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4.2 Structural and biophysical study of NIBP and Ehoc-1 

 

4.2.1 CD spectrum of E211 

A CD spectrum between 190 to 260 nm was measured on purified E211, according 

to the protocol in 3.2.13 (see Fig 4.2.1 a). If compared with the characteristic spectra 

for different secondary structures (Fig 4.2.1 b), the CD spectrum of E211 suggested 

that this Ehoc-1 fragment had a distinct structure which is mainly composed of α-

helix. 

 

 

 

 

 

 

 

 

Fig 4.2.1 CD spectrum of E211 suggested a structure mainly composed of α-helix. 
(a) CD spectrum of E211, measured between 190 and 260 nm; 
(b) Standard CD spectra curves of different secondary structures. Red, α-helix; 

blue, β-sheet; black, random coil. 

 

4.2.2 Crystallization of E211 

Crystallization of E211 was carried out on purified E211 in Ehoc-1 protein buffer at a 

concentration of 5.7 or 12.5 mg/ml. Initial screens were carried out on 96-well sitting-

drop crystallization plates with the commercial crystallization screens pH clear, pH 

clear II, ComPas, Classic II and JCSG from Qiagen. However, no initial hit was 

observed so far on any of the crystallization plates. 
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4.2.3 Interactions of NIBP and Ehoc-1 

The interactions between NIBP and Ehoc-1 were studied with co-immuno-precipita-

tion (CoIP) experiments, according to the protocol in 3.4.4. Pairwise interactions 

between NIBP and Ehoc-1 fragments were studied, which involved the following 

constructs: flag-tagged NIBP, which was the splice isoform of NIBP, consisting of the 

AAs 335-1246, or NIBP C, which consisted of AAs 941-1086 and included the fifth 

conserved segment of NIBP (see Fig 4.1.1 a); with HA-tagged Ehoc-1 N, which 

consisted of AAs 1-276 and covered most of the first conserved domain in Ehoc-1 

(see Fig 4.1.1 b), or Ehoc-1 M, which consisted of AAs 437-544 and corresponded to 

the second conserved domain of Ehoc-1 (see Fig 4.1.1 b). The resulting immuno-

precipitations on α-HA affinity matrix was eluted with 2 x SDS sample buffer and 

subjected to SDS-PAGE and Western blotting. Cell lysate samples without α-HA 

affinity matrix were also loaded on the gel as input controls. The blotted membrane 

was visualized by α-flag and α-HA antibodies (see Fig 4.2.2).  

 
Fig 4.2.2 Co-immuno-precipitation studies with NIBP and Ehoc-1 fragments.  

NIBP, NIBP 335-1246; NIBP C, NIBP 941-1086; Ehoc-1 N, Ehoc-1 1-276; 
Ehoc-1 M, Ehoc-1 437-544. 
 

From the CoIP results, N-terminally truncated NIBP was shown to bind to an N-

terminal fragment (Ehoc-1 N, 1-276), while only weakly to a conserved region from 

middle part of Ehoc-1 (Ehoc-1 M, 437-544). Furthermore, the interaction with Ehoc-1 

fragments was maintained by a shorter fragment of NIBP (NIBP C, 941-1086), from 

the C-terminal conserved domain of NIBP.  
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4.3 Structure determination of Tca17 

 

4.3.1 Expression of Tca17 in E. coli 

The coding region for full-length Tca17 (residues 1-152) was amplified directly from 

yeast genomic DNA and cloned into the bacterial expression vector pGex-6P1 using 

BamHI / NotI restriction endonucleases. The sequence-verified recombinant plasmid 

pGex6P1-Tca17 was transformed into E. coli BL21(DE3)-T1R cells, and expressed 

according to the protocol in 3.2.2. Cell pellets from overnight culture were disrupted 

by Fluidizer treatment. 

 

4.3.2 Purification of Tca17 

Tca17 was purified according to the protocols as 3.2.5 – 3.2.9. GST-tagged Tca17 

was first purified by a GSH sepharose 4B column, then incubated with PreScission 

protease at a ratio of 30:1 (Tca17 : protease, w:w), and dialysed against 1 l GST-

dialysis buffer at 4 °C overnight. The free GST-tag and uncut GST-Tca17 was 

removed by a second affinity chromatography step. The unbound fractions from the 

second affinity column, which mainly contained the tag-free Tca17 protein, were 

concentrated and loaded on a Superdex 75 gel filtration column equilibrated with 

Tca17 protein buffer. SeMet labeled Tca17 was purified according to the same 

protocol, but SeMet Tca17 protein buffer was used instead. Finally the native and 

SeMet labeled Tca17 protein of higher than 95% purity were produced and concen-

trated to 12 mg/ml, as required for crystallography experiments. Samples were 

collected during the purification steps and analyzed by SDS-PAGE, as shown in Fig 

4.3.1. 

