamma function Γ(a) [Abra 12]. For this form of the mem-
ory kernel, the generalized Langevin equation is called fractional Langevin equa-
tion [Lutz 01]. The name fractional originates form the definition of the Riemann-
Liouville fractional integral operator Jα [Mill 93],

Jαf(t) =
1

Γ(α)

∫t
0

dt ′ (t− t ′)α−1f(t ′), (2.16)

in terms of which the fractional Langevin equation reads,

v̇(t) = −
γ

Γ(α)tαα

∫t
0

dt ′ (t− t ′)α−1v(t ′) +
1

m
η(t)

= −
γ

tα
α J
αv(t) +

1

m
η(t). (2.17)

Note that we keep the time scale tα in Eq. (2.15) primarily to make clear the di-
mensionality of the respective quantities, from a practical point of view, we may
also absorb it into the friction constant γ. This arbitrariness of the time scale tα
is not a coincidence: Due to the power-law form of Eq. (2.15), the memory is
time-scale invariant, in that there exists no characteristic decay time after which
memory effects can be truncated. Thus the memory kernel Eq. (2.15) does not re-
duce to a delta function for long times but is long ranged. Consequently, the non-
Markovian effects persist even in the long time limit. The generalized Langevin
equation Eq. (2.10) can be derived microscopically from a particle coupled to a
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bath of oscillators [Zwan 80]. In terms of this derivation, the memory kernel k(t)
is related to the distribution of oscillator frequencies. Thus a long-ranged mem-
ory kernel indicates a broad distribution of relaxation times in the medium, as in
the cellular cytoplasm due to presences of a multitude of different particle species
[Ball 06]. Transforming Eq. (2.14) back to the time domain, we have with the defi-
nitions g̃(s) = 1/(s+ γk̃(s)) respectively h̃(s) = g̃(s)/s,

v(t) = v0g(t) +
1

m

∫t
0

dt ′ g(t− t ′)η(t ′),

x(t) = x0 + v0h(t) +
1

m

∫t
0

dt ′ h(t− t ′)η(t ′). (2.18)

For the power law memory kernel Eq. (2.15), the kernel functions g(t) and h(t) are
given by (generalized) Mittag-Leffler functions [Bate 55, Haub 11],

Ea(z) =

∞∑
n=0

1

Γ(an+ 1)
zn,

Ea,b(z) =

∞∑
n=0

1

Γ(an+ b)
zn, (2.19)

which obey the following relation under Laplace transform [Haub 11],

L
[
tb−1Ea,b(−ct

a)
]
t→s =

s−b

1+ cs−a
. (2.20)

Comparing this to Eqs. (2.15) and (2.18), we find,

g(t) = Eα+1

(
−γtα

(
t

tα

)α+1)
,

h(t) = tEα+1,2

(
−γtα

(
t

tα

)α+1)
. (2.21)

Using the fluctuation-dissipation theorem (2.11) to express the noise autocorrela-
tion through the memory kernel, this allows computing the velocity autocorrela-
tion function [Pott 03],

〈v(t2)v(t1)〉 =
kBT

m
Eα+1

(
−γtα

(
t2 − t1
tα

)α+1)

+

(
〈v20〉−

kBT

m

)
Eα+1

(
−γtα

(
t2
tα

)α+1)

× Eα+1

(
−γtα

(
t1
tα

)α+1)
. (2.22)

Similar to Eq. (2.5), the mean-square velocity relaxes to the thermal equilibrium
value and the velocity autocorrelation becomes stationary in the long time limit.
However, both the relaxation and the decay of the stationary autocorrelation are no
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longer exponential but instead described by a Mittag-Leffler function. The asymp-
totic behavior of the latter for large respectively small negative arguments is given
by [Haub 11],

Ea,b(−z) '
1

Γ(b− a)
z−1 −

1

Γ(b− 2a)
z−2 +O(z−3) for z� 1

Ea,b(−z) '
1

Γ(b)
−

1

Γ(a+ b)
z+O(z2) for z� 1, (2.23)

which means that the long time asymptotic velocity autocorrelation for t2, t1 �
tα(γtα)

−1/(α+1) is [Pott 03],

〈v(t2)v(t1)〉 '
kBT

m
Eα+1

(
−γtα

(
t2 − t1
tα

)α+1)

+
1

Γ2(−α)γ2tα2

(
〈v20〉−

kBT

m

)(
t2
tα

t1
tα

)−α−1

. (2.24)

The relaxation into the equilibrium state now is algebraic instead of exponential, as
is the asymptotic behavior of the stationary velocity autocorrelation for long time
lags, t2 − t1 � tα(γtα)

−1/(α+1),

〈v(t2)v(t1)〉 '
kBT

Γ(−α)mγtα

(
t2 − t1
tα

)−α−1

. (2.25)

Since we have 0 < α < 1, the velocity autocorrelation function is asymptotically
negative, implying that the velocity process is anticorrelated: At time t2, it is more
likely to find the particle moving in the opposite direction compared to its motion
at time t1 [Lutz 01]. Since the velocity correlation functions Eqs. (2.5) and (2.22)
describe a particle in contact with an equilibrium environment, they both exhibit
two characteristic properties: Firstly, for long times, the velocity of the particle
will be distributed according to the thermal Maxwell-Boltzmann distribution, i.e. a
Gaussian whose width is determined by the equipartition theorem. Secondly, if the
particle starts out with a thermally distributed velocity, it will remain in this state
for all time. The position autocorrelation function is obtained in a similar manner,
a detailed discussion can be found in Ref. [Pott 03]. Here, we note that the mean
square displacement is given by,

〈∆x2(t)〉 = 2kBT

m
t2Eα+1,3

(
−γtα

(
t

tα

)α+1)

' 2kBT

Γ(2−α)γtα

(
t

tα

)1−α
, (2.26)

where the second line is the asymptotic behavior for long times. Contrary to
Eq. (2.9), we now have subdiffusion 〈∆x2(t)〉 ∼ 2Dνtν with ν = 1− α < 1. This
agrees with the anticorrelation found for the velocity (see Eq. (2.25), since if the
particle is more likely to reverse its motion, we expect the spreading of a cloud of
particles to slow down.
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The power law memory kernel Eq. (2.15) was defined for values of the exponent
0 < α < 1. It is interesting to note what happens in the limits α → 0 respectively
α → 1. For α → 0, we use the identity E1(z) = ez in Eq. (2.22) and find that it
reduces to Eq. (2.5), where the relaxation is exponential and we have normal diffu-
sion. Thus α = 0 corresponds to the case of a purely viscous thermal environment
and thus normal diffusion. For α → 1, on the other hand, the memory kernel
Eq. (2.15) is constant, k(t) = 1/tα. Equation (2.10) then reduces to an equation in
x(t),

ẍ(t) = −
γ

tα
(x(t) − x(0)) +

1

m
η(t). (2.27)

This is precisely the equation of motion of a noisy harmonic oscillator of frequency√
γ/tα. Consequently, α = 1 corresponds to a probe particle coupled to an elas-

tic medium. Since the fractional Langevin equation for 0 < α < 1 interpolates
between viscous and elastic behavior, the medium is in this regime referred to
as viscoelastic [Koll 11]. In the context of a crowded medium, this can be imag-
ined as its constituents being at the same time elastically deformed and viscously
displaced by the motion of the probe particle.

2.2 extension to superdiffusive nonequilibrium dynamics

The fractional Langevin equation discussed in the previous section describes a
subdiffusive equilibrium system. If we ultimately want to describe the dynamics
in living cells, we need to extend this description to nonequilibrium and possibly
superdiffusive systems. We want to retain the basic features of the equilibrium
fractional Langevin equation, since, as discussed before, the latter accurately de-
scribes the equilibrium behavior and can thus be expected to serve as a useful
starting point for discussing nonequilibrium systems. In this section we discuss
two methods of accomplishing this extension: First, in Section 2.2.1, we model the
nonequilibrium part in a heuristic way as an additional noise term and discuss
the dynamics the qualitative dynamics subject to the properties of the nonequi-
librium noise. Then, in Section 2.2.2 we present an alternative approach, where
the nonequilibrium dynamics is induced by active motion of the environment and
show how this relates to the heuristic nonequilibrium noise introduced before. To
this end, we present three potential candidates for a stochastic process that de-
scribes the active motion of the environment. We also introduce the important
concept of a scaling correlation function, which will be seen to describe most of
the stochastic processes we are interested in and whose general properties will be
exploited in the next chapter. Finally we discuss the resulting properties of this
nonequilibrium noise for each of the three candidate choices in Section 2.2.3.
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2.2.1 External nonequilibrium noise

A straightforward way to drive the system described by a generalized Langevin
equation like Eq. (2.10) out of equilibrium is to introduce an additional force term
ξ(t) [Brun 09, Desp 11, Bohe 13],

v̇(t) = −γ

∫t
0

dt ′k(t− t ′)v(t ′) +
1

m
η(t) +

1

m
ξ(t). (2.28)

In general, ξ(t) may contain both a deterministic and a stochastic part. We will
discuss the effect of deterministic forces applied to the system in some detail in
section 2.3.3. For now, we take ξ(t) to be an unbiased stochastic force, 〈ξ(t)〉 = 0.
This form of ξ(t) is a reasonable choice for the nonequilibrium forces due to the ac-
tive motion in the cell, since these are mediated through molecular motors moving
along the mostly randomly oriented actin network. As the nonequilibrium effects
in living cells are generally observed on long time scales, the nonequilibrium noise
correlations should decay more slowly than the thermal fluctuations. Since the
latter are characterized by the exponent α via the fluctuation-dissipation theorem
(2.11),

〈η(t+ τ)η(t)〉 = 2mγkBT

Γ(α)tα

(
τ

tα

)α−1
, (2.29)

a suitable choice for the nonequilibrium noise correlations might be [Brun 09],

〈ξ(t+ τ)ξ(t)〉 =
a2µ

Γ(µ)

(
τ

tµ

)µ−1
, (2.30)

with α < µ < 1. Here tµ is a time scale which governs the decay of the correla-
tions. Due to the power-law nature of Eq. (2.30), however, the magnitude of this
time scale is fundamentally inseparable from the constant aµ which determines
the magnitude of the noise. In this sense, we introduce tµ only because it is conve-
nient in order to check the dimensionality of the resulting expressions. This form
of the nonequilibrium force was considered in Ref. [Brun 09] and shown to lead
to enhanced diffusion compared to the equilibrium system. In principle, we may
also consider 0 < µ < α, however, as we will show in section 2.3, in this case the
contribution of the nonequilibrium noise will be sub-dominant to the equilibrium
noise in the long-time limit and thus asymptotically not lead to enhanced diffusion.
The noise in Eq. (2.30) is explicitly stationary, i.e. its magnitude remains constant
in time and the correlations depend only on the time lag τ. As we are considering
nonequilibrium systems, there is however no reason to assume the noise as station-
ary. Moreover, we will see in Section 2.3.2 that a stationary noise cannot actually
reproduce the experimental observations for a tracer bound to the cytoskeleton. A
nonstationary generalization of Eq. (2.30) is given by,

〈ξ(t+ τ)ξ(t)〉 =
2(−1)−

µ
2 c2µ

Γ2
(
µ
2

) (
τ

tµ

)µ−1
B
(
−
t

τ
;
µ

2
,
µ

2

)
. (2.31)
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Here B(x;a,b) is the incomplete beta function [Abra 12]. At first, this choice might
appear somewhat random, but it is in fact a natural generalization of Eq. (2.30). To
see this, we note that in the limit t� τ,

〈ξ(t+ τ)ξ(t)〉 '


cµ

2Γ(µ) cos(πµ2 )

(
τ
tµ

)µ−1
for µ < 1

1

(µ−1)Γ2(µ2 )
tµ−1 for µ > 1.

(2.32)

For µ < 1, the nonstationary process defined by Eq. (2.31) reproduces the station-
ary one, Eq. (2.30) with cµ = 2aµ cos(πµ/2), in the long-time limit. However, it
describes a noise process that initially (at t = 0) has zero magnitude and thus
is nonstationary for finite t. Equation (2.31) has the advantage that, contrary to
the stationary expression Eq. (2.30), it also describes a valid stochastic process for
µ > 1, where there exists no stationary counterpart. In this regime, the magnitude
of the noise Eq. (2.31) grows with time. Equation (2.31) reduces to a rather simple
form in the frequency domain,

〈ξ̃(s2)ξ̃(s1)〉 =
c2µ

tµ
µ−1

(s2s1)
−µ
2

s2 + s1
. (2.33)

In the following, we will concentrate on the first and second moments of the re-
spective quantities, for which it is sufficient to specify the two-time autocorrelation
function of the nonequilibrium noise. If the noise is Gaussian, this also determines
all higher order moments. In general, however, we may also consider non-Gaussian
stochastic processes for the noise, which will require us to specify higher order cor-
relation functions.

2.2.2 Active viscoelastic environment

In the preceding discussion, we introduced the nonequilibrium noise term into
the fractional Langevin equation by hand. We now turn to a description of the
nonequilibrium dynamics that is closer to the actual physical system of a tracer par-
ticle in the cytoskeleton of a living cell. In equilibrium, there is no active motion of
the cell and the tracer diffuses in the viscoelastic environment of the cytoskeleton,
described by the equilibrium fractional Langevin equation Eqs. (2.10) and (2.15). In
living cells, however, the cytoskeleton will itself move due to the forces exerted by
molecular motors along the actin filaments. We describe this motion as a stochastic
process with a random velocity vm(t) of the viscoelastic medium. Assuming that
the viscoelastic coupling between the tracer and the environment is unaffected by
the motion of the latter, we can write down an equation of motion for the tracer
based on Eq. (2.10),

v̇(t) = −γ

∫t
0

dt ′ k(t− t ′)
(
v(t ′) − vm(t ′)

)
+
1

m
η(t). (2.34)

In contrast to Eq. (2.10), the friction here does not depend on the absolute velocity
of the particle but instead on its velocity relative to the surrounding medium, v(t)−
vm(t). Note that the absolute velocity still appears in the inertial term on the left
hand side of Eq. (2.34), since the particle does not follow the motion of the medium
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instantly. This is similar to the approach taken in Ref. [Metz 07], where a tracer
particle was considered to be trapped in a randomly moving potential. In contrast
to the former approach, we allow for subdiffusive motion relative to the "trap" and
consider the motion of the cytoskeleton as a dedicated random process.

The description of the nonequilibrium properties in terms of a moving environ-
ment is actually closely related to the heuristic description in terms of an additional
nonequilibrium noise discussed previously. By identifying,

ξ(t) = mγ

∫t
0

dt ′ k(t− t ′)vm(t ′), (2.35)

Eq. (2.34) takes precisely the form of Eq. (2.28), relating the nonequilibrium noise
and the motion of the surrounding medium. By specifying the properties of the
process vm(t), we thus uniquely determine the nonequilibrium noise. Their auto-
correlation functions are related in the time and frequency domain, respectively,
via,

〈ξ(t2)ξ(t1)〉 = m2γ2
∫t2
0

dt ′′
∫t1
0

dt ′ k(t2 − t ′′)k(t1 − t ′)〈vm(t ′′)vm(t ′)〉,

〈ξ̃(s2)ξ̃(s1)〉 = m2γ2k̃(s2)k̃(s1)〈ṽm(s2)ṽm(s1)〉. (2.36)

We will discuss the properties of the noise autocorrelation for different choices of
the medium velocity autocorrelation in Section 2.2.3.

In the following, we will concentrate on three particular choices for the medium
velocity vm(t). These three examples are fractional Gaussian noise of the Riemann-
Liouville respectively Mandelbrot-van-Ness type and the Lévy walk. They all have
in common that their autocorrelation functions behave as a power-law for long
times.

Riemann-Liouville fractional Gaussian noise

Riemann-Liouville fractional Gaussian noise is a generalization of white noise
to overdamped fractional Brownian motion [Lim 02]. The Langevin equation for
Brownian motion of a particle in the overdamped limit (i.e. when inertial effects
can be neglected) reads,

mγv(t) = ξ(t), (2.37)

where ξ(t) is Gaussian white noise (see Eq. (2.2)). This means that the velocity
itself is Gaussian white noise. By integrating both sides with respect to time, the
can be written as,

mγx(t) =

∫t
0

dt ′ξ(t ′), (2.38)

where we assume x(0) = 0 without loss of generality. The displacement x(t) of the
particle is thus given as an integral over white noise. This integral of course has
to be evaluated according to the rules of stochastic calculus; we take all integrals
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of this kind to be of the Stratonowich type [Kamp 81], although in our case this
turns out to be irrelevant since we do not consider multiplicative noise. Equation
(2.38) is equivalent to the long-time limit of Eq. (2.6) and leads to normal diffusion,
Eq. (2.9). The generalization to fractional Brownian motion is done by replacing
the integration in Eq. (2.38) by a fractional integral [Mill 93], see Eq. (2.16),

mγx(t) =
1

Γ
(
β
2 + 1

) ∫t
0

dt ′
(
t− t ′

tβ

)β
2

ξ(t ′)

= tβ
−β
2 J

β
2+1ξ(t), (2.39)

with −1 < β < 1. The resulting motion is subdiffusive for β < 0 and superdiffusive
for β > 0. The exponent β is related to the Hurst exponent H which is often
employed in the literature by H = (β+ 1)/2 [Hurs 51, Mand 68]. For β > 0, we can
take the time-derivative of Eq. (2.39) and obtain for the velocity,

mγv(t) =
1

Γ
(
β
2

)
tβ

∫t
0

dt ′
(
t− t ′

tβ

)β
2−1

ξ(t ′). (2.40)

Since the process is scale-invariant, the time scale tβ is in principle arbitrary and is
only kept for reasons of dimensionality. Since for usual Brownian motion, the ve-
locity is described by white noise, Eq. (2.37), we call Eq. (2.40) fractional Gaussian
noise, since it is the derivative of fractional Brownian motion. In this case, the ini-
tial velocity vanishes, v(0) = 0, which is referred to as Riemann-Liouville fractional
Gaussian noise [Lim 02]. Note that in the subdiffusive case β < 0, Eq. (2.40) is not
well-defined since the integral diverges at the upper boundary. This is an artifact
of the overdamped description, taking into account inertial effects provides a short-
time cutoff on the power-law kernel function and we end up with the fractional
Langevin equation (2.17). We use Eq. (2.40) as one candidate for the medium ve-
locity vm(t). In the Laplace domain, this then leads to the velocity autocorrelation
function,

〈ṽm(s2)ṽm(s1)〉 =
vtyp

2

tβ
β−1

(s2s1)
−β
2

s2 + s1
, (2.41)

where we introduced the typical velocity scale
vtyp =

√
2Dvtβ/γ2). Using the identity Eq. (A.4), we find the corresponding ex-

pression in the time domain,

〈vm(t+ τ)vm(t)〉 =
vtyp

2

Γ2
(
β
2

)
tβ
β−1

∫t
0

dt ′(t+ τ− t ′)
β
2−1(t− t ′)

β
2−1. (2.42)

While the integral can be expressed in terms of a hypergeometric function, it is
more interesting to note the scaling properties of this expression. By changing the
variable of integration to z = t ′/t, we have,

〈vm(t+ τ)vm(t)〉 =
vtyp

2

Γ2
(
β
2

) ( t

tβ

)β−1 ∫1
0

dz
(
1+

τ

t
− z
)β
2−1

(1− z)
β
2−1.

(2.43)
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The autocorrelation function of the nonequilibrium noise thus depends only on the
initial time t and the ratio of the time lag τ and the initial time. We will encounter
similar correlation functions for a number of different quantities, including the
velocity and position. In Chapter 3 we will extensively discuss their origins and
properties as well as their relation to superdiffusive dynamics. We term this type of
correlation function "scaling correlation function" [Dech 14], since the dependence
on the time lag τ scales with the initial time t, i.e. rescaling both τ and t by the same
factor changes the overall value of the correlation function but not its qualitative
behavior. We write the scaling correlation function in the following way,

〈vm(t+ τ)vm(t)〉 = C tβ−1φ
(τ
t

)
,

with C =
vtyp

2

Γ2
(
β
2

)
tβ
β−1

,

φ(y) =

∫1
0

dz (1+ y− z)
β
2−1(1− z)

β
2−1

= (−1)
−β
2 yβ−1B

(
−
1

y
;
β

2
,
β

2

)
. (2.44)

We call φ(y) a scaling function. In this case, the integral defining φm,RL(y) can
be expressed in terms of an incomplete beta function B(x;a,b). The asymptotic
behavior of integrals like the one in the definition of φ is examined in Appendix
A.2. Using Eq. (A.44), we find to leading order,

〈vm(t+ τ)vm(t)〉 '
vtyp

2

tβ
β−1


Γ(1−β) sin(πβ2 )

π τβ−1 for t� τ

1

Γ(β2+1)Γ(
β
2 )
τ
β
2−1t

β
2 for τ� t.

(2.45)

In the long-time limit t � τ, the medium velocity process described by Riemann-
Liouville fractional Gaussian noise thus tends to a stationary limit, while it is non-
stationary for finite times, where its magnitude for any fixed τ 6= 0 approaches
the stationary value from below as a function of t. Equation (2.44) also describes
a valid stochastic process for β > 1. In this regime, there no longer is a stationary
limit, instead, the magnitude of the process grows as tβ−1. Note that for β < 1,
the stationary correlation function Eq. (2.45) diverges in the limit τ→ 0 and so the
mean-square velocity 〈vm

2(t)〉 is infinite. This divergence is due to the unphysical,
infinitely short-ranged correlations of Gaussian white noise. Thus, the definition
Eq. (2.40) generally needs to be supplemented by a short-time cutoff which de-
scribes the intrinsic time scales of the system and leads to a finite mean-square
velocity. However, this short-time cutoff will be seen not to influence the asymp-
totic long-time dynamics described by Eq. (2.43) and we therefore do not need to
take it into account explicitly.

Mandelbrot-van-Ness fractional Gaussian noise

Previously, we saw that Riemann-Liouville fractional Gaussian noise is asymptot-
ically stationary in the long-time limit. This poses the question of whether it is
possible to find a similar process with the same stationary correlation function,
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which however is stationary for all times. From Eq. (2.45) we saw, that if we let the
process described by Eq. (2.40) evolve for a long time, we get arbitrarily close to a
stationary process. Thus, if the process starts out at t = −∞, then, for any finite
time, it will already have reached stationarity. This is precisely the definition of
Mandelbrot-van-Ness fractional Gaussian noise [Mand 68],

mγv(t) =
1

Γ
(
β
2

)
tβ

∫t
−∞ dt ′

(
t− t ′

tβ

)β
2−1

ξ(t ′). (2.46)

This expression does not have a straightforward representation in Laplace space,
however, we can explicitly compute the autocorrelation function by using the fact
that ξ(t) is delta-correlated,

〈v(t2)v(t1)〉 =
2Dv

Γ2
(
β
2

)
γ2tβ

β

×
∫t2
−∞ dt ′′

∫t1
−∞ dt ′ [(t2 − t ′′)(t1 − t ′)]

β
2−1δ(t ′′ − t ′). (2.47)

Assuming t2 = t + τ > t1 = t without loss of generality, we can evaluate the
integral over t ′′,

〈v(t+ τ)v(t)〉 = 2Dv

Γ2
(
β
2

)
γ2tβ

β

∫t
−∞ dt ′ [(t+ τ− t ′)(t− t ′)]

β
2−1. (2.48)

Changing the variable of integration to z = (t ′ − t)/τ, we see that the correlation
function is indeed stationary,

〈v(t+ τ)v(t)〉 = 2Dv

Γ2
(
β
2

)
γ2tβ

β
τβ−1

∫∞
0

dz [(1+ z)z]
β
2−1. (2.49)

The remaining integral is just a constant, which evaluates to,∫∞
0

dz [(1+ z)z]
β
2−1 =

2−β√
π
Γ

(
β

2

)
Γ

(
1

2
−
β

2

)
. (2.50)

Again we write this in terms of the velocity scale vtyp =
√
2Dvtβ/γ2) and have for

the autocorrelation function of the medium velocity,

〈vm(t+ τ)vm(t)〉 =
vtyp

2

tβ
β−1

Γ(1−β) sin
(
πβ
2

)
π

τβ−1. (2.51)

This is precisely the same as the stationary limit in Eq. (2.45). So, for long times,
Riemann-Liouville and Mandelbrot-van-Ness fractional Gaussian noise indeed de-
scribe the same process, as they are both Gaussian and thus fully characterized
by their autocorrelation function. Despite this asymptotic equality, we will see in
Section 2.2.3 that the nonequilibrium noise induced by the respective medium ve-
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locity is different even in the long-time limit. Note that Eq. (2.51) can in principle
also be expressed in a scaling form similar to Eq. (2.44),

〈vm(t+ τ)vm(t)〉 = C tβ−1φ
(τ
t

)
,

with C =
vtyp

2

tβ
β−1

Γ(1−β) sin
(
πβ
2

)
π

,

φ(y) = yβ−1. (2.52)

While this seems to be an unnecessary complication, it actually shows that a sta-
tionary power-law correlation function is just a special case of the scaling form
Eq. (2.44). As in the nonstationary case, we need to specify a short-time cutoff for
Eq. (2.51) since it diverges as τ→ 0.

Lévy walk

As our third example, we consider a non-Gaussian stochastic process, the Lévy
walk [Shle 87, Klaf 90]. This process is a paradigm model for anomalous stochastic
processes and has been thoroughly examined from a theoretical point of view
and also successfully applied to a range of physical systems. Here we consider
the simplest version of the Lévy walk, a system, which can have either velocity
+vtyp or −vtyp. At certain points in time, the system’s velocity switches between
these two values; the times between these switches are randomly drawn from a
waiting time distribution Pw(tw). So the system starts out in one state, say v(0) =
+vtyp, in which it stays for a random waiting time tw,1. At t = tw,1 the velocity
changes to v(tw,1) = −vtyp, remaining at this value for a new random waiting
time tw,2 until at t = tw,1 + tw,2 it switches back to +vtyp and so on. Since a new
waiting time is drawn every time the process switches between states, this process
is also called a renewal process [Godr 01]. The position dynamics of the system
depend crucially on the waiting time distribution [Klaf 90, Godr 01]. If the latter
is such that its second moment 〈tw

2〉 is finite, then the displacement distribution
is Gaussian by virtue of the central limit theorem and diffusion is normal. On the
other hand, if 〈tw

2〉 is infinite the system becomes superdiffusive in the long-time
limit and the process is no longer Gaussian. In the following, we take the waiting
time distribution to be asymptotically a power-law,

Pw(tw) ∼ N

(
tw

tβ

)β−3
for t� tβ, (2.53)

where 0 < β < 2 and N is a normalization constant that depends on the precise
behavior of the waiting time distribution for short times. β < 0 corresponds to the
Gaussian case where the second moment is finite. For 0 < β0, the second moment
is infinite, and for 1 < β < 2, even the first moment ceases to exist. The Lévy walk
has been extensively studied before and we make use of the known result for the
asymptotic velocity autocorrelation function [Godr 01],

〈vm(t+ τ)vm(t)〉 '
vtyp

2

(1−β)tβ
β−2〈tw〉

tβ−1
[(τ
t

)β−1
−
(
1+

τ

t

)β−1]
, (2.54)
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which is valid for t, τ � tβ and 0 < β < 1. For later reference, the corresponding
expression in Laplace space will also be useful. In terms of the variables t and τ,
the latter is given by [Godr 01],

L2 [〈vm(t+ τ)vm(t)〉]τ→ut→s '
Γ(β)vtyp

2

(1−β)tβ
β−2〈tw〉

s1−β − u1−β

s(s− u)
. (2.55)

Using Eq. (A.21), we can write down the Laplace transform with respect to the
time variables t1 = t and t2 = t+ τ,

〈ṽm(s2)ṽm(s1)〉 '
Γ(β)vtyp

2

(1−β)tβ
β−2〈tw〉

(s2 + s1)
2−β − s2

2−β − s1
2−β

s2s1(s2 + s1)
. (2.56)

Equation (2.54) is the same type of scaling correlation function we found before,

〈vm(t+ τ)vm(t)〉 = C tβ−1φ
(τ
t

)
,

with C =
vtyp

2

(1−β)tβ
β−2〈tw〉

,

φ(y) = yβ−1 − (1+ y)β−1. (2.57)

The asymptotic behavior of this expression is straightforward,

〈vm(t+ τ)vm(t)〉 '
vtyp

2

tβ
β−2〈tw〉


1
1−βτ

β−1 for t� τ

τβ−2t for τ� t.
(2.58)

In the stationary limit t � τ, the velocity autocorrelation of the Lévy walk is thus
similar to the one obtained for fractional Gaussian noise, Eqs. (2.45) and (2.51). As
before, Eq. (2.54) in principle has to be supplemented by a short-time cutoff to
avoid the unphysical divergence as τ → 0. Since the Lévy walk is non-Gaussian,
its properties are not uniquely determined by its two-time correlation function
and consequently the process differs from the Gaussian processes discussed be-
fore. Indeed, higher order moments behave very differently for the two classes of
processes.

All three processes we discussed share one important common property: They
have positive, long-ranged, power-law correlations, which ultimately are respon-
sible for the resulting superdiffusive behavior. Apart from this, there are some
differences: Riemann-Liouville fractional noise is Gaussian and non-stationary. It
tends to a stationary limit for long times, the limiting process is Mandelbrot-van-
Ness fractional noise which is explicitly stationary. The Lévy walk, on the other
hand is neither Gaussian nor stationary, though it too has a stationary long-time
limit.

2.2.3 Properties of the nonequilibrium noise

While Eq. (2.36) provides a direct connection between the medium velocity and
nonequilibrium noise autocorrelations, the actual properties of the latter are of
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course highly dependent on the former. We thus examine the behavior of the
nonequilibrium noise for the three choices of the process vm(t) introduced in Sec-
tion 2.2.2. If the autocorrelation function of vm(t) is of the stationary power-law
type obtained for Mandelbrot-van-Ness fractional Gaussian noise, Eq. (2.51), then
using Eq. (A.24) this translates into the frequency domain as,

〈ṽm(s2)ṽm(s1)〉 =
vtyp

2

2 cos
(
πβ
2

)
tβ
β−1

s2
−β + s1

−β

s2 + s1
. (2.59)

For the nonequilibrium noise we then have,

〈ξ̃(s2)ξ̃(s1)〉 =
m2γ2vtyp

2

2 cos
(
πβ
2

)
tα
2αtβ

β−1

(s2s1)
−α
(
s2

−β + s1
−β
)

s2 + s1
. (2.60)

Applying the identity Eq. (A.4), we obtain the noise autocorrelation in the time
domain, expressed in the scaling form used before,

〈ξ(t+ τ)ξ(t)〉 = Cξ t
2α+β−1φξ

(τ
t

)
,

with Cξ =
m2γ2vtyp

2

2 cos
(
πβ
2

)
Γ(α+β)Γ(α)tα2αtβ

β−1
,

φξ(y) =

∫1
0

dz
[
(1+ y− z)α+β−1(1− z)α−1 + (1+ y− z)α−1(1− z)α+β−1

]
,

(2.61)

With the help of Eq. (A.44), we can specify the asymptotic behavior of the nonequi-
librium noise correlation function,

〈ξ(t+ τ)ξ(t)〉 '
m2γ2vtyp

2

2 cos
(
πβ
2

)
tα
2αtβ

β−1

×



Γ(1−2α−β)[sin(πα)+sin(π(α+β))]
π τ2α+β−1

for t� τ, β < 1− 2α

2
(2α+β−1)Γ(α+β)Γ(α)t

2α+β−1

for t� τ, β > 1− 2α

1
Γ(α+β)Γ(α+1)τ

α+β−1tα + 1
Γ(α+β+1)Γ(α)τ

α−1tα+β

for τ� t.

(2.62)

If the medium velocity correlations and memory kernel are relatively short-ranged
with 2α+β < 1, the noise autocorrelation has a stationary limit for t� τ in which
it only depends on the time lag τ. For longer-ranged correlations in vm(t) with
2α+β > 1, the nonequilibrium noise is nonstationary and its magnitude increases
with time. The existence of these two regimes will be seen to be a common property
of correlation functions of the type Eq. (2.61). The combination 2α+ β measures
the combined "range" of the memory and the medium velocity correlations, both
a longer-range memory and longer-ranged medium velocity correlations increase
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Figure 2.1: Nonequilibrium noise correlation function as a function of time lag for different
overall times. In the regime β < 2α+ 1, the correlation function approaches a stationary
limit as t→∞ (blue). For finite times, there is a transition between the stationary τ2α+β−1

and the nonstationary behavior, the transition time is of the order of the overall time t.

its value and lead to enhanced correlations in the nonequilibrium noise. Figures
2.1, 2.2 and 2.3 show the behavior of the noise correlation function for three sets
of parameters α and β at different times. In Fig. 2.1, we have 2α+ β < 1 and the
correlation function is asymptotically stationary; the approach to the stationary
correlation function also follows a power law. Figures 2.2 and 2.3 show the correla-
tion function in the nonstationary regime, where its magnitude increases with the
overall time t as t2α+β−1. Though this is true in both cases, the behavior for large
time lags can still be qualitatively different. For α+β < 1 (Fig. 2.2), the correlations
decay as a function of the time lag, indicating that the noise process will eventu-
ally become uncorrelated. For α+β > 1 (Fig. 2.3), the correlations actually increase
with the time lag, meaning that due to the increasing magnitude of the process, its
current behavior will always be strongly dependent on its distant past. In all three
cases, the overall time t also sets the time scale for the transition between short-
and long-time behavior. This directly reflects the scale-invariant nature of the noise
process which does not possess any intrinsic time scales.

A particularly simple relation between the two autocorrelation functions is ob-
tained, if the medium velocity vm(t) is given by Riemann-Liouville fractional Gaus-
sian noise, Eq. (2.41). The autocorrelation of the nonequilibrium noise is then of
precisely the same type,

〈ξ̃(s2)ξ̃(s1)〉 =
m2γ2vtyp

2

tα
2αtβ

β−1

(s2s1)
−β
2−α

s2 + s1
, (2.63)

however, with the exponent β replaced by β+ 2α. This is also equivalent to the
heuristic nonequilibrium noise Eq. (2.33) with noise exponent µ = 2α+β. For this
reason, we will not consider the heuristic nonequilibrium noise separately, as the
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Figure 2.2: Nonequilibrium noise correlation function as a function of time lag for different
overall times. In the regime α+ β < 1 < 2α+ β, the correlation function is nonstationary
and its magnitude at τ = 0 increases as t2α+β−1. In addition to the increasing overall
magnitude of the correlation function, the transition time between the small-τ and large-
τ behavior also increases linearly with the overall time t. For long time lags τ � t, the
correlation function decays as τα+β−1.
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Figure 2.3: Nonequilibrium noise correlation function as a function of time lag for different
overall times. In the regime α+ β > 1, the correlation function is nonstationary and its
magnitude at τ = 0 increases as t2α+β−1. In addition to the increasing overall magnitude
of the correlation function, the transition time between the small-τ and large-τ behavior
also increases linearly with the overall time t. For long time lags τ � t, the correlation
function increases as τα+β−1.
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corresponding results can be obtained simply by changing β accordingly. Again
using the identity (A.4) to transform this back to the time domain, we obtain a
scaling form similar to Eq. (2.61),

〈ξ(t+ τ)ξ(t)〉 = Cξ t
2α+β−1φξ

(τ
t

)
,

with Cξ =
m2γ2vtyp

2

Γ2
(
α+ β

2

)
tα
2αtβ

β−1
,

φξ(y) =

∫1
0

dz (1+ y− z)α+
β
2−1(1− z)α+

β
2−1. (2.64)

The asymptotic behavior of this correlation function is rather similar to Eq. (2.62),

〈ξ(t+ τ)ξ(t)〉 '
m2γ2vtyp

2

tα
2αtβ

β−1



Γ(1−2α−β) sin(π(α+β
2 ))

π τ2α+β−1

for t� τ, β < 1− 2α

1

(2α+β−1)Γ2(α+β
2 )
t2α+β−1

for t� τ, β > 1− 2α

1

Γ(α+β
2+1)Γ(α+

β
2 )
τα+

β
2−1tα+

β
2

for τ� t.

(2.65)

In the long-time limit t� τ, we again find a stationary regime for 2α+β < 1 and a
nonstationary one with increasing variance for 2α+β > 1. In both cases functional
dependence on the time lag τ respectively the overall time t is the same as the one
in Eq. (2.62), however the the numerical prefactors of the nonstationary expressions
(2α+ β > 1) differ. This is at odds with the fact that both Riemann-Liouville and
Mandelbrot-van-Ness fractional Gaussian noise were seen to describe the same
stochastic process in this limit, in the sense that the autocorrelation functions of
vm(t) are identical (see Eqs. (2.45) and (2.51)). So even though both processes are
asymptotically the same, the nonequilibrium noise induced by them is not, not
even in the long time limit. This is due to the long-range power-law memory kernel
linking the medium velocity and nonequilibrium noise, Eq. (2.36), which causes
the noise process to be sensitive on the entire history of vm(t) even asymptotically.
Only when the nonequilibrium noise itself is stationary, i.e. for 2α + β < 1, its
long-time behavior is determined solely by the long-time stationary behavior of
the velocity process. For long time lags τ� t, the functional dependence on τ and
t in Eqs. (2.65) an (2.62) is different. Here the nonstationary behavior of Riemann-
Liouville fractional Gaussian noise leads to qualitative differences between the
induced noise processes.
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Finally, we want to derive the expression for the correlation function of the
nonequilibrium noise for the Lévy walk medium velocity. To this end, we rewrite
Eq. (2.36) so that the time-ordering of the correlation functions is explicit,

〈ξ(t+ τ)ξ(t)〉

= m2γ2
[ ∫t+τ
t

dt ′′
∫t
0

dt ′ +
∫t
0

dt ′′
∫t ′′
0

dt ′ +
∫t
0

dt ′′
∫t
t ′′

dt ′
]

× k(t+ τ− t ′′)k(t− t ′)〈vm(t ′′)vm(t ′)〉. (2.66)

In this way, we have t ′′ > t ′ in the first and second integral and t ′ > t ′′ in the third
one, allowing us to use Eq. (2.54) for the medium velocity correlation function. In
the third integral, we interchange the order of integration and exchange the labels
of the integration variables to obtain,

〈ξ(t+ τ)ξ(t)〉

= m2γ2
[ ∫t+τ
t

dt ′′
∫t
0

dt ′ k(t+ τ− t ′′)k(t− t ′)〈vm(t ′′)vm(t ′)〉

+

∫t
0

dt ′′
∫t ′′
0

dt ′
[
k(t+ τ− t ′′)k(t− t ′) + k(t− t ′′)k(t+ τ− t ′)

]
× 〈vm(t ′′)vm(t ′)〉

]
, (2.67)

where now t ′′ > t ′ throughout the entire domain of integration. Using Eq. (2.57)
for the medium velocity correlation, Eq. (2.15) for the kernel function and defining
z = t ′′/t, u = t ′/t, this can be rewritten as a scaling form,

〈ξ(t+ τ)ξ(t)〉 ' Cξ t
2α+β−1φξ

(τ
t

)
,

with Cξ =
m2γ2vtyp

2

(1−β)tβ
β−2tα

2α〈tw〉
,

φξ(y) =

∫1
0

dz
∫z
0

du
[(
(1+ y− z)(1− u)

)α−1
+
(
(1− z)(1+ y− u)

)α−1]
uβ−1φm,LW

(
z− u

u

)
+

∫1+y
1

dz
∫1
0

du
(
(1+ y− z)(1− u)

)α−1
uβ−1φm,LW

(
z− u

u

)
.

