
Chapter 10

Experimental Efficiency Analysis

In Chapters 6 and 7, we introduced three methods to evaluate approXQL queries: The direct

method operates on lists that store a subset of all data-tree nodes with a given value. Both

the schema method and the hybrid method use the path tree (schema) of the data tree to find

the best k transformed queries, which are then executed against the data tree. The schema

method creates a new second-level query for each combination of matching schema paths,

whereas the hybrid method merges second-level queries with similar substructures.

Given the three query-evaluation methods, our first objective in this chapter is to analyze

the dependencies of the query-evaluation times on several query and data parameters. The

second objective is to compare the query-evaluation methods in order to determine which

approach is superior for several specific parameter settings. Based on these findings, a future

version of the approXQL query engine can be enabled to choose the appropriate evaluation

method after analyzing the indexed collection and the query being evaluated.

The chapter is organized as follows: In the first section, we formulate five hypotheses, which

we will verify in the rest of this chapter. In Section 10.2, we describe the configuration of

our test system, the auxiliary software employed for query and data generation, and the

characteristics of the query patterns and XML document collections used for the tests. In

Section 10.3, we describe the test series that have been carried out. Section 10.4 provides a

detailed analysis of the results obtained during the experiments. Finally, in Section 10.5, we

summarize the main results.
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10.1 Hypotheses

From the variety of topics that are worth investigating, we select those that focus on character-

istics we think are crucial for the fast similarity search: (1) the ability to quickly retrieve the

best n results for different types of queries; (2) the correlation between the query-evaluation

times and the number of permitted value changes per query selector; the influence of the

schema size on the query-evaluation times assuming that the number of distinct element

names (3) grows according to the schema size or (4) remains constant; and (5) the dependen-

cies of the query-evaluation times on the selectivities of the query terms. In the following, we

formulate a hypothesis for each of the topics.

1. Number of requested results: The evaluation time of a query using the schema method

or the hybrid method increases with the number of requested results. The evaluation

time using direct method remains constant.

2. Number of value changes: The evaluation time of a query increases as the number of

value changes per selector increases.

3. Schema size, varying number of names: Using a constant collection size, the evaluation

time of a query decreases as the schema size increases, provided that the number of

distinct element and attribute names increases with the schema size.

4. Schema size, constant number of names: Using a constant collection size and a constant

number of distinct element and attribute names, the evaluation time of a query using

the schema method or the hybrid method increases as the schema size increases. The

evaluation time using the direct method remains constant.

5. Term selectivity: The evaluation time of a query using the direct method increases as the

term selectivities decrease. The evaluation time of a query using the schema method or

the hybrid method decreases as the selectivities decrease.

Note that we do not investigate the dependencies of the evaluation times on the number

of deletions, permutations, and insertions here. The number of deletions is restricted by

the number of query selectors; the number of permutations is restricted by the number of

inner selectors that have ancestor-descendant relationships. Each deletion or permutation

encoded in a query-execution plan increases the evaluation times by a constant factor. Node

insertions have no influence on the evaluation times, because the insertion costs are calculated

in constant time.
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10.2 Experimental Setup

In this section, we review the characteristics of the computer used for our test series, the con-

figuration of important parameters of the approXQL query engine, and the auxiliary software

used to create random document collections and queries. We also describe the characteristics

of the document collections and queries used in our experiments.

10.2.1 System Configuration

We carried out all test series on an Intel Pentium 4 computer with 1.25 GHz and 512 MB

memory, running Linux 2.4.18 as its operating system. The approXQL query engine is imple-

mented on top of the Berkeley Database version 3.3.11 [BER02], using B-trees to implement

the indexes described in Chapter 8. We configured the database kernel with a page size of

64 KB, in order to store long index postings in a single page. The cache size of the database

kernel was set to 10 MB.

Recall from Section 6.6.2 that the approXQL query engine uses dynamic programming to

implement the evaluation of query-execution plans. Depending on the buffer size for storing

intermediate results, the system can avoid the recomputation of shared subplans. For the

schema method and the hybrid method, the system stores the results of the subqueries of

second-level queries in order to avoid multiple evaluations of identical subqueries belonging

to subsequent second-level queries. We used a cache size of 100 MB, which is sufficient to

avoid the recomputation of shared subplans/subqueries even for complex queries.