  



 

 

4.3

A 

(pr

Fig 4.3.
e: e
-GS
ft: u
the
gf: 
pur

3.3 Protei

buffer scre

rotocol as in

No. Buf

Ref. 20 

1 20 

2 20 
5%

3 20 

4 20 
5%

5 20 

6 20 
5%

7 20 

8 20 
5%

9 20 

10 20 
5%

.1 SDS-PAG
elution from 
ST: sample a
unbound frac
e GST-tag wa
peak fractio
re: purified a

n buffer s

een was p

n 3.2.14), to

ffer conditio

mM HEPES,

mM Na-Ac, p

mM Na-Ac, p
 glycerol 

mM Na-Ac, p

mM Na-Ac, p
 glycerol 

mM MES, pH

mM MES, pH
 glycerol 

mM MES, pH

mM MES, pH
 glycerol 

mM MES, pH

mM MES, pH
 glycerol 

E of samples
first affinity c
after incubat
ctions from tw
as removed 
ns of gel filtra

and concentra

creen 

performed w

o find a suita

on 

, pH 8.0,150 

pH 5.0, 150 m

pH 5.0, 150 m

pH 5.0, 300 m

pH 5.0, 300 m

H 5.5, 150 m

H 5.5, 150 m

H 5.5, 300 m

H 5.5, 300 m

H 6.0, 150 m

H 6.0, 150 m

s from Tca17
chromatograp
ion with prot
wo continuou
by protease 
ation;  
ated Tca17.

with a fluo

able stabiliz

mM NaCl 

mM NaCl 

mM NaCl, 

mM NaCl 

mM NaCl, 

mM NaCl 

mM NaCl, 

mM NaCl 

mM NaCl, 

mM NaCl 

mM NaCl, 

7 purification
phy;  
ease;  
us affinity ch
digestion;  

orescence-b

zing protein 

Tm1 

54.60 5

41.80 4

45.80 4

44.60 4

45.00 4

46.60 4

48.60 4

49.30 5

54.10 4

53.10 5

55.10 5

n. 

romatograph

based ther

buffer for T

Tm2 Tm

51.30 52.9

41.80 41.8

41.00 43.4

42.30 43.4

44.80 44.9

47.80 47.2

49.30 48.9

50.60 49.9

47.60 50.8

53.40 53.2

56.60 55.8

R

hy columns, 

mal shift a

Tca17.  

m Tm-Tmr 

95 0.00 

80 -11.15 

40 -9.55 

45 -9.50 

90 -8.05 

20 -5.75 

95 -4.00 

95 -3.00 

85 -2.10 

25 0.30 

85 2.90 

Result 

68 

 

after 

assay 



Result 

69 

 