(2.68)
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The integrals involved in the scaling function are discussed in Appendix A.2.
Specifically, we obtain for the asymptotic behavior of the two-time correlation func-
tion to leading order, using Eqs. (A.57), (A.63) and (A.75),

〈ξ(t+ τ)ξ(t)〉 '
m2γ2vtyp

2

(1−β)tβ
β−2〈tw〉



cξ,1τ
2α+β−1

for t� τ, β < 1− 2α

cξ,2t
2α+β−1

for t� τ, β > 1− 2α

cξ,3τ
α−1tα+β

for τ� t,

(2.69)

where the coefficients are given by,

cξ,1 = −
πΓ(β)Γ(1− 2α−β)

Γ2(1−α) sin(π(α+β− 1))
+
Γ(α)Γ(β)Γ(1− 2α−β)

Γ(1−α)

+
Γ2(α)Γ(β) sin(π(2−β))
Γ(2α+β) sin(π(α+β− 1)

cξ,2 = 2

∫1
0

dz
∫1
0

dv zα−1(v+ z− vz)α−1(1− z)β(vβ−1 − 1)

cξ,3 =

∫1
0

dz
∫1
0

dv (v+ z− vz)α−1(1− z)β(vβ−1 − 1)

+

∫1
0

dz
∫1
0

dv zα−1(1− z)β(vβ−1 − 1)

+

∫∞
0

dz
∫1
0

du uα−1
(
(u+ z)β−1 − (1+ z)β−1

)
. (2.70)

The time-dependence of Eq. (2.69) in the long time limit t � τ is rather similar to
the Gaussian cases Eqs. (2.62) and (2.65). This is not too surprising, since asymp-
totically, the two-time correlation function of vm(t) behaves in the same way as
well. Note that Eq. (2.69) actually corresponds to Eq. (2.65), since it describes the
nonstationary variant of the Lévy walk, where the first waiting time is selected
at t = 0. We can also choose to use the stationary variant [Froe 13], where the
process starts out during a waiting time. In this case, the stationary correlation
function is the same as Eq. (2.51) apart from the prefactor, and we consequently
arrive at the equivalent of Eq. (2.62). As with the two Gaussian processes, even
though the stationary and nonstationary process are equivalent in the long-time
limit, the respective induced nonequilibrium noise is not, but differs in magnitude.
The preceding analysis only considers second order moments, i.e. two-time corre-
lation functions. While these are sufficient to uniquely identify the process in the
Gaussian cases, for the Lévy walk, higher order moments will generally behave dif-
ferently. Thus, even though the stationary correlation functions for the Gaussian
process and the Lévy walk coincide, the actual processes are still very different.
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2.3 solution of the nonequilibrium fractional langevin equation

Ultimately, we want to use our model, the fractional Langevin equation with
nonequilibrium noise in the form of a moving medium, Eq. (2.34), to describe the
diffusive dynamics in living cells. To this end we need to derive and understand
the solution of Eq. (2.34), in particular in terms of the experimentally accessible
quantities like the moments of the position of the particle. In Section 2.3.1, we give
a formal solution to Eq. (2.34) in the Laplace (frequency) domain. Since the solution
in the frequency domain is not very intuitive, we discuss the asymptotic proper-
ties of the solution in the time domain in the following two Sections. In Section
2.3.2, we focus on the two-time correlation functions and the mean-square displace-
ment, which characterize the diffusive behavior of the system. We then move on
to the mean displacement in the presence of an external force in Section 2.3.3 and
introduce the notion of response and creep function. Finally, we discuss the funda-
mental difference between equilibrium and nonequilibrium for general Langevin
dynamics in Section 2.3.4 and show that a nonequilibrium noise necessarily leads
to nonstationarity.

2.3.1 Frequency domain

The formal solution of Eq. (2.34) is best obtained by switching to the frequency
domain,

sṽ(s) − v0 = −γk̃(s)
(
ṽ(s) − ṽm(s)

)
+
1

m
η̃(s), (2.71)

or in terms of the position x(t) =
∫t
0 dt ′ v(t ′) + x0,

s2x̃(s) − sx0 − v0 = −γk̃(s)
(
sx̃(s) − x0 − ṽm(s)

)
+
1

m
η̃(s). (2.72)

The solution of Eqs. (2.71) and (2.72) is then a matter of simple algebra,

ṽ(s) =
1

s+ γk̃(s)

(
1

m
η̃(s) + v0

)
+

γk̃(s)

s+ γk̃(s)
ṽm(s),

x̃(s) =
x0
s

+
1

s2 + sγk̃(s)

(
1

m
η̃(s) + v0

)
+

γk̃(s)

s2 + sγk̃(s)
ṽm(s). (2.73)

We can use this formal solution to compute the moments of the velocity and po-
sition, provided that we know the corresponding moments of the noise η(t) and
the medium velocity vm(t). For the power-law memory kernel of the fractional
Langevin equation, Eq. (2.15), we can immediately make a statement about the
long-time behavior of the solution Eq. (2.73). For t � tα(γtα)

−1/(α+1), which in
the frequency domain corresponds to s � (γtα)

1/(α+1)/tα [Doet 74], we have
s � γk̃(s) and may thus neglect the inertial term. This approximation is called
the overdamped limit and is generally a very good approximation for the exper-
imentally relevant time scales, since the systems under consideration are heavily
damped and have a large numerical value for γ. In the overdamped limit, Eq. (2.73)
simplifies to,

ṽ(s) ' γ−1(tαs)α
(
1

m
η̃(s) + v0

)
+ ṽm(s). (2.74)
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In the absence of equilibrium noise η(t) = 0, this is precisely what we expect: Due
to the coupling of the tracer particle to the moving environment, the motion of
the former on long time scales follows the long-time motion of the latter. In the
presence of equilibrium noise, the long-time behavior depends on behavior of η(t)
and vm(t), but in all cases of interest, the latter will be the dominant contribution
for long times.

We will also be interested in the effect of an additional external probe force Fp(t)

applied to the tracer particle, this can be taken into account in a straightforward
manner by including it as an additional term in the generalized Langevin equation
(2.10) and leads to,

x̃(s) =
x0
s

+
1

s2 + γsk̃(s)

(
1

m

(
η̃(s) + F̃p(s)

)
+ v0

)
+

γk̃(s)

s2 + γsk̃(s)
ṽm(s), (2.75)

and similarly for the velocity. Before we begin to study the explicit behavior of the
solution Eq. (2.75) in the time domain, we remark that it is explicitly linear in the
noise η(t), the medium velocity vm(t) and the probe force Fp(t). This linearity has
two important consequences. Firstly, if η(t) and vm(t) are Gaussian processes, then
the motion of the tracer particle is a Gaussian process as well. Conversely, any non-
Gaussian behavior of the tracer particle can be traced back to underlying stochastic
processes. Secondly, any response to the probe force Fp(t) will be linear in the latter,
in that increasing the amplitude of the probe force will increase the amplitude of
the response proportionally. This does of course not imply linearity in time, i.e.
the response to a constant probe force can and will depend on time in a nonlinear
manner. It does, however, restrict the validity of this approach to relatively small
probe forces, as applying a large force will in general also impact the viscoelastic
properties of the medium (i.e. γ or k(t)) and thus lead to a nonlinear dependence
on the probe force [Fabr 01].

2.3.2 Time domain: Correlation functions and mean-square displacement

Using Eq. (2.73), the velocity autocorrelation function in frequency space is ob-
tained as,

〈ṽ(s2)ṽ(s1)〉 =
〈η̃(s2)η̃(s1)〉+m2〈v02〉

m2
(
s2 + γk̃(s2)

)(
s1 + γk̃(s1)

)
+
γ2k̃(s2)k̃(s1)〈ṽm(s2)ṽm(s1)〉(
s2 + γk̃(s2)

)(
s1 + γk̃(s1)

) , (2.76)

where we assumed that the initial velocity v0, the equilibrium noise η(t) and the
medium velocity vm(t) are stochastically independent of each other. Using the
explicit form of the memory kernel Eq. (2.15), we can in principle transform this
back into the time domain,

〈v(t2)v(t1)〉 = 〈v02〉fα,0(t2)fα,0(t1)

+
1

m2

∫t2
0

dt ′′
∫t1
0

dt ′ fα,0(t2 − t
′)fα,0(t1 − t

′)〈η(t ′′)η(t ′)〉

+ γ2
∫t2
0

dt ′′
∫t1
0

dt ′ fα,α(t2 − t
′)fα,α(t1 − t

′)〈vm(t ′′)vm(t ′)〉, (2.77)
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with the kernel function,

fa,b(t) = t
bEa+1,b+1

(
−γtα

(
t

tα

)a+1)
, (2.78)

where Ea,b(x) is the generalized Mittag-Leffler function defined in Eq. (2.19). Ex-
cept for numerical computation, Eq. (2.77) by itself is not particularly useful, since
it does not provide any intuition about the fundamental behavior of the veloc-
ity autocorrelation. We may simplify it somewhat for the particular cases of the
medium velocity correlations discussed in Section 2.2.2. For the stationary Gaus-
sian medium velocity process, the velocity autocorrelation is given by Eq. (2.51)
respectively Eq. (2.59) in Laplace space. Using this expression for the velocity cor-
relations in Eq. (2.76) and dropping the equilibrium and initial velocity terms for
now, we have,

〈ṽ(s2)ṽ(s1)〉 =
γ2vtyp

2

2 cos
(
πβ
2

)
tβ
β−1tα

2α

s2
−αs1

−α s2
−β+s1

−β

s2+s1(
s2 + γ(tαs2)−α

)(
s1 + γ(tαs1)−α

) .

(2.79)

Using Eq. (A.4), we can write down the corresponding expression in the time-
domain,

〈v(t+ τ)v(t)〉 =
γ2vtyp

2

2 cos
(
πβ
2

)
tβ
β−1tα

2α

×
∫t
0

dt ′
[
fα,α+β(t

′ + τ)fα,α(t
′) + fα,α(t

′ + τ)fα,α+β(t
′)
]
.

(2.80)

For the nonstationary Gaussian medium velocity, the corresponding velocity cor-
relation is given by,

〈v(t+ τ)v(t)〉 =
γ2vtyp

2

tβ
β−1tα

2α

∫t
0

dt ′ f
α,α+β

2
(t ′ + τ)f

α,α+β
2
(t ′), (2.81)

while for the Lévy walk we have using Eq. (A.6),

〈v(t+ τ)v(t)〉 =
γ2vtyp

2

(1−β)tβ
β−2〈tw〉tα2α

×
∫t
0

dt ′
[
(t− t ′)β−1

[
fα,α+1(t

′ + τ)fα,α(t
′) + fα,α(t

′ + τ)fα,α+1(t
′)
]

− Γ(β)
[
fα,α+β−1(t

′ + τ)fα,α+1(t
′) + fα,α+1(t

′ + τ)fα,α+β−1(t
′)
]]

.

(2.82)

Again, these expressions as they are, are mostly useful for numerical computation.
We can, however, draw some immediate conclusions from them. In Section 2.2.2,
we saw that in all three instances the correlation function of the medium velocity
has an unphysical divergence in the limit τ→ 0. Even though the medium velocity
correlations diverge and the mean-square medium velocity is thus not defined,
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this still leads to a well defined mean-square velocity for the tracer particle, as
Eqs. (2.80), (2.81) and (2.82) are finite for τ = 0. We may thus ignore the short
time cutoff on the medium velocity correlations for the purposes of our model.
For β < 1, and since the kernel function behaves as fa,b ∼ tb−a−1 for long times,
all three expressions are finite in the limit t → ∞, meaning that the mean-square
velocity approaches a stationary limit 〈v2〉s, as it should.

To gain some intuition about the behavior of Eq. (2.77) in certain limits, we
examine its Laplace equivalent, Eq. (2.76) in more detail. In the long-time or over-
damped limit, where both frequency variables are small, s2, s1 � (γtα)

1/(α+1)/tα,
Eq. (2.76) simplifies to,

〈ṽ(s2)ṽ(s1)〉 '
1

γ2

(
tα
2s2s1

)α( 1

m2
〈η̃(s2)η̃(s1)〉+ 〈v02〉

)
+ 〈ṽm(s2)ṽm(s1)〉.

(2.83)

In order to identify the dominant contribution for long times, we consider the ex-
ample of stationary Gaussian noise Eq. (2.30) respectively Eq. (2.59) for the medium
velocity. We can write the latter as,

〈ṽm(s2)ṽm(s1)〉 =
vtyp

2

2 cos
(
πβ
2

)
tβ
β−1

[
s2

−β−1

1+ s1
s2

+
s1

−β−1

1+ s2
s1

]
. (2.84)

The advantage of this form is that we can immediately identify its scaling in the
limit of small s2 and s1, which is given by the numerator, since the denominator
only depends on the ratio of s2 and s1 and thus their relative magnitude. Using a
similar argument for the equilibrium noise η(t), we can write Eq. (2.76) as,

〈ṽ(s2)ṽ(s1)〉 '
kBTtα

α

mγ

[
s2
α−1

1+ s1
s2

+
s1
α−1

1+ s2
s1

]
+
〈v02〉tα2α

γ2
s2
2α

(
s1
s2

)α
+

vtyp
2

2 cos
(
πβ
2

)
tβ
β−1

[
s2

−β−1

1+ s1
s2

+
s1

−β−1

1+ s2
s1

]
. (2.85)

As we will see later (see Section 3.3.2), this scaling form in the frequency domain
is intimately related to the corresponding one in the time domain, Eq. (2.52). Since
0 < α < 1, the term contributed by the initial velocity is negligible for long times
respectively small s2 and s1. The long-time velocity autocorrelation is thus inde-
pendent of the initial velocity. For the two terms originating from the equilibrium
respectively nonequilibrium noise, their relative size depends on the time scale.
The equilibrium term scales as sα−1, while the nonequilibrium one scales as s−β−1.
For β > 0, the nonequilibrium term thus always gives the dominant contribution
for long times. Similar arguments apply to the other two cases for the medium
velocity, Eqs. (2.43) and (2.54), since the nonequilibrium term still scales as s−β−1,
as can be seen from the corresponding Laplace expressions Eqs. (2.41) and (2.56).
Comparing Eq. (2.85) to the double Laplace transform of a stationary correlation
function, Eq. (A.24), we see that for the stationary medium velocity process, also
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the resulting velocity autocorrelation is stationary. It reads asymptotically in the
time domain,

〈v(t+ τ)v(t)〉 ' kBT

Γ(−α)mγtα

(
τ

tα

)−α−1

+
Γ(1−β) sin

(
πβ
2

)
vtyp

2

π

(
τ

tβ

)β−1
. (2.86)

As expected, the equilibrium part corresponds precisely to the asymptotic equi-
librium result Eq. (2.24), but we have an additional nonequilibrium contribution
due to the motion of the surrounding medium, given by Eq. (2.51). Similarly we
find that, for the nonstationary Gaussian noise Eq. (2.43) and for the Lévy walk
Eq. (2.54), the asymptotic velocity autocorrelation function is also given by the
equilibrium contribution plus a nonequilibrium term representing the correlations
of the medium velocity, Eqs. (2.41) and (2.56). Since the latter are nonstationary in
the other two cases, so is the overall velocity autocorrelation.

For the position autocorrelation, we have from Eq. (2.73),

〈x̃(s2)x̃(s1)〉 =
〈x02〉
s2s1

+
〈η̃(s2)η̃(s1)〉+m2〈v02〉

m2
(
s22 + γs2k̃(s2)

)(
s12 + γs1k̃(s1)

)
+

γ2k̃(s2)k̃(s1)〈ṽm(s2)ṽm(s1)〉(
s22 + γs2k̃(s2)

)(
s12 + γs1k̃(s1)

) , (2.87)

where we assumed that the initial position x0 is stochastically independent of the
initial velocity v0 and the stochastic processes η(t) and vm(t). For the stationary
Gaussian medium velocity, we can bring this into a form similar to Eq. (2.85),

〈x̃(s2)x̃(s1)〉 '
〈x02〉
s2s1

+
〈v02〉tα2α

γ2
s2
2α−2

(
s1
s2

)α−1
+
kBTtα

α

mγ

 s2
α−3

s1
s2

(
1+ s1

s2

) +
s1
α−3

s2
s1

(
1+ s2

s1

)


+
vtyp

2

2 cos
(
πβ
2

)
tβ
β−1

 s2
−β−3

s1
s2

(
1+ s1

s2

) +
s1

−β−3

s2
s1

(
1+ s2

s1

)
 . (2.88)

With the exception of the first term due to the initial position, the relative scaling
of the individual terms is the same as for the velocity autocorrelation Eq. (2.86).
The term due to the initial velocity can be neglected for long times, while the equi-
librium and nonequilibrium contributions scale as sα−3 and as s−β−3 respectively.
Thus, just as for the velocity, the long-time dynamics of the position are dominated
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by the nonequilibrium term. However, the position autocorrelation is not station-
ary. Using Eq. (A.4), the Laplace inversion is straightforward,

〈x(t+ τ)x(t)〉 ' 〈x02〉

+
kBTtα

α

Γ(1−α)mγ

∫t
0

dt ′
[
(t+ τ− t ′)−α + (t− t ′)−α

]
+

vtyp
2

2Γ(β+ 1) cos
(
πβ
2

)
tβ
β−1

∫t
0

dt ′
[
(t+ τ− t ′)β + (t− t ′)β

]
= 〈x02〉+

kBTtα
2−α

Γ(2−α)mγ

[
(t+ τ)1−α + t1−α − τ1−α

]
+

vtyp
2tβ

1−β

2Γ(β+ 2) cos
(
πβ
2

) [(t+ τ)β+1 + tβ+1 − τβ+1] . (2.89)

In particular, for τ = 0, we find for the mean-square displacement,

〈∆x2(t)〉 ' 2kBTtα

Γ(2−α)mγ

(
t

tα

)1−α
+

vtyp
2tβ

2

Γ(β+ 2) cos
(
πβ
2

) ( t

tβ

)β+1
. (2.90)

The first term describes the equilibrium subdiffusion Eq. (2.26), while the second
term is superdiffusive since β > 0. Thus the fractional Langevin equation in a
moving viscoelastic environment, Eq. (2.34), indeed describes a crossover from
subdiffusion for short times to superdiffusion for long times. The same qualitative
picture holds for the nonstationary Gaussian noise, Eq. (2.43), where we have for
the asymptotic position autocorrelation,

〈x(t+ τ)x(t)〉

' 〈x02〉+
2kBTtα

2−α

Γ(2−α)mγ

[
(t+ τ)1−α + t1−α − τ1−α

]
+

(−1)−
β
2 vtyp

2tβ
2

Γ2
(
β
2 + 1

) (
τ

tβ

)β+1
B
(
−
t

τ
;
β

2
+ 1,

β

2
+ 1

)
, (2.91)

and for the mean-square displacement,

〈∆x2(t)〉 ' 2kBTtα

Γ(2−α)mγ

(
t

tα

)1−α
+

vtyp
2tβ

2

Γ2
(
β
2 + 1

)
(β+ 1)

(
t

tβ

)β+1
. (2.92)

Similarly to what we saw in section 2.2.3, the expressions Eqs. (2.90) and (2.92)
for the mean-square displacement for the stationary and nonstationary medium
velocity process are different, even though the two medium velocity processes are
asymptotically equivalent. This dependence of the long-time dynamics on the ini-
tial preparation of the system will be studied in more detail in Chapter 3. We
already noted before that the nonstationary Gaussian case is mathematically equiv-
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alent to the external noise Eq. (2.31) with noise exponent µ = 2α+ β, so with this
interpretation, we have,

〈∆x2(t)〉 ' 2kBTtα

Γ(2−α)mγ

(
t

tα

)1−α
+

cµ
2tα

2α

Γ2
(
µ
2 −α+ 1

)
(β− 2α+ 1)m2γ2tµ2α

(
t

tµ

)µ−2α+1
, (2.93)

with cµ2 = m2γ2vtyp
2tβ

2α−µ−1/(tα
2αtµ

1−µ). Note that an asymptotically station-
ary external noise for which µ < 1, can only account for superdiffusion if 2α < µ,
i.e. relatively small values of α and thus rather viscous systems. This was in fact
the situation in Ref. [Brun 09], where α ∼ 0.03, and thus a stationary noise was
sufficient to describe the superdiffusive behavior. For typical experiments on the
cytoskeleton, on the other hand we have α ∼ 0.8 and thus a nonstationary external
noise is required to obtain superdiffusion – or in fact any dominant contribution
from the nonequilibrium noise at all – for long times. A more thorough discussion
and possible interpretation of this nonstationary noise can be found in Section 4.3.
The corresponding expressions for the Lévy walk read,

〈x(t+ τ)x(t)〉

' 〈x02〉+
2kBTtα

2−α

Γ(2−α)mγ

[
(t+ τ)1−α + t1−α − τ1−α

]
+

vtyp
2

(1−β)β(β+ 1)tβ
β−2〈tw〉

[
3tβ+1 + (t+ τ)β+1 − τβ+1

+ (β+ 1)
(
tβτ− t(t+ τ)β − (t+ τ)tβ

) ]
, (2.94)

and,

〈∆x2(t)〉 ' 2kBTtα

Γ(2−α)mγ

(
t

tα

)1−α
+

2vtyp
2tβ

3

β(β+ 1)〈tw〉

(
t

tβ

)β+1
. (2.95)

In all three cases, the long-time dynamics is superdiffusive with a diffusion expo-
nent β + 1 > 1. This is due to the long-time positively correlated motion of the
surrounding medium, which the tracer particle asymptotically follows. Note that
the equilibrium and nonequilibrium part of the asymptotic position autocorrela-
tion function can individually be cast into a scaling form similar to Eq. (2.44). This
is a consequence of the scaling form of the underlying velocity correlation function
and will be examined in more detail in Section 3.1.

2.3.3 Time domain: Linear response and creep function

Up to now, we concentrated on the second moments of the solution Eq. (2.14), since
the unbiased random forces due to the equilibrium and nonequilibrium noise do
not affect the tracer particle’s average position. This changes once we apply an
external probe force. Taking the ensemble average of Eq. (2.75), we have,

〈x̃(s)〉 = 〈x0〉
s

+
1

s2 + γsk̃(s)

(
1

m
F̃p(s) + 〈v0〉

)
, (2.96)
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or in the time domain,

〈x(t)〉 = 〈x0〉+
1

m

∫t
0

dt ′ R(t− t ′)Fp(t
′) + 〈v0〉R(t), (2.97)

where we introduced the response function R(t), which is defined by its Laplace
transform,

R̃(s) =
1

s2 + γsk̃(s)
, (2.98)

and for the power-law memory kernel Eq. (2.15) given in terms of a Mittag-Leffler
function,

R(t) = tEα+1,2

(
−γtα

(
t

tα

)α+1)
. (2.99)

Equation (2.97) makes the linearity of the response explicit, the motion of the tracer
is linearly related to the applied force. Alternatively, we describe the response of
the system by the creep function J(t), which is defined as,

J̃(s) =
1

m

1

s3 + γs2k̃(s)
=
1

m

1

s
R̃(s), (2.100)

and for the case at hand given by,

J(t) =
1

m
t2Eα+1,3

(
−γtα

(
t

tα

)α+1)
. (2.101)

In terms of the creep function, Eq. (2.97) reads,

〈x(t)〉 = 〈x0〉+
∫t
0

dt ′ J(t− t ′)
∂Fp(t

′)

∂t ′
+ J(t)Fp(0) +m〈v0〉

∂J(t)

∂t
. (2.102)

The advantage of expressing the response via the creep function is that, for a
constant force Fp(t) = F0 and a particle initially at rest, the response is precisely
given by the creep function,

〈x(t) − x0〉 = F0J(t). (2.103)

Comparing the creep function Eq. (2.101) to the mean-square displacement in equi-
librium, Eq. (2.26), we see that the two are closely related, namely,

〈∆x2(t)〉eq = 2kBTJ(t). (2.104)

This relation is a generalization of the Stokes-Einstein relation to the subdiffu-
sive equilibrium dynamics [Lutz 01]. It is a direct consequence of the fluctuation-
dissipation theorem Eq. (2.11) and thus only holds for equilibrium systems. The
Stokes-Einstein relation has a profound consequence on the measurement of an
equilibrium system: Since the response to an external force (active measurement)
and the diffusive dynamics in the absence of an external force (passive measure-
ment) are related by Eq. (2.104), it is possible to infer one from the measurement of
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the other. Conversely, if the Stokes-Einstein relation is found to be violated, the sys-
tem is out of equilibrium. Since the inclusion of the nonequilibrium noise has no
impact on the response of the system but changes the diffusive dynamics dramati-
cally, this obviously leads to a violation of the Stokes-Einstein relation, Eq. (2.104).
Using the asymptotic properties of the Mittag-Leffler function, Eq. (2.23), we find
the asymptotic behavior of the creep function,

J(t) '


1
2mt

2 for t� tα(γtα)
1
α+1

tα
Γ(2−α)mγ

(
t
tα

)1−α
for t� tα(γtα)

1
α+1 .

(2.105)

The short time behavior corresponds to the acceleration of a free particle with a
constant force, which for a particle at rest is precisely what we expect upon ap-
plying a force. For long times, on the other hand, the displacement of the particle
increases sub-linearly with time, which is in contrast to the normal, purely viscous
case α = 0, where the displacement grows linearly. In terms of the velocity, this
means that, even though a constant force is applied, the velocity decreases due to
the elastic component of the medium, which leads to an increasing drag on the par-
ticle. However, the medium is still viscous enough that the displacement continues
to grow, contrary to the purely elastic case α = 1, where the particle displacement
reaches a maximum value. The sub-linear time dependence of the response is a
characteristic feature of a viscoelastic medium [Xu 98, Desp 05, Koll 11]. Note that
Eq. (2.103) only relates the creep function to the particle displacement in such a
simple manner for a constant force. If the applied force varies in time, its relation
to the response is not so straightforward, as the latter will depend on the entire
history of the applied force according to Eq. (2.102). This history dependence will
be discussed in Section 4.5.

2.3.4 Equilibrium and stationarity

In the previous section, we saw that the equilibrium part of the mean-square dis-
placement is in one-to-one correspondence with the response of the system to an
external force via the Stokes-Einstein relation. This correspondence in fact holds
for any equilibrium system described by a generalized Langevin equation (2.10).
If the fluctuation-dissipation theorem Eq. (2.11) holds [Kubo 66] and the system is
initially in thermal equilibrium, 〈v02〉 = kBT/m, then the position autocorrelation
reads from Eq. (2.72),

〈x̃(s2)x̃(s1)〉 =
〈x02〉
s2s1

+
1

m2
〈η̃(s2)η̃(s1)〉+mkBT

s2s1
(
s2 + γk̃(s2)

)(
s1 + γk̃(s1)

) . (2.106)

Now we use Eq. (A.24) for the Laplace transform of the stationary noise autocorre-
lation,

〈η̃(s2)η̃(s1)〉 = mγkBT
k̃(s2) + k̃(s1)

s2 + s1
, (2.107)
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to obtain,

〈x̃(s2)x̃(s1)〉 =
〈x02〉
s2s1

+
kBT

m

γk̃(s2) + s2 + k̃(s1) + s1

s2s1(s2 + s1)
(
s2 + γk̃(s2)

)(
s1 + γk̃(s1)

)
=
〈x02〉
s2s1

+
kBT

m

1

s2s1(s2 + s1)

[
1

s2 + γk̃(s2)
+

1

s1 + γk̃(s1)

]
.

(2.108)

We can transform this back to the time domain using Eq. (A.4),

〈x(t+ τ)x(t)〉 = 〈x02〉+
kBT

m

∫t
0

dt ′ h(t ′ + τ) + h(t ′), (2.109)

where h(t) is defined via its Laplace transform,

h̃(s) =
1

s2 + γsk̃(s)
. (2.110)

For τ = 0, we then find for the mean-square displacement,

〈∆x2(t)〉 = 2kBT

m

∫t
0

dt ′h(t ′), (2.111)

respectively for its Laplace transform,

〈∆̃x2(s)〉 = 2kBT

m

1

s
h̃(s) =

2kBT

m

1

s3 + γs2k̃(s)
. (2.112)

Comparing this to the definition of the creep function, Eq. (2.100), we immediately
obtain the Stokes-Einstein relation Eq. (2.104),

〈∆̃x2(s)〉 = 2kBT J̃(s). (2.113)

This is valid irrespective of the specific form of the memory kernel k(t), the only
requirement is the validity of the fluctuation-dissipation theorem Eq. (2.11). The
equivalent of Eq. (2.108) for the velocity is,

〈ṽ(s2)ṽ(s1)〉 =
kBT

m

1

s2 + s1

[
1

s2 + γk̃(s2)
+

1

s1 + γk̃(s1)

]
. (2.114)

This is precisely the Laplace transform of a stationary correlation function accord-
ing to Eq. (A.24), and indeed we find,

〈v(t+ τ)v(t)〉 = kBT

m
g(τ), (2.115)

with

g̃(s) =
1

s+ γk̃(s)
. (2.116)

Again, the stationarity of the velocity correlation function holds independent of the
precise form of the memory kernel as long as the fluctuation-dissipation theorem is
valid. This is not at all surprising, since equilibrium by definition implies stationar-
ity. Note that the above considerations work if the system is initially in equilibrium.
If the system starts out from a nonequilibrium initial condition 〈v02〉 6= kBT/m,
then the relaxation process leads to deviations from the stationary velocity correla-
tion function according to Eq. (2.22).
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What now about the nonequilibrium situation? As we saw before, the inclu-
sion of a nonequilibrium noise term, whether explicitly as in Section 2.2.1 or via
a moving medium as in Section 2.2.2, leads to additional contributions to both
the mean-square displacement and the velocity correlation function. The simplest
nonequilibrium noise we might think of is one that resembles the equilibrium one
in all respects but its magnitude. Such a noise, however, is within this framework
indistinguishable from a temperature that corresponds to the magnitude of the
thermal and nonequilibrium noise combined, and we thus ignore this possibility
and only consider "strong" violations of the fluctuation-dissipation theorem, where
the equality in Eq. (2.11) cannot be restored by rescaling the temperature. As an
example, let us consider the stationary Gaussian medium velocity as a nonequilib-
rium noise and for now ignore the contribution from the thermal noise. We then
have from Eq. (2.80),

〈v(t+ τ)v(t)〉 = 〈v02〉fα,0(t+ τ)fα,0(t) +
γ2vtyp

2

2 cos
(
πβ
2

)
tβ
β−1tα

2α

×
∫t
0

dt ′
[
fα,α+β(t

′ + τ)fα,α(t
′) + fα,α(t

′ + τ)fα,α+β(t
′)
]
.

(2.117)

In particular, we find for the mean-square velocity,

〈v2(t)〉 = 〈v02〉fα,0
2(t) +

γ2vtyp
2

cos
(
πβ
2

)
tβ
β−1tα

2α

∫t
0

dt ′ fα,α+β(t
′)fα,α(t

′),

(2.118)

which tends to a stationary limit as t→∞,

〈v2〉s =
γ2vtyp

2

cos
(
πβ
2

)
tβ
β−1tα

2α

∫∞
0

dt ′ fα,α+β(t
′)fα,α(t

′). (2.119)

In the equilibrium case, if the system is initially in the stationary equilibrium state,
it remains there for all time, in particular 〈v2(t)〉 = kBT/m. Here however, if the
system starts out with its stationary value for the mean-square velocity 〈v02〉 =
〈v2〉s, we find,

〈v2(t)〉 = 〈v2〉s
[
1+ fα,0

2(t) −

∫∞
t dt ′ fα,α+β(t

′)fα,α(t
′)∫∞

0 dt ′ fα,α+β(t ′)fα,α(t ′)

]
. (2.120)

The expression in square brackets can only be evaluated numerically. While both
the second and third term tend to zero as t→∞ (remember that fa,b(t) ∼ t

b−a−1

for long times), so that the mean-square velocity does approach its stationary value,
this expression generally depends on time. This leads to the strange situation,
where, even if the system initially has a mean-square velocity that corresponds
to the stationary state, the mean-square velocity will still vary in time. The con-
sequences of this are twofold: Firstly, the stationary state of the system is not
uniquely described by its instantaneous stationary mean-square velocity. This is
due to the long-time memory present in the system, which causes its evolution to
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depend on its entire history and not only on its instantaneous state. Secondly, the
system described by Eq. (2.34) is profoundly and for all times a nonequilibrium
system, in contrast to the equilibrium system described by Eq. (2.10), which may
start out in a nonequilibrium state but ultimately relaxes to equilibrium. In fact,
the nonstationarity of the velocity dynamics is a fundamental feature of systems
driven by nonequilibrium noise, as can be understood from the following argu-
ment. Assume that the velocity dynamics are described by a generalized Langevin
type of equation,

v̇(t) = −γ

∫t
0

dt ′ k(t− t ′)v(t ′) +
1

m
ξ(t), (2.121)

where ξ(t) is a nonequilibrium noise which is not related to k(t) by a fluctuation-
dissipation relation. The formal solution to this equation is given by,

v(t) =
1

m

∫t
0

dt ′ g(t− t ′)ξ(t ′) + g(t)v0, (2.122)

where g(t) is defined by Eq. (2.116). Now suppose the velocity correlation function
is stationary for all times. Then we can write,

〈v(t+ τ)v(t)〉 = 〈v(τ)v0〉 =
1

m

∫τ
0

dt ′ g(τ− t ′)〈ξ(t ′)v0〉+ g(τ)〈v02〉. (2.123)

The noise at some later time t > 0 has to be independent of the initial velocity
〈ξ(t)v0〉 = 0 due to causality – after all, the force causes the motion of the particle
and not the other way round. This means that if the velocity correlation function
is stationary for all times, then it is inescapably given by,

〈v(t+ τ)v(t)〉 = 〈v02〉g(τ). (2.124)

This is, however, entirely independent of the nonequilibrium noise, which we know
not to be true. Since the only assumption aside from causality was the stationarity
of the velocity correlation function, this only leaves one conclusion: The velocity
correlation function for a Langevin system driven by nonequilibrium noise cannot
be stationary for all times, no matter what the initial condition is. This does not
prevent the velocity correlation function from being asymptotically stationary, but
for finite times, deviations from stationarity necessarily occur. Using Eq. (2.118)
and the equivalent expression for the nonstationary Gaussian medium velocity
process, we find that the mean-square velocity asymptotically approaches its sta-
tionary value as,

〈v2(t)〉− 〈v2〉s '
〈v02〉tα2α

γ2
t−2α−2

−


vtyp

2tα
α

cos(πβ2 )Γ(β)Γ(−α−1)(β−α−2)γtβ
β−1 t

β−α−2

vtyp
2

Γ2(β2 )(1−β)tβ
β−1 t

β−1,
(2.125)

where the first line corresponds to the stationary and the second line to the non-
stationary process. In the latter case, the nonstationarity of the medium velocity
process itself yields the dominant nonstationary correction as expected. However,
even if the medium velocity process is initially stationary, there are finite-time
nonstationary corrections due to the nonequilibrium nature of the system, which
dominate the contributions from the initial condition for long times.





3
S C A L E - I N VA R I A N T S U P E R D I F F U S I V E S Y S T E M S

Note: Parts of this Chapter are based on Ref. [Dech 14].

In the previous Chapter, we studied the properties of the fractional Langevin
equation and its extension to superdiffusive nonequilibrium dynamics. We

found that the correlation functions for the medium velocity, as well as the re-
sulting ones for the nonequilibrium noise and for the position could be cast in
a particular scaling form. Moreover, the velocity correlation function was seen to
be nonstationary for a nonequilibrium system. While the scaling forms obtained
in the previous Chapter are motivation enough to study their properties and con-
sequences on other physical quantities, the contents of this section also apply to
a more general class of stochastic processes. We therefore omit the discussion of
the respective results in the context of nonequilibrium dynamics in cells in this
Chapter and rather employ the results derived here in the next Chapter where
appropriate. In Section 3.1, we formalize the idea of a scaling correlation function.
The scale invariance of the dynamics is expressed by the fact that a rescaling of
time only changes the correlation function algebraically. Moreover, the age of the
system, instead of some intrinsic characteristic time scale, determines the rate at
which the system decorrelates. The scaling correlation function is thus generally
an aging correlation function, meaning that it not only depends on the time lag τ
but also on the overall time t, called the age of the system. This is equivalent to the
nonstationarity of the correlation function, although the term aging is mostly used
to describe long-time nonstationarity. This includes systems, where the relaxation
into a stationary state takes place on time scales longer than or comparable to the
measurement time, and systems where no stationary state exists. Besides aging
correlation functions, our general scaling form also includes stationary power-law
correlation functions as a particular case.

One of the central consequences of such a scaling correlation function is that it
leads to a generalization of the Green-Kubo formula, which relates the diffusion
coefficient and the velocity correlations. The traditional Green-Kubo formula in-
variably leads to normal diffusion, 〈∆x2(t)〉 = 2D1t, but applies only to systems
whose velocity correlations are stationary and relatively short ranged and thus
breaks down for the scale invariant aging systems we consider. Our generaliza-
tion, which we call scaling Green-Kubo relation, is able to treat these cases and
leads to superdiffusion, 〈∆x2(t)〉 = 2Dνt

ν with ν > 1. Both relations express the
diffusion coefficient as an integral over a function that characterizes the velocity
dynamics. For the Green-Kubo formula, this is the stationary velocity correlation
function itself, for the scaling Green-Kubo relation, it is the scaling function which
depends on the ratio of the time lag τ and the age t. Our scaling Green-Kubo re-
lation leads to a novel effect, which does not occur for normal diffusion, namely
that the diffusive properties of the system depend strongly on its initial prepara-
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tion and the involved time scales. This dependence can persist for arbitrarily long
times, which is in stark contrast to systems with exponential relaxation, where the
intrinsic characteristic time scale sets the time scale for any deviations from the
unique long-time behavior. This means that, in particular, the diffusion coefficient
is not unique for superdiffusive systems, but can take different values depending
on the initial state of the system.

The existence of a scaling correlation function for the velocity translates into a
scaling correlation function for the position. A striking consequence of this scaling
position correlation is that the system is nonergodic if it is not initially in a sta-
tionary state, as we show in Section 3.2. Ergodicity, in the sense we discuss it here,
means that the time-average of a quantity – in this case the square of the particle
displacement – is equal to the ensemble average for sufficiently long averaging
times. If a system is ergodic, we may thus use a single realization or measurement
of a time-dependent stochastic quantity to infer its average value. For the scaling
systems we discuss here, this is only true, if the system is initially in the station-
ary state. If the system is not stationary at the start of the measurement, then the
slow relaxation towards the stationary state will lead to a discrepancy between
the time and ensemble-averaged square displacements that persists for arbitrar-
ily long times. Of particular importance is the dependence of these findings on
the respective time scales: If the system starts out in a nonstationary initial state,
then the relaxation time that needs to pass, before the system can be considered
as stationary in terms of ergodic behavior, has to be much longer than the desired
measurement time. Again, due to scale invariance, it is not some intrinsic time
scale of the system that dictates the length of the relaxation time, but the actual
measurement time.

In Section 3.3 we turn from time-dependent to frequency dependent quantities.
The scaling velocity correlation function leads to a similar scaling form both for its
Laplace transform and for the power spectral density. The former is useful, because
the analytic calculation of the correlation functions is often easier in the Laplace
domain, in particular for non-Markovian systems. The relation between the scaling
velocity correlation function and the velocity spectral density, on the other hand,
generalizes another central result of statistical mechanics, the Wiener-Khinchine
theorem. In its original form, it expresses the spectral density as the Fourier trans-
form of the stationary autocorrelation function. As with the Green-Kubo formula,
the scaling function takes the place of the stationary velocity correlation function.
There is, however, one crucial difference between the original Wiener-Khinchine
theorem and our scaling generalization: In our case, the spectral density generally
depends on time as well as frequency. Where in the scaling correlation function, the
age of the system set the time scale for the decay of the correlations, it now sets the
frequency scale. This directly mirrors the scale-invariance of the system: Whether
a frequency is high or low is not determined in comparison to some intrinsic fre-
quency scale but in comparison to the measurement time. In the limit where the
measurement time is much longer than the inverse frequency, the velocity spectral
density becomes time-independent in most cases and decays as a function of fre-
quency as ω1−ν, where ν > 1 is the diffusion exponent. This means that a process



3.1 scaling green-kubo relation 51

described by a scaling velocity correlation function is a realization of 1/f-noise.
In the opposite limit, where the frequency is much smaller than the inverse mea-
surement time, the scaling form of the spectral density yields a time-dependent
low-frequency cutoff, so the total power, while possibly time-dependent, is finite
for finite times. For the position spectral density, we find that it is time-dependent,
its overall value increasing with time, and depends on frequency as ω−2, inde-
pendent of the diffusion exponent ν. In contrast to the velocity spectral density,
the frequency-dependence of the position spectral density does not allow to de-
duce the scaling behavior and the diffusion exponent; these are encoded in the
time-dependence of the position spectral density.

Finally in Section 3.4, we apply these results to the stochastic processes we are
going to used to model nonequilibrium superdiffusion in cells, fractional Gaussian
noise and the Lévy walk. All three velocity processes we consider are all charac-
terized by a single parameter β. In the regime 0 < β < 1, which is relevant for
superdiffusion in cells, all three processes lead to superdiffusion, 〈∆x2(t)〉 ∼ Dνtν
with ν = β + 1. In this regime, the velocity correlation functions are asymptoti-
cally stationary. However, as discussed before, deviations from the the stationary
behavior lead to changes in the anomalous diffusion coefficient Dν, which persist
for arbitrarily long times. For this reason, we find different results for the sta-
tionary Gaussian process, Mandelbrot-van-Ness fractional Gaussian noise, and for
the nonstationary Gaussian process, Riemann-Liouville fractional Gaussian noise,
even though both processes are asymptotically equivalent. For the non-Gaussian
Lévy walk, we similarly find a stationary and a nonstationary value for the diffu-
sion coefficient. Depending on the process and the exponent β, these two values
can differ substantially and only coincide in the limit β → 0, which corresponds
to normal diffusion. By contrast, the velocity spectral density is, apart from the
low-frequency cutoff, insensitive to the distinction between stationary and nonsta-
tionary processes. For 1 < β < 2, both the fractional Gaussian process and the Lévy
walk are only defined in their nonstationary variants and no longer have a well-
defined stationary limit. While for the Lévy walk, diffusion is quasi-ballistic with
diffusion exponent ν = 2 in this regime, the fractional Gaussian velocity process,
which now corresponds to Riemann-Liouville fractional Brownian motion, leads
to faster-than-ballistic expansion with ν = β+ 1. In the latter case, the occurrence
of superballistic diffusion depends on the initial condition: It can only be observed
on time scales longer than an initial relaxation time, for shorter times, the motion
is ballistic as well.

