
Appendix A

The Grammar of approXQL

For the specification of the grammar of approXQL, shown in Figure A.1, we use the Extended

Backus-Naur Form (EBNF) proposed by N. Wirth [Wir77]. In EBNF, [] brackets indicate zero

or one occurrences of the enclosed expression; { } brackets indicate zero or more occurrences.

Additionally, () parentheses can be used to group expressions.

The signs enclosed by quotation marks and the capitalized words are the terminals of the

grammar. The structure of a NAME is defined by the production for the non-terminal Name in

the XML specification [BPSM00]. A WORD is a character sequence that starts with a letter

and continues with letters and digits. The structure of a NUMBER follows the common rules for

integers and real numbers. A TOKEN is any sequence of characters, including names, words,

and numbers. Generic tokens are one basis for extending the language by new data types.

The dots at the end of the productions for the non-terminals StructType, DataType, and

Operator indicate that these productions can be extended. For example, a new data type

person name and a new operator sounds like may be added. A back-end module of the

parser ensures that each operator is defined for the data type it is used with, and that the

parsed TOKENs fulfill the syntax requirements specified by the type.

199

Appendix A The Grammar of approXQL

Query ::= StructSelection [Containment]

Containment ::= ’/’ PathExpression | ’[’ Expression ’]’

PathExpression ::= Query | DataSelection | ’(’ Expression ’)’

Expression ::= PathExpression | Disjunction

Disjunction ::= Conjunction { ’or’ Conjunction }

Conjunction ::= Expression { ’and’ Expression }

StructSelection ::= [InsModifier] TypedSelector [ValModifier] [DelModifier]

TypedSelector ::= [StructType ’:’] StructSelector

StructType ::= ’struct’ | ’attribute’ | ’element’ | ...

StructSelector ::= NAME | ’(’ NAME { ’|’ NAME } ’)’

DataSelection ::= [InsModifier] Predicate [ValModifier] [DelModifier]

Predicate ::= [[DataType] Operator] DataSelector

DataType ::= ’data’ | ’text’ | ...

Operator ::= ’=’ | ’<’ | ’<=’ | ’>’ | ’=>’ | ...

DataSelector ::= Data | ’(’ Data { ’|’ Data } ’)’

Data ::= Phrase | NUMBER | TOKEN

Phrase ::= ’"’ AlphaNum { AlphaNum } ’"’

AlphaNum ::= WORD | NUMBER

InsModifier ::= ’*’ | ’!’

ValModifier ::= ’*’ | ’!’

DelModifier ::= ’:’ (’*’ | ’!’)

Figure A.1: The grammar of approXQL.

200