11 20 mM MES, pH 6.0, 300 mM NaCl 48.30 51.60 49.95 -3.00 

12 20 mM MES, pH 6.0, 300 mM NaCl, 
5% glycerol 

55.60 55.40 55.50 2.55 

13 20 mM MES, pH 6.5, 150 mM NaCl 54.90 52.10 53.50 0.55 

14 20 mM MES, pH 6.5, 150 mM NaCl, 
5% glycerol 

55.10 55.90 55.50 2.55 

15 20 mM MES, pH 6.5, 300 mM NaCl 55.10 57.10 56.10 3.15 

16 20 mM MES, pH 6.5, 300 mM NaCl, 
5% glycerol 

59.90 60.90 60.40 7.45 

17 20 mM HEPES, pH 7.0, 150 mM NaCl 54.60 55.10 54.85 1.90 

18 20 mM HEPES, pH 7.0, 150 mM NaCl, 
5% glycerol 

58.10 / 58.10 5.15 

19 20 mM HEPES, pH 7.0, 300 mM NaCl 58.10 52.90 55.50 2.55 

20 20 mM HEPES, pH 7.0, 300 mM NaCl, 
5% glycerol 

60.60 61.40 61.00 8.05 

21 20 mM HEPES, pH 7.5, 150 mM NaCl 53.10 53.40 53.25 0.30 

22 20 mM HEPES, pH 7.5, 150 mM NaCl, 
5% glycerol 

55.10 56.20 55.65 2.70 

23 20 mM HEPES, pH 7.5, 300 mM NaCl 58.90 56.10 57.50 4.55 

24 20 mM HEPES, pH 7.5, 300 mM NaCl, 
5% glycerol 

57.10 60.60 58.85 5.90 

25 Reference buffer     

26 20 mM HEPES, pH 8.0, 150 mM NaCl, 
5% glycerol 

/ / / / 

27 20 mM HEPES, pH 8.0, 300 mM NaCl / 50.60 50.60 -2.35 

28 20 mM HEPES, pH 8.0, 300 mM NaCl, 
5% glycerol 

55.90 58.60 57.25 4.30 

29 20 mM Tris-HCl, pH 8.5, 150 mM NaCl 51.30 51.10 51.20 -1.75 

30 20 mM Tris-HCl, pH 8.5, 150 mM 
NaCl, 5% glycerol 

54.60 54.60 54.60 1.65 

31 20 mM Tris-HCl, pH 8.5, 300 mM NaCl 49.60 61.60 55.60 2.65 

32 20 mM Tris-HCl, pH 8.5, 300 mM 
NaCl, 5% glycerol 

55.90 55.90 55.90 2.95 

 
Table 4.3.1 Results of TSA-based buffer screen  
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Altogether 32 buffer conditions were tested to screen the influences of pH value and 

the concentration of NaCl and glycerol on the thermostability of Tca17. A commonly 

used protein buffer condition (20 mM HEPES, pH 8.0, 150 mM NaCl) was used as 

reference buffer. For each buffer, two measurements were performed yielding the 

melting temperatures Tm1 and Tm2. An average Tm value was calculated from the 

results of two measurements and compared with the melting temperature in 

reference buffer, Tmr (results shown in Table 4.3.1 and Fig 4.3.2). 

From the results of the thermal shift assay, it was found that: 1) higher salt concen-

tration and addition of 5% glycerol often led to higher melting temperature, as 

expected; 2) a pH range between 6.5 and 7.5 was preferred. From the two most 

stabilizing buffers (No. 16 and 20), where the Tm values were significantly higher than 

in the reference buffer, Tca17 protein buffer was formulated as 20 mM HEPES, pH 7, 

300 mM NaCl, 5% glycerol, 2 mM DTT, which was later used as protein buffer in 

crystallization. 

 

Fig 4.3.2 Melting temperature differences in TSA-based buffer screen  
 

 

  

TSA - buffer screen

-12,0
-10,0

-8,0
-6,0
-4,0
-2,0

0,0
2,0
4,0
6,0

8,0
10,0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Tm
-T

m
r (

°C
)



 

4.3

Pu

cry

ting

µl, 

pre

96-

Su

sep

obs

and

lab

PE

scr

we

we

Fo

froz

the

gly

cry

wh

 

 

 

3.4 Crysta

rified Tca17

ystallization 

g system o

and the si

ecipitant so

-buffer crys

ite (see ap

parately in 

served on 4

d 0.2 M Mg

belled Tca17

EG3350, aft

reens were 

ell hanging-

ere formed b

r data colle

zen in liqui

e best was c

ycerol. Sinc

ystals, all da

ich in the d

allization o

7 in Tca17

trials. Auto

n 96-well s

tting drops 

lution from 

stallization s

ppendix B)

4 °C and 2

4 °C plates

gCl2. In sev

7 crystals w

ter two mo

designed a

drop plates

by mixing 1 

ection, cryst

d nitrogen. 

composed o

ce the SeM

atasets wer

rop was sho

of Tca17 

7 protein bu

omated disp

itting-drop c

were form

the same 

screens: JB

). Two pla

20 °C storag

s with preci

veral round

were obtain

onths at 4 

around the 

s. Reservoi

µl protein w

als were so

Several dif

of reservoir 

Met-labeled

re collected

own in Fig 4

 

uffer was co

pensing wa

crystallizatio

ed by mixin

well. Initial 

BScreen Ba

tes were s

ge systems

ipitant cond

ds of fine s

ed from 0.1

°C. In ord

best cond

r volumes 

with 1 µl pre

oaked briefl

fferent cryo

r solution wi

Tca17 crys

d with SeMe

4.3.3. 