3.1 scaling green-kubo relation

The Taylor-Green-Kubo (or Green-Kubo for short) formula is an important tool in
relating the diffusive properties of a system to the underlying velocity dynamics.
While it is conceptually very simple, expressing the diffusion constant as an inte-
gral over the stationary velocity autocorrelation function, it nevertheless has some
rather profound consequences. It asserts, that for a wide class of possible velocity
processes, diffusion will always be normal, 〈∆x2(t)〉 ' 2D1t, i.e. the mean-square
displacement of the particle increases linearly with time. The only influence of the
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specific details of the process on the dynamics is through the numerical value of
the diffusion coefficient D1. In Section 3.1.1, we shortly review the Green-Kubo
formula as it applies to normal diffusion and outline the limits of its validity; in
particular the Green-Kubo formula cannot be applied to nonstationary processes.
We then introduce a class of correlation functions in Section 3.1.2, for which the
Green-Kubo formula does not work, since they decay slowly with time or are non-
stationary. For this class of what we call scaling correlation functions, we provide
a generalization of the Green-Kubo formula, termed scaling Green-Kubo relation,
and show that it leads to superdiffusion, relating the diffusion exponent and diffu-
sion coefficient to the scaling of the velocity correlation function. In Section 3.1.3,
we discuss the effect of initial conditions on the diffusive dynamics and show that
the initial state of the system may have a persistent effect on the diffusion co-
efficient. The robustness of the scaling correlation function becomes apparent in
Section 3.1.4, where we show how scaling in the velocity correlation function in
a natural way leads to scaling in the position correlation function, extending the
scaling Green-Kubo relation from the one-time moments (i.e. the mean-square dis-
placement) to two-time moments. Moreover, apart from being an analytical tool to
determine the superdiffusive behavior from a known velocity autocorrelation func-
tion, the scaling Green-Kubo relation can also be used as a tool for data analysis.
In Section 3.1.5 we employ it in this manner and show how a proper rescaling of
data can be used to identify the diffusion exponent and coefficient. Since the scal-
ing Green-Kubo formula relies on the asymptotic long-time scaling of the velocity
correlations, it is important to quantify how possible short-time deviations from
the scaling behavior impact the results and we do so in Section 3.1.6.

3.1.1 Green-Kubo formula and range of validity

For many systems, among them the paradigmatic example for diffusion, Brownian
motion (see Eq. (2.1) and the following discussion), the relaxation of the velocity
into the stationary state is exponential. In this case, on time scales that are long
compared to the typical intrinsic characteristic time scales, the system’s velocity
correlation function,

Cv(t+ τ, t) = 〈v(t+ τ)v(t)〉− 〈v(t+ τ)〉〈v(t)〉, (3.1)

can be assumed to be stationary for all practical purposes,

Cv(t+ τ, t) = Cv,s(τ), (3.2)

where the subscript s denotes stationarity, i.e. that the correlation function is inde-
pendent of t. Since the displacement x(t) of a particle relative to its initial position
x(0) = x0 is related to its velocity by x(t) =

∫t
0 dt ′ v(t ′), the mean-square displace-

ment,

〈∆x2(t)〉 = 〈x2(t)〉− 〈x(t)〉2, (3.3)

is related to the velocity autocorrelation by,

〈∆x2(t)〉 =
∫t
0

dt ′′
∫t
0

dt ′ Cv(t ′′, t ′). (3.4)
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Since the velocity correlation function is by definition invariant under exchanging
its arguments, we may equivalently write this as,

〈∆x2(t)〉 = 2
∫t
0

dt ′′
∫t ′′
0

dt ′ Cv(t ′′, t ′). (3.5)

If the velocity correlation function is stationary, then we can change variables from
t ′ to τ = t ′′ − t ′,

〈∆x2(t)〉 = 2
∫t
0

dt ′′
∫t ′′
0

dτ Cv,s(τ). (3.6)

Taking the derivative with respect to t, we find,

d
dt
〈∆x2(t)〉 = 2

∫t
0

dτ Cv,s(τ). (3.7)

In principle, the derivative of the mean-square displacement can be positive or
negative, indicating either diffusion or concentration of tracer particles. We are
interested in the long-time dynamics of diffusive systems, where the mean-square
displacement increases as a function of time. Then there are three possibilities for
the expression on the right hand side of Eq. (3.7). If it tends to a constant, then we
define this constant as the diffusion coefficient,

D1 = lim
t→∞

∫t
0

dτ Cv,s(τ). (3.8)

In this situation, the mean-square displacement increases linearly with time and
we have normal diffusion asymptotically,

〈∆x2(t)〉 ' 2t
∫∞
0

dτ Cv,s(τ) = 2D1t. (3.9)

Equation (3.9) is the Green-Kubo formula [Tayl 21, Gree 53, Kubo 57]. It ascertains
that for normal diffusion, the diffusion coefficient is given by the integral over
the stationary velocity correlation function. There are two conditions for it to be
valid: The correlation function has to be stationary and this stationary correlation
function has to be such that the integral in Eq. (3.9) is finite. Both conditions are
satisfied for systems with an exponential correlation function like Eq. (2.7),

Cv,s(τ) =
kBT

m
e−γτ, (3.10)

where the Green-Kubo formula immediately gives us the Einstein relation [Eins 05],

D1 =
kBT

mγ
, (3.11)

in agreement with Eq. (2.9). However, exponential relaxation is not a requirement
for the validity of the Green-Kubo formula, as long as the stationary correlation
function decays faster than τ−1 for long times, the integral and thus the normal dif-
fusion coefficient D1 will be finite. Normal diffusion is thus the expected behavior
for systems with sufficiently short-ranged correlations.
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The other two possibilities for Eq. (3.7) both lead to anomalous diffusion. If
the expression on the right hand side of Eq. (3.7) tends to zero for long times,
then the normal diffusion coefficient D1 vanishes. This can then lead to subdif-
fusion, 〈∆x2(t)〉 ' 2Dνtν with 0 < ν < 1, if the integral in Eq. (3.7) behaves as
tν−1 for long times. Or, if the integral goes to zero even faster, then we will have
no diffusion at all and a constant mean-square displacement 〈∆x2(t)〉 ' 2D0 in
the long-time limit. Both of these possibilities require that the stationary velocity
correlation function Cv,s(τ) changes sign as a function of τ, i.e. that the velocity
dynamics becomes anticorrelated. An example for this kind of behavior is the
equilibrium fractional Langevin equation, where we found the Mittag-Leffler type
behavior Eq. (2.25) which has a negative long-time tail. On the other hand, if the
correlations are positive but long-ranged, the integral in Eq. (3.7) will increase as
a function of time. Then the dynamics are superdiffusive, as we saw for the three
examples of the nonequilibrium moving medium in Section 2.3. This last case is
the one on which we will focus on below, including the possibility of a nonstation-
ary velocity correlation function. To summarize, the mean-square displacement
behaves as,

〈∆x2(t)〉 ' 2Dνtν. (3.12)

Subdiffusion 0 < ν < 1 requires anticorrelations in the velocity, whereas superdif-
fusion ν > 1 arises for long-ranged positive correlations [Morg 02]. For general
short-ranged correlations, we have normal diffusion ν = 1 with the corresponding
diffusion coefficient D1 given by the Green-Kubo formula Eq. (3.9).

3.1.2 Scaling correlation functions and scaling Green-Kubo relation

We now introduce a general class of velocity correlation functions, for which the
Green-Kubo formula Eq. (3.8) fails. We call them scaling correlation functions and
they are of the form [Dech 14],

Cv(t+ τ, t) ' Ctν−2φ
(τ
t

)
, (3.13)

with C > 0. This form generally only holds asymptotically, i.e. when both t and τ
are large compared to some intrinsic time scale tc of the system. In the following,
we consider the case ν > 1, which leads to superdiffusion. Obviously, Eq. (3.13)
generally describes a nonstationary correlation function, since it depends on the
age t of the system as well as on the time lag τ. This, the Green-Kubo formula
Eq. (3.9) is not applicable. While a similar scaling function with ν < 1 can be
found for subdiffusive dynamics (see e.g. Eq. (2.25)), the asymptotic scaling prop-
erties alone are not sufficient to characterize the diffusive behavior in this case. The
asymptotic behavior of the positive-valued function φ(y), which we term scaling
function, has to lie within the following limits,

φ(y) .


aly

δl with − 1 < δl for y� 1

buy
δu with δu < ν− 1 for y� 1,

(3.14)
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with positive constants al and bu. We then use Eq. (3.5) to find the mean-square
displacement,

〈∆x2(t)〉 ' 2C
∫t
0

dt ′′
∫t ′′
0

dt ′ t ′ν−2φ
(
t ′′ − t ′

t ′

)
. (3.15)

Obviously, this can only hold asymptotically, since we used the asymptotic form
of the correlation function and also extended the lower limits of the integrals to
zero. For now, we just assume this is permissible and postpone the discussion of
possible contributions from the short-time behavior to Section 3.1.6. We introduce
the variable y = (t ′′ − t ′)/t ′ in the t ′-integral,

〈∆x2(t)〉 ' 2C
∫t
0

dt ′′ t ′′ν−1
∫∞
0

dy (1+ y)−νφ(y). (3.16)

The integral over t ′′ is now straightforward and we arrive at,

〈∆x2(t)〉 ' 2C
ν
tν

∫∞
0

dy (1+ y)−νφ(y). (3.17)

This relation is very similar to the Green-Kubo formula, Eq. (3.9), and we call it
scaling Green-Kubo relation, since it relies on the scaling form of the asymptotic
velocity correlation function. Comparing Eq. (3.17) with the general form of the
mean-square displacement, Eq. (3.12), we can identify the anomalous diffusion
coefficient,

Dν =
C

ν

∫∞
0

dy (1+ y)−νφ(y). (3.18)

The scaling Green-Kubo relation Eq. (3.17) is the complement to the Green-Kubo
formula Eq. (3.9) for superdiffusive dynamics. The Green-Kubo formula describes
normal diffusion under the condition that the velocity correlation function is sta-
tionary and integrable, the precise details of the correlation function only influence
the diffusion coefficient D1. Similarly, the scaling Green-Kubo relation results in
superdiffusion, provided the velocity correlation function is of the scaling form
Eq. (3.13). The important ingredient is the scaling exponent ν− 2 which results in
the diffusion exponent ν. As with the Green-Kubo formula, the particular shape of
the scaling function φ(y) only influences the anomalous diffusion coefficient Dν,
but not the qualitative dynamics. Let us note that this formalism is not restricted
to velocity and position. The only requirement is that one variable is given by the
time-integral over the other, which is in turn described by a scaling correlation
function. The above can then be applied in a straightforward manner to e.g. time
averages, x̄(t) =

∫t
0 dt ′x(t ′)/t. Three examples for the applicability of the scaling

Green-Kubo relation to different physical systems are discussed in Ref. [Dech 14].

The scaling correlation function Eq. (3.13) is generally nonstationary, since it
depends on both the overall time t and the time lag τ. However, for the particular
choice of the scaling function φ(y) ∝ yν−2 with ν < 2, it also includes the special
case of stationary power-law correlation functions,

Cv,s(τ) ' Csτ
ν−2, (3.19)
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with Cs > 0. For ν > 1, these correlation functions, though stationary, are not cov-
ered by the Green-Kubo formula Eq. (3.9), since the integral in Eq. (3.7) increases
with time. In this case, the scaling Green-Kubo relation Eq. (3.17) gives us,

〈∆x2(t)〉 ' 2Dν,st
ν with Dν,s =

Cs

ν(ν− 1)
. (3.20)

While the velocity correlation function may not be explicitly stationary, it may ap-
proach the stationary behavior Eq. (3.19) in the limit of long overall time t � τ

(see e.g. Eq. (2.44)). In this case, an obvious question is whether the actual nonsta-
tionary correlation function and its long-time stationary limit describe the same
diffusive dynamics. For the paradigmatic example for normal diffusion, Brownian
motion (see Eq. (2.6)), this is in fact the case. Here the nonstationary and stationary
velocity correlation functions yield the same mean-square displacement apart from
short time corrections. Whether this is also true in the superdiffusive case will be
discussed in Section 3.1.3. Another special case of Eq. (3.13) is that of a pure aging
correlation function for ν = 2,

Cv,a

(τ
t

)
' Caφ

(τ
t

)
. (3.21)

Such a correlation function is known from a variety of systems [Bouc 92, Cugl 94],
including the Lévy walk (see Section 2.2.2) for 1 < β < 2 [Godr 01]. For these
kinds of systems, the scaling Green-Kubo relation Eq. (3.17) gives us quasi-ballistic
superdiffusion,

〈∆x2(t)〉 ' 2D2t2 with D2 =
Ca

2

∫∞
0

dy (1+ y)−2φ(y). (3.22)

For the Lévy walk, this kind of behavior corresponds to the regime where the aver-
age waiting time is infinite and particles thus tend to spend a significant amount of
the observation time traveling in the same direction, causing ballistic-like motion
[Godr 01, Jung 02, Froe 13]. While the term aging describes any kind of dynamics
which depends on the overall age t, it is particularly fitting here, since the existence
of a scaling function implies that the correlation time increases linearly with the
age of the system, in contrast to the normal case, where the correlation time is set
by the intrinsic characteristic time scale. The third important example of Eq. (3.13)
we want to highlight is ν > 2 and φ(y) ' a0 for y � 1. Here we have for long
overall times t� τ,

Cv(t+ τ, t) ' a0Ctν−2, (3.23)

which is independent of τ. Because the correlation function has to be continuous,
this implies that the mean-square velocity 〈∆v2(t)〉 = 〈v2(t)〉− 〈v(t)〉2 = Cv(t, t)
increases with time,

〈∆v2(t)〉 ' a0Ctν−2. (3.24)

This corresponds to an overall acceleration of the particles and leads to faster than
ballistic superdiffusion. We refer to this situation as superaging, as in addition to
usual aging, the magnitude of the velocity correlation function increases with time.
While we do not encounter this situation for the velocity correlation function for
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superdiffusion in cells, which is subballistic and possesses a stationary limit for the
velocity, this form of the correlation function is precisely the one that does occur
for the position and thus can be used to apply some of the following results to the
position dynamics.

3.1.3 Sensitivity to initial conditions

We now want to consider a slightly different situation. So far, we defined the dis-
placement x(t) of a particle relative to its initial position at time t = 0. Instead, we
now want to examine the relative displacement with respect to some large initial
time t0, xt0(t) = x(t+ t0)− x(t0), so that xt0=0 = x(t). Physically, this corresponds
to letting the system evolve for some time t0 from its initial state and then measur-
ing the displacement starting at t0. For this reason we call t0 the relaxation time
and t the measurement time. The relative displacement is related to the velocity
of the particle by xt0(t) =

∫t+t0
t0

dt ′ v(t ′) and we thus have for the corresponding
relative mean-square displacement,

〈∆xt0
2(t)〉 = 〈xt0

2(t)〉− 〈xt0(t)〉
2 =

∫t+t0
t0

dt ′′
∫t+t0
t0

dt ′ Cv(t ′′, t ′). (3.25)

We shift both integration variables by t0,

〈∆xt0
2(t)〉 =

∫t
0

dt ′′
∫t
0

dt ′ Cv(t ′′ + t0, t ′ + t0)

= 2

∫t
0

dt ′′
∫t ′′
0

dt ′ Cv(t ′′ + t0, t ′ + t0). (3.26)

If the velocity correlation function is of the scaling form Eq. (3.13), then we have,

〈∆xt0
2(t)〉 ' 2C

∫t
0

dt ′′
∫t ′′
0

dt ′ (t ′ + t0)ν−2φ
(
t ′′ − t ′

t ′ + t0

)
= 2D

t
t0
ν t

ν, (3.27)

with the formally time-dependent anomalous diffusion coefficient,

D
t
t0
ν = C

∫1
0

dz
(
z+

t0
t

)ν−1 ∫z tt0
0

dy (1+ y)−νφ(y). (3.28)

Here we introduced the variables y = (t ′′ − t ′)/(t ′ + t0) and z = t ′′/t. In the limit
t� t0 we can neglect the second term in parentheses and this reduces to Eq. (3.18),

D∞
ν = Dν =

C

ν

∫∞
0

dy (1+ y)−νφ(y). (3.29)

The expression given by the scaling Green-Kubo relation Eq. (3.17) thus corre-
sponds to the actual long-time limit, when the measurement time is much longer
than all involved time scales including the relaxation time. In the opposite limit
t0 � t, on the other hand, we can neglect the first term in parentheses,

D
t
t0
ν ' C

(
t

t0

)1−ν ∫1
0

dz
∫z tt0
0

dy (1+ y)−νφ(y). (3.30)
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The upper boundary of the inner integral is very small and the asymptotic behavior
thus depends only on the behavior of the scaling function for small arguments,
φ(y) ' aly

δl ,

D
t
t0
ν '

alC

(δl + 1)(δl + 2)

(
t

t0

)δl−ν+2

. (3.31)

If the velocity correlations have a stationary limit, then, as we saw before, this
means φ(y) ' aν−2y

ν−2 for small y (corresponding to t � τ) with a positive
constant aν−2. Consequently, the diffusion coefficient in this limit is given by the
same expression as if we had used the stationary correlation function in the first
place,

D0ν = Dν,s =
Cs

ν(ν− 1)
, (3.32)

with Cs = aν−2C. In the case where the velocity correlations are asymptotically
stationary, both the full nonstationary and the stationary correlation function yield
the same diffusion exponent, however, the corresponding anomalous diffusion co-
efficient is different. We found the same behavior for the asymptotic mean-square
displacement in Section 2.3.2, where we saw that nonstationary and stationary
fractional Gaussian noise yield different results for the diffusion coefficient, even
though the two processes are asymptotically equivalent. The diffusion coefficient
is thus not unique but instead, even for long times, sensitive to whether the system
was initially in the stationary state (i.e. infinite relaxation time) or not. For a finite
relaxation time, the measured diffusion coefficient exhibits a crossover from the
stationary value Eq. (3.32) on time scales shorter that t0 to the nonstationary one
Eq. (3.29) on time scales longer than t0. Note, however, that both limiting values for
the diffusion coefficient are themselves independent of t0. This is in contrast to the
normal diffusive case, where, as long as either the relaxation time or the measure-
ment time are large compared to the intrinsic relaxation time, both the stationary
and the nonstationary velocity correlation function yield the same diffusion coeffi-
cient. Such a persistent dependence of the long-time dynamics on the initial state
of the system is known from a certain class of dynamical systems [Zumo 93] and
single file diffusion [Leib 13].

This discrepancy is even more pronounced in the superaging case, where we
have ν > 2 and φ(y) ' a0, and thus,

D
t
t0
ν '

a0C

2

(
t

t0

)2−ν
. (3.33)

For the mean-square displacement this results in,

〈∆xt0
2(t)〉 ' a0C tν−20 t2 = 〈∆v2(t0)〉 t2, (3.34)

where we used Eq. (3.24) for the mean-square velocity. Here the dynamics are
qualitatively different depending on the relative size of the measurement time and
relaxation time. If t0 � t, the mean-square velocity, which grows with time, is large
but more or less constant on the time scale of the measurement, leading to ballistic
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spreading. As the measurement time becomes comparable to the relaxation time,
the increase of the mean-square velocity makes itself felt, until at long measure-
ment times t � t0, the acceleration of the particles dominates the dynamics and
leads to faster that ballistic diffusion.

Finally, there is the borderline case ν = 2, with a logarithmic behavior of the
scaling function, φ(y) ' −a∗ ln(y) with a∗ > 0 for y � 1. This case corresponds
to pure aging, Eq. (3.21), and leads to,

D
t
t0
ν ' −

a∗C

2
ln
(
t

t0

)
, (3.35)

and thus ballistic expansion with a diffusion coefficient increasing logarithmically
with t0,

〈∆xt0
2(t)〉 ' −a∗C ln

(
t

t0

)
t2. (3.36)

The logarithmic increase of the diffusion coefficient with the relaxation time re-
flects a logarithmic growth of the mean-square velocity, 〈∆v2(t)〉 ' a∗C ln(t). Inter-
estingly, this logarithmic growth is not sufficient to enhance diffusion beyond the
quasi-ballistic behavior for t� t0, see Eq. (3.22).

An important observation is that, as a direct consequence of the scaling form
Eq. (3.13) for the velocity correlation, the time-dependent diffusion coefficient de-
pends on the ratio of the measurement time t and the relaxation time t0. Thus, due
to the absence of any intrinsic time scales, the relevant time scale for the dynam-
ics is set by the relaxation time t0, which is not intrinsic to the system but rather
set by its history and initial preparation and thus in principle an experimentally
controllable parameter. The above behavior is in stark contrast to normal diffusion
and also the subdiffusive equilibrium motion described by the fractional Langevin
equation Eq. (2.17). For normal diffusion, we find from Eq. (2.5),

〈∆x2(t)〉t0 =
2kBT

mγ
t

+
kBT

mγ2

(
2e−γt + e−γ(t+2t0) − 2e−2γt0 − e−2γ(t+t0) − 2

)
,

(3.37)

and for the equilibrium fractional Langevin equation, we find from Eq. (2.22),

〈∆x2(t)〉t0 '
2kBT

Γ(2−α)mγtα

(
t

tα

)1−α
+

2kBT

Γ2(1−α)mγ2tα2

[(
t+ t0
tα

)−2α

−

(
(t+ t0)t0

tα
2

)−α ]
. (3.38)

While in both cases, there are t0-dependent corrections to the mean-square dis-
placement, the important difference is that these become negligible for long times.
Independent of t0, the mean-square displacement and thus the (anomalous) diffu-
sion coefficient are unique in the long-time limit. This underlines a fundamental
difference between the sub- or normal diffusive equilibrium dynamics and the
superdiffusive dynamics described by the scaling correlation function Eq. (3.13).
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3.1.4 Position correlation function

So far, we focused on the mean-square displacement and how it is related to the
scaling velocity autocorrelation function. If we instead consider the position auto-
correlation function,

Cx(t+ τ, t) = 〈x(t+ τ)x(t)〉− 〈x(t+ τ)〉〈x(t)〉, (3.39)

we can relate it to the velocity correlation function by,

Cx(t+ τ, t) =
∫t+τ
0

dt ′′
∫t
0

dt ′ Cv(t ′′, t ′). (3.40)

Since the scaling correlation function Eq. (3.13) requires explicit time ordering of
its arguments, we divide the above integral accordingly,

Cx(t+ τ, t) = 2
∫t
0

dt ′′
∫t ′′
0

dt ′ Cv(t ′′, t ′) +
∫t+τ
t

dt ′′
∫t
0

dt ′ Cv(t ′′, t ′), (3.41)

where we used the symmetry of the correlation function under exchanging its
arguments. The first term is precisely the mean square displacement at time t and
thus given by Eq. (3.17). In the second term, we use the scaling form Eq. (3.13)
for the velocity correlation function and change variables to u = (t ′′ − t ′)/t ′ and
w = t ′′/t− 1 to obtain,

Cx(t+ τ, t) ' 2Dνtν + Ctν
∫ τ
t

0

dw wν−1
∫∞
w

du (1+ u)−νφ(u)

= tν
[
2Dν + Cψ

(τ
t

)]
, (3.42)

which is again of a scaling form similar to Eq. (3.42) with a new scaling function
ψ(y),

ψ(y) =

∫y
0

dw (1+w)ν−1
∫∞
w

du (1+ u)−νφ(u)

=
1

ν
((1+ y)ν − 1)

∫∞
0

du (1+ u)−νφ(u)

−

∫y
0

dw (1+w)ν−1
∫w
0

du (1+ u)−νφ(u). (3.43)

The scaling velocity autocorrelation function thus directly results in a scaling posi-
tion autocorrelation function. This emphasizes the fact that the scaling behavior is
a fundamental property of the system.

Moreover, the asymptotic behavior of the scaling function φ(y) determines the
one of the derived scaling function ψ(y). For small y, assuming that φ(y) ' aly

δl ,
we have,

ψ(y) '
(
y+

ν− 1

2
y2
) ∫∞

0

du (1+ u)−νφ(u)

−
al

(δl + 1)(δl + 2)
yδl+2 +O(yδl+3). (3.44)
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For the particular case of an asymptotically stationary velocity correlation, φ(y) '
aν−2y

ν−2, this gives us,

ψ(y) '
(
y+

ν− 1

2
y2
) ∫∞

0

du (1+ u)−νφ(u)

−
aν−2
ν(ν− 1)

yν +O(yν+1), (3.45)

whereas for the superaging type, φ(y) ' a0, we have,

ψ(y) ' y
∫∞
0

du (1+ u)−νφ(u) +

(
ν− 1

2
−
a0
2

)
y2 +O(y3). (3.46)

Since we have δl > −1 (see Eq. (3.14)), the leading order of ψ(y) is linear in y
independent of the small-y behavior of φ(y),

ψ(y) ' νDνy. (3.47)

This is in agreement with Cx(t, t) = 〈∆x2(t)〉 ' 2Dνtν. For large y and for φ(y) '
buy

δu , we get,

ψ(y) ' 1

ν
yν

∫∞
0

du (1+ u)−νφ(u) −
bu

(δu + 1)(ν− 1− δu)
yδu+1

+O(yν−1). (3.48)

Since we have δu + 1 < ν (see Eq. (3.14)), the leading order is now proportional to
yν, which gives us for the position correlation function in the limit τ� t,

Cx(t+ τ, t) ' Dντν. (3.49)

The leading order asymptotic behavior of the position correlation function thus,
just like the mean-square displacement, depends on the detailed shape of the cor-
relation function only through the diffusion coefficient Dν. Once again, special
care needs to be given to the case where ν = 2 and the leading order behavior of
the velocity scaling function is logarithmic, φ(y) ' −a∗ ln(y) for y� 1, where we
have for small y instead of Eq. (3.44),

ψ(y) '
(
y+

(
1

2
−
3a∗

4

)
y2
) ∫∞

0

du (1+ u)−νφ(u) +
c∗

2
y2 ln(y). (3.50)

3.1.5 Application to experimental data

Note: This section is derived from and closely follows Ref. [Dech 14].

The scaling Green-Kubo relation Eq. (3.17) cannot only be used to calculate the
diffusion coefficient from an analytically known velocity correlation function, but
also serves as a data analysis method for a generic velocity correlation function that
has been obtained experimentally or numerically. To this end, we use the velocity
correlation function generated by performing numerical Langevin simulations of
free diffusion under the influence of a friction force that is inversely proportional
to the velocity. Such a Langevin dynamics describes, for example, the diffusion of



62 scale-invariant superdiffusive systems

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 01 0 - 1

1 0 0

1 0 1

1 0 2
a )

 

 

C v(t+
τ,t)

t  +  τ

t

0 5 1 0 1 51 0 - 1

1 0 0

1 0 1

1 0 2

 

 

C v(t+
τ,t)

τ / t

t

b )

0 5 1 0 1 51 0 - 2

1 0 - 1

1 0 0

c )

 

 

C v(t+
τ,t)

/t2-ν

τ / t
1 0 0 1 0 0 0

1 0 5

1 0 6

1 0 7

1 0 8 d )

 

 
<∆

x2 (t)>

t

Figure 3.1: Computation of the diffusion exponent and coefficient for cold atoms in optical
lattices from the correlation function using the scaling Green-Kubo formula Eq. (3.17).
a) Correlation function as a function of the total time t + τ for different values of t. b)
Correlation function plotted as a function of τ/t. c) After rescaling by tν−2 with ν =

2.37. d) Mean square displacement obtained by integrating over the rescaled correlation
function φ(s) (empty circles) compared to the analytical result (red line) and the mean
square displacement obtained directly from the Langevin simulation (blue squares). From
the rescaling and integration procedure, we obtain ν ' 2.37 and Dν ' 0.321, which agrees
well with the asymptotic analytical results ν = 2.37 and Dν = 0.323.
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cold atoms in a shallow optical lattice [Cast 91] or the dynamics of bubbles in DNA
[Foge 07]. While this system will not be discussed in this work, it is a further exam-
ple for the occurrence of a scaling correlation function of the type Eq. (3.13). Here,
we use it as a black box to generate data for the correlation function to which
we apply the scaling Green-Kubo relation. Applying Eq. (3.17) to the measured
correlation function requires identifying the scaling behavior of the latter. This is
done in the following way, as illustrated in Fig. 3.1. First, we obtain the correla-
tion function as a function of the time lag τ for different times t and plot it as a
function of τ/t (Fig. 3.1a) and b)). Then we rescale the resulting curves by tν−2,
the correct value of ν being obtained when the data collapses onto a single curve
(Fig. 3.1c)). This determines the diffusion exponent ν. The single rescaled curve
is then the function φ(s) in Eq. (3.17). Multiplying φ(s) by (1+ s)−ν and numeri-
cally integrating the resulting curve, we obtain the generalized diffusion coefficient
Dν. In Fig. 3.1d), we compare the results obtained in this way to the mean square
displacement obtained directly from the numerical simulations by integrating the
velocity process and also to the asymptotic analytical one and find good agree-
ment within the accuracy of the numerical simulations. Compared to determining
the diffusion exponent and coefficient directly from the data for the mean square
displacement, this rescaling method has the advantage that it does not require any
fitting of power-laws to the data and is thus potentially more accurate.

3.1.6 Deviations from scaling

The scaling form of the velocity autocorrelation function, Eq. (3.13) will generally
only be valid asymptotically, that is, when both the overall time t and the time
lag τ are large. Nevertheless, in Eq. (3.15), we assumed the scaling form to hold
for all times and to give the dominant contribution to the mean-square displace-
ment. We now want to assess when this approximation is valid and how short-time
deviations from the scaling behavior impact the result. For an arbitrary velocity au-
tocorrelation, we have,

〈∆x2(t)〉 = 2
∫t
0

dt ′′
∫t ′′
0

dt ′ C(t ′′, t ′). (3.51)

We assume that the scaling form Eq. (3.13) holds for t ′ > tc and t ′′ − t ′ > tc, with
some characteristic time tc. While the short-time cutoff to the scaling behavior tc
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might in principle be different for t ′ and t ′′ − t ′, we can ignore this complication
by choosing tc as the larger of the two. Splitting the integral accordingly,

〈∆x2(t)〉 = 2
[ ∫t
2tc

dt ′′
∫t ′′−tc

tc

dt ′︸ ︷︷ ︸
I1

+

∫t
tc

dt ′′
∫t ′′
t ′′−tc

dt ′︸ ︷︷ ︸
I2

+

∫t
2tc

dt ′′
∫tc

0

dt ′︸ ︷︷ ︸
I3

+

∫tc

0

dt ′′
∫t ′′
0

dt ′︸ ︷︷ ︸
I4

+

∫2tc

tc

dt ′′
∫t ′′−tc

0

dt ′︸ ︷︷ ︸
I5

]
C(t ′′, t ′). (3.52)

In I1, we can now use the scaling form Eq. (3.13) to find,

I1 ' Ctνc

∫ t
tc −1

1

dz zν−1
∫z
1
z

dy (1+ y)−νφ(y), (3.53)

where we introduced the variables y = (t ′′ − t ′)/t ′ and z = t ′/tc − 1. Since we are
interested in the long-time asymptotic behavior of the mean-square displacement,
we consider the limit t � tc. If ν > 1 and φ(y) satisfies the bounds Eq. (3.14) the
main contribution to the integral stems from large values of z and we may write,∫z

1
z

dy (1+ y)−νφ(y) =

∫∞
0

dy (1+ y)−νφ(y)

−

∫ 1
z

0

dy (1+ y)−νφ(y) −

∫∞
z

dy (1+ y)−νφ(y). (3.54)

Using the small- respectively large-argument behavior of φ(y), Eq. (3.14), we then
have for I1,

I1 ' C

[
1

ν
tν

∫∞
0

dy (1+ y)−νφ(y)

− alt
ν
c

∫ t
tc

1

dz zν−1
∫ 1
z

0

dy yδl − but
ν
c

∫ t
tc

1

dz zν−1
∫∞
z

dy yδu−ν

]
. (3.55)

The first term is just our previous result Eq. (3.17), which corresponds to tc = 0,
while the other two terms give sub-leading corrections,

I1 ' tν
[
Dν −

alC

(δl + 1)(ν− δl − 1)

(
t

tc

)−δl−1

−
buC

(δu + 1)(ν− δu − 1)

(
t

tc

)δl+1−ν

+O(1)

]
. (3.56)

In order to evaluate the remaining contributions in Eq. (3.52), we need to specify
the short-time behavior of the velocity correlation function. However, it is immedi-
ately apparent that the terms I4 and I5 are independent of t and thus just give a
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constant contribution. The two terms I2 and I3 can be estimated, if we assume that
the velocity correlations decay as a function of the time lag, Cv(t+τ, t) 6 Cv(t, t) =
〈∆v2(t)〉. If we further assume that the velocity mean-square displacement is con-
stant 〈∆v2(t)〉 = v02 or at most exhibits a power-law increase 〈∆v2(t)〉 = a0Ctν−2
for ν > 2 (see Eq. (3.24)), then we can estimate,

I2 + I3 6

[ ∫t
tc

dt ′′
∫t ′′
t ′′−tc

dt ′ +
∫t
2tc

dt ′′
∫tc

0

dt ′
]
〈∆v2(t ′)〉. (3.57)

For the case of a constant velocity mean-square displacement, we find,

I2 + I3 6 2tctv0
2 − 3tc

2v0
2, (3.58)

and thus at most a linear contribution, which is sub-dominant to I1 since we have
ν > 1. For the velocity mean-square displacement increasing as a power-law, we
find,

I2 + I3 6 a0C

[
1

ν(ν− 1)
[tν − tc

ν − (t− tc)
ν] +

1

ν− 1
tc
ν−1t

' 1

(ν− 1)

[
tct
ν−1 + tc

ν−1t
] ]

, (3.59)

where we expanded for t� tc in the last step. Since this contribution is at most of
order tν−1, it is also sub-dominant to the one stemming from I1. Summarizing, we
indeed find that the scaling part of the correlation function gives the dominant con-
tribution to the mean-square displacement and we can thus neglect the short-time
deviations from the scaling behavior in the superdiffusive case. This also allows us
to forgo explicitly specifying a short-time cutoff on the correlation function, even
if it diverges in the limit τ→ 0, as is the case for the processes discussed in Section
2.2.2, as long as this divergence is integrable.

3.2 time averages and ergodicity

In the previous Section, we derived a number of relations for ensemble-averaged
quantities like the mean-square displacement and correlation functions. By defi-
nition, an ensemble average requires a large number of realizations – ideally in-
finitely many – to be accurately reproducible. In practice, this means repeating an
experiment many times in a reproducible manner or measuring a quantity that
is itself the average of many individual stochastic systems. In many experiments,
however, only a small or moderate number of realizations is available for data
analysis. This is particularly true for single particle tracking and microrheology
experiments, where typically a small number of trajectories, each consisting of a
large number of data points, is available [Burs 05, Gall 09]. For this reason, time
averages over a single trajectory are often performed instead of or in addition to
the ensemble averaging over the available trajectories. In this Section, we discuss
how a specific time-averaged quantity, the time-averaged square displacement is
related to the mean-square displacement. To this end, we define the time-averaged
square displacement in Section 3.2.1 and compute its ensemble average in terms
of the scaling position correlation function. For a large class of systems, which are
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called mean-square ergodic, this time-averaged square displacement is for long
times equivalent to the ensemble-averaged mean square displacement, allowing to
substitute time-averaging for ensemble-averaging and vice versa [Papo 02]. For the
superdiffusive systems we consider, we show in Section 3.2.2, that mean-square er-
godicity is not a given and generally depends on the initial state of the system. In
particular, we relate the mean-square ergodicity to whether or not the system was
in a stationary state at the start of the measurement.

3.2.1 Time-averaged square displacement

The time-averaged square displacement is defined as,

∆x2(t, δ) =
1

t− δ

∫t−δ
0

dt ′[x(t ′ + δ) − x(t ′)]2, (3.60)

so it is the running time average over the square of the relative displacement be-
tween two times separated by a time lag δ. Obviously, we have to demand δ < t.
The interesting case is actually δ � t, since only then will the time average ex-
tend over a significant part of the trajectory and will yield statistically significant
information. Since the time average is performed over a single trajectory, the time-
averaged square displacement is a random variable for finite averaging time t.
The statistical properties of this random variable are related to those of the pro-
cess x(t). Since two processes, e.g. stationary fractional Gaussian noise and the
stationary Lévy walk may have the same two-time correlation function but result
in ergodic respectively nonergodic behavior, i.e. different statistics for the time-
averaged square displacement, the correlation function is obviously not sufficient
to specify the asymptotic behavior of Eq. (3.60). However, we can use the scaling
forms Eqs. (3.13) or rather (3.42) to make statements about the ensemble average
of the time-averaged square displacement,〈

∆x2(t, δ)
〉
=

1

t− δ

∫t−δ
0

dt ′
〈
[x(t ′ + δ) − x(t ′)]2

〉
=

1

t− δ

∫t−δ
0

dt ′
[
〈∆x2(t ′ + δ)〉+ 〈∆x2(t ′)〉− 2Cx(t ′ + δ, t ′)

]
+

1

t− δ

∫t−δ
0

dt ′
[
〈x(t ′ + δ)〉2 + 〈x(t ′)〉2 − 2〈x(t ′ + δ)〉〈x(t ′)〉

]
.

(3.61)

If there is no average drift of the tracer particle, 〈x(t)〉 = 0, then the second integral
vanishes, which we will assume in the following. Using the scaling form Eq. (3.42)
for the position autocorrelation, we then find,〈

∆x2(t, δ)
〉
' 1

t− δ

∫t−δ
0

dt ′
[
〈∆x2(t ′ + δ)〉− 〈∆x2(t ′)〉

]
− 2C

1

t− δ

∫t−δ
0

dt ′ t ′νψ
(
δ

t ′

)
, (3.62)
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with the scaling function Eq. (3.43). The first two terms are trivial to evaluate
assuming that 〈∆x2(t)〉 ' 2Dνtν,〈

∆x2(t, δ)
〉
' 2Dν

ν+ 1

1

t− δ

[
tν+1 − δν+1 − (t− δ)ν+1

]
− 2C

δν+1

t− δ

∫∞
δ
t−δ

dy y−ν−2ψ(y), (3.63)

where we introduced y = δ/t ′ in the last term. To find the asymptotic behavior
of the remaining integral for t � δ, we note that in this limit, the lower bound-
ary of the integral is small. Since ψ(y) increases as yν for large arguments (see
Eq. (3.48)), the entire integrand vanishes as y−2 for large y. We may thus focus
on the small-argument expansion of ψ(y), Eq. (3.44), the error being at most a
constant contribution from the integral. We then have,〈

∆x2(t, δ)
〉
' 2Dν

ν+ 1

1

t− δ

[
tν+1 − δν+1 − (t− δ)ν+1

]
− 2

δν+1

t− δ

[
Dν

(
δ

t− δ

)−ν

−
alC

(δl + 1)(δl + 2)(ν− δl − 1)

(
δ

t− δ

)δl−ν+1

+
νDν

2

(
δ

t− δ

)1−ν
+O(1)

]
, (3.64)

where we used Eq. (3.18) for Dν. Expanding for t� δ we find,〈
∆x2(t, δ)

〉
' 1

t− δ

[
2Dνδt

ν − νDνδ
2tν−1 − δν+1 + tν+1O((δ/t)3)

]
−

1

t− δ

[
2Dνδt

ν − νDνδ
2tν−1

−
2alC

(δl + 1)(δl + 2)(ν− δl − 1)
δδl+2tν−δl−1

+ tν+1O((δ/t)3) +O(1)δν+1

]

' tν
[

2alC

(δl + 1)(δl + 2)(ν− δl − 1)

(
δ

t

)δl+2

+O

((
δ

t

)ν+1)]
.

(3.65)

Both for an asymptotically stationary correlation function, ν < 2, δl = ν− 2, and
the superaging case ν > 2, δl = 0, the leading order is given by the first term.
Comparing the result to Eqs. (3.32) respectively (3.33), we can write this as,

〈
∆x2(t, δ)

〉
'


2Dν,sδ

ν for ν < 2, φ(y) ' cν−2yν−2

−a∗Cδ2 ln
(
δ
t

)
for ν = 2, φ(y) ' c∗ ln(y)

1
ν−1〈∆v

2(t)〉δ2 for ν > 2, φ(y) ' c0.