A crucial parameter for both the schema method and the hybrid method is k, the number of

second-level queries required to create n results. As discussed in Section 7.4, the choice of k

depends on the characteristics of the query and the data, and is very hard to predict. In all

our tests, we calculated k by the formula,

k = max(200, 3 · n),

which proved to be a good compromise between the additional time needed to create unused

second-level queries (if fewer queries were needed to find n results), and the additional time

needed to increase the number of second-level queries (if the best k queries retrieved less

than n results). We used the factor 2 to increase k after each cycle.

To ensure the controlled behavior of the system even in extreme cases, we limited the eval-

uation time of an approXQL query to 5 minutes. Furthermore, for the schema method and
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the hybrid method, we canceled the evaluation of a query if k reached a limit of 100,000, or

if the set of second-level queries consumed more than 100 MB of memory.

10.2.2 Software used for Experimental Setup

In this section, we describe the two tools used for preparing our experiments: the Niagara-

project XML data generator [ANZ01] and the approXQL query generator.

The Niagara-Project XML Data Generator

The Niagara-project XML data generator produces XML files according to parameters pro-

vided in a configuration file. A DTD is neither required nor supported. To generate a collec-

tion of XML documents, two sets of parameters have to be adjusted: The first set controls

the characteristics of the path tree, e.g., its depth, the minimum and maximum fanout of the

nodes at each level, the fraction of internal path-tree nodes with recursion in their tag names,

and the fraction of internal path-tree nodes with repetition in their tag names. The second

set controls the characteristics of the documents created according to the path tree, e.g., the

number of elements per document, the total number of distinct words (terms), the Zipf value

(skew) of the term-frequency distribution, and the maximum number of term occurrences

per element. The variety of parameters allow to produce XML document collections with

very different characteristics. However, the configuration is not always trivial because many

parameters depend on each other.

The approXQL Query Generator

The choice of test queries is crucial for analyzing the efficiency of a query processor. We

decided not to use a fixed set of hand-coded queries, because the test queries might have

unwanted dependencies resulting from the subjective choice of the selection values.

In our experiments, all queries have been produced by a simple generator: The generator

expects a query pattern, which determines the structure of the query. A query pattern

consists of name templates, term templates, and operators. The query generator produces

approXQL queries by filling in the templates with concrete names and terms. A predefined

percentage of names and terms do not appear in the collection of documents; all other names

and terms are selected randomly from the indexes.
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For each produced query, the generator also creates a cost file. The file for a query selector

contains the deletion costs of the selector and a predefined number of alternative values,

together with their value-change costs. All costs are randomly chosen from a predefined

interval. The values are selected randomly from the indexes. All deletion costs are less than

infinite, which means that all query selectors may be deleted.

The random selection of terms (and names) is the default behavior of the query generator. It

additionally supports the selection of the most frequent terms (maxfreq mode) and the least

frequent term (minfreq mode) as follows: If the generator is in maxfreq mode, then it creates

a list of all terms L occurring in the collection and sorts the list by decreasing frequency.

If the query pattern has t term templates and v alternative values per selector, then the

generator selects the t first terms from L, and assigns them randomly to the term templates.

The alternative values are randomly chosen from the interval L[t, t + t · v− 1]. In the minfreq

mode, the generator works similarly, but assumes L to be sorted by increasing frequency.

If the generator works in maxfreq mode, then the terms of the created queries are the most

frequent ones found in the collection. Therefore, the queries have minimum term selectivities.

Similarly, if the generator works in minfreq mode, then the queries have maximum term

selectivities.

10.2.3 XML Collections

There is still a shortage of large test collections of XML documents. The collections publicly

available are either far too small to allow experiments with expressive results (like the Sigmod

record [Mer99]), or they have a regular structure with a very small schema (like the religious-

works collection [Bos99]). For our experiments, we chose the DBLP collection, which consists

of XML documents containing bibliographic data about conferences, journals, and books

published in the field of database research. The documents in the DBLP collection are quit

regularly structured, but the collection is large enough to allow a meaningful analysis of the

query-evaluation times.

From all of the synthetic document collections used in our experiments, we selected five for

the systematic analysis presented in this thesis. These collections allow us to analyze and

compare the evaluation times of a query with respect to (i) different schema sizes, (ii) different

numbers of element names using constant schema sizes, and (iii) different term distributions.