 

 

 

 

Fig 4.3
us

oncentrated

as performe

on plates. R

ng 300 nl p

screening

asic 1-4, C

set up for 

s. After two 

ditions of 20

creening, th

1 M Tris, pH

er to grow

itions and c

were 500 

ecipitant sol

y in cryo-pr

o-protection

ith 15% (w/v

stals diffrac

et-labeled T

3.3 Crystals o
ed to collect

d to 12 mg

ed using the

Reservoir v

protein solu

was carrie

lassics II S

each scre

weeks, init

0% PEG33

he best na

H8.5, 0.2 M

w bigger cry

carried out 

µl, and the

ution.  

rotection so

solutions w

v) PEG 335

cted better 

Tca17 cryst

of SeMet-lab
MAD datase

R

/ml and us

e Hydra II p

volumes we

ution with 3

ed out with 

Suite, and P

een, and s

tial crystals 

350 or PEG

tive and Se

M MgCl2, 20

ystals, fina

manually i

e hanging d

olution, and 

were tested

50 and 15%

than the n

tals, an ima

beled Tca17, 
ets. 

Result 

71 

sed in 

pipet-

ere 75 

300 nl 

three 

PEGs 

stored 

were 

G4000 

eMet-

0-28% 

l fine 

n 24-

drops 

flash 

d, and 

% (v/v) 

native 

age of 



Result 

72 

 

4.3.5 Data collection and processing 

In order to analyze the crystal structure of Tca17, native and MAD datasets were 

collected at 100 K at beamlines BL 14.1 and BL 14.2 of BESSY, Helmholtz Zentrum 

Berlin für Materialien und Energie (HZB). For anomalous data collection, an X-ray 

fluorescence scan was performed on a SeMet Tca17 crystal at the selenium edge 

and evaluated with the program CHOOCH [110]. The results are listed in Table 4.3.2. 

 

 E (eV) λ (Å) f´ f´´ 

Peak 12,656 0.9796 -7.84 6.22 

Inflection 12,654 0.9798 -10.37 3.82 

Remote 12,756 0.9720 / / 

Table 4.3.2 Anomalous scattering factors of SeMet Tca17 crystal at three wavelengths 

 

 
Anomalous datasets 

Native 1 Native 2 
Peak Inflection Remote 

Wavelength 
(Å) 

0.9797 0.9798 0.9720 0.9919 0.9184 

Resolution (Å) 28.96-3.12 29.93-2.99 29.09-3.11 30.01-2.63 29.25-1.80 

Outer shell (Å) 3.20-3.12 3.07-2.99 3.19-3.11 2.70-2.63 1.85-1.80 

Space group C2 C2 C2 

Unit cell 
a = 57.24 Å, b = 46.75 Å, c= 50.48 Å, 

β = 92.92° 

a = 50.59 Å 
b = 55.45 Å 
c= 57.78 Å 
β = 96.98° 

a = 57.13 Å 
b = 58.49 Å 
c= 53.97 Å 
β = 92.62° 

I / σ(I) 11.3(2.3) 11.8(1.6) 11.4(1.9) 21.2(2.6) 17.5(3.0) 

Rmerge (%) 11.0(74.5) 11.5(93.8) 12.1(76.1) 7.1(73.6) 7.7(58.5) 

Unique 
reflections 

4558(323) 5235(396) 4659(342) 4786(358) 16453(1216) 

Completeness 
(%) 

98.1(99.1) 98.1(95.4) 97.9(100.3) 99.6(99.4) 99.4(99.5) 

 
Table 4.3.3 Data collection statistics for anomalous and native Tca17 datasets. Values 

in parentheses refer to the outer shell of reflections. 
Rmerge: calculated according to Equation 3.3. 
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Before data collection, several test images were collected and processed with the 

program iMosflm, to determine the space group and calculate a best data collection 

strategy for the current crystal [94]. Three anomalous datasets were collected on a 

SeMet Tca17 crystal to around 3 Å resolution, and a native dataset was collected on 

another SeMet Tca17 crystal to 2.6 Å resolution. Some time later, another native 

dataset was collected on a manually grown SeMet Tca17 crystal to 1.8 Å resolution. 

All datasets were indexed and scaled with the XDS suite [95]. Accordingly, the 

crystals belong to space group C2, contain one Tca17 molecule in each asymmetric 

unit and therefore have a solvent content of 52% (calculated by the CCP4 program 

Matthews [111]). Data collection statistics are listed in Table 4.3.3. 

 

4.3.6 Structure determination 

The three anomalous diffraction datasets were uploaded and processed with the 

Auto-Rickshaw server at EMBL-Hamburg (see 3.3.5.1). The automatically built initial 

model was modified and improved manually in COOT, according to the experimental 

electron density map. Then the improved initial model was used to phase the 2.6 Å 

native dataset by molecular replacement with the program Molrep [112]. The atomic 

model of Tca17 could be improved to include 107 out of the 152 amino acids, with 

Rwork/Rfree values of 33% / 38%.  