(3.66)
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Before we discuss these results in detail, we want to examine a slightly different
situation, similar to Section 3.1.3. If we let the system relax for a time t0 before
starting to measure the time-averaged square displacement, the latter is given by,

∆xt0
2(t, δ) =

1

t− δ

∫t0+t−δ
t0

dt ′[x(t ′ + δ) − x(t ′)]2. (3.67)

With the same arguments as above, we can express the ensemble mean of the time-
averaged square displacement as,〈

∆xt0
2(t, δ)

〉
' 2Dν

ν+ 1

1

t− δ

[
(t+ t0)

ν+1 − (t0 + δ)
ν+1

− (t+ t0 − δ)
ν+1 + t0

ν+1
]

− 2C
δν+1

t− δ

∫ δ
t0

δ
t0+t−δ

dy y−ν−2ψ(y), (3.68)

where, as before, we assumed that there is no average drift. For this expression,
there are in three limits that are of interest, since we still want to maintain t � δ.
For t � δt0, we can just take the limit t0 → 0 and end up with Eq. (3.66) to
leading order. If, on the other hand t0 � δ, then both the lower and upper limit of
the integral are small and we may replace ψ(y) by its small argument expansion,
Eq. (3.44), to find,〈

∆xt0
2(t, δ)

〉
' 2Dν

ν+ 1

1

t− δ

[
(t+ t0)

ν+1 − (t0 + δ)
ν+1

− (t+ t0 − δ)
ν+1 + t0

ν+1
]

−
1

t− δ

[
2Dνδ

(
(t+ t0 − δ)

ν − t0
ν
)

+ νDνδ
2
(
(t+ t0 − δ)

ν−1 − t0
ν−1

)
−

2alC

(δl + 1)(δl + 2)(ν− δl − 1)
δδl+2

×
(
(t+ t0 − δ)

ν−δl−1 − t0
ν−δl−1

)]
. (3.69)

Expanding for δ � t0 and δ � t+ t0, we see that the terms of first and second
order in δ cancel and we are left with,〈

∆xt0
2(t, δ)

〉
' 1
t

2alC

(δl + 1)(δl + 2)(ν− δl − 1)
δδl+2

×
(
(t+ t0)

ν−δl−1 − t0
ν−δl−1 − (ν− δl − 1)(t+ t0)

ν−δl−2δ
)
. (3.70)

Now we still have to distinguish between the two cases t� t0 and t0 � t, where
we find,

〈
∆xt0

2(t, δ)
〉
'


2alC

(δl+1)(δl+2)(ν−δl−1)
tν
(
δ
t

)δl+2 for t� t0

2alC
(δl+1)(δl+2)

tν0

(
δ
t0

)δl+2
for t0 � t.

(3.71)
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The result for t� t0 is the same one we had for t0 = 0, whereas in the case t0 � t,
we now have for the stationary and superaging case respectively,

〈
∆x2(t, δ)

〉
'


2Dν,sδ

ν for ν < 2, φ(y) ' cν−2yν−2

−a∗Cδ2 ln
(
δ
t0

)
for ν = 2, φ(y) ' c∗ ln(y)

〈∆v2(t0)〉δ2 for ν > 2, φ(y) ' c0.

(3.72)

3.2.2 Ergodicity and stationarity

Now that we know how the ensemble mean of the time-averaged square displace-
ment behaves in the limits of interest, we discuss how this relates ergodicity and
stationarity. A stochastic process is ergodic, if it allows to infer the behavior of the
entire ensemble of possible realizations from a single realization [Papo 02, Soko 08].
In the context of the trajectory of a tracer particle, this means that by observing and
averaging a single trajectory for a sufficiently long time, we may reconstruct en-
semble averages. For the diffusive behavior, the observable of interest is the mean-
square displacement [Saxt 97]. We thus refer to a process as mean-square ergodic,
if the time-averaged square displacement coincides with the ensemble-averaged
mean square displacement in the limit of long times,

lim
t→∞∆x2(t, δ) = 〈∆x2(δ)〉. (3.73)

This means that for every single trajectory, averaging the square displacement for
a long enough time will reproduce the mean-square displacement with arbitrary
accuracy. The above condition can be broken down into two more tangible ones.
Firstly, the ensemble average of the time-averaged square displacement has to co-
incide with the mean-square displacement,

lim
t→∞

〈
∆x2(t, δ)

〉
= 〈∆x2(δ)〉. (3.74)

This guarantees that at least on average, we will get the right result by performing
the time average. However, this alone is not sufficient, since, for finite times, the
time-averaged square displacement itself is random, and will have a finite variance.
Only if, in addition to Eq. (3.74), this variance tends to zero, we are guaranteed to
get the same result for the time-averaged square displacement in the long time
limit for every realization. This can be quantified in terms of the so-called ergodic-
ity breaking parameter [Deng 09],

EB(t, δ) =

〈
∆x2(t, δ)

2
〉
−
〈
∆x2(t, δ)

〉2
〈
∆x2(t, δ)

〉2 . (3.75)

This quantity measures the variance of the time-averaged square displacement,
normalized to its mean value. If the ergodicity breaking parameter tends to zero
for long times, while the time-averaged square displacement may still deviate from
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the mean value, the deviation relative to this mean value gets arbitrarily small.
Thus, the second condition for mean-square-ergodicity is,

lim
t→∞ EB(t, δ) = 0. (3.76)

If either of the two conditions Eqs. (3.74) and (3.76) is violated, the system is not
ergodic with respect to the mean-square displacement. However, the violations of
the two conditions are of a different quality. If Eq. (3.74) holds but Eq. (3.76) does
not, then this means that the time-averaging reproduces the ensemble average on
average, but the variance between trajectories is so large that every single trajectory
strongly deviates from the mean. In the opposite case, the time-averaging proce-
dure leads to the same result for every trajectory, but this result is not the same as
the ensemble mean.

Since Eq. (3.75) involves fourth order moments of x(t), we cannot make any
statement about the validity of Eq. (3.76) by specifying just the two-time correlation
function Eq. (3.13), unless we assume the process to be Gaussian. Nevertheless, the
analysis in the previous section allows us to specify when the condition Eq. (3.74)
holds for the general type of system we consider here. For t0 � t, i.e. when the
system can be assumed to be stationary on the time scale of the measurement, then
the mean time-averaged square displacement is given by Eq. (3.72). Comparing this
to the corresponding mean-square displacement Eqs. (3.32) respectively (3.33), we
see that both coincide:〈

∆xt0
2(t, δ)

〉
' 〈∆xt0

2(δ)〉. (3.77)

Both square displacements scale ballistically with a diffusion coefficient that de-
pends on the relaxation time t0 for ν > 2 and sub-ballistic with the stationary
diffusion coefficient Dν,s for ν < 2. So, in the limit t0 � t, the system might be
ergodic, provided that the second condition Eq. (3.76) holds. However, for ν > 2,
even without knowing the precise form of the ergodicity breaking parameter, we
can conclude from a simple physical argument that the system will be nonergodic.
The condition t0 � t corresponds to the situation where the mean-square velocity
〈∆v2(t0)〉 of the particles is initially large. Each trajectory will on average have a
large initial velocity v(t0), which does not change appreciably on the time scale t
of the measurement. Thus, while the time-averaged square displacement for each
trajectory will indeed show ballistic growth, the prefactor, which is given by this
initial velocity will be different for every realization. The ergodicity breaking pa-
rameter for t0 � t will thus be substantial and the system will not be ergodic on
these time scales. This agrees with the observation of broken ergodicity for ballistic
transport [Lapa 07, Deng 09]. For ν < 2, on the other hand, the mean-square ve-
locity reaches a stationary limit, and the system will be ergodic if Eq. (3.76) holds.
The same is true for an explicitly stationary correlation function, corresponding to
t0 = ∞.
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If, on the other hand, the system is explicitly nonstationary on the time scale
of the measurement, i.e. t � t0, the time-averaged square displacement and the
mean-square displacement are not equivalent,〈

∆xt0
2(t, δ)

〉
6= 〈∆xt0

2(δ)〉. (3.78)

In the case ν < 2, where a stationary correlation function exists, the time-averaged
square displacement is given by the stationary result Dν,s, Eq. (3.32), while the
mean-square displacement has the same diffusion exponent but the numerically
different nonstationary diffusion coefficient Dν, Eq. (3.29). For ν > 2, where the
mean-square velocity increases with time, even the diffusion exponent is different.
While the mean-square displacement grows faster than ballistic with an exponent ν
and a time-independent diffusion coefficient Eq. (3.29), the time-averaged square
displacement grows ballistic with an exponent 2 and a diffusion coefficient that
increases with the overall measurement time t, see Eq. (3.66). The diffusion coeffi-
cient is given by the time average of the mean square velocity, (1/t)

∫t
0 dt ′〈∆v2(t ′)〉.

Both for ν < 2 and ν > 2, the result for the time-averaged square displacement
Eq. (3.66) resembles the corresponding stationary one, Eqs. (3.32) and (3.33), even
if the process is nonstationary. This is not a coincidence, since, in order to get
a statistically meaningful result from the time-averaged square displacement, we
have to take the limit of long averaging time t� δ. This however means, that only
time lags which are short compared to the measurement time are considered in
the averaging procedure. For these time lags, the system is well described by a
stationary approximation and thus the time-averaged square displacement fails to
capture the nonstationary behavior. In summary, superdiffusive systems described
by the scaling velocity correlation function Eq. (3.13) are nonergodic if they are
nonstationary, in the sense that the time-averaged square displacement does not
reproduce the ensemble averaged one. Only if the system is initially stationary,
will the time-averaged square displacement correspond to the ensemble-averaged
one and the system may be ergodic. In particular, a ballistic scaling of the time-
averaged square displacement does not imply ballistic scaling for the mean-square
displacement.

We can also turn this statement around in order to obtain a criterion for station-
arity: If the mean of the time-averaged square displacement and the mean-square
displacement coincide, the system is in a stationary state, at least on the time scale
of the measurement. If, on the other hand, they differ, this means that the sys-
tem is nonstationary on the time scale of the measurement. Note that this kind of
statement requires studying the ensemble mean of the time-averaged square dis-
placement, since the result for a single trajectory may still differ from the ensemble
average if the system is stationary but nonergodic.

3.3 spectral properties

So far, we have considered the implications of the scaling velocity correlation func-
tion Eq. (3.13) for time-dependent quantities, like the mean-square displacement
and the position autocorrelation. However, the existence of an asymptotic scal-
ing correlation function also has important implications for frequency-dependent
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quantities. In Section 3.3.1, we introduce the notion of a spectral density and in a
handwaving way argue an important relation with numerous applications in sta-
tistical mechanics and signal analysis, the Wiener-Khinchine theorem. As useful
and widely applicable as the Wiener-Khinchine theorem is, like the Green-Kubo
formula, there are certain cases where it is not applicable. We show that our previ-
ously introduced scaling correlation functions are precisely one of this cases and
in Section 3.3.2 obtain a scaling relation, which generalizes the Wiener-Khinchine
theorem to nonstationary scaling processes and yields a scaling form for the spec-
tral density. Yet another scaling form can be obtained in Laplace space. Due to
the added complexity of nonstationary dynamics, the interpretation of the scal-
ing spectral density is not as straightforward as for the Wiener-Khinchine theo-
rem. Nevertheless, we can extract its asymptotic properties, provided we know the
asymptotic properties of the original scaling correlation function, as we show in
Section 3.3.3. Finally, since, as we saw in Section 3.1.3, the initial preparation plays
an important role in the diffusive long-time properties of the system, it is natural
to ask whether this is also true for the long-time spectral properties. In Section
3.3.4 we show that, for a rather wide class of systems, this is not the case and the
spectral density is independent of the initial state of the system.

3.3.1 Stationary processes and Wiener-Khinchine theorem

Instead of examining a time-resolved signal, e.g. the velocity v(t), it is often useful
to instead consider the Fourier-transform of the signal, as the latter yields infor-
mation about periodicity and typical time scales in the signal. Since a random
process v(t) is not square-integrable, we consider its so-called windowed Fourier
transform v̂(ω, t) [Mill 04],

v̂(ω, t) =
1√
t

∫t
0

dt ′ e−iωtv(t ′). (3.79)

This quantity, like v(t) itself, is of course a random variable, so in order to examine
its properties, we need to consider ensemble averages. In particular, we will be
interested in the spectral density, which is the second moment of v̂(ω, t),

Sv(ω, t) = 〈v̂∗(ω, t)v̂(ω, t)〉− 〈v̂∗(ω, t)〉〈v̂(ω, t)〉, (3.80)

where v̂∗(ω, t) denotes the complex conjugate of the windowed Fourier transform.
From the definition of the velocity correlation function Eq. (3.1) we can deduce a
relation between the latter and the spectral density,

Sv(ω, t) =
1

t

∫t
0

dt ′′
∫t
0

dt ′ e−iω(t ′′−t ′)Cv(t
′′, t ′)

=
2

t

∫t
0

dt ′′
∫t ′′
0

dt ′ cos(ω(t ′′ − t ′))Cv(t
′′, t ′). (3.81)

Generally, the spectral density will depend on both time t and frequency ω, how-
ever, in a number of important cases it becomes time-independent in the long time
limit. The total power Pv(t), defined as the integral of the spectral density over all
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frequencies, is by virtue of Eq. (3.81) related to the time average of the mean-square
velocity by,

Pv(t) =

∫∞
0

dω Sv(ω, t)

=
2π

t

∫t
0

dt ′′
∫t
0

dt ′ δ(t ′′ − t ′)Cv(t ′′, t ′)

=
2π

t

∫t
0

dt ′〈∆v2(t ′)〉. (3.82)

Thus, if the mean-square velocity tends to a constant value for long times, the total
power is finite, whereas if the mean-square velocity increases with time, the total
power increases as well.

In particular, if the velocity correlation function is stationary, Cv(t + τ, t) =

Cv,s(τ), Eq. (3.81) can be further simplified,

Sv(ω, t) =
2

t

∫t
0

dt ′′
∫t ′′
0

dt ′ cos(ω(t ′′ − t ′))Cv,s(t
′′ − t ′)

=
2

t

∫t
0

dt ′′
∫t ′′
0

dτ cos(ωτ)Cv,s(τ). (3.83)

If the Fourier-cosine transform of the stationary correlation function exists,

Ĉv,s(ω) = 2

∫∞
0

dτ cos(ωτ)Cv,s(τ), (3.84)

then we can write the spectral density as,

Sv(ω, t) = Ĉv,s(ω) −
2

t

∫t
0

dt ′′
∫∞
t ′′

dτ cos(ωτ)Cv,s(τ). (3.85)

The Wiener-Khinchine theorem [Wien 30, Mill 04] asserts that, if the stationary ve-
locity correlation function is integrable, i.e.

∫∞
0 dτ Cv,s(τ) is finite, then the second

term will tend to zero in the long-time limit and we have,

lim
t→∞Sv(ω, t) = Sv,s(ω) = Ĉv,s(ω). (3.86)

The spectral density of a stationary process that has an integrable correlation func-
tion is thus time-independent and given by the Fourier-cosine transform of the
correlation function. Since the velocity correlation function is integrable, so is the
spectral density and the total power Eq. (3.82) of the process is finite. Similar to the
Green-Kubo formula, Eq. (3.9), we want to derive a generalization of the Wiener-
Khinchine theorem Eq. (3.86) that is able to treat both stationary processes whose
correlation function is not integrable and nonstationary processes.

3.3.2 Scaling in the frequency domain

In order to study the frequency-dependent properties of a system described by the
scaling velocity correlation Eq. (3.13), it is useful to see how these scaling properties
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translate into the frequency domain. Starting from Eq. (3.81) and introducing the
scaling correlation function, we have,

Sv(ω, t) ' 2C
t

∫t
0

dt ′′
∫t ′′
0

dt ′ cos(ω(t ′′ − t ′))t ′ν−2φ

(
t ′′ − t ′

t ′

)
. (3.87)

Introducing the variables y = (t ′′ − t ′)/t ′ and z = t ′′/t, this gives us,

Sv(ω, t)

' 2Ctν−1
∫1
0

dz zν−1
∫∞
0

dy (1+ y)−ν cos
(
ωtz

y

y+ 1

)
φ(y)

= 2Ctν−1ζ(ωt). (3.88)

We thus find a scaling form for the spectral density with a spectral scaling function
ζ(x) defined in terms of the original scaling function φ(x),

ζ(x) =

∫1
0

dz zν−1
∫∞
0

dy (1+ y)−ν cos
(
xz

y

1+ y

)
φ(y). (3.89)

Here, the scaling variable is ωt instead of τ/t. In this sense, this is similar to the
Wiener-Khinchine theorem Eq. (3.86) in that in both cases the time lag τ corre-
sponds to the frequency ω. We stress, however, that in the nonstationary case, the
spectral density is not the Fourier transform of the autocorrelation function with
respect to τ. We will use this scaling form to discuss the asymptotic properties of
the spectral density in Section 3.3.3.

Another scaling relation in frequency space can be found for the Laplace trans-
form of the velocity correlation function. First of all, we consider the velocity cor-
relation function Cv(t+ τ, t) as a function of the overall time t and the time lag
τ. We call this correlation function the time-ordered correlation function ~Cv(t, τ),
since it implies a time ordering:

~Cv(t, τ) = Cv(t+ τ, t) = Cv(t, t+ τ). (3.90)

Taking the double Laplace transform with respect to t and τ,

~̃Cv(s,u) = L2
[
~Cv(t, τ)

]τ→u
t→s

, (3.91)

we have, using the scaling form Eq. (3.13),

~̃Cv(s,u) ' C

∫∞
0

dt
∫∞
0

dτ e−st−uτtν−2φ
(τ
t

)
. (3.92)

Introducing the variable y = τ/t, we get,

~̃Cv(s,u) ' C

∫∞
0

dt
∫∞
0

dy e−(s+uy)ttν−1φ(y). (3.93)

Now the integration over t is just the Laplace transform of a power-law,

~̃Cv(s,u) ' CΓ(ν)

∫∞
0

dy (s+ uy)−νφ(y). (3.94)
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We thus have a scaling form also in the frequency domain,

~̃Cv(s,u) ' Cu−νχ
( s
u

)
with χ(z) = Γ(ν)

∫∞
0

dy (z+ y)−νφ(y), (3.95)

with a frequency scaling function χ(z) directly related to the time scaling function
φ(y). In Appendix A.1, we derive a relation between the Laplace transforms of the
time-ordered and the regular symmetric two-time correlation functions, Eq. (A.21).
Using this relation, we find,

C̃v(s2, s1) ' C

(
s2

−νχ

(
1+

s1
s2

)
+ s1

−νχ

(
1+

s2
s1

))
= C(s2s1)

−ν
2

((
s1
s2

)ν
2

χ

(
1+

s1
s2

)
+

(
s2
s1

)ν
2

χ

(
1+

s2
s1

))
. (3.96)

The asymptotic behavior of the frequency scaling function χ(z) is determined by
the one of φ(y). If the latter is given by Eq. (3.14) with −1 < δl < ν − 1 and
−1 < δu < ν− 1, we find using Eq. (A.88),

~̃Cv(s,u) ' C


alΓ(δl + 1)Γ(ν− δl − 1)s

δl−ν+1u−δl−1 for s� u

buΓ(δu + 1)Γ(ν− δu − 1)sδu−ν+1u−δu−1 for u� s.
(3.97)

In particular, the limit s � u corresponds to the long-time limit t � τ, and the
above corresponds directly to the Laplace transform of the stationary velocity au-
tocorrelation function Eq. (3.19) for ν < 2, δl = ν− 2, respectively to the Laplace
transform of the increasing mean-square velocity Eq. (3.24) for ν > 2, δl = 0.

The relation between the time- and frequency scaling functions, Eq. (3.95) can
also be inverted. To this end, we start from Eq. (3.93) but now perform the y-
integration first,

~̃Cv(s,u) ' C

∫∞
0

dt e−sttν−1φ̃(ut)

= Cu−ν
∫∞
0

dx e−
s
uxxν−1φ̃(x), (3.98)

where φ̃(x) is the Laplace transform of φ(y). Comparing this to Eq. (3.95), we
identify,

χ(z) = L
[
xν−1L [φ(y)]y→x

]
x→z

⇒ φ(y) = L−1
[
x1−νL−1 [χ(z)]z→x

]
x→y , (3.99)

thus relating φ(y) to χ(z) via a double inverse Laplace transform. We now use the
explicit inversion formula for the Laplace transform,

L−1
[
f̃(s)

]
s→t =

1

2πi

∫ i∞+ε

−i∞+ε
ds estf̃(s), (3.100)
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where ε is a some real number chosen such that all nonanalytic points s0 of f̃(s)
have <(s0) < ε. Applying this, we find for φ(y),

φ(y) =
1

2πiΓ(ν− 1)

∫ i∞+ε

−i∞+ε
dz (y+ z)ν−2χ(z), (3.101)

where ε > 0 is now a positive infinitesimal.

3.3.3 Spectral density for nonstationary scale-invariant systems

In the previous Section, we derived the scaling form Eq. (3.88) for the spectral
density. Together with the known asymptotic behavior of the time-scaling function,
we can use this scaling form to extract the asymptotic behavior of the spectral
density. Since the relevant scaling variable is ωt, we will discuss the limits ωt� 1

and ωt � 1. For ωt � 1, the asymptotic behavior of the expression Eq. (3.88) is
straightforward, since we can just replace the cosine by 1 and find,

Cζ(0) = Dν, (3.102)

with the anomalous diffusion coefficient Dν given by Eq. (3.18). Thus in the low-
frequency limit ωt� 1, the spectral density is independent of ω and given by the
mean-square displacement divided by time,

Sv(ω, t) ' 1
t
〈∆x2(t)〉. (3.103)

There is thus a low frequency cutoff on the spectral density, which is of the order
of the inverse measurement time ω ' t−1, and below which the spectral density
is just given by the time integral over the square of the signal. This represents the
fact that in any measurement it is not possible to resolve frequencies that are well
below the inverse measurement time.

More interesting is the opposite, long-time limit ωt � 1, which corresponds
to the situation described by the Wiener-Khinchine theorem Eq. (3.86). Instead of
directly using the definition of the scaling function Eq. (3.88) to find its asymptotic
behavior, we will instead employ Eq. (3.95). To do so, we need to link the spectral
density to the Laplace transform of the correlation function. We can write the time
ordered correlation function in terms of its Laplace transform as,

~Cv(t, τ) = −
1

4π2

∫ i∞+ε

−i∞+ε
ds

∫ i∞+ε ′

−i∞+ε ′
du esteuτ ~̃Cv(s,u). (3.104)

Plugging this into Eq. (3.81), we find by carrying out the integrals over t ′ and t ′′,

Sv(ω, t) = −
1

4π2t

∫ i∞+ε

−i∞+ε
ds

∫ i∞+ε ′

−i∞+ε ′
du ~̃Cv(s,u)

[
1

s(s− u− iω)
est

−
1

(u+ iω)(s− u− iω)
e(iω+u)t +

1

s(u+ iω)
+ [ω→ −ω]

]
, (3.105)

where ω → −ω denotes terms with ω replaced by −ω. We now use the results
obtained in Appendix A.3, in particular Eq. (A.101) to find the asymptotic behavior
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of this expression. We cannot apply the latter result right away, since the above
expression has poles in the positive half-plane. However, if we change variables
from s to s+ u, we have instead,

Sv(ω, t) = −
1

4π2t

∫ i∞+ε

−i∞+ε
ds

∫ i∞+ε ′

−i∞+ε ′
du ~̃Cv(s+ u,u)

×

[
1

(s+ u)(s− iω)
e(s+u)t −

1

(u+ iω)(s− iω)
e(iω+u)t

+
1

(s+ u)(u+ iω)
+ [ω→ −ω]

]
. (3.106)

Here ε and ε ′ can now be chosen as positive infinitesimals and we can apply
Eq. (A.101). We note that the third term in square brackets is independent of t and
thus gives at most a constant contribution. We start out with the s-integral in the
first term. Since the leading order asymptotic behavior is given by the behavior of
the integrand function near its nonanalytic points, we focus on the latter. We have
a branch point at s = −u and a simple pole at s = iω. Since <(u) > 0, the latter
one gives the dominant contribution for long times and we have, using Eq. (A.101),

1

2πi

∫ i∞+ε

−i∞+ε
ds e(s+u)t

~̃Cv(s+ u,u)
(s+ u)(s− iω)

' e(u+iω)t
~̃Cv(u+ iω,u)
u+ iω

. (3.107)

In the ensuing u-integral, we have branch points at u = −iω and u = 0, which
both have the same real part and thus both have to be taken into account. We
expand the integrand function around these points,

1

u+ iω
~̃Cv(u+ iω,u)

∣∣∣
u=0
' buΓ(δu + 1)Γ(ν− δu − 1)(iω)δu−νu−δu−1

1

u+ iω
~̃Cv(u+ iω,u)

∣∣∣
u=−iω

' alΓ(δl + 1)Γ(ν− δl − 1)(u+ iω)δl−ν

×
[
(−iω)−δl−1 − (δl + 1)(−iω)−δl−2(u+ iω)

]
, (3.108)

where we also included the sub-leading order contribution in the expansion at
u = −iω for reasons that will become apparent later. For the first term in the
spectral density, we then find using Eq. (A.101),

−
1

4π2t

∫ i∞+ε

−i∞+ε
ds

∫ i∞+ε ′

−i∞+ε ′
du

~̃Cv(s+ u,u)
(s+ u)(s− iω)

e(s+u)t

' buΓ(ν− δu − 1)eiωttδu−1(iω)δu−ν

+
alΓ(δl + 1)

ν− δl − 1
tν−δl−2(−iω)−δl−1 − alΓ(δl + 2)t

ν−δl−3(−iω)−δl−2.

(3.109)

For the second term, we compute the u-integration first, where we have a branch
point at u = −s and at u = 0 and a simple pole at u = −iω, the latter two of which
dominate since <(s) > 0. Consequently,

−
1

2πi

∫ i∞+ε ′

−i∞+ε ′
du e(iω+u)t

~̃Cv(s+ u,u)
(u+ iω)(s− iω)

' −
~̃Cv(s− iω,−iω)

s− iω
− buΓ(ν− δu − 1)eiωttδu−1sδu−ν(iω)−1. (3.110)
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The first term is independent of time, while for the second one, we have,

1

2πi

∫ i∞+ε

−i∞+ε
ds sδu−ν. (3.111)

This expression is straightforward to evaluate and is zero since δu < ν − 1 (see
Eq. (3.14)). Summing up, we find for the asymptotic spectral density in the long
time limit,

Sv(ω, t) ' C
[
buΓ(ν− δu − 1)eiωttδu−1(iω)δu−ν

+
alΓ(δl + 1)

ν− δl − 1
tν−δl−2(−iω)−δl−1

− alΓ(δl + 2)t
ν−δl−3(−iω)−δl−2 + [ω→ −ω]

]
= 2C

[
buΓ(ν− δu − 1)tδu−1ωδu−ν cos

(
ωt+

π(δu − ν)

2

)

−
alΓ(δl + 1) sin

(
πδl
2

)
ν− δl − 1

tν−δl−2ω−δl−1

+ alΓ(δl + 2) cos
(
πδl

2

)
tν−δl−3ω−δl−2

]
+O(t−1). (3.112)

Let us make some general remarks about this expression. The very first term os-
cillates as a function of time. Since the spectral density is by definition positive,
this implies that δu < ν− δl − 1, since otherwise, the oscillating term would domi-
nate in the long-time limit. This provides a physical constraint on the behavior of
the scaling function φ(y) for large, respectively small arguments. If this constraint
holds, then the asymptotic behavior of the spectral density is given solely by the
small-argument expansion of the scaling function and thus the long-time behavior
t� τ of the velocity correlation function,

Sv(ω, t) ' 2C
[
−
alΓ(δl + 1) sin

(
πδl
2

)
ν− δl − 1

tν−δl−2ω−δl−1

+ alΓ(δl + 2) cos
(
πδl

2

)
tν−δl−3ω−δl−2

]
+O(t−1). (3.113)

This is remarkable, since, as we saw earlier, other quantities like the diffusion co-
efficient do depend on the entire scaling function even in the long-time limit, see
the discussion in Section 3.1.3. As a consequence, there is generally no straightfor-
ward relation between the diffusive dynamics and the long-time spectral density.
We will elaborate some more on the consequences of this in Section 4.2.1.

Since knowing the small-argument expansion of the scaling function is suffi-
cient to deduce the spectral density, we now consider a particular case of the for-
mer, which holds for most of the cases we consider. We assume,

φ(y) ' aν−2yν−2 + a0 + a1y+O(y2). (3.114)
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Note that for the constant term a0, the leading order contribution in Eq. (3.113)
vanishes. We thus have,

Sv(ω, t) ' 2C
[
aν−2Γ(ν− 1) sin

(πν
2

)
ω1−ν

+

(
a0 −

a1
ν− 2

)
tν−3ω−2

]
. (3.115)

For the case of an asymptotically stationary correlation function, we have ν < 2,
and the leading order is given by the first term,

Sv(ω, t) ' 2aν−2CΓ(ν− 1) sin
(πν
2

)
ω1−ν. (3.116)

The spectral density is thus independent of time and is equal to the Fourier-
cosine transform of the stationary velocity autocorrelation function, reproducing
the Wiener-Khinchine theorem Eq. (3.86). This result is interesting in its own right,
since we did not assume the correlation function to be stationary in the first place.
However, the leading order contribution to the spectral density in the long-time
limit ωt � 1 is indeed given by the stationary long-time limit of the velocity
correlation function. Any deviations from the stationary correlation function thus
only enter as sub-leading corrections to the spectral density. This is in contrast
to the mean-square displacement, where we found different results depending
on whether the system is initially stationary or not even in the long-time limit,
see Eqs. (3.29) and (3.32). The reason for this discrepancy between mean-square
displacement and spectral density is best understood by looking at Eq. (3.88). For
ωt� 1, the integrand will oscillate rapidly except for very small values of y. These
rapid oscillations cause any deviations from the stationary small-y behavior to av-
erage to zero and the result thus depends only on the long-time stationary limit.
In other words, the frequency variable ω corresponds to the time-lag τ rather than
the overall time t, so ωt � 1 corresponds to t � τ and thus the stationary limit.
In the superaging case, we have ν > 2 and the leading order now depends on the
value of ν. For ν < 3, the first term in Eq. (3.113) is the leading one, which is again
independent of time and equal to the stationary result Eq. (3.116). Even though for
2 < ν < 3, the velocity increases subdiffusively with time and the velocity corre-
lation function thus has no stationary limit, the corresponding spectral density is
time-independent and the same as for the stationary case. This changes for ν > 3,
where the velocity increases superdiffusively and the second term in Eq. (3.113)
is the leading one. The spectral density is then time-dependent and increases as
tν−3,

Sv(ω, t) ' 2C
(
a0 −

a1
ν− 2

)
tν−3ω−2. (3.117)

Its frequency dependence is the same as for a normal diffusive process, i.e. pro-
portional to ω−2. As the spectral density has to be positive, this provides yet
another physical constraint on the small-argument behavior of the scaling func-
tion, a1 < (ν− 2)a0. This result also applies to the position spectral density. In
Section 3.1.4, we saw that the position correlation function also follows a scaling
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form Eq. (3.42). Using the corresponding small argument expansion of the scaling
function, we find,

Sx(ω, t) ' Dνtν−1ω−2 =
〈∆x2(t)〉
2t

ω−2. (3.118)

For a superdiffusive system, the position spectral density thus is always time-
dependent and depends on frequency as ω−2.

As long as the variance of the velocity increases at most subdiffusively (1 < ν <
3), the velocity spectral density is asymptotically time-independent,

Sv(ω, t) ' Sv,s(ω) = 2aν−2CΓ(ν− 1) sin
(πν
2

)
ω1−ν. (3.119)

Thus, a velocity process with a correlation function of the scaling type Eq. (3.13)
and φ(y) ' a0 + aν−2y

ν−2 + O(y) for small y describes a variant of 1/f-noise
[Milo 02] in the long-time limit. The term 1/f-noise refers to any kind of random
process whose power spectral density behaves as S(ω) ∼ ω−α with 0 < α < 2.
In our case, we have α = ν− 1. The measurement time dependent low-frequency
cutoff Eq. (3.103) is also observed for general 1/f-noise [Milo 02, Niem 13].

3.3.4 Initial conditions in the frequency domain

Finally, we want to consider a situation similar to Section 3.1.3. We let the system
evolve for a relaxation time t0 and then measure the spectral density for a time t.
Modifying Eq. (3.87) accordingly is straightforward,

Sv(ω, t, t0) ' 2C
t

∫t
0

dt ′′
∫t ′′
0

dt ′ cos(ω(t ′′ − t ′))(t ′ + t0)
ν−2φ

(
t ′′ − t ′

t ′ + t0

)
.

(3.120)

We introduce the variables y = (t ′′ − t ′)/(t ′ + t0) and z = t ′′/t,

Sv(ω, t, t0) ' 2Ctν−1
∫1
0

dz
(
z+

t0
t

)ν−1
×
∫z tt0
0

dy (1+ y)−ν cos
(
ωt

(
z+

t0
t

)
y

y+ 1

)
φ(y). (3.121)

For t � t0, we can take the limit t0 → 0 and obtain Eq. (3.88). For t0 � t, we can
approximate z+ t0/t ' t0/t and find,

Sv(ω, t, t0) ' 2Ct0ν−1
∫1
0

dz
∫z tt0
0

dy (1+ y)−ν cos
(
ωt0

y

y+ 1

)
φ(y). (3.122)

Since zt/t0 � 1, we can expand the integrand for small y,

Sv(ω, t, t0) ' 2alCt0
ν−1

∫1
0

dz
∫z tt0
0

dy cos(ωt0y)yδl . (3.123)



3.3 spectral properties 81

The relevant scaling variable is now ωt0. For ωt0 � 1, we can approximate the
cosine by 1 and get,

Sv(ω, t, t0) '
2alC

(δl + 1)(δl + 2)
tδl+1t0

ν−δl−2. (3.124)

Comparing this to Eq. (3.31), we see that this is precisely the mean-square displace-
ment for t0 � t divided by time,

Sv(ω, t, t0) '
1

t
〈∆xt0

2(t)〉, (3.125)

similar to what we found in Eq. (3.103). Since ωt0 � 1 and t0 � t also imply
ωt � 1, this again states that frequencies below the inverse measurement time
cannot be resolved and the spectral density is just the time integral of the signal.
The same result holds if we have ωt0 � 1 but ωt� 1, since then the argument of
the cosine in Eq. (3.123) is also small. If we have both ωt0 � 1 and ωt� 1, on the
other hand, we have to explicitly evaluate the integral in Eq. (3.123). This yields a
Hypergeometric function, or upon expansion for large ωt,

Sv(ω, t, t0) ' 2alCt
ν−δl−2
0 tδl+1

[
− Γ(δl + 1) sin

(
πδl

2

)
(ωt)−δl−1

+ Γ(δl + 2) cos
(
πδl

2

)
(ωt)−δl−2 − (ωt)−2 cos(ωt)

]
. (3.126)

As before, we consider this expression both for an asymptotically stationary corre-
lation function and for the superaging case, with the small argument expansion of
φ(y) given by Eq. (3.114). For ν < 2, the first term is the leading order one,

Sv(ω, t, t0) ' 2aν−2CΓ(ν− 1) sin
(πν
2

)
ω1−ν. (3.127)

This is precisely the same result as Eq. (3.116). Since the spectral density only
depends on the stationary long-time limit of the correlation function, the relaxation
time t0 does influence the result. The same is true for the superaging case and
2 < ν < 3. For ν > 3, on the other hand, the leading order contribution to the
spectral density according to Eq. (3.126) is given by,

Sv(ω, t, t0) ' 2Ct0ν−3ω−2

[
a0

(
t0
t

)
(1− cos(ωt)) − a1

]
. (3.128)

Since t0 � t and 〈∆v2(t0)〉 ' 2Ca0t0ν−2 (see Eq. (3.24)), we can write this as,

Sv(ω, t, t0) '
1

t
〈∆v2(t0)〉ω−2(1− cos(ωt)). (3.129)

In the – somewhat artificial – case that the mean-square velocity increases faster
than linear with time, a long relaxation time thus leads to an oscillating spectral
density.
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3.4 examples for scaling dynamics

In the previous Sections, we have derived several relations for processes that ex-
hibit a particular asymptotic scaling behavior Eq. (3.13) in their velocity correla-
tions. We now want to apply these results to two systems that fall into this cate-
gory: Fractional Gaussian noise in Section 3.4.1 and the Lévy walk in Section 3.4.2,
both of which were introduced in Section 2.2. For both systems, we will review
their velocity correlation functions and apply the results of the preceding discus-
sions to extract a number of quantities. Finally, in Section 3.4.3, we apply the same
machinery to obtain the spectral density of the nonequilibrium noise which was
introduced the previous chapter in Section 2.2.3.

3.4.1 Fractional Gaussian noise

Fractional Gaussian noise was introduced in Section 2.2.2 as the derivative of frac-
tional Brownian motion. We consider the nonstationary Riemann-Liouville variant
with the velocity correlation function Eq. (2.44),

Cv(t+ τ, t) ' C tβ−1φ
(τ
t

)
,

with C =
vtyp

2

tβ
β−1

, φ(y) =
1

Γ2
(
β
2

) ∫1
0

dz (y+ z)
β
2−1z

β
2−1, (3.130)

and 0 < β < 2, as well as the stationary Mandelbrot-van-Ness one, Eq. (2.52),

Cv(t+ τ, t) ' Cs τ
β−1,

with Cs =
vtyp

2

tβ
β−1

Γ(1−β) sin
(
πβ
2

)
π

, (3.131)

and 0 < β < 1. As discussed before, the nonstationary variant reduces to the
stationary one for t � τ and β < 1. From the above, we can immediately identify
the diffusion exponent, ν = β+ 1. For the nonstationary variant, we further require
the small- and large-argument expansion of the scaling function, which can be
obtained using Eq. (A.44),

φ(y) '



Γ(1−β) sin(πβ2 )
π yβ−1 + 1

(β−1)Γ2(β2 )
+ 1

2Γ2(β2 )
y+O(y2)

for y� 1, β 6= 1

2

βΓ2(β2 )
y
β
2−1 + β−2

(β+2)Γ2(β2 )
y
β
2−2 +O(y

β
2−3)

for y� 1.

(3.132)
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Mean-square displacement

The anomalous diffusion coefficient Dν is given by Eq. (3.18),

Dν =
C

(β+ 1)Γ2
(
β
2

) ∫∞
0

dy (1+ y)−β−1
∫1
0

dz (y+ z)
β
2−1z

β
2−1

=
C

2(β+ 1)Γ2
(
β
2 + 1

) , (3.133)

which coincides with Eq. (2.92),

〈∆x2(t)〉 ' 2Dνtβ+1. (3.134)

The stationary counterpart is given by,

Dν,s =
Cs

β(β+ 1)
, (3.135)

which can easily be seen to agree with Eq. (2.90). For β > 1 and a long relaxation
time before the measurement of the mean-square displacement, we find by virtue
of Eq. (3.33),

D
t
t0
ν =

C

2(β− 1)Γ2
(
β
2

) ( t
t0

)1−β
, (3.136)

respectively ballistic expansion,

〈∆xt0
2(t)〉 ' C

(β− 1)Γ2
(
β
2

)t0β−1t2. (3.137)

The two values for the diffusion coefficient Eqs. (3.133) and (3.135) are shown in
Fig. 3.2 as a function of the diffusion exponent. Note that both agree for normal
diffusion, and are different for superdiffusion. This indicates that the persistence
of the initial condition, leading to different values for the anomalous diffusion
coefficient, is indeed particular to anomalous diffusion. The corresponding mean-
square displacement is shown in Figs. 3.3 and 3.4: If the velocity dynamics have a
stationary limit (Fig. 3.3), the stationary diffusion coefficient Eq. (3.135) correctly
describes the mean-square displacement for times much shorter than the relax-
ation time t0. On longer time scales, where the deviations of the system from the
stationary state become noticeable, we observe a transition to the nonstationary
diffusion coefficient. The diffusion exponent is the same in both limits. The non-
stationary variant of fractional Gaussian noise Eq. (3.130) corresponds to a process
that at t = 0 starts with zero velocity, 〈v2(0)〉 = 0. Relaxation into the stationary
state means that the mean-square velocity increases to its stationary value. For the
stationary variant, on the other hand, the mean-square velocity already starts out
with its stationary value, which remains constant in time. Since the relaxation to-
wards the stationary state follows a slow power-law, the mean-square velocity for
nonstationary initial conditions will be reduced compared to the stationary one
even for long times. Consequently, the mean-square displacement, which is the in-
tegral over the velocity correlation function, will also be reduced in the long-time
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Figure 3.2: Anomalous diffusion coefficientDν in units of C for fractional Brownian motion
as a function of the exponent β. The cyan line is the nonstationary result Eq. (3.133), the
red line the stationary one Eq. (3.135). Both results coincide in the limit of normal diffusion
β→ 0, but differ for superdiffusion. For β > 1, there is no stationary diffusion coefficient,
the stationary result diverges as β→ 1.

limit and thus the stationary diffusion coefficient will always be larger than the
nonstationary one. For the particular value of β = 0.7 shown in Fig. 3.3, we have
Dν = 0.37C and Dν,s = 0.71C, which makes for a quite pronounced difference be-
tween the nonstationary and stationary result. If the velocity itself is nonstationary,
i.e. the mean-square velocity increases with time (Fig. 3.4), then also the diffusion
exponent is different, as we find ballistic motion with a diffusion coefficient that
depends on the relaxation time t0 for times shorter than t0 and a crossover to
superballistic motion for longer times. For t0 = 0, the initial velocity is zero and
the particles immediately feel the overall acceleration as the mean-square velocity
increases, leading to superballistic accelerated expansion. By contrast, if t0 � t,
then the initial mean-square velocity is large and the already fast particles move
ballistically until their velocities change significantly, which will only happen for
times long compared to t0, where the mean-square velocity will again increase,
explaining the crossover to superballistic behavior.