Table 10.1 on the following page introduces the names of the collections and summarizes their

characteristics. The row “names” lists the total number of distinct element and attribute
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collection dblp 100x100 1000x100 1000x1000 10000x100 10000x10000

documents 282,151 100

names 41 100 100 1,000 100 10,000

elements 3,217,918 1,000,000

terms 471,357 100,000

words 9,729,638 10,000,000

Zipf value ≈ 1 1

schema nodes 148 100 1,000 10,000

nesting levels 5 6 7 9

Table 10.1: Characteristics of the XML document collections used in the experiments.

names occurring in the collection; the row “elements” lists the total number of elements and

attributes. (The synthetic collections do not contain attributes, because the data generator

cannot produce them.) Further, the row “terms” lists the number of distinct words in the

collections; the row “words” lists the total number of words (term occurrences). The Zipf value

determines the skew of a term frequency distribution according to Zipf’s law Pi ∼ 1/iz [Zip49].

The function calculates the number of occurrences Pi of a term in a collection, where z is

the Zipf parameter and i is the position of the term in the frequency-sorted list of all terms

occurring in the collection. The Zipf value 1 describes a term distribution similar to the

one found in typical English texts [MNF58]. Synonymous names for the row “nesting levels”

are “depth of the data tree” and “depth of the path tree”, where the depth is counted by

including the nodes of type data.

The 1000x100 and 10000x100 collections required an additional postprocessing of the XML

files created by the data generator: To yield a schema size of 1000 or 10000 nodes with a

constant number of 100 distinct names, we ran a simple program that reduced the number of

different names, but kept the relative frequencies of the names.

10.2.4 Query Patterns

In our experiments, we initialized the query generator with a wide range of query patterns and

measured the evaluation time of the generated approXQL queries. For the analysis presented

in this chapter, we exemplarily choose four patterns that represent a “simple path query”, a

“small Boolean query”, a “large Boolean query”, and a “structure-only” query, respectively.

The patterns are shown in Table 10.2 on the next page. The names of the first three patterns

reflect the number of hierarchical levels (first digit) and the number of leaf selectors (last
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pattern name pattern definition

4x1 name[name[name[term]]]

3x3 name[name[term and (term or term)]]

5x7 name[name[name[term and term and (term or term)] or
name[name[term and term]]] and name]

struct name[name[name and (name or name)]]

Table 10.2: Query patterns used in the experiments.

digit) of the pattern. The struct pattern has the same shape as the 3x3 pattern, except that

only structural selectors exist. We configured the query generator to use the interval [1..10]

for the assignment of deletion and value-change costs. All insertion costs were set to 1, and

no permutations were defined.

10.3 Performed Experiments

To allow the verification of our hypotheses with respect to all combinations of collections,

query patterns, and evaluation methods, we defined a hierarchy of test series (see Figure 10.1).

6 collections (dblp, 100x100, 1000x1000, 10000x10000, 1000x100, 10000x100)

4 query patterns (4x1, 3x3, 5x7, struct)

11 result sizes (1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, all)

8 value-change modes (0, 1, 2, 5, 10, 20, 50, 100 value changes per selector)

3 query-evaluation methods (schema, hybrid, direct)

3 selectivity modes (minimal, average, maximal)

10 randomly created queries (7)

(6)

(5)

(4)

(1)

(2)

(3)

Figure 10.1: Hierarchy of test series.

With each of the six XML document collections (Line 1 in Figure 10.1) we used all four query

patterns (Line 2). Given a pair of collection and query pattern, we carried out three test series

(Line 3): In the first series, we configured the query generator to run in maxfreq mode (see

Section 10.2.2) in order to produce queries with minimum selectivities. In the second series,

the generator produced queries with average term selectivities. Finally, in the third series,

the generator was configured to run in minfreq mode. For each combination of collection,

query pattern, and selectivity, we carried out eight test series, where a different number of

value changes per query selector was defined for each series (Line 4). At this stage, we ran
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name description

direct method The direct query-evaluation method (proposed in Chapter 6).

schema method The (non-optimized) schema-driven query-evaluation method (pro-
posed in Chapter 7).

hybrid method The schema-driven query-evaluation method that merges second-
level queries with similar substructures (proposed in Chapter 7).

generation time The time needed to generate the appropriate number of second-level
queries for the retrieval of the requested number of results. Not
defined for the direct method.

evaluation time Total time needed to evaluate a query. For the schema method and
the hybrid method, this is the total time needed to generate and
evaluate second-level queries.

average selectivity The query terms are randomly selected from the list of all terms
occurring in the collection.

minimum selectivity The query terms are randomly selected from the list the most fre-
quent collection terms.

maximum selectivity The query terms are randomly selected from the list the least fre-
quent collection terms.