When a new native dataset of 1.8 Å became available, it was again phased by the 

molecular replacement method. The Tca17 model was further modified and improved 

by several rounds of manual modification in COOT and model refinement with 

REFMAC5, until convergence when the R-values and stereochemical parameters 

were satisfactory. Altogether, 143 amino acids (AAs) of Tca17 could be fitted in the 

electron density. Among them, 141 are from the 152 AAs of Tca17, and two 

additional AAs at the C-terminus are derived from the expression vector. Five AAs 

have alternative conformations, an example of which is shown in Fig 4.1.4. In 

addition to the atomic model of the Tca17 protein alone, one cloride ion, one glycerol 

molecule and 133 oxygen atoms from water molecules could be fitted into the 

electron density map, yielding final Rwork/Rfree values of 18.32% / 21.96% and no 

outliers in Ramachandran diagram (see Table 4.3.4 and Fig 4.3.5).  
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Fig 4.3.5 Ramachandran diagram of the Tca17 structure [113] 
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4.4.2 Comparison with Bet5 subfamily proteins 

In order to compare the structure of Tca17 with the structure of other Bet5 subfamily 

proteins in detail, a pairwise flexible structure alignment was performed with FATCAT 

(Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists) 

[115]. Unlike normal structure alignment programs, FATCAT does not treat proteins 

as rigid bodies, but divides them into aligned fragments. It simultaneously optimises 

the alignment and minimizes the number of rigid-body movements (twists) around 

hinges introduced in the reference protein. Therefore, the FATCAT approach is 

suitable for aligning distantly similar protein structures.  

The structure of Tca17 was compared with yeast Bet5p (PDB id: 3CUE, chain C), 

mouse Bet5 (PDB id: 2J3T, chain C), yeast Trs23p (PDB id: 3CUE, chain A), human 

Trs23 (PDB id: 2J3T, chain D) and mouse sedlin (PDB id: 1H3Q). R.m.s. (root mean 

square) deviation values were calculated by FATCAT for aligned Cα atoms, with one 

structure rearranged, i.e. twists were introduced in the alignment. Sequence identity 

and similarity (amino acids with similar side chain properties occupying equivalent 

positions are considered similar) were also derived from the FATCAT structure 

alignment, which, considering the low similarity of all four proteins, is more reliable 

than alignments based on sequence alone (Table 4.4.1). 

 

 
Twist(s) 

introduced 
r.m.s.d

(Å) 
Equivalent 

Cα positions
Sequence 

identity (%)
Sequence 

similarity (%) 

Bet5p_yeast 0 3.00 111 11.8 23.0 

Bet5_mouse 0 3.12 116 10.7 23.5 

Trs23p_yeast 1 3.89 129 10.5 24.1 

Trs23_humana 1 3.11 110 9.4 27.5 

sedlin_mouse 1 2.88 124 12.6 28.5 

Table 4.4.1 Structure comparison of Tca17 with other members of the Bet5 subfamily. 
a: only the longin domain used in alignment. 

 

The structure and sequence alignment allows the conclusion that, among the five 

proteins, mouse sedlin is the closest Tca17 relative. The structure and sequence 

similarity would be probably more obvious, if the structure of yeast Trs20p, the yeast 

sedlin ortholog, were available and could be used in a similar comparison. 
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The solvent-accessible surface area (SAS) per molecule buried in the dimer interface 

was calculated by the Pisa webserver [116] as 405 Å2, corresponding to 4.7 % of the 

total SAS of a Tca17 monomer. This dimer interface is mainly stabilized by the single 

disulfide bond, which produces about 30 kcal/mole protein upon bond formation. If 

leaving out the disulfide bond, then the interface is only stabilized by hydrophobic 

interaction and surface contact, which produce about 3.5 kcal/mole protein upon 

dimerization. From these data one would expect that this dimer, in the absence of the 

disulfide bond, would be quite weak. 