Time-averaged square displacement and ergodicty

In Section 3.2, we found that if the system is initially in the stationary state, the
mean-square displacement and the mean time-averaged square displacement co-
incide, both being given by the stationary result Eq. (3.72). For a nonstationary
system, by contrast, the mean-square displacement and the mean time-averaged
square displacement were found to differ, preventing the system from being er-
godic in the mean-square sense. Even if the mean of the time-averaged square
displacement is identical to the mean-square displacement, we still require the er-
godicity breaking parameter Eq. (3.75) to vanish in the long-time limit, so that the
time average actually reproduces the ensemble average for each trajectory. The er-
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Figure 3.3: Mean-square displacement for fractional Brownian motion for subballistic su-
perdiffusion, β = 0.7. Colored lines: numerical Langevin simulations; dashed lines: ana-
lytic asymptotic results. We have two results for the diffusion coefficient (dashed lines). If
the system is initially nonstationary, the diffusion coefficient is given by Dν, Eq. (3.133)
(cyan line). For a finite relaxation time t0, on the other hand, we have the stationary re-
sult Dν,s, Eq. (3.135) for short times t � t0. For longer times, we see a transition to the
nonstationary result (red line).
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Figure 3.4: Mean-square displacement for fractional Brownian motion for superballistic
superdiffusion, β = 1.5. Colored lines: numerical Langevin simulations; dashed lines: an-
alytic asymptotic results. If the initial velocity is zero, the growth of the mean-square ve-
locity Eq. (3.24) leads to an overall acceleration of the particles and to faster-than-ballistic
expansion (cyan line), Eq. (3.134). For longer relaxation times t0, we observe ballistic expan-
sion for short times t� t0 (red and magenta lines), and the diffusion coefficient depends
on the relaxation time t0, Eq. (3.137). For longer times, the ongoing increase of the mean
square velocity leads to superballistic diffusion (magenta line).
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godicity breaking parameter is related to the variance of the time-averaged square
displacement,〈

∆x2(t, δ)
2
〉
−
〈
∆x2(t, δ)

〉2
, (3.138)

which requires four-time moments of x(t). Since the system is Gaussian, these can
in principle be reduced to products of two-time moments via the Gaussian moment
theorem (also known as Isserlis’ theorem [Isse 16]),

〈x(t4)x(t3)x(t2)x(t1)〉 = 〈x(t4)x(t3)〉〈x(t2)x(t1)〉
+ 〈x(t4)x(t2)〉〈x(t3)x(t1)〉
+ 〈x(t4)x(t1)〉〈x(t3)x(t2)〉. (3.139)

For the case of a stationary velocity autocorrelation function β < 1 and thus sub-
ballistic superdiffusion, the ergodicity breaking parameter has been calculated in
Ref. [Deng 09] and has been shown to vanish for long times as EB(t, δ) ∼ (t/δ)2β−2.
The ergodicity breaking parameter for both stationary and nonstationary initial
conditions is show in Fig. 3.5 for β = 0.7. As predicted, the ergodicity breaking
parameter tends to zero and the time-averaged square displacement reproduces
the same result for each trajectory. This is shown in Figs. 3.6 and 3.7, where the
time averages of the individual trajectories are plotted alongside the mean of the
time-averaged square displacement and the mean-square displacement. Both for
stationary and nonstationary initial conditions, the individual time averages follow
the mean time average, deviating for long δ where the condition of long averaging
time t� δ is no longer fulfilled. For an almost stationary initial condition (t0 � t,
Fig. 3.6), the ensemble average also coincides with the mean time average and the
system is thus mean-square ergodic if it is initially stationary. On the other hand,
if the system is initially nonstationary (t0 = 0, Fig. 3.7), the mean-square displace-
ment is different form the time-averaged square displacement and is not repro-
duced by the individual time averages. For the superballistic case β > 1, the ex-
plicit calculation of the ergodicity breaking parameter is more involved and we re-
strict ourselves to extracting the ergodicity breaking parameter from our Langevin
simulations. We can, however, make a statement for the case where the relaxation
time is long compared to the averaging time t0 � t � δ. Since then the particle
ensemble starts out with a large mean square velocity 〈∆v2(t0)〉 and spreads bal-
listically, each trajectory will on average have a large initial velocity v(t0), which
does not change appreciably on the time scale t of the measurement. Thus, while
the time-averaged square displacement for each trajectory will indeed show bal-
listic growth, the prefactor, which is given by this initial velocity will be different
for every realization. The ergodicity breaking parameter for t0 � t will thus be
substantial and the system will not be ergodic on these time scales. As we see in
Fig. 3.7 the ergodicty breaking parameter, does not approach zero on the observed
time scales and there is thus significant variation in the individual realizations, all
of which scale ballistically, see Fig. 3.9. Finally, note that the ergodicity breaking
parameter approaches 2 in the limit of vanishing averaging time t → δ. This is
not a coincidence, but a signature of the Gaussian nature of the process. For zero
averaging time, the time-averaged square displacement is equal to x2(δ). Since for
a Gaussian process, we have 〈x4(t)〉 = 3〈x2(t)〉 as a consequence of the Gaussian
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Figure 3.5: Ergodicity breaking parameter for fractional Brownian motion as a function of
averaging time, Lagevin simulations for the subballistic case. Both for an almost stationary
(red line) and nonstationary (cyan line) initial condition, the ergodicity breaking parame-
ter tends to zero and individual time averages will follow the mean time average. Since
the initial velocity is larger in the stationary case, the ergodicity breaking parameter is
enhanced in comparison to the nonstationary case with v0 = 0.

moment theorem Eq. (3.139), we have EB(t, δ) ' (〈x4(t)〉 − 〈x2(t)〉)/〈x2(t)〉 = 2

in this limit. To summarize, the process fractional Gaussian noise velocity process
only leads to ergodic dynamics for a stationary initial condition in the subballistic
case β < 1.

Spectral density

Building on the results of Section 3.3, it is straightforward to derive the spectral
density for both velocity and position. For the velocity spectral density, we have
from Eqs. (3.103), (3.113) and (3.132),

Sv(ω, t) '


Cω−β for ωt� 1

1
t 〈∆xt0

2(t)〉 for ωt� 1,
(3.140)

where the mean-square displacement is given by either Eq. (3.134) with diffusion
coefficient Eq. (3.135) or Eq. (3.133), or Eq. (3.137), depending on the relative size
of t and t0 and whether β < 1 or β > 1. The velocity spectral density thus scales
as ω−β in the long-time limit, which is characteristic for fractional Gaussian noise
[Flan 89]. For β→ 0, the spectral density is independent of frequency, in this limit
the velocity corresponds to white noise. For β → 2, on the other hand, the spec-
tral density is proportional to ω−2, as is typical for Brownian motion. In addition,
there is a time-dependent low-frequency cutoff for frequencies much lower than
the inverse measurement time. For frequencies below the cutoff, the value of the
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Figure 3.6: Mean-square displacement and time-averaged square displacement for frac-
tional Brownian motion as a function of time lag, Langevin simulations with an almost
stationary initial condition. If the system is initially stationary (i.e. t0 � δ), the mean-
square displacement (cyan line) and the ensemble averaged square displacement (red line)
coincide. Both are described by the stationary diffusion coefficient Eq. (3.135). Since the er-
godicity breaking parameter tends to zero in subballistic regime, single realizations (thin
black lines) of the time-averaged square displacement also follow the ensemble average for
sufficiently long averaging time, δ� t.

spectral density is essentially given by the mean-square displacement. This behav-
ior is confirmed by Langevin simulations, Fig. 3.10 for β < 1, respectively Fig. 3.11

for β > 1. For β > 1 and finite times, respectively intermediate frequencies, it may
be necessary to include the sub-leading order contribution from Eq. (3.113),

Sv(ω, t) ' Cω−β +
C

(β− 1)Γ2
(
β
2

)tβ−2ω−2, (3.141)

which corresponds to the dotted lines in Fig. 3.11. Both figures are for the case
t0 = 0, since here, the value of t0 essentially only changes the value of the spectral
density below the low-frequency cutoff and the sub-leading order correction. The
frequency dependence of the velocity spectral density, Sv(ω) ∼ ω−β, directly re-
lates to the diffusion exponent ν = β+ 1. Compared to the velocity autocorrelation
function, which can asymptotically be either stationary for β < 1 or nonstationary
for β > 1, the velocity spectral density has the advantage of encoding the dynamics
in a single exponent and thus providing a straightforward characterization of the
system. The relation between the velocity dynamics in the time domain and the
corresponding spectral density, becomes clear when considering the total power,
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Figure 3.7: Mean-square displacement and time-averaged square displacement for frac-
tional Brownian motion as a function of time lag, Lagevin simulations for the nonstation-
ary case. If the system is initially nonstationary, then the mean-square displacement (cyan
line) is described by the nonstationary diffusion coefficient Eq. (3.133), while the mean
time-averaged square displacement (red line) follows the stationary behavior Eq. (3.135).
While the ergodicity breaking parameter tends to zero, meaning that the time-averaged
square displacement for a single trajectory (thin black lines) follows its ensemble mean,
the system is not ergodic in the sense that it does not reproduce the mean-square displace-
ment.

Eq. (3.82). As the behavior of the spectral density is different for ωt � 1 and
ωt� 1, we consider as a crude approximation,

Pv(t) ∼

∫ 1
t

0

dω Sv(ω, t) +
∫∞
1
t

dω Sv(ω, t)

∼
1

t2
〈∆x2(t)〉+ C

∫∞
1
t

dω ω−β. (3.142)

For β < 1, the second term diverges as ω → ∞, so the total power appears to be
infinite. This unphysical behavior has its origin in the divergence of the correlation
function Eq. (3.130) as τ → 0. If, as discussed briefly in Section 2.2.2, we specify
a short-time cutoff, say tc, for the correlation function, then this results in a high-
frequency cutoff ωc for the spectral density and thus,

Pv(t) ∼ 2Dνt
β−1 +

C

1−β

(
ωc
1−β − tβ−1

)
. (3.143)

For β < 1, the first and third term vanishes for long times, and the total power
is a constant given by the high-frequency respectively short-time cutoff, which is
also responsible for a finite mean-square velocity, in agreement with Eq. (3.82). For
β > 1, on the other hand, both the first and third term increase with time and so the
total power, like the mean-square velocity, grows as tβ−1, also in agreement with
Eq. (3.82). Physically, this increasing total power is due to the ongoing acceleration
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Figure 3.8: Ergodicity breaking parameter for fractional Brownian motion as a function of
averaging time, Lagevin simulations for the superballisitc case. Even for zero intial velocity
(cyan line), the ergodicity breaking parameter does not tend to zero, indicating that there
is significant variaton in the behavior of individual trajectories. For a long relaxation time
t0 and thus large variation in the intial velocity 〈∆v2(t0)〉, this variation is even more
pronounced (red line).

of particles in the superballistic regime. Finally, we note that the velocity process
defined by fractional Gaussian noise, Eqs. (3.130) and (3.131), is Gaussian 1/f-noise
with exponent β.

The position spectral density can be obtained in the same way by taking into ac-
count that the position correlation function also has a scaling form, Eq. (3.42), with
a different scaling function and an exponent that is increased by 2 with respect to
the scaling exponent of the velocity correlation function, so that the corresponding
scaling exponent is now ν = β+ 3. Writing the position correlation function as,

Cx(t+ τ, t) ' Ctβ+1ψ∗
(τ
t

)
, (3.144)

we have from Eq. (3.44),

ψ∗(y) ' 1

C
(2Dν + (β+ 1)Dνy) . (3.145)

The corresponding expressions for t0 � t are obtained in the same manner,

Cx(t+ τ, t) ' C


tβ+1ψ∗s

(
τ
t

)
for β < 1

t0
ν−2t2ψ∗ball

(
τ
t

)
for β > 2,

(3.146)

with

ψ∗s (y) '
1

C
(2Dν,s + (β+ 1)Dν,sy)

ψ∗ball(y) ' 2a0 + a0y. (3.147)
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Figure 3.9: Time-averaged square displacement for frational Brownian motion as a function
of time lag, Lagevin simulations for the superballisitc case. Both for zero intial velocity
(thin cyan lines) and large initial velocity 〈∆v2(t0)〉 (thin red lines) individual realizations,
while all exhibiting ballistic behavior, differ significantly form the mean time-averaged
square displacement (black line).

The position spectral density then always behaves as ω−2 in the long-time limit
ωt� 1 according to Eq. (3.113),

Sx(ω, t) '



Dνt
βω−2 for t� t0

Dν,st
βω−2 for t0 � t, β < 1

3a0C

2(β−1)Γ2(β2 )
t0
β−1t ω−2 for t0 � t, β > 1.

(3.148)

Depending on the relative size of t and t0 and the value of β, the prefactor of this
ω−2 frequency dependence increases with time as tβ or linearly, as is shown in
Fig. 3.12 Note that it is Eq. (3.113) and not Eq. (3.129) that describes the long-time
behavior of the position spectral density for t0 � t. The reason for this is that the
relaxation time in Eq. (3.129) applies to the velocity process, i.e. the velocity starts
out with a large variance 〈∆v2(t0)〉. The measurement of the position process, by
contrast, starts at t = 0, i.e. 〈∆xt02(0)〉 = 0. So, while the mean-square displacement
depends on t0, the relaxation time for the position process is actually zero. As with
the velocity spectral density, there is a low-frequency cutoff for ωt� 1. The value
of the spectral density below the cutoff is given by the integral over the position
scaling function ψ(y), Eq. (3.43),

Sx(ω, t) ' tν+1 1

ν+ 2

∫∞
0

dy (1+ y)−ν−2 [2Dν + Cψ(y)] , (3.149)

which is the analog of Eq. (3.103) and in this case increases with time as tβ+3. Since
the long-time position spectral density always behaves as ω−2 for superdiffusion
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Figure 3.10: Velocity spectral density as a function of frequency in the subballistic regime
β < 1 for different measurement times. The colored lines are the results of Langevin simu-
lations, the black dashed lines are the corresponding asymptotic analytic result Eq. (3.140).
For ωt � 1, the spectral density is well-described by the ω−β behavior, independent of
the measurement time t. For low frequencies, there is a cutoff, which is shifted to lower
frequencies for longer measurement times.
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Figure 3.11: Velocity spectral density as a function of frequency in the superballistic regime
β > 1 for different measurement times. The colored lines are the results of Langevin simu-
lations, the black dashed lines are the corresponding asymptotic analytic result Eq. (3.140).
Even though the velocity correlation function is nonstationary, the spectral density asymp-
totically follows a time-independentω−β behavior. For intermediate frequencies, however,
the agreement is not very good, and can be improved by including the sub-leading order
correction Eq. (3.141) (dotted lines). As in the subballistic regime there is a low-frequency
cutoff, which is shifted to lower frequencies for longer measurement times.
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Figure 3.12: Position spectral density as a function of frequency in the subballistic regime
β < 1 for different measurement times and t0 = 0. The colored lines are the results of
Langevin simulations, the black dashed lines are the corresponding asymptotic analytic
result Eq. (3.148). For ωt � 1, the position spectral density behaves as ω−2, however, its
magnitude increases with measurement time as tβ.

β > 0, its frequency dependence cannot characterize the diffusive dynamics of the
system, in contrast to the velocity spectral density, Eq. (3.140). The position spectral
density is thus less suited as a simple quantity to characterize the scaling of the
system, since this requires identifying the dependence on the measurement time.
Note that the often used relation Sv(ω) = ω−2Sx(ω), which holds for subdiffusion
and normal diffusion, cannot be applied to superdiffusion.

3.4.2 Lévy walk

The Lévy walk as introduced in Section 2.2.2 has the velocity correlation function
Eq. (2.57),

Cv(t+ τ, t) ' C tβ−1φ
(τ
t

)
,

with C =
vtyp

2

tβ
β−2〈tw〉

,

φ(y) =
1

1−β

(
yβ−1 − (1+ y)β−1

)
,

0 < β < 1, (3.150)

where 〈tw〉 is the average waiting time between switches in the velocity. As with
fractional Gaussian noise, this correlation function has a stationary limit for t� τ,
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which is the same as the above but with φ(y) = yβ−1 and Cs = C/(1− β). The
small- and large-argument expansion of the scaling function is straightforward,

φ(y) '


1
1−βy

β−1 − 1
1−β + y+O(y2) for y� 1

yβ−2 + β−2
2 yβ−3 +O(yβ−4) for y� 1.

(3.151)

The average waiting time is infinite for 1 < β < 2, where the velocity correlation
function is given by [Godr 01, Froe 13],

Cv(t+ τ, t) ' Caφa

(τ
t

)
,

with Ca = vtyp
2

φa(y) = −
sin(πβ)
π

B
(

1

1+ y
; 2−β,β− 1

)
,

1 < β < 2. (3.152)

In this regime, the correlation function is of the pure aging type, Eq. (3.21) with
ν = 2. The expansion of the scaling function is,

φa(y) '


1+

sin(πβ)
π(β−1)y

β−1 −
sin(πβ)
β yβ +O(yβ+1) for y� 1

−
sin(πβ)
π(2−β)y

β−2 +
sin(πβ)
π(3−β)y

β−3 +O(yβ−4) for y� 1.
(3.153)

Mean-square displacement

For β < 1, the diffusive properties of the Lévy walk are very similar to those
of fractional Brownian motion, Eq. (3.134). The anomalous diffusion coefficient is
given by,

Dν =
C

β(β+ 1)

Dν,s =
C

(1−β)β(β+ 1)
, (3.154)

with a diffusion exponent ν = β+ 1,

〈∆x2(t)〉 ' 2Dνtβ+1. (3.155)

For 1 < β < 2, while the correlation function is aging, we can nevertheless take
the limit t0 � t, in which the diffusion coefficient is still independent of t0 and
determined by the leading order of the expansion Eq. (3.153). We have,

Dν =
Ca(β− 1)

2

Dν,s =
Ca

2
, (3.156)

with a diffusion exponent ν = 2 and thus ballistic motion,

〈∆x2(t)〉 ' 2Dνt2. (3.157)
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This is different from fractional Brownian motion, where we found a superballistic
phase for β > 1 due to the increasing mean-square velocity. For the Lévy walk,
the mean-square velocity is asymptotically constant for all values of β, and the
diffusion is thus at most ballistic. Note that for β < 1, the mean waiting time
enters the constant C. Since the waiting time diverges as β → 1, this changes
the dependence of Eq. (3.154) on β. For the simple choice of the waiting time
distribution,

Pw(tw) =


0 for tw 6 tβ

2−β
t0

(
tw
tβ

)β−3
for tw > tβ,

(3.158)

which we also use in our Langevin simulations, the mean waiting time is given by,

〈tw〉 =
2−β

1−β
tβ. (3.159)

For this choice of the waiting time distribution the anomalous diffusion coefficient
is plotted in Fig. 3.13. For the Lévy walk, the notion of stationarity and relaxation
into the stationary state is different than for fractional Brownian motion. Whereas
in the former case, the relaxation of the mean-square velocity towards its stationary
value was responsible for the discrepancy between stationary and nonstationary
diffusion coefficient, the velocity for the Lévy walk is constant. Here, the nonsta-
tionary initial condition corresponds to having the first switch in the velocity at
t = 0 for every trajectory. In the subballistic regime β < 1, while the mean waiting
time is finite, the variance of the waiting time is infinite, meaning that vastly dif-
ferent waiting times will occur. In particular, once a long waiting time occurs, the
corresponding particle will get stuck at its current velocity for a long time. As we
let the process evolve for a time t0, the portion of particles that a currently stuck at
one velocity increases, leading to more correlated motion and thus a larger diffu-
sion coefficient in the stationary state, where the portion of stuck particles saturates.
This effect is even more pronounced in the ballistic regime β > 1. Here the mean
waiting time is infinite, meaning that at some point for every trajectory a waiting
time will occur that will last for the rest of the entire evolution, leading to ballis-
tic motion. For t0 � t, this means that this will have occurred for almost every
trajectory and thus the diffusion coefficient corresponds to deterministic ballistic
motion, as every particle just moves at a constant velocity.

Time-averaged square displacement and ergodicty

For the mean of the time-averaged square displacement, similar arguments as for
the fractional Brownian motion case hold, with the exception of the absence of the
superballistic phase. The mean of the time-averaged square displacement will be
equal to the mean-square displacement it the system starts out in a stationary state,
see Eq. (3.72). If the system is not initially stationary, then the mean of the time-
averaged square displacement will still follow the stationary behavior Eq. (3.66),
which, however, is now different from the mean-square displacement. Since the
Lévy walk, in contrast to fractional Brownian motion, is non-Gaussian, its higher
order moments cannot be expressed in terms of its second order moments by the
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Figure 3.13: Anomalous diffusion coefficient Dν for the Lévy walk as a function of the
exponent β. The cyan line is the nonstationary result and the red line the stationary one
(see Eqs. (3.154) and (3.156)). In the limit of normal diffusion β → 0, both results diverge,
indicating a qualitative change in the dynamics. For superdiffusion 0 < β < 1 and ballistic
expansion 1 < β < 2, the two results for the diffusion coefficient differ. As β→ 2, velocity
does not change at all and the dynamics resembles purely ballistic motion with a constant
velocity ±vtyp.

Gaussian moment theorem Eq. (3.139). Indeed, the ergodicity breaking parameter
Eq. (3.75), which was calculated for the Lévy walk in Ref. [Froe 13], is seen to
be non-zero in the ballistic regime β > 1 in the long time limit. Since the mean
waiting time is infinite, even for long measurement times, there will frequently
occur events where the particle has the same velocity for a substantial amount of
the measurement time. A typical trajectory will thus not reproduce the ensemble
average and the system is nonergodic. In the subballistic regime, the ergodicity
breaking parameter does tend to zero for long averaging times and the system
is ergodic [Froe 13], provided it starts out in the stationary state. The ergodicity
breaking parameter for the Lévywalk as a function of averaging time is shown
in Fig. 3.14. Note that, although the ergodicity breaking parameter tends to zero
in the subballistic regime, it is overall much larger than for fractional Brownian
motion with the same diffusive behavior. Thus, even though the system is ergodic
in this regime, variations between individual trajectories can be substantial for
finite times and the subballistic Lévy walk may in practice behave in a nonergodic
manner. This is due to the Lévy walk being non-Gaussian, which also manifests
itself in the fact that the ergodicity breaking parameter is larger than 2 for zero
averaging time, indicating that higher order moments are enhanced compared to
the Gaussian case.
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Figure 3.14: Ergodicity breaking parameter for the Lévy walk as a function of averaging
time for a time lag δ = 20. The red curve shows the result for the subballistic phase β < 1,
the gray curve is the corresponding result for fractional Brownian motion with the same
value of β. While in both cases, the ergodicity breaking parameter tends to zero for long
averaging times, it is significantly larger for the Lévy walk, mirroring the non-Gaussian
nature of the process. In the ballistic phase β > 1, the ergodicity breaking parameter does
not tend to zero but is finite for long times (cyan curve).

Spectral density

In the subballistic regime β < 1, the velocity and position spectral density for
the Lévy walk behave in exactly the same was as for fractional Brownian motion,
Eqs. (3.140) and (3.148), since its stationary velocity correlation function, respec-
tively the mean-square displacement, are identical apart from prefactors. Specifi-
cally, the spectral densities for β < 1 in the long-time limit ωt� 1 behave as,

Sv(ω, t) '
2CΓ(β) cos

(
πβ
2

)
1−β

ω−β

Sx(ω, t) ' 1
t
〈∆xt0

2(t)〉ω−2. (3.160)

Note, however, that the sub-leading order for the velocity spectral density vanishes
for the Lévy walk due to the coefficients in Eq. (3.151), i.e. there is no correction
proportional to ω−2. In the ballistic regime β > 1, the situation is different. While
the position spectral density is given by the same expression as before with the ap-
propriate mean-square displacement, the velocity spectral density is qualitatively
different than for fractional Gaussian noise,

Sv(ω, t) '


2CΓ(β) cos

(
π(2−β)
2

)
(β−1)(2−β) t1−βω−β for ωt� 1

1
t 〈∆xt0

2(t)〉 for ωt� 1.

(3.161)
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While the frequency dependence of the velocity spectral density is the same as
in the subballistic regime, it is now explicitly time-dependent, its magnitude de-
creases as t1−β. Comparing this to Eq. (3.143), we find an asymptotically constant
total power also in the ballistic regime β > 1. The time-dependent spectral den-
sity for the Lévy walk in relation to 1/f-noise was also discussed in Ref. [Niem 13,
Sade 13].

3.4.3 Spectral density for nonequilibrium noise

The final scaling system we want to examine is the nonequilibrium noise discussed
in Section 2.2.3. In contrast to the previous two cases, the scaling correlation func-
tion here does not describe a velocity but rather a random force. In the context of
the active viscoelastic medium (see Section 2.2.2) this is an effective force due to
the combination of the random motion of the medium and the particle’s viscoelas-
tic coupling to the latter. Thus the time integral of this force does not describe the
particle’s actual momentum and the quantities corresponding to the mean-square
and time-average square displacement are not meaningful. Because of this, we here
concentrate on the spectral properties of the nonequilibrium noise. The noise cor-
relation function is of the same scaling form as Eq. (3.13) and given by Eqs. (2.61),
(2.64) and (2.68) for the stationary and nonstationary Gaussian respectively Lévy
walk case,

Cξ(t+ τ, t) = Ct2α+β−1φ
(τ
t

)
. (3.162)

The scaling exponent is now ν = 2α + β + 1 and the constant C is given in the
equations quoted above. We remind ourselves that the exponent α controls the
decay of the memory kernel in the fractional Langevin equation (i.e. larger values
of α correspond to longer-ranged memory) and β describes the correlations of the
medium velocity (i.e. larger values of β correspond to more correlated motion). Of
particular importance are the small-argument expansions of the respective scaling
functions, which can be found using the expressions in the former equations and
the asymptotic expansions of certain integrals given in Appendix A.2. We find,

φ(y) ' a2α+β−1y2α+β−1 + a0 + a1y+O(y2). (3.163)

For the stationary Gaussian case, the coefficients are given by,

a2α+β−1 =
Γ(α)Γ(α+β)

(
sin(πα) + sin(π(α+β))

)
Γ(2α+β) sin(π(2α+β))

,

a0 =
2

2α+β− 1
, a1 = 1,

C =
m2γ2vtyp

2

2 cos
(
πβ
2

)
Γ(α)Γ(α+β)tα2αtβ

β−1
, (3.164)
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for the nonstationary Gaussian case, we instead have,

a2α+β−1 =
Γ2
(
α+ β

2

)
sin
(
π
(
α+ β

2

))
Γ(2α+β) sin(π(2α+β))

,

a0 =
1

2α+β− 1
, a1 =

1

2
,

C =
m2γ2vtyp

2

Γ2
(
α+ β

2

)
tα
2αtβ

β−1
, (3.165)

and, finally, for the Lévy walk,

a2α+β−1 =
Γ(β) cos

(
πβ
2

)
Γ(2α+β) cos

(
π
(
α+ β

2

))
a0 = 2

∫1
0

dz
∫1
0

du zα−1(u+ z− uz)α−1(1− z)β(uβ−1 − 1)

a1 = (α− 1)

∫1
0

dz
∫1
0

du zα−1(u+ z− uz)α−2(1− z)β(uβ−1 − 1),

C =
m2γ2vtyp

2

(1−β)〈tw〉tα2αtββ−2
. (3.166)

We first focus on α < 1/2 and 2α+β < 1 corresponding to relatively short-ranged
memory and weakly correlated medium velocity. Here, the nonequilibrium noise
correlation function is stationary, Cξ,s(τ) ∼ τ

2α+β−1 and the noise spectral density
in the long-time limit ωt� 1 is given by,

Sξ(ω, t) ' 2Ca2α+β−1Γ(2α+β) cos
(
π

(
α+

β

2

))
ω−2α−β. (3.167)

Using the parameters listed above, we find for both the stationary and nonstation-
ary Gaussian velocity process,

Sξ(ω, t) '
m2γ2vtyp

2

tα
2αtβ

β−1
ω−2α−β = m2γ2(ωtα)

−2αSvm(ω, t). (3.168)

Since the stationary autocorrelation function of the nonequilibrium noise depends
only on the asymptotically stationary medium velocity correlation function (see
Section 2.2.3), so does the spectral density. It is thus the same for both the stationary
and nonstationary medium velocity process. For the Lévy walk, we have,

Sξ(ω, t) '
Γ(β) cos

(
πβ
2

)
m2γ2vtyp

2

(1−β)tα2α〈tw〉tββ−2
ω−2α−β

= m2γ2(ωtα)
−2αSvm(ω, t). (3.169)

As long as the nonequilibrium noise is stationary, its spectral density is thus simply
related to the one of the medium velocity (see Eqs. (3.140) and (3.160)) by a factor
of m2γ2(ωtα)−2α. This is not unexpected, as the respective Laplace transforms
are related by ξ̃(s) = mγ(stα)

−αṽm(s). For 1 < 2α + β < 2, the leading order
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of the noise spectral density is still given by Eq. (3.167). As was the case with the
velocity spectral density, we may need to take into account the sub-leading order to
accurately capture its frequency dependence. The noise spectral density, including
the time-dependent sub-leading order, is then,

Sξ(ω, t) ' 2Ca2α+β−1Γ(2α+β) cos
(
π

(
α+

β

2

))
ω−2α−β

+ 2C

(
a0 −

a1
2α+β− 1

)
t2α+β−2ω−2. (3.170)

Note that the coefficients a0 and a1 are different depending on whether the medium
velocity process was initially stationary or nonstationary. The simple relation be-
tween the nonequilibrium noise and the medium velocity spectral densities stated
above thus fails for the sub-leading order. This failure is even more pronounced
in the regime of very long-ranged memory or highly correlated motion of the
medium 2 < 2α+β < 3. Here the sub-leading order in Eq. (3.170) is now the lead-
ing order contribution. The leading order term is then proportional to ω−2 and
grows with the magnitude of the noise,

Sξ(ω, t) ' 2C
(
a0 −

a1
2α+β− 1

)
t2α+β−2ω−2

=
1

t
〈ξ2(t)〉ω−2. (3.171)

Thus, if the magnitude of the nonequilibrium noise increases superdiffusively, then
its spectral density will depend on time even in the long-time limit. A possible
interpretation of this superdiffusive nonequilibrium noise in the context of the
dynamics in cells is discussed in Section 4.3. Note that here, the time-dependent
spectral density is indeed different, depending on whether the medium velocity
process was initially stationary or not. Specifically, we have for the stationary Gaus-
sian case,

Sξ(ω, t) '
m2γ2vtyp

2

cos
(
πβ
2

)
Γ(α)Γ(α+β)(2α+β− 1)tα2αtβ

β−1
t2α+β−2ω−2,

(3.172)

while the corresponding expression for the nonstationary Gaussian case reads,

Sξ(ω, t) '
m2γ2vtyp

2

Γ2
(
α+ β

2

)
(2α+β− 1)tα2αtβ

β−1
t2α+β−2ω−2. (3.173)

These two expressions coincide only for β → 0, where the medium velocity corre-
sponds to Gaussian white noise. In particular, the coefficient of expression
Eq. (3.172) diverges as β→ 1, where the medium velocity process ceases to have a
well-defined stationary limit. In the nonstationary case, Eq. (3.173), by contrast the
coefficient is finite as β→ 1.



4
A P P L I C AT I O N T O D Y N A M I C S I N L I V I N G C E L L S

Note: Parts of this Chapter are based on Ref. [Dech 13].

Nonequilibrium dynamics in living cells depends strongly on the observed
time scales. For tracers bound to the cytoskeleton, there is a characteristic

transition between a very slow subdiffusive motion for short times and relatively
fast superdiffusion for longer times, with a transition time on the order of a few sec-
onds. Interestingly, both the respective diffusion exponents and the transition time
are largely universal for a wide range of cell types [Trep 08]. Our model of a tracer
particle coupled viscoelastically to an actively moving environment, which we in-
troduced in Section 2.2.2, describes a smooth transition between the subdiffusive
short-time and superdiffusive long-time behavior within the Langevin formalism.
The subdiffusive behavior is due to the motion of the tracer particle in a viscoelas-
tic equilibrium environment, while the nonequilibrium motion of the environment
itself leads to superdiffusion. In particular, the exponent α, that describes the de-
cay of the memory kernel and thus the mechanical properties of the equilibrium
medium, also determines the subdiffusion exponent 1− α. The superdiffusion ex-
ponent β+ 1, on the other hand, is solely determined by the correlations of the
medium velocity vm(t) and thus the active motion of the medium. The moving
viscoelastic medium model disentangles the equilibrium and nonequilibrium be-
havior and allows to quantify them individually by observing the short-time sub-
diffusion, respectively long-time superdiffusion. In Section 4.1, we compare our
model to experimental data of superdiffusion in living cells and extract the respec-
tive exponents. The transition from equilibrium subdiffusion to nonequilibrium
superdiffusion can be characterized by a crossover time tc, which relates the mag-
nitude of the active motion to the temperature.

The short-time subdiffusion exponent also appears in another context: Since
the subdiffusive motion is indicative of the equilibrium mechanical properties of
the cell, it is related to the linear response of the tracer to an externally applied
force via the Stokes-Einstein relation, see Section 2.3.3. The response thus follows
a power-law with the same exponent as the subdiffusive mean-square displace-
ment. The Stokes-Einstein relation also has an important experimental implica-
tion: It allows to predict the diffusive motion due to thermal fluctuations by mea-
suring the response in an active microrheological experiment. Conversely, the re-
sponse can be inferred from passively measuring the mean-square displacement.
For longer times, the Stokes-Einstein relation breaks down, as the diffusive motion
is now dominated by the nonequilibrium behavior of the cell. Here, both active
and passive measurements are required to determine the response respectively
mean-square displacement. However, we can reconnect diffusion and response by
introducing a time-dependent effective temperature in Section 4.2. This effective
temperature quantifies how far the system, when viewed on a certain time scale, is
from equilibrium. We thus obtain a generalized Stokes-Einstein relation which is

101
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valid for all time scales. Moreover, the same effective temperature also relates the
subdiffusive short-time and superdiffusive long-time behavior of the mean-square
displacement. Aside from the sub- and superdiffusion exponents, the effective tem-
perature only depends on the transition time tc. Within the framework of the gen-
eralized Stokes-Einstein relation and the effective temperature, we thus connect
the results of active and passive measurement for living cells. It allows to either
predict the mechanical response by comparing the short- and long-time diffusive
behavior observed in the passive measurement or to predict the short-time subd-
iffusion and the transition time from long-time active and passive measurements.
Applying the effective temperature to an experiment where both active and pas-
sive measurements were performed on the same cells [Gall 09], we find Teff(t) ∼ t

λ

with λ = 1.37± 0.07 from comparing the short- and long-time passive measure-
ment and λ = 1.31± 0.08 from comparing the active and passive measurement.
Within experimental errors, the time-dependence of the effective temperature is
thus indeed the same for both situations and our generalized Stokes-Einstein rela-
tion holds. This lends strong support to our nonequilibrium model, of which the
generalized Stokes-Einstein relation is a direct result.

Another central concept of our moving viscoelastic medium model is the
nonequilibrium noise, which arises as an effective force from the viscoelastic me-
chanical properties and the motion of the cytoskeleton. In Section 4.3, we argue
that, in order to realize both slow subdiffusion for short times and fast superdiffu-
sion for long times, this nonequilibrium noise necessarily has to be a nonstationary
stochastic process, whose magnitude increases with time. As a measurable conse-
quence of this, we calculate the power spectral density of this effective noise force
using the results of Sections 3.3 and 3.4.3. We predict that for the sub- and superdif-
fusion exponents observed in experiments, the power spectral density depends on
frequency as ω−2, a behavior which was suggested in Ref. [Lau 03]. Moreover, we
find that the power spectral density is time-dependent and its overall magnitude
increases with time. This is a signature of the strongly nonstationary behavior of
the external noise. More generally, we classify the nature of the nonequilibrium
dynamics as either force-like, where the active motion can be modeled through a
stationary external noise, or velocity-like, where the noise is nonstationary and has
to be interpreted in the context of our moving medium model.

While the mean-square displacement is a useful quantity to characterize the
spreading of particles due to the combination of thermal and active fluctuations in
the cell, it does not yield any detailed information about the stochastic properties
of the associated random processes. A quantity that goes a step beyond the mean-
square displacement is the so-called non-Gaussian parameter, which characterizes
the relative size of fourth and second moments of the displacement compared to
a Gaussian distribution. It vanishes for a Gaussian distribution, and is positive
respectively negative if the displacement distribution has more respectively less
weight on its tails than a Gaussian distribution. The non-Gaussian parameter was
measured in several experiments [Burs 05, Toyo 11, Gal 12, Gal 13] on cells and
artificial models of the cytoskeleton. While for short times, it is close to zero, indi-
cating that the equilibrium dynamics is Gaussian, it is clearly positive for longer
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times. The long-time nonequilibrium dynamics are thus non-Gaussian, with a high
prevalence of larger than average displacements. Our model allows to reproduce
this non-Gaussian behavior by using a non-Gaussian process for the medium ve-
locity vm(t). Specifically, we model the motion of the cytoskeleton using the Lévy
walk, which we introduced in Section 2.2.2. On even longer time scales the ex-
perimentally observed non-Gaussian parameter decreases again. We emulate this
behavior in our model by placing the particle in a confining potential and examine
the effect of the latter on the mean-square displacement and the non-Gaussian pa-
rameter. The results are discussed and compared with the experimental findings
in Section 4.4.

In the final Section of this chapter, Section 4.5, we focus on the linear response
of a viscoelastic system and its peculiar properties. Due to the presence of the su-
perdiffusive nonequilibrium fluctuations in living cells there exists a lower thresh-
old for the magnitude of the external force necessary in order to distinguish the
response from the noise background. Contrary to equilibrium systems, this thresh-
old increases with the desired measurement time, i.e. longer times require larger
forces to accurately determine the response of a single particle. Even more curi-
ous is the response in the presence of prestress. Due to the long-range viscoelastic
memory, the response depends in a detailed manner on the history of the system,
in particular whether a force has been applied in the past. In this case, the response
to an applied force may be in the opposite direction or even change direction as
a function of time. These results are distinct from the prestress and rejuvenation
effects observed experimentally so far, and could provide a further experimental
confirmation for the viscoelastic nature of the cytosekeleton.

4.1 equilibrium and nonequilibrium dynamics

4.1.1 Transition from sub- to superdiffusion

The dynamics described by the fractional Langevin equation with coupling to an
active environment Eq. (2.34) depends strongly on the time scales under consid-
eration. The shortest time scale is the transition time from underdamped to over-
damped motion, tover = tα(γtα)

−1/(α+1). For times shorter than this transition
time, the overdamped approximation used to derive the asymptotic results in Sec-
tion 2.3.2 is not valid. On these time scales, the fractional Langevin equation de-
scribes ballistic dynamics and oscillations in the mean-square displacement. Since
the friction constant γ of the cytoplasm is very large, the transition time is typi-
cally far below any time scales accessible in experiment (Ref. [Brun 09] estimates
tover ∼ 10

−12 s). Thus, we can safely assume the overdamped approximation to be
valid. If this is the case, then, according to Eqs. (2.90), (2.92) respectively (2.95), the
mean-square displacement has two contributions,

〈∆x2(t)〉 ' 2kBTtα

Γ(2−α)mγ

(
t

tα

)1−α
+ 2Dνt

β+1, (4.1)

where the diffusion coefficient Dν is different, depending on which model we as-
sume for the autocorrelations of the medium velocity (see Eqs. (3.134) and (3.154)).
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The first term describes the equilibrium subdiffusion, while the second one is the
superdiffusive contribution due to the nonequilibrium active motion. Due to the
different time-dependencies of the two terms, the first one will give the dominant
contribution for short times, while the second one is responsible for the long-time
dynamics. This transition between the subdiffusive equilibrium dynamics and the
superdiffusive nonequilibrium one is precisely what is observed in a large number
of experiments [Burs 05, Leno 07, Trep 08, Gall 09], where the motion of a micro-
scopic bead attached to the cytoskeleton is tracked.