Table 10.3: Summary of names used for the query-evaluation methods, for time measurement,
and for the choice of query terms.

the query generator in order to derive 10 random queries from the current query pattern, and

to create the cost file for the generated queries. The 10 queries were then evaluated using

each of the three methods (Line 5). If either the schema method or the hybrid method was

used, we carried out 11 subsequent series. Each of these series used a different value for n,

the number of requested results (Line 6). Because the direct method does not support the

estimation of the best n results, we only carried out a single series. Each measured time value

is the mean of the evaluation times of the 10 queries (Line 7).

All measured times are real times that include disc-access times and computation times. To

obtain the times we used the Unix system call gettimeofday(). Table 10.3 summarizes the

names used for the query-evaluation methods, for time measurement, and for the choice of

query terms.
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10.4 Results of the Experiments

In this section, we present the results of our experiments and confirm or dismiss the five

hypotheses formulated in Section 10.1. Due to the large number of results, we only present a

selection of representative diagrams in each subsection.

10.4.1 Hypothesis 1 (Number of Requested Results)

Hypothesis 1 states that the evaluation time of a query using the schema method or the hybrid

method increases as the number of requested results increases, and that the evaluation time

of a query using the direct method is independent from the number of results. In fact, the

second part of the hypothesis is necessarily true because the direct method must compute all

results to retrieve a prefix of the best ones.

We present the dependencies of the evaluation times on the number of results with respect to

the collections 100x100 and dblp using a fixed number of 10 value changes per query selector.

All evaluation methods show a similar time behavior if other collections and other number of

value changes are used.

Figure 10.2 on the following page shows the evaluation times for the four query patterns

with respect to the 100x100 collection. The x-axis of each diagram denotes n, the number

of requested results for the queries; the y-axis shows the evaluation times. Note that the

y-axes have logarithmic scales. For each number of results, the diagrams show two bars

representing the evaluation time of the schema method and the hybrid method, respectively.

At the x-position representing the retrieval of all existing results, each diagram additionally

displays a bar that shows the evaluation time using the direct method. The bars drawn for

the schema method and the hybrid method include narrow black bars, which show the total

time needed to create a sufficient number of second-level queries, which in turn select the

requested number of results. Each bar in the diagrams represents the mean evaluation time

of 10 queries randomly generated for the same pattern. Note that a time value, measured

using either the schema method or the hybrid method, may include the times of several

evaluation cycles needed to increase the number of second-level queries.

Figure 10.2(a) shows the evaluation times of the 4x1 query. The schema method and the

hybrid method both outperform the direct method in all cases —even if all results are re-

quested. In fact, our experiments have shown that the schema method and the hybrid method

are still faster than the direct method if we do not allow value changes, and even if we forbid

161



Chapter 10 Experimental Efficiency Analysis

hybridschema method generation of second−level queriesmethod direct method

0.1

1

10

100

1000

1 2 5 10 20 50 100 200 391 (all)

ev
al

ua
tio

n 
tim

e 
(m

ill
is

ec
on

ds
)

number of results

(a) 4x1 query pattern

0.1

1

10

100

1000

10000

1 2 5 10 20 50 100 200 500 950 (all)

number of results

(b) 3x3 query pattern

1

10

100

1000

10000

100000

1e+06

1 2 5 10 20 50 100 200 500 1000 23567 (all)

ev
al

ua
tio

n 
tim

e 
(m

ill
is

ec
on

ds
)

number of results

(c) 5x7 query pattern

0.1

1

10

100

1000

10000

1 2 5 10 20 50 100 200 500 1000 38194 (all)

number of results

(d) struct query pattern

Figure 10.2: Query-evaluation times for the 100x100 collection depending on the number of
requested results. Fixed parameter: 10 value changes per query selector.