 

4.4.3.2 Monomer in solution  

Analytical ultracentrifugation experiment: 

In order to assess the oligomerization state of Tca17 in solution, a sedimentation 

velocity experiment of analytical ultracentrifugation (AUC) was performed, under 

similar buffer conditions as those used in protein crystallization. Two experiments 

were performed at Tca17 concentrations of 0.6 and 6.0 mg/ml, respectively, in SLS 

buffer (20 mM HEPES, pH 7, 300 mM NaCl, 5 mM βME, as listed in 2.4). From the 

sedimentation coefficient (s) distribution graph (Fig 4.4.6), only one main peak was 

present at either protein concentration, despite a minor trace of tailing toward higher 

s side, suggesting the protein sample was predominant present in one 

oligomerization form, while showing a small tendency toward higher oligomerization 

state.  

 

 

 

 

 

 

 

 

 

Fig 4.4.6 Sedimentation distribution of Tca17 in SLS buffer.  
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Values of the sedimentation coefficient (s) and the corresponding estimated 

molecular mass (M) are listed in Table 4.4.2. The estimated molecular mass values 

are closer to the calculated molecular mass of the Tca17 monomer (17.4 kDa) than 

the dimer (34.8 kDa). From the AUC data, it is therefore concluded that Tca17 is 

predominantly a monomer in SLS buffer. 

Protein concentration
(mg/ml) 

s M (kDa)*

0.6 1.779 18.1 

6.0 1.768 21.4 

Table 4.4.2 Estimated sedimentation and molecular mass of Tca17 in SLS buffer.  

*: calculated by Equation 3.15. 

 

Static light scattering: 

For static light scattering (SLS) measurements, 100 µl of 7 mg/ml purified Tca17 

were loaded onto a pre-equilibrated analytical gel filtration column (Superdex 75 

10/300 GL), which was connected with a 2-angle SLS detector. The gel filtration 

elution profile and molecular weight curve of each elution peak estimated from SLS 

signal are shown in Fig 4.4.7. 

For comparison, the SLS measurements were repeated with two different buffer 

conditions, the SLS buffer as used in analytical ultracentrifugation, and the SLS-2 

buffer which had an equivalent NaCl concentration but no reducing agent. Before 

loading on the column, protein samples were dialysed against the appropriate buffers 

at 4 °C for 24 h, to ensure complete equilibration of the protein under the respective 

buffer conditions. 

When the gel filtration was performed in SLS buffer, Tca17 eluted as one single peak 

representing one protein species with a molecular mass of ~16 kDa according to SLS 

(Fig 4.4.7 a), which is close to the molecular mass calculated from the sequence of 

Tca17. When the gel filtration was performed in SLS-2 buffer, this elution peak was 

slightly delayed, and the SLS analysis indicated a molecular mass of ~ 17 kDa. In 

addition, a faster migrating small peak was detected under SLS-2 buffer condition. 

The molecular mass of this protein species according to SLS analysis is ~35 kDa, 

consistent with a dimer of Tca17 (Fig 4.4.7 b). 
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Fig 4.4.7 Gel filtration elution profiles and molecular masses detected by SLS, 
using (a) SLS buffer, and (b) SLS-2 buffer as running buffer. 

The appearance of an apparently dimeric Tca17 species after gel filtration in non-

reducing buffers indicates that the redox potential of the solution has an effect on the 

monomer-dimer equilibrium of Tca17. Although even in these buffers most of the 

protein (> 95%) remains monomeric, a non-reducing environment seems to favor 

dimer formation of Tca17. Disulfide bonds as observed in the Tca17 crystal structure 

require a non-reducing medium for their formation. It thus seems possible that the 
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still remained as a monomer, whereas a small portion of dimeric species (MW = 35 

kDa) was also detected. This dimer could not only be based on hydrogen bonds or 

hydrophobic interactions, since the presence of 1% SDS would break up these weak 

interactions. The result of non-reducing SDS-PAGE was in agreement with the SLS 

results, and further supported the conclusion that the dimeric Tca17 seen in SLS 

measurements and here in the gel was indeed disulfide-linked. 

In the three experiments above, Tca17 is predominantly monomeric in reducing 

buffer conditions. In non-reducing buffer conditions, Tca17 remains mostly 

monomeric, while a small portion (< 5%) dimerizes.  

In the crystallization processes, the protein solution starts from a reducing buffer 

condition (2 or 5 mM DTT is present in the protein buffer). During the long storage 

time (2-3 months at 4 °C), the reducing agent is gradually oxidized, leading to a 

disulfide bond formation, and hence further molecular contacts for crystal packing. 

However, from the in vitro experiments, it is also found that the dimeric species is 

only favored in a non-reducing environment. Therefore, in the reducing environment 

of yeast cell cytosol, a free Tca17 molecule should only be found as a monomer. 
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