Typical values for the equilibrium and nonequilibrium exponents found in ex-
periments [Burs 05, Leno 07, Trep 08, Gall 09] are α ∼ 0.8 and β ∼ 0.6. The rather
large value of α means that the mechanical properties of the cytoskeleton are more
elastic than viscous, leading to slow subdiffusion in equilibrium 〈∆x2(t)〉eq ∼ t0.2.
We can thus imagine the cytoskeleton as a network of elastic fibers, which are how-
ever, not rigidly bound together but can move with respect to each other, leading
to a small degree of viscosity. The exponent α also determines the response of a
tracer embedded in the cytoskeleton to an external force, see Sections 2.3.3 and
4.5. This allows to determine α both from passive measurements of the diffusive
behavior and from actively probing the mechanical properties of the cell and both
values generally agree very well [Gall 09]. The nonequilibrium motion of the cy-
toskeleton with exponent β ∼ 0.6 is significantly more correlated than completely
random Brownian motion, which corresponds to β = 0. This leads to substantially
enhanced diffusion 〈∆x2(t)〉 ∼ t1.6 for long times. The sub- and superdiffusive
dynamics are captured by the exponents α and β in Eq. (4.1). Within our sim-
ple stochastic model, these exponents are independent of each other. Whereas α
accounts for the viscoelastic mechanical properties of the cytoskeleton, β charac-
terizes the motion of the latter due to the activity of molecular motors. In reality,
the motion of the cytoskeleton depends on its mechanical properties and altering
the latter will impact the former. Thus, the exponents α and β are generally not
independent of each other in the actual physical system. Nevertheless, as our de-
scription in terms of the moving viscoelastic medium model accounts for the subd-
iffusive equilibrium and superdiffusive nonequilibrium motion with independent
stochastic processes, it allows to study the impact of changes in the cells’ properties
on both independently. For example, weakening crosslinks in the actin network is
expected to soften the cytoskeleton and thus reduce α, leading to less elastic and
more viscous motion. At the same time, since these crosslinks are responsible for
mediating the active forces in the cytoskeleton, we also expect the motion of the
latter to be less correlated, leading to a reduction in β [Fabr 11]. By measuring the
changes in the sub- and superdiffusion exponent, we can thus directly infer how
the mechanical and active properties of the cell change. Another example often em-
ployed in experiments is depletion of ATP [Burs 05, Leno 07, Gall 09], impairing
molecular motor activity and thus reducing the active motion of the cytoskeleton
and possibly the exponent β. This procedure should not change the cytoskeleton’s
mechanical properties and thus have no impact on the exponent α.

In Section 2.2.2 we presented three candidate processes for the medium veloc-
ity process vm(t), whose properties we subsequently examined in Section 3.4. This
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poses the question of which of these stochastic processes is best suited to describe
the nonequilibrium superdiffusion. First of all, all three processes lead to the same
diffusion exponent ν = β+ 1 for the same value of the parameter β, the only differ-
ence being the diffusion coefficient. Since the parameters that enter the anomalous
diffusion coefficient are within our model not related to any microscopic param-
eters, we have no way of telling which process is the most favorable one by way
of the mean-square displacement. Let us first address the question of stationarity:
We saw in Sections 3.1.3 and 3.2.2 that the initial stationarity of the process has
an measurable influence on the long-time dynamics. In principle, we could decide
whether the sought process is stationary or not by comparing the mean-square
displacement to the time-averaged square displacement, see Section 3.2.2. Unfortu-
nately, we do not have any experimental data available to perform this comparison.
However, in order to be able to distinguish between the nonstationary and station-
ary processes in experiment, we need to measure for times t that are much longer
than the time that has elapsed since the initialization of the nonstationary process.
In living cells, this is almost impossible even under the most ideal conditions. Mi-
crorheological experiments are typically performed on time scales of up to several
hundreds of seconds, whereas before the measurement, the incubation and prepa-
ration of the cells usually takes several hours [Gall 09]. Furthermore, living cells
are not ideal realizations of a stochastic process. Cell-to-cell variation and changes
within the individual cells are most certainly going to influence the measurement
result much more than any possible deviations from stationary behavior detectable
on these time scales. Consequently, we may restrict ourselves to the stationary vari-
ants of the respective processes for this purpose. This still leaves the stationary
fractional Gaussian process and the stationary Lévy walk as possible choices. On
the level of second moments, i.e. the mean-square displacement and spectral densi-
ties, these two processes are indistinguishable. However, several experiments have
shown that the nonequilibrium dynamics in living cells and comparable model
systems are indeed non-Gaussian, suggesting that the stationary Lévy walk may
be the best choice among our candidate processes. We discuss these non-Gaussian
effects in more detail in Section 4.4; for now, we will use the stationary Lévy walk
for further comparisons with experiments.

An example for the result of a microrheological experiment [Gall 09] is shown
in Fig. 4.1. There, the time-average square displacement of a silica bead bound
to the actin cortex of a mouse muscle cell was measured, the data in the figure
are the time average over a single trajectory. As a function of time the square dis-
placement exhibits the characteristic crossover from subdiffusion with exponent
1− α ∼ 0.1 to superdiffusion with exponent 1+ β ∼ 1.7, the crossover time being
on the order of several seconds. We used our moving viscoelastic medium model
Eq. (2.34) to reproduce these results numerically, see Fig. 4.2. We choose this par-
ticular experiment, because to our knowledge, it is the only one where both active
and passive measurements were performed on the same sample, allowing to test
our model’s predictions on both. In the passive measurement, a short-time subdif-
fusion exponent of 1−α = 0.12± 0.01 and a long-time superdiffusion exponent of
β+ 1 = 1.49± 0.06was obtained. The creep function, on the other hand, was found
to increase with an exponent 1− α∗ = 0.18± 0.02. While α and α∗ do not agree
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Figure 4.1: Left: Experimentally obtained mean-square displacement for a tracer bead
bound to the actin cortex of a mouse muscle cell. Curve a is a control cell, b is an actin
depleted cell with significantly reduced diffusion and c is the noise background. The inset
shows the trajectory corresponding to a. Note the transition from short-time subdiffusion
to long-time superdiffusion. Right: Displacement of the bead in response to a constant
external force on the order of several pico-Newtons. The displacement increases with time
in a nonlinear manner, with an exponent that is roughly on the order of the subdiffusion
exponent. Image taken from Ref. [Gall 09].
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Figure 4.2: Mean-square displacement (black line) and ensemble mean of the time-
averaged square displacement (red line) for α = 0.8 and β = 0.6 obtained from numerical
Langevin simulations using the stationary Lévy walk for the nonequilibrium motion. The
parameters were chosen to mimic the experimental results depicted in Fig. 4.1. The asymp-
totic behavior of the mean-square displacement is very well described by the analytic
expression Eq. (4.1) (dashed lines), the crossing point between the short- and long-time
asymptote determines the crossover time tc ∼ 4.0 s. As both the equilibrium noise and the
nonequilibrium moving medium are described by stationary processes, the mean-square
displacement is almost indistinguishable from the mean of the time-averaged square dis-
placement.
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Figure 4.3: Typical trajectory for α = 0.8 and β = 0.6 obtained from numerical Langevin
simulations using the stationary Lévy walk for the nonequilibrium motion. The parameters
were chosen to mimic the experimental results depicted in Fig. 4.1. All trajectories start at
the origin. The motion of the simulated tracer including both equilibrium and nonequilib-
rium noise qualitatively reproduces the trajectories observed in experiment (red). For com-
parison trajectories under the influence of only equilibrium (black) respectively nonequi-
librium (blue) noise are shown.

perfectly with one another, they are close enough to conjecture that the short-time
mean square displacement indeed corresponds to equilibrium motion. The numer-
ical simulation presented in Fig. 4.2 is in excellent agreement with the asymptotic
expression Eq. (4.1) and in good agreement with the experimental result, though
the parameters were estimated rather than fitted. In the simulation, we used a sta-
tionary Lévy walk for the medium velocity vm(t), see Section 3.4.2 for details. The
parameters used in the simulation are,

α = 0.8, β = 0.6, tα = tβ = 1 s

m = 9.21 · 10−15kg, γ = 2.4 · 109 1
s

, T = 300K, vtyp = 6.3
nm

s
. (4.2)

The choice of the time scales tα and tβ is arbitrary, as we noted in Sections 2.1.2
and 2.2.2, since we only consider the scale-invariant asymptotic behavior; for this
reason we may set them to 1 s for convenience. The above parameters also allowed
us to get a good qualitative reproduction of individual trajectories, Fig. 4.3, indi-
cating that the model is qualitatively well-suited to describing the experimental
results. Our numerical simulations allow us to go beyond the experiment and to
turn off the active motion of the medium respectively the equilibrium noise. If the
particle is only affected by the equilibrium noise, the anticorrelated subdiffusive
motion causes it to fluctuate around its initial position but prevents it from moving
very far. On the other hand, a particle influenced only by the long-range correlated
nonequilibrium Lévy walk motion of the medium moves around almost ballisti-
cally, causing it to travel large distances but only covering a small area while doing
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so. Only with the combination of equilibrium and nonequilibrium motion is the
particle transported effectively through the cell while also covering a large area.
We speculate that this combination of short-time subdiffusion and long-time su-
perdiffusion might be advantageous to the cell. Subdiffusion is known to enhance
the reaction probability at nearby target sites [Guig 08, Sere 12], allowing ample
time for chemical reactions to take place. The superdiffusive motion complements
this by transporting particles through the cell at an enhanced rate, giving them the
chance to come into contact with target sites at very different locations.

4.1.2 Crossover time as a measure of active motion

Both the subdiffusive equilibrium and the superdiffusive nonequilibrium motion
are characterized not only by the respective exponents α, β but also by their re-
spective diffusion coefficients. For the subdiffusive motion, we have,

〈∆x2(t)〉eq ' 2Deqt
1−α

with Deq =
kBTtα

α

Γ(2−α)mγ
, (4.3)

so that the diffusion coefficient is proportional to the temperature of the system.
For the long-time superdiffusive motion, on the other hand,

〈∆x2(t)〉 ' 2Dνtβ+1, (4.4)

with a diffusion coefficient Dν that is specific to the model used for the motion
of the cytoplasm. The two diffusion coefficients can be related to each other by
introducing a crossover time tc, at which the two contributions to the mean-square
displacement are equal,

〈∆x2(tc)〉eq = 〈∆x2(tc)〉noneq, (4.5)

where the subscripts eq and noneq denote the equilibrium respectively nonequi-
librium contribution to the mean square displacement. The crossover time is then
given by,

tc =

(
Dν

Deq

)− 1
α+β

. (4.6)

For fixed exponents α, β, an increase in the nonequilibrium diffusion coefficient
Dν leads to a decreasing crossover time, as the superdiffusive motion sets in ear-
lier. The crossover time tc measures the relative amplitude of the equilibrium and
nonequilibrium motion and is thus a useful quantity to characterize the physi-
cal system. An increase in temperature, for example, is expected to enhance the
equilibrium diffusion coefficient via Eq. (4.3). However, it might also lead to in-
creased molecular motor activity and thus enhance the nonequilibrium diffusion
coefficient. In this scenario, the crossover time quantifies how much the equilib-
rium respectively nonequilibrium properties of the cell are affected by the tem-
perature change: If the crossover time increases, then the enhanced thermal equi-
librium fluctuations are the dominant effect, if it decreases, the rise in molecular
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motor activity is prevalent. Experimental data indeed shows that the crossover
time decreases with increasing temperature [Leno 07], suggesting that motor ac-
tivity increases disproportionately with respect to thermal fluctuations. Typical
values for the crossover time observed in experiments are on the order of tc ∼ 1 s
[Burs 05, Leno 07, Trep 08, Gall 09].

4.2 effective temperature and generalized stokes-einstein rela-
tion

In microrheological experiments, there are two qualitatively different measurement
schemes, see Section 1.1. In the passive scheme, a bead is embedded into the cy-
toplasm and its random motion within the cell is observed without exerting any
external force on it. This type of measurement probes the diffusive properties of
the cell. In the active scheme, a probe force is applied to the tracer particle and its
response, i.e. its motion in reaction to the external force, is observed. This measure-
ment scheme probes the mechanical properties of the cell, rather than the inher-
ent random motion. For an equilibrium system, these two measurement schemes
are related, the response to the external force follows the same time-dependence
as the mean-square displacement. In Section 4.2.1, we discuss the Stokes-Einstein
relation, and show how it can be generalized to the nonequilibrium case via a
time-dependent effective temperature, which depends on the crossover time be-
tween sub- and superdiffusion. A similar relation with a frequency-dependent
effective temperature is derived as well. Section 4.2.2 is dedicated to the interpre-
tation of these effective temperatures in terms of the nonequilibrium dynamics of
the system. In particular we see when and how the time-dependent and frequency-
dependent effective temperature are related.

4.2.1 Stokes-Einstein relation in time and frequency domain

In the equilibrium system described by the fractional Langevin equation (2.10),
we saw in Section 2.3.3 that the diffusion of the tracer particle in the absence of
an external force and its response to a probe force are intimately related by the
Stokes-Einstein relation Eq. (2.104) [Lutz 01],

〈∆x2(t)〉eq = 2kBTJ(t). (4.7)

It relates the mean-square displacement, which quantifies the random motion of
the particle due to thermal fluctuations, to the creep function, which is the response
of the particle to a constant external force, via the temperature. In equilibrium,
both increase as t1−α due to the viscoelastic properties of the thermal environ-
ment. This changes if we take into account the active motion of the cytoskeleton.
While Eq. (4.7) is expected to remain valid in the short-time subdiffusive regime,
for long times, the mean-square displacement behaves superdiffusively. Since we
assumed the motion of the viscoelastic medium to be random in the sense that
it does not have any favored direction, 〈vm(t)〉 = 0, it will have no impact on
the response of the particle to an external force. Thus the behavior of the mean-
square displacement is changed, while the creep function remains the same and
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the Stokes-Einstein relation Eq. (4.7) is thus no longer valid. This is not surpris-
ing, as the latter is a direct consequence of the fluctuation-dissipation theorem
Eq. (2.11), which only holds for equilibrium systems. We may impose a relation
similar to Eq. (4.7),

〈∆x2(t)〉 ' 2kBTeff(t)J(t), (4.8)

valid for both the equilibrium and nonequilibrium situation, however, this ne-
cessitates a time-dependent effective temperature Teff(t). Comparing the general-
ized Stokes-Einstein relation Eq. (4.8) to the asymptotic mean-square displacement
Eq. (4.1) and creep function Eq. (2.105), we find the expression for this effective
temperature,

Teff(t)

T
' 1+ Dν

Deq
tα+β = 1+

(
t

tc

)α+β
. (4.9)

Here tc is the crossover time between sub- and superdiffusion introduced in
Eq. (4.6). For short times t � tc, the effective temperature is equal to the physi-
cal one and the original Stokes-Einstein relation holds. This relates the result of
the active measurement to the one of the passive measurement and allows to infer
the result of one from the other. For long times t� tc, on the other hand, the effec-
tive temperature increases with time and is larger than the physical temperature.
For the experiment discussed in Section 4.1.1, we find from comparing the results
of the active and passive measurement that Teff ∼ tλ with λ = 1.31 ± 0.08. The
effective temperature thus increases strongly for long times, indicating the strong
effect of the active motion of the cytoskeleton on the tracer.

An equivalent to the Stokes-Einstein relation Eq. (4.7) exists in the frequency do-
main. We examine the velocity spectral density for the equilibrium system, which
is related to the Laplace transform of the velocity autocorrelation by,

Sv(ω, t) =
1

t
L−2

[
C̃v(s2, s1)

(s2 + iω)(s1 − iω)

]s1→t
s2→t

. (4.10)

This relation can easily be verified by noting that the laplace transform of the
windowed Fourier transform Eq. (3.79) is given by,

L
[√
tv̂(ω, t)

]
t→s

=
1

s
ṽ(s− iω). (4.11)

Equation (4.10) then follows from the definition of the spectral density. Using the
equilibrium part of Eq. (2.76) with a thermal initial condition 〈v0〉2 = kBT/m, we
see that the velocity correlation function can be written as,

C̃v(s2, s1) =
kBT

m(s2 + s1)

[
1

s2 + γk̃(s2)
+

1

s1 + γk̃(s1)

]
, (4.12)

where we used the fluctuation-dissipation theorem Eq. (2.11) for the equilibrium
noise. As discussed in the derivation of Eq. (3.113), the long-time ωt� 1 behavior
of the spectral is given by the behavior of the term in square brackets in Eq. (4.10)
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at its nonanalytic points. Here, the dominant contribution comes from s2 = −iω,
s1 = iω and we approximate,

Sv(ω, t) ' kBT
mt

L−2

[
1

(s2 + s1)(s2 + iω)(s1 − iω)

]s1→t
s2→t

×
[

1

iω+ γk̃(iω)
+

1

−iω+ γk̃(−iω)

]
=
2kBT

m
<

[
1

iω+ γk̃(iω)

]
= Sv,eq(ω), (4.13)

where <[z] denotes the real part. The equivalent of the response or creep function
in frequency space is the complex elastic modulus. Consider applying a oscillating
probe force Fp(t) = F0e

iωt, where for now we allow complex values and take the
real or imaginary part afterwards. The response in Laplace space is then given by
Eq. (2.96),

〈x̃(s)〉 = F0
m

1

s2 + γsk̃(s)

1

s− iω
, (4.14)

for a particle initially at rest at the origin. For long times ωt� 1, we then have in
the time domain,

〈x(t)〉 ' F0eiωt
1

(iω)2 + γiωk̃(iω)
. (4.15)

The complex shear modulus G(ω) is defined as the ratio of the applied force and
the response,

G(ω) =
Fp(t)

〈x(t)〉
= m

(
(iω2 + γiωk̃(iω)

)
. (4.16)

Comparing this to Eq. (4.13), we find,

Sv,eq(ω) = −2kBTω=[G−1(ω)] = 2kBTω
=[G(ω)]

|G(ω)|2
. (4.17)

This is the equivalent of the Stokes-Einstein relation in frequency space [Reif 09].
Where the time space Stokes-Einstein relation Eq. (4.7) links the mean-square dis-
placement to the response to a constant probe force, the frequency space version
links the velocity spectral density to the response to an oscillating probe force. The
imaginary part =[G(ω)] of the complex modulus is also referred to as the loss mod-
ulus (the real part as the storage modulus), since it describes the component of the
response that is out of phase with the applied force and thus dissipation into the
medium. Hence, the relation between the velocity spectral density and the loss
modulus is not surprising as a consequence of the fluctuation-dissipation theorem.
For low frequencies ω � 1/tover, where tover is the transition time from under-
damped to overdamped regime, the complex modulus is asymptotically given by,

G(ω) ' mγt−αα (iω)1−α

<[G(ω)] ' mγt−αα sin
(πα
2

)
ω1−α

=[G(ω)] ' mγt−αα cos
(πα
2

)
ω1−α. (4.18)
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These results confirm the physical picture of a viscoelastic medium: In the viscous
limit α → 0, the storage modulus is zero and the system is purely dissipative. As
the system becomes more and more elastic, the storage modulus increases, while
the loss modulus decreases, until for a fully elastic system α → 1, the system
is no longer dissipative at all. Both the loss and storage modulus increase with
frequency as ω1−α [Fabr 01, Ball 06, Hoff 09, Bert 12b], so the system at the same
time gets more dissipative and rigid as the frequency increases. The increased
dissipation is due to the larger velocity of the particle as it is driven with a higher
frequency, which leads to a larger viscous friction. At the same time this means
that to maintain a certain amplitude of the response at high frequencies a stronger
external force is required to counteract the friction, leading to increased rigidity.
For the nonequilibrium system, we saw that the velocity spectral density is given
by Eq. (3.119),

Sv(ω) ' 2aβ−1CΓ(β) cos
(
πβ

2

)
ω−β. (4.19)

Then, imposing a condition similar to the frequency space Stokes-Einstein relation
Eq. (4.17), we find a frequency dependent effective temperature,

Teff(ω)

T
' 1+

(
ω

ωc

)−α−β

with ωc =

 kBTtα
α cos

(
πα
2

)
aβ−1CmγΓ(β) cos

(
πβ
2

)
− 1

α+β

. (4.20)

This effective temperature is the frequency space equivalent of Eq. (4.9). Quali-
tatively, it describes the same behavior with a crossover frequency ωc: For high
frequencies ω � ωc (corresponding to short times) the effective temperature is
equal to the physical one and the system shows equilibrium behavior. For low fre-
quencies ω � ωc (corresponding to long times), on the other hand, the effective
temperature in increased with respect to the physical one.

Comparing Eqs. (4.9) and (4.20) immediately poses the question of how the time-
and frequency dependent effective temperature are related, or rather, whether
there exists a direct relation between the crossover time tc and the crossover fre-
quency ωc. Generally, the answer is no, as can be understood from the following
argument. The crossover time depends on the ratio between the superdiffusion
coefficient Dν and the equilibrium diffusion coefficient Deq. As we saw in Sec-
tion 3.1.3, the diffusion coefficient Dν is sensitive to whether the medium velocity
vm(t) was initially stationary or not. On the other hand, the velocity spectral den-
sity only depends on the small-argument expansion of the velocity scaling function
Eq. (3.13), and thus on the stationary velocity correlation function. Consequently,
the long-time behavior of the velocity spectral density is independent of whether
the system was initially stationary or not. For this reason, the time dependent ef-
fective temperature Teff(t) is sensitive to the initial state of the system, whereas the
frequency dependent one Teff(ω) is not, and hence there exists no general relation
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between them. If the system is assumed to be initially stationary, however, then the
stationary diffusion coefficient is given by Eq. (3.32),

Dν,s =
aβ−1C

β(β+ 1)
. (4.21)

In this case, comparing Eqs. (4.6) and (4.20) yields a relation between crossover
time and frequency,

ωc =
1

tc

Γ(β+ 2) cos
(
πβ
2

)
Γ(2−α) cos

(
πα
2

)


1
α+β

, (4.22)

which depends only on the exponents α and β. So as a rule of thumb we have
ωc ∼ 1/tc, as expected. For the typical experimental values α ∼ 0.8 and β ∼ 0.6 the
precise relation is ωc ' 2.17/tc and should be taken into account when comparing
results as a function of time respectively frequency. Since the stationary case is the
typical situation for microrheological experiments (see the discussion in Section
4.1.1), we can use Eq. (4.22) to relate the crossover time and frequency and can thus
determine either one from the measurement of the mean-square displacement or
the spectral density.

4.2.2 Effective temperature and dynamics on different time scales

Now that we have defined the effective temperatures Eqs. (4.9) and (4.20), we want
to elucidate their physical meaning. For the frequency dependent effective tem-
perature Eq. (4.20), the interpretation is relatively straightforward: The measured
velocity spectral density at low frequencies is enhanced by a factor Teff(ω)/T com-
pared to the equilibrium system. In this sense, Teff(ω) is not an actual (thermal or
kinetic) temperature but should be interpreted as a measure of how far the sys-
tem, when considered at a certain frequency, is from its equilibrium state. Similar
definitions of an effective temperature have been employed to characterize the out-
of-equilibrium behavior of different systems [Cugl 97, Pott 05, Wilh 08, Cugl 11].
In the same way, the time dependent effective temperature should be understood
as a statement about time scales rather than a dynamic quantity that increases with
time. When observed on short time scales, the system behaves as if in equilibrium,
whereas on long time scales the nonequilibrium contribution to the dynamics is
dominant. This interpretation is supported by the fact that Teff(t) not only relates
the long-time superdiffusive mean-square displacement to the response to an ex-
ternal force via the generalized Stokes-Einstein relation Eq. (4.8), but also to the
short-time equilibrium mean-square displacement,

〈∆x2(t)〉 ' Teff(t)

T
〈∆x2(t)〉eq. (4.23)

The time dependent effective temperature Teff(t) measures by how much the diffu-
sive dynamics on a certain time scale is enhanced compared to the equilibrium sys-
tem. The effective temperature can thus also be determined from a solely passive
measurement by comparing the short-time subdiffusive and long-time superdiffu-
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sive behavior. Similarly, the frequency dependent effective temperature provides a
relation between the total spectral density and the equilibrium one,

Sv(ω) ' Teff(ω)

T
Sv,eq(ω). (4.24)

In the experiment discussed in Section 4.1.1 [Gall 09], the result of comparing
the short- and long-time diffusive behavior obtained by passive measurement is
Teff ∼ t

λ with λ = 1.37± 0.07. This agrees with the value of λ = 1.31± 0.08 found
by comparing the active and passive measurement in Section 4.2.1 within experi-
mental errors.

4.3 spectral densities and nonequilibrium noise

In the previous section, we obtained the velocity spectral density for ωt � 1,
Eqs. (4.13) and (4.24),

Sv(ω) =
2kBT

m

(
1+

(
ω

ωc

)−α−β
)
<

[
1

iω+ γ(iωtα)−α

]
. (4.25)

The behavior of this expression depends in an intricate manner on the frequency
scale. For low frequencies ω� ωc, while still ωt� 1, we can neglect the contribu-
tion from the equilibrium spectral density (the 1 in the parentheses) and obtain the
nonequilibrium result, Eq. (4.19). Ifω� ωc, the equilibrium contribution Eq. (4.13)
to the spectral density dominates. For the equilibrium velocity spectral density, we
again find different asymptotic behaviors. For ω � 1/tover, which corresponds to
the overdamped dynamics, the second term in the denominator is dominant and
we find,

Sv,eq(ω) ' 2kBTtα
α

mγ
cos
(πα
2

)
ωα. (4.26)

In this regime, the spectral density increases with ω. For ω� 1/tover, on the other
hand,

Sv,eq(ω) ' 2kBTγ
mtα

α cos
(πα
2

)
ω−α−2, (4.27)

which decreases with ω, indicating a maximum for frequencies ω ∼ 1/tover. In
addition to the long-time behavior, we saw in Section 3.3.3 that there is a time-
dependent low-frequency cutoff for ωt� 1. Summarizing these results, the veloc-
ity spectral density behaves as,

Sv(ω, t) '



2Dνt
β for ω� 1/t

2aβ−1CΓ(β) cos
(
πβ
2

)
ω−β for 1/t� ω� ωc

2kBTtα
α

mγ cos
(
πα
2

)
ωα for ωc � ω� 1/tover

2kBTγ
mtα

α cos
(
πα
2

)
ω−α−2 for ω� 1/tover.

(4.28)
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Figure 4.4: Velocity spectral density for α = 0.8 and β = 0.6 as a function of frequency
obtained from Langevin simulations (cyan line). The model used for the nonequlibrium
motion is the stationary Lévy walk. The asymptotic behavior Eq. (4.28) is indicated by the
dashed (1/t � ω � ωc), dotted (ωc � ω � 1/tover) and dash-dotted (1/tover � ω) lines.
The crossing points between the asymptotes are the corresponding crossover frequencies.
Apart from the low-frequency cutoff, the spectral density is time-independent (red line).

The nonmonotonous behavior of the velocity spectral density as a function of fre-
quency, which is shown in Fig. 4.4, yields a wealth of information about the system.
The decay for 1/t � ω � ωc and can be used to determine the nonequilibrium
exponent β. If the spectral density is evaluated for different measurement times,
then this information can be compared with the increase of the value below the cut-
off, which also yields information about the nonequilibrium diffusion coefficient.
For higher frequencies, there occurs a minimum as the ω−β decay turns into a
ωα increase. The position of the minimum is approximately at ω ∼ ωc where the
crossover between nonequlibrium low-frequency and equilibrium high-frequency
behavior occurs. The subsequent maximum, on the other hand, is approximately at
ω ∼ 1/tover and thus at the transition from overdamped to underdamped behavior,
which is related to the size of the friction coefficient γ. From the high-frequency
falloff, the equilibrium exponent α can be extracted. Consequently, the velocity
spectral density is well suited to represent both the equilibrium and nonequilib-
rium dynamics of the system.

Determining the properties of the system from the position spectral density, on
the other hand, is not as straightforward. For the equilibrium part, we have instead
of Eq. (4.12),

C̃x(s2, s1) =
kBT

ms2s1(s2 + s1)

[
1

s2 + γk̃(s2)
+

1

s1 + γk̃(s1)

]
. (4.29)



116 application to dynamics in living cells

1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1
1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

1 0 7

1 0 8

1 0 9

 t  =  2 0 0
 t  =  8 0 0

 S x(ω
,t)

 ω

Figure 4.5: Position spectral density for α = 0.8 and β = 0.6 as a function of frequency
obtained from Langevin simulations (colored lines). The model used for the nonequlibrium
motion is the stationary Lévy walk. Asymptotically, the spectral density decays as ω−2,
with a magnitude that increases weakly with time. The dashed lines are the analyitcal
result Eq. (3.160). The equilibrium part of the spectral density only appears as a small
peak (indicated by the arrow) in the dominant nonequilibrium contribution.

The dominant poles in the Laplace inversion in Eq. (4.10) are still the ones at
s2 = iω, s1 = −iω, so we find the simple relation for ωt� 1,

Sx(ω, eq) = ω−2Sv(ω, eq). (4.30)

Thus the position spectral density decays as ωα−2 for ω � 1/tover (see Fig. 4.5)
and as ωα−4 for ω � 1/tover. For the nonequilibrium contribution, we saw in
Section 3.4 that this relation does not hold due to the superdiffusive nature of
the process. The nonequilibrium contribution to the position spectral density be-
haves as Sx(ω, t) ∼ tβω−2, see Eqs. (3.148) and (3.160) for details. Determining
the nonequilibrium exponent β from the position spectral density thus requires
measuring the latter over different times and then obtaining β from the observed
increase in magnitude at low frequencies. In particular, as noted before, there ex-
ists no simple relation like Eq. (4.30) between nonequilibrium contribution to the
velocity respectively position spectral density.

Similar considerations hold for the spectral density of the nonequilibrium noise
Sξ(ω, t), discussed in Section 3.4.3. For the typical value of the exponents α ∼ 0.8
and β ∼ 0.6, the nonequlibrium noise is nonstationary, see Eqs. (2.62), (2.65) and
(2.69). For t � τ, the magnitude of the noise correlations increases as 〈ξ2(t)〉 ∼
t2α+β−1 = t1.2. The external noise process itself is thus superdiffusive and its
long-time spectral density is given by Sξ(ω, t) ∼ t2α+β−2ω−2, i.e. depends on
frequency as ω−2 and increases with time as t0.2. At first glance this may seem
peculiar, since a noise force that is nonstationary in time, no less with a magni-
tude that increases superdiffusively, is not a common occurrence. This peculiarity
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however stems form the fact, that ξ(t) as defined in Eq. (2.35) is an effective noise
force, that describes the viscoelastic coupling to a moving medium. The proper-
ties of ξ(t) are more easily understood by imagining applying an external force
−ξ(t) to the particle, which exactly cancels out the nonequilibrium motion of the
tracer. Since the entire system (i.e. the portion of the cytoskeleton the tracer is at-
tached to) is moving at a velocity vm(t) and the tracer is viscoelastically coupled
to the system, it tends to get displaced further and further from its starting point.
Consequently, we need to apply an increasing force to keep the particle in place
against the viscoelastic force. Note that the nonstationarity and an increasing mag-
nitude of the nonequilibrium noise is actually a necessity in order to find agree-
ment with the experimentally observed values for the exponents α and β within
the fractional Langevin formalism. The most strongly correlated stationary noise
possible – although the term noise is not really appropriate – is one that is con-
stant in time ξ(t) = ξ0 with ξ0 random. This corresponds precisely to the situation
with an applied constant external force discussed in Section 2.3.3. There we saw
that under these circumstances, the displacement of the particle increases for long
times as x(t) ∼ ξ0t

1−α. This implies that the mean-square displacement behaves
as 〈∆x2(t)〉 ∼ 〈ξ02〉t2−2α. For α ∼ 0.8, the mean-square displacement due to a fully
correlated noise thus increases as t0.4, which is subdiffusive and far from the t1.6

behavior found in experiment. Consequently, if we want to describe both sub- and
superdiffusion within the framework of the fractional Langevin equation, we re-
quire an effective nonequilibrium noise whose magnitude increases with time. The
ω−2 behavior for the nonequilibrium force spectral density was measured by Lau
et al. [Lau 03] for intracellular stress fluctuations using two-point microrheology,
which supports our finding for the nonequilibrium noise. If the noise spectrum
were time-independent, then this would imply that the scaling exponent for the
nonequilibrium noise, Eq. (3.162), is 2α+β− 1 = 1, i.e. that β = 2− 2α [Lau 03]. In
this case, we would have found a direct relation between the equilibrium and the
nonequilibrium exponent. However, as we discussed above, a ω−2 dependence of
the nonequilibrium noise spectrum also applies to 2α − β − 1 > 1, i.e. this only
tells us that β > 2− 2α, which agrees with the typical values extracted from the
diffusion exponents. A direct measurement of a time-dependent ω−2 nonequilib-
rium noise spectral density would thus confirm our results and show that, while
the equilibrium and nonequilibrium exponents are generally not independent of
each other, there is more flexibility in the properties of living cells than the simple
equality implies.

For different values of α and β, we find a threshold for stationarity of the
nonequilibrium noise at 2α+ β = 1, or equivalently at νsuper − 2νsub = 0, where
νsub and νsuper are the diffusion exponents for the sub- and superdiffusive behav-
ior, respectively. For 2α + β < 1, the nonequilibrium noise is stationary. In this
regime, we refer to the nonequilibrium dynamics of the tracer particle as "force-
like", since we can imagine canceling out the nonequilibrium contribution to the
particle’s motion by applying a force −ξ(t), whose average magnitude is constant
in time. Conversely, we can treat ξ(t) as an actual force acting on the particle em-
bedded in the equilibrium viscoelastic medium. This changes for 2α+β > 1. Here,
the nonequilibrium noise is nonstationary and we would have to apply an ever
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increasing force to cancel out the nonequilibrium motion. We call the dynamics
in this regime "velocity-like", since the particle is being pulled along by the mov-
ing viscoelastic medium rather than being displaced relative to the latter by a the
nonequilibrium noise. In the situation discussed above, where the tracer is bound
to the cytoskeleton itself, we typically have slow subdiffusion (α ∼ 0.8) and fast su-
perdiffusion (β ∼ 0.6) and the nonequilbrium motion is velocity-like [Trep 08]. For
small tracers endogenous to the cell and not bound to the cytoskeleton, the sub-
diffusion exponent is generally much larger, while the superdiffusion exponent
is reduced (see e.g. Ref. [Brun 09], where α ∼ 0.03 and β ∼ 0.36). This leads to
force-like nonequilibrium motion. This distinction points to a fundamental differ-
ence between the two situations: The tracer bound to the cytoskeleton is forced
to follow the latter’s active and rather directed motions, leading to velocity-like
dynamics. The tracer dynamics thus directly mirrors the one of the cytoskeleton;
a dense network, which is more elastic than viscous (large α) and moves in a very
correlated manner (large β) due to the action of molecular motors. For a small
tracer not bound to the cytoskeleton, on the other hand, the subdiffusive motion
mirrors the mechanical properties of the cytoplasm rather than the cytoskeleton,
which are viscous rather than elastic (small α). Moreover, the tracer only expe-
riences the active motion of the cytoskeleton as mediated through the cytoplasm,
resulting in less correlated long-time motion (smaller β). This indirect action of the
cytoskeletal motion on the tracer also warrants a description in terms of an actual
non-equilibrium noise and thus force-like dynamics, as was done in Ref. [Brun 09].

Finally, let us make a few general remark about spectral densities and the associ-
ated random processes. For a stationary process, the situation is relatively straight-
forward: The stationary correlation function and the spectral density are related
via a Fourier transform by the Wiener-Khinchine theorem Eq. (3.86). For the par-
ticular case of a power-law correlation function, this means that a ω−µ decay of
the spectral density with 0 < µ < 1 corresponds to a τµ−1 decay of the corre-
lation function. This is also the result we obtained from our scaling correlation
function in Section 3.3.3. There we saw that this result also extends to subdiffusive
processes, whose correlation function is nonstationary, but whose spectral density
nevertheless exhibits a time-independentω−µ decay with 1 < µ < 2. This provides
an appealing unification of stationary and subdiffusive processes in terms of their
spectral density. However, for subdiffusive processes, the spectral density is not
related to the stationary correlation function via a Fourier transform, as the latter
does not exists. It would thus be wrong to conclude that a ω−µ spectral density
with 1 < µ < 2 corresponds to a stationary power-law correlation function that
increases as τµ−1. As we noted in Section 3.4.2, such a ω−µ behavior, albeit time
dependent, also occurs for the ballistic Lévy walk whose velocity process is not sub-
diffusive by asymptotically constant. This underlines the fact that the one-to-one
correspondence between the power-law exponent of the spectral density and the
velocity correlation function breaks down for µ > 1. For superdiffusive systems,
we saw in Section 3.3.3 that the spectral density generally exhibits a ω−2 decay,
which is time-dependent. Here, there is no more relation between the exponent of
the frequency dependence of the spectral density and the characteristic exponent
of the superdiffusive process. This relation now enters the time dependence of the
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spectral density, as a time-independent ω−2 behavior corresponds to normal dif-
fusive (Brownian-like) motion, whereas an increasing magnitude of the spectral
density is related to superdiffusion. The bottom line is, that one should be aware
that the relation between frequency-dependent and time-dependent quantities is
not always just a matter of adding exponents. An at first glance simple spectral
density may just be hiding the complexities of the dynamics.

4.4 non-gaussian statistics and confinement

While the mean-square displacement is a useful measure to describe the diffusive
properties of the system, it does not yield much information about the statistics
of the involved processes. A notable exception is when the underlying system is
Gaussian, then the entire probability distribution of the particle displacement is
uniquely determined by the mean and mean-square displacement. There is, how-
ever, strong experimental evidence that, while the short-time equilibrium dynam-
ics is indeed Gaussian, the long-time nonequilibrium dynamics in living cells is
non-Gaussian [Burs 05, Toyo 11, Gal 13]. It is thus necessary to consider the influ-
ence of non-Gaussian statistics. A quantity which expresses the degree to which
the statistics differ from Gaussian statistics is the so-called non-Gaussian parame-
ter [Rahm 64],

NGP(t) =
〈∆x4(t)〉
3〈∆x2(t)〉2

− 1. (4.31)

For a Gaussian process, we have from the Gaussian moment theorem Eq. (3.139),
〈∆x4(t)〉 = 3〈∆x2(t)〉2 and thus the non-Gaussian parameter is zero. For non-
Gaussian processes, NGP(t) > 0 indicates that the fourth moment is bigger com-
pared to a Gaussian process and more weight is given to the tails of the displace-
ment distribution, i.e. that the probability to have unusually large displacements
is enhanced. By contrast, NGP(t) < 0 tells us that more weight is given to the
center of the distribution; this is typically the case in confined geometries, where
there is an upper limit to the maximal displacement that can occur. In experiments
[Burs 05] on living cells, this non-Gaussian parameter is initially zero for times
much shorter than the crossover time tc between subdiffusion and superdiffusion,
indicating that the equilibrium subdiffusion is indeed Gaussian. It then increases
until it reaches its maximum value at roughly the transition time, whereupon it de-
creases again and finally even becomes negative. The increase of the non-Gaussian
parameter as the dynamics are more and more dominated by the nonequilibrium
motion of the cytoskeleton indicates that the latter is a non-Gaussian process. In
Section 3.4, we discussed the Lévy walk as a possible process to model the ve-
locity of the moving viscoelastic medium. For the Lévy walk, the non-Gaussian
parameter increases as [Rebe 13],

NGP(t) ' β2(β+ 1)2(2−β)

3(1−β)(β+ 2)(β+ 3)

(
t

tβ

)1−β
− 1. (4.32)

However, the above only holds for long times, if the displacement of the tracer
particle is allowed to increase arbitrarily. In actual experiments, the maximal dis-
placement is limited by the size of the cell, providing a cutoff on the displacement
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distribution. Such a cutoff affects the fourth moment of the displacement – which
depends strongly on the tails of the distribution – more strongly than the second
moment, reducing the non-Gaussian parameter. Since large displacements occur
for long times, the impact of confinement due to the finite extension of the cell
increases with time. Thus the non-Gaussian parameter will typically reach a max-
imum value, where the particles’ behavior is dominated by the nonequilibrium
dynamics but not yet by the confinement. For longer times, confinement effects
become important and the non-Gaussian parameter decreases again and may even
become negative, which indicates that large displacements are suppressed com-
pared to a Gaussian distribution. For a confined geometry, the particles will even-
tually be uniformly distributed over the volume, which leads to NGP = −2/5 in
one dimension or −1/10 in a circular two-dimensional confinement. Qualitatively,
this mirrors the experimentally observed behavior of the non-Gaussian parame-
ter [Burs 05, Toyo 11, Gal 13]. Confinement is also expected to lead to a reduction
in the mean-square displacement, which coincides with the experimental observa-
tions [Burs 05] on time scales of several tens of seconds, where the superdiffusive
behavior is diminished.