the deletion of nodes. There are two reasons for this behavior: First, all second-level queries

created have at least one embedding in the data tree (each second-level query is a type-value

path). Second, during the evaluation of a second-level query, only the node instances (see

Definition 7.3 on page 111) of the query nodes are considered. Those are all nodes with a

certain type and value, and with a certain position in a type-value path. In contrast, the

algorithm for the direct method inspects all matches of a query node in the data tree. The

higher selectivities of query nodes in the schema method result in shorter lists, and therefore

in faster list operations. The schema method outperforms the hybrid method if very few

results are requested. However, the evaluation time of the hybrid method increases far less

than the evaluation time of the schema method as the number of requested results increases.

The evaluation times of the 3x3 query pattern are shown in Figure 10.2(b). The diagram

162



10.4 Results of the Experiments

shows that the evaluation times of the 3x3 query pattern using the schema method and

the hybrid method are higher than the evaluation times of the 4x1 query pattern (note the

different scales of both y-axes). The reason is that some created queries may find no results,

and a larger k must be chosen. Figure 10.2(b) also shows an important difference between

the schema method and the hybrid method: The schema method is slower in all cases and its

evaluation times again rise faster than those of the hybrid method. In particular, the query-

creation times (represented by the black bars) consume most of the total evaluation times.

This indicates that many “useless” second-level queries have been created and evaluated (each

with low evaluation time) until enough results were found. It follows that the hybrid method

has a better ratio of the number of second-level queries created to the number of results per

query than the schema method.

Figure 10.2(c) supports this observation: The schema method is slower than the hybrid one,

and almost all of the processing time is spent on creating second-level queries. However,

also the hybrid method becomes slow if many results are requested. This indicates that the

merging of second-level queries does not fully avoid the creation of “useless” queries. Further

experiments have shown that this does not only hold for the 5x7 query, but is a general effect

of an increasing number of “and” operators. For queries with many “and” operators, the

direct method is superior to the two schema-driven methods.

The struct query, whose evaluation-time diagram is depicted in Figure 10.2(d), shows a differ-

ent behavior than the queries with keywords: Here, the schema method is the most efficient

method, at least if only a prefix of all results is requested. The evaluation time rises only dur-

ing the retrieval of all results. There is a simple explanation for that behavior: Each element

name has far more occurrences than a keyword, and a query that only has structural selectors

retrieves many more results than a query with text selectors. In particular, most second-level

queries retrieve many results, so that the prefix of n results is retrieved rapidly. The hybrid

method shows a similar time behavior, but with a larger constant. This meets our expecta-

tions because the schema method and the hybrid method work similarly for structure-only

queries. We attribute the constant time difference to the more complex evaluation part of the

hybrid query processor: The processor always computes the embedding cost of second-level

queries (because they may have term selectors), and therefore needs larger data structures

and more complex algorithms than the schema query processor. The direct method shows a

disadvantageous time behavior, compared to the schema method and the hybrid method: The

low selectivities of structure-only queries produces large lists that store intermediate results.

The direct method performs many unnecessary list operations, because it cannot determine

in advance which combinations of lists will lead to matches.
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Figure 10.3: Query-evaluation times for the dblp collection depending on the number of re-
quested results. Fixed parameter: 10 value changes per query selector.

Figure 10.3 shows the results obtained for the dblp collection. The diagrams resemble those

obtained for the 100x100 collection. There is, however, an important difference: The eval-

uation time of a query using the schema method rises less, and the time needed to create

the second-level queries takes up a smaller percentage of the total evaluation time. The col-

lections 100x100 and dblp differ in their schema sizes (100 versus 41 nodes). The larger the

schema of a collection, the more elements with distinct names exist in which a particular term

can occur. Because the schema method encodes all distinct variants in distinct second-level

queries (including all permitted value changes), more second-level queries exist, and each of

them selects less results. We investigate that observation in more depth in Sections 10.4.3

and 10.4.4. The hybrid method shows similar behavior for both collections.
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Figure 10.4: Query-evaluation times for the 100x100 collection depending on the number of
value changes per selector. Fixed parameter: 100 requested results.

10.4.2 Hypothesis 2 (Number of Value Changes)

In Hypothesis 2, we assume that the evaluation time of a query increases as the number of

value changes per selector increases. Although this seems to be obvious, the hypothesis is

not necessarily true because a higher number of value changes also increases the number of

results. Thus, it may be possible that the retrieval of the first n results using the schema

method or the hybrid method becomes faster if many value changes are permitted.