In our numerical simulations, we include confinement by placing the particle in
a potential U(x) ∼ (x/xc)

12, where the large exponent is chosen to approximate a
hard-wall potential. We choose the length scale xc of the confinement such that the
mean-square displacement deviates from the superdiffusive behavior at around 40

s, akin to what is observed in experiments. The mean-square displacement and
non-Gaussian parameter for the parameters in Eq. (4.2) are shown in Figs. 4.6 and
4.7. Compared to the experimental results in Fig. 4.8, we note that, in the experi-
ment the maximum value for the non-Gaussian parameter occurs at roughly the
transition time from sub- to superdiffusion. By contrast, the numerical simulations
exhibit a maximum at a later time, roughly where the mean-square displacement
starts to deviate from the superdiffusive behavior due to confinement. The latter
behavior is what we intuitively expect: Since both the anomalous diffusion and
the non-Gaussian behavior are due to long periods of ballistic motion, which the
confinement effectively truncates, the effect of confinement on the mean-square
displacement and the non-Gaussian parameter should be noticeable at roughly
the same time. Why then is the experimentally observed behavior different? A
clue to this may be found by noting that all curves for the non-Gaussian parameter
in Fig. 4.8 tend towards the same negative value at about 10 s. This in itself might
be explained with the displacement distribution becoming uniform. However, at
the same time, the mean-square displacement continues to grow significantly for
even longer times, which contradicts an almost uniform distribution. Further, the
gray curve in the figure represents a control bead, which was glued to the cover-
slip. Here, the non-Gaussian parameter is almost zero (as expected, since it should
only experience Gaussian thermal fluctuations) before reaching the same negative
value at long times. But a bead glued to the coverslip is not subject to the enhanced
active diffusion of those bound to the cytoskeleton and should not feel a possible
confinement in the same manner. Since the non-Gaussian parameter nevertheless
tends to the same negative value at precisely the same time, we speculate that
the sharp decrease of the non-Gaussian parameter observed in this experiment
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Figure 4.6: Mean-square displacement Eq. (4.1) as a function of time, numerical Langevin
simulations for the parameters of Eq. (4.2). Confinement (red line) leads to a reduction of
the mean-square displacement compared to the unconfined superdiffusive motion (black
line) for long times.

may be an artifact of the data analysis procedure. If true, this would imply that
the maximum in the non-Gaussian parameter might actually occur at a later time.
This conclusion is supported by the findings of Ref. [Gal 12], where the maximum
of the non-Gaussian parameter was indeed found to occur at the same time as
deviations from the superdiffusive behavior, although not for beads bound to the
cytoskeleton but for tracers in the cytoplasm. Finally, we note that the long-time
reduction of the mean-square displacement and the decrease of the non-Gaussian
parameter could also be attributed to binding and unbinding of molecular motors
from the actin filaments, and thus a cutoff on the maximal duration of ballistic mo-
tion [Kuli 08, Gal 12]. We included such a cutoff on the waiting time distribution
of the Lévy walk in our simulations, however, the result is qualitatively the same
as for confinement: The maximum in the non-Gaussian parameter occurs at the
same time as the deviations from superdiffusion. To conclude, while our model is
able to include non-Gaussian effects in general, whether these agree quantitatively
with what is found in experiments is yet inconclusive.

The fact that the process is non-Gaussian leads to direct consequences for the
measurement: In Section 3.4.2, we saw that the non-Gaussian nature of the Lévy
walk leads to enhanced variation in time-averaged square displacement between
individual trajectories. This enhanced variation compared to a Gaussian process
is of course not only present in time averages but also in the instantaneous dis-
placement. While this does not change the values of ensemble averaged quantities
like the mean-square displacement, it does necessitate better statistics, i.e. a larger
number of trajectories, to reliably reproduce those ensemble averages. The occur-
rence of unusually large displacements is more likely and leads to greater variation
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Figure 4.7: Non-Gaussian parameter Eq. (4.31) as a function of time, numerical Langevin
simulations for the parameters of Eq. (4.2). For short-time equilibrium subdiffusion, the
non-Gaussian parameter is zero and the process is Gaussian. At the transition from sub-
to superdiffusion, the non-Gaussian parameter starts to grow, indicating the increasingly
non-Gaussian properties of the process. For unconfined motion, the non-Gaussian param-
eter for the Lévy walk grows indefinitely (black line). However, once confinement effects
become important, the non-Gaussian parameter decreases and eventually becomes nega-
tive as the distribution approaches a uniform distribution (red line). Note that the maximal
value of the non-Gaussian parameter occurs at roughly the same time, where the mean-
square displacement noticeably deviates from superdiffusion (see Fig. 4.6).

Figure 4.8: Experimentally observed mean-square displacement (left) and non-Gaussian
parameter (right) of tracer beads bound to the cytoskeleton. The transition from sub- to
superdiffusion in the mean-square displacement occurs at roughly the same time as the
maximum of the non-Gaussian parameter. For long times, the mean-square displacement
deviates slightly from the superdiffusive behavior, which may be due to confinement or a
maximum time for which directed motion occurs. Image taken from [Burs 05].
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Figure 4.9: Mean-square displacement (thick black line) and several realizations (thin col-
ored lines) for the time-averaged square displacement, Langevin simulations for stationary
fractional Brownian motion with β = 0.6 and averaging time t = 5000. While due to the
finite averaging time, there are variations between individual trajectories, the ensemble
average is reproduced rather accurately by the time average.

between individual trajectories and in particular to a larger number of trajectories
that deviate strongly from the average behavior. These unusually large displace-
ments can even be seen on the level of individual trajectories, see Fig. 4.11, and
are caused by long ballistic flights during which the velocity of the particle does
not change. Even if the system is in principle ergodic (see the discussion in Section
3.4), this causes a considerable distribution of diffusion coefficients obtained from
the time-averaged square displacement [Froe 13], see Fig. 4.10, compared to the
Gaussian case shown in Fig. 4.9.

4.5 linear response

So far, we mostly considered the diffusive dynamics of the system and only re-
ferred to the response to an external force insofar as it is related to the former
by the Stokes-Einstein relation. However, due to the long-range temporal memory
in the system, the response itself exhibits some interesting and nonintuitive prop-
erties. In particular, similar to the diffusive dynamics, initial conditions play an
important role and the response may exhibit aging.
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Figure 4.10: Mean-square displacement (thick black line) and several realizations (thin col-
ored lines) for the time-averaged square displacement, Langevin simulations for the sta-
tionary Lévy walk β = 0.6 and averaging time t = 5000. Compared to the Gaussian case,
the variations between individual trajectories are greatly enhanced, even though the sys-
tem is in principle ergodic. Accurately determining the diffusion exponent and coefficient
from a single trajectory thus requires exceedingly long averaging times.
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Figure 4.11: Typical trajectories from Langevin simulations for fractional Brownian motion
(black) and the Lévy walk (red) for α = 0.8, β = 0.6 and parameters that lead to the same
mean-square displacement. In the Gaussian case, while the motion is highly correlated on
long time scales, it is more or less homogeneous in time. For the Lévy walk, on the other
hand, periods of inactivity alternate with long ballistic flights.
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4.5.1 Creep function, initial conditions and diffusion

The creep function for the viscoelastic medium described by the fractional Langevin
equation was obtained in Eq. (2.101)

J(t) =
1

m
t2Eα+1,3

(
−γtα

(
t

tα

)α+1)
., (4.33)

and the response of the particle is given by,

〈x(t)〉 = 〈x0〉+
∫t
0

dt ′ J(t− t ′)
∂Fp(t

′)

∂t ′
+ J(t)Fp(0) +m〈v0〉

∂J(t)

∂t
. (4.34)

For now, we will stick to the case of a constant force Fp(t) = F0, and thus,

〈x(t)〉 = F0J(t) +m〈v0〉
∂J(t)

∂t
. (4.35)

Where we assumed that we measure the displacement of the particle relative to its
initial position and set x0 = 0. For long times, the creep function asymptotically
behaves as Eq. (2.105) and we have for the long-time displacement,

〈x(t)〉 = tα
α

Γ(2−α)mγ

(
F0t

1−α + (1−α)m〈v0〉t−α
)

. (4.36)

The displacement thus slowly increases as a power-law in time, in contrast to the
purely viscous normal diffusive case α → 0, where the displacement is linear in
time. As discussed in Section 2.3.3, this slow sublinear growth leads to a veloc-
ity that tends to zero despite a constant applied force. This "death of response"
[Rice 12] is due to the elastic component of the medium, however, in contrast to
the fully elastic case α → 1, the displacement continues to grow and does not
saturate at a constant value. Another important difference to the normal case is
that the effect of the initial velocity on the displacement decays a power-law decay,
whereas in a viscous medium it leads to a constant contribution. This effect is also
caused by the elastic-like behavior, which causes the particle to slowly return to
its initial position. In both cases, the initial velocity can only be neglected for long
times, t� (1−α)m〈v0〉/F0.

While the random nonequilibrium motion of the tracer does not impact the en-
semble average of the displacement, it may have a substantial effect on individual
trajectories. We saw in Section 4.1.1 that the mean-square displacement for long
times grows as 〈∆x2(t)〉 ∼ tβ+1. The average displacement, on the other hand,
grows as 〈x(t)〉 ∼ t1−α according to Eq. (4.36). The total squared displacement is
composed of the mean-square displacement plus the square of the average dis-
placement,

〈x2(t)〉 = 〈∆x2(t)〉+ 〈x(t)〉2

' 2Dνtβ+1 +
tα
2αF0

2

Γ2(2−α)m2γ2
t2−2α. (4.37)
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For the typical values of α ∼ 0.8 and β ∼ 1.6, the term due to the mean-square
displacement increases much faster than the contribution from the average dis-
placement. This means that for long times, the standard deviation of the particle
displacement grows faster than its average, making the result from a single tra-
jectory less and less reliable. For finite times, this can be circumvented using a
large enough probe force, however, at some point the nonequilibrium diffusive
motion will win over. The experimental relevance of this issue of course depends
on the relative values of the diffusion coefficient Dν and the applied force, espe-
cially since the extension of the cell is finite and confinement effects may become
important even prior to that. In principle, however, this means that it is not pos-
sible to measure the response of the tracer to an arbitrarily small force. This is in
contrast to the equilibrium case, where the mean-square displacement grows as
〈∆x2(t)〉eq ∼ t1−α and any small force will eventually lead to a discernible effect
on the particle’s displacement for sufficiently long times.

4.5.2 Aging and history dependence of the response

While the added displacement due to the initial velocity is negligible for long times,
there can be substantial aging effects in the response of the particle to an external
force. In the following we consider a simple protocol for the applied probe force:
First a constant force Fi is applied for a time ti, then we let the system relax in the
absence of an external force for a time tw and finally we apply a constant force Fm

and measure the displacement of the particle for a time tm,

Fp(t) =


0 for t < 0

Fi for 0 < t < ti

0 for ti < t < ti + tw

Fm for ti + tw < t.

(4.38)

The corresponding displacement we write in terms of the response function R(t),
Eq. (2.98) instead of the creep function to avoid having to deal with the derivatives
at the discontinuities of the force,

〈x(t)〉 = 1

m

∫t
0

dt ′ R(t− t ′)Fp(t
′), (4.39)

where we assume that the particle is initially at rest at the origin. We want to
evaluate the displacement 〈∆x(tm)〉, relative to the displacement a time t = ti + tw

as a function of the measurement time tm = t − ti − tw. tm is the time that has
elapsed after applying the force Fi, which we term prestress, and waiting for a
time tw. Then we have,

〈∆x(tm)〉 = 〈x(t)〉− 〈x(ti + tw)〉

=
1

m

[ ∫ti+tw+tm

0

dt ′ R(ti + tw + tm − t ′)Fp(t
′)

−

∫ti+tw

0

dt ′ R(ti + tw − t ′)Fp(t
′)

]
. (4.40)
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The response function in time space is given by,

R(t) = tEα+1,2(−γtα
−αtα+1). (4.41)

Then we have for Eq. (4.40), using the force protocol Eq. (4.38),

〈∆x(tm)〉 = 1

m

[
Fi

∫ti+tw+tm

tw+tm

dt ′ t ′Eα+1,2(−γtα
αt ′

α+1
)

+ Fm

∫tm

0

dt ′ t ′Eα+1,2(−γtα
αt ′

α+1
)

− Fi

∫ti+tw

tw

dt ′ t ′Eα+1,2(−γtα
αt ′

α+1
)

]
(4.42)

To evaluate the integrals we use the integral identity for the Mittag-Leffler function,∫
dt tb−1Ea,b(ct

a) = tbEa,b+1(ct
a), (4.43)

which is straightforward to prove using the definition of the Mittag-Leffler function
Eq. (2.19). With the expression Eq. (4.33) for the creep function, we get,

〈∆x(tm)〉 = FmJ(tm) − Fi

[
J(ti + tw) + J(tw + tm) − J(ti + tw + tm) − J(tw)

]
.

(4.44)

For Fi = 0 or ti = 0, i.e. no prestress, this reduces to,

〈∆x(tm)〉 = FmJ(tm), (4.45)

precisely the expression for the creep in the presence of a constant force we ob-
tained previously, Eq. (2.103). Otherwise, the behavior of the displacement de-
pends strongly on the relative size of the involved time scales. If there is no wait-
ing time between applying the prestress and the measurement tw = 0, and we
assume that the involved time scales tm, ti are long compared to the transition
time tover = tα(γtα)

−1/(α+1), then we can use the large argument expansion of
the Mittag-Leffler function Eq. (2.23) and find,

〈∆x(tm)〉 ' tα
α

γmΓ(2−α)
Fmtm

1−α

×

[
1−

Fi

Fm

[
1+

(
ti

tm

)1−α
−

(
1+

ti

tm

)1−α ]]
. (4.46)

The expression within the inner square brackets is always positive, so that the
response is reduced compared to the case of no prestress if Fi and Fm have the same
sign and enhanced otherwise. This describes the expected elastic-like behavior of
the viscoelastic medium: If a spring is already extended before extending it further,
the relative response is diminished, while if it was compressed before, the response
is enhanced. This means that the displacement of the particle ages as a function of
the system’s history. For ti � tm, this further simplifies to,

〈∆x(tm)〉 ' tα
α

mγΓ(2−α)
(Fm − Fi)tm

1−α. (4.47)
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Figure 4.12: Response to an applied external force as a function of time and prestress for
α = 0.8 and Fi = 2Fm. If no force is applied to the system before the start of the mea-
surement, the response follows a power-law with exponent 1− α (black). If a prestress is
applied that exceeds the measurement force, the particle will initially move in the oppo-
site direction and only follow the applied force for times much longer than the applied
prestress (red). If the system is allowed to relax between the application of the prestress
and the measurement, then the response is unaffected by the prestress (magenta). This
turnover is a consequence of the interplay of viscous and elastic behavior and thus charac-
teristic for viscoelastic systems. For a short waiting time, the system may exhibt a turnover
between first following the measurement force for up to t ∼ tw when the delayed response
to the prestress forces it to reverse before it again follows the applied force for long times
(cyan).

Here, while the displacement also behaves as tm
1−α as in the case of no prestress,

the prefactor now depends on the difference of the measurement force and the pre-
stress. If Fm > Fi, the measurement force is strong enough to displace the particle
further against the restoring force, otherwise, the particle slowly relaxes towards
its initial position against the measurement force. On the other hand, if tm � ti,
then we have,

〈∆x(tm)〉 ' tα
α

mγΓ(2−α)

[
Fmtm

1−α − Fiti
1−α

]
. (4.48)

In this case, the behavior depends in a sensitive manner on the relative sizes of both
the involved time scales and forces. If Fmtm

1−α � Fiti
1−α, then the measurement

is almost unaffected by the prestress, however if Fmtm
1−α � Fiti

1−α, then the
relaxation out of the prestressed configuration dominates the behavior. If we allow
for a finite waiting time tw before starting the measurement, then, if tw � ti, we
reobtain the results above, since the waiting time is too short for the system to relax
from the prestress. On the other hand, if tw � ti, then the prestress is almost gone
at the beginning of the measurement and the system behaves as if no prestress was
applied.
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Figure 4.13: Response to an applied external force as a function of time and prestress for
α = 0.8 and Fi = 0.5Fm. If the magnitude of the prestress is smaller than the measurement
force, the particle will always move in the direction of the latter. For long waiting times, the
effect of the prestress on the displacement becomes negligible (magenta), whereas if the
measurement starts immediately after applying the prestress the response may be reduced
significantly (red).

These limiting cases highlight that the response of the system depends in a
intricate manner on its previous history, see also Figs. 4.12 and 4.13. Note that
in these examples, all involved time scales are much longer than the overdamped
transition time tover ∼ 10

−3. A peculiarity, which represents the scale-free long-time
dynamics of the system, is that there is no intrinsic relaxation time for the system
to lose its history dependence. The waiting time necessary for the prestress to no
longer affect the measurement depends directly on the duration of the prestress.
This is very different from the viscous case α→ 0, where we have from Eq. (4.44),

〈∆x(tm)〉 ' Fm

mγ
t, (4.49)

which apart from exponentially small short-time corrections is entirely indepen-
dent of the history. This shows that the aging of the response described above is
characteristic for the long-time memory present in the system. Aging and history
dependence in the response to an external force is known from colloidal glasses
[Vias 02, Dere 03]. However, there the aging effects are of a different nature. The mi-
croscopic structure of these systems possesses metastable states in which they may
get stuck after applying an external stress and only slowly relax to their equilib-
rium configuration. A characteristic feature of this kind of dynamics is the so-called
rejuvenation: Applying a large oscillatory stress provides the necessary energy for
the system to overcome its internal energetic barriers and relax out of a metastable
state. Such an oscillatory stress thus greatly reduces the effect of aging and reju-
venates the system. This effect is absent in our case, since the aging here is due
to the viscoelastic behavior of the medium and not due to the microscopic ener-
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getics. The aging effects in living cells observed in [Burs 05] are of the energetic
type. There, a measurable reduction in the response was observed even for waiting
times much longer than the initially applied prestress, and the response was sig-
nificantly enhanced by a rejuvenation protocol. By contrast, the viscoelastic type
of aging described above displays a characteristic dependence of the waiting time
on the duration of the prestress and the relative magnitude of the latter and the
measurement force, which allows to distinguish it from the energetic kind of aging.
Observing this history dependence of the response in cells would provide a strong
indication that the equilibrium dynamics are indeed described by the fractional
Langevin type of motion.



5
D I S C U S S I O N A N D O U T L O O K

Analogous to the title of this thesis, we can divide its main results into two
distinct but related groups: Those concerning the model for nonequilibrium

dynamics in living cells and its application to experiments; and those relevant to
superdiffusive scaling systems in a more general context. We start by discussing
the latter, since these results also have implications for the dynamics in cells.

Scale invariant superdiffusive systems

In Section 3.1, we introduced a general scaling form for a velocity correlation func-
tion, which describes correlated, scale-invariant velocity dynamics. It includes sta-
tionary power-law correlations and typical aging correlation functions as special
cases. Despite this generality, we were able to derive a number of important phys-
ical quantities and relations from the existence of this scaling correlation function.
These relations will hold for any system described asymptotically by such a scaling
correlation function.

The first central result is a generalization of the Green-Kubo formula, termed
scaling Green-Kubo relation, derived in Section 3.1.2. The long-time correlations
implied by the scaling behavior of the correlation function lead to superdiffusion,
〈∆x2(t)〉 = 2Dνt

ν. The anomalous diffusion coefficient is determined by an inte-
gral over a scaling function, which captures the aging properties of the system. In
this regard, the scaling Green-Kubo relation is similar to the original Green-Kubo
formula, which expresses the normal diffusion coefficient as an integral over the
stationary velocity correlation function. Aside from providing a universal relation
between the scaling correlation function and the anomalous diffusion coefficient
and exponent, the scaling Green-Kubo relation also reveals a substantial difference
between the normal diffusive and superdiffusive case (Section 3.1.3). For normal
diffusion, the initial state of the system has no influence on the asymptotic diffu-
sive behavior, i.e. the diffusion coefficient. The long-range correlations present in
superdiffusive systems, on the other hand, leads to the peculiar situation that the
diffusive behavior depends on the initial state of the system even for long times.

The second central result is that for scale-invariant systems, ergodicity and sta-
tionarity are intimately related. As our explicit calculation of the time-averaged
square displacement in Section 3.2 shows, for superdiffusive scale-invariant dy-
namics, ergodicity requires the system to be initially stationary. If the system is non-
stationary, the time- and ensemble-averaged square displacements are not equiva-
lent and the system is not ergodic with respect to the mean-square displacement.
On the one hand, this generally prevents substituting time averages for ensemble
averages, as one is used to from ergodic systems. On the other hand, it can serve
to probe the stationarity of the system by comparing time and ensemble averages.

131
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The third central result is a scaling from for the spectral density, which gen-
eralizes the Wiener-Khinchine theorem to nonstationary scale-invariant processes.
This generalization derived in Section 3.3 relates the asymptotic behavior of the
spectral density to the properties of the scaling correlation function of the respec-
tive process in a straightforward manner. Contrary to the usual stationary pro-
cesses, the nonstationarity introduces a time-dependence in the spectral density.
However, if the process is at most subdiffusive, as is the case for the velocity, the
spectral density becomes time-independent in the long-time limit, even though the
process itself is nonstationary. For superdiffusive processes like the position, the
time-dependence of the spectral density persists in the long-time limit. In both
cases, there exists a time-dependent low frequency cutoff.

All these results are fundamentally related to the scale-invariance of the under-
lying dynamics. Scale-invariance means that there are no intrinsic time scales that
govern the dynamics. In the scaling velocity correlation function, this absence of in-
trinsic time scales manifests itself in two ways. The first is an algebraic dependence
on time, the second is the occurrence of a scaling function which depends on the
ratio of the time lag τ and the age t of the system. The scaling function reveals an
important consequence of the scale-invariance: In the absence of any characteristic
intrinsic time scales, it is the age of the system that sets the time scale for the decay
of the velocity correlations. This importance of relative time scales carries through
to all other results: The relaxation time sets the time scale on which the system can
be considered as stationary. Which expression for the diffusion coefficient is ap-
propriate and also whether the system is ergodic thus depends on the relative size
of the measurement time and the relaxation time. For the spectral density, it is the
measurement time which sets the frequency scale and determines what constitutes
a low or high frequency.

Since the above results only depend on the scaling velocity correlation, they can
be applied in a straightforward manner to different systems. Both fractional Gaus-
sian processes and the Lévy walk are paradigmatic examples for scale-invariant
systems, although the actual dynamics and the associated trajectories are quali-
tatively very different. Our treatment unifies these processes within a common
framework and exposes the common properties due to their scaling behavior (see
Section 3.4). In a broader context, it is also applicable to other scale invariant sys-
tems, a notable example being diffusion in optical lattices, where the long-range
correlations are induced by a nonlinear velocity-dependent dissipation [Dech 14].
Considering the conceptual differences between these processes, the fact that sev-
eral key quantities, among those the mean square displacement and spectral den-
sities, are determined by the processes’ scaling behavior indicates that the latter
is a fundamental property rather than a chance occurrence. Both the Green-Kubo
formula and the Wiener-Khinchine theorem are central and invaluable results of
nonequilibrium statistical mechanics. We generalized them to scale-invariant pro-
cesses, both stationary and nonstationary, and showed that these generalizations
directly lead to a number of insights about this important class of stochastic pro-
cesses.
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Nonequilibrium dynamics in living cells

The stochastic model for superdiffusive nonequilibrium dynamics in living cells,
which we introduced in Chapter 2, is based on the fractional Langevin equation. It
is mainly aimed at describing the motion of a tracer bead coupled to the cytoskele-
ton and in particular the transition from subdiffusion to superdiffusion, though
it is general and flexible enough to be applied to other experimental situations,
e.g. the diffusion of tracers within the cytoplasm. The two main ingredients of our
model are the equilibrium fractional Langevin equation for diffusion in a viscoelas-
tic medium and the random medium velocity process vm(t), which captures the
nonequilibrium motion of the viscoelastic medium itself. In the present case, the
viscoelastic medium is the cytoskeleton of an eukaryotic cell and its motion is due
to molecular motors acting on the fibers making up the cytoskeleton. As above, we
summarize our findings as three central results.

Firstly, the moving viscoelastic medium model reproduces the experimentally
observed transition from short-time subdiffusion to long-time superdiffusion, see
Section 4.1. While the equilibrium fractional Langevin equation results in anticor-
related subdiffusion with diffusion exponent 1− α, the correlated medium veloc-
ity induces superdiffusion with exponent β+ 1 on long times. Here α and β are
the exponents characterizing the viscoelastic properties of the medium and the
medium velocity process vm(t), respectively. Subdiffusion is thus attributed to the
equilibrium mechanical properties of the cytoskeleton and its thermal fluctuations.
Superdiffusion, on the other hand, arises from the correlated motion of the cy-
toskeleton, which is being driven out of equilibrium by the action of molecular
motors. The universality of the diffusion exponents [Trep 08] implies that those
mechanisms are qualitatively the same for a range of different cells. Beyond the
diffusive behavior, our model, like the equilibrium model it is based on, incorpo-
rates the anomalous, sublinear response to an external force. Further, we are able to
account for the non-Gaussian nature of the nonequilibrium dynamics observed in
experiments by using the non-Gaussian Lévy walk as the medium velocity process.
In this way, we find good qualitative agreement between the trajectories described
by our stochastic model and the intermittent trajectories observed in experiment.
Finally, our treatment also provides a unification of two previous models for the
transition from sub- to superdiffusion [Metz 07, Brun 09], which emerge as special
cases.

Our second central result are the generalized nonequilibrium Stokes-Einstein re-
lation and the effective temperature introduced in Section 4.2. The Stokes-Einstein
relation expresses the response of a tracer particle to an external force in terms of
the temperature and the mean-square displacement. This connects active and pas-
sive measurement, as measuring the response fixes the mean-square displacement
and vice versa. However, being a direct consequence of the fluctuation-dissipation
theorem, the Stokes-Einstein relation is only valid for equilibrium systems and
consequently breaks down for living cells, which are by definition out of equilib-
rium. By defining a time-dependent effective temperature, we obtain a generalized
non-equilibrium Stokes-Einstein relation. In our model, the same effective tempera-
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ture also governs the transition between the short-time subdiffusive and long-time
superdiffusive behavior, and can be expressed as a function of the diffusion ex-
ponents and the transition time. Thus the effective temperature can be obtained
solely from the passive measurement of the mean-square displacement, thereby
restoring the connection between active and passive measurement for the nonequi-
librium case. Physically, the effective temperature measures how far the system,
when observed on different time scales, is from equilibrium. When applied to the
to our knowledge only experiment where both active and passive measurements
were performed on the same samples [Gall 09], we determine the effective tem-
peratures obtained solely from the passive measurement and from comparing the
active and passive measurement. Both temperatures indeed agree, supporting the
validity of our model.

The third central result is the classification of the nonequilibrium dynamics in
terms of the crucial parameters of our model, the exponents α and β, which are
related in a straightforward manner to the diffusion exponent and thus readily ac-
cessible in experiments. These exponents enter the effective nonequilibrium noise
in Section 4.3, which emerges as a result of the active motion of the viscoelastic cy-
toskeleton. If this nonequilibrium noise can be modeled as a stationary stochastic
process, which is the case for 2α+ β < 1, we refer to the dynamics as force-like.
In this regime, we can view the tracer particle as in contact with an equilibrium
viscoleastic environment and additionally subject to forces that are induced by the
active motion of the cell and mediated through the environment. This will gen-
erally be the case for a small tracer in the relatively viscous cytoplasm, in which
the tracer can move rather freely and which smooths out the strongly directional
motion generated by molecular motors in the cytoskeleton [Brun 09]. For a more
elastic medium and 2α+β > 1, on the other hand, the tracer is dragged along with
the medium, which manifests in an effective noise force that increases with time
and is thus nonstationary. This nonstationarity expresses the fact that one would
need to apply an ever increasing force in order to keep the particle in place against
the motion of the surrounding medium, hence we call this type of nonequilibrium
dynamics velocity-like. This situation occurs for tracers bound to the cytoskeleton,
which is mostly elastic, causing the tracer to experience the directional motion
directly [Burs 05, Gall 09].

In summary, our stochastic model of a randomly moving viscoelastic medium is
able to reproduce some of the most important observations from microrheological
experiments on tracers bound to the cytoskeleton of living cells: The crossover from
sub- to superdiffusion, the anomalous response, the non-Gaussian dynamics, the
noise spectrum and even the qualitative trajectories. Since these observations can
be related in a straightforward manner to the parameters of the model, it promises
to be a useful tool for the analysis and classification of the dynamics. It further
reconnects passive and active microrheology in the nonequilibrium environment
of a living cell, by generalizing the equilibrium Stokes-Einstein relation via the
introduction of an effective temperature.
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Outlook

From the point of view of our results on general scale invariant systems, an obvi-
ous next step would be to look for more models and systems that asymptotically
exhibit the desired type of scaling correlation function and to which our theory
is thus applicable. This is not necessarily restricted to systems where the scaling
occurs in the velocity correlations, one example to the contrary are intensity cor-
relations in blinking quantum dots [Jung 02], which can be described by the Lévy
walk and thus treated within this framework [Dech 14]. On a more fundamental
level, there is the question of whether our scaling theory can be extended to subdif-
fusive dynamics. This extension is not straightforward, since subdiffusion requires
the normal diffusion coefficient to vanish, which will generally only occur if the
velocity correlation function exhibits short-time oscillations. Thus, contrary to the
superdiffusive case, where the short-time dynamics are asymptotically unimpor-
tant, they will need to be taken into account for subdiffusion.

Our model for nonequilibrium dynamics in living cells certainly should be com-
pared to experimental data in a more thorough fashion than was possible in this
thesis. This includes the relatively straightforward analysis of measurements of
the mean-square displacement and response function and their connection via the
nonequilibrium Stokes-Einstein relation and the effective temperature. Perhaps
more intriguing form a theorist’s point of view are the non-Gaussian properties
of the nonequilibrium motion. Foremost, the apparent disagreement between our
theory and one of the experiments concerning the non-Gaussian parameter and
its time-dependence (see Section 4.4) needs to be investigated further, in particular
as to whether it is an artifact in the data analysis method or has physical mean-
ing. Another observation made in experiment and connected to the non-Gaussian
dynamics, is the occurrence of what is called strong anomalous diffusion [Gal 10],
where different moments of the displacement distribution exhibit a different scal-
ing behavior. Our model should be able to reproduce this, since a similar behavior
is known for the Lévy walk [Rebe 13]. The Lévy walk also directly captures the idea
of actin filaments being moved relative to each other by the motor proteins linking
them. During one such event, the actin filament to which the tracer bead is bound
moves ballistically at a constant velocity, corresponding to the ballistic motion dur-
ing the waiting times in the Lévy walk. At some point, the motor protein unbinds
from the actin filament, ending the ballistic motion, whereupon another protein
may move the actin filament in a different direction, corresponding to choosing
a new direction and waiting time in the Lévy walk. This similarity between the
nonequilibrium dynamics and the Lévy walk, poses the intriguing question of the
origin of the power-law waiting time distribution in this case. We speculate that
the latter may follow from the cooperative action of multiple molecular motors on
a single actin filament, which can lead to greatly enhanced transport distances and
thus times [Klum 05].

Apart from the non-Gaussian dynamics, there other quantities that can serve
to determine how well our model is able to reproduce the experimental system.
One example for this is the directional persistence [Leno 07], which quantifies to
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what degree a particle tends to move in the same or opposite direction after a
certain time. For short times, the motion has been found to be antipersistent, in
agreement with the anticorrelated subdiffusive behavior described by the fractional
Langevin equation. For longer times, this reverses into persistent motion, which
also is expected for the superdiffusive correlated dynamics. While qualitatively, the
results seem to agree with our model, it remains to be seen whether quantitative
agreement can also be reached.

A strong prediction of our model is, that for a bead bound to the cytoskeleton,
the effective nonequilibrium noise force will be nonstationary, and that, in partic-
ular, its power spectrum will depend on frequency as ω−2 and will increase with
time as t2α+β−2. While the ω−2-dependence has been postulated before and was
obtained indirectly from experimental data [Lau 03], the time dependence of the
power spectrum has not yet been observed experimentally. For this, it would be
necessary to directly measure the effective nonequilibrium noise force. This might
be accomplished by measuring the force necessary to prevent the active motion of
the tracer bead. However, this procedure is not straightforward at all, since one
would need to exclude effects of a possible center-of-mass motion of the entire cell
and also make sure that the applied force is not too big, so as not lead to inelastic
deformations of the cytoskeleton or even detachment of the bead. Nevertheless,
the time-dependent noise spectrum provides a direct testable prediction of our
nonequilibrium model. Observing it in experiment would be compelling evidence
in favor of the model.
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a.1 mathematical identities

Frequently, we encounter expressions in the Laplace domain which are of the form,

f̃(s2, s1
s2 + s1

. (A.1)

In order to express them via the inverse Laplace transform of the function f̃(s2, s1),
we use the identity

1

s2 + s1
=

∫∞
0

dt ′ e−(s2+s1)t
′
, (A.2)

to obtain a general Laplace inversion rule,

L−2

[
f̃(s2, s1)
s2 + s1

]s2→t2
s1→t1

=

∫∞
0

dt ′ L−2
[
e−(s2+s1)t

′
f̃(s2, s1)

]s2→t2
s1→t1

=

∫∞
0

dt ′f(t2 − t ′, t1 − t ′)θ(t2 − t ′)θ(t1 − t ′)

=

∫min(t2,t1)

0

dt ′ f(t2 − t ′, t1 − t ′), (A.3)

where we used the time shift property of the Laplace transform, L[f(t− t ′)θ(t−
t ′)]t→s = e

−st ′ f̃(s), with the Heaviside step function θ(t). Assuming, without loss
of generality, that t2 > t1 and defining t ≡ t1, τ ≡ t2 − t1, we can write this as,

L−2

[
f̃(s2, s1)
s2 + s1

]s2→t+τ
s1→t

=

∫t
0

dt ′ f(t+ τ− t ′, t− t ′). (A.4)

A more general version of Eq. (A.4) concerns expressions of the type,

g̃(s2 + s1)f̃(s2, s1), (A.5)

where g(t) is understood to be a function of a single variable whereas f(t2, t1) is a
function of two variables, and g̃(s) respectively f̃(s2, s1) are the corresponding one-
and two-time Laplace transforms. The time-domain representation of the above
expression turns out to be,

L−2
[
g̃(s2 + s1)f̃(s2, s1)

]s2→t2
s1→t1

=

∫min(t2,t1)

0

dt ′ g(t ′)f(t2 − t ′, t1 − t ′)

≡ h(t2, t1). (A.6)

To prove this, we take the two-time Laplace transform of the above to find,

h̃(s2, s1) =
∫∞
0

dt2
∫t2
0

dt1
∫t1
0

dt ′ e−s2t2−s1t1g(t ′)f(t2 − t ′, t1 − t ′)

+

∫∞
0

dt2
∫∞
t2

dt1
∫t2
0

dt ′ e−s2t2−s1t1g(t ′)f(t2 − t ′, t1 − t ′). (A.7)
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In the first integral, we exchange the order of the t2 and t1 integration,

h̃(s2, s1) =
∫∞
0

dt1
∫∞
t1

dt2
∫t1
0

dt ′ e−s2t2−s1t1g(t ′)f(t2 − t ′, t1 − t ′)

+

∫∞
0

dt2
∫∞
t2

dt1
∫t2
0

dt ′ e−s2t2−s1t1g(t ′)f(t2 − t ′, t1 − t ′), (A.8)

and then exchange the order of the t ′ and t1 integration in the first, respectively
of t ′ and t2 in the second term,

h̃(s2, s1) =
∫∞
0

dt ′
∫∞
t1

dt2
∫∞
t ′

dt1 e−s2t2−s1t1g(t ′)f(t2 − t ′, t1 − t ′)

+

∫∞
0

dt ′
∫∞
t2

dt1
∫∞
t ′

dt2 e−s2t2−s1t1g(t ′)f(t2 − t ′, t1 − t ′). (A.9)

In the first term, we now change the variable of the t1-integration to τ = t1− t ′, in
the second term we change from t2 to θ ′ = t2 − t ′,

h̃(s2, s1) =
∫∞
0

dt ′
∫∞
t ′+τ

dt2
∫∞
0

dτ e−s2t2−s1(t
′+τ)g(t ′)f(t2 − t

′, τ)

+

∫∞
0

dt ′
∫∞
t ′+θ ′

dt1
∫∞
0

dθ ′ e−s2(t
′+θ ′)−s1t1g(t ′)f(θ ′, t1 − t ′). (A.10)

Another change of variables from t2 to θ = t2 − t
′ − τ and from t1 to τ ′ = t1 −

t ′ − θ ′ brings us to,

h̃(s2, s1) =
∫∞
0

dt ′
∫∞
0

dθ
∫∞
0

dτ e−s2θ−(s2+s1)(t
′+τ)g(t ′)f(θ+ τ, τ)

+

∫∞
0

dt ′
∫∞
0

dτ ′
∫∞
0

dθ ′ e−(s2+s1)(t
′+θ ′)−s1τ

′
g(t ′)f(θ ′, θ ′ + τ ′). (A.11)

The t ′-integration in both terms yield precisely the Laplace transform of g(t),

h̃(s2, s1) = g̃(s2 + s1)
[ ∫∞
0

dθ
∫∞
0

dτ e−s2θ−(s2+s1)τf(θ+ τ, τ)

+

∫∞
0

dτ ′
∫∞
0

dθ ′ e−(s2+s1)θ
′−s1τ

′
f(θ ′, θ ′ + τ ′)

]
. (A.12)

A final change of variables from θ to t = θ+ τ and from τ ′ to t ′ = θ ′ + τ ′ yields,

h̃(s2, s1) = g̃(s2 + s1)
[ ∫∞
0

dτ
∫∞
τ

dθ e−s2t−s1τf(t, τ)

+

∫∞
0

dθ ′
∫∞
θ ′

dt ′ e−s2θ
′−s1tf(θ ′, t ′)

]
, (A.13)

and after exchanging the order of integration in the second term,

h̃(s2, s1) = g̃(s2 + s1)
[ ∫∞
0

dτ
∫∞
τ

dt e−s2t−s1τf(t, τ)

+

∫∞
0

dt ′
∫t ′
0

dθ ′ e−s2θ
′−s1t

′
f(θ ′, t ′)

]
. (A.14)
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Now, all we need to do is rename t ′ into τ and θ ′ into t, to get to our desired
result,

h̃(s2, s1) = g̃(s2 + s1)
∫∞
0

dτ
∫∞
0

dt e−s2t−s1τf(t, τ)

= g̃(s2 + s1)f̃(s2, s1), (A.15)

which proves Eq. (A.6). Note that this result includes Eq. (A.4) as a special case for
g(t) = 1.

We generally have two ways of representing the two-time autocorrelation func-
tion of some observable x(t). The first one is the symmetric autocorrelation,

Cx(t2, t1) = Cx(t1, t2) = 〈x(t2)x(t1)〉, (A.16)

with t2, t1 > 0, which is by definition invariant under the exchange of its two time
arguments. By ordering the two times and calling the lesser of the two times t (the
overall time) and the difference between the greater and the lesser τ (the time lag),
we may also define a time-ordered autocorrelation,

~Cx(t, τ) = 〈x(t+ τ)x(t)〉, (A.17)

where both t and τ are positive. We can also express the symmetric autocorrlelation
in terms of the time-ordered one,

Cx(t2, t1) = ~Cx(t1, t2 − t1)θ(t2 − t1) + ~Cx(t2, t1 − t2)θ(t1 − t2), (A.18)

where θ(t) is the Heaviside-theta function. Of each of the two representations, we
may now take the double Laplace transform,

C̃x(s2, s1) = L2
[
Cx(t2, t1)

]t1→s1
t2→s2

~̃Cx(s,u) = L2
[
~Cx(t, τ)

]τ→u
t→s

. (A.19)

Equation (A.18) implies a relation between the two Laplace transforms. To obtain
it, we use the definition,

C̃x(s2, s1) =
∫∞
0

dt2e−s2t2
∫∞
0

dt1 e−s1t1Cx(t2, t1)

=

∫∞
0

dt2e−s2t2
∫t2
0

dt1 e−s1t1 Cx(t2, t1)

+

∫∞
0

dt2 e−s2t2
∫∞
t2

dt1 e−s1t1Cx(t2, t1)

=

∫∞
0

dt2 e−s2t2
∫t2
0

dt1 e−s1t1 ~Cx(t1, t2 − t1)

+

∫∞
0

dt2 e−s2t2
∫∞
t2

dt1 e−s1t1 ~Cx(t2, t1 − t2)

=

∫∞
0

dt1 e−s1t1
∫∞
t1

dt2 e−s2t2 ~Cx(t1, t2 − t1)

+

∫∞
0

dt2 e−s2t2
∫∞
t2

dt1 e−s1t1 ~Cx(t2, t1 − t2). (A.20)
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In the last step, we exchanged the order of integration in the first integral. Now we
introduce the new variables τ2 = t2 − t1 in the first and τ1 = t1 − t2 in the second
integral to find,

C̃x(s2, s1) =
∫∞
0

dt1 e−s1t1
∫∞
0

dτ2 e−s2(t1+τ2)~Cx(t1, τ2)

+

∫∞
0

dt2 e−s2t2
∫∞
t2

dτ1 e−s1(t2+τ1)~Cx(t2, τ1)

= ~̃Cx(s2 + s1, s2) + ~̃Cx(s2 + s1, s1), (A.21)

where we used the definition of the Laplace transform of the time-ordered auto-
correlation. In the particular case of a stationary autocorrelation function that is
independent of the initial time t,

~Cx(t, τ) = Cs(τ), (A.22)

we have,

~̃Cx(s,u) =
C̃s(u)

s
, (A.23)

where C̃s(u) denotes the Laplace transform of Cs(τ) with respect to τ. Thus
Eq. (A.21) implies,

C̃x(s2, s1) =
C̃s(s2) + C̃s(s1)

s2 + s1
. (A.24)

a.2 asymptotic analysis of fractional integrals

In this section, we will examine the asymptotic properties of several integrals that
appear in a number of contexts throughout this thesis. The first integral we con-
sider is of the general form,

I1a,b(y) =

∫1
0

dz (y+ z− εyz)azb, (A.25)

with b > −1, 0 6 ε 6 1 and y > 0. At first we also assume a and a+ b to be non-
integer. This integral may in principle be expressed as a hypergeometric function
or incomplete beta function whose asymptotic properties for small and large y are
known, however, it is instructive to derive the asymptotic behavior explicitly, in
particular as we will employ similar arguments for some of the more complicated
integrals. For y � 1, we note that the value of the integral is finite as y → 0, as
long as a+ b > −1. We will first discuss the case a+ b < −1, where the integral
diverges as y → 0. The latter divergence occurs at the lower boundary, where the
integrand is equal to za+b for y = 0. In order to get rid of the divergence, we
change variables to v = z/y,

I1a,b(y) = y
a+b+1

∫ 1
y

0

dv (1+ v− εyv)avb. (A.26)
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Here we note that for y� 1, we obviously have εyv� v. We then expand the first
factor,

(1+ v− εyv)a ' (1+ v)a − a(1+ v)a−1εyv+ . . . , (A.27)

and plug this expansion back into our integral,

I1a,b(y) ' ya+b+1
∫ 1
y

0

dv (1+ v)avb

− aεya+b+2
∫ 1
y

0

dv (1+ v)a−1vb+1 + . . . . (A.28)

Now, since a+b < −1, all the integrals in this expansion are finite as y→ 0, where
the upper boundary tends to infinity. We then write,∫ 1

y

0

dv (1+ v)avb =

∫∞
0

dv (1+ v)avb −
∫∞
1
y

dv (1+ v)avb. (A.29)

The first integral is just a constant, while in the second one, we have v > 1/y� 1,
and can again expand,

(1+ v)a ' va + ava−1 + . . . . (A.30)

We thus have,∫ 1
y

0

dv (1+ v)avb ' Γ(1+ b)Γ(−a− b− 1)
Γ(−a)

−

∫∞
1
y

dv
[
va+b + ava+b−1 + . . .