The results of our experiments, however, show that the hypothesis is always true. The

evaluation time strictly increases as the number of value changes per selector increases. Again,

we present a selection of results which were obtained for the collections 100x100 and dblp.

All diagrams show the evaluation time for a fixed number of 100 requested results.
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Figure 10.4 on the page before displays the query evaluation times for the 100x100 collection,

requesting 100 results. In the case of the direct method, all results were evaluated, sorted by

increasing cost, and the best 100 results were selected.

The results obtained for the 4x1 query pattern (Figure 10.4(a)) indicate that the hybrid

method outperforms the other methods in all cases. This is true not only for 100 results,

but for any number of results larger than 10. An interesting and typical fact is that the

more value changes per selector are permitted, the larger the percentage of time spent for the

creation of second-level queries. This is particularly true for the schema method, as all four

diagrams in Figure 10.4 indicate. If 100 value changes are applied, then the query creation

uses up almost all of the evaluation time. During the evaluation of queries belonging to the

5x7 pattern, the schema method even exceeded the limit of 100,000 second-level queries if 50

or 100 value changes per selector were applied. Therefore, the evaluation was canceled and

the bars for these parameters do not appear in Figure 10.4(c). The direct method— although

slower than the other methods—has an acceptable response time (circa 100 milliseconds) as

long as the number of value changes is low. For many value changes, however, the answer

time is unacceptable.

Figure 10.5 on the facing page shows the evaluation times of the queries with respect to the

dblp collection. Most results are similar to those obtained for the 100x100 collection, but

there are two exceptions: First, the bars in all four diagrams and for all three query-evaluation

methods grow until 50 value changes are reached. They do not grow any further if 100 value

changes are defined. This is caused by the small number of 41 distinct element and attribute

names in the dblp collection. A number of 50 value changes per selector means that each query

selector already matches each element name in the collection. Consequently, the evaluation

time of structure-only queries is equal for 50 and 100 value changes, as Figure 10.5(d) shows.

The evaluation times of queries generated according to the 4x1 and 3x3 patterns rise only

minimally when increasing the number of value changes from 50 to 100. For these queries,

only the number of value changes for text selectors rises. These results indicate that the

value change of a text selector only has minimal influence on the evaluation time, because the

selectivity of a text selector is much higher than that of a structural selector. Second, the time

behavior of the schema method and the hybrid method are very similar. In particular, the

schema method does not show such a steep ascent as observed with the 100x100 collection.

This is obviously a result of the lower amount of time needed for the creation of second-level

queries, as the narrow black bars indicate. We conclude that the small schema size, and

particularly the very flat hierarchy of the dblp collection in conjunction with the higher term

selectivities, are beneficial for the schema method.
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Figure 10.5: Query-evaluation times for the dblp collection depending on the number of value
changes per selector. Fixed parameter: 100 requested results.

10.4.3 Hypothesis 3 (Schema Size, Varying Number of Names)

In this subsection, we investigate the dependencies of the answer time on the size of the

schema. In Hypothesis 3, we assume that the answer times of all three query-evaluation

methods decrease as the size of the schema increases, supposed that the number of distinct

element names grows according to the schema size. To verify this hypothesis, we use the

collections 100x100, 1000x1000, and 10000x10000. Each of these collections was produced

using the same parameters for the data generator, except the ones that affect the size of the

path tree. These parameters also determine the number of distinct element names, because

the data generator creates a unique name for each path-tree node. We only present the results

obtained for the 3x3 query pattern.

Figure 10.6 on the next page indicates that our hypothesis holds: The larger the schema, the

167



Chapter 10 Experimental Efficiency Analysis

collection generation of second-level queries10000x10000collection1000x1000collection100x100

10

100

1000

10000

ev
al

ua
tio

n 
tim

e 
(m

ill
is

ec
on

ds
)

 

95
0

17
2

25

(a) direct

method

1

10

100

1000

1 2 5 10 20 50 100 200 500

number of results

(b) schema method

0.1

1

10

100

1000

1 2 5 10 20 50 100 200 500

number of results

(c) hybrid method

Figure 10.6: Evaluation times of the 3x3 query pattern for collections with different schema
sizes. For each collection, the number of distinct element names is equal to the
number of schema nodes. Fixed parameter: 10 value changes per query selector.

faster the evaluation of the queries. This is particularly true for the direct method, which

retrieves all existing results and does not make use of the schema. Figure 10.6(a) shows

a diagram with three bars representing the evaluation times with respect to the collections

100x100, 1000x1000, and 10000x10000. The number on top of each bar shows the average

number of results for 10 queries generated for the 3x3 pattern. The efficiency of the direct

method depends mainly on the selectivity of the query, and therefore the fewer results that

exist, the faster the evaluation.

The efficiency of the schema method also becomes better as schema sizes and selectivities

are increased. (see Figure 10.6(b)). However, the differences are not as large as observed

for the direct method, because the large schema size slows down the evaluation time. (We

investigate this phenomenon in the next subsection.) The differences between the evaluation

times measured for the tree collection even shrink as more results are requested.

The hybrid method shows a time behavior superior to that of the schema method: With an

increasing number of requested results, the evaluation times for large schemata grow even less

than the evaluation times for small schemata.

10.4.4 Hypothesis 4 (Schema Size, Constant Number of Names)

In this subsection, we investigate the same question as in the previous one, but with a slightly

modified setting: The collections 100x100, 1000x100, and 10000x100 that were used in the
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Figure 10.7: Evaluation times of the 3x3 query pattern for collections with different schema
sizes and a constant number of 100 distinct element names. Fixed parameter:
10 value changes per query selector.

experiments have the same sizes as the corresponding collections used in the previous sub-

section, but all have the same number of 100 distinct element names. Again, we only discuss

the results obtained for the 3x3 query pattern.

The first observation concerning Hypothesis 4 is that the evaluation time of queries using the

direct method is in fact independent of the schema size. It only depends on the total number

of results retrieved by a query, as Figure 10.7(a) indicates. Our hypothesis also holds for the

schema method, as Figure 10.7(b) shows: The larger the schema, the higher evaluation times

are. However, the differences between the evaluation times for different schema sizes become

less as more results are requested.

The diagram depicted in Figure 10.7(c) indicates that our hypothesis is not true for the

hybrid method: Although the evaluation time of each query type is affected by the schema

size, the evaluation times do not always increase as the schema size increases. A closer look at

the diagram helps to explain this unexpected behavior: The amount of time spent to create

the second-level queries strongly depends on the schema size, and therefore our hypothesis

holds with respect to query creation. However, the hybrid method creates fewer second-level

queries than the schema method, and the second-level queries have lower selectivities. The

more equal-valued nodes that are within the schema (recall that there are only 100 different

element names in each collection), the more approximate embeddings of an approXQL query

exist, and the more second-level queries must be created in order to retrieve a certain number

of results. However, the larger a schema, the shorter the path-dependent index postings
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belonging to the schema nodes (see Section 7.3). Shorter postings can be processed faster,

and therefore the time needed to evaluate a second-level query decreases with increasing

schema size. In summary, a collection with a small schema size allows the fast creation of

second-level queries, but the evaluation of each of these queries requires considerable time

due to long postings. The creation of second-level queries for a collection with a large schema

size is expensive, but the evaluation of each second-level query is cheap. Collections with

medium-size schemata lead to a good compromise between the fast creation and the fast

evaluation of second-level queries. The schema method creates far more second-level queries

than the hybrid method, and therefore has a less balanced relationship between the creation

and evaluation of those queries.

We conclude that there is a strong correlation between the size of a schema and the time

needed to create second-level queries. However, only the schema method increases the evalu-

ation time of a query with increasing schema size; the hybrid method is relatively stable with

respect to varying schema sizes.

10.4.5 Hypothesis 5 (Term Selectivity)

In Hypothesis 5, we assume that the evaluation time of a query depends on the selectivities of

the query terms. We expect that the direct method and the schema-driven methods schema

and hybrid behave differently: If the selectivity decreases, then the direct method becomes

slower (because it always finds the entire result set), and both the schema method and the

hybrid method become faster (because the first second-level queries find many results).