]
=
Γ(1+ b)Γ(−a− b− 1)

Γ(−a)

+
1

a+ b+ 1
y−a−b−1 +

a

a+ b
y−a−b + . . . . (A.31)

This procedure is the same for any of the terms in the expansion Eq. (A.28) and we
find for the asymptotic behavior of our integral in the case y� 1 and a+ b < −1,

I1a,b(y) '
Γ(1+ b)Γ(−a− b− 1)

Γ(−a)
ya+b+1 +

1

a+ b+ 1

−
aεΓ(2+ b)Γ(−a− b− 1)

Γ(1− a)
ya+b+2

+

(
a

a+ b
−

aε

a+ b+ 1

)
y+O(ya+b+3), (A.32)

where we assumed −2 < a+ b < −1 for the ordering of the terms. For a+ b < −2,
the leading order term is the same, but the order of the sub-leading terms changes.
In the case a+ b > −1, it is easy to see that the leading order term (i.e. for y = 0)
is the constant one in the above equation. In fact, the sub-leading terms are also
given by the above expressions, which is, however, not straightforward since the
integrals, which yielded the Gamma-function coefficients are no longer finite in
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this case. To find the sub-leading order, we take the derivative of Eq. (A.25) with
respect to y,

∂

∂y
I1a,b(y) = a

∫1
0

dz (y+ z− εyz)a−1
(
zb − εzb+1

)
. (A.33)

For the derivative, we have exactly the same situation as with the original integral,
however, the threshold value is now a+ b = 0 in the first term and a+ b = −1 in
the second one. For −1 < a+ b < 0, we thus have,

∂

∂y
I1a,b(y) '

aΓ(1+ b)Γ(−a− b)

Γ(1− a)
ya+b +

a

a+ b
−

aε

a+ b+ 1

−
a(a− 1)εΓ(2+ b)Γ(−a− b)

Γ(2− a)
ya+b+1 +

a(a− 1)

a+ b− 1
y

+O(ya+b+2). (A.34)

Integrating this with respect to y, using the property of the Gamma function Γ(a+
1) = aΓ(a) and taking into account the constant term, we obtain precisely the same
as above. For y � 1 and non-integer a and a+ b, the asymptotic behavior of the
integral is thus given by,

I1a,b(y) '
Γ(1+ b)Γ(−a− b− 1)

Γ(−a)
ya+b+1 +

1

a+ b+ 1

+
εΓ(2+ b)Γ(−a− b− 1)

Γ(−a)
ya+b+2

+

(
a

a+ b
−

aε

a+ b+ 1

)
y+O(ya+b+3). (A.35)

Now we turn to the case where either a or a+b are integer. If a = −n is a negative
integer or a+b = −m is a negative integer with m > 1, Eq. (A.35) remains valid. If
a is a positive integer, a = n, then we can use the binomial formula in Eq. (A.25),

(y+ z− εyz)n =

n∑
k=0

n!
k!(n− k)!

yk(1− εz)kzn−k (A.36)

The leading order is then obviously given by the k = 0-term, the sub-leading one
by k = 1 and so on. We find,

I1n,b(y) '
∫1
0

dz zn+b +ny
∫1
0

dz (1− εz)zn+b−1 +O(y2)

=
1

n+ b+ 1
+

(
n

n+ b
−

nε

n+ b+ 1

)
y+O(y2). (A.37)

This is basically Eq. (A.35) without the fractional order terms. The most interesting
integer case is a+ b = −1, where the integral diverges logarithmically in the limit
of small y. Here, we again consider the derivative in the case ε = 0,

∂

∂y
I1a,−a−1(y) = a

∫1
0

dz (y+ z)a−1z−a−1. (A.38)
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We introduce v = z/y,

∂

∂y
I1a,−a−1(y) = ay

−1

∫ 1
y

0

dv (1+ v)a−1v−a−1. (A.39)

This integral is finite in the limit y→ 0 and we have,

∂

∂y
I1a,−a−1(y) ' ay−1

∫∞
0

dv (1+ v)a−1v−a−1 − a

−
a(a− 1)

2
y+O(y2), (A.40)

which, upon integration with respect to y gives us,

I1a,−a−1(y) ' − ln(y) + c− ay−
a(a− 1)

4
y2 +O(y3), (A.41)

with some constant c, which turns out to be an Harmonic number, c = −H−a−1.
If a+ b = n is a positive integer, n > 0, then the integral can be brought into the
appropriate form by taking derivative with respect to y. The leading order is then
constant with a sub-leading term of order y ln(y) for n = 0 or y for n > 0. For
y � 1, the asymptotic behavior is comparably straightforward. In Eq. (A.25), we
then have y(1− εz)� z and expand the first factor,

(y+ z− εyz)a ' ya(1− εz)a + aya−1(1− εz)a−1z

+
a(a− 1)

2
ya−2(1− εz)a−2z2 +O(‡3). (A.42)

The asymptotic behavior of the integral for y� 1 is then given by,

I1a,b(y) ' ya
∫1
0

dz (1− εz)azb + aya−1
∫1
0

dz (1− εz)a−1zb+1

+O(ya−2) (A.43)

In summary, we have for the asymptotic behavior of the integral, apart from the
special integer cases,

I1a,b(y) '



ya
∫1
0 dz (1− εz)azb + aya−1

∫1
0 dz (1− εz)a−1zb+1

+O(ya−2)

for y� 1

Γ(1+b)Γ(−a−b−1)
Γ(−a) ya+b+1 + 1

a+b+1

+
εΓ(2+b)Γ(−a−b−1)

Γ(−a) ya+b+2

+
(
a
a+b − aε

a+b+1

)
y+O(ya+b+3)

for y� 1.

(A.44)

The next integral we consider is somewhat more involved,

I2a,b(y) =

∫1
0

dz
∫z
0

du (1+ y− z)a(1− u)a
(
(z− u)b − zb

)
, (A.45)
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with −1 < a,b < 0. First we change variables to v = u/z,

I2a,b(y) =

∫1
0

dz
∫1
0

dv (1+ y− z)a(1− vz)azb+1
(
(1− v)b − 1

)
. (A.46)

For y� 1, we can expand,

(1+ y− z)a ' ya + aya−1(1− z) +O(ya−2), (A.47)

and thus have,

I2a,b(y) ' ya
∫1
0

dz
∫1
0

dv (1− vz)azb+1
(
(1− v)b − 1

)
+ aya−1

∫1
0

dz
∫1
0

dv (1− z)(1− vz)azb+1
(
(1− v)b − 1

)
+O(ya−2). (A.48)

For y� 1, we first change variables from z to 1− z and from v to 1− v in Eq. (A.46),

I2a,b(y) =

∫1
0

dz
∫1
0

dv (y+ z)a(v+ z− vz)a(1− z)b+1(vb − 1). (A.49)

Introducing the functions

f1(z) =

∫1
0

dv (v+ z− vz)avb

f2(z) =

∫1
0

dv (v+ z− vz)a, (A.50)

the above can be written as,

I2a,b(y) =

∫1
0

dz(y+ z)a(1− z)b+1(f1(z) − f2(z)). (A.51)

Note that f1(z) corresponds precisely to the integral Eq. (A.25), whereas f2(z) is
Eq. (A.25) with b = 0. All the individual terms in the above expression are regular
for y = 0 at the upper boundary z = 1, so the leading-order asymptotic behavior is
dictated by the possibly divergent behavior near z = 0. In particular, we have from
Eq. (A.44),

f1(z) '
Γ(1+ b)Γ(−a− b− 1)

Γ(−a)
za+b+1 +

1

a+ b+ 1

f2(z) ' −
1

a+ 1
za+1 +

1

a+ 1
. (A.52)

From this we see, that the first term in Eq. (A.51) is finite in the limit y → 0

if 2a + b > −2 whereas the second one is always finite since a > −1. We first
concentrate on the case 2a+ b < −2, where the first term leads to a divergence at
the lower boundary and thus the dominant contribution comes from close to z = 0.
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In this case, we may replace f1(z) by its small argument expansion Eq. (A.52) and
have,

I2a,b(y) '
Γ(1+ b)Γ(−a− b− 1)

Γ(−a)

∫1
0

dz (y+ z)a(1− z)b+1za+b+1

+
1

a+ b+ 1

∫1
0

dz (y+ z)a(1− z)b+1

−

∫1
0

dz (y+ z)a(1− z)b+1f2(z). (A.53)

Since in the first term, the dominant contribution comes from small z, we may also
expand,

(1− z)b+1 ' 1− (b+ 1)z+O(z2). (A.54)

We again find terms which are of the form Eq. (A.25) with varying values for the
parameter b. Once again employing the small argument expansion where appro-
priate, we end up with,

I2a,b(y) ' −
πΓ(1+ b)Γ(−2a− b− 2)

Γ2(−a) sin(π(a+ b+ 1))
y2a+b+2 +O(y0). (A.55)

The constant term can be identified with some effort, however, since it will not
be relevant for our purposes, we skip doing so here. In the case 2a+ b > −2, the
leading order is term is the constant I2a,b(0). The sub-leading term can be found by
taking the derivative with respect to y,

∂

∂y
I2a,b(y) = a

∫1
0

dz (y+ z)a−1(1− z)b+1(f1(z) − f2(z)). (A.56)

Since a < 0, this expression diverges at z = 0 as y → 0. We may thus proceed
as above and replace f1(z) respectively f2(z) by their small argument expansion.
Summarizing the above results, the asymptotic behavior of the integral is given by,

I2a,b(y) '



c21y
a + c22y

a−1 +O(ya−2)

for y� 1

c23y
2a+b+2 + c24y

a+1 +O(y0)

for y� 1 and − 3 < 2a+ b < −2

c25 + c
2
3y
2a+b+2 + c24y

a+1 +O(y2a+b+3)

for y� 1 and − 2 < 2a+ b < −1

c25 + c
2
4y
a+1 + c23y

2a+b+2 +O(y2a+b+3)

for y� 1 and − 1 < 2a+ b < 0,

(A.57)
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where the respective constants are given by,

c21 =

∫1
0

dz
∫1
0

dv (v+ z− vz)a(1− z)b+1(vb − 1),

c22 = a

∫1
0

dz
∫1
0

dv z(v+ z− vz)a(1− z)b+1(vb − 1),

c23 = −
πΓ(1+ b)Γ(−2a− b− 2)

Γ2(−a) sin(π(a+ b+ 1))
,

c24 = −
1

(a+ b+ 1)(a+ 1)
+

1

(a+ 1)2

c25 =

∫1
0

dz
∫1
0

dv za(v+ z− vz)a(1− z)b+1(vb − 1). (A.58)

These constants can be evaluated numerically. One case, which is not covered by
the above is the behavior for a+ b = −1 and y� 1. In this case, the leading order
of f1(z) is logarithmic, and we obtain,

I2a,b(y) ' c25 +
1

a+ 1
ya+1 ln(y) −

(
H−2−a

a+ 1
+

1

(a+ 1)2

)
ya+1, (A.59)

where Ha denotes an harmonic number.

Our third integral is rather similar to the previous one, Eq. (A.46)

I3a,b(y) =

∫1
0

dz
∫z
0

du (1− z)a(1+ y− u)a
(
(z− u)b − zb

)
. (A.60)

Again we introduce v = u/z,

I3a,b(y) =

∫1
0

dz
∫1
0

dv (1− z)a(1+ y− vz)azb+1
(
(1− v)b − 1

)
, (A.61)

and then change variables from z to 1− z and from v to 1− v,

I3a,b(y) =

∫1
0

dz
∫1
0

dv za(y+ v+ z− vz)a(1− z)b+1(vb − 1). (A.62)

The further analysis proceeds along the same lines as with the previous integral.
We find,

I3a,b(y) '



c31y
a + c32y

a−1 +O(ya−2)

for y� 1

c33y
2a+b+2 +O(y0)

for y� 1 and − 3 < 2a+ b < −2

c34 + c
3
3y
2a+b+2 +O(y)

for y� 1 and − 2 < 2a+ b < −1

c34 + c
3
3y
2a+b+2 + c35y+O(y2a+b+3)

for y� 1 and − 1 < 2a+ b < 0,

(A.63)
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where the respective constants are given by,

c31 =

∫1
0

dz
∫1
0

dv za(1− z)b+1(vb − 1),

c32 = a

∫1
0

dz
∫1
0

dv za(v+ z− vz)(1− z)b+1(vb − 1),

c33 =
Γ(a+ 1)Γ(b+ 1)Γ(−2a− b− 2)

Γ(−a)
,

c34 =

∫1
0

dz
∫1
0

dv za(v+ z− vz)a(1− z)b+1(vb − 1),

c35 = a

∫1
0

dz
∫1
0

dv za(v+ z− vz)a−1(1− z)b+1(vb − 1). (A.64)

The fourth integral we discuss is,

I4a,b(y) =

∫1+y
1

dz
∫1
0

du
(
(1+ y− z)(1− u)

)a(
(z− u)b − zb

)
, (A.65)

where as a first step we change variables from z to z− 1 and from u to 1− u,

I4a,b(y) =

∫y
0

dz
∫1
0

du
(
(y− z)u

)a(
(z+ u)b − (1+ z)b

)
. (A.66)

To proceed, we first define the function,

f(z) =

∫1
0

du ua
(
(u+ z)b − (1+ z)b

)
=

∫1
0

du ua(u+ z)b −
1

a+ 1
(1+ z)b, (A.67)

and examine its behavior for large and small z. The first term is precisely Eq. (A.25)
with a and b interchanged. Using Eq. (A.44) and expanding the second term ac-
cordingly, we find,

f(z) '



b
(
1
a+2 −

1
a+1

)
zb−1 +

b(b−1)
2

(
1
a+3 −

1
a+1

)
zb−2

for z� 1

Γ(a+1)Γ(−a−b−1)
Γ(−b) za+b+1 − b

(a+b+1)(a+1)

−
b(b−1)

(a+b)(a+1)z

for z� 1.

(A.68)

In terms of f(z), our original integral Eq. (A.66) reads,

I4a,b(y) =

∫y
0

dz (y− z)af(z) = ya+1
∫1
0

dv (1− v)af(yv), (A.69)
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where in the last step we introduced v = z/y. For y � 1, we can now just use the
small argument expansion of f(z), Eq. (A.68),

I4a,b(y) '
Γ2(a+ 1)Γ(b+ 1) sin(π(1− b))
Γ(2a+ b+ 3) sin(π(a+ b+ 1)

y2a+b+2

−
b

(a+ 1)2(a+ b+ 1)
ya+1

−
b(b− 1)

(a+ 1)2(a+ 2)(a+ b)
ya+2. (A.70)

For y� 1, we cannot simply use the large argument expansion of f(z), Eq. (A.68),
since the latter diverges at the lower boundary. Instead, we write,

I4a,b(y) = y
a

∫y
0

dz
(
1−

z

y

)a
f(z), (A.71)

and expand,(
1−

z

y

)a
' 1− a z

y
. (A.72)

This gives us,

I4a,b(y) ' ya
[∫∞
0

dz f(z) −
∫∞
y

dz f(z)
]
− aya−1

∫y
0

dz zf(z), (A.73)

where we used the fact that the integral over f(z) is finite as the upper limit tends to
infinity. The integral over zf(z) on the other hand is not, and this thus dominated
by the behavior of f(z) at large arguments, allowing us to use Eq. (A.68) in the
third term. We may also use this large argument expansion in the second term,
since there we have z > y� 1. We then find for y� 1,

I4a,b(y) ' ya
∫∞
0

dz f(z) +
1

(a+ 1)(a+ 2)

(
ab

b+ 1
− 1

)
ya+b. (A.74)

Summarizing all of the above results, the fourth integral Eq. (A.66) behaves asymp-
totically as,

I4a,b(y) '



c41y
a + c42y

a+b +O(ya+b−1)

for y� 1,

c43y
2a+b+2 + c44y

a+1 + c45y
a+2 +O(ya+3)

for y� 1,

(A.75)
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with coefficients given by,

c41 =

∫∞
0

dz
∫1
0

du ua
(
(u+ z)b − (1+ z)b

)
c42 =

1

(a+ 1)(a+ 2)

(
ab

b+ 1
− 1

)
c43 =

Γ2(a+ 1)Γ(b+ 1) sin(π(1− b))
Γ(2a+ b+ 3) sin(π(a+ b+ 1)

c44 = −
b

(a+ 1)2(a+ b+ 1)

c45 = −
b(b− 1)

(a+ 1)2(a+ 2)(a+ b)
. (A.76)

The fifth integral reads,

I5ν,a,b(y) =

∫∞
0

dz (y+ z)−νφ(z), (A.77)

with a function φ(z), that behaves asymptotically as,

φ(z) '


caz

a with µ > −1 for z� 1

cbz
b with λ < ν− 1 for z� 1.

(A.78)

For y � 1, the behavior of φ(z) for small z is pivotal. For a < ν− 1, the integral
diverges at the lower boundary as y → 0 and is thus dominated by the small-z
behavior of φ(z). We have,

I5ν,a,b(y) ' ca
∫∞
0

dz (y+ z)−νza

= cay
a−ν+1

∫∞
0

du (1+ u)−νua

=
caΓ(a+ 1)Γ(ν− a− 1)

Γ(ν)
ya−ν+1. (A.79)

On the other hand, if a > ν− 1, the integral is finite as y → 0, the sub-leading
order is then found by taking the derivative with respect to y,

∂

∂y
I5ν,a,b(y) = −ν

∫∞
0

dz (y+ z)−ν−1φ(z), (A.80)

which similarly diverges at the lower boundary if a < ν and thus,

∂

∂y
I5ν,a,b(y) ' −νca

∫∞
0

dz (y+ z)−ν−1za

= −
caΓ(a+ 1)Γ(ν− a)

Γ(ν)
ya−ν. (A.81)
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The asymptotic behavior of the integral for y� 1 is then given by,

I5ν,a,b(y) '



caΓ(a+1)Γ(ν−a−1)
Γ(ν) ya−ν+1

for a < ν− 1∫∞
0 dz z−νφ(z) + caΓ(a+1)Γ(ν−a−1)

Γ(ν) ya−ν+1

for ν− 1 < a < ν∫∞
0 dz z−νφ(z) − νy

∫∞
0 dz z−ν−1φ(z)

+
caΓ(a+1)Γ(ν−a−1)

Γ(ν) ya−ν+1

for ν < a < ν+ 1,

(A.82)

where the final case requires taking the second derivative with respect to y. In the
limit y � 1, we see that the integral diverges at the upper boundary as y → ∞
(i.e. if we replace y+ z by y) if b > −1. In this case, we can replace φ(z) by its
asymptotic behavior for large z and find,

I5ν,a,b(y) ' cb
∫∞
0

dz (y+ z)−νzb

=
cbΓ(b+ 1)Γ(ν− b− 1)

Γ(ν)
yb−ν+1. (A.83)

For b < −1, contributions to the integral stemming from large z are suppressed
and we can replace y+ z by y to find the leading order behavior. In order to find
the sub-leading contribution, we introduce the auxiliary function,

ξ(z) =

∫∞
z

dz ′ φ(z ′), (A.84)

which is well defined since φ(z) is integrable for large arguments. The function
ξ(z) is the an antiderivative of φ(z), (d/dz)ξ(z) = −φ(z), and behaves for large z
as,

ξ(z) ' −
cb
b+ 1

zb+1. (A.85)

With this function, we can then integrate Eq. (A.77) by parts to find,

I5ν,a,b(y) =
[
−(y+ z)−νξ(z)

]∞
0
− ν

∫∞
0

dz (y+ z)−ν−1ξ(z)

= ξ(0)y−ν − ν

∫∞
0

dz (y+ z)−ν−1ξ(z). (A.86)

For b > −2, the remaining integral again diverges at the upper boundary as y→∞
and we may replace ξ(z) by its large argument expansion,

I5ν,a,b(y) ' ξ(0)y−ν +
νcb
b+ 1

∫∞
0

dz (y+ z)−ν−1zb+1

= y−ν
∫∞
0

dz φ(z) +
cbΓ(b+ 1)Γ(ν− b− 1)

Γ(ν)
yb−ν+1. (A.87)
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Summarizing, the asymptotic behavior of the integral is given by,

I5ν,a,b(y) '



caΓ(a+1)Γ(ν−a−1)
Γ(ν) ya−ν+1

for y� 1 and a < ν− 1∫∞
0 dz z−νφ(z) + caΓ(a+1)Γ(ν−a−1)

Γ(ν) ya−ν+1

for y� 1 and ν− 1 < a < ν∫∞
0 dz z−νφ(z) − νy

∫∞
0 dz z−ν−1φ(z)

+
caΓ(a+1)Γ(ν−a−1)

Γ(ν) ya−ν+1

for y� 1 and ν < a < ν+ 1

cbΓ(b+1)Γ(ν−b−1)
Γ(ν) yb−ν+1

for y� 1 and − 1 < b

y−ν
∫∞
0 dz φ(z) + cbΓ(b+1)Γ(ν−b−1)

Γ(ν) yb−ν+1

for y� 1 and − 2 < b < −1

y−ν
∫∞
0 dz φ(z) − νy−ν−1

∫∞
0 dz

∫∞
z dz ′ φ(z ′)

+
cbΓ(b+1)Γ(ν−b−1)

Γ(ν) yb−ν+1

for y� 1 and − 3 < b < −2,

(A.88)

where the expression in the last line requires another integration by parts.

a.3 asymptotic behavior under laplace inversion

A function f(t) and its Laplace transform f̃(s) are related by,

f̃(s) =

∫∞
0

dt e−stf(t)

f(t) =
1

2πi

∫ i∞+ε

−i∞+ε
ds estf̃(s), (A.89)

where ε is a real number such that <(sk) < ε for all nonanalytic points sk of f̃(s).
For all the cases we consider, we have <(sk) 6 0 and can thus choose ε to be a
positive infinitesimal. The contour in the inverse Laplace transform, also called the
Bromwich path, is a line parallel to the imaginary axis at <(s) = ε. In practice, we
perform the Laplace inversion by closing the contour in the left half-plane <(s) < ε

via an infinitely extended semicircle. If f̃(s) has no branch cuts, then f(t) can be
obtained via the residue theorem: The integral around the contour is given by the
sum of the residues inside the contour. Since the contribution from the semicircle
is exponentially suppressed, this sum of residues is also equal to the initial line
integral. The situation is a bit more complicated if f̃(s) has branch cuts, which we
choose to be parallel to the negative real axis. Since the integration contour cannot
intersect the branch cuts, we have to deform the semicircle in the left half plane
to go around the branch cuts. Still, the integral along the closed contour is given
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by the sum of residues, however, the former now has contributions from both
the initial line integral and the contours around the branch cuts. Thus we need
to evaluate the latter to obtain the value of the line integral. Let us consider f̃(s)
having a single branch point at s = sk and the corresponding branch cut extending
from sk parallel to the negative real line. We parameterize the contour around the
branch cut by a line integral running to the right an infinitesimal distance δ above
the branch cut, then a circle of a small radius R around the branch point and
finally a line integral running to the left infinitesimally below (again distance δ)
the branch point. To simplify the calculation, we shift the origin of the complex
plane to s = sk, moving the branch point to s = 0 and incurring a factor eskt from
the exponential in inverse Laplace transform in doing so. The contour integral
around the branch cut is then given by,

Icut(t) =
1

2πi
eskt

[ ∫−R+iδ
−∞+iδ

ds estf̃(s)︸ ︷︷ ︸
above branch cut

+ iR

∫−π+ δ
R

π− δ
R

dφ eRe
iφtf̃(Reiφ)eiφ︸ ︷︷ ︸

around branch point

+

∫−∞−iδ

−R−iδ
ds estf̃(s)︸ ︷︷ ︸

below branch cut

]
. (A.90)

In order to get rid of the infinitesimal δ, we substitute z = reiπ above the branch
cut and z = re−iπ below the branch cut, which takes care of the discontinuity and
allows us to set δ = 0,

Icut(t) =
1

2πi
eskt

[ ∫∞
R

dr e−rt
[
f̃(reiπ) − f̃(re−iπ)

]
−iR

∫π
−π

dφ eRe
iφtf̃(Reiφ)eiφ

]
, (A.91)

where we used the fact that the exponential is analytic. Let us assume that, in the
vicinity of the branch point, f̃(s) behaves as a power law,

f̃(s) ' aµsµ + aµ+1s
µ+1 + . . . . (A.92)

Since R is assumed to be small, we can directly substitute this expansion in the
part of the contour around the branch point,

−iR

∫π
−π

dφ eRe
iφtf̃(Reiφ) ' −iaµR

µ+1

∫π
−π

dφ eRe
iφtei(µ+1)φ

− iaµ+1R
µ+2

∫π
−π

dφ eRe
iφtei(µ+2)φ. (A.93)
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If −1 < µ, then we can contract the contour and send R→ 0, in this case the entire
integral tends to zero. If −2 < µ < −1, then we integrate by parts in the first term,

−iR

∫π
−π

dφ eRe
iφtf̃(Reiφ) ' −

aµ

µ+ 1
Rµ+1e−Rt

[
ei(µ+1)π − e−i(µ+1)π

]
+ i

aµ

µ+ 1
Rµ+2t

∫π
−π

dφ eRe
iφtei(µ+2)φ

+ aµ+1R
µ+2

∫π
−π

dφ eRe
iφtei(µ+2)φ. (A.94)

Now, we can take the limit R→ 0 in the second and third terms,

−iR

∫π
−π

dφ eRe
iφtf̃(Reiφ) ' 2i

aµ

µ+ 1
Rµ+1e−Rt sin(πµ). (A.95)

For µ < −2, this procedure has to be repeated several times, we shall, however,
not consider this here. In the contribution from above and below the branch cut,
we note that for large t, contributions from further away from the branch point
are exponentially suppressed. We may thus also apply the expansion of f̃(s) in the
vicinity of the branch point,∫∞

R

dr e−rt
[
f̃(reiπ) − f̃(re−iπ)

]
' aµ

∫∞
R

dr e−rtrµ
[
eiµπ − e−iµπ

]
+ aµ+1

∫∞
R

dr e−rtrµ+1
[
ei(µ+1)π − e−i(µ+1)π

]
. (A.96)

For −1 < µ, we can take the limit R→ 0 and obtain,∫∞
R

dr e−rt
[
f̃(reiπ)−f̃(re−iπ)

]
' 2iaµΓ(µ+ 1) sin(πµ)t−µ−1

− 2iaµ+1Γ(µ+ 2) sin(πµ)t−µ−2. (A.97)

For −2 < µ < −1, on the other hand, we have to integrate by parts in the first term,

aµ

∫∞
R

dr e−rtrµ
[
eiµπ − e−iµπ

]
= 2i

aµ

µ+ 1
sin(πµ)

[
e−rtrµ+1

∣∣∣∞
R

+ t

∫∞
R

dr e−rtrµ+1
]
. (A.98)

Taking the limit R→ 0 in the second term, we find,

aµ

∫∞
R

dr e−rtrµ
[
eiµπ − e−iµπ

]
' −2i

aµ

µ+ 1
sin(πµ)e−RtRµ+1

+ 2iaµ sin(πµ)Γ(µ+ 1)t−µ−1. (A.99)

The contribution from the boundary term exactly cancels the one from the integral
around the branch point, Eq. (A.95). Summing up, we find for large t,

Icut(t) '
sin(πµ)
π

eskt
[
aµΓ(µ+ 1)t

−µ−1 − aµ+1Γ(µ+ 2)t
−µ−2

]
. (A.100)

The same can be done for every branch cut. This means that, because of the ex-
ponential prefactor, the leading order asymptotic behavior of the inverse Laplace
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transform for long times is given by the rightmost nonanalytic point of f̃(s). If the
function f̃(s) has integer order poles at points s = sm and branch points at s = sk,
then the asymptotic inverse Laplace transform f(t) is given by,

f(t) '
∑
m

Ress=sm
[
estf̃(s)

]
−
1

π

∑
k

aµkΓ(µk + 1) sin(πµk)t−µk−1eskt, (A.101)

where Ress=sm denotes the residue at sm and µk are the exponents of the leading
order expansion around sk.



B
A P P E N D I X : N U M E R I C A L S I M U L AT I O N S

b.1 langevin trajectory simulations

In order to verify and support our analytic asymptotic results, we perform numeri-
cal simulations of trajectories obeying the corresponding Langevin equation. These
simulations are based on a discretized version of the Langevin equation, which is
then evaluated on a step-by-step basis. We divide the total time t into small inter-
vals of length ∆t and define the discrete times tn = n ∆t, with n = 0, 1, 2, . . .. The
velocity vn+1 at time tn+1 can then be approximated based on its value vn at tn
via [Kloe 92],

vn+1 − vn = −γvn∆t+
√
2Dv∆tWn, (B.1)

where Wn is a random number drawn from a normal distribution with zero mean
and unit variance. While in the continuous-time Langevin equation, the white
noise η(t) is an idealized random process with infinitely short ranged correlations,
the latter can only be realized approximately in the discrete time formalism, since
the shortest possible correlation time is given by the time step ∆t. Equation (B.1)
replicates the Langevin equation in the limit ∆t → 0. For practical purposes, a
good approximation of Langevin dynamics requires γ∆t � 1, since then the time
step is small enough to resolve the correlations in the system, Eq. (2.5). Better
time resolution of course requires yet smaller time steps but the aforementioned
condition is the minimal requirement to accurately reproduce the dynamics.

For simulation of the fractional Langevin equation, we need to make two changes
to Eq. (B.1). First, we need to include the power-law memory kernel, and second,
we need to be able to generate power-law correlated noise. For the memory kernel,
we can explicitly write down its discrete-time equivalent,

kn = k(tn) =
1

Γ(α)
tn
α−1 =

1

Γ(α)
nα−1∆tα−1. (B.2)

With this, the discrete version of the fractional Langevin equation reads,

vn+1 − vn = −
γ

Γ(α)

n∑
i=0

(n− i)α−1vi∆t
α+1 +Gαn, (B.3)

where we replaced the integral by a sum and Gαn the yet to be specified discrete
version of the Gaussian power-law correlated noise. However, there is an issue with
the above expression: At the upper bound of the sum, the short-time divergence
of the memory kernel leads to an infinite term in the sum. This problem does
not occur in the continuous-time version of the equation since the divergence is
integrable. The short-time divergence is actually unphysical, as the memory kernel
– which also specifies the correlations of the noise – should be finite for all times.

155



156 appendix : numerical simulations

We can remedy this by including a short-time cutoff t∗ on the memory kernel, e.g
by writing,

k(t) =
1

Γ(α)
(t+ t∗)α−1. (B.4)

Since the asymptotic dynamics are governed by the asymptotic behavior of the
memory kernel, this short-time cutoff does not change the former. Generally the
short-time cutoff will correspond to some physical time-scale in the system under
consideration. However, in order to stay as close to the continuous description as
possible, we use the shortest cutoff possible, namely the time step ∆t. Equation
(B.3) then reads,

vn+1 − vn = −
γ∆tα+1

Γ(α)

n∑
i=0

(n− i+ 1)α−1vi +G
α
n. (B.5)

Computationally, evaluating the power law is expensive, for this reason, we use
the recursively defined coefficients [Kasd 95],

aα0 = 1

aαn+1 =
α+n

n+ 1
aαn

⇒ aαn =
Γ(α+n)

n!Γ(α)
, (B.6)

which asymptotically reproduce the power law nα−1/Gamma(α). In terms of
these coefficients, we have,

vn+1 − vn = −γ∆tα+1
n∑
i=0

aαn−ivi +G
α
n. (B.7)

Now we have taken care of the memory kernel, we still require a representation
for the power-law correlated noise. For this, we make use of the results obtained
in Section 2.2.2, in particular Eq. (2.40). There we saw, that a process defined via
Gaussian white noise ξ(t) by,

η(t) =

√
Dα

Γ
(
α
2

) ∫t
0

dt ′ (t− t ′)
α
2−1ξ(t ′), (B.8)

results in a correlation function,

〈η(t+ τ)η(t)〉 = Dα(−1)
−α
2

Γ2
(
α
2

) τα−1B
(
−
t

τ
;
α

2
,
α

2

)
. (B.9)

The process η(t) is a linear functional of Gaussian white noise and thus Gaus-
sian itself. In the long-time limit t � τ, the correlation function is asymptotically
stationary,

〈η(t+ τ)η(t)〉 '
DαΓ(1−α) sin

(
πα
2

)
π

τα−1. (B.10)
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Comparing this to the desired noise correlation, Eq. (2.11), the two expressions
agree for,

Dα = 2mγkBT cos
(πα
2

)
. (B.11)

However, using the coefficients in Eq. (B.6), we can write down a discrete version
of η(t),

Hαn =
√
Dα∆t

α
2+

1
2

n∑
i=0

a
α/2
n−iWi. (B.12)

In the limit n→∞, which corresponds to the long-time limit above, the processes
Hαn and Gαn are equivalent. We can express this as,

Gαn = lim
j→∞Hαj+n. (B.13)

Since an infinite number of steps cannot be realized in practice, we can only realize
the stationary process Gαn in an approximate manner for j � n. This means that,
if we want to have a process Gαn, that is approximately stationary for n steps, then
we first have to "equilibrate" it for a number of steps j that is much bigger than
n. We also can quantify "much bigger", by examining the sub-leading order of the
correlation function, which is proportional to tα−1. More precisely, if we want the
nonstationary contribution to be small in relation to the stationary one, we have to
demand that,

j1−α � n1−α
Γ(2−α) sin

(
πα
2

)
Γ2
(
α
2

)
π

. (B.14)

For values of α close to 1, stationarity may thus require an excessively large num-
ber of equilibration steps. We note that these equilibration steps necessarily have
to be taken before simulating the actual process, even though the noise continues
to approach stationarity during the evolution. However, this will lead to discrep-
ancies in the dynamics even at long times, similar to the ones discussed in Section
3.1.3. For the equilibrium fractional Langevin equation, we thus have the discrete
approximation,

vn+1 − vn = −γ∆tα+1
n∑
i=0

aαn−ivi +
√
Dα∆t

α
2+

1
2

j+n∑
i=0

a
α/2
j+n−iWi. (B.15)

The generation of the power-law noise described above also applies to the sta-
tionary and nonstationary Gaussian medium velocity processes discussed in Sec-
tion 2.2.2,

vm,n =


vtyp

∑n
i=0 a

β/2
n−iWi nonstationary

vtyp
∑j+n
i=0 a

β/2
j+n−iWi stationary,

(B.16)

where again we require j � n in order to guarantee approximate stationarity. For
the Lévy walk, the procedure is different, as here, the correlations do not stem
from an explicit memory but from the power-law waiting time distribution. We
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generate the latter from a uniform distribution Un, i.e. random numbers drawn
from the interval (0, 1). Specifically, we determine the random waiting times Tn
via [Weis],

Tn = t0

[
1+Un

((
t1
t0

)β−2
− 1

)] 1
β−2

, (B.17)

which produces a waiting time distribution,

Pw(tw) =


0 for tw < t0

2−β
t0
β−2−t1

β−2 tw
β−3 for t0 < tw < t1

0 for t1 < tw.

(B.18)

In particular for t0 = 1 and t1 = ∞, we find for β < 2,

Pw(tw) =


0 for tw < 1

2−β
t0
β−2 tw

β−3 for t0 < tw.
(B.19)

This is precisely the type of power-law waiting time distribution required for the
Lévy walk. From here, the procedure is straightforward: We draw a random wait-
ing time T0 according to the above prescription and a random velocity vm from a
Gaussian distribution with variance vtyp

2. As soon as the current time tn exceeds
this waiting time, we draw a new waiting time T1 and a new velocity, and repeat
this process every time tn exceeds T0 + T1, T0 + T1 + T2 and so on until we reach
the end of the specified evolution time. Including the medium velocity, the final
discrete-time version of the nonequilibrium fractional Langevin equation takes the
form,

vn+1 − vn = −γ∆tα+1
n∑
i=0

aαn−i(vivm,i) +
√
Dα∆t

α
2+

1
2

j+n∑
i=0

a
α/2
j+n−iWi. (B.20)

b.2 overview of simulation program

Our numerical simulation program is built around Eq. (B.20). It is written in For-
tran and is designed to simulate a large number of stochastic trajectories and ana-
lyze the resulting data. In the following we give a short overview over the simula-
tion program and some of its main components.

Since we want to simulate a stochastic system, a central requirement for our
program is generating pseudo-random numbers. In order to optimize performance,
we designed the program to be able to heavily utilize parallel processing, both for
generation of the trajectories and data analysis. However, this prohibits usage of
the random number generators built into Fortran, since the latter are not designed
with parallel processing in mind. We therefore use a multi-threaded variant of
the Mersenne twister [Ishi 11], which is able to generate uniformly distributed
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pseudo-random numbers in parallel. From these uniform random numbers, we can
generate the normal distributed ones using a Box-Muller algorithm [Vett 89] and
the power-law distributed ones according to the prescription given in Eq. (B.17).

The program itself is organized into a main program, which handles data input
and output, and several subroutines for generating the trajectories and analyzing
the resulting data. The principle mode of operation is the following: The main pro-
gram reads the input parameters, e.g. the number of trajectories and integration
steps, the parameters of the underlying mathematical model, and what types of
data analysis to perform, from an input file. It then passes these parameters to the
trajectory subroutine which generates the prescribed number of trajectories using
these parameters. After the trajectories have been generated, the main program
calls the data analysis subroutines to extract the required quantities from the data
array. Finally it outputs these quantities in the form of several files, which can then
be further processed using e.g. a graphing software. There are a number of both tra-
jectory and data analysis subroutines available. In terms of trajectories, the moving
viscoelastic medium model, both with the Gaussian and the Lévy walk medium
velocity processes, as well as ordinary Brownian motion, a pure Lévy walk and a
semiclassical model for diffusion in optical lattices can be selected. The data anal-
ysis subroutines include the determination of arbitrary moments, autocorrelations,
distributions, time averages and spectral densities, all for both the velocity and the
displacement. Since we want to examine scale-invariant processes, we explicitly
use the full power-law memory kernel instead of much faster approximate meth-
ods [Sieg 10]. Because the memory kernel has to be recalculated after every step,
the computation time scales as the number of steps squared. This turns out to be
the main limit for generating long time series; in practice on the order of 104 time
steps for 104 trajectories requires about half an hour of computation time on a fast
six-core CPU, increasing the number of steps by a factor of 10 already requires
about two days.

We forego more detailed description of or instructions for the program at this
point, since for this work, it merely serves as a consistency check for our analytic
results. Both the code and documentation are available upon request and will be
made public at a later time.
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