Figure 10.8(a) on the facing page depicts the results obtained for the 3x3 query pattern and

the 100x100 collection using the direct method. The three bars show the query-evaluation

times using maximum, average, and minimum term selectivities. Below the bars, we show

the total number of results found for each selectivity mode, where each value is the average

of 10 evaluated queries. The diagram indicates that our assumption is true. It is true because

the direct method must always find all results to retrieve the best n ones. However, a higher

term selectivity leads to a large number of results, and a large number of results in turn

lead to a high computation time because the lists to process are long. Consequently, a high

selectivity leads to slow evaluation times. The diagram obtained for the dblp collection (see

Figure 10.9(a)) underpins our observation. In fact, the hypothesis holds for all tested query

patterns and collections, using any number of value changes.

The schema method shows a time behavior that meets our expectations to a great extent (but

not fully) as the Figures 10.8(b) and 10.9(b) show: For 1 or 2 requested results, the queries
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Figure 10.8: Evaluation times of the 3x3 query pattern for the 100x100 collection with re-
spect to different selectivities of the query terms. Maximum (minimum) term
selectivity means that only the least (most) frequent terms of the collection are
used; average term frequency means that the terms are selected randomly from
the frequency-sorted list of collection terms. Fixed parameter: 10 value changes
per query selector.
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Figure 10.9: Evaluation times of the 3x3 query pattern for the dblp collection with respect
to different selectivities of the query terms. Fixed parameter: 10 value changes
per query selector.
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with maximum term selectivities are the fastest. This means that one of the first second-level

queries already found those results. However, we can observe decreasing evaluation times of

queries with high selectivities if we request the total number of results (9 for the 100x100

collection and 54 for the dblp collection). The minimum-selectivity queries are always faster

than their maximum-selectivity and average-selectivity counterparts.

We obtained a different —and unexpected —result for the hybrid method (see Figures 10.8(c)

and 10.9(c)): The queries with minimum term selectivities have a much higher evaluation time

than the queries with average or maximum term selectivities. There is a simple reason for

this behavior: The hybrid method — in contrast to the schema method —selects and merges

all postings that belong to a particular query term or to one of its alternative values. The

lists constructed from the merged postings are long (1,945,725 entries for the most-frequent

term in the 100x100 collection, and the 10 most frequent alternative terms), and therefore

the computation time increases. Moreover, many of the results selected by the best second-

level queries cannot be retrieved immediately, because the subsequent second-level queries

may select results with lower costs (see Section 7.5). This also explains why the answer

times of minimum-selectivity queries rise less than the answer times of average-selectivity

and maximum-selectivity queries.

10.5 Summary

Our experiments show that none of the query-evaluation methods is superior for all queries

and collections. In most cases, however, the schema-driven methods are most efficient. They

often yield evaluation times that are two or three powers of ten better than those of the

direct method. When comparing the schema method and the hybrid method, we observe

that there are few cases where the schema method is faster than the hybrid method. In most

cases, however, the hybrid method clearly outperforms the schema method, benefiting from

the merging of second-level queries. The evaluation times of both schema-driven methods

may degrade if many second-level queries do not find results. This particularly happens if a

query is large, if the selectivities of query terms are high, and if many results are requested.

In such cases, the direct method is more efficient than the schema-driven methods. Table 10.4

summarizes the dependencies of the query-evaluation methods on selected parameters.

A future version of the approXQL query engine should be able to choose the appropriate

evaluation method depending on query and data characteristics. For example, the engine

could count the number of “and” operators in a query and estimate the selectivities of the
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criterion direct method schema method hybrid method
increasing result size = ↑ ↗
increasing query size ↗ ↑ ↑
increasing number of value changes ↑ ↑ ↗
increasing schema size = ↗ ≈
increasing term selectivity ↓ ↗ ↓

Table 10.4: The dependencies of the query-evaluation methods on selected parameters. The
symbol “=” indicates that a method is by definition independent on a parameter;
“≈” indicates a relative independence observed during the tests. The arrows ”↗”
and ”↑” indicate that the evaluation times (strongly) increase if the parameter
value increases; “↓” indicates a strong decrease of the evaluation times.

values assigned to the selectors. If both parameters indicate a high query selectivity, the

direct method should be used. Ideally, the query engine should use a schema-driven method

and the direct method in parallel. In most cases, the selected schema-driven method will

quickly return the best n results. If the evaluation time of this method degrades, then the

direct method will finally succeed and return all results.
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